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ABSTRACT OF THE DISSERTATION 
 

THREE ESSAYS ON THE FOUNDATIONS OF SCIENCE 


By 

 

Rolf Henry Johansson 

Doctor of Philosophy in Social Science – Mathematical Behavioral Sciences 

University of California, Irvine, 2014 

Professor Louis Narens, Chair 

 

The general uniqueness problem for finite semiorders is still unsolved, and this has impeded 

their wider use in decision modeling.  In Essay 1, I show that for semiorders that satisfy some 

relatively weak constraints, unique representation (and hence interval scalability) may be 

obtained.   

In Essay 2, I discuss a type of counterexample to Tarski‟s Convention T that was originally 

discovered by Hintikka.  I show that Hintikka‟s counterexample generalizes in quite unexpected 

ways, and that there are in fact a large number of unambiguous sentences that generate 

counterexamples of the same general type.  I then show that various proposals for dealing with 

Hintikka‟s original counterexample are unsatisfactory, and that none of the proposed solutions 

can resolve all of the counterexamples presented in this essay. 

In Essay 3 I present elementary formulas for the n
th

 prime and for the number of primes up to 

a given limit, both of which improve upon existing formulas by avoiding the computation of 

factorials and the exponential growth of terms.  The formulas are based on the idea of 

“embedding” characteristic functions – a characteristic function for non-divisibility is used to 

construct a characteristic function for primality, and no use is made of either Wilson‟s theorem 

or the inclusion-exclusion process. 
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ABSTRACT OF ESSAY 1 
 

THE UNIQUENESS PROBLEM FOR FINITE SEMIORDERS 


By 

 

Rolf Henry Johansson 

Doctor of Philosophy in Social Science – Mathematical Behavioral Sciences 

University of California, Irvine, 2014 

Professor Louis Narens, Chair 

 

Semiorders were introduced by Luce (1956) to account for the intransitivities found 

empirically in indifference judgments.  In principle, they are superior to weak orders as 

descriptive models of choice behavior.  However, the general uniqueness problem for finite 

semiorders is still unsolved, and this has impeded their wider use in decision modeling.  First, we 

will discuss representational anomalies for semiorders in order to better understand the source of 

the difficulty in obtaining uniqueness.  We will then show that for semiorders that satisfy some 

relatively weak constraints, unique representation (and hence interval scalability) may be 

obtained.  This result follows by combining independent results of Suppes (1972)  on equal-

difference structures and Fishburn (1973b) on the construction of weak orders from fragmentary 

information.  The finite semiorders for which unique representation may be obtained are “well-

behaved” in the sense that they constitute partial information about an “underlying” equal-

difference structure, and have a constant discrimination threshold.  A very weak constraint on the 

size of the threshold enables the unique representation.  Since most applications of utility models 

involve the comparison of alternatives within a limited range of utility values, over which 

discrimination thresholds are more or less constant, then well-behaved semiorders may have 

practical applications for qualitative modeling in such cases.  
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1. INTRODUCTION 

 

In the classical formulation of expected utility theory by von Neumann and Morgenstern (1944), 

strong assumptions were made about the structure of preference and indifference.  It was 

assumed that preferences induce a linear ordering of a set of goods, and that transitivity holds for 

both preference and indifference.  These assumptions were also made by Marschak (1950), 

Debreu (1954), and even by Savage (1954) in his development of subjective expected utility 

(SEU).  It is fair to assume that all of these theorists were well aware that the assumptions of 

transitivity and linear ordering did not necessarily hold for actual human decision making, but 

rather were meant to hold for ideally rational agents.  Yet it still seems to have been believed 

that when assumed to hold empirically, these idealizations are relatively innocuous.  It is, no 

doubt, partly because of this belief that the idealizations have now become standard assumptions.  

Although SEU and its variants are still best thought of as normative models of behavior, they are 

widely considered to be at least approximately correct as descriptive models.  

In spite of their wide use, there has been mounting evidence that the assumptions of linear 

ordering and transitivity may not be so harmless after all.  The many criticisms are now well-

known, dealing with phenomena such as preference reversals, framing effects, violations of 

Savage‟s sure-thing principle, portfolio effects, and problems concerning the temporal resolution 

of uncertainty.  Economists vary in their opinions about how important these effects are for 

economic theory.
1
  Nevertheless, there seems to be a consensus that regardless of how idealized 

the standard assumptions may be, they are certainly beneficial from the standpoint of enabling us 

to derive workable mathematical representations.  Another reason for their wide use is that there 

is no consensus that any other assumptions could easily take their place.  Consequently, in most 

                                                 
1
   See Kreps (1990, p. 112-122) for a general discussion of the views of economists on this issue, and see the 

anthology edited by Hogarth and Reder (1986) for further details.   
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presentations of consumer behavior in economics textbooks today, one finds preference and 

indifference characterized as a weak order at the qualitative level, with a linearly ordered 

numerical utility representation. 

Most of the criticisms of modeling choice behavior with weak and linear orders have focused 

on the problems that arise when using a transitive relation to model preference.  But in both 

linear and weak orders, the symmetric relation – interpreted qualitatively in utility theory as 

indifference – is assumed to be transitive as well.  Yet it was pointed out long ago by Armstrong 

(1939) and Georgescu-Roegen (1936, 1958) that the imperfect discrimination ability of humans 

leads to intransitivities of indifference in actual behavior.  A person may be indifferent between 

goods  a and  b, and indifferent between  goods  b and  c, but find that she prefers a to c.  A 

similar intransitivity is observed in psychophysical contexts where perceptual discrimination is 

studied, and the symmetric relation in question is interpreted as indiscriminability.  Judgments of 

comparative brightness, loudness, sweetness, etc. all give rise to intransitivities with respect to 

indiscriminability. 

For simplicity, we will speak of all such symmetric complement relations as “indifference” 

relations, understanding that the specific interpretation of the relation may vary with context.  

One way of understanding the intransitivity of indifference is to think of it as arising from an 

underlying discrimination threshold, or just noticeable difference (jnd).  This is defined as a 

distance that a pair of objects must be separated on the relevant attribute continuum (e.g., utility 

for goods, loudness for tones, etc.) in order for a person to discriminate between them.
2
  In 

                                                 
2 There is some equivocation in the literature between thresholds, which we think of as maximal indiscriminable 

differences, and the jnd, which we think of as the minimal discriminable difference. This equivocation is harmless 

in most contexts, so we will continue to use “threshold” to describe what is, strictly speaking, a jnd.  The exact 

notion that is intended will be made clear in context.  The reader should also note that actual subjects will not 

exhibit a precise threshold below which they never discriminate, and above which they always discriminate.  

Thresholds are normally determined  probabilistically, as the interval above which the subject discriminates with, 

say, probability P > 0.5. 
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psychophysical cases, the threshold apparent in the data is due to the discrimination sensitivity of 

the relevant sensory system of the subject.  With utility, thresholds arise because of higher order 

cognitive mechanisms.  In most contexts they will arise because of the multiattribute nature of 

most decision making.  The attributes that are seen as most salient for comparing goods a and b 

and goods b and c may not be the same attributes used for comparing a and c, and consequently 

intransitivities may result.  Even though minimal differences in price may be discriminated 

unambiguously, the multiattribute nature of much decision making nevertheless yields 

intransitivities with respect to utility. 

There are now a number of different orders that relax the transitivity assumption for 

indifference, and thus generalize weak orders.  The first of these to be applied in the context of 

utility theory was a “semiorder,” which was introduced by Luce (1956).  Unlike some of the 

other orders that relax the transitivity assumption, semiorders enable numerical representations 

of discrimination thresholds, which more directly reflect the complications observed in actual 

behavior.  At the qualitative level, they certainly provide a more descriptively adequate 

alternative to weak orders for modeling choice behavior. 

Nevertheless, semiorders have not yet replaced weak orders in economics textbooks.
3
  A 

partial explanation for this must certainly be the absence, thus far, of any adequate uniqueness 

theorem for the finite case.  The lack of uniqueness allows several peculiar representation 

problems for semiorders that don't arise with weak orders.  For example, Roberts and Franke 

(1976) showed that for a given semiorder, one may construct two separate numerical 

representations  f  and  g, where the two representations cannot be related by any transformation 

                                                 
3
   They have found particular applications, however.  Examples of the use of semiorders by economists may be 

found in Jamison and Lau (1973, 1977), and in Vinke (1980).  Although the earlier work by Armstrong (1939) and 

Georgescu-Roegen (1936, 1958) was prior to most semiorder research, it was motivated by the same problem of 

thresholds in utility discriminations.  
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, and may even be of different scale types.  In such cases, at least one of the representations 

must be, in their terminology, “irregular.”  These cases create problems for the scientist, since 

under the most widely used definition of meaningfulness, scientific claims are meaningful only if 

they can be shown to be invariant with respect to transformations of the employed measurement 

scale.
4
  Without this invariance, any inferences or claims might turn out to be mere artifacts of 

the particular numerical representation chosen.  For example, it is meaningful to infer “a is hotter 

than b” by simply looking at the numerical values on either a Fahrenheit or Celsius scale, since 

the relation “hotter than” is invariant under the affine transformations used to change Fahrenheit 

to Celsius and vice versa.  Put differently, the empirical conclusions we draw using Fahrenheit 

can be translated via an algebraic transformation into different formulations of the same 

conclusions expressed in terms of the Celsius scale, and vice versa.  If a statement were to fail 

the invariance constraint by changing its truth value depending on which numerical 

representation we were using for measurement, then the claim would be a mere artifact of the 

representation, and would not qualify as a meaningful scientific statement. 

In the case of semiorders, the absence of a uniqueness theorem leaves open the possibility of 

exactly this kind of problem.  Without a uniqueness theorem we have no guarantee that we can 

use numerical representations of semiorders to make meaningful scientific claims about choice 

behavior.  And since most actual choices are made within finite sets of alternatives, what we 

would like to have is a uniqueness theorem for the finite case.  More specifically, the type of 

invariance we would like to find for semiorders is uniqueness up to a positive affine 

transformation, and hence interval scalability. 

                                                 
4
  See Suppes and Zinnes (1963) for a basic discussion of meaningfulness, and Narens (2002) for an advanced, 

comprehensive treatment. 
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An additional representation problem was pointed out by Swistak (1980), who noted that 

many representations of semiorders have a “paradoxical” quality.  His idea was that if one thinks 

of a semiorder as arising from an underlying linear order, as will generally be the case in 

empirical contexts, then many representations of the semiorder will not be consistent with 

additional information that may be obtained about the underlying order.  Specifically, they may 

fail to preserve the underlying linearity of the semiorder. 

In Section 3 we will discuss the problems raised in Roberts and Franke (1976) and Swistak 

(1980) in more detail.  These representation problems for semiorders cast some light on the 

difficulties with obtaining uniqueness, and help explain the continued use of weak orders as the 

standard model.  Suppes and Zinnes (1963, p. 34) commented that “The uniqueness problem for 

semiorders is complicated and appears to have no simple solution.”  The problem has had no 

improvement since, and the most recent comment on the problem that I am aware of is by 

Roberts (1989a, p. 28), who called the uniqueness problem “a difficult one ... [that] remains an 

open question.”  But even if the problem is not solved for the general case, it will be of interest to 

try to determine exactly what the difficulties are, since even a partial solution may be of interest 

for potential applications to decision problems.  As we‟ll see below, a satisfactory solution is 

obtainable for a large class of finite semiorders. 

In what follows, we will assume that the actual structure of preference and indifference for 

humans forms a qualitative semiorder, and we will consider what assumptions are needed to 

obtain a unique representation.  We will show that independent results by Suppes (1972) and 

Fishburn (1973b) jointly entail uniqueness of representation for a very useful subclass of 

semiorders.  Specifically, we will show that finite semiorders are uniquely representable and 

interval scalable provided that they satisfy two conditions:  i)  they are “well-behaved,” in the 
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sense that they are derived from an “underlying” linear order of equally-spaced elements and 

have a constant discrimination threshold, and  ii) the threshold is within a “reasonable” bound 

(more precisely, the threshold is no larger than ½ the length of the entire semiorder, where 

“length” denotes the span from the first to the last element of the semiorder, and “½”  denotes the 

median point of the semiorder).  For semiorders satisfying these conditions, there exists a 

numerical representation in an arithmetical progression of integers that is unique up to a positive 

affine transformation.  As a corollary, there exists a representation in a convex set of integers.  

For these representations, the “irregular” and “paradoxical” cases mentioned above do not arise. 

Hence, uniqueness is obtainable provided that we idealize the semiorder itself somewhat.  Of 

course, this does not solve the uniqueness problem in general, but what is of interest is that the 

idealization is very weak – far weaker than the standard idealization of transitivity discussed 

earlier – and it is satisfied in many applications of utility models to decision problems.  The 

equal spacing assumption does not affect the generality of the result, since such structures may 

either be chosen or approximated by the construction of standard sequences.  The constant 

threshold assumption, in turn, is descriptive in most contexts, since most applications of utility 

models involve the comparison of alternatives that are within a restricted range of utility values, 

and over this limited range discrimination thresholds are more or less constant.  Finally, as will 

be shown below, the size constraint on the threshold is so weak that it is difficult to imagine any 

cases that would fail to satisfy it.  Hence, although this paper focuses on the foundations of 

utility from the standpoint of measurement theory, it suggests one route by which greater 

descriptive adequacy may be obtained over a wide range of decision problems. 
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2.  PRELIMINARIES 

 

 

We will now present most of the definitions that will be used in the remainder of the paper.  The 

reader may wish to skip to the next section and refer back as needed. 

 

DEFINITION 1:   A weak order is any structure S =  A,  W, ~W    where  A  is a set, and both  

 W  and  ~W  are binary relations on  A  that satisfy the following (for all  a, b, c   A):  

 

Axiom  W1:   Exactly one of the following holds:   a  W  b,   b   W   a,   or   a ~W b. 

Axiom  W2:   If  a  W  b  and  b  W  c,  then  a  W  c. 

Axiom  W3:   ~W  is an equivalence relation 

 

In utility theory,  W  is interpreted as preference and  ~W  as indifference.  It is immediate from 

the axioms that  a ~W b  iff  both  a  W b  and  b  W a, and consequently that  a  W a  (since  

a ~W a).  It is also immediate that  ~W  is transitive.  Any weak order where the relation  ~W  is the 

identity relation is called a  linear order  (or equivalently, a total order).  We will use “linear” 

and “total” interchangeably.  The essential difference between weak orders and linear orders is 

that in a weak order that is not also a linear order, we may have  a ~W b  for distinct  a  and  b.  

For the sake of the occasional reference below, we may also define a  partial order as any set 

ordered by an irreflexive, transitive relation.
 5

   

The following axioms for semiorders were presented in Scott and Suppes (1958), and are a 

slight modification of Luce‟s original axioms:
6
 

 

                                                 
5
  The essential property of all partial orders is transitivity.  Different authors also require them to be either 

irreflexive, or both reflexive and antisymmetric, depending on the application.  The former are sometimes also 

called strict partial orders and the latter weak partial orders. 
6
  Luce (1956) used an additional primitive for the indifference relation, but Scott and Suppes introduced this 

relation by definition.  We follow the latter method, which affords a slight streamlining of the axioms.   
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DEFINITION 2:   A semiorder is any structure S =  A,   ,  where A is a set and   is a binary 

relation on  A, that satisfies the following three axioms (for all  a, b, c, d    A): 

 

Axiom  S1.    a   a. 

Axiom  S2.    If   a   b  and  c   d,  then   a   d   or   c   b. 

Axiom  S3.    If   a   b  and  b   c,  then   a   d   or   d   c. 

 

If we interpret  “ ” as meaning “is discriminated as lower on the attribute continuum than,” then 

axioms S2 and S3 prevent a discriminated pair from being “captured” by a non-discriminated 

pair, as the reader may easily verify.  A generalization of semiorders may be obtained by deleting 

S3, and the resulting structure is called an interval order. We may define the symmetric 

complement of    as follows: 

 

DEFINITION 3:   a ~ b   iff   a   b  and  b   a. 

 

 

We will call any pair {a, b}  A such that a ~ b an incomparable pair.  If either a   b  or   

b   a, then we will sometimes write  (a, b)  or  (b, a),  respectively.  Since semiorders implicitly 

capture the notion of a discrimination threshold, we will introduce this notion explicitly for 

clarity: 

 

DEFINITION 4:  For any semiorder  S =  A,   , and for any  ai  A, let 

j = min{k: ia    ka }.  Then we will call i  = j –  i  the size of the discrimination threshold at ia . 

 

Since we will be focusing on semiorders with constant thresholds, we will usually drop the 

subscript on the threshold and write   rather than i .  The reader should also note that we have 
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defined thresholds so that the smallest possible threshold, or “perfect discrimination,” is defined 

as  = 1 rather than  = 0.  This affords some simplification below. 

Semiorders, weak orders, and linear orders are easily seen to be special kinds of  partial 

orders.  To clarify the interrelation between these various orders we state the following 

inclusions, understood as holding between whole classes of orders: 

 

linear orders     weak orders   semiorders   partial orders. 

 

In a semiorder, the symmetric relation  ~  is not necessarily transitive, in a weak order it is 

transitive, and in a linear order it is the identity relation.  Hence weak orders generalize linear 

orders, semiorders generalize weak orders, and partial orders form the most general class. 

 

DEFINITION 5:   SL =  AL,  L  is a linear extension of a semiorder  S 

                iff  

(i)    SL is a linear order,  and 

(ii)   (a, b)  S      (a, b)    SL       (for all  a, b  A). 

 

CONVENTION 1:  (i)   Zk

+
 is the first k positive integers  1,  2,  3,  , k  in the usual 

ordering. 

(ii)  A   is the cardinality of the set A. 

 

This is merely a notational convention.  Since we will be working only with finite sets of 

qualitative objects, we will also use the following: 

 

CONVENTION 2:   Every set  A is indexed by  Z A 
+

 . 
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By this convention, the index set will always be exactly the cardinality of the set indexed. 

 

DEFINITION 6:   For all semiorders  S = ,A  ,  the relation *  induced on  A by   is 

defined as follows:    For all  ai,  aj    A   (where  i   j), 

ai  *   aj 

iff 

      1.  ai   aj  

or  2.  ai  ~  aj  and  [(ai   ak   and   aj  ~  ak)   for some  ak  A] 

or  3.  ai  ~  aj  and  [(am   aj   and   am  ~  ai)   for some  am  A]. 

 

If neither  ai  *   aj  nor  aj *   ai,  then we will write  ai *~   aj .  It can easily be shown from the 

definition that if    satisfies trichotomy, then so does * . 

DEFINITION 6 was first introduced by Luce (1956), where he also proved that the induced 

relation *  forms a weak order on  A.
7
  In many cases, a semiorder relation   will only induce a 

weak order through DEFINITION 6.  But whether it also induces a linear order will depend on how 

much information is present in the semiorder, as will be seen in the next section. 

 

  

                                                 
7
  Any pairs where  ai  ~  aj  and  ai *  aj  are what Fishburn (1973b), speaking in terms of utility, referred to as 

cases where aj is “slightly preferred to” ai.  For the interested reader, DEFINITION 6 without line 1 is equivalent to 

Property (i) of Swistak (1980, p. 126).  
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DEFINITION 7:  For any relation R, where I is the indifference relation for R similar to that in 

DEFINITIONS 3 and 6 above (i.e.,  aIb  iff  not aRb  and  not bRa): 

aJRb 

iff 

(i)   aRb, and 

(ii)  For all c  A,  if aRc , then  bRc  or  bIc. 

 

In words, “aJRb” means that a immediately precedes b with respect to the relation R. 

 

DEFINITION 8:  A semiorder S = ,A   is said to be well-behaved if it has a finite, equal-

spaced linear extension and a constant threshold.  More precisely, a well-behaved semiorder 

satisfies the following (for all  a, b, c, d  A, AUL,  and all  i, j, k, r  Z A 
+

): 

 

(i)   There exists a finite linear extension SUL =  A, ≺UL   of the semiorder S =  A,   . 

(ii)  If  ai J ≺UL

  
bj and ck J ≺UL

  
dr , then  j –  i =  r –  k. 

(iii)  For all  ai, aj  A, i = j (i.e., the discrimination threshold defined in DEFINITION 4 is 

constant for all a  A). 

 

Intuitively, a well-behaved semiorder is a semiordering, with constant threshold, of the elements 

of an equal-spaced linear order.  Thus, well-behaved semiorders may be considered idealizations 

of a variety of emprical contexts where a linearly ordered set is presented to a human subject 

who is unable to discriminate every pair in the set with respect to intensity, utility, etc.  

Consequently, some of the ordered pairs of the underlying linear order may be missing from the 

data obtained from the subject, and the data will form a semiorder.  DEFINITION 6 gives us a 
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criterion for recovering some of these non-discriminated pairs, and hence for extending the 

semiorder.  

In the second clause of DEFINITION 8, we import the intuitive notion of “equal spacing” to 

semiorders, but this requires some explanation.  Equal-spaced structures play an important role 

in measurement theory, where they are sometimes called “equal-difference” structures.  These 

are discussed in Suppes (1957, 1972), Scott and Suppes (1956), and Suppes and Zinnes (1963).  

Suppes (1972, p. 45) pointed out that “Finiteness and equal spacing are characteristic properties 

of many standard scales, for example, the ordinary ruler, the set of standard weights used with an 

equal-arm balance in the laboratory or shop, or almost any of the familiar gauges for measuring 

pressure, temperature, or volume.”  Of course, there is nothing qualitatively inherent in pressure, 

length, etc. that brings about the equal spacing.  This is something that the scientist imposes on 

the measurement scale in order to simplify measurement.  In these cases, the precision in 

measurement is limited by the constant differences in millimeters, the differences in weight 

between the standard blocks, the differences between marks on a gauge, etc.  Nevertheless, the 

equal-spacing assumption is made without loss of generality, since we may either select stimuli 

so that they are equally spaced with respect to the relevant relation, or we may take arbitrary 

stimuli that are not in the equal-spaced set and place them in intervals bounded by adjacent 

stimuli in the set.  Thus, by decreasing the spacing between a standard equally-spaced set, any 

arbitrary stimulus may be measured within any desired degree of accuracy.  This is essentially 

the idea behind building “standard sequences” of equally-spaced elements, which is discussed in 

Davidson et al. (1957), Luce (1967), and Krantz et al. (1971). 

It is known that equal-difference structures are uniquely representable and interval scalable 

(see Suppes (1972) for proofs).  However, it only makes sense to define equal spacing of 
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elements with respect to some relation, and for this to be possible over an entire order, all 

elements in the order must be comparable under the relation.  This condition is satisfied by linear 

orders, but not necessarily by a semiorder.  Since some elements of a semiorder may not be 

comparable with respect to the relation  , it doesn‟t make sense to think of them as “equally-

spaced” with respect to this relation.  The same elements may, however, be equally-spaced with 

respect to a different relation, and in the above case we specify this through what we refer to as 

the “underlying” linear ordering by ≺UL.  This linear order is simply an extension of the 

semiorder, but we refer to it as “underlying” to emphasize the empirical situations in which the 

semiorder is actually derived from the linear order in the manner discussed above.  As we will 

see below, well-behaved semiorders have nice properties that make them useful for studying 

measurement, like their linear equal-difference counterparts. 

 

CONVENTION 3:  The indices of any well-behaved semiorder are chosen to agree with the 

linear extension SUL =  A, ≺UL  .  That is, if i is the index of a  SUL , and the element a  is also 

an element of the semiorder S, then i is the index of a  S.  Moreover, for any set A ordered by a 

relation R,  aiRbj  iff  i < j  (for all a,  b    A,  and all  i, j    Z A 
+

).  In words, the ordering of the 

indexing always agrees with the ordering of the relation.  

 

This convention, like the two proceeding it, could be dropped without loss of generality, but its 

inclusion allows considerable notational simplification in the proofs below. 
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DEFINITION 9:   For any two structures  S  =  A, R  ,  and  S´ = ,A R   ,  where A, A  are 

finite sets and  R, R  are k - ary relations on  A, A  respectively, a function  h:  A  A   is a 

homomorphism  from S  to S´  iff  for all elements  a1, …, ak  A, 

 

R (a1, , ak)       R (h (a1), , h (ak)). 

 

Alternatively, we say that S and S´ are homomorphic, or that  h  is an embedding of  S in S´.8 

 

DEFINITION 10:   For any semiorder  S =  A,   , an order preserving, real-valued 

homomorphism   f : A 1 1  Re  will be called a closed representation if there is a nonnegative 

function :  A   Re such that for all  ai, aj  A, 

 

ai   aj    iff    f (ai)  +   (ai)     f (aj).
9
 

 

We will call any closed representation with  (ai) = t  (where t is a constant for all ai) a 

representation with constant threshold.  Although we define the mapping into Re to enable full 

generality of the definition, we will only be considering cases of finite equal difference 

structures, where   need only have values in the natural numbers.  Since the representations of 

interest are mappings into ordered sets of numbers, they are sometimes more specifically called 

numerical representations.  A representation theorem shows the existence of a numerical 

representation.  The first representation theorem for semiorders was proved in Scott and Suppes 

                                                 
8
   In the literature on measurement theory a stronger notion of homomorphism is sometimes used, where a 

biconditional is supposed rather than a conditional.  We need only the weaker form to describe the case of linear 

extensions (DEFINITION 4).  See Chang and Keisler (1973 p. 70) for a discussion of homomorphisms. 
9
  Closed representations are usually defined with thresholds in mind, consequently a strict inequality is usually 

used.  Since our theorems are simpler to state if we think in terms of a jnd, we will use a non-strict inequality (c.f. 

footnote 2).  
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(1958) for semiorders with finite domains.
10

  Additional representation theorems may be found 

in Fishburn (1970) and Mirkin (1972) for the denumerable case and for interval orders, and in 

Fishburn (1973a) for sets of arbitrary cardinality.  A comprehensive survey of these results may 

be found in Suppes, et al. (1989). 

The following property enables us to separate representations that preserve the underlying 

linearity of the semiorder from those that don‟t.   

 

DEFINITION 11:   For any semiorder S =  A,   , a representation  f  is said to be strongly 

monotonic  iff  it satisfies the following (for all  ai, aj  A ): 

 

ai  *   aj    iff    f (ai) <  f (aj). 

 

We call this strong monotonicity because the representation is not only preserving  , but is 

preserving the induced relation *  as well.  The representations that fail to preserve strong 

monotonicity are precisely those that Swistak (1980) called “paradoxical.”  

Finally we present a definition of the set of elements discriminated from a given element: 

 

DEFINITION 12:   For any  ai  A that is “left-discriminated” from at least one other element 

(i.e., where there exists ka  such that ia    ka ), we will use a boldface “ i


a ” to designate the set 

{ak:  ai   ak}  of all elements “right-discriminated” from ai  (for all k  Z A 
+

).  

 

Notice that all sets defined by DEFINITION 12 are nonempty.  In what follows, if i


a  is defined by 

DEFINITION 12 then we will occasionally refer to ai as “the defining element for i


a .” 

  

                                                 
10

  There are many proofs of this result available.  See Suppes and Zinnes (1963), Scott (1964), and Rabinovitch 

(1977) for three different approaches. 
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3. REPRESENTATION PROBLEMS FOR SEMIORDERS 

 

 

3.1  “Irregularities” and “paradoxes” 

 

In this section we will illuminate some of the difficulties with obtaining uniqueness for finite 

semiorders, and provide the motivation for confining our attention to well-behaved semiorders 

that do not have “exceedingly large” thresholds.  We‟ll consider two unusual situations that arise 

with representation theorems for semiorders.  The first was discovered by Roberts and Franke 

(1976), who showed that there may be multiple representations with constant threshold for a 

given semiorder, where the representations are not related by any transformation at all.  They 

called these "irregular" representations, and the following is an example of such a case: 

 

EXAMPLE 1.  An "irregular" representation:  Let  S =  A,    be a semiorder where  

A = {a1, a2, a3} (and all elements are distinct), and suppose that  a1   a3  and  a2   a3,  but   

a1 ~ a2.  Let f and g be two representations with constant threshold, where we set   (ai) = 1 for 

all i  Z3

+
, and let  f (a1) = f (a2) = 0,  f (a3) = 2, 1( )g a  = 0, 2( )g a  = 0.9, and 3( )g a  = 2.  It is 

easy to see that both of these representations capture the structure of the semiorder by 

considering each qualitative pair in turn with its numerical representations (numerical values are 

listed underneath for ease of reference): 
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Qualitative Pair       Numerical Representations 

 

a1   a3                    f (a1)   +  1      f (a3) 

                        (0  +  1     2) 

                  1( )g a   +  1     3( )g a  

                 (0  +  1     2) 

a2   a3             f (a2)   +  1      f (a3) 

                 (0  +  1     2) 

          2( )g a   +  1     3( )g a  

              (0.9  +  1     2) 

a1 ~ a2               f (a1)   +  1     f (a2)   and     f (a2)  +  1     f (a1) 

                      (0  +  1     0         and           0   +  1     0) 

1( )g a   +  1    2( )g a   and   2( )g a    +  1    1( )g a  

         (0   +  1     0.9      and         0.9  +  1     0) 

 

 

Both  f and g capture the fact that  a3 is discriminated from both  a1 and  a2, and that the pair  

{a1, a2} is not discriminated.  However,  f is irregular because there can be no function   that 

transforms  f  into g.  Suppose (for contradiction) that there were some function   such that   

g =    f.  Then we would have 1( )g a  = 1( ( ))f a  = 2( ( ))f a  = 2( )g a , and at the same time, by 

definition 1( )g a    2( )g a .  This is a contradiction, thus (given the implicit assumption that   

was arbitrary) there can be no such transformation relating  f and g. 

 

This creates a serious problem for the meaningfulness of the representations.  By the 

definition of meaningfulness given above, scientific statements are only meaningful if their truth 

value remains invariant under a change of the numerical representation, where the relevant 

representations are related by a specific algebraic transformation.  In the example above,  f and g 

are not related by any transformation at all.  As Roberts and Franke pointed out (1976 p. 213), 

the situation may arise where an irregular representation is, say, an interval scale, while another 

representation of the same structure is not.  Roberts and Franke proved that such conflicts of 
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scale type only occur for irregular representations (1976 p. 215), and of course they can only 

occur when the representations are not unique. 

Unfortunately, these irregular representations will not be eliminated simply by equally 

spacing the elements of the semiorder.  They will also not be eliminated by confining the 

representation to integers, as the reader can easily see by simply multiplying all values in the 

above example by 10.  To be assured that the numerical representation will not be irregular, the 

representation itself must be in an equally-spaced set (i.e., a numerical equal-difference 

structure), such as an arithmetical progression of integers, or any equally-spaced set of rationals.  

Again, many measurement scales have this characteristic, such as those appearing on rulers, 

gauges, etc.  The existence of such a representation for well-behaved semiorders will be shown 

in THEOREM 2 below.  

An additional problem was pointed out by Swistak (1980), who noted that closed 

representations with variable thresholds may fail to preserve the underlying linearity of the 

semiorder that is represented (in our terminology, this is a failure to preserve strong 

monotonicity).  In other words, the representation of  A,   may fail to preserve the induced 

relation * .  He rightly considered this to be paradoxical, since in empirical cases where we 

consider the semiorder  A,     to consist of incomplete data about an underlying linear order  

 A, ≺UL  , the induced relation *  is giving us additional information about this underlying 

order.  We would certainly want a representation of a semiorder to be consistent with any 

additional information that may be obtained about the underlying order.  But a closed 

representation of a semiorder may fail to do this, as more ordered pairs from the underlying order 

are added to the semiorder.  This is shown by the following example:   
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EXAMPLE 2.  A "paradoxical" representation:  Let  S =  A,    be a semiorder where  

A = {a1, a2, a3} (and all elements are distinct), and suppose that  a1   a3 , but  a1 ~ a2  and   

a2 ~ a3.  Using DEFINITION 6, it is easy to see that this semiorder induces the ordering   

a1 *  a2 *  a3.  Now consider the representation:  f (a1) = 1,  f (a2) =  0,  f (a3) = 2,   (a1) = 1,   

 (a2) = 3, and   (a3) = 1.  One can easily see that this representation correctly captures the 

structure of the semiorder: 

 

Qualitative Pair              Numerical Representation 

 

a1    a3     f (a1)  +   (a1)     f (a3). 

              (1  +  1     2) 

a1  ~  a2                 f (a1)  +   (a1)     f (a2)   

             (1  +  1     0) 

    and  f (a2)  +   (a2)     f (a1). 

 (0  +  3     1) 

a2  ~  a3     f (a2)  +   (a2)     f (a3)  

           (0  +  3      2) 

    and  f (a3)  +   (a3)     f (a2).  

          ( 2  +  1     0) 

 

This representation captures the fact that the pair consisting of a1 and a3 is “sufficiently wide” to 

be discriminated, while the pairs  {a1, a2}  and  {a2, a3} are not.  However, the representation 

fails to preserve strong monotonicity, since  a1 *   a2  but  f (a1)    f (a2).  Thus, adding the pair 

(a1, a2) to the semiorder would result in a failure of this representation, hence a “paradox.”   

 

Both of the above examples arise only because of the great deal of freedom allowed in the 

choices of  f and .  When this freedom is sufficiently constrained, such cases do not arise.  Just 

as the Roberts and Franke example showed that the choice of  f should not be too free, Swistak‟s 

paradoxical cases can arise only if  is allowed to be variable.  These problematic representations 

give us reason to suppose that representations for semiorders will only achieve empirical 
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adequacy if suitable constraints are imposed on the representations.  Although even paradoxical 

representations could be considered empirically adequate in the weak sense of reflecting the 

structure of the available data, this is not a sense of empirical adequacy with which any scientist 

would be happy.  When theories apply only to available data, and fail as soon as new data is 

introduced, we consider them ad hoc and not truly informative about the qualitative structure 

they represent.  We would like representations that work not only for the available data, but also 

for any new data that may subsequently be introduced.  In order to avoid Swistak‟s paradoxical 

cases, either i) we are restricted to cases with constant thresholds, or ii) we must specify 

conditions on representations with variable thresholds which guarantee that the paradoxical cases 

will be avoided.  Unfortunately, it is not at all obvious what kinds of conditions on variable 

thresholds would be sufficient.  Fortunately, it turns out that the assumption of a constant 

threshold is not only sufficient to avoid the paradox, but it is also descriptively adequate in most 

applications.
11

 

As with the equal-spacing assumption for the underlying order discussed above, the 

assumption of a constant threshold is not as confining as it may at first appear to be.  In real 

world applications, semiorders are usually applied over such a limited range of utility values that 

it is a fairly weak idealization to suppose them to have a constant threshold over this limited 

range.  Of course, if one were to consider the entire range of utility values, then it would be 

implausible to suppose discrimination thresholds to be constant.  For example, in cases where we 

can translate utilities into monetary equivalents, a $10 difference may be decisive when one is 

deciding between goods in the $20 range, but it would have little to no effect on decisions to 

                                                 
11

  Nevertheless, Swistak (1980) showed that if a semiorder has a representation with a variable threshold, then one 

of its representations must preserve strong monotonicity, and hence avoid the paradox.  But this still falls short of a 

uniqueness theorem for the variable threshold case.  I have altered the phrasing of his theorem to agree with our 

terminology. 
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purchase in the $10,000 range.  This corresponds roughly to the existence of what economists 

know as decreasing marginal utility.  This is important when we are studying the population as a 

whole, or when studying the dynamic behavior of an individual in a particular market in the long 

term.  But most singular decision problems, including almost all marketing applications, involve 

such a limited range of utility values that it is innocuous to suppose discrimination thresholds to 

be constant over the intended range of application. 

 

3.2  The multiplicity of linear extensions 

 

An additional problem, which is not directly related to the problems above, but which does bear 

on the difficulty with obtaining uniqueness, is the existence of multiple linear extensions for 

partial orders.  It is well known from Szpilrajn (1930) that any partial order may be extended to a 

linear order.
12

  This means that for any incomparable pairs {a, b} from the domain, we may 

select either a   b or  b   a, and then place the newly ordered pair into the partial order without 

disturbing the rest of the order, and we may do this for all such pairs.  The result will be a linear 

ordering of the original set.  Szpilrajn‟s theorem simply says that this can always be done – that 

there exists a linear extension for any partial order.  But a partial order will generally have many 

linear extensions, corresponding to combinations of choices in the ordering of the incomparable 

pairs.  This may be seen by consulting the graphs in Figure 1: 

 

 

                                                 
12

  This important result has been proved in many different ways.  See Los and Ryll-Nardzewski (1951)  for a 

topological proof, Sierpinski (1958, p. 189) for a constructive proof of the denumerable case, and Trotter (1992, 

p.17) for a brief, elegant proof. 
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P contains only the three ordered pairs  (1, 3),  (1, 4),  and  (2, 4).  Thus P is a partial order (also 

a semiorder), since the pairs {1, 2}, {2, 3} and {3, 4} are incomparable.  To see how this 

example bears on empirical situations, we may think of the numbers as originating in their usual 

ordering (E4), and then think of P as resulting from a threshold that prevents adjacent numbers 

from being discriminated.  E1 through  E5  are linear extensions of P that result from making 

different choices in the ordering of the incomparable pairs, without changing the ordering of any 

of the pairs already in P.  For example,  E1 results from choosing  2   1,  2   3,  and  4  3.
13

  

The multiplicity of linear extensions illuminates some of the difficulty with obtaining 

uniqueness, and it also raises an interesting question that was studied by Fishburn (1973b) and 

Fishburn and Gehrlein (1974, 1975).  In psychophysical experiments one often begins with a 

linearly ordered stimulus set, from which a human subject, with limited perceptual and cognitive 

abilities, can identify only a fragment of the order.  Although every pair of objects in the 

stimulus set is originally ordered, the subject “removes” certain pairs by failing to discriminate 

them, resulting in a truncation of the linear order to a partial order.  Consequently, the scientist 

obtains data from the subject in the form of a partial order.  Since in general there will be many 

                                                 
13

  Notice that certain combinations of choices will be ruled out, however.  For example, we may not choose both  

(4, 3)  and  (3, 2), since that combination together with the transitivity of    entails  (4, 2),  but this is incompatible 

with  (2, 4), which is already in P.  Hence choosing both  (4, 3)  and  (3, 2) is ruled out because choosing both 

would disturb the rest of the order. 
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linear extensions of the partially ordered data, it is natural to ask whether it is possible to 

recapture the original linear order, from among the many possible, using only information 

available in the incomplete data.  In terms of Figure 1, we would want to know how we can be 

sure that we obtain  E4 rather than one of the other extensions, using only the information 

available in P. 

Fishburn and Gehrlein (1974, 1975) tackled this question in a slightly weaker form.  Just as 

many linear orders will extend a given partial order, even more weak orders will extend the same 

partial order.  Fishburn and Gehrlein found several different algorithms for finding the weak 

order that is “best supported” by a partial order, which is the weak order induced by Definition 6.  

Also, Fishburn (1973b) showed that for what we are calling “well-behaved” semiorders, if the 

threshold is no larger than (approximately) half the length of the semiorder, all indifferences can 

be resolved (i.e., in our terminology, if there is an underlying linear ordering, then it may be fully 

recaptured).  Here “length” means the range of values of the set of objects under consideration 

with respect to some attribute, which could be utility, or loudness, or brightness, etc.  What is of 

interest is that this result gives rise to both representation and uniqueness theorems, as we will 

show in the next section.  Linear representations in these cases will automatically preserve both 

regularity and strong monotonicity, and hence avoid the “irregularity” and “paradox” just 

discussed.  

 

4. THEOREMS 

 

In THEOREMS 1 and 2 below we will show that for all well-behaved semiorders with thresholds 

that are suitably bounded, a linear extension may be found constructively, and this extension may 

be used to derive a representation of the semiorder in an arithmetical progression of integers.  As 
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a corollary, such well-behaved semiorders are representable in a convex set of integers.  We will 

first present THEOREM 1 (from Fishburn (1973b)), which specifies the condition on the size of 

the threshold under which the weak order induced by a semiorder S from DEFINITION 6 is in fact 

a linear order, (and hence a linear extension of the semiorder).  We will give a constructive proof 

of Fishburn‟s theorem that gives a procedure for recovering the induced linear order  

SUL =  A,  UL  .  In THEOREM 2 we show that this linear extension SUL may be used to construct a 

numerical representation of the original semiorder S by an arithmetical progression  Z =  Z, <  .  

Thus, in THEOREMS 1 and 2 we define a series of functions:  h:  S   SUL,  f: SUL   Z,  and  

f  h: S   Z.  Here h is an embedding of  S  into the (unique) linear extension SUL that recovers 

its underlying linearity,  f  is an isomorphism of SUL into an arithmetical progression of integers, 

and the representation f  h is a homomorphism that preserves both regularity and strong 

monotonicity.  After showing the existence of these mappings, we will then show in THEOREM 3 

that the representation  f  h  is unique up to a positive affine transformation.  In closing, we will 

show that this is the strongest kind of uniqueness that may be obtained. 

We will begin with a few propositions about semiorders that will be useful in the proofs. The 

following three propositions hold for all finite well-behaved semiorders  S =  A,    where   

SUL  =  A,  UL   is an underlying equal-spaced linear extension
14

  The reader should recall that 

we are assuming the indexing of the semiorder follows the indexing of the underlying linear 

ordering (CONVENTION 3).  Proofs are in the appendix. 

 

PROPOSITION  1:   For any  ai,  aj  A,  if  ai   aj,  then: 

[for all  k  >  j,   ai   ak ]  and  [for all  m  <  i,   am   aj]. 

 

                                                 
14

   The reader may easily check that these propositions also hold more generally for the variable threshold case 

where the threshold i of the semiorder is non-decreasing. 
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PROPOSITION 2:   If  ai   aj,  then  
j


a   <  

i


a . 

 

PROPOSITION 3:   If  
j


a   <  

i


a , then   ai *  aj. 

 

PROPOSITION 2 follows from PROPOSITION 1 as long as the threshold is non-decreasing (hence 

also when the threshold is constant).  While PROPOSITION 2 states a relation between the pairs in 

a semiorder and the cardinalities of the sets of discriminated elements, PROPOSITION 3 allows us 

to determine the induced order even when two elements are not discriminated in the semiorder. 

One may see the idea behind PROPOSITION 3 by referring back to Figure 1.  Suppose that we 

begin with  E4  as an underlying order (i.e., 1  UL 2  UL 3  UL 4), and we want to derive this 

extension from the semiorder P.  Using PROPOSITION 3, we may deduce that since  

2
  = {4}  < {3, 4}  = 1

 , then 1 *  2, which is consistent with the desired  1  UL 2.  This is a 

variant of what Fishburn and Gehrlein (1974, 1975) called the “Cardinal Method” for 

constructing weak orders. 

We will now generalize this procedure.  The following theorem first appeared in slightly 

different form in Fishburn (1973b, p. 470), and states conditions under which the weak order 

induced by a well-behaved semiorder is in fact a linear order.  We refer the reader to that paper 

for a simple existence proof.  We will offer a constructive proof of the theorem, which provides 

a procedure for recovering this induced linear order.
15

 

 

  

                                                 
15

  Fishburn showed that the conditions of THEOREM 1 are necessary and sufficient for the result.  We present only 

the sufficient direction, because we are interested only in establishing that the representation that we construct from 

the linear extension has been arrived at by a constructive procedure.  
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THEOREM 1:   Let   S =  A,     be any finite semiorder where A   =  n, and  is a positive 

integer.  If 

(i)  n is even, and     
2

n
, 

or 

(ii)  n is odd, and   
1

2

n 
, 

 

then the order  A, *    induced from   by DEFINITION 6 is the underlying linear extension  

SUL  =  A,  UL  .  Moreover, there exists an embedding of S into SUL. 

 

Proof:   We will prove the even case, from which the odd case follows with obvious minor 

adjustments.  Since the constructive proof is lengthy we will give an overview.  Using 

CONVENTION 2, we assume that the underlying linear ordering of A is indexed by Zn

+
.  We then 

adopt CONVENTION 3, namely that the semiorder shares the indexing of this underlying linear 

order.  We then use DEFINITION 10 to define sets i


a  for all of the elements in A that occur as left 

elements of some ordered pair in S.  Since  is constant, these sets may be ordered by 

cardinality, so we order them thus and call the resulting sequence “Seq.”  Then we will use Seq 

to “reconstruct” the left and right parts of the linear order underlying S.  We do this by 

constructing two sequences: 
leftA  , consisting of a linear extension of the “left part” of  A in  S, 

and 
rightA  , consisting of a linear extension of the “right part” of  A  in  S.  We construct 

leftA   

by using the ordering of all sets i


a  in Seq, and then correspondingly ordering the defining 

elements for those sets.  This recaptures the underlying linearity of the left part of  S.  We 

construct 
rightA   by comparing all sets i


a  in Seq, extracting a unique element *b  from each i


a  

(where *b  is not in the successor of i


a  in Seq), and then ordering these extracted elements 

parallel to the ordering of the sets they were extracted from.  The sequence 
rightA   then 
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recaptures the underlying linearity of the right part of  S.  If the semiorder satisfies condition (i), 

then the union of 
leftA   and 

rightA   comprises the desired induced linear extension SUL.  It is 

then possible to merely use the identity h:  A   A  on the elements of  A to recapture the 

underlying order of  S  that was only partially explicit in the semiorder itself.  h is then an 

embedding of the semiorder S into the unique linear extension SUL  induced by DEFINITION 6.  

We will now be more precise. 

STEP 1:  Assume there is an underlying linear ordering of  A  by the index set  Zn

+
, and 

assume without loss of generality that the semiorder shares this indexing (CONVENTION 3).  

Since  S  is finite, we may inspect all of its ordered pairs.  If an element ia  occurs as the left 

element of any ordered pair, then using DEFINITION 10 define the set i


a  of “right elements” 

discriminated from ia .  We now need several lemmas (proofs of all lemmas are in the appendix). 

 

LEMMA 1:   For all distinct i and j,  | i


a |   | j


a |. 

 

LEMMA 2.1:   Let  sup Zn

+
 
left

  be the greatest  i  Zn

+
  for which there exists a  j   n  such that  

ia    ja .  Then there are exactly  sup Zn

+
 
left

  sets  i


a . 

LEMMA 2.2:   For all  ai,  A,  | i


a |   =  n – (i +   –  1). 

 

LEMMA 3:  For all  k:  1   k   n – ,  there exists exactly one  i  Zn

+
 such that  | i


a |  = k. 

 

 

STEP 2:  We now want to use the various sets i


a  to build sequences, and we want to refer to 

relative positions in the sequences without specifying the exact value of i that occurs in the 

underlying ordering.  Thus we will introduce a subindexing on the i‟s as follows: “
mi


a ”  
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(1   m   n – 
mi

 ) means “any of 
i


a , j


a , etc.,” where these may in turn represent  1


a , 

27


a , etc.  

Since there are only finitely many sets 
i


a , and by LEMMA 1, no two are of the same cardinality,  

we may effectively arrange the sets into a totally ordered sequence from largest (left) to smallest 

(right).  We may also define an indexing  of the sets with respect to cardinality.  By LEMMA 2.1,  

there are exactly sup Zn

+
 
left

  sets.  Thus, we will index the largest set by 1, the next largest by 2, 

and so on, until the smallest set is indexed by sup Zn

+
 
left

  More precisely, since   

sup Zn

+
 
left

  =  n –   (by LEMMAS 2.1 and 3), we may define the indexing   : Zn

+
  Zn

+
  from  

1  to  n –  as follows: 

 

DEFINITION 11:  Let  |
mi


a | = k.  Then define ( )mi  = n –   – (k – 1). 

 

 

Thus, the sequence (Seq) of sets 
mi


a  may be defined as follows: 

 

DEFINITION 12:   Seq = (
1 1( )( )i i


a , 

2 2( )( )i i


a , , ( )( )

n ni i  


a ), or more simply,  

Seq = (
1 1( )i


a , 

2 2( )i


a , , ( )

ni n  


a ). 

 

To see that the second expression is merely an abbreviation of the first, it suffices to check that 

the largest (first) set has cardinality  n –   (by LEMMA 3), and thus by DEFINITION 11,  

1( )i = n –  – (n –  – 1) = 1.  The reader may similarly check that ( )mi = m  for all remaining 

im.   

STEP 3:  From Seq we may use PROPOSITION 3 to deduce the underlying order of the defining 

elements for the sets in Seq.  More precisely, we may define the following sequence which 

recaptures the underlying order of the left-hand part of  S. 
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DEFINITION 13:   Let 
leftA   =  ( 1a , 2a , , 

na  ) be a sequence of elements of A where each 

position in the sequence is defined as follows: 

If 
mi


a  is in the  m

th
 position in  Seq, then  

mi
a  is in the  m

th
 position in 

leftA  . 

 

 

Since each 
mi


a  has a unique defining element 

mi
a , it is immediate from PROPOSITION 3 and the 

fact that Seq is a total ordering by cardinality that 
leftA   is also a total ordering.  Even for pairs 

of elements 
mi

a , 
1mi

a


 that were not discriminated in S, the sets 
mi


a , 

1mi 


a  defined in terms of 

them differ in cardinality and were so ordered in Seq.  
leftA   is merely the reflection of the 

ordering of sets in Seq to an ordering of the original elements of  A.  That every left element   

(i.e., all im   n – )  gets so ordered follows from the fact that for all   im   n – ,  
mi


a  is well 

defined.  Hence, the set  
mi


a  for each   im   n –   appears in Seq, and thus by DEFINITION 13 the 

element 
mi

a  which defines 
mi


a  appears in 

leftA  . 

STEP 4:   We will now reconstruct the right-hand part of  S.  For this we must use a different 

method, and we need an additional lemma. 

 

LEMMA 4:  For any  i  Zn

+
  such that  

mi


a   is  defined,  

(i)   either some set 
1mi 


a  is the successor of 

mi


a  in Seq, and there exists exactly one k such that 

ki
b  ( )( )

m mi i


a  and  

ki
b  

1 1( )( )
m mi i 


a , or there is no set 

1mi 


a ,  and  

mi


a  is a singleton with 

element 
ki

b , and  

(ii)  for this unique k , 
ki

b = 
mi

a    (i.e., 
ki

b  is the  - least element such that 
mi

a   
ki

b ). 
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COROLLARY 1:   ( )( )
n ni i  


a      

1 1( )( )
n ni i    


a           

2 2( )( )i i


a      

1 1( )( )i i


a . 

 

Since each of the sets  
mi


a  is finite, we may effectively inspect ( )( )

m mi i


a  and 

1 1( )( )
m mi i 


a  for all 

pairs m and m + 1, and (by LEMMA 4) select the unique element that is in ( )( )
m mi i


a  but is not in 

1 1( )( )
m mi i 


a .  We will call this element “

*

ki
b .”  Thus, 

*

ki
b   ( )( )

m mi i


a  and  

*

ki
b   

1 1( )( )
m mi i 


a .

16
  

Now we may define the sequence 
rightA   as follows: 

 

DEFINITION 14:  Let  
rightA   = ( 1b , 2b , , nb  )  be a sequence of elements of A where the 

element 
*

ki
b  appears in the k

th
 position in the sequence. 

 

The construction of 
rightA   is possible because of the uniqueness of the selected elements, which 

follows from LEMMA 4.  It is also immediate from the uniqueness of each 
*

ki
b  that 

rightA   is a 

total order.  

STEP 5:   We must now show that 
leftA     

rightA   is a linear extension, from which it will 

immediately follow that it is in fact  SUL, the underlying linear order.  Since we have already 

shown that 
leftA    and 

rightA    are total orderings of the left and right parts of  S, respectively, 

it suffices to show that there is no element of A left out (i.e., that the sequences meet end to end 

with no gap, or that they overlap).  This means that we must check whether  1b   UL 1na   .  By 

STEP 4 and DEFINITION 14, 1b   
1i


a  and 1b  

2i


a .  Thus by LEMMA 4,  1b  = 1a  .  Thus we only 

                                                 
16

  For  m = n – ,  
1 1( )( )

m mi i 


a  is not defined, so in this case we select the only element of the singleton 

( )( )
m mi i


a . 
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need to check that 
1a    UL 1na  

, and this is clearly true for all     2
n ; that is, whenever 

condition (i) is satisfied.  Thus 
leftA     

rightA   is a linear extension, and it is clear by our use 

of  PROPOSITION 3 that this linear extension is in fact SUL. 

STEP 6:   We must now show that there exists an embedding of S into SUL.  Since we have 

assumed that the indexing of the semiorder follows the indexing of the underlying order, the 

identity mapping will suffice for this purpose.  More explicitly, we will define h as follows: 

 

DEFINITION 15:  Let  h: A A  be the function defined by:  h ( ia )  = ia . 

 

h preserves the underlying ordering of  all elements of  A, whether they are discriminated in the 

semiorder  S  or not.  That is,   

ia    ja    ia   UL ja    h ( ia )  UL  h ( ja ). 

 

The first implication follows from PROPOSITIONS 2 and 3, and the second implication is 

immediate from DEFINITION 15.  For any non-discriminated elements ia , ja  where  ia  UL ja  

but ia  ~ ja ,  the result follows from the last implication alone.  This completes the proof of 

THEOREM 1.   

In the above proof, the method of recovering the underlying linear structure – the method of 

“cardinality comparisons” – is elementary, although somewhat tedious.  It clearly yields a 

constructive procedure for recovering the induced, or “underlying” order.  Although Fishburn 

didn‟t state that the induced linear order is unique, this follows from a result of Roberts (1971).  

In addition, Suppes (1972) showed that when any linear extension is equal-spaced, it is uniquely 

representable and interval scalable.  These results jointly entail that when the order induced by 
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DEFINITION 6 (or equivalently, the “underlying” order) is an equal-spaced linear order as above, 

then one may uniquely represent the semiorder in a convex set of integers.  We will now prove 

this in the following representation and uniqueness theorems.  First we state (without proof) the 

following obvious but useful proposition. 

 

PROPOSITION 4:   If  S =  A, <   is any finite linear order, then S is isomorphic to a convex, 

totally ordered integer structure  Z =  Z, <  . 

 

THEOREM 2:  (Representation Theorem) 

Let  S =  A,     be any finite semiorder where A   =  n,   is a positive integer such that 

either 

(i)  n is even, and     
2

n
, 

or 

(ii)  n is odd, and   
1

2

n 
, 

 

and  SUL =  A,  UL    is the underlying linear order induced by DEFINITION 6 as in THEOREM 1.  

Then there is a homomorphism of  S into an arithmetical progression of integers  Z =  Z, <  , 

and the homomorphism is a closed representation of  S with constant threshold. 

 

Proof:    Again, we will show only the even case.  Let  SUL  =  A,  UL    be the linear order 

underlying S (i.e., induced from S by DEFINITION 6).  By CONVENTION 2,  A is indexed by the 

set  Zn

+
, and is such that  i  <  j  iff   ai   UL  aj.  By PROPOSITION 4, there exists an isomorphism 

between SUL  and a convex, totally ordered integer structure.  If we use the integer structure  

Z =  Zn

+
, <  , then an isomorphism  f : A  Zn

+
  may be simply defined as follows: let 
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f ( ia ) = i.  Zn

+
 is convex and totally ordered by definition, and it is immediate that  f  is both 1-1 

and onto (onto by our having chosen the index set to have the same cardinality as A).  It is also 

immediate that   ai   UL  aj   iff   f ( ia ) <  f ( ia ).  Hence  f  is the desired isomorphism. 

By THEOREM 1, there is a homomorphism h from S into SUL.  Thus, since  f  is an 

isomorphism from SUL  onto  Z, then as long as  f   h is well defined, it is a homomorphism from  

S  into  Z .  That it is well defined follows from the fact that dom f  = A = ran h.  The range of  f 

is  Zn

+
 (this is the domain of the structure  Z), and this is convex and totally ordered by definition. 

To see that  f   h  is a closed representation of  S with constant threshold, we need to show 

that for some constant  c,  ( ) ( )i j i ja a f h a c f h a     .  To show the   direction, 

assume for two i and  j that ia    ja , and assume the hypothesis of the theorem.  By   DEFINITION 

9,    = k – i , where k is the least element of  Zn

+
 such that ia    ka .  Thus  i +   = k.  Since  k  is 

least, then by the assumption,  i  +      j.  If we let  c = , then this is just what the consequent 

says, since  f  ( )ih a = i  and  f  ( )jh a = j. 

For the   direction, assume for two i and  j that  f  ( )ih a  +      f  ( )jh a , and assume the 

hypothesis of the theorem.  By definition of  , ia    ia  .  The consequent follows as long as 

i +      j .  But this is true by the assumption, since  f  ( )ih a = i  and   f  ( )jh a = j.   

 

LEMMA 5:   If  S  is a finite semiorder, and  f  and f   are two convex, totally ordered 

representations of  S  in integers with constant thresholds, then there is a constant  c  Z
+
 

such that ( ) ( )i if a f a   = c  for all  ia   A. 
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THEOREM 3:  (Uniqueness Theorem) 

Let   S =  A,     be any finite semiorder.  Then any convex, totally ordered integer 

representation of  S with constant threshold  is unique up to an affine transformation. 

Proof:  Let  S  be any finite semiorder with underlying linear extension  SUL.  Let g and 

g  be any two convex, totally ordered integer representations of  S with constant thresholds     

(g, g : A Z).  First we consider the case where ( )ig a   ( )ig a  for all  i  Zn

+
.  Then let      

 : Z   Z  be a transformation ( )ig a   = ( )ig a  from g  to g defined as follows: 

( ) ( ) ( ( ) ( ))i i i ig a g a g a g a    . 

 

This is clearly an affine transformation, since it is of the form ( ) ( )x x c    with  1  .  We 

need only check that   is an isomorphism.  To show that  is 1-1, suppose that for some 

( ) ( )i jg a g a , ( )ig a 
 
= ( )jg a  .  Then by definition of , 

( )ig a   = ( )ig a  ( ( )ig a – ( ))ig a  = ( )jg a  (( ( )jg a – ( ))jg a  = ( )jg a  . 

 

But since by assumption ( ) ( )i jg a g a , the central equality above entails that 

( ( )ig a – ( ))ig a  ( ( )jg a – ( ))jg a .  This contradicts LEMMA 5. 

Let the image of  A under g be  Z*  Z, and let the image of A under g be  Z**  Z.  For this 

case (i.e., ( )ig a   ( )ig a ), we must show that   is onto Z**.  Since both Z* and Z** are images 

of  A under isomorphisms of  SUL, then  Z∗  =  Z∗∗ .  Then since  is 1-1, it is clearly onto Z**. 

To show that   preserves  , we must show that 

 

1( )g a – 2( )g a    3( )g a – 4( )g a   1( ( ))g a – 2( ( ))g a    3( ( ))g a – 4( ( ))g a . 
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To show the   direction, assume 1( )g a – 2( )g a  3( )g a – 4( )g a .  Then for any constant c, 

[ 1( )g a   c] – [ 2( )g a   c]   [ 3( )g a   c] – [ 4( )g a   c]. 

Thus in particular, letting c = ( ( )ig a – ( ))ig a  for all i (this constant is the same for all i by 

LEMMA 5), 

[ 1( )g a  1( ( )g a – 1( ))g a ] – [ 2( )g a  + 
2( ( )g a – 2( ))g a ]    

[ 3( )g a  + 
3( ( )g a – 3( ))g a ] – [ 4( )g a  + (

4( )g a – 4( ))g a ]. 

 

Then by definition of  , 1( ( ))g a – 2( ( ))g a  3( ( ))g a – 4( ( ))g a .  The   direction merely 

traces the first direction in reverse. 

The case where ( )ig a  < ( )ig a  is similar.   

 

Since only non-unique representations can be irregular, these representations are clearly 

regular.  And since the threshold  is constant, they also satisfy strong monotonicity.  Thus the 

problems discussed in SECTION 3 are avoided for well-behaved semiorders.  These 

representations are of a special kind of interval scale called a “difference scale” by Suppes and 

Zinnes (1963, p. 12), and are unique up to the addition of a constant.
 17

  It is easy to show that 

this is the strongest kind of uniqueness that may be obtained.  Let‟s assume (for contradiction) 

that two representations g and g  as above can be related by a (non-trivial) similarity 

transformation  where ( ) ( ) ( ( ))i i ig a g a g a    , for some positive constant    1.  Then  

  

                                                 
17

   Suppes and Zinnes attribute the coining of this expression to Donald Davidson. 
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( )

( )

i

i

g a

g a



  

 

for all ia   A.
18

  But this is impossible by LEMMA 5, since the difference ( ) ( )i ig a g a   is 

constant  for all ia   A, thus the ratio  

 

( )

( )

i

i

g a

g a


 

 

cannot be constant for all ia   A.
19

 

 
5.  DISCUSSION 

 

Concern about the descriptive inadequacy of utility models has focused mainly on preference 

reversal phenomena and apparent intransitivities in preference.  Less attention has been devoted 

to the phenomenon that motivated semiorder research; namely, the intransitivity of indifference.  

Unlike the case of preference, where there is some controversy as to whether the intransitivities 

apparent in the data reflect genuine intransitivity in judgment, it is not controversial that 

judgments of indifference can be genuinely intransitive.  Thus, for this aspect of choice behavior, 

semiorders provide a way of obtaining more descriptively adequate models.  The theorems above 

show that when semiorders have constant thresholds that are not too large, then they have 

numerical representations that are unique up to a positive affine transformation; hence, such 

semiorders are interval scalable.  This permits more descriptively adequate modeling of a wide 

range of choice behavior by semiorders, and it allows meaningful scientific inferences to be 

                                                 
18  The case where ( ) 0

i
g a    for some i is a trivial case, for in that case it follows that ( ) 0

i
g a  , and since 

,g g  are convex integer representations, this means that they would in this case be the same representation. 

19
   Assuming of course that A is non-trivial; that is, that  2 < A .  
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drawn from the representations of these semiorders.  But in order to obtain a unique 

representation, it was necessary to assume that   is constant, or equivalently, that   is 

independent of i.  From the standpoint of the purely mathematical questions about semiorders, 

this is a somewhat restrictive assumption.  It rules out many semiorders of interest, so it does not 

solve the uniqueness problem for finite semiorders in general.  But THEOREM 3 elucidates the 

difficulty somewhat.  Since THEOREM 3 is provable with the assumption of a constant threshold, 

it is reasonable to infer that the primary source of the difficulty with the general uniqueness 

problem for semiorders lies with the variability of the thresholds. 

Similarly, it is the variability of the thresholds that causes problems with possible empirical 

applications of semiorders.  Our original concern was that the weak orders and linear orders used 

for modeling choice behavior have properties that are not universally true of human decision 

making.  But the theorems show us that it is not the mere existence of discrimination thresholds 

in human behavior that renders linear models descriptively inadequate.  To the extent that 

thresholds play any role in lessening the descriptive adequacy of linear models, they do so 

because of their variability only.  And it appears to be true that subjects do show increasingly 

large discrimination thresholds as utility increases, analogous to what happens with sensory 

discrimination thresholds. 

Because of the difficulties that arise because of the variability of thresholds, the less 

variability we have, the better.  Fortunately, in most empirical applications we may reduce or 

eliminate the variability merely by confining our attention to a smaller interval in the range of 

utility values.  In most applications, this is in fact what is done.  For example, marketing a 

product usually involves consideration of possible substitutes, i.e., other goods in the same range 

of utility values, but it does not usually require consideration of luxury versions of the same type 
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of product.  In fact, it would be fair to say that decision theory is of most interest when utility 

values are relatively close together.  Thus, in any cases where it is possible to confine our 

attention to a subset of the entire range of utility values, we may, without harm, assume 

constancy of the discrimination threshold for that part of the range.  This subset of the range of 

utility values would be determined by any considerations that enable us to safely assume that the 

threshold is constant (or near constant) over that interval.  For such restricted domains, 

THEOREMS 1, 2 and 3 tell us that we may then model choice behavior with a semiorder rather 

than a weak order, obtain a unique numerical representation of the semiorder, and measure utility 

by an interval scale.  This enables us to derive meaningful inferences about processes underlying 

human behavior from the representations.  Since semiorders are preferable to weak orders from 

the standpoint of descriptive adequacy, this is a possible course for various social sciences to 

take in improving the descriptive adequacy of models of choice behavior. 
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APPENDIX 

 

PROPOSITION  1:   Proof:  The Proposition has two parts.  First we show that for any   

ai,  aj   A,  if  ai   aj,  then for all  k  >  j,  ai   ak (for all  i, j, k  Z A 
+

).  Let  ai,  aj   A be 

arbitrary, and suppose  ai   aj.  Pick any  k  >  j such that  ak   A.  Since by CONVENTION 3 the 

ordering of the indexing follows the ordering of  , then clearly ak is  - right of  aj.  And since 

ai and  aj are separated by at least , ai and  ak  are separated by at least  +1, and thus  ai   ak.  

The proof of the second part: that for all  m  <  i,  am   aj,  is clearly similar.   

 

PROPOSITION 2:   Proof:  Suppose  ai   aj, and let 
i


a  and j


a  be the sets of elements “right-

discriminated” from  ai  and  aj respectively, as defined in DEFINITION 12.  By CONVENTION 3, 

the indices mj of all elements in j


a  are  >  j.  By PROPOSITION 1, since  ai   aj, then for all 

mj  >  j,  ai   amj
, and thus by DEFINITION 12,  all  amj

   i


a  .  Thus, every element in j


a  is also 

in i


a .  But in addition, the element aj  i


a , but  aj  j


a , hence 

j


a  + 1   

i


a , and thus 

j


a   <  i


a .   

 

PROPOSITION 3:  Proof:  Let i


a  and j


a  be defined as in DEFINITON 12, and assume the 

hypothesis that j


a  < i


a .  Then since   is trichotomous, it follows from DEFINITION 6 that *  

is as well.  Hence to show that ai  *   aj, we may suppose (for contradiction) that either aj *  ai  

or  aj *~  ai. 

Case 1:  Suppose aj *~  ai. Then by DEFINITION 6, neither aj *   ai  nor  ai  *   aj, and hence 

aj   ai.  Moreover, also by DEFINITION 6, there is no  ak    A such that both  aj   ak   and   
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ai  ~  ak, and there is no  am  A such that both  am   ai and   am  ~ aj.   Thus, ai and aj are 

discriminated from the same number of elements, hence 
j


a   =  

i


a , contradicting the 

hypothesis. 

Case 2:  Suppose aj *  ai.  Then in the semiorder either  aj   ai  or  aj ~ ai.  If  aj   ai, then 

by PROPOSITION 2, 
i


a  < 

j


a , contradicting the hypothesis.  If  aj ~ ai, then by CONVENTION 3 

and the supposition,  j < i and hence  j +   <  i + .  But in that case, since  aj   ja   (by 

DEFINITION 4), then by PROPOSITION 1, aj   ia  , and for all  r  >  i + ,  aj   ra  as well.  

Hence, by DEFINITION 12, ia    j


a , and for all  r > i +  , ra   j


a .  But also by DEFINITION 

12, the set i


a  consists just of the element ia   (the  - least, by DEFINITION 4) and all elements 

ra  where r > i +   (by PROPOSITION 1). Thus 
i


a   j


a .  But to see that this is actually a proper 

inclusion, we need only consider the element ja  .  By DEFINITION 4, this element is the  - 

least such that  aj   ja  .  Yet it is not the case that  ai   ja  , since if that were true then   

i +     j + ,  in which case  i   j, contradicting  j < i.  Thus, the set i


a  is properly included in 

the set j


a , hence 

i


a  < 

j


a , contradicting the hypothesis.  Thus  ai  *   aj.   

 

LEMMA 1.   Proof:  If two sets i


a , j


a  (for i    j ) were of the same cardinality, then two 

different elements ia , ja  would be discriminated from the same number of elements to their 

right.  But since A is finite and all elements of A are equally spaced, ia  and ja  are separated by a 

distance of at least 1.  Thus since is constant, either  | i


a | + 1    | j


a |   or   | j


a | + 1   | i


a |.   

 



 

42 

 

LEMMA 2.1.   Proof:  This is immediate from the fact that the sets 
i


a  are only defined when 

there exists at least one element ja  such that ia    ja , and they are defined for every such ia .   

 

LEMMA 2.2.   Proof:    By DEFINITIONS 9 and 10, ia   is the  - least element of 
i


a , so  

i


a  =  1, , ,i i na a a     .  This set includes all  n elements of  A  except the i elements ja  where 

ja   UL  ia , and the  – 1 elements between (but not including)  ia  and  ia  .  Thus  

|
i


a |   =  n – (i +   –  1).   

 

LEMMA 3.   Proof:   “Only one” is immediate from LEMMA 1.  To see that there is at least one 

set of cardinality k  for each  k  (1   k   n – ), it suffices to note that for each such k there is a 

unique element ka  (by the fact that all k in this range are indices), and by DEFINITION 10, a set 

k


a .  By LEMMA 2.2, these sets have cardinality |

k


a |  =  n – (k +   – 1), which clearly varies 

from n –  to 1 as k varies from 1 to  n – .   

 

LEMMA 4.   Proof of (i):   By LEMMA 1 and by the ordering of Seq from largest to smallest, 

there is at least one such 
ki

b .  To see that there is no more than one, we must first notice that for 

all adjacent mi , 1mi  , and their corresponding adjacent sets in Seq, 
1 1( )( )

m mi i 


a    ( )( )

m mi i


a .  This 

is an immediate consequence of PROPOSITION 1 and the fact that   is constant.  Now let‟s 

assume (for contradiction) that there are two distinct elements b and b , both of which are 

elements of ( )( )
m mi i


a , but neither of which is in 

1 1( )( )
m mi i 


a .  Then  

1 1( )( )
m+ mi i 


a  + 2    ( )( )

m mi i


a .  By LEMMA 3, there is exactly one set in Seq of cardinality k for 

all k: 1   k   n – .  Thus there is a set, call it “ i


a ”  of cardinality i


a  = 

1 1( )( )
m+ mi i 


a  + 1.  But 
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then 
1 1( )( )

m+ mi i 


a  < 

i


a  < 

( )( )
m mi i


a .  By the ordering of  Seq by cardinality,  and by the fact that 

every set a defined by DEFINITION 10 appears in Seq, i


a  appears in Seq between ( )( )

m mi i


a  and 

1 1( )( )
m mi i 


a .  This contradicts the assumption that ( )( )

m mi i


a  and 

1 1( )( )
m mi i 


a  are adjacent in Seq. 

Proof of (ii):  The unique
ki

b from the first part of this lemma is by definition of 
mi


a  an 

element of  A such that 
mi

a   
ki

b  and  
1mi

a

  

ki
b .  We must check that 

ki
b  is the  - least 

element of 
mi


a .  Suppose (for contradiction ) that there is an element 

jib where j ki i  and both 

mi
a   

jib  and 
1mi

a

  

jib .  Then by DEFINITION 9, m ji i  .  But since by assumption j ki i , 

then this entails that m ki i  , and thus 1m ki i   .  But then 
1mi

a

  

ki
b , which is a 

contradiction.  Thus, 
ki

b  is the  - least element that is right-discriminated from 
mi

a , which by 

DEFINITION 9 means that 
ki

b = 
mi

a  .    

 

LEMMA 5.   Proof:  Let S be any finite semiorder, and let f and f   be two convex, totally 

ordered integer representations of S with constant thresholds.  We will first consider the case 

where ( )
mi

f a    ( )
mi

f a  for all 
mi

a   A.  Since these representations are closed representations 

with constant thresholds, then  min (ran f  ) = 
1

( )if a , and  min (ran f ) = 
1

( )if a .  Let  

c = 
1 1

( ) ( )i if a f a  .  Then since both ran  f  and  ran f   are convex and both  f  and f   satisfy 

strong monotonicity, the value of 
1 kia


 (for any k: 1   k   n –  may be written 
1

( )if a  + k  and 

1
( )if a  + k, respectively.  Since k is a positive constant, then clearly  

 

1 1
( ) ( )i if a f a   = c     

1 1
( ) ( )i if a k f a k     = c. 
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Since all values of  i are included in 1i , 1 ki  , , 1 ( 1)ni   , then this is true for all 
mi

a   A. 

The case where  ( )
mi

f a  < ( )
mi

f a  is similar.   
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Tarski‟s Convention T has been applied successfully to the study of the semantics of formal 

languages, but there are numerous well-known difficulties with its application to natural 

languages.  These involve falsifications of the equivalence schema generated by substituted 

sentences involving indeterminate truth values or indexicals, as well as sentences giving rise to 

the various semantic antinomies.  All of these difficulties have arisen from attempts to apply 

Convention T to sentences that can be seen to be “problematic” (i.e., ambiguous or paradoxical) 

in isolation.  Hence, the problematic cases are generally regarded as involving anomalous 

sentences, but not necessarily as indications of problems with Conventon T itself.  This general 

attitude toward the problem cases has fostered increased attention to Convention T in recent 

decades, which is manifest in the central role it plays both in Davidson‟s semantic program, and 

more recently in the currently dominant deflationist theory of truth.  But an ingenious 

counterexample to Convention T was discovered by Hintikka  (1976a) which differs from all 

other types of counterexamples in a crucial respect – the sentence substituted into the 

equivalence schema is neither ambiguous nor paradoxical, yet substitution of the sentence into 

the equivalence schema yields a false sentence.  Hintikka‟s counterexample received little 

attention, largely because it was thought to be an isolated case, and hence not necessarily an 
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obstacle to the wider application of Convention T.  I show that Hintikka‟s counterexample 

generalizes in quite unexpected ways, and that there are in fact a large number of unambiguous 

sentences that generate counterexamples of the same general type.  I then show that various 

proposals for dealing with Hintikka‟s original counterexample are unsatisfactory, and that none 

of the proposed solutions can resolve all of the counterexamples presented in this essay.  The 

existence of such a large variety of counterexamples corroborates Tarski‟s and Hintikka‟s 

skepticism about the possibility of using Convention T as a foundational criterion for assessing 

the adequacy of natural-language truth definitions, and hence poses a serious obstacle to 

Davidson‟s program in semantics, but even more seriously undermines the deflationist theory of 

truth. 
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1.  INTRODUCTION: CONVENTION T AND NATURAL LANGUAGES 

 

According to Tarski (1944, 1956), it is unlikely that the project of constructing precise 

semantic theories for natural languages will be successful.  One would certainly expect any such 

theory to include, at the very least, a precise definition of what it means to be a „true sentence‟ in 

the language under consideration.  But with respect to such a definition, Tarski said: 

 

The problem of the definition of truth obtains a precise meaning and can be solved in a 

rigorous way only for those languages whose structure has been exactly specified.  For 

other languages–thus, for all natural, „spoken‟ languages–the meaning of the problem is 

more or less vague, and its solution can have only an approximate character. (Tarski 

1944: 347, italics in original). 

 

 

It seems that Tarski‟s reasons for this position stemmed from other more general concerns 

about the very enterprise of natural language semantics – in particular, concerns about the 

pervasiveness of ambiguity and context-sensitivity on the one hand, and about the existence of 

the semantic paradoxes on the other.  These two concerns were clearly on his mind when he 

wrote the following: 

 

Whoever wishes, in spite of all difficulties, to pursue the semantics of colloquial 

language with the help of exact methods will be driven first to undertake the thankless 

task of a reform of this language.  He will find it necessary to define its structure, to 

overcome the ambiguity of the terms which occur in it, and finally to split the language 

into a series of languages of greater and greater extent, each of which stands in the same 

relation to the next in which a formalized language stands to its meta-language.  It may, 

however, be doubted whether the language of everyday life, after being „rationalized‟ in 

this way, would still preserve its naturalness and whether it would not rather take on the 

characteristic features of the formalized languages. (Tarski 1956: 267) 

 

 

There is an insight underlying both of these passages which, I think, has not received the 

attention it deserves.  It‟s not the obvious point that natural languages, unlike formal languages, 
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contain many terms that are ambiguous and context-sensitive.  The deeper insight surfaces in 

Tarski‟s conjecture that if one attempts a scientific semantics of a natural language, then the very 

process of precisely defining the structure of the language and disambiguating its terms might 

thereby alter the natural language in such a way that the resulting language would not really be 

the original object of study, but instead would be something more resembling a formal 

language.
20

  We could perhaps then qualify Tarski‟s skepticism about natural language semantics 

as follows: it‟s not that he thought the application of formal methods to natural languages was in 

principle flawed, but rather that he was skeptical about the enterprise succeeding as a study of 

natural languages, and suspected that it would end up really being a study of something else; 

namely, the study of some new, semi-formal language that was not the intended object of study. 

While one might object to Tarski by pointing out that all scientific modeling idealizes to 

some extent, and thereby distorts the object of study, I think Tarski‟s position has at least a prima 

facie plausibility on the basis of an additional layer of distortion that happens when one 

formalizes a natural language.  The difference is that in the formalized study of the physical 

world by the natural sciences, the natural world is an entirely separate entity from the formal 

languages used to study it, so mathematical idealizations may be thought of as merely 

simplifying the process of inquiry, and not „thereby‟ simplifying the object of study.  In contrast, 

study of a natural language by means of another (formal) language involves not merely the 

modeling of some non-linguistic structure by a language, but rather the process of translation of 

                                                 
20

  The late Henry Hiż, who was a student of Tarski‟s in Warsaw, once informed me (in conversation) that Tarski 

had extensive knowledge of linguistics and languages, and had a much greater appreciation of the complexities of 

natural languages than one might gather from the bulk of Tarski‟s contributions to mathematics.  This little-known 

fact about Tarski suggests that his skepticism about the utility of the formalization of natural languages was at least 

well-informed from the linguistics side, and not merely a bias driven by his daily workings with the precision of 

mathematics.  
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one language into another, and this process may indeed result in corruption of the original object 

of study in a way that mathematical modeling of physical structures does not. 

This is clearly a topic worthy of more extended study.  For now, however, we needn‟t settle 

the question of whether Tarski was right; we need only realize that his skepticism had a 

reasonable foundation.
21

  However, what is relevant for our purposes is that Tarski thought the 

situation was quite different with respect to a scientific semantics of mathematics and logic.  

Formal languages do not generate the sorts of problems associated with indexicals, tenses, and 

other context-sensitive features of natural languages, and truth can be defined in such a way as to 

avoid the liar paradox.  Thus, despite the fact that translation from object to meta-language may 

still be involved in studying the semantics of formal languages, this process needn‟t (in 

principle) result in any distortion of the object language. 

Tarski proposed a criterion for defining truth predicates for formal languages in Convention 

T, which we paraphrase here, omitting some detail: 

Convention T: A truth predicate “is true” is adequate for a language L if and only if it entails all 

substitution instances of the equivalence schema: 

 

(ES)     X is true if and only if p, 

 

where „X‟ is a placeholder for a name of a sentence in the object-language, and „p‟ is a 

placeholder for a translation of this sentence into the meta-language.
22

 

                                                 
21

  For an opinion radically opposed to Tarski‟s, see Richard Montague‟s comments at the openings of “English as 

a Formal Language” and “Universal Grammar,” (1970a: 188 and 1970b : 222, respectively), where he famously 

rejected the contention that there is any important theoretical difference between natural and formal languages.  

Whether Tarski‟s or Montague‟s opinion is correct will, I think, not be known until we have formalized at least a 

large fragment of some natural language, so that we may then be in a position to determine whether the resulting 

construction can be considered the original natural language in „formal dress,‟ or something else entirely. 
22

  Of the two occurrences of the biconditional if and only if in this paraphrase – one in the initial lines of 

Convention T, one within the equivalence schema (ES) itself – Tarski was occasionally more relaxed with his 

phrasing of the first occurrence within Convention T.  Thus, in (1956: 187-88) Tarski says “A formally correct 

definition of the symbol „Tr‟ … will be called an adequate definition of truth if it has the following consequences:” 

(one of the consequences being the satisfaction of all instances of (ES)).  This may mislead one into thinking that 

Tarski only intended the satisfaction of all instances of (ES) to be a sufficient condition for a definition of truth to 

be adequate.  But several other passages in both (1944) and (1956) make it clear that he also intended the 

satisfaction of all instances of (ES) to be a necessary condition for a definition of truth to be adequate.  For 

example, he says “… if the definition of truth is to conform to our conception, it must imply the following 
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It will be important in what follows to clearly distinguish the equivalence schema (ES) from 

Convention T, since the two have sometimes been conflated in the literature.
23

  (ES) is merely a 

schema, but Convention T is an adequacy criterion which involves reference to (ES) for the 

purpose of saying something about truth.  Whereas (ES) has free variables and individual 

substitution instances, which (following common practice) we‟ll hereafter call “T-sentences,” 

Convention T involves universal quantification over „X‟ and „p,‟ where the substitutions into „X‟ 

and „p‟ are related by translation.  I‟ll return to this distinction shortly.  

In spite of the obvious differences between formal and natural languages, many philosophers 

and linguists have not shared Tarski‟s skepticism about natural language semantics.  Davidson 

(1967, 1969, 1973) famously argued that Tarski‟s Convention T provides a template for the 

construction of a recursive definition of truth for any natural language L, provided that the T-

sentences are relativized to speakers and times of utterance.  In place of the usual T-sentences, 

Davidson proposed using substitution instances of the more elaborate:  

 

(D)      X is true (as English) for speaker u at time t if and only if p.
24

 

 

                                                                                                                                                            
equivalence: The sentence “snow is white” is true if, and only if, snow is white.” (1944: 343, emphasis mine), and “ 

… we wish to use the term “true” in such a way that all equivalences of the form [ES] can be asserted … ”  (1944: 

344, emphasis mine).  In addition, when explaining how Convention T might be phrased for a truth predicate “Tr” 

which is applied to a language that has only finitely many sentences, where one could list all possible substitution 

instances (X1, p1), (X2, p2), …, (Xn, pn) of (ES), Tarski makes use of a biconditional phrasing in the initial lines of 

Convention T, and he translates the biconditional within (ES) into a disjunction of conjunctions. He there says: “ … 

it would suffice to complete the following scheme: X  Tr if and only if either X = X1 and p1, or X = X2 and p2, …, 

or X = Xn and pn, ….” (1956: 188; where each pi is a translation of the sentence Xi into the metalanguage).  
23

  For example, Klagge (1977: 377-78), Kirkham (1992: 143-4), and Williams (1999: 549) all refer to (ES) itself as 

“Convention T.”  As far as I can tell, this doesn‟t affect their arguments in any substantive way, but for the 

purposes of the present paper the distinction is important.  Klagge‟s paper is discussed in section 4 below.  
24

  I‟ve modified Davidson‟s (D) trivially so that it agrees with our notation in (ES). See Davidson (1969: 756).  In 

order to simplify cross-referencing, the equivalence schema and its relatives will be labelled mnemonically with 

capital letters as above with “ES” and “D,” and all counterexamples to the various schemas will be numbered in 

sequence. Variants of either a schema or counterexample will carry the same letter(s)/number(s) as the original, but 

will add a prime or small italic letter, respectively. 
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This schema, perhaps with additional modifications as warranted by the complexity of the 

substituted sentence, enables one to specify the truth conditions of sentences with overtly 

context-sensitive indexicals.
25

 

In recent decades, Convention T has figured prominently in the literature on truth because the 

equivalence schema is the centerpiece of currently popular deflationist theories of truth.  This 

central role is emphasized in the following passage from an anthology devoted to deflationism: 

 

… what constitutes the heart of deflationism – is that deflationists take the instances of 

[ES] to be fundamental, both conceptually and explanatorily. According to the 

deflationist, neither a conceptual nor a substantive ... analysis of truth is possible, because 

there is nothing – conceptual or explanatorily – underwriting instances of [ES]. The 

instances of [ES] are bedrock.” (Armour-Garb and Beall 2005: 3). 

 

When Armour-Garb and Beall speak of a „conceptual‟ analysis they have in mind 

specifically Tarski‟s analysis of truth in terms of the more basic concept of satisfaction, and by a 

„substantive‟ analysis they have in mind non-deflationist attempts to explain why the substitution 

instances of (ES) hold by „inflating‟ (ES) with some additional property, such as corresponding 

with reality, or cohering with a set of beliefs. 

This increased attention to both Convention T and T-sentences has occurred despite Tarski‟s 

skepticism, and despite the existence of an interesting counterexample to Convention T 

presented by Hintikka (1976a, 1976b) which has received scant attention over the years.  The 

lack of attention to Hintikka‟s counterexample has been due, I surmise, to a premature 

assessment of it as merely an isolated case.  In what follows I‟ll show that Hintikka‟s 

counterexample was far from isolated, and that what he in fact discovered is a phenomenon 

which generates a surprising variety of counterexamples.  But unlike problematic substitution 

                                                 
25

  By „additional modifications‟ I mean that if the object-language sentence contained, say, a demonstrative such 

as „this‟ or „that,‟ then the schema would require specification of „the object demonstrated by speaker s,‟ or some 

such. See Davidson 1967: 319-20 for details. 
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instances of the equivalence schema that clearly are isolated peculiarities, such as liar-type 

sentences and sentences with non-denoting expressions or indexicals, in which cases it is the 

substituted sentence that is the root of the problem – Hintikka‟s counterexample and others like it 

employ substitution instances that are unambiguous and non-paradoxical, and hence make it 

clear that it is the use of the equivalence schema itself that is problematic.  This renders these 

counterexamples a more serious problem for both the Davidsonian and the deflationist than the 

more widely-discussed problem cases just mentioned.  More troubling is the fact that some of the 

counterexamples persist even under a propositional formulation of the equivalence schema.  

 

2.  HINTIKKA‟S COUNTEREXAMPLE 

 

Since (ES) employs a material biconditional, one of its logical consequences is of course the 

conditional schema 

 

(CS)                          X is true if p. 

 

Clearly, any theory of truth or meaning that requires the truth of instances of (ES) also requires 

the truth of instances of (CS).  Consequently, any substitution instance that falsifies (CS) will 

necessarily also falsify (ES).  For ease of reference, I‟ll refer to the substitution instances of (CS) 

from here on as „T-conditionals.‟  Hintikka (1976a: 107-8) provided the following 

counterexample to (CS): 

 

(1)     „Any corporal can become a general‟ is true if any corporal can become a general 

 

or alternatively, 
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(1´)     If any corporal can become a general, the sentence „Any corporal can become a general‟ is 

true. 

 

The reason why (1) is a counterexample to (CS) is that the first „any‟ in (1) clearly has the 

force of a universal quantifier, while the second „any‟ has the force of an existential quantifier.  

Of course, this is not the only way that (1) can be interpreted.  One might, for example, try to 

preserve the truth of (1) by simply interpreting the second „any‟ also as universal.  Alternatively, 

one might try the more sophisticated approach of keeping the first „any‟ universal and the second 

„any‟ existential, but then consider a „non standard‟ universe with only one corporal, where that 

corporal can become a general.  In this non-standard universe, the conditional will come out true 

since the existential and the universal quantifiers would then range over the same singleton.   

But both of these attempts at a solution miss the point – the mere existence of a false reading 

is a problem for the use of (ES) in Convention T.  The very purpose of Convention T is for it to 

have a foundational role as a criterion for the adequacy of truth-definitions (Hintikka 1976a: 

111).  Its purpose is to provide a standard which enables us to see whether a predicate we are 

using to capture our intuitive concept of truth actually does capture that intuitive concept.  

Hence, it is especially intended to cover cases where the natural language terms are given their 

usual interpretations in the actual world.  Attempts to preserve the truth of instances of (ES) by 

giving the schema an alternate reading undermine the foundational status of Convention T as a 

semantic criterion, especially when they can only preserve truth by resorting to a reading that 

seems forced and feels unnatural.
26

 

                                                 
26

  The readings are unnatural whether they result from the relatively minor ploy of giving an infrequently-used 

interpretation to any of the terms, or as a result of using a non-standard model.   In Hintikka‟s original articles he 

speaks of his counterexample as „false,‟ rather than „easily falsifiable,‟ or „false according to the dominant reading.‟ 
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This fact led Hintikka to consider his counterexample a serious problem for semantic 

theories, such as Davidson‟s, that demand the entailment of all substitution instances of the 

equivalence schema.  The problem is this: for Davidson, Convention T and T-sentences jointly 

form the sole criterion of adequacy for a definition of truth, as is made clear in the following 

passages: 

 

Convention T and T-sentences provide the first and best link between familiar truths 

about truth and formal semantics; they alone constitute an unmistakable test that a theory 

has captured a concept of truth we are interested in. (Davidson 1973: 77) 

 

… although T-sentences do not define truth, they can be used to define truth-

predicatehood: any predicate is a truth-predicate that makes all T-sentences true. 

(Davidson 1973: 76) 

 

By requiring a definition of truth to make all T-sentences true (in order to capture our intended 

concept of truth), Davidson set the bar rather high.  As long as there is even one acceptable 

reading of an instance of (ES) which falsifies it, one has a counterexample on one‟s hands.  A 

false instance indicates that the employed definition fails to capture our intended concept of 

truth; i.e., it fails to capture our intuitive notion of what “is true” means.  

But there is a deeper problem: if Convention T is to provide the cornerstone for a 

compositional semantic theory, as it is in Davidson‟s program, then the instances of (ES) are 

specifying how the truth conditions of complex sentences are built compositionally out of the 

satisfaction of their parts.  In order for (ES) to correctly state these conditions for any given 

sentence, it is of course essential that i) the T-sentence in question is actually true, and ii) the 

meaning of the substituted sentence is not altered after substitution into (ES).  These are fairly 

                                                                                                                                                            
I have considered the alternate readings more sympathetically only for completeness‟ sake, but the above 

comments should make it clear that Hintikka‟s phrasing was well-justified. 
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minimal requirements, but neither of them is satisfied in the case of (1).  Because of this, 

Hintikka concluded that: 

 

... there is no reason to expect the schema [ES] not to have false instances in other cases 

as well.  ... Hence we just cannot trust the schema [ES] to yield only true substitution-

instances.  This already puts an entirely new complexion on attempts to base one‟s 

semantics on Convention T.  (Hintikka 1976b: 63) 

 

Notice that Hintikka‟s counterexample is quite different from the sorts of problem cases that 

have received much more attention in the literature on truth.  The sentence „Any corporal can 

become a general‟ has a determinate truth value, and hence it is not subject to problems 

associated with non-denoting expressions, such as those discussed in Dummett‟s classic paper on 

truth (1959).  Dummett‟s concern was with a type of sentence S that is neither true nor false 

because it contains a non-denoting expression.  In such cases, the sentence „S is true‟ will be 

false, and consequently the equivalence expressed by (ES) clearly will not hold.  In addition, 

Hintikka‟s sentence contains no indexicals, and thus it is not the kind of example that motivated 

Davidson to provide an utterance-based version of the equivalence schema.  Moreover, it 

contains no self-reference, so it will not lead to any of the known semantic antinomies.  These 

features separate Hintikka‟s counterexample and others to be presented below from the better-

known indeterminate cases, essentially context-sensitive cases, and liar-type cases. 

To see the importance of Hintikka‟s discovery, we will next show that there are many 

additional counterexamples of the same general type.  These additional cases are also 

unambiguous and non-paradoxical, but more importantly, they involve the reinterpretation of a 

variety of syntactic categories besides quantifiers.  Hence they corroborate the claim, first made 

by Hintikka, that the problem arises not because of „peculiarities‟ with any particular terms in the 
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lexicon, but rather because of the form of the equivalence schema itself.  We will hereafter call 

all such cases „Hintikka-type counterexamples‟ to (ES). 

 

3.  HINTIKKA-TYPE COUNTEREXAMPLES 

 

Suppose we begin with the following sentence: 

 

(2)     Otto is ever grateful. 

 

This sentence can be paraphrased roughly as „Otto is always grateful.‟  Now suppose we wish to 

specify the truth conditions of (2) by employing Convention T, substituting a quotation of (2) for 

X and (2) itself for p into (ES).  We then obtain as a logical consequence the following 

substitution instance of (CS): 

 

(2a)     „Otto is ever grateful‟ is true if Otto is ever grateful. 

 

This sentence is problematic in a way analogous to Hintikka‟s (1).  In (2a), the right hand 

occurrence of (2) has the dominant reading: 

 

(2b)   t (t is a time    Otto is grateful at t). 

 

But clearly, the relatively weak condition expressed in (2b) – that is, the condition of Otto being 

grateful at some time – is not a sufficient condition for the truth of (2), i.e., Otto always being 
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grateful.  Consequently (2a) is false, since it in effect says that (2b) is a sufficient condition for 

the truth of (2).
27

 

It is important to notice that (2) has a clear, unambiguous meaning, where „ever‟ means 

always and cannot mean at some time.  However, the substitution of (2) into a T-conditional 

results in two occurrences of the same string of words, where the object-language occurrence of 

„ever‟ is interpreted as always, but this interpretation is altered by context in the T-conditional so 

that the dominant interpretation of the meta-language occurrence of „ever‟ in (2a) is at some 

time.  While this is not the only way that (2a) can be interpreted, it is clearly the most natural 

reading. 

Example (2a) and Hintikka‟s (1) above hinge on the reinterpretation of an adverb („ever‟) 

and a quantifier („any‟), respectively.  Now consider the following verb case: 

 

(3)     „Obama should win the election‟ is true if Obama should win the election. 

 

This is also a counterexample to (CS) because the first „should‟ is clearly interpreted as 

synonymous with ought to, while the second „should‟ has the dominant interpretation happens 

to.  In a case like (3) the falsification of the T-Conditional may be clearer if it is rephrased in the 

following way: 

 

(3a)     If Obama should win the election, then „Obama should win the election‟ is true. 

 

It is of course true that when the verb „should‟ means ought, this ought itself may be understood 

in either a moral or a probabilistic sense (i.e., as either deserves to win or is likely to win, 

                                                 
27

 As with Hintikka‟s (1), there may of course be cases where (2a) is vacuously true, e.g., whenever (2b) is false.  

But as noted in the previous section, what‟s at issue is merely whether there are any false readings of an instance 

of (ES).  With this caveat stated, I‟ll hereafter ignore this point as it pertains to examples below. 
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respectively).  But this does not affect the status of (3) as a counterexample to (CS).  To see that 

(3) is a counterexample to (CS), it suffices to notice that the sentence 

 

(3b)     Obama should win the election 

 

cannot mean that Obama happens to win the election.  In (3b), „should‟ must be interpreted as 

ought, in either of the two senses just mentioned.  Thus, while „Obama happens to win the 

election‟ may well be true, it is clear that the truth of this sentence is neither a necessary nor a 

sufficient condition for the truth of the sentence „Obama ought to win the election.‟  But (3) is 

the result of substituting (3b) and its quotation into (CS), and (3) in effect says that happens to is 

a sufficient condition for ought to, which is clearly wrong.  Consequently, (3) is false. 

The following counterexamples show that this phenomenon extends, surprisingly, to noun 

phrases in addition to quantifiers, adverbs, and verbs. Dominant interpretations are given below 

in parentheses: 

 

(4)   „Mary comes home for Thanksgiving‟ is true if Mary comes home for Thanksgiving. 

(every Thanksgiving)          (this Thanksgiving) 

 

(5)   „Bob cleans the gutters in the fall‟ is true if Bob cleans the gutters in the fall. 

  (every fall)            (this fall) 

 

When examples (2a), (3), (4), and (5) are considered alongside Hintikka‟s original example (1), 

it becomes clear that the general-then-specific reading of most T-conditionals seems to be driven 

by the conditional itself, and not by the particular word or phrase whose meaning is changed. 

Before closing this section, we will consider two substitution instances of (CS) where the 

falsehood of the resulting T-conditional is less certain, yet it is nonetheless clear that the 
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resulting conditional does not unambiguously specify the truth conditions of the substituted 

sentence.  Consequently, they provide further evidence of the inadequacy of the use of 

Convention T as a semantic criterion.  Consider the following verb and adverb cases (again, the 

dominant interpretations of the relevant terms appear below in parentheses): 

 

(6)     „I may bring a guest‟ is true if I may bring a guest. 

            (might)       (am allowed to) 

 

(7)     „Pierre can just finish in time‟ is true if Pierre can just finish in time. 

   (barely)             (only) 

 

In both (6) and (7), as with the other examples above, it is possible to force readings of the right-

hand sides of the conditionals so that the meta-language interpretations of „may‟ and „just‟ are 

the same as their object-language interpretations.  But the changing interpretations indicated 

above appear to be dominant for most speakers, and as with the clearly false cases discussed 

earlier, this is more than enough to cause problems for Convention T.
28

  In spite of the fact that 

(6) does involve the indexical „I,‟ and hence is not unambiguous in the way that other Hintikka-

type cases are, this example illustrates Hintikka‟s main point even more forcefully. When 

reading (6), it is natural to keep the reference of the overtly ambiguous term „I‟ the same in both 

of its occurrences, yet the seemingly unproblematic word „may‟ is given two different readings 

upon substitution into the T-conditional.
29

  (6) and (7) are further counterexamples to Convention 

                                                 
28

  That is, the changing interpretations have been dominant for most of the colleagues, students, and other audience 

members to whom this paper has been presented. 
29

  Notice:  parallel to the earlier counterexamples, when one considers the left hand side of (7) in isolation, „just‟ 

must be interpreted as meaning barely, and cannot be interpreted as meaning only. With (6), however, although it is 

possible to read the left-hand occurrence of „may‟ as is allowed to, this is not the dominant interpretation for most 

speakers. 
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T because in both cases, the truth of the quoted object language sentence is independent of the 

truth of the respective disquoted occurrence of the same sentence in the meta-language. 

All of these counterexamples manifest a key property of natural languages not shared by 

formal languages: the context-sensitivity of many not-overtly-ambiguous words in the lexicon.  

Both Tarski and Hintikka believed that this feature of natural languages limited the application of 

Convention T beyond formal languages.  I‟ll now show that despite the recent, more widespread 

application of Convention T to natural languages, the more conservative position shared by 

Tarski and Hintikka still withstands the objections that have been leveled against it. 

 

4.   PROPOSED SOLUTIONS 

 

The additional counterexamples to Convention T show, at the very least, that the 

phenomenon Hintikka discovered is far more pervasive than his original example might lead one 

to believe.  The phenomenon pertains not only to quantifiers, but also (at least) to adverbs, verbs, 

nouns, and definite descriptions. By performing straightforward substitutions of other ordinary, 

unambiguous phrases into T-conditionals, it is not difficult to find additional Hintikka-type 

counterexamples for each of the relevant syntactic categories.
30

  Consequently, the phenomenon 

affects many Tarski-biconditionals expressed in English, and therefore clearly poses a problem 

for theories of semantics or truth for natural languages that require the truth of all substitution 

instances of (ES).  

                                                 
30

  I was able to find several dozen Hintikka-type counterexamples in English – far too many to discuss 

adequately in a single paper – including cases where the shifting semantics occurred for indefinite descriptions 

and plural nouns.  Consider, for example, the sentence: “„A caterpillar becomes a butterfly‟ is true if a caterpillar 

becomes a butterfly.”  Or consider: “„Raccoons are found near the garbage‟ is true if raccoons are found near the 

garbage.”  Both of these instances of (CS) are parallel to the examples (2a), (3), (4), and (5) in that the object 

language occurrences of „a caterpillar‟ and „raccoons‟ are general, while the metalanguage occurrences are easily 

given a particular reading.  
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To my knowledge, Hintikka‟s counterexample inspired only one paper-length discussion – 

by Klagge (1977), but also some more recent, albeit relatively brief comments by Kirkham 

(1992), Peregrin (1999b), and Lepore & Ludwig (2005).  There does not appear to be any 

agreement on exactly how the counterexample should be dealt with, and this, I think, counts as at 

least prima facie evidence that there is much more to Hintikka‟s counterexample than meets the 

eye.  We‟ll now look at the various proposed solutions, and see that they all fail to provide a 

satisfactory resolution of the problem.
31

   

 

4.1   On ambiguity versus context-sensitivity 

 

In Hintikka‟s original article (1976a: 108-09), he considered, but rejected the potential 

allegation that his counterexample is simply due to the fact that „any‟ is ambiguous in English.  

Although none of his later commentators has explicitly made this allegation, some have pointed 

to context-sensitivity, and at least Peregrin suggested that the issue was a „peculiarity‟ of „any‟ 

(1999: xvii).  Before discussing the relationship between ambiguity and context-sensitivity, it 

will be instructive briefly to consider Hintikka‟s own explanation of his „any‟ counterexample, in 

order to get a clearer understanding of the underlying phenomenon generating the 

counterexamples. 

Hintikka argued that ambiguity is not the root of the problem in (1) and (1´), although he 

defended this view by offering a rather ambitious hypothesis about the meaning of „any‟ in 

English.  He argued that „any‟ is always universal in English (and hence not ambiguous), 

although its scope may change as it interacts with its grammatical environment in a T-conditional 

                                                 
31

  I should note that Kirkham has so far been alone (apart from the present author) siding with Hintikka in this 

debate.  He has acknowledged the seriousness of Hintikka‟s original counterexample for Davidsonians, and sees 

no way out for them. See Kirkham (1992: 244). 
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(so one could still say that „any‟ is context-sensitive).
32

  One of his reasons for believing this was 

that formalizations of „any‟ using an existential quantifier can be given paraphrases using a 

universal quantifier.
33

  He offered the following formalizations of (1´): 

 

(1)    x (x is a corporal    x can become a general) → „any corporal 

can become a general‟ is true 

 

which, under a standard prenex conversion, is easily seen to be logically equivalent to the 

formalization 

 

(1)    x [(x is a corporal   x can become a general) → „any corporal 

can become a general‟ is true]. 

 

Given the logical equivalence of (1) and (1), it becomes possible to argue that „any‟ has the 

„deep‟ interpretation of a universal quantifier in English, and hence that the „underlying‟ form of 

(1´) is (1), but that the logical scope of the quantifier is altered by its grammatical context in the 

T-conditional – in particular, by its interaction with the word „if.‟  The surface grammatical form 

is then rendered by (1).
34

  The result is a substitution instance of (CS) (and hence of (ES)) that 

is false under its standard interpretation. 

                                                 
32

  See Hintikka (1976b: 64) for the claim that „any‟ is always universal, and see Hintikka (1997) for a discussion 

of the difference between what he calls „binding scope,‟ which is indicated by the placement of parentheses, and 

„priority scope,‟ which is determined by the underlying logical form of the sentence.  Priority scope is what is 

relevant for the „any‟ case under consideration here. 

The reader should also be careful not to confuse Hintikka‟s claim that „any‟ is always universal with a related 

but different claim, which has become known as his „any-thesis.‟  The „any-thesis‟ says, roughly, that a use of „any‟ 

is grammatical if and only if substitution of „every‟ for „any‟ results in a grammatical sentence not identical in 

meaning with the original „any‟ sentence.  See Hintikka (1977, 1980) for a defense of his „any-thesis.‟  
33

  The reverse is not generally true, though, as can be seen by considering a sentence with an „any‟ expression in 

the lead position (e.g. „Anyone can get the job done‟), where one will be unable to give the expression an 

existential reading. 
34

  I wish to emphasize that I am not claiming that „underlying‟ form or „surface‟ grammatical form necessarily 

corresponds, or doesn‟t correspond, to any particular level of representation postulated by different syntactic 
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Although the logical equivalence (1) and (1) may lend some plausibility to the hypothesis 

that „any‟ is always universal in English, this hypothesis was challenged by Carlson (1980) and 

Higginbotham (1982), both of whom provided examples of sentences involving „any‟ where a 

universal paraphrase does not appear to be available.  For example, Higginbotham argued that in 

the following examples, „any‟ has only existential force: 

 

(8)     That teacher rarely fails anybody. 

(9)     John will know if anybody left. 

 

Higginbotham (1982: 267-68) showed that a logical paraphrase analogous to the above 

paraphrase of (1) by (1) will not work in these cases, and hence that a universal reading of 

„any‟ in (8) and (9) fails to give the correct interpretation.  Even though Hintikka‟s universality 

claim concerned a „deep‟ level of representation rather than the surface form or logical form, the 

existential force of „any‟ in (8) and (9) is so strong that it does not seem likely that either could 

be given a plausible „deep‟ representation where „any‟ is universal. 

I surmise that part of the reason for the lack of attention to Hintikka‟s counterexample over 

the years is that some may have believed – wrongly, I think – that Hintikka‟s main criticism of 

Convention T rested entirely on his hypothesis about the universality of „any,‟ and the examples 

of Carlson and Higginbotham support a persuasive counterargument that Hintikka‟s universality 

hypothesis does not appear to be correct as stated.
35

  But in light of the additional 

counterexamples presented in the last section, none of which involve the word „any‟ at all, it 

                                                                                                                                                            
theories, especially to what linguists have called  „LF.‟ Hintikka seems to have had in mind that (1) is a „deep‟ 

structure representation and that (1) is either a „surface‟ structure representation, or what today would be 

considered LF.  The shudder quotes indicate that what Hintikka said in the 70‟s may well be different from what he 

might say today, given the changes in the understanding of levels of representation in linguistics over the last few 

decades. 
35

   However, it may still be true that some weaker form of the hypothesis is correct – e.g., that „any‟ is universal in 

all but a few isolated contexts. 



 

67 

 

should be clear that Hintikka‟s criticism of natural language applications of Convention T is 

actually independent of his hypothesis about the universality of „any.‟  The counterexamples 

must have some other source. 

One may then wonder why Hintikka went to such lengths to defend his hypothesis that „any‟ 

is always universal, if indeed this hypothesis is independent of his main criticism of Convention 

T.  I can think of at least one good reason:  If „any‟ were always universal, it would then be 

clearer that the source of the problem with (1) is not the ambiguity of an isolated word, but rather 

context-sensitivity as a general phenomenon.  This is an essential distinction, because by pointing 

to context-sensitivity rather than ambiguity, it becomes clearer that there is a genuine problem 

with using Convention T as a semantic criterion, since (ES) involves the substitution of words 

into a new context.  I think that was the main point Hintikka meant to emphasize, and as I‟ll now 

argue, he was indeed right to point to context-sensitivity and not to ambiguity as the main culprit. 

To see this, we should first clearly separate the concepts of ambiguity and context-sensitivity.  

A term that appears in a given context and can receive more than one interpretation in that 

context may be called „ambiguous.‟  On the other hand, a term which receives one interpretation 

in one context and a different interpretation in other contexts – but can only receive a single 

interpretation in some of these contexts – would properly be called „context-sensitive,‟ but not 

necessarily „ambiguous.‟  Hence, context-sensitivity is a less extreme form of meaning variance 

than ambiguity.  If we fix a term but vary the context, and find that the meaning of the term can 

vary across the different contexts, then the term is merely context sensitive.  But if we fix both a 

term and a context, and find that the meaning of the term can still vary within that given context, 

then the term is ambiguous.  Of course, these properties do not form disjoint sets; e.g., some 

terms we call „context-sensitive‟ may, in some of their contexts, also have more than one 
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interpretation, and hence may also be ambiguous.  But for the most part these properties are 

distinct.  There are many terms in the lexicon that would be classified as context-sensitive 

because they receive different interpretations in different contexts, but most of these terms will 

be unambiguous in any given context. 

Since this distinction is central to understanding Hintikka‟s criticism of Convention T, it may 

help to consider some simple examples.  In the following cases: 

 

(10)     John listed his accomplishments 

(11)     The boat listed in the wind 

 

it would be wrong to say that „list‟ is ambiguous in either (10) or (11), (except in the relatively 

minor respect in which (10) does not specify whether the listing is oral or written).  Clearly we 

are here dealing not with a single ambiguous word, but rather with two context-sensitive 

homonyms, which we might call „list1‟(to itemize in a series) in (10), and „list2‟ (to lean to one 

side) in (11).  Although it may well be possible to construct example sentences where a term 

which has a homonym is itself ambiguous, in the vast majority of cases the meaning of such a 

term will be made clear by context, as it is in (10) and (11).
36

  In fact, the usual effect of 

embedding a context-sensitive term within a sentence is specification of a unique intended word 

or meaning. 

To return to the Hintikka-type counterexamples, of course a necessary condition for 

generating such a counterexample is the presence of at least one context-sensitive term in the 

substituted object-language sentence (i.e., one term that is capable of having different 

interpretations in different contexts).  But it should now be clear that this is very different from 

                                                 
36

  I‟m using „term‟ for any sequence of letters or sounds that is interpretable as one or more distinct words. 
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claiming that the relevant term or the object-language sentence it occurs in is ambiguous in 

isolation.  The object-language sentences in all of the Hintikka-type counterexamples considered 

above contain context-sensitive terms, but the object-language sentences containing them are 

unambiguous in isolation.
37

 

One could say, however, that ambiguity is relevant to Hintikka-type counterexamples only in 

the following sense: since it is possible to give the entire T-conditional two readings – one 

generating a false Hintikka-type counterexample, and one preserving truth – then the T-

conditional itself is ambiguous, and its two interpretations are made possible by giving two 

interpretations to the meta-language occurrence of one of the terms in the substituted sentence.  

But three points have now been made concerning the multiple readings of such T-conditionals: i) 

the mere existence of a false reading is sufficient to generate a counterexample to Convention T, 

ii) in Hintikka-type counterexamples, the false reading of the T-conditional is the dominant one – 

indeed, it appears that a true reading can in some cases only be „seen‟ by forcing the 

interpretation in a way that betrays the most natural (false) reading of the conditional, and 

perhaps the most troubling, iii) if it is possible to take an unambiguous natural-language 

sentence, substitute it into the equivalence schema, and end up with an ambiguous sentence (i.e., 

an ambiguous resulting T-sentence), then so much the worse for the use of Convention T as a 

semantic criterion! 

It is worth noting that a very large number of terms in any natural language are context-

sensitive.
38

  It seems to have been this that concerned Tarski and Hintikka the most.  Although 

                                                 
37

  That is, they are not ambiguous in any sense relevant to their status as counterexamples.  Ambiguity may still be 

present in a way that does not undermine the status of a counterexample as a counterexample; cf. the above 

discussion of two senses of ought in connection with example (3). 
38

  Although there are different possible ways of counting “words,” by taking a sample of over 1,000 entries in the 

American Heritage Dictionary, a very conservative estimate reveals that over 10% of the entries list multiple 

meanings.  Since this dictionary contains over 100,000 entries, and these form only a subset of all terms of English, 

one can estimate that there are over 10,000 terms in American English that can receive different interpretations in 
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we may find ways to deal with the obviously context-sensitive features of natural language – 

pronouns, demonstratives, and tenses – natural languages contain many other expressions that are 

context-sensitive, even though their context-sensitivity may not be as readily apparent.  The 

sheer quantity of such context-sensitive terms in the lexicon of any natural language creates an 

even greater problem for the use of Convention T, because in many cases we may not know – 

prior to the substitution of a relevant object-language sentence into (ES) – whether a given term 

is context-sensitive.  Hence there does not appear to be any way to deal uniformly with such a 

large number and variety of context-sensitive terms. 

 

4.2   Formalizing the meta-language 

 

Klagge suggested that the source of Hintikka‟s counterexample was an interplay of „any‟ and 

„if,‟ and that it could be avoided by finding some context-independent (with respect to „any‟) part 

of our metalanguage (1977: 379-80).  His proposal for doing this was, oddly, not exactly to 

„find‟ a context-independent part of our metalanguage, but rather to create one by adding 

formalized connectives to English.  He suggested that one could avoid Hintikka‟s 

counterexample by simply replacing the natural language „if and only if‟ with one its symbolic 

translations. But Hintikka had already entertained this possibility in his original articles, and 

argued that:  

 

This attempt will lead to expressions whose truth-value has not been determined, for the 

original sentence p will of course have to figure in a substitution-instance of the schema 

[CS].  Hence these substitution-instances of [CS] will then be mixed expressions 

containing both formalized connectives and English words like „any‟ and „can‟. There 

simply are no grounds for deciding how „any‟ behaves vis-à-vis such foreign elements as 

formalized connectives, and consequently no satisfactory solution is available in this 

                                                                                                                                                            
different contexts (and hence are context-sensitive).  Nevertheless, much more often than not, sentences containing 

these terms are not ambiguous. 
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way. (The explanatory value of the whole condition formulated in terms of [ES] would be 

destroyed by this indeterminacy) (Hintikka 1976: 110). 

 

Perhaps Hintikka had not made this point emphatically enough.  Klagge seems to have assumed 

that schemes phrased with a mixture of formal and natural-language expressions will be clearly 

interpretable.  But as Hintikka was quick to point out, this is just not so.  Consider Klagge‟s 

comment: 

Convention T, as Tarski and Davidson intend it, is: 

 

(T)       X is true  ↔  p.
39

 

 

We can ignore the conflation here of Convention T with (ES) itself, because Klagge‟s claim has 

a more substantive problem.  His claim is that both Tarski and Davidson “intended” to render 

Convention T in a meta-language that included formalized logical connectives, but I think it is 

quite unlikely that (at least) Tarski intended this.  In Tarski‟s most formal monograph devoted to 

this topic (1956), in every potential instance where a more careless writer might make use of a 

formal connective in the meta-language, Tarski explicitly avoids it.  This was clearly deliberate, 

so it is somewhat tendentious to suggest that Tarski “intended” otherwise. 

Moreover, it is well-known that formal connectives only capture part of the meanings of their 

usual natural language paraphrases, so one cannot assume that any translation from natural 

language to formal language (or vice versa) will preserve the original interpretation.  To give just 

one example, consider the following English sentence: 

 

(12)     If the machine starts whenever I press its „ON‟ switch, then the machine starts whenever I 

simultaneously press its „ON‟ switch and pull its plug. 

 

                                                 
39

  See Klagge (1977: 378).  I have only made the trivial adjustments of changing Klagge‟s   to X and    to  ↔  in 

order to agree with our notation. 
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This sentence, though obviously false under a standard interpretation, has a standard translation 

into a theorem of the propositional calculus (using obvious substitutions): 

 

(P → R) → (P  Q → R). 

 

This translation might well be provided in an introductory logic class that translates every 

instance of English “if … then” as “→,” but it is well-known that the conditional in English has 

several other interpretations besides that of the material conditional.  One may well explain the 

lack of translatability in the above example in terms of non-monotonic reasoning, or in terms of 

non-material conditionals in English, or some such.  But examples like this only corroborate 

Hintikka‟s claim about the impossibility of “explaining away” his counterexample by using a 

semi-formal translation.  Any translation along the lines of what Klagge suggests will involve 

some combination of formal connectives and English expressions, but without precise rules for 

interpreting mixed expressions, we simply have no grounds for saying that any one interpretation 

is the correct one.  We may agree with Klagge that the intended meaning of the biconditional in 

(ES) is of a material biconditional, but this does not license the substitution of a formal 

connective into (ES) where Tarski took pains to use natural language.  Doing so alters the 

metalanguage and renders it something that itself is in need of interpretation, when the 

metalanguage was intended to be used as a vehicle, the interpretation of which is not in question, 

so that it could be used to study the language that is the object of study (the object language).  

Given the foundational and explanatory importance attached to Convention T and to the 

equivalence schema, any indeterminacy in their interpretations is clearly unacceptable. 

It appears that Klagge may have had in mind the fact that we occasionally read expressions 

containing formal connectives by employing standard natural-language counterpart expressions, 
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and that there should then be no special problem reversing this process; i.e., in formalizing 

natural-language expressions.  But this is far from true.  There are many complexities of natural 

languages that have yet to find suitable means of formalization (consider the enormous 

complexity of pragmatics, just for starters).  Moreover, when one reads a formal symbol in some 

way with the help of a natural language, the use of a natural language as meta-language again 

becomes vulnerable to the formulation of any of the counterexamples.  Thus, this attempt at a 

solution either introduces uncertainty into the very interpretation of Convention T, or it merely 

masks the still-present counterexample in the clothing of a formalization, allowing the 

counterexample to persist whenever anyone reads it in the meta-language. 

 

4.3   Paraphrasing the conditional 

 

As another possible way around the counterexample, Klagge suggested that one need only 

give the conditional one of its many other natural language paraphrases, and merely find one for 

which the counterexample does not persist. But this attempt at a solution has at least two flaws: i) 

even if a paraphrase is considered successful for one counterexample, there does not appear to be 

a paraphrase that will eliminate all of the counterexamples, and ii) the best candidates among the 

possible paraphrases seem to considerably distort and even undermine the explanatory role of 

Convention T. 

To see this, suppose that instead of (CS) we used its counterpart conditional: 

 

(CS´)         X is true only if p. 

 

Then it is still easy to construct counterexamples paralleling those above.  Consider:  
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(13)     „Otto is ever grateful‟ is true only if Otto is ever grateful. 

 

This counterexample to (CS´) is subject to problems somewhat different from those involved in 

the counterexamples to (CS).  Here the meta-language occurrence of „ever‟ (right) is still read as 

at some particular time, while the object language occurrence (left) is still read as always.  

Hence, the right side may be true while the left is false, which means that the conditional may 

still be (vacuously) true.  However, the right side clearly does not state the proper truth 

conditions for the object-language sentence on the left. 

One would think that the natural-language paraphrase with the most promise of eliminating 

the counterexamples is one that avoids the use of „if‟ altogether, as in the following paraphrase 

of (CS): 

 

(CS´´)      It is not the case that p, or X is true.
40

 

 

While this does appear to weaken Hintikka‟s counterexample (see Klagge 1977: 379 for details), 

this approach will not work as a general solution.  Consider: 

 

(14)     It is not the case that Otto is ever grateful, or „Otto is ever grateful‟ is true. 

 

and  

 

(15)     It is not the case that I may bring a guest, or „I may bring a guest‟ is true. 

                                                 
40

 Kirkham (1992, p.244), for example, was of the opinion that Hintikka‟s counterexample arose because “When 

„any‟ follows „if‟ it is an existential quantifier.”  Nevertheless, after consideration of Hintikka‟s counterexample he 

agreed that “… the truth conditions of a compound sentence are not always a function of the truth conditions of its 

component clauses ….  I see no obvious way for Davidson to escape this objection.”  But as I‟ll show in the 

examples immediately below, the real source of the problem cannot be merely that „if‟ generates different 

interpretations from object-language to meta-language, since counterexamples persist even with paraphrases that 

avoid use of „if‟ altogether.  The additional paraphrases suggest that the real source of the counterexamples is 

context-sensitivity more generally.  
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In the case of (14), the left hand reading of „ever‟ in the meta-language is still predominantly at 

any particular time, while the object language occurrence on the right is still always.  Thus, this 

reading of (14) is a disjunction which has the form: 

 

(14´)     ~ t (t is a time and Otto is grateful at t)  ˅  „Otto is ever grateful‟ is true. 

 

This disjunction could be paraphrased: „Either Otto is never grateful, or the sentence „Otto is 

always grateful‟ is true.‟  But this clearly fails to give the intended truth conditions of the 

sentence „Otto is ever grateful.‟  A similar problem is faced by (15), where the meta-language 

occurrence of „may‟ still has the dominant reading am allowed to, while the object-language 

occurrence still has the dominant reading might. 

Klagge‟s use of (CS´´) was only applied to Hintikka‟s „any‟ case, and even if his paraphrase 

is regarded as successful at weakening that one counterexample, it is not successful at resolving 

(14) or (15), and the prospects for resolving the remaining counterexamples uniformly do not 

look promising.  The counterexamples are sufficiently different from one another that the 

existence of a universal paraphrase that resolves all of them seems quite unlikely. 

But there is a deeper problem with this approach to resolving the counterexamples.  By 

taking each component conditional in (ES) and paraphrasing it in any of the above-mentioned 

ways (or in any of the standard alternative phrasings), one no longer has a version of (ES) that is 

worth including in one‟s semantic theory for its intended purpose.  To make this clearer, since it 

would require too much unnecessary detail to consider every possible paraphrase, we‟ll look at 

the strongest contender – the paraphrase (CS´´), which uses a disjunction that avoids any use of 

the word “if.”  Consider the following sentence, which is analogous to (14): 
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(16)      It is not the case that snow is white, or „Snow is white‟ is true. 

 

If one replaces (ES) with a conjunction of (CS´´) and its counterpart disjunction (for the other 

direction of the biconditional), then any theory that is required to entail all substitution instances 

of (ES) would have to entail (16).  But this requirement has bizarre consequences – (16) is 

trivially true, and not for the reasons that a deflationist might give.  At the risk of abusing 

terminology, (16) is a version of the law of excluded middle, expressed partly in the object-

language and partly in the meta-language.  If we wish to adhere to some version of Convention T 

where each component conditional in the equivalence schema is replaced with a disjunction of 

the form of (CS´´) or its counterpart disjunction, we are then forced to say that our truth predicate 

is adequate so long as (16) and its equally trivial counterpart are satisfied.  But since (16) will be 

satisfied no matter what color snow is, it hardly merits a place in any discussion of the truth 

conditions of „Snow is white.‟  Hence, the truth of substitution instances of (CS´´) really tells us 

nothing about the truth conditions of the substituted sentences.  This „solution‟ to Hintikka-type 

counterexamples strips Convention T of whatever explanatory power it had to begin with. 

 

4.4   Dispensing with disquotation 

 

Lepore and Ludwig (2005) acknowledged that context-sensitive sentences are a problem for 

disquotational versions of Convention T, but they intimate that other versions of Convention T, 

presumably propositional versions, will not be subject to counterexamples generated by context-

sensitivity.  In a footnote following their presentation of a variant of the „any‟ counterexample, 

they say: 
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The criticism of using truth theories in Tarski‟s style in application to natural languages 

fails once we move away from the disquotational paradigm, which is required in any case 

to accommodate context sensitive sentences.
41

. 

 

While this is the only proposal that fully (and correctly) acknowledges that the underlying issue 

is context sensitivity, I think it nevertheless overestimates the possible sweep of a propositional 

solution to the counterexamples, possibly because it also underestimates the variety and sheer 

number of the counterexamples. 

Let‟s take, for example, Horwich‟s propositional statement of (ES) (1990: 7):  

 

(P)          It is true that p if and only if p. 

 

While this is only one way of formulating a propositional version of (ES), it is typical of its class, 

and it is sufficient to illustrate the problem with this attempt at a solution.  It must be noticed that 

even though quotation marks are absent in (P), the schema is still formulated mostly in a natural 

language.  Consequently, use of this schema (or any of its variants) will not entirely eliminate 

interaction of the object language p with the syntax of (P) itself.  To make this clearer, consider 

that (P) still gives rise to the following Hintikka-type counterexamples: 

 

(17a)     It is true that Otto is ever grateful if Otto is ever grateful. 

 

or 

 

(17b)     It is true that Obama should win the election if Obama should win the election. 

 

                                                 
41

  Lepore and Ludwig use the example: „Anyone can do it‟ as the object-language sentence.  See Lepore and 

Ludwig (2006: 364, ftn. 280). 
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The interpretations of „ever‟ and „should‟ in these cases are parallel to the disquotational 

versions.  In (17a) the left-hand (propositional) „ever‟ is still read as always, while the right-hand 

occurrence still has the dominant interpretation at any particular time.  Similarly, in (17b) the 

left-hand „should‟ still reads as ought to, while the right-hand occurrence still reads as happens 

to. 

Thus, even if it should turn out that moving to a propositional paradigm ends up resolving 

some problematic cases, since all variants of (P) will involve embedding one natural-language 

sentence within a mostly-natural-language schema, it is extremely unlikely that even any variant 

of (P) will resolve all Hintikka-type counterexamples.  Contrary to Lepore and Ludwig‟s claim, 

it does not appear that resorting to a propositional version of the equivalence schema rather than 

a disquotational version will rid us of all Hintikka-type cases. 

 

5.   DISCUSSION 

 

The difficulty of finding any uniform resolution of the counterexamples should give us pause 

for thought.  Although Tarski seemed to think that attempting a precise semantic theory for 

natural languages was a thankless enterprise, Hintikka has not been quite as pessimistic.  In fact, 

he said: 

 

Of course the truth-conditions of a complex sentence must hang together in some 

specifiable way with its structure and with its component expressions.  However, there is 

no reason to expect that this dependence be so simple as to make a recursive truth-

characterization possible or to make possible the kind of use of Convention T Davidson 

envisages. (Hintikka 1976b: 66) 

 

Thus, it was not natural language semantics in general that was Hintikka‟s target, but rather the 

attempt to transfer to natural languages the precise methods Tarski had applied so successfully to 



 

79 

 

formal languages.  By considering the additional counterexamples provided in (2a) through (7) 

above, it should now be clear that Hintikka‟s criticism is even more forceful than he may have 

thought.  For many syntactic categories of English, there is an unknown but probably large 

number of lexical items within each of those syntactic categories that interact with their 

grammatical environments.  Since we can‟t be sure a priori that a given sentence will not 

produce a false instance of the equivalence schema, Hintikka argued that Convention T should 

not be the centerpiece of a compositional semantics for natural languages: 

 

...the very intended use of [ES] as a systematic tool in the semantics of natural languages 

was to employ it as a means of spelling out what the truth-conditions of complex 

sentences are, i.e., how their truth-value depends on the truth-values of their parts.  The 

behavior of „any‟ which my counterexample illustrates shows that no such systematic 

dependence can obtain in general, for no definite truth-value can be assigned to a 

subordinate any-clause independently of its (verbal) context.  For it is part and parcel of 

the meaning of „any‟ that it interacts with its context.  Hence in a modified (and deeper) 

sense my counterexample would survive even the formalization of the Tarski condition ... 

(Hintikka 1976a: 111). 
 

We can now say that similar remarks would apply to many other lexical items in English, and 

many additional counterexamples such as those presented in Section 3 above.  

While Convention T and the equivalence schema have been successfully applied to 

formalized languages, where the interpretations of terms can be specified precisely, and the truth 

of complex expressions can be defined in terms of the more basic property of satisfaction, 

attempts to transfer this success to natural languages have come up against serious limitations.  

Some of these are now well-known: i) the existence of the semantic paradoxes, ii) the existence 

of propositions with indeterminate truth values, and iii) the existence of sentences with 

indexicals.  I have argued that in contrast to these well-known problem cases, Hintikka-type 

counterexamples are even more pernicious problems for the would-be Davidsonian or 

Deflationist.  What separates Hintikka-type counterexamples from the more widely-discussed 
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types of counterexamples is precisely that the object-language sentence, when read in isolation, 

is neither ambiguous (as cases with indexicals can be) nor „problematic,‟ (as are the cases with 

indeterminate truth values and those generating liar-type paradoxes).  Rather, as Hintikka 

claimed about his original example, it seems clear that the problem in all of the counterexamples 

is that by substituting an otherwise unambiguous and unproblematic English sentence into a T-

Conditional, one gets either a false sentence, or a shift in meaning that subverts the use of the 

resulting Tarski biconditional to provide truth conditions for the substituted sentence.  Either 

way, the proposal to use the equivalence schema and Convention T as the foundation for a 

semantics of natural languages is seriously undermined. 

More clearly than any of the other known difficulties for Convention T, Hintikka-type 

counterexamples show that trouble arises not only from particular features of substituted object-

language sentences, but from the use of Convention T and from the form of the equivalence 

schema themselves.  This is clearly a difficulty for the Davidsonian, but it is an even greater 

difficulty for the Deflationist.  A common claim of deflationists is that “uncontroversial 

instances” of the equivalence schema capture essentially all that there is to say about truth.  But 

in light of the many Hintikka-type counterexamples, in addition to the liar cases, indeterminate 

cases, and cases with indexicals, it begins to appear that the expression “uncontroversial 

instances” is just a convenient disclaimer that enables deflationists to avoid having to explain 

what are actually a very large number of anomalies for their theory.  Regardless of what criteria 

one emphasizes when choosing among competing theories, when a theory has many exceptions, 

of a wide variety of types, that‟s a fairly good indication that the theory is just wrong. 

Of course, deflationists are right to think that there is a sense in which (ES) is “simple,” but it 

in no way follows from that observation that truth itself must be simple.  In fact, the variety of 
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sentence types that generate falsifications of such a seemingly innocuous schema as (ES) tells us, 

I think, quite the opposite – that truth is indeed something much more mysterious than the 

“uncontroversial instances” of the equivalence schema alone might lead us to believe.  After all, 

virtually any concept can be made to look simple by limiting the relevant data to the simplest 

cases at the outset.  But the hallmark of a good theory is that it explains the difficult cases.  It 

seems, though, that the deceptive simplicity of the equivalence schema, and the fact that it does 

yield true instances in a large majority of cases, have obscured the very substantial differences 

between formal and natural languages, and have misled many into believing that truth itself must 

also be simple.  But the variety of false substitution instances of (ES) tells us that nothing could 

be further from the truth. 
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The existence of a formula for the  n

th
 prime pn was for a long time considered impossible 

(that is, a formula by which one could calculate the n
th

 prime using n as input).  Prior to the 

twentieth century, the closest thing to such a formula was Euler‟s well-known polynomial that 

generates a somewhat long sequence of primes for its early inputs.  By the mid-twentieth 

century, several formulas had been discovered that did represent only primes, but none of them 

enabled one to generate all of the primes. 

The first formula that enables one (in principle) to generate all and only primes was 

discovered by Srinivasan (1961), and a related formula was presented by Ghandi (1971), but 

these formulas are disappointing because they rely on an inclusion-exclusion process which 

requires the computation of  2𝑛−1  terms.  Other formulas by Willans (1964), Jones (1975), and 

Hardy and Wright (1979) made essential use of Wilson‟s famous theorem which effectively 

provides a “definition” of primality:   p is prime  iff   p – 1 ! ≡ − 1 mod p .  These formulas are 

also impractical for computation because they require the computation of factorials of n. 

In this paper I present elementary formulas for the n
th

 prime and for the number of primes up 

to a given limit which improve upon existing formulas by avoiding both the computation of 
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factorials and the exponential growth of terms.  The formulas are based on the idea of 

“embedding” characteristic functions – a characteristic function for non-divisibility is used to 

construct a characteristic function for primality, and no use is made of either Wilson‟s theorem 

or the inclusion-exclusion process.  The resulting formulas, though not in principle superior to 

the sieve of Eratosthenes as tools for generating primes, nevertheless provide an elementary, 

compact expression for the primes that is not computationally intractable.  
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1. INTRODUCTION 

 

The prime numbers have the interesting property of being precisely definable, while appearing to 

be distributed without any discernible pattern.  On closer inspection, however, their distribution 

does reveal structure.  The best known theorem concerning their distribution is the prime number 

theorem, which states that the number of primes less than or equal to n (or “ ( )n ”) is 

asymptotically equal to n / log n.  Although asymptotic results are certainly of interest, and can 

be useful for various applications, they are not generally as informative as constructive 

procedures that enable us to find the n
th

 member of a sequence.  Ideally, what we would like for 

any sequence S is a generating function expressed by a formula:  f (n)  = y, where y is the n
th

 

member of the sequence S.  The existence of such a formula expressing a function that generates 

the primes was for a long time thought unlikely, if not impossible.  In the first edition of their 

well-known book on number theory, Hardy and Wright (1938) put the problem as follows: 

 

Is there a simple general formula for the thn  prime pn (a formula, that is to say, by which 

we can calculate the value of pn for any given n with less labour than by the use of the 

sieve of Eratosthenes)?  No such formula is known and it is unlikely that such a formula 

is possible. 

 

The belief that such a function is not possible was more or less the consensus at least through the 

early part of the 20
th

 century.  One reason for the skepticism was no doubt that unlike, e.g., the 

sequence of multiples of a given number, which can be simply expressed by either their 

multiplicative or divisibility properties with respect to that given number, the primes are defined 

by their non-divisibility by any number other than themselves and 1, and there does not appear 

to be any simple function expressing the more complex property “is not divisible by any number 

other than ….”  Nevertheless, there was some progress in the 1940s, and it is of some interest to 
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see how Hardy and Wright changed their position in subsequent editions of their text.  In the fifth 

edition, the following passage was inserted immediately after the above quoted passage: 

 

On the other hand, it is possible to devise a number of „formulae‟ for np .  Of these, 

some are no more than curiosities since they define np  in terms of itself, and no 

previously unknown np  can be calculated from them. ... Others would in theory enable 

us to calculate np , but only at the cost of substantially more labour than does the sieve of 

Eratosthenes.  Others still are essentially equivalent to that sieve (1979: 5-6). 

 

This new paragraph, appearing for the first time in the fifth edition of 1979, is a reminder of 

how recently we have come to know of the existence of formulas for primes.  Most formulas for 

primes that have been discovered thus far fall into Hardy and Wright‟s first category: formulas 

that require knowledge of the thn  prime in order to compute the thn  prime.  These are 

disappointing for obvious reasons.  The earliest such formulas had an exponential form, and 

although none of them yield all of the primes, they do yield only primes, and for that reason are 

appropriately called “prime representing functions.”  We will give examples of such formulas in 

the next section. 

The second largest category of formulas consists of those that would “in theory” enable us to 

calculate np .  Here Hardy and Wright probably had in mind several formulas based on Wilson‟s 

theorem that require the computation of factorials.  These formulas are far superior to the first 

group in that several of them do yield all and only the prime numbers.  But this comes at a great 

price – in all such formulas, the computation of np  requires the computation of !n , so these 

formulas are useless for computing any but the very smallest primes.  Nevertheless, these 

formulas are of interest because they do represent all and only primes.  In the third section we 

will discuss Willans‟ formula, the first such formula to be discovered. 



 

88 

 

The last group of formulas considered by Hardy and Wright were those that are “essentially 

equivalent” to the sieve of Eratosthenes, although Hardy and Wright‟s use of “essentially 

equivalent” was rather liberal; in practice, these formulas are still computationally intractable for 

large primes.  The best-known example of this kind is Gandhi‟s (1971) formula, even though a 

similar, simpler formula had been discovered prior to Gandhi by Srinivasan in (1961).  These 

formulas are inferior to Willans‟ formula from an epistemological standpoint, because the 

computation of the n
th

 prime requires knowledge of all prior primes, which Willans‟ formula 

does not.  In addition, the procedure for eliminating multiples of primes (i.e., what makes them 

“essentially equivalent” to Eratosthenes‟ sieve) employs an inclusion-exclusion computation, and 

this requires the computation  2
n – 1

 terms.  We will present these formulas in Section 4. 

The last two categories of formulas suffer from computation problems – either the 

computation of factorials of n or the computation of an exponentially growing number of terms.  

For any but the very smallest primes, these are prohibitive computational difficulties.  All three 

categories of formulas are disappointing if we are hoping to find a function that generates primes 

in a simple and efficient manner, and captures the definition of the primes in some intuitive 

sense. 

In this paper, I will present formulas for ( )n  and for the thn  prime that improve upon the 

existing formulas both in computational efficiency and in capturing a definition of primality.  

They still do not fully answer Hardy and Wright‟s original question, because they rely on a 

sifting method “essentially” equivalent to Eratosthenes‟ sieve (although in this case, an 

equivalence much closer to Eratosthenes).  But unlike earlier formulas, they do not involve the 

computation of factorials or the exponential growth of terms.  Hence, it is conceivable that they 

could compete with algorithms used to generate large primes, but an empirical test of this 
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conjecture is beyond the scope of the present paper.  We will discuss these formulas after giving 

a historical survey. 

 

2.  A BRIEF HISTORY OF PRIME REPRESENTING FUNCTIONS 

 

 

In 1772, long before any formulas for primes had been discovered, Euler discovered a now-

famous polynomial with integral coefficients that yields a long string of primes for its early 

inputs: 
2( ) 41f n n n   .  This yields primes for all values where 0,1, ,39n   , but then 

2(40) 1681 41f   .  Others have produced variants of this polynomial that yield the same 

outputs, each output produced twice or more times, or in reverse order.  Still others have found 

other quadratics that yield distinct primes for even more initial values of x, the best so far being 

2( ) 36 810 2753f n n n   , which yields primes for 0,1, ,44n   .  The interested reader may 

consult Dickson‟s book for references (1952:420), and a more recent survey of these results by 

Boston and Greenwood (1995). 

In spite of the existence of quadratics of this sort, it is well known that no polynomial ( )f n  

with integral coefficients can yield only primes unless it is constant, and therefore improper.  

Since this fact considerably constrains the possible forms that any prime-generating function can 

take, it will be instructive to go through its proof.  We‟ll show that any nonconstant polynomial 

that yields as a value even a single prime number will also yield infinitely many composite 

numbers as values.  Let 1

0 1( ) k k

kf n a n a n a     be any nonconstant polynomial  

(i.e., 1k  ), and suppose that for some natural number r, ( )f r p , where p is a prime.  Then 

obviously | ( )p f r , but from this it is easy to show that p must also divide many additional 
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values of ( )f n  (which will all thereby be composite), in particular, | ( )p f r mp  for all 

1,2,m  .  This can be seen by looking at the binomial expansion of the terms: 

 
1

0 1( ) ( ) ( )k k

kf r mp a r mp a r mp a      
 

 

1 2 2 1

0 0 1 2 1
( ) ( ) ( ) ( )k k k k k

k k k

k
a r a r m p r m p r m p m p  



      
           

      
 + 

1 2 3 2 2 1

1 1 1 2 2
( ) ( ) ( ) ( )k k k k k

k k k

k
a r a r m p r m p r m p m p    



      
          

      
  ka  . 

 

Remembering that | ( )p f r  (i.e., 1

0 1| ( )k k

kp a r a r a   ), if we rearrange terms in the 

binomial expansion by placing all of the terms not involving p first, then since p appears as a 

factor in all remaining terms, p also divides each of those terms, and thus | ( )p f r mp .  Since 

1m  , then although there may be one m where ( ) 0f r mp  , ( )f r mp  will be composite 

for all other values of m.  Thus, any non-constant polynomial that yields even one prime will also 

yield infinitely many composite numbers. 

In 1943, Reiner showed a slightly more general result.  Defining a prime-representing 

function to be any function ( )f x  that yields a prime for every positive integral value of x, he 

showed the following: 
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THEOREM (REINER):  If ( ), ( )i if x g x   ( 1, , )i n   are polynomials with integral coefficients and 

positive leading coefficients, the following is not a prime-representing function: 

( )

1

( ) ( ) i

n
g x

i

i

f x f x


 . 

 

Buck (1946) generalized this negative result further, and showed that no nonconstant rational 

function can be a prime-representing function.  These negative results dashed any hopes that 

multiplication or division of polynomials might produce a prime-representing function. 

Buck further conjectured that “no simple function, finitely expressible” can be a prime-

representing function.  Similar claims had been made by other mathematicians, but they were all 

shown to be wrong when Mills (1947) presented the first function, expressible as a simple 

formula, that always represents primes: 

 

THEOREM (MILLS):  There is a real number  such that 
3x

 
 

 is a prime-representing function. 

 

Here “  x ” denotes the greatest integer x , and   is a number roughly equal to 1.3064....  This 

result depends crucially on a prime gap result of Ingham (1937).  Mills‟ paper inspired many 

others to generalize the result in different ways (see Kuipers (1950), Wright (1951), and Niven 

(1951) for the first extensions, Ore (1952) and Wright (1954) for the most general results, and 

both Dudley (1969) and Ribenboim (1989) for a history of Mills-type functions). 

Unfortunately, all prime-representing functions of this type suffer from several defects.  On 

the one hand, although they do yield only primes, none of them yields all primes.  In fact, they 
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all fall considerably short of this goal.  Consider Wright‟s (1951) exponential prime-representing 

function: 

 

2
22( ) 2g n



 
  
 



    is prime for every 1n   (where there is a string of n exponents, the first of 

which is ). 

 

The square brackets again denote the greatest integer function, and all square brackets in all 

subsequent formulas in this paper are also to be interpreted as this function.  Here  may have 

many possible values (see Wright (1959) for the details).  To get an idea of the size of the gaps 

between outputs of this function, consider that if 1.9287800  , then (1) 3g  , (2) 13g  , 

(3) 16381g  , and (4)g  has approximately 5000 digits!  Of course, the number of exponents 

here quickly expands the gaps between the output primes, but all exponential prime-representing 

functions generate a similar-looking sequence.  Very early on, the functions generate enormous 

numbers.  A further problem is that in Mills‟ and Wright‟s formulas, the computations of  and 

, respectively, are complicated and require knowledge of the thn  prime to compute the thn  

prime.  This is a defect in all Mills-type functions.  Moreover, these functions clearly don‟t 

capture the definition of primality in any intuitive sense. 

There have been many more papers written on quadratics that have prime-rich intervals than 

there have been on prime-representing functions.  Part of the reason for this, of course, is that 

prior to Mills‟ paper of 1947, there simply were no known prime-representing functions, so until 

then Euler-type quadratics were the next best thing.  But even though Mills‟ function and its 

extensions succeeded where some thought it was not possible, they are still not of any use in 
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computing the thn  prime, and they don‟t come anywhere close to defining the primes in any 

interesting sense.  These early results can be considered, as Hardy and Wright put it, mere 

“curiosities.” 

 

3.  FORMULAS BASED ON WILSON‟S THEOREM 

 

Before discussing the first true formulas for primes, we should consider what form we might 

reasonably expect any formula for primes to have, given the negative results concerning the use 

of polynomials and rational functions.  What property of primality should appear as most salient 

in any such formula?  A reasonable place to begin would be with Wilson‟s theorem, which gives 

necessary and sufficient conditions for primality:
 42

 

 

THEOREM  (WILSON):  p is prime  iff  ( 1)! 1(mod )p p   . 

 

This theorem has been used by several authors to express formulas for primes.  The first such 

formula was presented by Willans in 1964.  His formula employs the following characteristic 

function for primes: 

 

2
1             = 1

0        

( 1)! 1
( ) cos

if j is prime or j

if j is composite

j
f j

j


   
   
  

 

 

To see how this function works as a characteristic function for primality, we need only consider 

immediate implications of Wilson‟s theorem.  When  j  is prime or  j = 1, then by Wilson‟s 

Theorem 
( 1)! 1j

j

 

 

 is an integer, and thus 2 ( 1)! 1
cos 1

j

j


 
   and  [1] = 1 (remember, 

                                                 
42

  “Wilson‟s” theorem was actually first conjectured by Leibniz, and first proved by Lagrange.  See Dudley (1978: 

43) for the historical details, and p. 46-47 of the same book for an elementary proof. 
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“[x]”  is the greatest integer  ≤  x).  When  j  is not prime, then by Wilson‟s Theorem 
( 1)! 1j

j

 
 

is not an integer, and thus 2 ( 1)! 1
cos

j
b

j


 
 , where 0 < b < 1, and thus [b] = 0.  By means 

of a characteristic function for primes, one may easily construct a formula for the number of 

primes up to and including m (i.e., “ ( )m ”) by simply adding successive outputs of the 

characteristic function.  For example, Willans provided the following formula for ( )m : 

 

1

( ) 1 ( )
m

j

m f j


   . 

 

By exploiting in addition some elementary properties of the n
th

 root function, he was able to 

construct a formula for primes (again, “[k]”  is the greatest integer  ≤ k): 

 
1

2

1

1
1 ( )

n

n

n

m

n
p

m

 
       
  

 . 

 

This formula generates all and only the primes by exploiting the following idea: for each positive 

integer input n, it finds the n
th

 prime pn by simply adding 1 for every positive integer  m  up to   

m  =  pn – 1, at which point the 1 at the beginning of the formula brings the sum to pn, the desired  

n
th

 prime.  For all values of m greater than m  =  pn – 1, the greatest integer function simply 

yields an extraneous zero, hence the sum will remain  pn  up through m = 2n
. 

To see how the greatest integer function yields 1 only up to m  =  pn – 1, and  0 thereafter, 

one need only consider the following two properties of the n
th

 root function, which are easily 

proved (for all positive integers n and all positive real k): 
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(1)    
1

1n
k
 


  

  when  1 k n   

(2)    
1

0n
k
 


  

  when  0 1k   

 

Letting  
1 ( )

n
k

m



 , consider the computation of the n

th
 prime  pn using Willans‟ formula.  To 

generate this prime, one takes the sum of the values of the greatest integer function for all 

integers  m  from 1  to  2
n
  (The reason for this upper limit is discussed below).  For  m = 1,  

 (m) = 0, so k = n  and thus by property (1), 
1

n
k
 
  

 = 1.  As  m  increases,  (m) either increases 

or remains constant at each successive m (depending on whether m is prime or composite, 

respectively), and since  n  is fixed,  the fraction  k either decreases or remains constant.  By 

property  (1), for all values of  m  where  the fraction  k  decreases from  n  down to and 

including 1, the output of  
1

n
k
 
  

 is  1.  The last m for which 
1

n
k
 
  

 is 1 will be m  =  pn – 1, 

because that will be the last m such that   (m)  =  n – 1, and thus it will be the last m where the 

fraction  k = 1.  Then, for all  m ≥ pn ,   (m) ≥ n , and hence the fraction  k  is such that  

0 < k < 1, and thus by property (2),

 

1

0n
k
 


  

. 

By disregarding the extraneous zeroes in the sum, we can more clearly see what Willans‟ 

formula does by writing it as follows: 

1

1

1 1.
n

n

p

m

p




    

Notice that though Willans‟ formula does require using the n
th

 prime as an input, it does not 

require knowledge that the n
th

  prime is prime.  The reason for using the upper limit of 2
n
 is that 
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we want to be assured of yielding the n
th

  prime as output, which in turn requires that we take the 

sum at least to m  =  pn – 1.  The exact limit is derived from a well-known prime gap result which 

states that  p
n
≤  2n

 (for all n ˃ 0).
43

 

The reader may notice that when written explicitly (i.e., without abbreviating ( )m  and 

( )f j ), Willans‟ formula is rather cumbersome.  Nevertheless, it accomplishes much more than 

the earlier Mills-type prime-representing functions, because it does yield all and only the primes 

in their usual order.  From a computational standpoint, the main difficulty is the computation of 

( 1)!j  , which is prohibitive except for very small j.  For example, to compute the 20
th

 prime 

(i.e., 71) using Willans‟ formula, one must compute (2
20

)! .  Other formulas for primes have also 

been based on Wilson‟s theorem, for example, those by Jones (1975), Papadimitriou (1975), and 

Hardy and Wright (1979: 414), and all of these require a similar factorial computation. 

 

4.  FORMULAS BASED ON THE SIEVE OF ERATOSTHENES 

 

The last class of formulas mentioned by Hardy and Wright consists of those that are 

“essentially equivalent” to Eratosthenes‟ sieve.  Formulas of this type have been formulated by 

Srinivasan (1961) and Gandhi (1971).
 44

  Unfortunately, these formulas also suffer from a 

computational problem: they depend on an inclusion-exclusion process, and hence require the 

computation of an exponentially growing number of terms.  In addition, unlike Willans‟ formula, 

which does not require knowledge of any particular primes, these formulas are recursive and 

require knowledge of all primes  p1…. pn – 1 in order to compute the n
th

 prime pn.  The 

                                                 
43

   See Hardy and Wright (1979) pgs. 17 and 414 for details.  As Hardy and Wright point out, this upper limit 

follows from Bertrand‟s Postulate that there is always at least one prime between n and 2n. (more precisely: for all 

positive integers n, there is a prime p such that 𝑛 < 𝑝 ≤ 2𝑛).  This upper limit can be substantially reduced for 

large n by using better prime gap results, but this is unimportant for our purposes. 
44

  It is of some historical interest to note that it was Srinivasan who discovered the first true formula for primes, 

even though Willans‟ and Gandhi‟s formulas have received much more attention.  Srinivasan‟s formula is also a bit 

simpler than Gandhi‟s in that it does not involve the use of logarithms. 
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recursiveness, however, does not itself lengthen the computations beyond what is required in the 

use of Willans‟ formula, and for some applications can even shorten the computation (if one 

knows the n
th

 prime and merely wishes to find the ( 1)stn prime, for example).   

The core idea in these formulas is the sieve of Eratosthenes, which isolates primes by 

eliminating all multiples of primes other than the primes themselves (i.e., by eliminating all 

composite numbers).  The remaining numbers will be the primes as well as the number 1 itself, 

and those eliminated will be those divisible by some prime  p  or some product of primes 

 pi ∙∙∙ pk.  Many composite numbers in Eratosthenes‟ sieve are eliminated more than once, since 

they are multiples of more than one prime, so in order to get an exact count of the total number 

of primes less than or equal to x (“ (x)”), one uses an “inclusion-exclusion” process.  This 

process works as follows: one begins with x, and then counts the total number of multiples of 

each prime less than or equal to x (i.e., all multiples of 2, plus all multiples of 3, etc.).  Then one 

subtracts (i.e., “excludes”)  the sum of all multiples of all primes, as well as the number 1 itself.  

Some of the numbers in this total count of multiples were counted more than once, since they 

were multiples of more than one prime (e.g., 6 was counted twice, as a multiple of 2 and as a 

multiple of 3; 30 was counted 3 times, as a multiple of 2, 3, and 5, etc.)  Thus, to assure that each 

composite number is counted exactly once, we compensate for this overcount by adding back 

(i.e., “including”)  the total from the previous count of products of two distinct primes, as well as 

the total number of primes less than or equal to  x, (since all primes divide themselves, and 

hence that total was also included in the last count).  At this point, the number of composites 

divisible by either one or two distinct primes has been counted exactly, but those divisible by 

more than two primes have not been counted only once.  Thus, one compensates again by 

subtracting the number of numbers divisible by a product of three distinct primes (since those 
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numbers were counted three times in each of the last two steps), etc.  This process can be 

expressed in a formula as follows  (where p1 < p2 < ∙∙∙ < pm   are all primes less than or equal to 

 x ): 

( ) [ ] ( ) 1
i i j i j ki i j i j k

x x x
x x x

p p p p p p
 

  

    
           

          
  

 
 

(where pi , pj , pk ,  run over the primes p1 , p2 ,  … , pm).  This formula, first published in a more 

general form by Legendre, is now usually expressed more compactly using the möbius function
45

 

as follows:

 

1 2

( ) 1 ( ) )
md p p p

x
x x d

d
  

  

 
      

 






where d runs over all divisors of the product  p1∙ p2 ∙∙∙ pm  of all primes less than or equal to 

 x).
46

  We‟ll hereafter refer to the latter formula as “Legendre‟s formula.” 

Unlike the prime number theorem, which gives an asymptotic value for   (x), Legendre‟s 

formula gives a precise count of the number of primes less than or equal to x.  However, this 

precision comes at a great cost.  Although the idea behind Eratosthenes‟ sieve is quite simple, the 

computation requires taking a sum over all divisors  d  of the product  p1∙ p2 ∙∙∙ pm   (where m = 

( x ) ), hence there will be 2
m

  terms in this sum.  This follows from the basic combinatorial 

identity:   

                                                 
45

  The möbius function is defined as follows:     (n) = (–1)
r
  if  n is the product of r distinct primes, and 

 n if n is divisible by any prime to a power higher than 1.  For example,  p– for every prime p;  

 𝑝1∙𝑝2)  for any product of two distinct primes, and  𝑝2 𝑝3 =  𝑝4 = ∙∙∙ = 0 for all higher powers of 

primes.  What‟s relevant here are mainly the alternating 1‟s and –1‟s, as the divisors d are products of an even or 

odd number of distinct prime factors, respectively.   
46

   The möbius function and the inclusion-exclusion process are discussed in many number theory texts, but an 

especially clear discussion relevant to the problem of counting primes can be found in Brauer (1946), as well as in 

the monographs by Halberstam & Roth (1966) and Halberstam & Richert (1974). 
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0

2
m

m

r

m

r

 
 

 
  

which is easily proved by induction.  In Legendre‟s formula, we are “choosing” divisors as 

“combinations” of primes.
47

   

In spite of this computational difficulty, the use of the möbius function to count primes does 

make possible various compact expressions for the the n
th

 prime pn.  The first such formula using 

this idea; indeed, the very first true formula for the n
th

 prime was presented by Srinivasan (1961): 

 

1 1

1 1

2

( ) 2 1

(2 1) 2

) 1

2 1 2

n

n

d

d
d p p

n

d
d p p

d d

p
d








 

 

 
 


 

 
 

 




 

 

A decade later, Gandhi (1971) provided a similar formula using logarithms: 

 

  1 1

2

1 )
1 log

2 2 1
n

n d
d p p

d
p



 

  
         

  

 

Proofs of Gandhi‟s formula have been given by Vanden Eynden (1972) and Golomb (1974), and 

a sample computation can be found in Grosswald (1984).  Both Srinivasan‟s and Gandhi‟s 

formulas were generalized by Namboodiripad (1971). 

                                                 
47

  For example, for m = ( x ) = 3, 

 

 
1 2 3 1 2 1 3 2 3 1 2 31 2 3| 1d p p p

x x x x x x x x x

d p p p p p p p p p p p p
d

 

       
    

               
                               

 , 

 

and there are 
3

2 terms in this sum. 
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The most difficult computations in both of these formulas are the summations over values of 

the möbius function 𝜇(d), which have  2
n – 1

 terms.  The number of these terms is significantly 

larger than the number of terms in computations using the Legendre formula, which have  2
𝜋( 𝑛)

 

terms in the sum.  It is this exponential growth of terms that renders these formulas impractical 

for computing any but the very smallest primes.  In addition, in both Srinivasan‟s and Gandhi‟s 

formulas, computation of the n
th

 prime  pn  requires knowledge of all primes less than or equal to  

pn – 1. 

 

5.  ELEMENTARY FORMULAS FOR PRIMES 

 

I will now present a method for deriving formulas for primes that does not suffer from the 

computational difficulties of computing factorials or the exponential growth of terms.  This 

approach utilizes two main ideas:  i) the standard definition of the primes as those numbers not 

divisible by any numbers other than themselves and 1, and ii)  the construction of a characteristic 

function for primality by taking a product of values of a characteristic function for non-

divisibility.  Using the latter function, we are able to construct considerably simplified formulas 

for primes that do not have the computational difficulties of the formulas discussed above, and 

have the added merit of more intuitively capturing the “definition” of the primes. 

The first step is the construction of a characteristic function for the set of all numbers m that 

do not divide a given number a: (where a, m are any positive integers, and we continue to use 

“[x]” to indicate the greatest integer  ≤  x):    
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PROPOSITION 1:       
 1     | 1

( ) 1
 0     | 

m

if m aa a
C a

m m if m a

     
       

    

   

 

Proof:  If m a , then clearly  m | a  and 
1

0
a a

m m

   
    

   
, hence   1mC a  .  If m a , we 

must consider two cases:  i)  m divides a, and  ii)  m does not divide a.  If m a , then for some 

positive q, m q a  .  Then 
1 1 1

1
a m q

q q
m m m

       
         

     
,  and  

a m q
q

m m

   
    

   
,  hence     1 1 0mC a q q     .  If  m | a, then for some positive  q 

and remainder  r  (where 1 r m  ), m q r a   .  It suffices to show that in this case 
1a

m

 
 
 

 

and 
a

m

 
 
 

 have the same values.  First, 
1 1 1a m q r r

q
m m m m

        
        

     
, and since  

1 r m  , the difference 
1r

m m
  is either  0 (if 1r  ), or some fraction k where 0 1k   (if 

1r  ).  In either case, 
1r

q q
m m

 
   

 
, and thus 

1a
q

m

 
 

 
.  In addition,

a m q r r
q

m m m

      
       

     
,   and since 0 1

r

m
  , 

r
q q

m

 
  

 
 and thus 

a
q

m

 
 

 
 as 

well.  Hence, when m | a,   1 1mC a q q    .  

One can think of this as a characteristic function for “non-divisibility” of a by m.   Since the 

primes are those numbers not divisible by any number other than themselves and 1, it is possible 

to use the above formula to check for the primality of a by simply taking the product of all 
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values of  pC a  for all primes p a .  Since there are no primes  2  or  3 , we begin 

checking primality at 4a  , and present the following characteristic function for primes: 

 

PROPOSITION 2:  For all 4a  ,     
1

0
p

p a

if a is prime
s a C a

if a is composite


  


  

 

Proof:   Case 1: a is prime.  Then for all primes p a ,  p | a.  Thus by PROPOSITION 1, 

  1pC a   for all such p a , hence the product    1p

p a

C a


 .   Case 2:  a is composite.  

Then for some prime  p a  , p a   .  Let 1 2, , , , , kp p p p   be all of the primes  a  ( p  

of course needn‟t be unique).  Then by PROPOSITION 1,   0pC a  ,  and thus 

       
1 2

( ) 0 0
kp p p p

p a

s a C a C a C a C a


      .  Hence, as long as any prime divides a, 

the product   0s a  .  

The function s enables us to construct a very elementary formula for  x , which we 

formulate in the following: 

 

THEOREM 1:  For all 4x  ,     
4

2
x

a

x s a


   

 

Proof:   Using this identity for an arbitrary 4x  ,          2 4 5 6x s s s s x        , 

and since by PROPOSITION 2,   1s a   if a is prime, and   0s a   if a is composite, this 

function will clearly count 1 for all and only the primes x , and hence yields an exact count of 

 x  as desired.   

Written more explicitly, our formula for  (x) is: 
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4

1
2 1

x

a p a

a a
x

p p


 

   
      

   
               (for all 4x  ). 

 

It is of interest to compare this formula to the Legendre formula of the last section.  Calculations 

using the Legendre formula require 2
𝜋( 𝑥)

 terms in the main sum, while our formula for  x  

requires at most (# of terms in each calculation of  pC a ) × (# of terms in the product for the 

largest a) × (# of terms in the sum).  There are  i)  3 terms in each calculation of  pC a ,  ii)  the 

largest a in the calculation will be x itself, and for this integer there will be one calculation of 

 pC x  in the product for each of the primes x , and there are exactly  x  such primes, 

and finally iii)  there are clearly 3x   terms in the main sum (since we begin at 4a  ).  Hence 

the number of terms using our formula is bounded above by    3 3x x   .  This number 

does not grow anywhere near as rapidly as 2
𝜋( 𝑥)

.  To get an idea of the difference, while the 

number of primes less than or equal to the first few hundred x will be calculated more easily 

using Legendre‟s formula, the calculation of   5041  requires 1,048,576 terms (since 

5041 71 , 71 is the 20
th

 prime, and 202 1,048,576 ).  By comparison, using our formula, the 

calculation of  5041  will be bounded above by at most  3 20 5038 302,280   terms.  In the 

calculation of  10,000 , the Legendre formula requires more than 16,000,000 terms, while our 

formula in this case is still bounded above by fewer than 720,000 terms.  This is still impractical 

for an individual working by hand, but the differences will be substantial when comparing 

computing times for very large x using a computer.  

Since we now have a formula for  x  that is much simpler than Willans‟ formula for  
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 x , which was based on Wilson‟s theorem and required computing factorials, it is clearly 

possible to simplify Willans‟ formula for the n
th

 prime  pn  by substituting our formula for  x  

from THEOREM 1 into his formula for the n
th

 prime, making minor adjustments for the early 

inputs.  However, this would still have the undesirable large upper limit in his function for the n
th

 

prime.  We can instead construct an even more elementary function for the the n
th

 prime, 

however, by deriving a formula that enables us to calculate the prime  pn  in terms of the previous 

prime pn – 1 , as was done by Srinivasan and Gandhi.  Using such a recursive procedure of course 

requires knowledge of previous primes in a way that Willans‟ formula does not, but the result 

nevertheless improves upon the formulas of Srinivasan and Gandhi by avoiding the exponential 

growth of terms. 

By PROPOSITION 2,  for 4a  ,    1s a   if a is prime and   0s a   if a is composite.  So 

for all such a,  1 0s a   if a is prime and  1 1s a   if a is composite.  We can thus use 

 1 s a  to add 1 for each composite a between any two primes  ( 4p  ) , and this enables us to 

construct an elementary formula for the n
th

 prime  pn in terms of the previous prime pn – 1.  We 

must assure in addition that the formula stops adding 1‟s once it has reached the n
th

 prime pn, and 

it will be necessary to add an additional 1 for the n
th

 prime itself.   This is captured in the 

following formula (where the upper limit min a   such that   1s a  ): 

 

THEOREM 2:   For 2n  ,    
1

1

1

1 1 ( )
n

n n

p a

p p s a




  

     

 

Proof:   The function s is defined only for all 4a   , because it is checking for divisibility by 

primes p a  , and 4 is the first number to have a prime less than or equal to its square root.  
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Hence we correspondingly define the formula above only for primes greater than 3, so the first 

such prime that can be calculated is 
3 5p  .  It is clear that since   1 1s a   when a is 

composite and  1 0s a   when a is prime, then it suffices to check that the bounds on the 

sum are set so that the formula will add the correct number of ones.  That is, to the initial prime 

pn – 1 the formula should add  i)  1 for each composite number greater than  pn – 1 but less than the 

next prime, and  ii)  1 for the n
th

 prime pn itself.  When this last 1 is added, i.e., when a total of 

1n np p   1‟s have been added to pn – 1, the upper limit should halt the computation, and the total 

will clearly be equal to pn.  This is accomplished by setting the lower limit at one greater than the 

initial prime pn – 1, which is clearly the first composite number for which the formula should add 

1.  The upper limit   is then defined so that the addition of terms halts at the first a such that 

 1 0s a  ; i.e.,   is the minimum a such that   1s a  .  By definition of s, this number will 

be prime, and hence it will be the first prime after the initial prime pn – 1, or pn itself.  But since  

 1 0ns p  , it is necessary to add an extra 1 before the main sum to correspond to this final 

prime, in order to add exactly 
1n np p   1‟s to the initial prime pn – 1, as desired.   

Written explicitly, our formula for pn in terms of  pn – 1 is: 

 

 
1

1

1

1
1 1 1

n

n n

p a p a

a a
p p

p p



   

    
          

    
   

 

This formula has several advantages over the recursion formulas of Srinivasan and Gandhi.  The 

primary advantage is the avoidance of an exponential growth of terms, which arose in their 

formulas because of the use of the möbius function over all divisors of each of the inputs.  But 

there is an additional simplification, in that the above formula only requires checking prime 
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divisors less than or equal to the square root of each a, rather than all divisors less than or equal 

to a, as in Srinivasan‟s and Gandhi‟s formulas.  This should enable the construction of a 

recursive function that could be tested on a computer, but that is beyond the scope of this paper. 
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