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ABSTRACT OF THE DISSERTATION
THREE ESSAYS ON THE FOUNDATIONS OF SCIENCE
By
Rolf Henry Johansson
Doctor of Philosophy in Social Science — Mathematical Behavioral Sciences
University of California, Irvine, 2014

Professor Louis Narens, Chair

The general uniqueness problem for finite semiorders is still unsolved, and this has impeded
their wider use in decision modeling. In Essay 1, I show that for semiorders that satisfy some
relatively weak constraints, unique representation (and hence interval scalability) may be
obtained.

In Essay 2, | discuss a type of counterexample to Tarski’s Convention T that was originally
discovered by Hintikka. I show that Hintikka’s counterexample generalizes in quite unexpected
ways, and that there are in fact a large number of unambiguous sentences that generate
counterexamples of the same general type. | then show that various proposals for dealing with
Hintikka’s original counterexample are unsatisfactory, and that none of the proposed solutions
can resolve all of the counterexamples presented in this essay.

In Essay 3 | present elementary formulas for the n™ prime and for the number of primes up to
a given limit, both of which improve upon existing formulas by avoiding the computation of
factorials and the exponential growth of terms. The formulas are based on the idea of
“embedding” characteristic functions — a characteristic function for non-divisibility is used to
construct a characteristic function for primality, and no use is made of either Wilson’s theorem

or the inclusion-exclusion process.

viii



ABSTRACT OF ESSAY 1
THE UNIQUENESS PROBLEM FOR FINITE SEMIORDERS
By
Rolf Henry Johansson
Doctor of Philosophy in Social Science — Mathematical Behavioral Sciences
University of California, Irvine, 2014

Professor Louis Narens, Chair

Semiorders were introduced by Luce (1956) to account for the intransitivities found
empirically in indifference judgments. In principle, they are superior to weak orders as
descriptive models of choice behavior. However, the general uniqueness problem for finite
semiorders is still unsolved, and this has impeded their wider use in decision modeling. First, we
will discuss representational anomalies for semiorders in order to better understand the source of
the difficulty in obtaining uniqueness. We will then show that for semiorders that satisfy some
relatively weak constraints, unique representation (and hence interval scalability) may be
obtained. This result follows by combining independent results of Suppes (1972) on equal-
difference structures and Fishburn (1973b) on the construction of weak orders from fragmentary
information. The finite semiorders for which unique representation may be obtained are “well-
behaved” in the sense that they constitute partial information about an “underlying” equal-
difference structure, and have a constant discrimination threshold. A very weak constraint on the
size of the threshold enables the unique representation. Since most applications of utility models
involve the comparison of alternatives within a limited range of utility values, over which
discrimination thresholds are more or less constant, then well-behaved semiorders may have

practical applications for qualitative modeling in such cases.



1. INTRODUCTION

In the classical formulation of expected utility theory by von Neumann and Morgenstern (1944),
strong assumptions were made about the structure of preference and indifference. It was
assumed that preferences induce a linear ordering of a set of goods, and that transitivity holds for
both preference and indifference. These assumptions were also made by Marschak (1950),
Debreu (1954), and even by Savage (1954) in his development of subjective expected utility
(SEUV). Itis fair to assume that all of these theorists were well aware that the assumptions of
transitivity and linear ordering did not necessarily hold for actual human decision making, but
rather were meant to hold for ideally rational agents. Yet it still seems to have been believed
that when assumed to hold empirically, these idealizations are relatively innocuous. It is, no
doubt, partly because of this belief that the idealizations have now become standard assumptions.
Although SEU and its variants are still best thought of as normative models of behavior, they are
widely considered to be at least approximately correct as descriptive models.

In spite of their wide use, there has been mounting evidence that the assumptions of linear
ordering and transitivity may not be so harmless after all. The many criticisms are now well-
known, dealing with phenomena such as preference reversals, framing effects, violations of
Savage’s sure-thing principle, portfolio effects, and problems concerning the temporal resolution
of uncertainty. Economists vary in their opinions about how important these effects are for
economic theory.! Nevertheless, there seems to be a consensus that regardless of how idealized
the standard assumptions may be, they are certainly beneficial from the standpoint of enabling us
to derive workable mathematical representations. Another reason for their wide use is that there

IS no consensus that any other assumptions could easily take their place. Consequently, in most

! See Kreps (1990, p. 112-122) for a general discussion of the views of economists on this issue, and see the

anthology edited by Hogarth and Reder (1986) for further details.
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presentations of consumer behavior in economics textbooks today, one finds preference and
indifference characterized as a weak order at the qualitative level, with a linearly ordered
numerical utility representation.

Most of the criticisms of modeling choice behavior with weak and linear orders have focused
on the problems that arise when using a transitive relation to model preference. But in both
linear and weak orders, the symmetric relation — interpreted qualitatively in utility theory as
indifference — is assumed to be transitive as well. Yet it was pointed out long ago by Armstrong
(1939) and Georgescu-Roegen (1936, 1958) that the imperfect discrimination ability of humans
leads to intransitivities of indifference in actual behavior. A person may be indifferent between
goods aand b, and indifferent between goods b and c, but find that she prefersatoc. A
similar intransitivity is observed in psychophysical contexts where perceptual discrimination is
studied, and the symmetric relation in question is interpreted as indiscriminability. Judgments of
comparative brightness, loudness, sweetness, etc. all give rise to intransitivities with respect to
indiscriminability.

For simplicity, we will speak of all such symmetric complement relations as “indifference”
relations, understanding that the specific interpretation of the relation may vary with context.
One way of understanding the intransitivity of indifference is to think of it as arising from an
underlying discrimination threshold, or just noticeable difference (jnd). This is defined as a
distance that a pair of objects must be separated on the relevant attribute continuum (e.qg., utility

for goods, loudness for tones, etc.) in order for a person to discriminate between them.? In

% There is some equivocation in the literature between thresholds, which we think of as maximal indiscriminable
differences, and the jnd, which we think of as the minimal discriminable difference. This equivocation is harmless
in most contexts, so we will continue to use “threshold” to describe what is, strictly speaking, a jnd. The exact
notion that is intended will be made clear in context. The reader should also note that actual subjects will not
exhibit a precise threshold below which they never discriminate, and above which they always discriminate.
Thresholds are normally determined probabilistically, as the interval above which the subject discriminates with,
say, probability P > 0.5.



psychophysical cases, the threshold apparent in the data is due to the discrimination sensitivity of
the relevant sensory system of the subject. With utility, thresholds arise because of higher order
cognitive mechanisms. In most contexts they will arise because of the multiattribute nature of
most decision making. The attributes that are seen as most salient for comparing goods a and b
and goods b and ¢ may not be the same attributes used for comparing a and ¢, and consequently
intransitivities may result. Even though minimal differences in price may be discriminated
unambiguously, the multiattribute nature of much decision making nevertheless yields
intransitivities with respect to utility.

There are now a number of different orders that relax the transitivity assumption for
indifference, and thus generalize weak orders. The first of these to be applied in the context of
utility theory was a “semiorder,” which was introduced by Luce (1956). Unlike some of the
other orders that relax the transitivity assumption, semiorders enable numerical representations
of discrimination thresholds, which more directly reflect the complications observed in actual
behavior. At the qualitative level, they certainly provide a more descriptively adequate
alternative to weak orders for modeling choice behavior.

Nevertheless, semiorders have not yet replaced weak orders in economics textbooks.® A
partial explanation for this must certainly be the absence, thus far, of any adequate uniqueness
theorem for the finite case. The lack of uniqueness allows several peculiar representation
problems for semiorders that don't arise with weak orders. For example, Roberts and Franke
(1976) showed that for a given semiorder, one may construct two separate numerical

representations f and g, where the two representations cannot be related by any transformation

® They have found particular applications, however. Examples of the use of semiorders by economists may be

found in Jamison and Lau (1973, 1977), and in Vinke (1980). Although the earlier work by Armstrong (1939) and
Georgescu-Roegen (1936, 1958) was prior to most semiorder research, it was motivated by the same problem of
thresholds in utility discriminations.



¢, and may even be of different scale types. In such cases, at least one of the representations
must be, in their terminology, “irregular.” These cases create problems for the scientist, since
under the most widely used definition of meaningfulness, scientific claims are meaningful only if
they can be shown to be invariant with respect to transformations of the employed measurement
scale.* Without this invariance, any inferences or claims might turn out to be mere artifacts of
the particular numerical representation chosen. For example, it is meaningful to infer “a is hotter
than b” by simply looking at the numerical values on either a Fahrenheit or Celsius scale, since
the relation “hotter than” is invariant under the affine transformations used to change Fahrenheit
to Celsius and vice versa. Put differently, the empirical conclusions we draw using Fahrenheit
can be translated via an algebraic transformation into different formulations of the same
conclusions expressed in terms of the Celsius scale, and vice versa. If a statement were to fail
the invariance constraint by changing its truth value depending on which numerical
representation we were using for measurement, then the claim would be a mere artifact of the
representation, and would not qualify as a meaningful scientific statement.

In the case of semiorders, the absence of a uniqueness theorem leaves open the possibility of
exactly this kind of problem. Without a uniqueness theorem we have no guarantee that we can
use numerical representations of semiorders to make meaningful scientific claims about choice
behavior. And since most actual choices are made within finite sets of alternatives, what we
would like to have is a uniqueness theorem for the finite case. More specifically, the type of
invariance we would like to find for semiorders is uniqueness up to a positive affine

transformation, and hence interval scalability.

* See Suppes and Zinnes (1963) for a basic discussion of meaningfulness, and Narens (2002) for an advanced,
comprehensive treatment.



An additional representation problem was pointed out by Swistak (1980), who noted that
many representations of semiorders have a “paradoxical” quality. His idea was that if one thinks
of a semiorder as arising from an underlying linear order, as will generally be the case in
empirical contexts, then many representations of the semiorder will not be consistent with
additional information that may be obtained about the underlying order. Specifically, they may
fail to preserve the underlying linearity of the semiorder.

In Section 3 we will discuss the problems raised in Roberts and Franke (1976) and Swistak
(1980) in more detail. These representation problems for semiorders cast some light on the
difficulties with obtaining uniqueness, and help explain the continued use of weak orders as the
standard model. Suppes and Zinnes (1963, p. 34) commented that “The uniqueness problem for
semiorders is complicated and appears to have no simple solution.” The problem has had no
improvement since, and the most recent comment on the problem that | am aware of is by
Roberts (1989a, p. 28), who called the uniqueness problem “a difficult one ... [that] remains an
open question.” But even if the problem is not solved for the general case, it will be of interest to
try to determine exactly what the difficulties are, since even a partial solution may be of interest
for potential applications to decision problems. As we’ll see below, a satisfactory solution is
obtainable for a large class of finite semiorders.

In what follows, we will assume that the actual structure of preference and indifference for
humans forms a qualitative semiorder, and we will consider what assumptions are needed to
obtain a unique representation. We will show that independent results by Suppes (1972) and
Fishburn (1973Db) jointly entail uniqueness of representation for a very useful subclass of
semiorders. Specifically, we will show that finite semiorders are uniquely representable and

interval scalable provided that they satisfy two conditions: 1) they are “well-behaved,” in the



sense that they are derived from an “underlying” linear order of equally-spaced elements and
have a constant discrimination threshold, and ii) the threshold is within a “reasonable” bound
(more precisely, the threshold is no larger than %2 the length of the entire semiorder, where
“length” denotes the span from the first to the last element of the semiorder, and “/4” denotes the
median point of the semiorder). For semiorders satisfying these conditions, there exists a
numerical representation in an arithmetical progression of integers that is unique up to a positive
affine transformation. As a corollary, there exists a representation in a convex set of integers.
For these representations, the “irregular” and “paradoxical” cases mentioned above do not arise.

Hence, uniqueness is obtainable provided that we idealize the semiorder itself somewhat. Of
course, this does not solve the uniqueness problem in general, but what is of interest is that the
idealization is very weak — far weaker than the standard idealization of transitivity discussed
earlier — and it is satisfied in many applications of utility models to decision problems. The
equal spacing assumption does not affect the generality of the result, since such structures may
either be chosen or approximated by the construction of standard sequences. The constant
threshold assumption, in turn, is descriptive in most contexts, since most applications of utility
models involve the comparison of alternatives that are within a restricted range of utility values,
and over this limited range discrimination thresholds are more or less constant. Finally, as will
be shown below, the size constraint on the threshold is so weak that it is difficult to imagine any
cases that would fail to satisfy it. Hence, although this paper focuses on the foundations of
utility from the standpoint of measurement theory, it suggests one route by which greater

descriptive adequacy may be obtained over a wide range of decision problems.



2. PRELIMINARIES

We will now present most of the definitions that will be used in the remainder of the paper. The

reader may wish to skip to the next section and refer back as needed.

DEFINITION 1: A weak order is any structure S = ( A, <, ~w ) Where A isa set, and both

< and ~, are binary relations on A that satisfy the following (for all a, b, ¢ € A):

Axiom W1: Exactly one of the following holds: a <, b, b <, a, or a~,b.
Axiom W2: If a<, b and b <,, c, then a <, cC.

Axiom W3: ~, isan equivalence relation

In utility theory, <, is interpreted as preference and ~, as indifference. It is immediate from
the axioms that a ~, b iff both a ¥, b and b £ a, and consequently that a 4, a (since
a~ya). Itisalsoimmediate that ~,, is transitive. Any weak order where the relation ~,, is the
identity relation is called a linear order (or equivalently, a total order). We will use “linear”
and “total” interchangeably. The essential difference between weak orders and linear orders is
that in a weak order that is not also a linear order, we may have a ~, b for distinct a and b.
For the sake of the occasional reference below, we may also define a partial order as any set
ordered by an irreflexive, transitive relation. >

The following axioms for semiorders were presented in Scott and Suppes (1958), and are a

slight modification of Luce’s original axioms:®

®> The essential property of all partial orders is transitivity. Different authors also require them to be either
irreflexive, or both reflexive and antisymmetric, depending on the application. The former are sometimes also
called strict partial orders and the latter weak partial orders.

® Luce (1956) used an additional primitive for the indifference relation, but Scott and Suppes introduced this
relation by definition. We follow the latter method, which affords a slight streamlining of the axioms.

8



DEFINITION 2: A semiorder is any structure S = ( A, <), where Aisasetand < is a binary

relation on A, that satisfies the following three axioms (for all a, b, ¢, d € A):

Axiom S1. a « a.
Axiom S2. If a<band c<d, then a<d or ¢c < b.

Axiom S3. If a<band b=<c¢c, then a<d or d < c.

If we interpret “~<"" as meaning “is discriminated as lower on the attribute continuum than,” then
axioms S2 and S3 prevent a discriminated pair from being “captured” by a non-discriminated
pair, as the reader may easily verify. A generalization of semiorders may be obtained by deleting
S3, and the resulting structure is called an interval order. We may define the symmetric

complement of < as follows:

DEFINITION 3;: a~b iff a4 b and b < a.

We will call any pair {a, b} < A such that a ~ b an incomparable pair. If eithera < b or
b < a, then we will sometimes write (a, b) or (b, a), respectively. Since semiorders implicitly
capture the notion of a discrimination threshold, we will introduce this notion explicitly for

clarity:

DEFINITION 4: For any semiorder S = (A, <), and forany a;j € A, let

j=min{k: a; < a,}. Thenwe will call 6, =j— i the size of the discrimination threshold at 3, .

Since we will be focusing on semiorders with constant thresholds, we will usually drop the

subscript on the threshold and write & rather than ¢,. The reader should also note that we have



defined thresholds so that the smallest possible threshold, or “perfect discrimination,” is defined
as 0= 1 rather than 6= 0. This affords some simplification below.

Semiorders, weak orders, and linear orders are easily seen to be special kinds of partial
orders. To clarify the interrelation between these various orders we state the following

inclusions, understood as holding between whole classes of orders:
linear orders — weak orders c semiorders c partial orders.

In a semiorder, the symmetric relation ~ is not necessarily transitive, in a weak order it is
transitive, and in a linear order it is the identity relation. Hence weak orders generalize linear

orders, semiorders generalize weak orders, and partial orders form the most general class.

DEFINITION 5: S_ = (A, <L )isa linear extension of a semiorder S
iff
() S_ isalinear order, and

(i) (a,b)eS = (a,b) € S. (forall a,b € A).

CONVENTION 1: (i) Z: is the first k positive integers {1, 2,3, ..., k} in the usual

ordering.

(ii) |A| is the cardinality of the set A.

This is merely a notational convention. Since we will be working only with finite sets of

qualitative objects, we will also use the following:

CONVENTION 2: Every set Ais indexed by Z|+A| .

10



By this convention, the index set will always be exactly the cardinality of the set indexed.

DEFINITION 6: For all semiorders S = (A, <), the relation <. induced on A by < is
defined as follows: Forall a;, aj € A (where i # j),
ai <. @
iff
1L a<g
or 2. a; ~ a; and [(a& < a and a; ~ ax) forsome ax e A]

or 3. a ~ g and [(am < & and ayn ~ a;) forsome an € Al.

If neither a; <. & nor a; <. a;, thenwe will write a; ~. a;. It can easily be shown from the
definition that if < satisfies trichotomy, then so does <..

DEerINITION 6 was first introduced by Luce (1956), where he also proved that the induced
relation <, forms a weak order on A.” In many cases, a semiorder relation < will only induce a

weak order through DEFINITION 6. But whether it also induces a linear order will depend on how

much information is present in the semiorder, as will be seen in the next section.

" Any pairs where a; ~ a; and a; <. & are what Fishburn (1973b), speaking in terms of utility, referred to as

cases where a; is “slightly preferred to” a;. For the interested reader, DEFINITION 6 without line 1 is equivalent to
Property (i) of Swistak (1980, p. 126).

11



DEFINITION 7: For any relation R, where I is the indifference relation for R similar to that in
DerINITIONS 3 and 6 above (i.e., alb iff notaRb and not bRa):
aJrb
iff
(i) aRb, and

(i) Forallc € A, ifaRc, then bRc or bic.
In words, “aJgb” means that a immediately precedes b with respect to the relation R.

DEFINITION 8: A semiorder S = (A, <) is said to be well-behaved if it has a finite, equal-
spaced linear extension and a constant threshold. More precisely, a well-behaved semiorder

satisfies the following (for all a, b,c,d € A, Ay, andall i,j,k, r e Z|+A|):

(i) There exists a finite linear extension S, = ( A, <x) of the semiorder S = (A, <).
(if) If aiJ<u bjand cxJ <u dr, then j— i=r— k.
(iif) Forall aj,aj€ A, &= ¢ (i.e., the discrimination threshold defined in DEFINITION 4 is

constant for all a € A).

Intuitively, a well-behaved semiorder is a semiordering, with constant threshold, of the elements
of an equal-spaced linear order. Thus, well-behaved semiorders may be considered idealizations
of a variety of emprical contexts where a linearly ordered set is presented to a human subject
who is unable to discriminate every pair in the set with respect to intensity, utility, etc.
Consequently, some of the ordered pairs of the underlying linear order may be missing from the

data obtained from the subject, and the data will form a semiorder. DEFINITION 6 gives us a

12



criterion for recovering some of these non-discriminated pairs, and hence for extending the
semiorder.

In the second clause of DEFINITION 8, we import the intuitive notion of “equal spacing” to
semiorders, but this requires some explanation. Equal-spaced structures play an important role
in measurement theory, where they are sometimes called “equal-difference” structures. These
are discussed in Suppes (1957, 1972), Scott and Suppes (1956), and Suppes and Zinnes (1963).
Suppes (1972, p. 45) pointed out that “Finiteness and equal spacing are characteristic properties
of many standard scales, for example, the ordinary ruler, the set of standard weights used with an
equal-arm balance in the laboratory or shop, or almost any of the familiar gauges for measuring
pressure, temperature, or volume.” Of course, there is nothing qualitatively inherent in pressure,
length, etc. that brings about the equal spacing. This is something that the scientist imposes on
the measurement scale in order to simplify measurement. In these cases, the precision in
measurement is limited by the constant differences in millimeters, the differences in weight
between the standard blocks, the differences between marks on a gauge, etc. Nevertheless, the
equal-spacing assumption is made without loss of generality, since we may either select stimuli
so that they are equally spaced with respect to the relevant relation, or we may take arbitrary
stimuli that are not in the equal-spaced set and place them in intervals bounded by adjacent
stimuli in the set. Thus, by decreasing the spacing between a standard equally-spaced set, any
arbitrary stimulus may be measured within any desired degree of accuracy. This is essentially
the idea behind building “standard sequences” of equally-spaced elements, which is discussed in
Davidson et al. (1957), Luce (1967), and Krantz et al. (1971).

It is known that equal-difference structures are uniquely representable and interval scalable

(see Suppes (1972) for proofs). However, it only makes sense to define equal spacing of

13



elements with respect to some relation, and for this to be possible over an entire order, all
elements in the order must be comparable under the relation. This condition is satisfied by linear
orders, but not necessarily by a semiorder. Since some elements of a semiorder may not be
comparable with respect to the relation <, it doesn’t make sense to think of them as “equally-
spaced” with respect to this relation. The same elements may, however, be equally-spaced with
respect to a different relation, and in the above case we specify this through what we refer to as
the “underlying” linear ordering by <. This linear order is simply an extension of the
semiorder, but we refer to it as “underlying” to emphasize the empirical situations in which the
semiorder is actually derived from the linear order in the manner discussed above. As we will
see below, well-behaved semiorders have nice properties that make them useful for studying

measurement, like their linear equal-difference counterparts.

CONVENTION 3: The indices of any well-behaved semiorder are chosen to agree with the
linear extension Sy, = ( A, <« ). Thatis, if i is the index of a € S, , and the element a is also
an element of the semiorder S, then i is the index of a € S. Moreover, for any set A ordered by a
relation R, a;Rb; iff i<j (foralla, b € A, andall i,j € Z|+A|). In words, the ordering of the

indexing always agrees with the ordering of the relation.

This convention, like the two proceeding it, could be dropped without loss of generality, but its

inclusion allows considerable notational simplification in the proofs below.
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DEFINITION 9: For any two structures S = (A, R), and S" = (A, R"), where A, A’ are

finite setsand R, R’ are k - ary relations on A, A’ respectively, a function h: A —— A’ isa

homomorphism from S to S” iff for all elements a,, ..., ax € A,

R@, ....,a = R'(h(a), ..., h(a).

Alternatively, we say that S and S” are homomorphic, or that h is an embedding of Sin S" .2

DEFINITION 10: For any semiorder S = (A, <), an order preserving, real-valued

homomorphism f: A ——— Re will be called a closed representation if there is a nonnegative

function 6: A —— Re such that for all a;, a; € A,

ai<a iff f(a) + &a) < f(a)°

We will call any closed representation with 6 (a;) =t (where t is a constant for all a;) a
representation with constant threshold. Although we define the mapping into Re to enable full
generality of the definition, we will only be considering cases of finite equal difference
structures, where & need only have values in the natural numbers. Since the representations of
interest are mappings into ordered sets of numbers, they are sometimes more specifically called
numerical representations. A representation theorem shows the existence of a numerical

representation. The first representation theorem for semiorders was proved in Scott and Suppes

& In the literature on measurement theory a stronger notion of homomorphism is sometimes used, where a

biconditional is supposed rather than a conditional. We need only the weaker form to describe the case of linear
extensions (DEFINITION 4). See Chang and Keisler (1973 p. 70) for a discussion of homomorphisms.

® Closed representations are usually defined with thresholds in mind, consequently a strict inequality is usually
used. Since our theorems are simpler to state if we think in terms of a jnd, we will use a non-strict inequality (c.f.
footnote 2).
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(1958) for semiorders with finite domains.'® Additional representation theorems may be found
in Fishburn (1970) and Mirkin (1972) for the denumerable case and for interval orders, and in
Fishburn (1973a) for sets of arbitrary cardinality. A comprehensive survey of these results may
be found in Suppes, et al. (1989).

The following property enables us to separate representations that preserve the underlying

linearity of the semiorder from those that don’t.

DEFINITION 11: For any semiorder S = ( A, <), arepresentation f is said to be strongly

monotonic iff it satisfies the following (for all a;, a; € A):
a <. q Iiff f(a)< f(q).

We call this strong monotonicity because the representation is not only preserving <, but is
preserving the induced relation <. as well. The representations that fail to preserve strong

monotonicity are precisely those that Swistak (1980) called “paradoxical.”

Finally we present a definition of the set of elements discriminated from a given element:

DEFINITION 12: For any a; € A that is “left-discriminated” from at least one other element

(i.e., where there exists a, suchthat a; < a, ), we will use a boldface “a;*” to designate the set

{ax: ai < &} ofall elements “right-discriminated” from a; (forallk < Z|+A|).

Notice that all sets defined by DEFINITION 12 are nonempty. In what follows, if a° is defined by

DEFINITION 12 then we will occasionally refer to a; as “the defining element for a;.”

% There are many proofs of this result available. See Suppes and Zinnes (1963), Scott (1964), and Rabinovitch
(1977) for three different approaches.
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3. REPRESENTATION PROBLEMS FOR SEMIORDERS
3.1 “Irregularities” and “paradoxes”

In this section we will illuminate some of the difficulties with obtaining uniqueness for finite
semiorders, and provide the motivation for confining our attention to well-behaved semiorders
that do not have “exceedingly large” thresholds. We’ll consider two unusual situations that arise
with representation theorems for semiorders. The first was discovered by Roberts and Franke
(1976), who showed that there may be multiple representations with constant threshold for a
given semiorder, where the representations are not related by any transformation at all. They

called these "irregular” representations, and the following is an example of such a case:

EXAMPLE 1. An "irregular" representation: Let S= (A, <) be asemiorder where

A = {aj, a, az} (and all elements are distinct), and suppose that a; < az and a, < as, but

a; ~ ap. Let fand g be two representations with constant threshold, where we set 6 (a;) = 1 for
alli e Z;,and let f(a;)=f(az)=0, f(as) =2, g(a) =0, g(a,) =0.9,and g(a,) =2. Itis
easy to see that both of these representations capture the structure of the semiorder by

considering each qualitative pair in turn with its numerical representations (numerical values are

listed underneath for ease of reference):
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Qualitative Pair Numerical Representations

a < az f(a) + 1 < f(ag)
O0+1< 2
g(a) +1 < g(a)
0+1c<2
a, < as f(a) + 1 < f(a)
O0+1c< 2
g(a,) +1 < g(a)
09 +1 < 2
a~ a f(a) +1 ¢« f(a) and f(a) + 1 £ f(a)

O+1<«0 and 0+1 <« 0)

g(a) +1 £ g(a,) and g(a,) +1 £ g(a)
O0O+1«09 and 09+1 % 0)

Both fand g capture the fact that as is discriminated from both a; and a,, and that the pair
{ai, a2} is not discriminated. However, fis irregular because there can be no function ¢ that

transforms f into g. Suppose (for contradiction) that there were some function ¢ such that
g= ¢ o f. Then we would have g(a,) = ¢(f(a)) = ¢(f(a,)) = g(a,), and at the same time, by

definition g(a,) # g(a,). Thisis a contradiction, thus (given the implicit assumption that ¢

was arbitrary) there can be no such transformation relating fand g.

This creates a serious problem for the meaningfulness of the representations. By the
definition of meaningfulness given above, scientific statements are only meaningful if their truth
value remains invariant under a change of the numerical representation, where the relevant
representations are related by a specific algebraic transformation. In the example above, fand g
are not related by any transformation at all. As Roberts and Franke pointed out (1976 p. 213),
the situation may arise where an irregular representation is, say, an interval scale, while another

representation of the same structure is not. Roberts and Franke proved that such conflicts of
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scale type only occur for irregular representations (1976 p. 215), and of course they can only
occur when the representations are not unique.

Unfortunately, these irregular representations will not be eliminated simply by equally
spacing the elements of the semiorder. They will also not be eliminated by confining the
representation to integers, as the reader can easily see by simply multiplying all values in the
above example by 10. To be assured that the numerical representation will not be irregular, the
representation itself must be in an equally-spaced set (i.e., a numerical equal-difference
structure), such as an arithmetical progression of integers, or any equally-spaced set of rationals.
Again, many measurement scales have this characteristic, such as those appearing on rulers,
gauges, etc. The existence of such a representation for well-behaved semiorders will be shown
in THEOREM 2 below.

An additional problem was pointed out by Swistak (1980), who noted that closed
representations with variable thresholds may fail to preserve the underlying linearity of the
semiorder that is represented (in our terminology, this is a failure to preserve strong

monotonicity). In other words, the representation of ( A, < ) may fail to preserve the induced
relation <.. He rightly considered this to be paradoxical, since in empirical cases where we
consider the semiorder ( A, <) to consist of incomplete data about an underlying linear order
(A, <u), the induced relation <. is giving us additional information about this underlying

order. We would certainly want a representation of a semiorder to be consistent with any
additional information that may be obtained about the underlying order. But a closed
representation of a semiorder may fail to do this, as more ordered pairs from the underlying order

are added to the semiorder. This is shown by the following example:
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EXAMPLE 2. A "paradoxical” representation: Let S = (A, <) be a semiorder where

A = {ay, a,, az} (and all elements are distinct), and suppose that a; < a3, but a; ~a, and

a; ~ ag. Using DEFINITION 6, it is easy to see that this semiorder induces the ordering

a; <. & <. az. Now consider the representation: f(a;) =1, f(az) = 0, f(az) =2, d(a) =1,
o(a2) =3,and & (as) = 1. One can easily see that this representation correctly captures the

structure of the semiorder:

Qualitative Pair Numerical Representation
ap < as f(a) + o(a) < f(as).
1+1<2
a ~ a f(a1) + d(a1) « f(ap)
@1+1<« 0
and f(ap) + o(a)) ¢ f(a).
O+3 <« 1)
a; ~ as f(a) + d(az) £ f(as)
0+3 <« 2
and f(ag) + o(as) £ f(ay).
(2+1 <« 0
This representation captures the fact that the pair consisting of a; and a3 is “sufficiently wide” to
be discriminated, while the pairs {a;, a;} and {ay, as} are not. However, the representation
fails to preserve strong monotonicity, since a; <. a, but f(a1) ¢ f(az). Thus, adding the pair

(a1, a2) to the semiorder would result in a failure of this representation, hence a “paradox.”

Both of the above examples arise only because of the great deal of freedom allowed in the
choices of fand 6. When this freedom is sufficiently constrained, such cases do not arise. Just
as the Roberts and Franke example showed that the choice of f should not be too free, Swistak’s
paradoxical cases can arise only if Jis allowed to be variable. These problematic representations

give us reason to suppose that representations for semiorders will only achieve empirical
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adequacy if suitable constraints are imposed on the representations. Although even paradoxical
representations could be considered empirically adequate in the weak sense of reflecting the
structure of the available data, this is not a sense of empirical adequacy with which any scientist
would be happy. When theories apply only to available data, and fail as soon as new data is
introduced, we consider them ad hoc and not truly informative about the qualitative structure
they represent. We would like representations that work not only for the available data, but also
for any new data that may subsequently be introduced. In order to avoid Swistak’s paradoxical
cases, either i) we are restricted to cases with constant thresholds, or ii) we must specify
conditions on representations with variable thresholds which guarantee that the paradoxical cases
will be avoided. Unfortunately, it is not at all obvious what kinds of conditions on variable
thresholds would be sufficient. Fortunately, it turns out that the assumption of a constant
threshold is not only sufficient to avoid the paradox, but it is also descriptively adequate in most
applications.*

As with the equal-spacing assumption for the underlying order discussed above, the
assumption of a constant threshold is not as confining as it may at first appear to be. In real
world applications, semiorders are usually applied over such a limited range of utility values that
it is a fairly weak idealization to suppose them to have a constant threshold over this limited
range. Of course, if one were to consider the entire range of utility values, then it would be
implausible to suppose discrimination thresholds to be constant. For example, in cases where we
can translate utilities into monetary equivalents, a $10 difference may be decisive when one is

deciding between goods in the $20 range, but it would have little to no effect on decisions to

1 Nevertheless, Swistak (1980) showed that if a semiorder has a representation with a variable threshold, then one
of its representations must preserve strong monotonicity, and hence avoid the paradox. But this still falls short of a
unigueness theorem for the variable threshold case. | have altered the phrasing of his theorem to agree with our
terminology.
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purchase in the $10,000 range. This corresponds roughly to the existence of what economists
know as decreasing marginal utility. This is important when we are studying the population as a
whole, or when studying the dynamic behavior of an individual in a particular market in the long
term. But most singular decision problems, including almost all marketing applications, involve
such a limited range of utility values that it is innocuous to suppose discrimination thresholds to

be constant over the intended range of application.

3.2 The multiplicity of linear extensions

An additional problem, which is not directly related to the problems above, but which does bear
on the difficulty with obtaining uniqueness, is the existence of multiple linear extensions for
partial orders. It is well known from Szpilrajn (1930) that any partial order may be extended to a
linear order.'® This means that for any incomparable pairs {a, b} from the domain, we may
select eithera < b or b < a, and then place the newly ordered pair into the partial order without
disturbing the rest of the order, and we may do this for all such pairs. The result will be a linear
ordering of the original set. Szpilrajn’s theorem simply says that this can always be done — that
there exists a linear extension for any partial order. But a partial order will generally have many
linear extensions, corresponding to combinations of choices in the ordering of the incomparable

pairs. This may be seen by consulting the graphs in Figure 1:

2" This important result has been proved in many different ways. See Los and Ryll-Nardzewski (1951) for a
topological proof, Sierpinski (1958, p. 189) for a constructive proof of the denumerable case, and Trotter (1992,
p.17) for a brief, elegant proof.
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P contains only the three ordered pairs (1, 3), (1, 4), and (2, 4). Thus P is a partial order (also
a semiorder), since the pairs {1, 2}, {2, 3} and {3, 4} are incomparable. To see how this
example bears on empirical situations, we may think of the numbers as originating in their usual
ordering (E4), and then think of P as resulting from a threshold that prevents adjacent numbers
from being discriminated. E1 through E5 are linear extensions of P that result from making
different choices in the ordering of the incomparable pairs, without changing the ordering of any
of the pairs already in P. For example, E1 results from choosing 2 < 1, 2 < 3, and 4 <3.5
The multiplicity of linear extensions illuminates some of the difficulty with obtaining
uniqueness, and it also raises an interesting question that was studied by Fishburn (1973b) and
Fishburn and Gehrlein (1974, 1975). In psychophysical experiments one often begins with a
linearly ordered stimulus set, from which a human subject, with limited perceptual and cognitive
abilities, can identify only a fragment of the order. Although every pair of objects in the
stimulus set is originally ordered, the subject “removes” certain pairs by failing to discriminate
them, resulting in a truncation of the linear order to a partial order. Consequently, the scientist

obtains data from the subject in the form of a partial order. Since in general there will be many

3 Notice that certain combinations of choices will be ruled out, however. For example, we may not choose both

(4, 3) and (3, 2), since that combination together with the transitivity of < entails (4, 2), but this is incompatible
with (2, 4), which is already in P. Hence choosing both (4, 3) and (3, 2) is ruled out because choosing both
would disturb the rest of the order.
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linear extensions of the partially ordered data, it is natural to ask whether it is possible to
recapture the original linear order, from among the many possible, using only information
available in the incomplete data. In terms of Figure 1, we would want to know how we can be
sure that we obtain E4 rather than one of the other extensions, using only the information
available in P.

Fishburn and Gehrlein (1974, 1975) tackled this question in a slightly weaker form. Just as
many linear orders will extend a given partial order, even more weak orders will extend the same
partial order. Fishburn and Gehrlein found several different algorithms for finding the weak
order that is “best supported” by a partial order, which is the weak order induced by Definition 6.
Also, Fishburn (1973b) showed that for what we are calling “well-behaved” semiorders, if the
threshold is no larger than (approximately) half the length of the semiorder, all indifferences can
be resolved (i.e., in our terminology, if there is an underlying linear ordering, then it may be fully
recaptured). Here “length” means the range of values of the set of objects under consideration
with respect to some attribute, which could be utility, or loudness, or brightness, etc. What is of
interest is that this result gives rise to both representation and uniqueness theorems, as we will
show in the next section. Linear representations in these cases will automatically preserve both
regularity and strong monotonicity, and hence avoid the “irregularity” and “paradox” just

discussed.

4, THEOREMS

In THEOREMS 1 and 2 below we will show that for all well-behaved semiorders with thresholds
that are suitably bounded, a linear extension may be found constructively, and this extension may

be used to derive a representation of the semiorder in an arithmetical progression of integers. As
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a corollary, such well-behaved semiorders are representable in a convex set of integers. We will
first present THEOREM 1 (from Fishburn (1973Db)), which specifies the condition on the size of
the threshold under which the weak order induced by a semiorder S from DEFINITION 6 is in fact
a linear order, (and hence a linear extension of the semiorder). We will give a constructive proof
of Fishburn’s theorem that gives a procedure for recovering the induced linear order

Su = (A, <u). In THEOREM 2 we show that this linear extension S, may be used to construct a
numerical representation of the original semiorder S by an arithmetical progression Z = (Z, <).

Thus, in THEOREMS 1 and 2 we define a series of functions: h: S ——» S, f: S. — Z, and

foh: S —— Z. Here his an embedding of S into the (unique) linear extension S,, that recovers
its underlying linearity, f is an isomorphism of S, into an arithmetical progression of integers,
and the representation fo h is a homomorphism that preserves both regularity and strong
monotonicity. After showing the existence of these mappings, we will then show in THEOREM 3
that the representation foh is unique up to a positive affine transformation. In closing, we will
show that this is the strongest kind of uniqueness that may be obtained.

We will begin with a few propositions about semiorders that will be useful in the proofs. The

following three propositions hold for all finite well-behaved semiorders S = ( A, <) where
S.. = (A, <) isan underlying equal-spaced linear extension'® The reader should recall that

we are assuming the indexing of the semiorder follows the indexing of the underlying linear

ordering (CONVENTION 3). Proofs are in the appendix.

PROPOSITION 1: Forany aj, g € A, if a; < a;, then:
[forall k > J, a < a] and [forall m < i, an < aj].

Y The reader may easily check that these propositions also hold more generally for the variable threshold case

where the threshold & of the semiorder is non-decreasing.
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PROPOSITION 2: If a; < a;, then <
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]

PROPOSITION 3: If <

a

a;

,then & <. a;.

PropPosITION 2 follows from PROPOSITION 1 as long as the threshold is non-decreasing (hence
also when the threshold is constant). While PROPOSITION 2 states a relation between the pairs in
a semiorder and the cardinalities of the sets of discriminated elements, PROPOSITION 3 allows us
to determine the induced order even when two elements are not discriminated in the semiorder.
One may see the idea behind PRopPoSITION 3 by referring back to Figure 1. Suppose that we
begin with E4 as an underlying order (i.e., 1 <, 2 <y 3 <y 4), and we want to derive this

extension from the semiorder P. Using PROPOSITION 3, we may deduce that since

2<

= (4} < 3 4} = |1|, then 1 <. 2, which is consistent with the desired 1 <., 2. Thisis a

variant of what Fishburn and Gehrlein (1974, 1975) called the “Cardinal Method” for
constructing weak orders.

We will now generalize this procedure. The following theorem first appeared in slightly
different form in Fishburn (1973b, p. 470), and states conditions under which the weak order
induced by a well-behaved semiorder is in fact a linear order. We refer the reader to that paper
for a simple existence proof. We will offer a constructive proof of the theorem, which provides

a procedure for recovering this induced linear order.™

> Fishburn showed that the conditions of THEOREM 1 are necessary and sufficient for the result. We present only
the sufficient direction, because we are interested only in establishing that the representation that we construct from
the linear extension has been arrived at by a constructive procedure.
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THEOREM 1: Let S= (A, <) beany finite semiorder where |A| = n,and ¢ is a positive
integer. If

(i) niseven and 5 < %
or
n+1

(i) nisodd, and & sT,

then the order ( A, <. ) induced from < by DEFINITION 6 is the underlying linear extension

Su = (A, <u). Moreover, there exists an embedding of S into S..

Proof: We will prove the even case, from which the odd case follows with obvious minor
adjustments. Since the constructive proof is lengthy we will give an overview. Using
CONVENTION 2, we assume that the underlying linear ordering of A is indexed by Z:. We then

adopt CONVENTION 3, namely that the semiorder shares the indexing of this underlying linear

order. We then use DEFINITION 10 to define sets a; for all of the elements in A that occur as left

elements of some ordered pair in S. Since ¢J'is constant, these sets may be ordered by
cardinality, so we order them thus and call the resulting sequence “Seq.” Then we will use Seq

to “reconstruct” the left and right parts of the linear order underlying S. We do this by
constructing two sequences: { A®"), consisting of a linear extension of the “left part” of Ain S,
and (A" consisting of a linear extension of the “right part” of A in S. We construct (A
by using the ordering of all sets a in Seq, and then correspondingly ordering the defining
elements for those sets. This recaptures the underlying linearity of the left part of S. We

construct (A™™) by comparing all sets a” in Seq, extracting a unique element b” from each a-
(where b” is not in the successor of a in Seq), and then ordering these extracted elements

parallel to the ordering of the sets they were extracted from. The sequence (A™") then

27



recaptures the underlying linearity of the right part of S. If the semiorder satisfies condition (i),
then the union of (A*") and (A™™) comprises the desired induced linear extension S... Itis

then possible to merely use the identity h: A —— A on the elements of A to recapture the
underlying order of S that was only partially explicit in the semiorder itself. h is then an
embedding of the semiorder S into the unique linear extension S, induced by DEFINITION 6.
We will now be more precise.

STEP 1: Assume there is an underlying linear ordering of A by the index set Z;, and

assume without loss of generality that the semiorder shares this indexing (CONVENTION 3).

Since S s finite, we may inspect all of its ordered pairs. If an element a, occurs as the left
element of any ordered pair, then using DEFINITION 10 define the set a of “right elements”

discriminated from a,. We now need several lemmas (proofs of all lemmas are in the appendix).

LEMMA 1: For all distinctiand j, |a]| = |a]|.

LEMMA 2.1: Let sup Z; et be the greatest i < Z; for which there exists a j < n such that
a < a;. Thenthere are exactly sup Z; et sets a;".

LEMMA 2.2: Forall a, € A, |af| =n-(i+0 - 1).

LEMMA 3: Forall k: 1 < k < n—§, there exists exactly one i e Z such that |a*| = k.

STEP 2: We now want to use the various sets a;* to build sequences, and we want to refer to

relative positions in the sequences without specifying the exact value of i that occurs in the

underlying ordering. Thus we will introduce a subindexing on the i’s as follows: “a; ”

In
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(1 <m < n- ¢ )means “any of &, a;, etc.,” where these may in turn represent a;, a,, etc.

Since there are only finitely many sets a*, and by LEMMA 1, no two are of the same cardinality,

we may effectively arrange the sets into a totally ordered sequence from largest (left) to smallest

(right). We may also define an indexing ¢ of the sets with respect to cardinality. By LEMMA 2.1,
lef -

there are exactly sup Z;' ™ sets. Thus, we will index the largest set by 1, the next largest by 2,

. .. left . .
and so on, until the smallest set is indexed by sup Z; " More precisely, since

+ left
n

supZ, = n-35 (by LEMMAS 2.1 and 3), we may define the indexing ¢: Z, — Z; from

1 to n— ¢ as follows:
DEFINITION 11: Let |a_ |=k. Then define £(i,) =n-06 —(k-1).
Thus, the sequence (Seq) of sets a, may be defined as follows:

DEFINITION 12: Seq = ((&;).y» @)y s -+ @, )e ) OF more simply,
Sed = ((a;),, (@,)ss -+ (@, )ns)
To see that the second expression is merely an abbreviation of the first, it suffices to check that
the largest (first) set has cardinality n— ¢ (by LEMMA 3), and thus by DerFINITION 11,
¢(@i,)=n-6-(n—6-1)=1. The reader may similarly check that £(i,) =m for all remaining
im.
STEP 3: From Seq we may use PROPOSITION 3 to deduce the underlying order of the defining

elements for the sets in Seq. More precisely, we may define the following sequence which

recaptures the underlying order of the left-hand part of S.
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DEFINITION 13: Let (A®") = (a, a,, ..., a, 5) be asequence of elements of A where each
position in the sequence is defined as follows:

If & isinthe m" position in Seq, then a _ isinthe m™ position in (A*").

Since each a; has a unique defining element a_, itis immediate from PRoPOSITION 3 and the

fact that Seq is a total ordering by cardinality that ( A"} is also a total ordering. Even for pairs

<

. that were not discriminated in S, the sets aifn ,a

In

of elements g, , &

Ins

. defined in terms of

them differ in cardinality and were so ordered in Seq. (A™) is merely the reflection of the
ordering of sets in Seq to an ordering of the original elements of A. That every left element

(i.e.,allim < n—0) gets so ordered follows from the fact that for all in < n—o, a_ iswell
defined. Hence, the set a; foreach in < n— & appears in Seq, and thus by DEFINITION 13 the

element a, which defines a; appears in (A*").

STeP 4: We will now reconstruct the right-hand part of S. For this we must use a different

method, and we need an additional lemma.

LEMMA 4: Forany i € Z, suchthat a is defined,

(i) either some set a; is the successor of a; in Seq, and there exists exactly one k such that
b, e (@ ),and b ¢ (@ )., orthereisnoset a® , and a  isasingleton with
element b, , and

(ii) for this unique k, b, = a, ., (i.e., b_isthe <-leastelementsuchthat a, < b, ).
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Since each of the sets a; is finite, we may effectively inspect (a; ), , and (a; )., , forall

pairs m and m + 1, and (by LEMMA 4) select the unique element that is in ("), , but is not in

. . 173 "Y' * * 16
(ai-:1+1)§(im+l). We will call this element bik. Thus, bik € (a,; ):(im) and bik ¢ (aizﬂ)c(imﬂ)'

Now we may define the sequence (A™") as follows:

DEFINITION 14: Let (A™") =(b,, b,, ..., b_,) be asequence of elements of A where the

element bi: appears in the k™ position in the sequence.

The construction of (A"™™) is possible because of the uniqueness of the selected elements, which
follows from LEMMA 4. It is also immediate from the uniqueness of each bi: that (A"™™) jsa
total order.

STEP 5 We must now show that (A®™) U (A™™) is a linear extension, from which it will
immediately follow that it is in fact S, the underlying linear order. Since we have already
shown that (A™) and (A"™") are total orderings of the left and right parts of S, respectively,

it suffices to show that there is no element of A left out (i.e., that the sequences meet end to end

with no gap, or that they overlap). This means that we must check whether b, <. a, ;.. By

STEP 4 and DEFINITION 14, b, € a; and b, ¢ &, . Thusby LEMMA 4, b, = a, ;. Thus we only

* For m=n-¢, (& ) . isnot defined, so in this case we select the only element of the singleton

m
=<

@ e
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need to check that a,, ; <. &, s,,, and this is clearly true for all 6 < 3 ; that is, whenever

condition (i) is satisfied. Thus (A®") U (A™™) is a linear extension, and it is clear by our use
of PROPOSITION 3 that this linear extension is in fact S...

STEP 6: We must now show that there exists an embedding of S into S,.. Since we have
assumed that the indexing of the semiorder follows the indexing of the underlying order, the

identity mapping will suffice for this purpose. More explicitly, we will define h as follows:

DEFINITION 15: Let h: A——>A be the function defined by: h(a) = a,.

h preserves the underlying ordering of all elements of A, whether they are discriminated in the

semiorder S or not. That is,

& < a; = & <y a; = h(a) <uw h(a).

The first implication follows from PRoPOSITIONS 2 and 3, and the second implication is

immediate from DEFINITION 15. For any non-discriminated elements a, a; where a <. a,

but & ~ a;, the result follows from the last implication alone. This completes the proof of

THEOREM 1. O

In the above proof, the method of recovering the underlying linear structure — the method of
“cardinality comparisons” — is elementary, although somewhat tedious. It clearly yields a
constructive procedure for recovering the induced, or “underlying” order. Although Fishburn
didn’t state that the induced linear order is unique, this follows from a result of Roberts (1971).
In addition, Suppes (1972) showed that when any linear extension is equal-spaced, it is uniquely

representable and interval scalable. These results jointly entail that when the order induced by
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DEFINITION 6 (or equivalently, the “underlying” order) is an equal-spaced linear order as above,
then one may uniquely represent the semiorder in a convex set of integers. We will now prove
this in the following representation and uniqueness theorems. First we state (without proof) the

following obvious but useful proposition.

PROPOSITION 4: If S = (A, <) isany finite linear order, then S is isomorphic to a convex,

totally ordered integer structure Z= (Z, <).

THEOREM 2: (Representation Theorem)

Let S= (A <) be any finite semiorder where |A| n, o is a positive integer such that

either

(i) niseven,and o

IA

n
2!
or

(i) nis odd, and & SHTH’

and Sy = (A, <y ) istheunderlying linear order induced by DEFINITION 6 as in THEOREM 1.
Then there is a homomorphism of S into an arithmetical progression of integers Z=(Z, <),

and the homomorphism is a closed representation of S with constant threshold.

Proof: Again, we will show only the even case. Let S, = (A, <, ) be the linear order
underlying S (i.e., induced from S by DEFINITION 6). By CONVENTION 2, A is indexed by the
set Z;, and issuch that i < j iff a <y a. By PROPOSITION 4, there exists an isomorphism

between S, and a convex, totally ordered integer structure. If we use the integer structure

Z = (Z,, <), then an isomorphism f: A—> Z' may be simply defined as follows: let
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f(a)=1. Z:]' is convex and totally ordered by definition, and it is immediate that f is both 1-1
and onto (onto by our having chosen the index set to have the same cardinality as A). Itis also
immediate that a; <, & iff f(a)< f(a). Hence f is the desired isomorphism.

By THEOREM 1, there is a homomorphism h from S into S... Thus, since f is an
isomorphism from S,. onto Z, then as long as f o h is well defined, it is a homomorphism from
S into Z. That it is well defined follows from the fact that dom f = A =ran h. The range of f
is Z; (this is the domain of the structure Z), and this is convex and totally ordered by definition.

Tosee that f o h is a closed representation of S with constant threshold, we need to show

that for some constant ¢, a < a; < foh(g) + ¢ < foh(a;). Toshowthe = direction,
assume fortwo i and jthat a < a;, and assume the hypothesis of the theorem. By DEFINITION
9, 5§ =k—1i, where k is the least element of Z suchthat a, < a,. Thus i+ & =k. Since k is
least, then by the assumption, i + & < j. If we let ¢ = g, then this is just what the consequent
says, since f o h(a)=1i and f o h(a;)=].

For the <« direction, assume for two i and jthat f o h(a) + 6 < f o h(a;), and assume the
hypothesis of the theorem. By definition of 6, a, < a,, ;. The consequent follows as long as

i+ 06 < j. Butthisis true by the assumption, since f o h(a;)=1i and foh(a;)=j. O

LEMMAS: If S isafinite semiorder, and f and f’ are two convex, totally ordered
representations of S in integers with constant thresholds, then there is a constant ¢ e Z*

such that |f'(a;)— f(a)| =¢ forall a < A.

34



THEOREM 3: (Uniqueness Theorem)

Let S= (A, <) beany finite semiorder. Then any convex, totally ordered integer

representation of S with constant threshold is unique up to an affine transformation.

Proof: Let S be any finite semiorder with underlying linear extension S,. Let g and

g’ be any two convex, totally ordered integer representations of S with constant thresholds
(9,9': A—>Z). First we consider the case where g(a;) < g'(a) forall i € Z,. Then let

¢: Z—> Z be atransformation ¢ o g(a,) = g'(a) from g to g'defined as follows:

$og(a)=9()+(9'(d) -9&)).

This is clearly an affine transformation, since it is of the form ¢(x) = a(x) + ¢ with a=1. We
need only check that ¢ is an isomorphism. To show that ¢is 1-1, suppose that for some

9(a)=9g(a;), ¢°d(a) = ¢ g(a). Then by definition of ¢,

$pog(a)=9@) +(9'(a)-9&)) = g(aj) +((g’(aj)_g(aj)) =¢o g(aj)'

But since by assumption g(a) = g(a;) , the central equality above entails that
(9'(&)—-9(@)) #(g'(a;)—g(a;)). This contradicts LEMMA 5.

Let the image of A under gbe Z*c Z, and let the image of A under g’ be Z*™c Z. For this
case (i.e., g(&) < g'(a)), we must show that ¢ is onto Z**. Since both Z* and Z** are images

of A under isomorphisms of Sy, then |Z*| =|Z*|. Then since ¢is 1-1, it is clearly onto Z**.

To show that ¢ preserves <, we must show that

9(a)-9(a,) < 9(a;)-9(a,) < ¢(9(a))-49(a)) < #(9(a;))-¢(9(a,)).
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To show the = direction, assume g(a,)—9(a,) < 9(a;)—9g(a,). Then for any constant c,

[g(a) + c]-[g(a,) + c] < [9(a;) + c]-[g(a,) + cl.

Thus in particular, letting c = (g'(a,) —g(a)) for all i (this constant is the same for all i by

LEMMA 5),

[9(a) + (9'(a)-9(a))]-[9(a,) + (g'(a,)-9(a,))] <

[9(a;) + (9'(a)-9(a;))]1-[9(a,) + (g'(a,)-9(a,))].

Then by definition of ¢, ¢(g(a))—¢(9(a,)) < ¢#(9(a;)) —#(g(a,)). The « direction merely
traces the first direction in reverse.

The case where g'(a,) < g(a) issimilar. o

Since only non-unique representations can be irregular, these representations are clearly
regular. And since the threshold &is constant, they also satisfy strong monotonicity. Thus the
problems discussed in SECTION 3 are avoided for well-behaved semiorders. These
representations are of a special kind of interval scale called a “difference scale” by Suppes and
Zinnes (1963, p. 12), and are unique up to the addition of a constant.*’ It is easy to show that
this is the strongest kind of uniqueness that may be obtained. Let’s assume (for contradiction)

that two representations g and g’ as above can be related by a (non-trivial) similarity

transformation wwhere g'(a)=w-g(a)=a(g(a)), for some positive constant & = 1. Then

7" Suppes and Zinnes attribute the coining of this expression to Donald Davidson.
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- 9@)
g(a)

forall a e A.'® But this is impossible by LEMMA 5, since the difference

9'(a)-9(a)| is

constant for alla, € A, thus the ratio

cannot be constant for all a, e A"

5. DISCUSSION

Concern about the descriptive inadequacy of utility models has focused mainly on preference
reversal phenomena and apparent intransitivities in preference. Less attention has been devoted
to the phenomenon that motivated semiorder research; namely, the intransitivity of indifference.
Unlike the case of preference, where there is some controversy as to whether the intransitivities
apparent in the data reflect genuine intransitivity in judgment, it is not controversial that
judgments of indifference can be genuinely intransitive. Thus, for this aspect of choice behavior,
semiorders provide a way of obtaining more descriptively adequate models. The theorems above
show that when semiorders have constant thresholds that are not too large, then they have
numerical representations that are unique up to a positive affine transformation; hence, such
semiorders are interval scalable. This permits more descriptively adequate modeling of a wide

range of choice behavior by semiorders, and it allows meaningful scientific inferences to be

® The case where g(a)=0 for some i is a trivial case, for in that case it follows that g'(a) =0, and since
g, g’ are convex integer representations, this means that they would in this case be the same representation.

1 Assuming of course that A is non-trivial; that is, that 2 <|A|.
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drawn from the representations of these semiorders. But in order to obtain a unique
representation, it was necessary to assume that o is constant, or equivalently, that & is
independent of i. From the standpoint of the purely mathematical questions about semiorders,
this is a somewhat restrictive assumption. It rules out many semiorders of interest, so it does not
solve the uniqueness problem for finite semiorders in general. But THEOREM 3 elucidates the
difficulty somewhat. Since THEOREM 3 is provable with the assumption of a constant threshold,
it is reasonable to infer that the primary source of the difficulty with the general uniqueness
problem for semiorders lies with the variability of the thresholds.

Similarly, it is the variability of the thresholds that causes problems with possible empirical
applications of semiorders. Our original concern was that the weak orders and linear orders used
for modeling choice behavior have properties that are not universally true of human decision
making. But the theorems show us that it is not the mere existence of discrimination thresholds
in human behavior that renders linear models descriptively inadequate. To the extent that
thresholds play any role in lessening the descriptive adequacy of linear models, they do so
because of their variability only. And it appears to be true that subjects do show increasingly
large discrimination thresholds as utility increases, analogous to what happens with sensory
discrimination thresholds.

Because of the difficulties that arise because of the variability of thresholds, the less
variability we have, the better. Fortunately, in most empirical applications we may reduce or
eliminate the variability merely by confining our attention to a smaller interval in the range of
utility values. In most applications, this is in fact what is done. For example, marketing a
product usually involves consideration of possible substitutes, i.e., other goods in the same range

of utility values, but it does not usually require consideration of luxury versions of the same type
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of product. In fact, it would be fair to say that decision theory is of most interest when utility
values are relatively close together. Thus, in any cases where it is possible to confine our
attention to a subset of the entire range of utility values, we may, without harm, assume
constancy of the discrimination threshold for that part of the range. This subset of the range of
utility values would be determined by any considerations that enable us to safely assume that the
threshold is constant (or near constant) over that interval. For such restricted domains,
THEOREMS 1, 2 and 3 tell us that we may then model choice behavior with a semiorder rather
than a weak order, obtain a unique numerical representation of the semiorder, and measure utility
by an interval scale. This enables us to derive meaningful inferences about processes underlying
human behavior from the representations. Since semiorders are preferable to weak orders from
the standpoint of descriptive adequacy, this is a possible course for various social sciences to

take in improving the descriptive adequacy of models of choice behavior.
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APPENDIX

PROPOSITION 1: Proof: The Proposition has two parts. First we show that for any

a, aj € A, if a < @, thenforall k > j, a < ac(forall i,j, k € Z,). Let a, aj € Abe
arbitrary, and suppose a; < a;. Pickany k > jsuchthat ax e A. Since by CONVENTION 3 the
ordering of the indexing follows the ordering of <, then clearly ay is < - right of a;. And since
a;j and a; are separated by at least 5, a; and ay are separated by at least 5+1, and thus a; < a.

The proof of the second part: that for all m < i, an < &, is clearly similar. O

PROPOSITION 2: Proof: Suppose a; < aj, and let a and a; be the sets of elements “right-

discriminated” from a; and a; respectively, as defined in DEFINITION 12. By CONVENTION 3,

the indices m; of all elements in a;" are > j. By PROPOSITION 1, since a; < &;, then for all
m; > j, a < am;: and thus by DEFINITION 12, all am, € a; . Thus, every elementin a; is also

in a7. Butin addition, the element a; € a7, but a; ¢ a;, hence +1< , and thus

<
a;

a

=<

< a

<

a . O

PROPOSITION 3: Proof: Let a and a; be defined as in DEFINITON 12, and assume the

hypothesis that < . Then since < is trichotomous, it follows from DEFINITION 6 that <.

<
a;

a;

is as well. Hence to show that a; <. a;j, we may suppose (for contradiction) that either a; <. a;
or aj ~. a;.
Case 1: Suppose a; ~. a;. Then by DEFINITION 6, neither a; <. a; nor a; <. &, and hence

aj % a.. Moreover, also by DEFINITION 6, there isno ax e A such that both a; < ax and
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aj ~ a, and there isno an € Asuchthat both a, < ajand an ~a. Thus, a; and a; are

discriminated from the same number of elements, hence , contradicting the

a;

=<
a;

hypothesis.

Case 2: Suppose aj <. a. Then in the semiorder either & < a; or aj~a;. If a < a;, then

by PROPOSITION 2, <

a;

<
a;

, contradicting the hypothesis. If a; ~ a;, then by CONVENTION 3
and the supposition, j<iandhence j+ 6 < i+ 6. Butinthatcase, since a; < a;,; (by
DEFINITION 4), then by PROPOSITION 1, 8 < &, ;,and forall r > i+, a < a, aswell.
Hence, by DEFINITION 12, &, € a;,andforall r>i+ 5, a, € a;. Butalso by DEFINITION
12, the set a;° consists just of the element a,, ; (the < - least, by DEFINITION 4) and all elements
a, where r > i+ & (by PROPOSITION 1). Thus a € a;. But to see that this is actually a proper
inclusion, we need only consider the element a;, ;. By DEFINITION 4, this element is the < -
least such that a; < a;, ;. Yetitisnot the case that aj < a;_;, since if that were true then

I+0 <+ inwhichcase i < J, contradicting j <i. Thus, the set a. is properly included in

the set af, hence <

&

<
a;

, contradicting the hypothesis. Thus a; <. a. O

LEMMA 1. Proof: Iftwosets a;°, aj (fori = j) were of the same cardinality, then two
different elements &;,a; would be discriminated from the same number of elements to their
right. But since A is finite and all elements of A are equally spaced, & and a, are separated by a

distance of at least 1. Thus since & is constant, either |a;|+1 < |a]| or [a]|+1 < |a]|. O
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LEMMA 2.1. Proof: This is immediate from the fact that the sets a™ are only defined when

there exists at least one element a; such that a; < a;, and they are defined for every such a,. O

LEMMA 2.2. Proof: By DEFINITIONS 9 and 10, a,, 5 is the < - least element of a°, so

a; = {aiwamﬂ, an} This set includes all n elements of A except the i elements a; where

a; =u &,andthe -1 elements between (but not including) & and a_,,. Thus

la’| =n-(i+5-1). 0

LEMMA 3. Proof: “Only one” is immediate from LEMMA 1. To see that there is at least one

set of cardinality k foreach k (1 < k < n- ), it suffices to note that for each such k there is a

unique element a, (by the fact that all k in this range are indices), and by DEFINITION 10, a set
a, . By LEMMA 2.2, these sets have cardinality |a, | = n—(k+ 6 — 1), which clearly varies

fromn—45tolaskvariesfromlto n—¢6. 0O

LEMMA 4. Proof of (i): By LEMMA 1 and by the ordering of Seq from largest to smallest,

there is at least one such b, . To see that there is no more than one, we must first notice that for

all adjacent i and their corresponding adjacent sets in Seq, (& )., ., € @ ), This

m? im+1'
is an immediate consequence of PROPOSITION 1 and the fact that & is constant. Now let’s
assume (for contradiction) that there are two distinct elements b and b’, both of which are

elements of (a; ), ,, but neither of whichisin (a7 )., ,. Then

‘(ai:ﬂ)g(im) +2 < ‘(ai‘m)mm)‘. By LEMMA 3, there is exactly one set in Seq of cardinality k for

= ‘(a.< )g(im)‘ +1. But

In+1

allk:1 < k < n— ¢ Thus there is a set, call it “a&;"” of cardinality

a;
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then ‘(ai;ﬂ)g(im) < ‘aif‘ < ‘(aﬁm)mm)‘. By the ordering of Seq by cardinality, and by the fact that
every set a defined by DEFINITION 10 appears in Seq, a; appears in Seq between (a; ), , and
& ).+ This contradicts the assumption that @), and @& )s., areadjacent in Seq.

Proof of (ii): The uniqueb, from the first part of this lemma is by definition of a_ an
elementof Asuchthat a < b, and a_ & b, . We mustcheck that b, isthe < - least
element of &' . Suppose (for contradiction ) that there is an element bij where i; < i, and both
a < bij and g, bij . Then by DEFINITION 9, i, + 6 < i;. Butsince by assumption i; < i,
then this entails that i, + 6 < i,,and thus i, + 6 <i,. Butthen 8 < b, ,whichisa

contradiction. Thus, b, is the < - least element that is right-discriminated from a , which by

DEFINITION 9 means that b, = & , ;. O

LEMMA 5. Proof: Let S be any finite semiorder, and let f and f’ be two convex, totally
ordered integer representations of S with constant thresholds. We will first consider the case

where f(a ) < f'(a ) forall a e A. Since these representations are closed representations

with constant thresholds, then min (ran f') = f'(a,),and min (ranf )= f(a ). Let
c= ‘f’(ail) — f(ail)‘. Then since bothran f and ran f' are convex and both f and f' satisfy
strong monotonicity, the value of a, ~(forany k: 1 < k < n—1) may be written f(a, ) +k and

f'(a,) +k, respectively. Since k is a positive constant, then clearly

fa) - f(a) =c = |f'(a)+k - f(a)+k =c
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Since all values of i are included in i, i.,, ..., i, 4, then thisis true forall a < A.

The case where f'(a; ) < f(g ) issimilar. O
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Tarski’s Convention T has been applied successfully to the study of the semantics of formal
languages, but there are numerous well-known difficulties with its application to natural
languages. These involve falsifications of the equivalence schema generated by substituted
sentences involving indeterminate truth values or indexicals, as well as sentences giving rise to
the various semantic antinomies. All of these difficulties have arisen from attempts to apply
Convention T to sentences that can be seen to be “problematic” (i.e., ambiguous or paradoxical)
in isolation. Hence, the problematic cases are generally regarded as involving anomalous
sentences, but not necessarily as indications of problems with Conventon T itself. This general
attitude toward the problem cases has fostered increased attention to Convention T in recent
decades, which is manifest in the central role it plays both in Davidson’s semantic program, and
more recently in the currently dominant deflationist theory of truth. But an ingenious
counterexample to Convention T was discovered by Hintikka (1976a) which differs from all
other types of counterexamples in a crucial respect — the sentence substituted into the
equivalence schema is neither ambiguous nor paradoxical, yet substitution of the sentence into
the equivalence schema yields a false sentence. Hintikka’s counterexample received little

attention, largely because it was thought to be an isolated case, and hence not necessarily an
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obstacle to the wider application of Convention T. I show that Hintikka’s counterexample
generalizes in quite unexpected ways, and that there are in fact a large number of unambiguous
sentences that generate counterexamples of the same general type. | then show that various
proposals for dealing with Hintikka’s original counterexample are unsatisfactory, and that none
of the proposed solutions can resolve all of the counterexamples presented in this essay. The
existence of such a large variety of counterexamples corroborates Tarski’s and Hintikka’s
skepticism about the possibility of using Convention T as a foundational criterion for assessing
the adequacy of natural-language truth definitions, and hence poses a serious obstacle to
Davidson’s program in semantics, but even more seriously undermines the deflationist theory of

truth.
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1. INTRODUCTION: CONVENTION T AND NATURAL LANGUAGES

According to Tarski (1944, 1956), it is unlikely that the project of constructing precise
semantic theories for natural languages will be successful. One would certainly expect any such
theory to include, at the very least, a precise definition of what it means to be a ‘true sentence’ in
the language under consideration. But with respect to such a definition, Tarski said:

The problem of the definition of truth obtains a precise meaning and can be solved in a

rigorous way only for those languages whose structure has been exactly specified. For

other languages—thus, for all natural, ‘spoken’ languages—the meaning of the problem is
more or less vague, and its solution can have only an approximate character. (Tarski

1944: 347, italics in original).

It seems that Tarski’s reasons for this position stemmed from other more general concerns
about the very enterprise of natural language semantics — in particular, concerns about the
pervasiveness of ambiguity and context-sensitivity on the one hand, and about the existence of
the semantic paradoxes on the other. These two concerns were clearly on his mind when he
wrote the following:

Whoever wishes, in spite of all difficulties, to pursue the semantics of colloquial

language with the help of exact methods will be driven first to undertake the thankless

task of a reform of this language. He will find it necessary to define its structure, to
overcome the ambiguity of the terms which occur in it, and finally to split the language
into a series of languages of greater and greater extent, each of which stands in the same
relation to the next in which a formalized language stands to its meta-language. It may,
however, be doubted whether the language of everyday life, after being ‘rationalized’ in

this way, would still preserve its naturalness and whether it would not rather take on the
characteristic features of the formalized languages. (Tarski 1956: 267)

There is an insight underlying both of these passages which, I think, has not received the

attention it deserves. It’s not the obvious point that natural languages, unlike formal languages,
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contain many terms that are ambiguous and context-sensitive. The deeper insight surfaces in
Tarski’s conjecture that if one attempts a scientific semantics of a natural language, then the very
process of precisely defining the structure of the language and disambiguating its terms might
thereby alter the natural language in such a way that the resulting language would not really be
the original object of study, but instead would be something more resembling a formal
language.”® We could perhaps then qualify Tarski’s skepticism about natural language semantics
as follows: it’s not that he thought the application of formal methods to natural languages was in
principle flawed, but rather that he was skeptical about the enterprise succeeding as a study of
natural languages, and suspected that it would end up really being a study of something else;
namely, the study of some new, semi-formal language that was not the intended object of study.

While one might object to Tarski by pointing out that all scientific modeling idealizes to
some extent, and thereby distorts the object of study, I think Tarski’s position has at least a prima
facie plausibility on the basis of an additional layer of distortion that happens when one
formalizes a natural language. The difference is that in the formalized study of the physical
world by the natural sciences, the natural world is an entirely separate entity from the formal
languages used to study it, so mathematical idealizations may be thought of as merely
simplifying the process of inquiry, and not ‘thereby’ simplifying the object of study. In contrast,
study of a natural language by means of another (formal) language involves not merely the

modeling of some non-linguistic structure by a language, but rather the process of translation of

% The late Henry Hiz, who was a student of Tarski’s in Warsaw, once informed me (in conversation) that Tarski
had extensive knowledge of linguistics and languages, and had a much greater appreciation of the complexities of
natural languages than one might gather from the bulk of Tarski’s contributions to mathematics. This little-known
fact about Tarski suggests that his skepticism about the utility of the formalization of natural languages was at least
well-informed from the linguistics side, and not merely a bias driven by his daily workings with the precision of
mathematics.
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one language into another, and this process may indeed result in corruption of the original object
of study in a way that mathematical modeling of physical structures does not.

This is clearly a topic worthy of more extended study. For now, however, we needn’t settle
the question of whether Tarski was right; we need only realize that his skepticism had a
reasonable foundation.? However, what is relevant for our purposes is that Tarski thought the
situation was quite different with respect to a scientific semantics of mathematics and logic.
Formal languages do not generate the sorts of problems associated with indexicals, tenses, and
other context-sensitive features of natural languages, and truth can be defined in such a way as to
avoid the liar paradox. Thus, despite the fact that translation from object to meta-language may
still be involved in studying the semantics of formal languages, this process needn’t (in
principle) result in any distortion of the object language.

Tarski proposed a criterion for defining truth predicates for formal languages in Convention
T, which we paraphrase here, omitting some detail:

Convention T: A4 truth predicate “is true” is adequate for a language L if and only if it entails all
substitution instances of the equivalence schema:

(ES) Xis true if and only if p,

where ‘X’ is a placeholder for a name of a sentence in the object-language, and ‘p’ is a
placeholder for a translation of this sentence into the meta-language.?

21 For an opinion radically opposed to Tarski’s, see Richard Montague’s comments at the openings of “English as
a Formal Language” and “Universal Grammar,” (1970a: 188 and 1970b : 222, respectively), where he famously
rejected the contention that there is any important theoretical difference between natural and formal languages.
Whether Tarski’s or Montague’s opinion is correct will, I think, not be known until we have formalized at least a
large fragment of some natural language, so that we may then be in a position to determine whether the resulting
construction can be considered the original natural language in ‘formal dress,” or something else entirely.

2 Of the two occurrences of the biconditional if and only if in this paraphrase — one in the initial lines of
Convention T, one within the equivalence schema (ES) itself — Tarski was occasionally more relaxed with his
phrasing of the first occurrence within Convention T. Thus, in (1956: 187-88) Tarski says “A formally correct
definition of the symbol ‘Tr’ ... will be called an adequate definition of truth if it has the following consequences:”
(one of the consequences being the satisfaction of all instances of (ES)). This may mislead one into thinking that
Tarski only intended the satisfaction of all instances of (ES) to be a sufficient condition for a definition of truth to
be adequate. But several other passages in both (1944) and (1956) make it clear that he also intended the
satisfaction of all instances of (ES) to be a necessary condition for a definition of truth to be adequate. For

example, he says “... if the definition of truth is to conform to our conception, it must imply the following
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It will be important in what follows to clearly distinguish the equivalence schema (ES) from
Convention T, since the two have sometimes been conflated in the literature.”® (ES) is merely a
schema, but Convention T is an adequacy criterion which involves reference to (ES) for the
purpose of saying something about truth. Whereas (ES) has free variables and individual
substitution instances, which (following common practice) we’ll hereafter call “T-sentences,”
Convention T involves universal quantification over ‘X’ and ‘p,” where the substitutions into ‘X~
and ‘p’ are related by translation. I’ll return to this distinction shortly.

In spite of the obvious differences between formal and natural languages, many philosophers
and linguists have not shared Tarski’s skepticism about natural language semantics. Davidson
(1967, 1969, 1973) famously argued that Tarski’s Convention T provides a template for the
construction of a recursive definition of truth for any natural language L, provided that the T-
sentences are relativized to speakers and times of utterance. In place of the usual T-sentences,

Davidson proposed using substitution instances of the more elaborate:

(D) X is true (as English) for speaker u at time t if and only if p.2*

equivalence: The sentence “snow is white” is true if, and only if, snow is white.” (1944: 343, emphasis mine), and “
... we wish to use the term “true” in such a way that all equivalences of the form [ES] can be asserted ... ” (1944:
344, emphasis mine). In addition, when explaining how Convention T might be phrased for a truth predicate “Tr”
which is applied to a language that has only finitely many sentences, where one could list all possible substitution
instances (X1, p1), (X2, P2), ..., (Xn, pPn) Of (ES), Tarski makes use of a biconditional phrasing in the initial lines of
Convention T, and he translates the biconditional within (ES) into a disjunction of conjunctions. He there says: “ ...
it would suffice to complete the following scheme: X € Tr if and only if either X = X; and p;, or X = X; and p, ...,
or X =X, and py, ....” (1956: 188; where each p; is a translation of the sentence X; into the metalanguage).

% For example, Klagge (1977: 377-78), Kirkham (1992: 143-4), and Williams (1999: 549) all refer to (ES) itself as
“Convention T.” As far as I can tell, this doesn’t affect their arguments in any substantive way, but for the
purposes of the present paper the distinction is important. Klagge’s paper is discussed in section 4 below.

“ I've modified Davidson’s (D) trivially so that it agrees with our notation in (ES). See Davidson (1969: 756). In
order to simplify cross-referencing, the equivalence schema and its relatives will be labelled mnemonically with
capital letters as above with “ES” and “D,” and all counterexamples to the various schemas will be numbered in
sequence. Variants of either a schema or counterexample will carry the same letter(s)/number(s) as the original, but
will add a prime or small italic letter, respectively.
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This schema, perhaps with additional modifications as warranted by the complexity of the
substituted sentence, enables one to specify the truth conditions of sentences with overtly
context-sensitive indexicals.?

In recent decades, Convention T has figured prominently in the literature on truth because the
equivalence schema is the centerpiece of currently popular deflationist theories of truth. This
central role is emphasized in the following passage from an anthology devoted to deflationism:

.. what constitutes the heart of deflationism — is that deflationists take the instances of

[ES] to be fundamental, both conceptually and explanatorily. According to the

deflationist, neither a conceptual nor a substantive ... analysis of truth is possible, because

there is nothing — conceptual or explanatorily — underwriting instances of [ES]. The

instances of [ES] are bedrock.” (Armour-Garb and Beall 2005: 3).

When Armour-Garb and Beall speak of a ‘conceptual’ analysis they have in mind
specifically Tarski’s analysis of truth in terms of the more basic concept of satisfaction, and by a
‘substantive’ analysis they have in mind non-deflationist attempts to explain why the substitution
instances of (ES) hold by ‘inflating’ (ES) with some additional property, such as corresponding
with reality, or cohering with a set of beliefs.

This increased attention to both Convention T and T-sentences has occurred despite Tarski’s
skepticism, and despite the existence of an interesting counterexample to Convention T
presented by Hintikka (1976a, 1976b) which has received scant attention over the years. The
lack of attention to Hintikka’s counterexample has been due, | surmise, to a premature
assessment of it as merely an isolated case. In what follows I’1l show that Hintikka’s
counterexample was far from isolated, and that what he in fact discovered is a phenomenon

which generates a surprising variety of counterexamples. But unlike problematic substitution

% By ‘additional modifications’ I mean that if the object-language sentence contained, say, a demonstrative such
as ‘this’ or ‘that,” then the schema would require specification of ‘the object demonstrated by speaker S,” or some
such. See Davidson 1967: 319-20 for details.
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instances of the equivalence schema that clearly are isolated peculiarities, such as liar-type
sentences and sentences with non-denoting expressions or indexicals, in which cases it is the
substituted sentence that is the root of the problem — Hintikka’s counterexample and others like it
employ substitution instances that are unambiguous and non-paradoxical, and hence make it
clear that it is the use of the equivalence schema itself that is problematic. This renders these
counterexamples a more serious problem for both the Davidsonian and the deflationist than the
more widely-discussed problem cases just mentioned. More troubling is the fact that some of the

counterexamples persist even under a propositional formulation of the equivalence schema.

2. HINTIKKA’S COUNTEREXAMPLE

Since (ES) employs a material biconditional, one of its logical consequences is of course the

conditional schema

(CS) Xis true if p.

Clearly, any theory of truth or meaning that requires the truth of instances of (ES) also requires
the truth of instances of (CS). Consequently, any substitution instance that falsifies (CS) will
necessarily also falsify (ES). For ease of reference, I’ll refer to the substitution instances of (CS)
from here on as ‘T-conditionals.” Hintikka (1976a: 107-8) provided the following

counterexample to (CS):

(1)  “Any corporal can become a general’ is true if any corporal can become a general

or alternatively,

55



(1) If any corporal can become a general, the sentence ‘Any corporal can become a general’ is

true.

The reason why (1) is a counterexample to (CS) is that the first ‘any’ in (1) clearly has the
force of a universal quantifier, while the second ‘any’ has the force of an existential quantifier.
Of course, this is not the only way that (1) can be interpreted. One might, for example, try to
preserve the truth of (1) by simply interpreting the second ‘any’ also as universal. Alternatively,
one might try the more sophisticated approach of keeping the first ‘any’ universal and the second
‘any’ existential, but then consider a ‘non standard’ universe with only one corporal, where that
corporal can become a general. In this non-standard universe, the conditional will come out true
since the existential and the universal quantifiers would then range over the same singleton.

But both of these attempts at a solution miss the point — the mere existence of a false reading

is a problem for the use of (ES) in Convention T. The very purpose of Convention T is for it to
have a foundational role as a criterion for the adequacy of truth-definitions (Hintikka 1976a:
111). Its purpose is to provide a standard which enables us to see whether a predicate we are
using to capture our intuitive concept of truth actually does capture that intuitive concept.
Hence, it is especially intended to cover cases where the natural language terms are given their
usual interpretations in the actual world. Attempts to preserve the truth of instances of (ES) by
giving the schema an alternate reading undermine the foundational status of Convention T as a
semantic criterion, especially when they can only preserve truth by resorting to a reading that

seems forced and feels unnatural.?®

% The readings are unnatural whether they result from the relatively minor ploy of giving an infrequently-used
interpretation to any of the terms, or as a result of using a non-standard model. In Hintikka’s original articles he
speaks of his counterexample as ‘false,” rather than ‘easily falsifiable,” or ‘false according to the dominant reading.’
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This fact led Hintikka to consider his counterexample a serious problem for semantic
theories, such as Davidson’s, that demand the entailment of all substitution instances of the
equivalence schema. The problem is this: for Davidson, Convention T and T-sentences jointly
form the sole criterion of adequacy for a definition of truth, as is made clear in the following
passages:

Convention T and T-sentences provide the first and best link between familiar truths

about truth and formal semantics; they alone constitute an unmistakable test that a theory

has captured a concept of truth we are interested in. (Davidson 1973: 77)

. although T-sentences do not define truth, they can be used to define truth-
predicatehood: any predicate is a truth-predicate that makes all T-sentences true.
(Davidson 1973: 76)

By requiring a definition of truth to make all T-sentences true (in order to capture our intended
concept of truth), Davidson set the bar rather high. As long as there is even one acceptable
reading of an instance of (ES) which falsifies it, one has a counterexample on one’s hands. A
false instance indicates that the employed definition fails to capture our intended concept of
truth; i.e., it fails to capture our intuitive notion of what “is true” means.

But there is a deeper problem: if Convention T is to provide the cornerstone for a
compositional semantic theory, as it is in Davidson’s program, then the instances of (ES) are
specifying how the truth conditions of complex sentences are built compositionally out of the
satisfaction of their parts. In order for (ES) to correctly state these conditions for any given
sentence, it is of course essential that i) the T-sentence in question is actually true, and ii) the

meaning of the substituted sentence is not altered after substitution into (ES). These are fairly

I have considered the alternate readings more sympathetically only for completeness’ sake, but the above
comments should make it clear that Hintikka’s phrasing was well-justified.
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minimal requirements, but neither of them is satisfied in the case of (1). Because of this,
Hintikka concluded that:

... there is no reason to expect the schema [ES] not to have false instances in other cases

as well. ... Hence we just cannot trust the schema [ES] to yield only true substitution-

instances. This already puts an entirely new complexion on attempts to base one’s

semantics on Convention T. (Hintikka 1976b: 63)

Notice that Hintikka’s counterexample is quite different from the sorts of problem cases that
have received much more attention in the literature on truth. The sentence ‘Any corporal can
become a general’ has a determinate truth value, and hence it is not subject to problems
associated with non-denoting expressions, such as those discussed in Dummett’s classic paper on
truth (1959). Dummett’s concern was with a type of sentence S that is neither true nor false
because it contains a non-denoting expression. In such cases, the sentence ‘S is true” will be
false, and consequently the equivalence expressed by (ES) clearly will not hold. In addition,
Hintikka’s sentence contains no indexicals, and thus it is not the kind of example that motivated
Davidson to provide an utterance-based version of the equivalence schema. Moreover, it
contains no self-reference, so it will not lead to any of the known semantic antinomies. These
features separate Hintikka’s counterexample and others to be presented below from the better-
known indeterminate cases, essentially context-sensitive cases, and liar-type cases.

To see the importance of Hintikka’s discovery, we will next show that there are many
additional counterexamples of the same general type. These additional cases are also
unambiguous and non-paradoxical, but more importantly, they involve the reinterpretation of a
variety of syntactic categories besides quantifiers. Hence they corroborate the claim, first made

by Hintikka, that the problem arises not because of ‘peculiarities’ with any particular terms in the

58



lexicon, but rather because of the form of the equivalence schema itself. We will hereafter call

all such cases ‘Hintikka-type counterexamples’ to (ES).

3. HINTIKKA-TYPE COUNTEREXAMPLES

Suppose we begin with the following sentence:

(2) Otto is ever grateful.

This sentence can be paraphrased roughly as ‘Otto is always grateful.” Now suppose we wish to
specify the truth conditions of (2) by employing Convention T, substituting a quotation of (2) for
X and (2) itself for p into (ES). We then obtain as a logical consequence the following

substitution instance of (CS):

(2a) ‘Otto is ever grateful is true if Otto is ever grateful.

This sentence is problematic in a way analogous to Hintikka’s (1). In (2a), the right hand

occurrence of (2) has the dominant reading:

(2b) Jt (tisatime & Otto is grateful at t).

But clearly, the relatively weak condition expressed in (2b) — that is, the condition of Otto being

grateful at some time — is not a sufficient condition for the truth of (2), i.e., Otto always being
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grateful. Consequently (2a) is false, since it in effect says that (2b) is a sufficient condition for
the truth of (2).%

It is important to notice that (2) has a clear, unambiguous meaning, where ‘ever’ means
always and cannot mean at some time. However, the substitution of (2) into a T-conditional
results in two occurrences of the same string of words, where the object-language occurrence of
‘ever’ is interpreted as always, but this interpretation is altered by context in the T-conditional so
that the dominant interpretation of the meta-language occurrence of ‘ever’ in (2a) is at some
time. While this is not the only way that (2a) can be interpreted, it is clearly the most natural
reading.

Example (2a) and Hintikka’s (1) above hinge on the reinterpretation of an adverb (‘ever’)

and a quantifier (‘any’), respectively. Now consider the following verb case:

(3) ‘Obama should win the election’ is true if Obama should win the election.

This is also a counterexample to (CS) because the first ‘should’ is clearly interpreted as
synonymous with ought to, while the second ‘should’ has the dominant interpretation happens
to. In a case like (3) the falsification of the T-Conditional may be clearer if it is rephrased in the

following way:

(3a) If Obama should win the election, then ‘Obama should win the election’ is true.

It is of course true that when the verb ‘should’ means ought, this ought itself may be understood

in either a moral or a probabilistic sense (i.e., as either deserves to win or is likely to win,

%" As with Hintikka’s (1), there may of course be cases where (2a) is vacuously true, e.g., whenever (2b) is false.
But as noted in the previous section, what’s at issue is merely whether there are any false readings of an instance
of (ES). With this caveat stated, I’1l hereafter ignore this point as it pertains to examples below.
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respectively). But this does not affect the status of (3) as a counterexample to (CS). To see that

(3) is a counterexample to (CS), it suffices to notice that the sentence

(3b)  Obama should win the election

cannot mean that Obama happens to win the election. In (3b), ‘should’ must be interpreted as
ought, in either of the two senses just mentioned. Thus, while ‘Obama happens to win the
election’ may well be true, it is clear that the truth of this sentence is neither a necessary nor a
sufficient condition for the truth of the sentence ‘Obama ought to win the election.” But (3) is
the result of substituting (3b) and its quotation into (CS), and (3) in effect says that happens to is
a sufficient condition for ought to, which is clearly wrong. Consequently, (3) is false.

The following counterexamples show that this phenomenon extends, surprisingly, to noun
phrases in addition to quantifiers, adverbs, and verbs. Dominant interpretations are given below

in parentheses:

(4) ‘Mary comes home for Thanksgiving’ is true if Mary comes home for Thanksgiving.
(every Thanksgiving) (this Thanksgiving)

(5) ‘Bob cleans the gutters in the fall’ is true if Bob cleans the gutters in the fall.
(every fall) (this fall)

When examples (2a), (3), (4), and (5) are considered alongside Hintikka’s original example (1),

it becomes clear that the general-then-specific reading of most T-conditionals seems to be driven

by the conditional itself, and not by the particular word or phrase whose meaning is changed.
Before closing this section, we will consider two substitution instances of (CS) where the

falsehood of the resulting T-conditional is less certain, yet it is nonetheless clear that the
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resulting conditional does not unambiguously specify the truth conditions of the substituted
sentence. Consequently, they provide further evidence of the inadequacy of the use of
Convention T as a semantic criterion. Consider the following verb and adverb cases (again, the

dominant interpretations of the relevant terms appear below in parentheses):

6 ‘I may bring a guest’ is true if | may bring a guest.
( y bringa g ybringag
(might) (am allowed to)

(7)  ‘Pierre can just finish in time’ is true if Pierre can just finish in time.

(barely) (only)

In both (6) and (7), as with the other examples above, it is possible to force readings of the right-
hand sides of the conditionals so that the meta-language interpretations of ‘may’ and ‘just’ are
the same as their object-language interpretations. But the changing interpretations indicated
above appear to be dominant for most speakers, and as with the clearly false cases discussed
earlier, this is more than enough to cause problems for Convention T.? In spite of the fact that
(6) does involve the indexical ‘I,” and hence is not unambiguous in the way that other Hintikka-
type cases are, this example illustrates Hintikka’s main point even more forcefully. When
reading (6), it is natural to keep the reference of the overtly ambiguous term ‘I’ the same in both
of its occurrences, yet the seemingly unproblematic word ‘may’ is given two different readings

upon substitution into the T-conditional.?® (6) and (7) are further counterexamples to Convention

8 That is, the changing interpretations have been dominant for most of the colleagues, students, and other audience
members to whom this paper has been presented.

? Notice: parallel to the earlier counterexamples, when one considers the left hand side of (7) in isolation, ‘just’
must be interpreted as meaning barely, and cannot be interpreted as meaning only. With (6), however, although it is
possible to read the left-hand occurrence of ‘may’ as is allowed to, this is not the dominant interpretation for most
speakers.
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T because in both cases, the truth of the quoted object language sentence is independent of the
truth of the respective disquoted occurrence of the same sentence in the meta-language.

All of these counterexamples manifest a key property of natural languages not shared by
formal languages: the context-sensitivity of many not-overtly-ambiguous words in the lexicon.
Both Tarski and Hintikka believed that this feature of natural languages limited the application of
Convention T beyond formal languages. I’ll now show that despite the recent, more widespread
application of Convention T to natural languages, the more conservative position shared by

Tarski and Hintikka still withstands the objections that have been leveled against it.

4. PROPOSED SOLUTIONS

The additional counterexamples to Convention T show, at the very least, that the
phenomenon Hintikka discovered is far more pervasive than his original example might lead one
to believe. The phenomenon pertains not only to quantifiers, but also (at least) to adverbs, verbs,
nouns, and definite descriptions. By performing straightforward substitutions of other ordinary,
unambiguous phrases into T-conditionals, it is not difficult to find additional Hintikka-type
counterexamples for each of the relevant syntactic categories.*® Consequently, the phenomenon
affects many Tarski-biconditionals expressed in English, and therefore clearly poses a problem
for theories of semantics or truth for natural languages that require the truth of all substitution

instances of (ES).

% | was able to find several dozen Hintikka-type counterexamples in English — far too many to discuss

adequately in a single paper — including cases where the shifting semantics occurred for indefinite descriptions
and plural nouns. Consider, for example, the sentence: “‘A caterpillar becomes a butterfly’ is true if a caterpillar
becomes a butterfly.” Or consider: “‘Raccoons are found near the garbage’ is true if raccoons are found near the
garbage.” Both of these instances of (CS) are parallel to the examples (2a), (3), (4), and (5) in that the object
language occurrences of ‘a caterpillar’ and ‘raccoons’ are general, while the metalanguage occurrences are easily
given a particular reading.
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To my knowledge, Hintikka’s counterexample inspired only one paper-length discussion —
by Klagge (1977), but also some more recent, albeit relatively brief comments by Kirkham
(1992), Peregrin (1999b), and Lepore & Ludwig (2005). There does not appear to be any
agreement on exactly how the counterexample should be dealt with, and this, I think, counts as at
least prima facie evidence that there is much more to Hintikka’s counterexample than meets the
eye. We’ll now look at the various proposed solutions, and see that they all fail to provide a

satisfactory resolution of the problem.
4.1 On ambiguity versus context-sensitivity

In Hintikka’s original article (1976a: 108-09), he considered, but rejected the potential
allegation that his counterexample is simply due to the fact that ‘any”’ is ambiguous in English.
Although none of his later commentators has explicitly made this allegation, some have pointed
to context-sensitivity, and at least Peregrin suggested that the issue was a ‘peculiarity’ of ‘any’
(1999: xvii). Before discussing the relationship between ambiguity and context-sensitivity, it
will be instructive briefly to consider Hintikka’s own explanation of his ‘any’ counterexample, in
order to get a clearer understanding of the underlying phenomenon generating the
counterexamples.

Hintikka argued that ambiguity is not the root of the problem in (1) and (1), although he
defended this view by offering a rather ambitious hypothesis about the meaning of ‘any’ in
English. He argued that ‘any’ is always universal in English (and hence not ambiguous),

although its scope may change as it interacts with its grammatical environment in a T-conditional

31| should note that Kirkham has so far been alone (apart from the present author) siding with Hintikka in this
debate. He has acknowledged the seriousness of Hintikka’s original counterexample for Davidsonians, and sees
no way out for them. See Kirkham (1992: 244).
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(so one could still say that ‘any’ is context-sensitive).** One of his reasons for believing this was
that formalizations of ‘any’ using an existential quantifier can be given paraphrases using a

universal quantifier.*® He offered the following formalizations of (1°):

(13) 3x (x is a corporal & X can become a general) — ‘any corporal
can become a general’ is true

which, under a standard prenex conversion, is easily seen to be logically equivalent to the

formalization

av) VX [(x is a corporal & X can become a general) — ‘any corporal
can become a general’ is true].

Given the logical equivalence of (13) and (1V), it becomes possible to argue that ‘any’ has the
‘deep’ interpretation of a universal quantifier in English, and hence that the ‘underlying’ form of
(1) is (1V), but that the logical scope of the quantifier is altered by its grammatical context in the
T-conditional — in particular, by its interaction with the word ‘if.” The surface grammatical form
is then rendered by (13).3* The result is a substitution instance of (CS) (and hence of (ES)) that

is false under its standard interpretation.

%2 See Hintikka (1976b: 64) for the claim that ‘any’ is always universal, and see Hintikka (1997) for a discussion
of the difference between what he calls ‘binding scope,” which is indicated by the placement of parentheses, and
‘priority scope,” which is determined by the underlying logical form of the sentence. Priority scope is what is
relevant for the ‘any’ case under consideration here.

The reader should also be careful not to confuse Hintikka’s claim that ‘any’ is always universal with a related
but different claim, which has become known as his ‘any-thesis.” The ‘any-thesis’ says, roughly, that a use of ‘any’
is grammatical if and only if substitution of ‘every’ for ‘any’ results in a grammatical sentence not identical in
meaning with the original ‘any’ sentence. See Hintikka (1977, 1980) for a defense of his ‘any-thesis.’

% The reverse is not generally true, though, as can be seen by considering a sentence with an ‘any’ expression in
the lead position (e.g. ‘Anyone can get the job done’), where one will be unable to give the expression an
existential reading.

% I wish to emphasize that I am not claiming that ‘underlying’ form or ‘surface’ grammatical form necessarily
corresponds, or doesn’t correspond, to any particular level of representation postulated by different syntactic
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Although the logical equivalence (13) and (1Y) may lend some plausibility to the hypothesis
that ‘any’ is always universal in English, this hypothesis was challenged by Carlson (1980) and
Higginbotham (1982), both of whom provided examples of sentences involving ‘any’ where a
universal paraphrase does not appear to be available. For example, Higginbotham argued that in

the following examples, ‘any’ has only existential force:

(8) That teacher rarely fails anybody.
(9) John will know if anybody left.

Higginbotham (1982: 267-68) showed that a logical paraphrase analogous to the above
paraphrase of (13) by (1V) will not work in these cases, and hence that a universal reading of
‘any’ in (8) and (9) fails to give the correct interpretation. Even though Hintikka’s universality
claim concerned a ‘deep’ level of representation rather than the surface form or logical form, the
existential force of ‘any’ in (8) and (9) is so strong that it does not seem likely that either could
be given a plausible ‘deep’ representation where ‘any’ is universal.

I surmise that part of the reason for the lack of attention to Hintikka’s counterexample over
the years is that some may have believed — wrongly, | think — that Hintikka’s main criticism of
Convention T rested entirely on his hypothesis about the universality of ‘any,” and the examples
of Carlson and Higginbotham support a persuasive counterargument that Hintikka’s universality
hypothesis does not appear to be correct as stated.®> But in light of the additional

counterexamples presented in the last section, none of which involve the word ‘any’ at all, it

theories, especially to what linguists have called ‘LF.” Hintikka seems to have had in mind that (1V) is a ‘deep’
structure representation and that (13) is either a ‘surface’ structure representation, or what today would be
considered LF. The shudder quotes indicate that what Hintikka said in the 70’s may well be different from what he
might say today, given the changes in the understanding of levels of representation in linguistics over the last few
decades.

% However, it may still be true that some weaker form of the hypothesis is correct — e.g., that ‘any’ is universal in
all but a few isolated contexts.
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should be clear that Hintikka’s criticism of natural language applications of Convention T is
actually independent of his hypothesis about the universality of ‘any.” The counterexamples
must have some other source.

One may then wonder why Hintikka went to such lengths to defend his hypothesis that ‘any’
is always universal, if indeed this hypothesis is independent of his main criticism of Convention
T. I can think of at least one good reason: If ‘any’ were always universal, it would then be
clearer that the source of the problem with (1) is not the ambiguity of an isolated word, but rather
context-sensitivity as a general phenomenon. This is an essential distinction, because by pointing
to context-sensitivity rather than ambiguity, it becomes clearer that there is a genuine problem
with using Convention T as a semantic criterion, since (ES) involves the substitution of words
into a new context. | think that was the main point Hintikka meant to emphasize, and as I’ll now
argue, he was indeed right to point to context-sensitivity and not to ambiguity as the main culprit.

To see this, we should first clearly separate the concepts of ambiguity and context-sensitivity.
A term that appears in a given context and can receive more than one interpretation in that
context may be called ‘ambiguous.” On the other hand, a term which receives one interpretation
in one context and a different interpretation in other contexts — but can only receive a single
interpretation in some of these contexts — would properly be called ‘context-sensitive,” but not
necessarily ‘ambiguous.” Hence, context-sensitivity is a less extreme form of meaning variance
than ambiguity. If we fix a term but vary the context, and find that the meaning of the term can
vary across the different contexts, then the term is merely context sensitive. But if we fix both a
term and a context, and find that the meaning of the term can still vary within that given context,
then the term is ambiguous. Of course, these properties do not form disjoint sets; e.g., some

terms we call ‘context-sensitive’ may, in some of their contexts, also have more than one
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interpretation, and hence may also be ambiguous. But for the most part these properties are
distinct. There are many terms in the lexicon that would be classified as context-sensitive
because they receive different interpretations in different contexts, but most of these terms will
be unambiguous in any given context.

Since this distinction is central to understanding Hintikka’s criticism of Convention T, it may

help to consider some simple examples. In the following cases:

(10)  John listed his accomplishments
(11) The boat listed in the wind

it would be wrong to say that ‘list’ is ambiguous in either (10) or (11), (except in the relatively
minor respect in which (10) does not specify whether the listing is oral or written). Clearly we
are here dealing not with a single ambiguous word, but rather with two context-sensitive
homonyms, which we might call ‘list;’(to itemize in a series) in (10), and ‘list,” (to lean to one
side) in (11). Although it may well be possible to construct example sentences where a term
which has a homonym is itself ambiguous, in the vast majority of cases the meaning of such a
term will be made clear by context, as it is in (10) and (11).% In fact, the usual effect of
embedding a context-sensitive term within a sentence is specification of a unique intended word
or meaning.

To return to the Hintikka-type counterexamples, of course a necessary condition for
generating such a counterexample is the presence of at least one context-sensitive term in the
substituted object-language sentence (i.e., one term that is capable of having different

interpretations in different contexts). But it should now be clear that this is very different from

% I'm using ‘term’ for any sequence of letters or sounds that is interpretable as one or more distinct words.
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claiming that the relevant term or the object-language sentence it occurs in is ambiguous in
isolation. The object-language sentences in all of the Hintikka-type counterexamples considered
above contain context-sensitive terms, but the object-language sentences containing them are
unambiguous in isolation.®

One could say, however, that ambiguity is relevant to Hintikka-type counterexamples only in
the following sense: since it is possible to give the entire T-conditional two readings — one
generating a false Hintikka-type counterexample, and one preserving truth — then the T-
conditional itself is ambiguous, and its two interpretations are made possible by giving two
interpretations to the meta-language occurrence of one of the terms in the substituted sentence.
But three points have now been made concerning the multiple readings of such T-conditionals: 1)
the mere existence of a false reading is sufficient to generate a counterexample to Convention T,
i) in Hintikka-type counterexamples, the false reading of the T-conditional is the dominant one —
indeed, it appears that a true reading can in some cases only be ‘seen’ by forcing the
interpretation in a way that betrays the most natural (false) reading of the conditional, and
perhaps the most troubling, iii) if it is possible to take an unambiguous natural-language
sentence, substitute it into the equivalence schema, and end up with an ambiguous sentence (i.e.,
an ambiguous resulting T-sentence), then so much the worse for the use of Convention T as a
semantic criterion!

It is worth noting that a very large number of terms in any natural language are context-

sensitive.®® 1t seems to have been this that concerned Tarski and Hintikka the most. Although

¥ That is, they are not ambiguous in any sense relevant to their status as counterexamples. Ambiguity may still be
present in a way that does not undermine the status of a counterexample as a counterexample; cf. the above
discussion of two senses of ought in connection with example (3).

% Although there are different possible ways of counting “words,” by taking a sample of over 1,000 entries in the
American Heritage Dictionary, a very conservative estimate reveals that over 10% of the entries list multiple
meanings. Since this dictionary contains over 100,000 entries, and these form only a subset of all terms of English,
one can estimate that there are over 10,000 terms in American English that can receive different interpretations in
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we may find ways to deal with the obviously context-sensitive features of natural language —
pronouns, demonstratives, and tenses — natural languages contain many other expressions that are
context-sensitive, even though their context-sensitivity may not be as readily apparent. The
sheer quantity of such context-sensitive terms in the lexicon of any natural language creates an
even greater problem for the use of Convention T, because in many cases we may not know —
prior to the substitution of a relevant object-language sentence into (ES) — whether a given term
IS context-sensitive. Hence there does not appear to be any way to deal uniformly with such a

large number and variety of context-sensitive terms.

4.2 Formalizing the meta-language

Klagge suggested that the source of Hintikka’s counterexample was an interplay of ‘any’ and
‘if,” and that it could be avoided by finding some context-independent (with respect to ‘any’) part
of our metalanguage (1977: 379-80). His proposal for doing this was, oddly, not exactly to
‘find” a context-independent part of our metalanguage, but rather to create one by adding
formalized connectives to English. He suggested that one could avoid Hintikka’s
counterexample by simply replacing the natural language ‘if and only if” with one its symbolic
translations. But Hintikka had already entertained this possibility in his original articles, and
argued that:

This attempt will lead to expressions whose truth-value has not been determined, for the

original sentence p will of course have to figure in a substitution-instance of the schema

[CS]. Hence these substitution-instances of [CS] will then be mixed expressions

containing both formalized connectives and English words like ‘any’ and ‘can’. There

simply are no grounds for deciding how ‘any’ behaves vis-a-vis such foreign elements as
formalized connectives, and consequently no satisfactory solution is available in this

different contexts (and hence are context-sensitive). Nevertheless, much more often than not, sentences containing
these terms are not ambiguous.
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way. (The explanatory value of the whole condition formulated in terms of [ES] would be
destroyed by this indeterminacy) (Hintikka 1976: 110).
Perhaps Hintikka had not made this point emphatically enough. Klagge seems to have assumed
that schemes phrased with a mixture of formal and natural-language expressions will be clearly
interpretable. But as Hintikka was quick to point out, this is just not so. Consider Klagge’s
comment:
Convention T, as Tarski and Davidson intend it, is:

(T) Xistrue < p.¥

We can ignore the conflation here of Convention T with (ES) itself, because Klagge’s claim has
a more substantive problem. His claim is that both Tarski and Davidson “intended” to render
Convention T in a meta-language that included formalized logical connectives, but I think it is
quite unlikely that (at least) Tarski intended this. In Tarski’s most formal monograph devoted to
this topic (1956), in every potential instance where a more careless writer might make use of a
formal connective in the meta-language, Tarski explicitly avoids it. This was clearly deliberate,
so it is somewhat tendentious to suggest that Tarski “intended” otherwise.

Moreover, it is well-known that formal connectives only capture part of the meanings of their
usual natural language paraphrases, so one cannot assume that any translation from natural
language to formal language (or vice versa) will preserve the original interpretation. To give just

one example, consider the following English sentence:

(12)  If the machine starts whenever I press its ‘ON’ switch, then the machine starts whenever |
simultaneously press its ‘ON’ switch and pull its plug.

¥ See Klagge (1977: 378). | have only made the trivial adjustments of changing Klagge’s mto X and = to < in
order to agree with our notation.
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This sentence, though obviously false under a standard interpretation, has a standard translation

into a theorem of the propositional calculus (using obvious substitutions):

(P—>R)—>PAQ—R).

This translation might well be provided in an introductory logic class that translates every
instance of English “if ... then” as “—,” but it is well-known that the conditional in English has
several other interpretations besides that of the material conditional. One may well explain the
lack of translatability in the above example in terms of non-monotonic reasoning, or in terms of
non-material conditionals in English, or some such. But examples like this only corroborate
Hintikka’s claim about the impossibility of “explaining away’ his counterexample by using a
semi-formal translation. Any translation along the lines of what Klagge suggests will involve
some combination of formal connectives and English expressions, but without precise rules for
interpreting mixed expressions, we simply have no grounds for saying that any one interpretation
is the correct one. We may agree with Klagge that the intended meaning of the biconditional in
(ES) is of a material biconditional, but this does not license the substitution of a formal
connective into (ES) where Tarski took pains to use natural language. Doing so alters the
metalanguage and renders it something that itself is in need of interpretation, when the
metalanguage was intended to be used as a vehicle, the interpretation of which is not in question,
so that it could be used to study the language that is the object of study (the object language).
Given the foundational and explanatory importance attached to Convention T and to the
equivalence schema, any indeterminacy in their interpretations is clearly unacceptable.

It appears that Klagge may have had in mind the fact that we occasionally read expressions

containing formal connectives by employing standard natural-language counterpart expressions,
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and that there should then be no special problem reversing this process; i.e., in formalizing
natural-language expressions. But this is far from true. There are many complexities of natural
languages that have yet to find suitable means of formalization (consider the enormous
complexity of pragmatics, just for starters). Moreover, when one reads a formal symbol in some
way with the help of a natural language, the use of a natural language as meta-language again
becomes vulnerable to the formulation of any of the counterexamples. Thus, this attempt at a
solution either introduces uncertainty into the very interpretation of Convention T, or it merely
masks the still-present counterexample in the clothing of a formalization, allowing the

counterexample to persist whenever anyone reads it in the meta-language.

4.3 Paraphrasing the conditional

As another possible way around the counterexample, Klagge suggested that one need only
give the conditional one of its many other natural language paraphrases, and merely find one for
which the counterexample does not persist. But this attempt at a solution has at least two flaws: i)
even if a paraphrase is considered successful for one counterexample, there does not appear to be
a paraphrase that will eliminate all of the counterexamples, and ii) the best candidates among the
possible paraphrases seem to considerably distort and even undermine the explanatory role of
Convention T.

To see this, suppose that instead of (CS) we used its counterpart conditional:

(CS") Xis true only if p.

Then it is still easy to construct counterexamples paralleling those above. Consider:
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(13) “Otto is ever grateful’ is true only if Otto is ever grateful.

This counterexample to (CS") is subject to problems somewhat different from those involved in
the counterexamples to (CS). Here the meta-language occurrence of ‘ever’ (right) is still read as
at some particular time, while the object language occurrence (left) is still read as always.
Hence, the right side may be true while the left is false, which means that the conditional may
still be (vacuously) true. However, the right side clearly does not state the proper truth
conditions for the object-language sentence on the left.

One would think that the natural-language paraphrase with the most promise of eliminating

the counterexamples is one that avoids the use of ‘if” altogether, as in the following paraphrase

of (CS):

(CS™) It is not the case that p, or X is true.*°

While this does appear to weaken Hintikka’s counterexample (see Klagge 1977: 379 for details),

this approach will not work as a general solution. Consider:

(14) It is not the case that Otto is ever grateful, or ‘Otto is ever grateful’ is true.
and

(15) It is not the case that I may bring a guest, or ‘I may bring a guest’ is true.

0 Kirkham (1992, p.244), for example, was of the opinion that Hintikka’s counterexample arose because “When
‘any’ follows ‘if” it is an existential quantifier.” Nevertheless, after consideration of Hintikka’s counterexample he
agreed that “... the truth conditions of a compound sentence are not always a function of the truth conditions of its
component clauses .... I see no obvious way for Davidson to escape this objection.” But as I’'ll show in the
examples immediately below, the real source of the problem cannot be merely that ‘if’ generates different
interpretations from object-language to meta-language, since counterexamples persist even with paraphrases that
avoid use of ‘if’ altogether. The additional paraphrases suggest that the real source of the counterexamples is
context-sensitivity more generally.
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In the case of (14), the left hand reading of ‘ever’ in the meta-language is still predominantly at
any particular time, while the object language occurrence on the right is still always. Thus, this

reading of (14) is a disjunction which has the form:

(14) ~3t(tisatimeand Otto is grateful att) v “Otto is ever grateful’ is true.

This disjunction could be paraphrased: ‘Either Otto is never grateful, or the sentence ‘Otto is
always grateful’ is true.” But this clearly fails to give the intended truth conditions of the
sentence ‘Otto is ever grateful.” A similar problem is faced by (15), where the meta-language
occurrence of ‘may’ still has the dominant reading am allowed to, while the object-language
occurrence still has the dominant reading might.

Klagge’s use of (CS™") was only applied to Hintikka’s ‘any’ case, and even if his paraphrase
is regarded as successful at weakening that one counterexample, it is not successful at resolving
(14) or (15), and the prospects for resolving the remaining counterexamples uniformly do not
look promising. The counterexamples are sufficiently different from one another that the
existence of a universal paraphrase that resolves all of them seems quite unlikely.

But there is a deeper problem with this approach to resolving the counterexamples. By
taking each component conditional in (ES) and paraphrasing it in any of the above-mentioned
ways (or in any of the standard alternative phrasings), one no longer has a version of (ES) that is
worth including in one’s semantic theory for its intended purpose. To make this clearer, since it
would require too much unnecessary detail to consider every possible paraphrase, we’ll look at
the strongest contender — the paraphrase (CS™"), which uses a disjunction that avoids any use of

the word “if.” Consider the following sentence, which is analogous to (14):
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(16) It is not the case that snow is white, or ‘Snow is white” is true.

If one replaces (ES) with a conjunction of (CS™") and its counterpart disjunction (for the other
direction of the biconditional), then any theory that is required to entail all substitution instances
of (ES) would have to entail (16). But this requirement has bizarre consequences — (16) is
trivially true, and not for the reasons that a deflationist might give. At the risk of abusing
terminology, (16) is a version of the law of excluded middle, expressed partly in the object-
language and partly in the meta-language. If we wish to adhere to some version of Convention T
where each component conditional in the equivalence schema is replaced with a disjunction of
the form of (CS™) or its counterpart disjunction, we are then forced to say that our truth predicate
is adequate so long as (16) and its equally trivial counterpart are satisfied. But since (16) will be
satisfied no matter what color snow is, it hardly merits a place in any discussion of the truth
conditions of ‘Snow is white.” Hence, the truth of substitution instances of (CS"”) really tells us
nothing about the truth conditions of the substituted sentences. This ‘solution’ to Hintikka-type

counterexamples strips Convention T of whatever explanatory power it had to begin with.

4.4 Dispensing with disquotation

Lepore and Ludwig (2005) acknowledged that context-sensitive sentences are a problem for
disquotational versions of Convention T, but they intimate that other versions of Convention T,
presumably propositional versions, will not be subject to counterexamples generated by context-
sensitivity. In a footnote following their presentation of a variant of the ‘any’ counterexample,

they say:
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The criticism of using truth theories in Tarski’s style in application to natural languages
fails once we move away from the disquotational paradigm, which is required in any case
to accommodate context sensitive sentences.*".
While this is the only proposal that fully (and correctly) acknowledges that the underlying issue
is context sensitivity, | think it nevertheless overestimates the possible sweep of a propositional
solution to the counterexamples, possibly because it also underestimates the variety and sheer

number of the counterexamples.

Let’s take, for example, Horwich’s propositional statement of (ES) (1990: 7):

(P) It is true that p if and only if p.

While this is only one way of formulating a propositional version of (ES), it is typical of its class,
and it is sufficient to illustrate the problem with this attempt at a solution. It must be noticed that
even though quotation marks are absent in (P), the schema is still formulated mostly in a natural
language. Consequently, use of this schema (or any of its variants) will not entirely eliminate
interaction of the object language p with the syntax of (P) itself. To make this clearer, consider

that (P) still gives rise to the following Hintikka-type counterexamples:

(17a) Itis true that Otto is ever grateful if Otto is ever grateful.
or

(17b)  Itis true that Obama should win the election if Obama should win the election.

“t Lepore and Ludwig use the example: ‘Anyone can do it* as the object-language sentence. See Lepore and
Ludwig (2006: 364, ftn. 280).
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The interpretations of ‘ever’ and ‘should’ in these cases are parallel to the disquotational
versions. In (17a) the left-hand (propositional) ‘ever’ is still read as always, while the right-hand
occurrence still has the dominant interpretation at any particular time. Similarly, in (17b) the
left-hand ‘should’ still reads as ought to, while the right-hand occurrence still reads as happens
to.

Thus, even if it should turn out that moving to a propositional paradigm ends up resolving
some problematic cases, since all variants of (P) will involve embedding one natural-language
sentence within a mostly-natural-language schema, it is extremely unlikely that even any variant
of (P) will resolve all Hintikka-type counterexamples. Contrary to Lepore and Ludwig’s claim,
it does not appear that resorting to a propositional version of the equivalence schema rather than

a disquotational version will rid us of all Hintikka-type cases.

5. DISCUSSION

The difficulty of finding any uniform resolution of the counterexamples should give us pause
for thought. Although Tarski seemed to think that attempting a precise semantic theory for
natural languages was a thankless enterprise, Hintikka has not been quite as pessimistic. In fact,
he said:

Of course the truth-conditions of a complex sentence must hang together in some

specifiable way with its structure and with its component expressions. However, there is

no reason to expect that this dependence be so simple as to make a recursive truth-

characterization possible or to make possible the kind of use of Convention T Davidson

envisages. (Hintikka 1976b: 66)

Thus, it was not natural language semantics in general that was Hintikka’s target, but rather the

attempt to transfer to natural languages the precise methods Tarski had applied so successfully to

78



formal languages. By considering the additional counterexamples provided in (2a) through (7)
above, it should now be clear that Hintikka’s criticism is even more forceful than he may have
thought. For many syntactic categories of English, there is an unknown but probably large
number of lexical items within each of those syntactic categories that interact with their
grammatical environments. Since we can’t be sure a priori that a given sentence will not
produce a false instance of the equivalence schema, Hintikka argued that Convention T should
not be the centerpiece of a compositional semantics for natural languages:
...the very intended use of [ES] as a systematic tool in the semantics of natural languages
was to employ it as a means of spelling out what the truth-conditions of complex
sentences are, i.e., how their truth-value depends on the truth-values of their parts. The
behavior of ‘any’ which my counterexample illustrates shows that no such systematic
dependence can obtain in general, for no definite truth-value can be assigned to a
subordinate any-clause independently of its (verbal) context. For it is part and parcel of
the meaning of ‘any’ that it interacts with its context. Hence in a modified (and deeper)

sense my counterexample would survive even the formalization of the Tarski condition ...
(Hintikka 1976a: 111).

We can now say that similar remarks would apply to many other lexical items in English, and
many additional counterexamples such as those presented in Section 3 above.

While Convention T and the equivalence schema have been successfully applied to
formalized languages, where the interpretations of terms can be specified precisely, and the truth
of complex expressions can be defined in terms of the more basic property of satisfaction,
attempts to transfer this success to natural languages have come up against serious limitations.
Some of these are now well-known: i) the existence of the semantic paradoxes, ii) the existence
of propositions with indeterminate truth values, and iii) the existence of sentences with
indexicals. | have argued that in contrast to these well-known problem cases, Hintikka-type
counterexamples are even more pernicious problems for the would-be Davidsonian or

Deflationist. What separates Hintikka-type counterexamples from the more widely-discussed
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types of counterexamples is precisely that the object-language sentence, when read in isolation,
is neither ambiguous (as cases with indexicals can be) nor ‘problematic,’ (as are the cases with
indeterminate truth values and those generating liar-type paradoxes). Rather, as Hintikka
claimed about his original example, it seems clear that the problem in all of the counterexamples
is that by substituting an otherwise unambiguous and unproblematic English sentence into a T-
Conditional, one gets either a false sentence, or a shift in meaning that subverts the use of the
resulting Tarski biconditional to provide truth conditions for the substituted sentence. Either
way, the proposal to use the equivalence schema and Convention T as the foundation for a
semantics of natural languages is seriously undermined.

More clearly than any of the other known difficulties for Convention T, Hintikka-type
counterexamples show that trouble arises not only from particular features of substituted object-
language sentences, but from the use of Convention T and from the form of the equivalence
schema themselves. This is clearly a difficulty for the Davidsonian, but it is an even greater
difficulty for the Deflationist. A common claim of deflationists is that “uncontroversial
instances” of the equivalence schema capture essentially all that there is to say about truth. But
in light of the many Hintikka-type counterexamples, in addition to the liar cases, indeterminate
cases, and cases with indexicals, it begins to appear that the expression “uncontroversial
instances” is just a convenient disclaimer that enables deflationists to avoid having to explain
what are actually a very large number of anomalies for their theory. Regardless of what criteria
one emphasizes when choosing among competing theories, when a theory has many exceptions,
of a wide variety of types, that’s a fairly good indication that the theory is just wrong.

Of course, deflationists are right to think that there is a sense in which (ES) is “simple,” but it

in no way follows from that observation that truth itself must be simple. In fact, the variety of
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sentence types that generate falsifications of such a seemingly innocuous schema as (ES) tells us,
| think, quite the opposite — that truth is indeed something much more mysterious than the
“uncontroversial instances” of the equivalence schema alone might lead us to believe. After all,
virtually any concept can be made to look simple by limiting the relevant data to the simplest
cases at the outset. But the hallmark of a good theory is that it explains the difficult cases. It
seems, though, that the deceptive simplicity of the equivalence schema, and the fact that it does
yield true instances in a large majority of cases, have obscured the very substantial differences
between formal and natural languages, and have misled many into believing that truth itself must
also be simple. But the variety of false substitution instances of (ES) tells us that nothing could

be further from the truth.
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The existence of a formula for the n™ prime p, was for a long time considered impossible
(that is, a formula by which one could calculate the n™ prime using n as input). Prior to the
twentieth century, the closest thing to such a formula was Euler’s well-known polynomial that
generates a somewhat long sequence of primes for its early inputs. By the mid-twentieth
century, several formulas had been discovered that did represent only primes, but none of them
enabled one to generate all of the primes.

The first formula that enables one (in principle) to generate all and only primes was
discovered by Srinivasan (1961), and a related formula was presented by Ghandi (1971), but
these formulas are disappointing because they rely on an inclusion-exclusion process which
requires the computation of 2"~1 terms. Other formulas by Willans (1964), Jones (1975), and
Hardy and Wright (1979) made essential use of Wilson’s famous theorem which effectively
provides a “definition” of primality: p is prime iff (p—1)!=— 1(mod p). These formulas are
also impractical for computation because they require the computation of factorials of n.

In this paper | present elementary formulas for the n™ prime and for the number of primes up

to a given limit which improve upon existing formulas by avoiding both the computation of
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factorials and the exponential growth of terms. The formulas are based on the idea of
“embedding” characteristic functions — a characteristic function for non-divisibility is used to
construct a characteristic function for primality, and no use is made of either Wilson’s theorem
or the inclusion-exclusion process. The resulting formulas, though not in principle superior to
the sieve of Eratosthenes as tools for generating primes, nevertheless provide an elementary,

compact expression for the primes that is not computationally intractable.
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1. INTRODUCTION

The prime numbers have the interesting property of being precisely definable, while appearing to
be distributed without any discernible pattern. On closer inspection, however, their distribution
does reveal structure. The best known theorem concerning their distribution is the prime number

theorem, which states that the number of primes less than or equal to n (or “7z(n) ™) is

asymptotically equal to n / log n. Although asymptotic results are certainly of interest, and can
be useful for various applications, they are not generally as informative as constructive
procedures that enable us to find the n'™" member of a sequence. Ideally, what we would like for
any sequence S is a generating function expressed by a formula: f(n) =y, where y is the n"
member of the sequence S. The existence of such a formula expressing a function that generates
the primes was for a long time thought unlikely, if not impossible. In the first edition of their
well-known book on number theory, Hardy and Wright (1938) put the problem as follows:

Is there a simple general formula for the n™ prime p, (a formula, that is to say, by which

we can calculate the value of p, for any given n with less labour than by the use of the

sieve of Eratosthenes)? No such formula is known and it is unlikely that such a formula

is possible.
The belief that such a function is not possible was more or less the consensus at least through the
early part of the 20™ century. One reason for the skepticism was no doubt that unlike, e.g., the
sequence of multiples of a given number, which can be simply expressed by either their
multiplicative or divisibility properties with respect to that given number, the primes are defined
by their non-divisibility by any number other than themselves and 1, and there does not appear
to be any simple function expressing the more complex property “is not divisible by any number

other than ....” Nevertheless, there was some progress in the 1940s, and it is of some interest to
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see how Hardy and Wright changed their position in subsequent editions of their text. In the fifth

edition, the following passage was inserted immediately after the above quoted passage:

On the other hand, it is possible to devise a number of ‘formulae’ for p,. Of these,
some are no more than curiosities since they define p, in terms of itself, and no
previously unknown p, can be calculated from them. ... Others would in theory enable

us to calculate p,, but only at the cost of substantially more labour than does the sieve of
Eratosthenes. Others still are essentially equivalent to that sieve (1979: 5-6).

This new paragraph, appearing for the first time in the fifth edition of 1979, is a reminder of
how recently we have come to know of the existence of formulas for primes. Most formulas for
primes that have been discovered thus far fall into Hardy and Wright’s first category: formulas
that require knowledge of the n™ prime in order to compute the n™ prime. These are
disappointing for obvious reasons. The earliest such formulas had an exponential form, and
although none of them yield all of the primes, they do yield only primes, and for that reason are
appropriately called “prime representing functions.” We will give examples of such formulas in
the next section.

The second largest category of formulas consists of those that would “in theory” enable us to

calculate p,. Here Hardy and Wright probably had in mind several formulas based on Wilson’s

theorem that require the computation of factorials. These formulas are far superior to the first

group in that several of them do yield all and only the prime numbers. But this comes at a great
price — in all such formulas, the computation of p, requires the computation of n!, so these

formulas are useless for computing any but the very smallest primes. Nevertheless, these
formulas are of interest because they do represent all and only primes. In the third section we

will discuss Willans’ formula, the first such formula to be discovered.
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The last group of formulas considered by Hardy and Wright were those that are “essentially
equivalent” to the sieve of Eratosthenes, although Hardy and Wright’s use of “essentially
equivalent” was rather liberal; in practice, these formulas are still computationally intractable for
large primes. The best-known example of this kind is Gandhi’s (1971) formula, even though a
similar, simpler formula had been discovered prior to Gandhi by Srinivasan in (1961). These
formulas are inferior to Willans’ formula from an epistemological standpoint, because the
computation of the n™ prime requires knowledge of all prior primes, which Willans’ formula
does not. In addition, the procedure for eliminating multiples of primes (i.e., what makes them

“essentially equivalent” to Eratosthenes’ sieve) employs an inclusion-exclusion computation, and

this requires the computation 2"~ * terms. We will present these formulas in Section 4.

The last two categories of formulas suffer from computation problems — either the
computation of factorials of n or the computation of an exponentially growing number of terms.
For any but the very smallest primes, these are prohibitive computational difficulties. All three
categories of formulas are disappointing if we are hoping to find a function that generates primes
in a simple and efficient manner, and captures the definition of the primes in some intuitive
sense.

In this paper, | will present formulas for z(n) and for the n" prime that improve upon the
p p

existing formulas both in computational efficiency and in capturing a definition of primality.
They still do not fully answer Hardy and Wright’s original question, because they rely on a
sifting method “essentially” equivalent to Eratosthenes’ sieve (although in this case, an
equivalence much closer to Eratosthenes). But unlike earlier formulas, they do not involve the
computation of factorials or the exponential growth of terms. Hence, it is conceivable that they

could compete with algorithms used to generate large primes, but an empirical test of this
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conjecture is beyond the scope of the present paper. We will discuss these formulas after giving

a historical survey.

2. A BRIEF HISTORY OF PRIME REPRESENTING FUNCTIONS

In 1772, long before any formulas for primes had been discovered, Euler discovered a now-

famous polynomial with integral coefficients that yields a long string of primes for its early

inputs: f(n)=n’+ n+ 41. This yields primes for all values where n=0,1,...,39, but then

f (40) =1681=41%. Others have produced variants of this polynomial that yield the same
outputs, each output produced twice or more times, or in reverse order. Still others have found
other quadratics that yield distinct primes for even more initial values of x, the best so far being

f (n) =36n> —810n + 2753, which yields primes for n=0,1,...,44. The interested reader may

consult Dickson’s book for references (1952:420), and a more recent survey of these results by
Boston and Greenwood (1995).

In spite of the existence of quadratics of this sort, it is well known that no polynomial f (n)

with integral coefficients can yield only primes unless it is constant, and therefore improper.
Since this fact considerably constrains the possible forms that any prime-generating function can
take, it will be instructive to go through its proof. We’ll show that any nonconstant polynomial

that yields as a value even a single prime number will also yield infinitely many composite
numbers as values. Let f(n)=a,n“+an“"+---+a, be any nonconstant polynomial
(i.e., k>1), and suppose that for some natural number r, f(r)=p, where p isa prime. Then

obviously p| f(r), but from this it is easy to show that p must also divide many additional
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values of f(n) (which will all thereby be composite), in particular, p| f (r+mp) for all

m=1,2,.... This can be seen by looking at the binomial expansion of the terms:

f(r+mp) =a,(r+mp)* +a,(r+mp)<*+ --- +a,

k k k
— aork +a0|:(ljrk—l(m p)+(2]rk—2(m p)2 +,..+(k_ljr(m p)k—1+(m p)kj|+
k k k
airk‘1+a1K1jrk_2(m p)J{ijH(m p)’ +---+(k_2jr(m p)* % +(m p)"‘l} +ot A,

Remembering that p| f(r) (i.e., p|(ar*+ar“*+---+a,)), if we rearrange terms in the
binomial expansion by placing all of the terms not involving p first, then since p appears as a
factor in all remaining terms, p also divides each of those terms, and thus p| f (r +mp). Since
m >1, then although there may be one m where f(r+mp)=0, f(r+mp) will be composite

for all other values of m. Thus, any non-constant polynomial that yields even one prime will also
yield infinitely many composite numbers.
In 1943, Reiner showed a slightly more general result. Defining a prime-representing

function to be any function f (x) that yields a prime for every positive integral value of x, he

showed the following:
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THEOREM (REINER): If f,(X), g,(X) (i=1,...,n) are polynomials with integral coefficients and

positive leading coefficients, the following is not a prime-representing function:

f(x) =Zn: ()90 .

Buck (1946) generalized this negative result further, and showed that no nonconstant rational
function can be a prime-representing function. These negative results dashed any hopes that
multiplication or division of polynomials might produce a prime-representing function.

Buck further conjectured that “no simple function, finitely expressible” can be a prime-
representing function. Similar claims had been made by other mathematicians, but they were all
shown to be wrong when Mills (1947) presented the first function, expressible as a simple

formula, that always represents primes:

THEOREM (MILLS): There is a real number & such that [QSX} is a prime-representing function.

Here “[x]” denotes the greatest integer < x, and € is a number roughly equal to 1.3064.... This

result depends crucially on a prime gap result of Ingham (1937). Mills’ paper inspired many
others to generalize the result in different ways (see Kuipers (1950), Wright (1951), and Niven
(1951) for the first extensions, Ore (1952) and Wright (1954) for the most general results, and
both Dudley (1969) and Ribenboim (1989) for a history of Mills-type functions).
Unfortunately, all prime-representing functions of this type suffer from several defects. On

the one hand, although they do yield only primes, none of them yields all primes. In fact, they
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all fall considerably short of this goal. Consider Wright’s (1951) exponential prime-representing

function:

g(n)= {222’ } is prime for every n>1 (where there is a string of n exponents, the first of

which is ).

The square brackets again denote the greatest integer function, and all square brackets in all
subsequent formulas in this paper are also to be interpreted as this function. Here « may have
many possible values (see Wright (1959) for the details). To get an idea of the size of the gaps
between outputs of this function, consider that if & =1.9287800..., then g(1) =3, g(2) =13,
g(3)=16381, and g(4) has approximately 5000 digits! Of course, the number of exponents
here quickly expands the gaps between the output primes, but all exponential prime-representing
functions generate a similar-looking sequence. Very early on, the functions generate enormous

numbers. A further problem is that in Mills’ and Wright’s formulas, the computations of #and

a, respectively, are complicated and require knowledge of the n™ prime to compute the n"
prime. This is a defect in all Mills-type functions. Moreover, these functions clearly don’t
capture the definition of primality in any intuitive sense.

There have been many more papers written on quadratics that have prime-rich intervals than
there have been on prime-representing functions. Part of the reason for this, of course, is that
prior to Mills’ paper of 1947, there simply were no known prime-representing functions, so until
then Euler-type quadratics were the next best thing. But even though Mills’ function and its

extensions succeeded where some thought it was not possible, they are still not of any use in
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computing the n™ prime, and they don’t come anywhere close to defining the primes in any
interesting sense. These early results can be considered, as Hardy and Wright put it, mere

“curiosities.”
3. ForMuLAS BASED ON WILSON’S THEOREM

Before discussing the first true formulas for primes, we should consider what form we might
reasonably expect any formula for primes to have, given the negative results concerning the use
of polynomials and rational functions. What property of primality should appear as most salient
in any such formula? A reasonable place to begin would be with Wilson’s theorem, which gives

necessary and sufficient conditions for primality: *2
THEOREM (WILSON): pis prime iff (p—1)!= —1(mod p).

This theorem has been used by several authors to express formulas for primes. The first such
formula was presented by Willans in 1964. His formula employs the following characteristic

function for primes:

i 1if jis prime or j=1
f(j) = [coszﬂul—?ul} = { L .
i 0 if j is composite

To see how this function works as a characteristic function for primality, we need only consider
immediate implications of Wilson’s theorem. When j is prime or j =1, then by Wilson’s

(j-D!+1

Theorem is an integer, and thus cos?

U;)'H =1 and [1] =1 (remember,
J

“2 «Wilson’s” theorem was actually first conjectured by Leibniz, and first proved by Lagrange. See Dudley (1978:
43) for the historical details, and p. 46-47 of the same book for an elementary proof.
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(j-D!'+1
j

“[X]” is the greatest integer < X). When j is not prime, then by Wilson’s Theorem

(J-Dr+1

J

is not an integer, and thus cos’® z = b, where 0 <b <1, and thus [b] =0. By means

of a characteristic function for primes, one may easily construct a formula for the number of
primes up to and including m (i.e., “z(m)”) by simply adding successive outputs of the

characteristic function. For example, Willans provided the following formula for 7z(m):
m -
zz(m) = —1+Z f(j).
j=1

By exploiting in addition some elementary properties of the n™ root function, he was able to

construct a formula for primes (again, “[k]” is the greatest integer <Kk):

1
=10 3| (s |

m1 | \ 1+ 7z(m)

This formula generates all and only the primes by exploiting the following idea: for each positive
integer input n, it finds the n™ prime p, by simply adding 1 for every positive integer m up to
m = pp— 1, at which point the 1 at the beginning of the formula brings the sum to p,, the desired
n™ prime. For all values of m greater thanm = p, — 1, the greatest integer function simply
yields an extraneous zero, hence the sum will remain p, up through m=2".

To see how the greatest integer function yields 1 onlyuptom = p,—1, and O thereafter,
one need only consider the following two properties of the n™ root function, which are easily

proved (for all positive integers n and all positive real k):
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(1) |kr| =1 when 1<k<n

(2 |kr| =0 when 0<k<1

Letting k = , consider the computation of the n™ prime p, using Willans’ formula. To

1+ 7z(m)
generate this prime, one takes the sum of the values of the greatest integer function for all

integers m from 1 to 2" (The reason for this upper limit is discussed below). For m =1,

1
7z (m) =0, so k =n and thus by property (1), {k“} =1. As m increases, 7 (m) either increases

or remains constant at each successive m (depending on whether m is prime or composite,
respectively), and since n is fixed, the fraction k either decreases or remains constant. By

property (1), for all values of m where the fraction k decreases from n down to and

1 1

including 1, the output of {k”} is 1. The last m for which {k”} islwillbem = p,-1,

because that will be the last m such that 7z (m) = n— 1, and thus it will be the last m where the

fraction k=1. Then, forall m>p,, 7z(m)>n, and hence the fraction k is such that
1
0 < k < 1, and thus by property (2), [k”} =0.

By disregarding the extraneous zeroes in the sum, we can more clearly see what Willans’

formula does by writing it as follows:

Notice that though Willans’ formula does require using the n™ prime as an input, it does not

require knowledge that the n" prime is prime. The reason for using the upper limit of 2" is that
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we want to be assured of yielding the n™ prime as output, which in turn requires that we take the
sum at leasttom = p,—1. The exact limit is derived from a well-known prime gap result which
states that p, < 2" (for all n > 0).*

The reader may notice that when written explicitly (i.e., without abbreviating z(m) and
f(j)), Willans’ formula is rather cumbersome. Nevertheless, it accomplishes much more than
the earlier Mills-type prime-representing functions, because it does yield all and only the primes

in their usual order. From a computational standpoint, the main difficulty is the computation of

(j—D!', which is prohibitive except for very small j. For example, to compute the 20" prime

(i.e., 71) using Willans’ formula, one must compute (2%°)! . Other formulas for primes have also
been based on Wilson’s theorem, for example, those by Jones (1975), Papadimitriou (1975), and

Hardy and Wright (1979: 414), and all of these require a similar factorial computation.
4. FORMULAS BASED ON THE SIEVE OF ERATOSTHENES

The last class of formulas mentioned by Hardy and Wright consists of those that are
“essentially equivalent” to Eratosthenes’ sieve. Formulas of this type have been formulated by
Srinivasan (1961) and Gandhi (1971).* Unfortunately, these formulas also suffer from a
computational problem: they depend on an inclusion-exclusion process, and hence require the
computation of an exponentially growing number of terms. In addition, unlike Willans’ formula,
which does not require knowledge of any particular primes, these formulas are recursive and

require knowledge of all primes ps.... pn_1 in order to compute the " prime p,. The

* See Hardy and Wright (1979) pgs. 17 and 414 for details. As Hardy and Wright point out, this upper limit

follows from Bertrand’s Postulate that there is always at least one prime between n and 2n. (more precisely: for all
positive integers n, there is a prime p such that n < p < 2n). This upper limit can be substantially reduced for
large n by using better prime gap results, but this is unimportant for our purposes.

* It is of some historical interest to note that it was Srinivasan who discovered the first true formula for primes,
even though Willans’ and Gandhi’s formulas have received much more attention. Srinivasan’s formula is also a bit
simpler than Gandhi’s in that it does not involve the use of logarithms.
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recursiveness, however, does not itself lengthen the computations beyond what is required in the

use of Willans’ formula, and for some applications can even shorten the computation (if one
knows the n™ prime and merely wishes to find the (n+1)* prime, for example).

The core idea in these formulas is the sieve of Eratosthenes, which isolates primes by
eliminating all multiples of primes other than the primes themselves (i.e., by eliminating all
composite numbers). The remaining numbers will be the primes as well as the number 1 itself,
and those eliminated will be those divisible by some prime p or some product of primes

Pi - Px. Many composite numbers in Eratosthenes’ sieve are eliminated more than once, since
they are multiples of more than one prime, so in order to get an exact count of the total number
of primes less than or equal to x (“z (x)”’), one uses an “inclusion-exclusion” process. This
process works as follows: one begins with x, and then counts the total number of multiples of
each prime less than or equal to x (i.e., all multiples of 2, plus all multiples of 3, etc.). Then one
subtracts (i.e., “excludes”) the sum of all multiples of all primes, as well as the number 1 itself.
Some of the numbers in this total count of multiples were counted more than once, since they
were multiples of more than one prime (e.g., 6 was counted twice, as a multiple of 2 and as a
multiple of 3; 30 was counted 3 times, as a multiple of 2, 3, and 5, etc.) Thus, to assure that each
composite number is counted exactly once, we compensate for this overcount by adding back
(i.e., “including”) the total from the previous count of products of two distinct primes, as well as
the total number of primes less than or equal to v/x, (since all primes divide themselves, and
hence that total was also included in the last count). At this point, the number of composites
divisible by either one or two distinct primes has been counted exactly, but those divisible by
more than two primes have not been counted only once. Thus, one compensates again by

subtracting the number of numbers divisible by a product of three distinct primes (since those
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numbers were counted three times in each of the last two steps), etc. This process can be

expressed in a formula as follows (where p; < p, <+ < pm are all primes less than or equal to

VX):

ﬂ(x)=[x]+n(&)—1—z{i}+z{ X }_z{%}w

i LB i<j| Pi*P; i<j<k| Bi-Pj- Py

(where pi, pj, px, runover the primes p;, p2, ..., pm). This formula, first published in a more
general form by Legendre, is now usually expressed more compactly using the mébius function*

as follows:

70 = ~1+2(x) + Y u(d)H
dlpy-Pa i d
(where d runs over all divisors of the product pi- p2 - pm Of all primes less than or equal to
VX).* We’ll hereafter refer to the latter formula as “Legendre’s formula.”

Unlike the prime number theorem, which gives an asymptotic value for 7z (x), Legendre’s
formula gives a precise count of the number of primes less than or equal to x. However, this
precision comes at a great cost. Although the idea behind Eratosthenes’ sieve is quite simple, the
computation requires taking a sum over all divisors d of the product p;- p2 = pm (wWhere m =
7 (vx)), hence there will be 2™ terms in this sum. This follows from the basic combinatorial

identity:

% The mébius function is defined as follows: x(1)=1, z(n) = (-1)" if n is the product of r distinct primes, and
u(n)=0 if n is divisible by any prime to a power higher than 1. For example, x(p)=-1 for every prime p;
1(py- p2) = 1 for any product of two distinct primes, and z (p?) = u(p®) = u (p*) = -~ = 0 for all higher powers of
primes. What’s relevant here are mainly the alternating 1’s and —1’s, as the divisors d are products of an even or
odd number of distinct prime factors, respectively.

*® " The mébius function and the inclusion-exclusion process are discussed in many number theory texts, but an
especially clear discussion relevant to the problem of counting primes can be found in Brauer (1946), as well as in
the monographs by Halberstam & Roth (1966) and Halberstam & Richert (1974).
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o)+

which is easily proved by induction. In Legendre’s formula, we are “choosing” divisors as
“combinations” of prirnes.47
In spite of this computational difficulty, the use of the mobius function to count primes does

make possible various compact expressions for the the n™ prime p,. The first such formula using

this idea; indeed, the very first true formula for the n™ prime was presented by Srinivasan (1961):

3 p(d)d2® 1
| dlppag (2d _1)2 2
" D pd) 1

aim 201 2

A decade later, Gandhi (1971) provided a similar formula using logarithms:

pn:{l—logz[—%+ > ;’(i)lﬂ

dlpy-pps

Proofs of Gandhi’s formula have been given by Vanden Eynden (1972) and Golomb (1974), and
a sample computation can be found in Grosswald (1984). Both Srinivasan’s and Gandhi’s

formulas were generalized by Namboodiripad (1971).

" For example, form = 7 (vx) = 3,

2ol R s e s

and there are 2° terms in this sum.

99



The most difficult computations in both of these formulas are the summations over values of
the mobius function u(d), which have 2"~ terms. The number of these terms is significantly

larger than the number of terms in computations using the Legendre formula, which have om(/m)
terms in the sum. It is this exponential growth of terms that renders these formulas impractical
for computing any but the very smallest primes. In addition, in both Srinivasan’s and Gandhi’s

formulas, computation of the n™ prime p, requires knowledge of all primes less than or equal to

pn—l-
5. ELEMENTARY FORMULAS FOR PRIMES

I will now present a method for deriving formulas for primes that does not suffer from the
computational difficulties of computing factorials or the exponential growth of terms. This
approach utilizes two main ideas: i) the standard definition of the primes as those numbers not
divisible by any numbers other than themselves and 1, and ii) the construction of a characteristic
function for primality by taking a product of values of a characteristic function for non-
divisibility. Using the latter function, we are able to construct considerably simplified formulas
for primes that do not have the computational difficulties of the formulas discussed above, and
have the added merit of more intuitively capturing the “definition” of the primes.

The first step is the construction of a characteristic function for the set of all numbers m that
do not divide a given number a: (where a, m are any positive integers, and we continue to use

“[X]” to indicate the greatest integer < X):
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_ 1if mfa
ProrosITIONL:  C (a) =1+ {a 1} — {3} =
m m 0if m|a

Proof: If m>a, then clearly m|a and [a_—l} = [E} =0, hence C,(a)=1. If m<a, we
m m

must consider two cases: i) m divides a, and ii) m does not divide a. If m|a, then for some

positive g, m-gq=a. Then [a—l} = {m-q _1} = [q - i} =q-1, and
m m m

{3} = [M} =q, hence C, (a) =1+ (q—1)—q = 0. If mJa, then for some positive g
m m

and remainder r (where 1 < r <m), m-g+r = a. Itsuffices to show that in this case {a_—l}

m

and [3} have the same values. First, [a_—l} = {M} = {q + r_ i} , and since
m m m m m

1 < r < m, the difference r_ 1 is either O (if r =1), or some fraction k where 0 < k <1 (if
m m

r >1). In either case, {q FL 1} = (, and thus [a_—l} = . In addition,
m m m

[3} = [m-q+r} ={q+L] andsinceO<L<1, [q+L}=q and thus {3} =( as
m m m m m m

well. Hence, whenm}a, C (a) =1+q—-q=1.o

One can think of this as a characteristic function for “non-divisibility” of a by m. Since the
primes are those numbers not divisible by any number other than themselves and 1, it is possible

to use the above formula to check for the primality of a by simply taking the product of all
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values of C_(a) for all primes p <+/a. Since there are no primes <2 or <+/3, we begin

checking primality at a = 4, and present the following characteristic function for primes:

PROPOSITION 2: Forall a>4, s(a)=[]C,(a)=

{1 if a is prime
p<a

0 if aiscomposite
Proof: Case 1: a is prime. Then for all primes p <+a, pJa. Thus by PRoPOSITION 1,

C,(a)=1forall such p <+/a, hence the product I_JLC‘, (a) =1. Case2: aiscomposite.
p<+a

Then for some prime p’ <a, p'la. Let p,p,, ..., P',..., p beall of the primes <Ja (p’
of course needn’t be unique). Then by PROPOSITION 1, Cp, (a) =0, and thus

s(a) = [] C,(@ =C, (a)-C, (a)---0---C, (a) = 0. Hence, as long as any prime divides a,
p<ia

the product s(a) = 0.o
The function s enables us to construct a very elementary formula for 7z(x) which we

formulate in the following:

THEOREM 1: Forall x >4, 7(X) = 2+les(a)
a=4

Proof: Using this identity for an arbitrary x > 4, 7(x) = 2+5(4)+5s(5)+5(6)+ - +5s(x),
and since by PRoPOSITION 2, s(a) = 1 if ais prime, and s(a) = 0 if a is composite, this

function will clearly count 1 for all and only the primes < x, and hence yields an exact count of

7(x) as desired. o

Written more explicitly, our formula for 7 (x) is:
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2(x)=2+Y f( 1{6‘—‘1}{%} ) (for all x> 4),

It is of interest to compare this formula to the Legendre formula of the last section. Calculations

using the Legendre formula require 276" terms in the main sum, while our formula for 7z(x)
requires at most (# of terms in each calculation of C (a)) X (# of terms in the product for the
largest a) x (# of terms in the sum). There are i) 3 terms in each calculation of C, (a), i) the
largest a in the calculation will be x itself, and for this integer there will be one calculation of
C, (x) in the product for each of the primes < JX, and there are exactly n(\/;) such primes,
and finally iii) there are clearly x —3 terms in the main sum (since we begin at a = 4). Hence
the number of terms using our formula is bounded above by 3~n(ﬁ)-(x — 3). This number

does not grow anywhere near as rapidly as "6 T get an idea of the difference, while the

number of primes less than or equal to the first few hundred x will be calculated more easily
using Legendre’s formula, the calculation of 7 (5041) requires 1,048,576 terms (since

J5041 = 71, 71 is the 20" prime, and 2% =1,048,576). By comparison, using our formula, the
calculation of 7(5041) will be bounded above by at most 3-20-(5038) = 302, 280 terms. In the
calculation of 72'(10,000), the Legendre formula requires more than 16,000,000 terms, while our

formula in this case is still bounded above by fewer than 720,000 terms. This is still impractical
for an individual working by hand, but the differences will be substantial when comparing

computing times for very large x using a computer.

Since we now have a formula for 77(x) that is much simpler than Willans’ formula for
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7(X), which was based on Wilson’s theorem and required computing factorials, it is clearly

possible to simplify Willans’ formula for the n" prime p, by substituting our formula for 7z (x)

from THEOREM 1 into his formula for the n™ prime, making minor adjustments for the early
inputs. However, this would still have the undesirable large upper limit in his function for the n™
prime. We can instead construct an even more elementary function for the the n" prime,
however, by deriving a formula that enables us to calculate the prime p, in terms of the previous
prime p,_1 , as was done by Srinivasan and Gandhi. Using such a recursive procedure of course
requires knowledge of previous primes in a way that Willans’ formula does not, but the result
nevertheless improves upon the formulas of Srinivasan and Gandhi by avoiding the exponential

growth of terms.

By ProPosITION 2, for a>4, s(a) =1ifaisprimeand s(a) = 0 if a is composite. So
forall sucha, 1-s(a) = 0 if ais prime and 1-s(a) =1 if a is composite. We can thus use
1- s(a) to add 1 for each composite a between any two primes (p > 4), and this enables us to

construct an elementary formula for the n™ prime py, in terms of the previous prime p,_1. We
must assure in addition that the formula stops adding 1’s once it has reached the n™ prime py, and

it will be necessary to add an additional 1 for the n™ prime itself. This is captured in the

following formula (where the upper limit & =min a such that s(a) =1):

THEOREM 2: Forn>2, p,=p,,+1+ >  (1-s(a))

Py +1l<a<é

Proof: The function s is defined only for all a > 4 , because it is checking for divisibility by

primes p < Ja , and 4 is the first number to have a prime less than or equal to its square root.
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Hence we correspondingly define the formula above only for primes greater than 3, so the first

such prime that can be calculated is p, =5. Itis clear that since 1—s(a) =1 when a is

composite and 1— s(a) = 0 when a is prime, then it suffices to check that the bounds on the

sum are set so that the formula will add the correct number of ones. That is, to the initial prime
pn_1 the formula should add i) 1 for each composite number greater than p,_; but less than the
next prime, and ii) 1 for the n™ prime py, itself. When this last 1 is added, i.e., when a total of

P, — P,_, 1’s have been added to p,_1, the upper limit should halt the computation, and the total

will clearly be equal to p,. This is accomplished by setting the lower limit at one greater than the
initial prime p, 1, which is clearly the first composite number for which the formula should add

1. The upper limit @ is then defined so that the addition of terms halts at the first a such that
1-s(a) = 0;i.e., € isthe minimum a such that s(a) = 1. By definition of s, this number will
be prime, and hence it will be the first prime after the initial prime p,_1, or p, itself. But since
1- s( pn) = 0, it is necessary to add an extra 1 before the main sum to correspond to this final
prime, in order to add exactly p, —p,_, 1’s to the initial prime p,_1, as desired. o

Written explicitly, our formula for p, in terms of p,_; is:

a-1 a
= +1+ 1- 1+ — |-| —
pn pn—l pn1+12<a<6’£ b= a( |: p j| {p:| )J

This formula has several advantages over the recursion formulas of Srinivasan and Gandhi. The
primary advantage is the avoidance of an exponential growth of terms, which arose in their
formulas because of the use of the mobius function over all divisors of each of the inputs. But

there is an additional simplification, in that the above formula only requires checking prime
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divisors less than or equal to the square root of each a, rather than all divisors less than or equal
to a, as in Srinivasan’s and Gandhi’s formulas. This should enable the construction of a

recursive function that could be tested on a computer, but that is beyond the scope of this paper.
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