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A Non-Scaling Radial-Sector Fixed Field Alternating
Gradient (FFAG) Ring for Carbon Cancer Therapy

Eberhard Keil1∗, Andrew Sessler23† and Dejan Trbojevic45∗∗

∗CERN, CH1211 Geneva 23, Switzerland
†Lawrence Berkeley National Laboratory, Berkeley CA 29720, USA

∗∗Brookhaven National Laboratory, Upton NY 11973, USA

Abstract. A non-scaling radial-sector FFAG is investigated as a machine to produce 2× 109 particles of C6+ per pulse, at
an energy of 400 MeV. This is accomplished by having an ECR ion source (producing C4+ at 40 keV per nucleon), followed
by an RFQ (that accelerates to a few MeV/u) and then a rapidly cycling synchrotron or linac that takes the carbon ions from
1 MeV/u to 31 MeV/u. The carbon is then fully stripped and accelerated in one FFAG to 119 MeV/u and then in a second
FFAG to 414 MeV/u. The top FFAG has a radius of only 8.1 m and an aperture of 20 cm. The magnets are superconducting
and have a maximum pole tip field of 5.3 T. The fields are linear, so the dynamic aperture is large. On the other hand, because
the FFAG is non-scaling the tunes vary during acceleration and the rate of acceleration must be rapid enough to pass through
resonances without unacceptable degradation of the beam.

Keywords: Cyclotron, cancer hadron therapy, FFAG cyclotron
PACS: 29.20.Hm, 29.27.Eg, 41.75.Ak, 41.85.Lc, 87.56.By

INTRODUCTION

A very interesting study of a series of scaling radial-sector FFAGs (three machines) for carbon cancer therapy has
been undertaken by Misu et al.[1]. The interest in FFAG machines arises because of the medical interest in the latest
therapy technique of spot-scanning which requires (about) 200Hz repetition rate which can not be achieved with a
conventional synchrotron[2].

The major difficulties, encountered by Misu et al with the use of scaling FFAGs were:

1. The radius of the top FFAG is rather large (11 m).
2. The aperture of magnets is rather large (65 cm).
3. The dynamic aperture in the low energy FFAG is rather small (80% of the beam is lost during acceleration).
4. The rf frequency is forced to be rather low (in the megahertz range so as to cover the aperture).

In this contribution we develop a scheme that overcomes these difficulties. We propose the same ECR ion source,
but then follow it immediately with an RFQ that accelerates the ions to a few MeV/u. Then we invoke a rapidly
cycling synchrotron, operating at 200 Hz, or a linac, to accelerate from the output of the RFQ to 31 MeV/u. It should
not be difficult to cycle the synchrotron so rapidly as the top energy is very small and, hence, the inductance of the
synchrotron magnets is greatly reduced from earlier machines that operated at 60 Hz and went to a few GeV. Then, we
propose two non-scaling FFAGs that operate over a range, in each, where the ion momentum changes by a factor of
two. By the use of superconducting magnets we address difficulty no. 1. The non-scaling (in contrast with a scaling)
FFAG addresses difficulty no. 2. A non-scaling FFAG is almost linear and hence has a large dynamic aperture, so
difficulty no. 3 is addressed (but not actually used in this design as we propose a synchrotron or linac (not an FFAG) at
low energy (where the losses were large in the Misu et al design). Finally, because the aperture is reduced, compared
with the Misu et al design, higher frequency rf may be employed.
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The ”down-side” of a non-scaling FFAG is that the tune varies during acceleration and, therefore, transverse
resonances must be crossed. We explore this subject and determine the necessary rate of acceleration so as not to
unacceptably disturb the ion beam. We design the machine not to cross the intrinsic half integral resonance (although
the third and higher order resonances are crossed), but machine resonances (imperfection resonances) of all orders are
crossed. This then puts a restriction on a combination of the magnet imperfections and the rate of acceleration.

TABLE 1. FFAG Ring Parameters

Parameter Ring 1 Ring 2

Injection energy Ein j/u (MeV) 31.1 119
Extraction energy Eext/u (MeV) 119 414
Number of periods 25 25
Period length (m) 1.36 2.04
Circumference (m) 34 51

FFAG LATTICE

The parameters of the two FFAG rings, presented in Table 1, are derived from those of two FFAG rings[3], which
accelerate protons from 20 to 77 MeV, and from 77 to 250 MeV kinetic energy, respectively. The reference orbit is
taken at injection. The ratio of the momenta at extraction and injection is exactly two. Hence, acceleration happens
between relative momentum errors ∆p/p = 0 at injection and ∆p/p = 1 at extraction. The lengths of the elements
and the periods, and the circumference of Ring 2 are 3/2 of those in Ring 1, thus permitting the installation of Ring 2
around Ring 1.

The cell parameters are shown in Table 2. The lengths, bending angles, magnetic fields and gradients are taken on
the reference orbit. The pole tip fields are taken at the pole tip, as will be discussed below. By design, the reference
momentum in Ring 2 is twice that in Ring 1. It follows that the magnetic fields in Ring 2 are 4/3 of those in Ring 1,
and that the magnetic gradients in Ring 2 are 8/9 of those in Ring 1.

TABLE 2. FFAG Cell Parameters

Parameter Ring 1 Ring 2

F magnet length (m) 0.14 0.21
F magnet bending angle -0.04854 -0.04854
F magnet field (T) -0.563 -0.751
F magnet gradient (T/m) 34.2 30.4
D magnet length (m) 0.3 0.45
D magnet bending angle 0.3484 0.3484
D magnet field (T) 1.89 2.51
D magnet gradient (T/m) -27.4 -24.3
Short straight section length (m) 0.08 0.12
Long straight section length (m) 0.62 0.93

Table 3 gives the beam parameters as calculated by the PTC_TWISS command in madX[4]. All parameters with
dimension metres scale like the scale factor 3/2 between Ring 2 and Ring 1. File names and excessive digits will be
removed at the last moment. Figure 1 shows the orbit functions βx, βy and the dispersion Dx in a cell of Ring 1 at the
reference momentum.

Fig. 2 shows the variation of the phase advances with the relative momentum error ∆p/p for both rings. The phase
advances at ∆p/p = 0 are design parameters, those for ∆p/p > 0 are the result of a calculation with PTC_TWISS.
Fig. 2 also shows the variation of the maximum β -functions with the relative momentum error ∆p/p for Ring 2. They
are the result of a calculation with PTC_TWISS. In Ring 1, the maximum β -functions are 2/3 of those shown.

Beam Size, Aperture and Pole Tip Field

The RMS beam radii follow from emittance, momentum and β -functions. They are displayed in Table 4. Following
Misu et al., we assume 1 mm normalised emittance at 400 MeV/u and scale from there. In the aperture, we allow for
three RMS beam radii. Three contributions add to the full horizontal aperture: 3 beam radii at injection − reference



TABLE 3. Beam Parameters from PTC_TWISS in madX

Parameter Ring 1 Ring 2

Radial swing of equilibrium orbit (m) 0.1248 0.1873
H Phase advance per cell at injection 0.3500 0.3500
V Phase advance per cell at injection 0.3500 0.3500
H Phase advance per cell at extraction 0.1461 0.1461
V Phase advance per cell at extraction 0.1228 0.1228
Maximum H beta at injection (m) 1.0141 1.5212
Maximum V beta at injection (m) 3.5764 5.3646
Maximum H beta at extraction (m) 0.9452 1.4178
Maximum V beta at extraction (m) 1.5414 2.3120
Maximum H dispersion at injection (m) 0.0620 0.0931
Maximum H dispersion at extraction (m) 0.2574 0.3861
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orbit − the radial swing of the equilibrium orbit, and 3 beam radii at extraction. The position of the horizontal aperture
with respect to the reference orbit is as shown. The swing of the horizontal closed orbit between injection and extraction
is much larger than the horizontal beam radii. If we allow approximately 4 mm for closed orbit distortions, we arrive
at the apertures shown in Table 4. The magnets are super-imposed dipoles and quadrupoles. We calculate the magnetic
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field at both edges of the horizontal aperture, define the pole tip field as the larger of the two in absolute value, and
display it in Table 4. These pole tip fields are within the reach of super-conducting magnets.

TABLE 4. Beam Size, Aperture and Pole Tip Field

Parameter Ring 1 Ring 2

Emittance at injection (µm) 4 2
Emittance at extraction (µm) 2 1
Max H beam radius at injection (mm) 2.0141 1.7442
Max H beam radius at extraction (mm) 1.3749 1.1907
Max V beam radius at injection (mm) 3.7823 3.2756
Max V beam radius at extraction (mm) 1.7558 1.5206
H aperture (mm) −10 . . .+133 −9 . . .+195
V aperture (mm) ±15 ±14
D magnet pole tip field (T) 2.2 2.7
F magnet pole tip field (T) 4.0 5.2

Design of the RF system

Table 5 shows parameters related to the design of the RF system. The circumference of Ring 1 at injection has the
design value already shown in an earlier table, that of Ring 2 is exactly 3/2 of the extraction orbit in Ring 1. The
circumferences at extraction are larger than those at injection, because the extraction orbits are outside the injection
orbits on the whole circumference. The speeds in units of the light velocity follow from the injection and extraction
energies. The revolution frequencies follow from the circumferences and the speeds. They vary by almost a factor of
two. The harmonic numbers h are integers and design parameters yet to be fixed. That in Ring 2 is 3/2 of that in Ring
1, in order to allow bunch to bucket transfer from Ring 1 to Ring 2. Hence, the harmonic number in Ring 1 must be
even. The two RF systems should be locked in phase during the transfer. The RF frequencies are simply the products
of h and the revolution frequencies. In Ring 1, we find the harmonic number h and the circumferential voltage VRF
from the requirement, that the bucket height ∆b in terms of ∆p/pr and the invariant bucket area Ab at injection are
larger than the assumed values ∆b = 0.01 and Ab = 0.5 eVs. In Ring 2, we adjust VRF such that we get ∆b = 0.01, and
observe that Ab becomes larger than in Ring 1. The RF frequencies are simply the products of h and the revolution
frequencies.

TABLE 5. Parameters of the RF system

Parameter Ring 1 Ring 2

Circumference at injection Ci (m) 34 51.932
Circumference at extraction Ce (m) 34.621 52.863
Speed at injection βi 0.2511 0.4606
Speed at extraction βe 0.4606 0.7201
Revolution frequency at injection fi (MHz) 2.215 2.659
Revolution frequency at extraction fe (MHz) 3.989 4.084
Stable phase angle ϕs 0.04π 0.04π
Harmonic number h 6 9
Circumferential RF voltage VRF (MV) 0.1592 0.6162
Actual energy gain/turn (keV) 119.7 463.4
RF frequency at injection f i

RF (MHz) 13.293 23.932
RF frequency at extraction f e

RF (MHz) 23.932 36.755
Bucket height at injection ∆b 0.0109 0.0100
Bucket area at injection Ab (eVs) 0.6536 1.2178
Max acceleration time Ta (ms) 5 5
Max number of turns at βi 11072 13538
Min energy gain/turn (keV) 7.9 21.8

The relation between acceleration time Ta and repetition frequency fr is Ta ≤ 1/ fr. At fr = 200 Hz we have
Ta ≤ 5 ms. The number of turns for acceleration is Na = Taβc/C. Here β is the relativistic factor, which varies during
acceleration, c is the speed of light, and C is the circumference. Ignoring the variation of β during acceleration, and
using its value at injection βi, we find the number of turns displayed in Tab. 5. We assume that the RF system operates



at constant voltage and accelerates by the same energy step on each turn. The energy gain in a turn is (E f −Ei)/Na

with final energy E f and initial energy Ei, and is also shown in Tab. 5. Although the C6+ ions are accelerated with
nearly stationary buckets at a very small stable phase angle ϕs, the actual energy gain/turn is much larger than the
minimum energy gain/turn, and the actual number of turns is much smaller than the maximum. Hence, our estimates
of the tune change per turn are pessimistic.

Resonance crossing

The tunes Qx and Qy vary between Qx = Qy = 8.75 at injection and Qy ≈ 3 at extraction, and hence straddle a
range of about six units. Neglecting variations, the tune change per turn is at least Qτ = 6/Na = 4×10−4. In order to
estimate the effect on the geometrical emittance ε , we employ the standard formulae summarized by R. Bartman[5],
who attributes the following formula to G. Guignard for the m-th order resonance mQx = n:
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Here R is the average radius, Bρ the magnetic rigidity of the C6+ ions. The term |. . .| on the right hand side is the n-th
Fourier component of the (m− 1)-th derivative of the magnetic field Bz, weighted with the horizontal β -function to
the power m/2. For small enough emittance blow-up ∆ε/ε � 1, we can expand (1) and write it in the form:
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Here C is the circumference. We first apply (2) to the intrinsic or systematic resonances mQx = Np or µx = 1/m with
3 ≤ m ≤ 6, which are crossed during acceleration. Here Np = 25 is the number of lattice periods. For the third-order
resonance 3Qx = 25 in Ring 1, we find with C from Tab. 1, the length of the two F magnets from Tab. 2, ε from Tab.
4, and Bρ = 1.625 Tm, that |∂ 2Bz/∂x2| < 0.6 T/m2. This corresponds to a field error of order 10−3 at the edge of
the aperture. The tolerable field components |∂ m−1Bz/∂xm−1| of the intrinsic resonances of order m > 3 are larger by
about a factor 1/

√
ε ≈ 50 for every increase of m by one, since βx ≈ 1 m.

Five integer resonances and eleven half-integer are crossed in the course of acceleration. These resonances are only
driven by errors. For the integral resonances the growth in betatron amplitude A amplitude in smooth approximation
is given by:
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Here R and B are average radius and average magnetic field, Bn is the n-th Fourier component of the vertical magnetic
field B, Q is the tune, Qτ is the tune change per turn, and C is the circumference. The second form can conveniently be
solved for the ratio Bn/B. The condition is tighter in the larger ring. Assuming ∆A/A = 0.1 and the other parameters as
already listed, we find Bn/B ≤ 3.4 10−4. For half-integral resonances, which are also only driven by errors, the growth
in betatron amplitude A is in smooth approximation:
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Taking ∆A/A = 0.1, and the other parameters as already listed, we find with B ≈ 0.4 T, that |∂Bn/∂x| ≤ 2.2 10−4 T/m.
The tolerances for the field components are tight. They could be relaxed by about an order of magnitude, by allowing

a larger blow-up in emittance and betatron amplitude, and by crossing the resonances more quickly. The RF voltage is
large enough to allow faster resonance crossing, since it is determined by bucket height and area, rather than the rate
of acceleration.

COMMENTS

Further work that needs to be done includes a careful study of non-linear effects and the emittance blow-up associated
with resonance crossing by simulation. Of course, the simple work here must be augmented with engineering studies
and, then, with cost estimates.



Our machines have the property that the reference orbit enters and leaves the magnets at a right angle with respect
to the magnet end faces. Hence, they are not strictly radial-sector FFAG rings, because the magnet end faces do not
point towards the machine centre. Spiral-sector FFAG rings might be an attractive alternative.

CONCLUSION

There are good medical reasons for using a cyclotron for medical therapy; namely the use of spot-scanning which can
not be achieved with a synchrotron. In this paper we have shown that two non-scaling FFAG cyclotrons in cascade
can be used as the central elements of a carbon therapy cancer center. Our result strongly motivates further theoretical
investigations, engineering studies, and cost estimates.
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