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Abstract

Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological 

recordings from the brain surface with the optical imaging and stimulation of neural activity. 

A remaining challenge is to scale down the electrode dimensions to the single-cell size and 

increase the density to record neural activity with high spatial resolution across large areas to 

capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with 

ultrasmall openings and a large, transparent recording area without any gold extensions in the 

field of view with high-density microelectrode arrays up to 256 channels. We used platinum 

nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the 

microelectrode diameter to 20 μm. An interlayer-doped double-layer graphene was introduced to 

prevent open-circuit failures. We conducted multimodal experiments, combining the recordings 

of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse 

visual cortex. Our results revealed that visually evoked responses are spatially localized for high-
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frequency bands, particularly for the multiunit activity band. The multiunit activity power was 

found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality 

reduction techniques and neural networks to demonstrate that single-cell and average calcium 

activities can be decoded from surface potentials recorded by high-density transparent graphene 

arrays.

Understanding the complex dynamics of the brain and the central nervous system require 

the study of mechanisms and functions in a diverse set of spatial and temporal scales1,2. 

Spatial scales encompass neural circuits in millimetres or centimetres, single neurons in 

micrometres, synapses in submicrometres and proteins such as ion channels and receptors 

at the nanoscale. This spatial diversity also cultivates temporal diversity where some 

molecular processes are taking place in microseconds, action potentials in sub-milliseconds, 

neurotransmitter or hormone release in minutes to hours and learning and behavioural 

changes in hours to days1. Monitoring neural dynamics and interrogating neural functions 

across these diverse spatial and temporal scales is not possible using a single tool or 

technology. Therefore, the integration of multiple tools in the same experiment have 

been widely employed to link mechanisms and functions operating at these different 

spatiotemporal scales towards a more comprehensive understanding of the brain.

To date, multimodal experiments have been used to investigate neural dynamics with 

applications ranging from studies of neural circuits3–5 or pathophysiology of brain 

disorders6,7 to hybrid brain–computer interfaces8,9. Among these multimodal approaches, 

experiments concurrently recording electrophysiological responses during optical imaging 

and optogenetic stimulation have become a powerful approach to (1) combine the temporal 

resolution advantage of electrophysiology with the high spatial resolution and cell-type 

specificity of optical methods, (2) to bridge the knowledge gap between basic neuroscience 

research relying on optical methods employing genetic modifications and clinical research 

mainly using electrical recordings, (3) to expand the spatial reach of neural recordings10 and 

(4) to identify cell types through opto-tagging during the electrophysiological recordings 

of neuronal spikes11. To enable a crosstalk- and artefact-free integration of electrical 

and optical modalities, numerous transparent microelectrode technologies have been 

developed based on different materials including graphene12–16, indium tin oxide17–20, 

carbon nanotube meshes21, metal nanowires22–24, meshes or grids25–27 and PEDOT:PSS28–

31. These devices, however, have limitations such as large electrode opening sizes (50 

μm or larger), low channel counts (maximum, 16) and limited coverage (maximum, 3.6 

mm2), restricting the spatiotemporal resolution for neural recordings. Reducing the electrode 

dimensions to the single-cell size, for instance, is desirable to detect high-frequency activity 

including multiunit activity (MUA) and single-unit activity with a high signal-to-noise 

ratio32. Increasing the array density and channel count is also essential to capture the neural 

dynamics with high spatial resolution across large areas33,34. Moreover, there are several 

other constraints that limit the use of these technologies as multimodal chronic interfaces 

(Extended Data Table 1 and Supplementary Discussion 1)23,28.

Within the spectrum of materials, graphene offers characteristics desirable for multimodal 

neural interfaces including transparency, artefact-free recording capability12,14, flexibility35, 
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low noise36, biocompatibility37 and chronic reliability38–40. Furthermore, active neural 

interfaces based on graphene have been shown to offer exceptional bandwidth by recording 

ultraslow neural dynamics without voltage drift41,42. To realize high-density transparent 

graphene arrays with ultrasmall electrodes, however, two important challenges remain 

to be addressed. (1) To keep the field of view (FoV) clear, microwires of the arrays 

need to be completely transparent, particularly for high-density arrays with thin and long 

graphene wires. However, scaling the graphene wires results in increased wire resistance 

(leading to signal attenuation) and increases the susceptibility to structural defects from 

growth or fabrication causing open-circuit failures. (2) Scaling down the graphene electrode 

dimensions drastically increases the impedance due to quantum capacitance43, an intrinsic 

property of graphene due to its unique band structure44.

In this work, we overcome these challenges and demonstrate completely transparent, high-

density, high-channel-count (up to 256 channels) microelectrode arrays with ultrasmall 

graphene electrodes for multimodal experiments. We reduced the sheet resistance of 

graphene wires sevenfold by adopting double-layer graphene (DLG) and interlayer nitric 

acid (HNO3) doping and realized high-aspect-ratio graphene wires with high yield. To 

overcome the quantum capacitance and lower the impedance of small graphene electrodes, 

we employed platinum nanoparticles (PtNPs) and achieved low impedances (~250 kΩ) 

for electrodes with 20 μm diameter. Overall, our high-density graphene electrodes provide 

the smallest electrode size, highest channel count and density, largest coverage, highest 

optical transmittance and lowest normalized impedance among all other transparent neural 

interfaces (Extended Data Table 1, Extended Data Fig. 1 and Supplementary Discussion 

1). We implanted these arrays over the visual cortex of mice and performed simultaneous 

two-photon calcium imaging at different depths, namely, 50 and 225 μm, corresponding to 

layer 1 (L1) and layer 2/3 (L2/3), respectively. The small size of graphene electrodes and 

their large coverage enabled us to detect low- and high-frequency activities on the cortical 

surface with a high spatiotemporal resolution and examine their correlation with calcium 

activity at depth. Leveraging the high correlation between calcium activity and surface 

potentials, we employed dimensionality reduction methods and recurrent neural networks 

to infer the calcium activity at depth from the surface potentials at population and cellular 

levels.

Results

Defect-free low-resistance transparent graphene wires

Complete transparency of the graphene array is crucial for multimodal experiments with a 

completely clear FoV. Previous designs of transparent graphene arrays using single-layer 

graphene (SLG) had gold wires surrounding the recording electrode area, which limited the 

FoV and increased the risk for light-induced artefacts14. The severity of optical blocking or 

shadows and light-induced artefacts depends on the experimental parameters and the type 

of optical modality used. To further investigate these effects during two-photon imaging, we 

conducted characterization experiments using both gold and graphene electrodes (Extended 

Data Fig. 2a–c and Supplementary Discussion 2). The characterization results revealed 

that gold wires create shadows that obscure neurons (Extended Data Fig. 2d) and produce 

Ramezani et al. Page 3

Nat Nanotechnol. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



light-induced artefacts, whereas graphene electrodes allow for clear imaging without such 

interference (Extended Data Fig. 2e,f). Gold electrodes drastically distort the neural signal 

with the harmonics of the scanning frequency, whereas graphene electrodes provide artefact-

free recordings, emphasizing the necessity of using graphene for transparent high-density 

microelectrode arrays (Supplementary Discussion 2).

To build high-density graphene arrays with an extended fully transparent recording area, 

we needed to miniaturize the graphene wires without causing a substantial increase in 

wire resistance. However, unlike conventional metal microwires with finite thicknesses, 

graphene has a relatively high sheet resistance due to its single-plane two-dimensional 

atomic structure and grain boundaries. Therefore, reducing the width and increasing the 

length of graphene wires can drastically increase the wire resistance and may lead to 

the attenuation of the recorded signals. Furthermore, thin and long graphene wires are 

susceptible to defects in growth and fabrication processes, which can subsequently lead to 

open circuits in the graphene wires and reduce the yield of the microelectrode array.

Here we addressed these challenges by introducing interlayer-doped double-layer graphene 

(id-DLG) to build flexible and transparent arrays with low-resistance long graphene wires 

and ultrasmall microelectrodes (Fig. 1a,b). Details of the fabrication steps are explained in 

the Methods section. Our id-DLG approach was effective not only in eliminating the defects 

formed during the growth or fabrication of graphene (Fig. 1c) but also in reducing the sheet 

resistance of graphene wires from 1,908 Ω sq−1 for SLG to 276 Ω sq−1 for id-DLG (Fig. 1d 

and Supplementary Discussion 3). By addressing the graphene defect (Extended Data Fig. 3) 

and sheet resistance issues, our id-DLG approach allowed us to realize high-density arrays 

with an extended transparent FoV for artefact-free multimodal experiments (Fig. 1a,e). We 

fabricated 64- and 256-channel arrays with 20 μm openings, 350 μm centre-to-centre pitch 

and total clear areas of 3.1 × 2.8 mm2 (Fig. 1a) and 6.4 × 6.1 mm2 available for imaging, 

respectively (Fig. 1e and Supplementary Fig. 1a,b). Moreover, we designed and fabricated 

different configurations of transparent arrays tailored to meet the specific requirements of 

distinct in vivo experiments (Supplementary Fig. 1c–e).

Overcoming quantum capacitance for ultrasmall electrodes

Miniaturizing graphene electrodes to single-cell dimensions results in large impedances 

because of the quantum capacitance of graphene, which is attributed to the low density 

of states near the Dirac point43. Employing multilayer graphene and introducing dopants 

can increase the quantum capacitance15,43, but it still dominates the overall capacitance 

(Fig. 2a and Methods). To reduce the impedance, we electrochemically deposited PtNPs, 

a method suggested to bypass the limits of the quantum capacitance effect by creating a 

low-impedance parallel conductance path. PtNP modifies the capacitive electrode/electrolyte 

interface dominated by the quantum capacitance of graphene through an increase in the 

effective surface area and by enabling electrochemical reactions via PtNPs (Fig. 2b). The 

application of PtNP deposition successfully decreased the average impedance from 5.4 MΩ 
to 250 kΩ (Fig. 2c).

To quantitatively analyse the electrochemical impedance of electrodes, we constructed an 

equivalent circuit model (Methods) for id-DLG with and without PtNPs (Fig. 2d). The 
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measured electrochemical impedance spectroscopy (EIS) data and the fitted equivalent 

circuit model results are shown in Fig. 2e, and the extracted parameters are listed in 

Extended Data Table 2 for the PtNP/id-DLG and id-DLG models (Extended Data Fig. 4a 

and Methods). We observed that the impedance of electrodes decreased and the particle 

size increased with an increased deposition time (Extended Data Fig. 4b,c). Although the 

transparency of electrodes covered with PtNPs is reduced, they cover only 0.23% of the 

total area of the array; therefore, the PtNP/id-DLG arrays maintain high transparency (Fig. 

2f). Cyclic voltammetry results before and after 150 s of PtNP deposition indicate that 

the electrolyte/id-DLG interface is fully capacitive, PtNPs are actively contributing to the 

charge-transfer process at the electrode/electrolyte interface43,45 and there is a 7.5-fold 

increase in the charge storage capacity following PtNP deposition (Extended Data Fig. 4d 

and Supplementary Discussion 4). Moreover, our results show that the length and resistance 

of the graphene wires have a negligible effect on the electrode characterization results and 

electrophysiological recordings (Extended Data Fig. 4e and Supplementary Discussion 5). 

Overall, these results demonstrate the successful integration of id-DLG and PtNP to realize 

high-yield fully transparent graphene arrays with ultrasmall electrodes and low impedance 

for multimodal experiments with uncompromised signal quality.

In vivo multimodal experiments with transgenic mice

We performed multimodal experiments with transparent PtNP/id-DLG arrays to record 

electrophysiological signals from the cortical surface while conducting calcium imaging 

with two-photon microscopy from the ipsilateral visual cortex of transgenic mice expressing 

GCaMP6s in most cortical excitatory neurons (Methods and Supplementary Discussion 

6). We performed simultaneous electrophysiology recording and calcium imaging at two 

different depths (L1 and L2/3) as the animals were presented with drifting gratings as 

a visual stimulus (Fig. 3a and Methods). The high optical transparency of the implanted 

array allowed for the easy detection of excitatory neurons and their compartments and 

recording calcium signals with a single-cell resolution (Fig. 3b). Representative electrical 

signals recorded from the 64 graphene electrodes are demonstrated in Fig. 3c. Trial-averaged 

calcium activity of L2/3 excitatory neurons (Fig. 3d and Methods) and representative 

optical signals from L1 and L2/3 (Fig. 3e–g) highlight the diverse range of neuronal 

responses elicited by drifting gratings (Supplementary Discussion 6). To ensure that the 

electrophysiology recordings were consistent over the cortex, we examined the noise level of 

recorded signals and showed that it is uniform across the array, regardless of the wire lengths 

(Extended Data Fig. 5a,b and Methods). The imaging quality was also not compromised by 

the transparent graphene array and the ultrasmall PtNP electrodes did not obstruct the FoV 

(Extended Data Fig. 5c,d).

Our flexible array enabled us to record the surface potentials from 64 channels that spanned 

over a large area (2.5 × 2.5 mm2) of the cortex (Fig. 4a). With such a broad spatial 

coverage, we were able to examine the propagation of visual stimulation responses (Fig. 

4b). We analysed the power of visually evoked responses at different frequency bands 

and found that the high-frequency bands (γ and MUA) were more localized compared 

with the low-frequency bands (δ and θ), which propagated to the other cortical areas 

(Fig. 4c and Methods), consistent with previous works33,46,47. The small electrodes (20 
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μm) with low impedances allowed us to record the MUA from the cortical surface with 

high fidelity. Figure 4d illustrates the representative event-triggered MUA waveforms for 

select channels, distinguished by different colours, indicating that the detected MUA events 

are fairly localized over the cortex. These short-duration spikes recorded from the surface 

were classified as MUA since their autocorrelograms did not show any refractory period 

(Supplementary Fig. 2a). To investigate the origins of MUA spikes detected on the surface, 

we examined the correlation between cellular signals from calcium imaging and the MUA 

power for each channel (Methods). The high correlation between the cellular calcium peaks 

and the MUA power for the channels within the FoV suggests that the spiking activity of 

L2/3 excitatory neurons underneath these channels is an important contributor to the MUA 

detected on the surface (Fig. 4e). Representative cell-averaged calcium signal and MUA 

power of the channel with the maximum correlation are demonstrated in Fig. 4f and the 

correlation between calcium peaks and MUA power extracted from the whole recording 

is shown in Fig. 4g. We found similar correlation values between the MUA power and 

cell-averaged calcium signal in other experiments (Supplementary Fig. 2b–e).

Predicting neural activity at depth from surface recordings

Given the correlation between the MUA power recorded from the surface and the cellular 

calcium signals imaged in L2/3, we asked whether it is possible to predict the brain 

activity at deeper layers by using only high-resolution electrical recordings from the cortical 

surface. We implemented an artificial neural network model that consists of a linear hidden 

layer, a single-layer bidirectional long short-term memory (BiLSTM) network, and a linear 

readout layer (Fig. 5a and Methods)10,48. The models were trained using the multimodal 

datasets to learn the nonlinear relationships between cellular calcium activities and surface 

potentials (Methods). The calcium activity predicted from the surface potentials shows good 

agreement with the ground-truth calcium fluorescence change for both layers (Fig. 5b). 

To evaluate the contributions spatially provided by different channels, we performed the 

decoding using subsets of channels starting from those closest to the FoV (Supplementary 

Fig. 2f). The decoding performance increased with the inclusion of more channels (Fig. 

5c), which indicates that different channels provide complementary information. However, 

the decoding performance was saturated when ~20 channels were used, suggesting that 

additional channels provide redundant information beyond this point. We then investigated 

the contribution of different frequency bands and found that the best decoding performance 

is achieved when MUA, γ and H-γ were included, suggesting that the high-frequency 

components carry a vast amount of information on the neural activity including cellular 

spiking in the FoV (Fig. 5d and Supplementary Fig. 2g).

Predicting cellular calcium activity from surface recordings

We next investigated a more interesting question, which is whether predicting calcium 

fluorescence of single cells from deeper layers is possible by only using high-resolution 

recordings of cortical potentials. Developing a network similar to that shown in Fig. 5a 

to predict the activity of all the 136 neurons would require increasing the complexity 

of the network, which is not efficient due to the covariances in neural activity. Previous 

studies have shown that the neural activity of neurons could be defined by low-dimensional 
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manifolds that capture most of the variance49,50. Therefore, a better approach would be to 

predict the low-dimensional neural manifolds and project them back to the single-cell space.

To investigate the feasibility of predicting the single-cell activities of L2/3 neurons from 

the surface potentials, we first used Gaussian process factor analysis (GPFA) to find a 

low-dimensional latent space that is very representative of the high-dimensional calcium 

fluorescence signal (Methods and Supplementary Fig. 3a). We trained models to predict 

each of the latents (Supplementary Fig. 3b) and projected the decoded latent variables to 

the high-dimensional space to reconstruct the single-cell calcium fluorescence (Extended 

Data Fig. 6 and Methods). Our decoding model (Fig. 6a) successfully inferred the calcium 

activity of several neurons at depth using the electrical activities recorded from the cortical 

surface (Fig. 6b,c). The efficacy of information extraction by the GPFA model is critical for 

the decoding performance; an optimized representation of population activity provides more 

comprehensive data, which, in turn, enhances the decoding accuracy (Supplementary Fig. 

4a,b). We also found that the decoding performance is significantly better for cells that are 

responsive to the visual stimulus (Supplementary Fig. 4c and Methods).

Next, we investigated whether the high accuracy of our decoding model can be attributed 

to the low variance of drifting gratings and the population coupling of neurons in response 

to the visual stimulus. It has been shown that the spontaneous activity in the visual cortex 

is complex and potentially higher dimensional than the evoked responses51, with population 

couplings that resemble those observed in response to complex visual stimuli such as natural 

images52,53. Therefore, we applied our decoding strategy to a separate dataset acquired 

from sessions without any visual stimulus (Methods). We successfully inferred the calcium 

activity of single neurons in spontaneous sessions (Extended Data Fig. 7). To investigate 

the effect of population coupling on single-cell calcium activity inference, we computed the 

population couplings for both evoked and spontaneous sessions (Extended Data Fig. 8a,b 

and Supplementary Discussion 7). By exploring the relationship between the population 

coupling and single-cell decoding results, we showed that a higher coupling does not always 

imply better decoding performance. For instance, in both evoked and spontaneous sessions, 

we found highly coupled cells with poor decoding performance and top decoded cells with 

low population couplings (Extended Data Fig. 8c,d). Therefore, we focused on the top 

decoded cells and by examining their population couplings, we discovered that the decoding 

accuracy of the top inferred cells was consistently better in the evoked sessions, despite 

having a lower population coupling compared with the spontaneous sessions (Extended 

Data Fig. 8e–h). These findings suggest that although population coupling might potentially 

contribute to the inference of calcium activity of individual cells, it cannot be the sole 

contributing factor that determines the decoding performance.

Overall, the decoding results for evoked and spontaneous sessions indicate that the surface 

potentials recorded by transparent PtNP/id-DLG arrays carry information about the neuronal 

activities in both superficial and deep layers of the brain and could be used to infer neural 

population dynamics even at the single-cell level.
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Conclusions

In this work, we developed a transparent, high-density graphene array with ultrasmall 

electrodes and demonstrated its application in multimodal experiments to study the neural 

dynamics at different cortical layers with complementary spatiotemporal resolution provided 

by optical imaging and electrophysiological recording. Complete transparency of the 

graphene arrays enabled us to perform artefact-free multimodal experiments combining 

electrical recordings from the surface with two-photon imaging at depth. We used the 

multimodal datasets and trained artificial neural networks to infer the calcium activity at 

different layers of the visual cortex. We successfully demonstrated the inference of calcium 

activity at both average and cellular resolutions using the surface potentials. Though our 

cellular decoding model may not capture the calcium activity for all the cells in the 

FoV, this limitation presents an opportunity for future improvement through optimizing 

the dimensionality reduction methods and decoding models as well as constructing more 

comprehensive training datasets. Moreover, the dimensionality reduction step can be further 

improved to enable the joint latent modelling of electrical and optical recordings. Proper 

extraction and understanding of shared embeddings in these modalities is needed to allow 

for the generalization of our methodology to experiments with only one modality, such 

as electrophysiological recordings with no simultaneous optical imaging. Generalization 

of the models could enable the imaging of neural activity across the cortex in freely 

moving animals, without the requirement for head-fixed microscopy configurations that 

constrain the animal’s behaviour. The head-fixed configuration, along with issues related 

to the photobleaching of indicators, impose a strict limit on the total duration of imaging 

experiments, typically not exceeding a couple of hours. In contrast, electrophysiological 

recordings do not suffer from such limitations and can be continuously performed in freely 

moving animals over extended periods of time. Our multimodal approach can be seamlessly 

applied to extend the time frame for continuous imaging experiments, ranging from just a 

few hours a day54 to potentially spanning days, weeks or even months.

Our results demonstrate that transparent graphene arrays could be potentially integrated with 

other techniques to facilitate multimodal experiments with unprecedented spatiotemporal 

resolutions. The recordings of neural activity at depth through generalized cross-modality 

inference models without using invasive neural implants have the potential to improve 

the longevity of brain–computer interface technologies, which could pave the way for 

medical translation. This approach can also enhance the interpretation of electrophysiology 

studies by reducing the damage to brain tissue, which is a limitation in studies with 

laminar probes55–57. These multimodal experiments could expand the spatial reach of neural 

recordings and facilitate the source localization of distinct features, thus having implications 

for enhancing the capabilities of existing brain–computer interface technologies in tackling 

complex motor and behavioural tasks. Ultimately, a generalized model with the capability of 

predicting neural activity at depth from surface recordings has the potential to open up new 

possibilities for developing minimally invasive neural prosthetics or targeted treatments for 

various neurological disorders.
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Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41565-023-01576-z.

Methods

Fabrication of high-density transparent graphene arrays

To form the transparent and flexible substrate, we deposited a 14-μm-thick layer of parylene 

C (PC) on a four-inch silicon wafer coated with 100 nm PMGI SF3 as the sacrificial 

layer. Next, we sputtered 5 nm chromium and 100 nm gold on the PC substrate and 

patterned it with photolithography and wet etching to form metal wires and contact pads. 

The first graphene layer was transferred using an electrochemical delamination process14,58. 

To decrease the wire resistance, it was immersed into 50% HNO3 solution for 10 min. 

After cleaning the HNO3-doped graphene with acetone and isopropyl alcohol, the second 

graphene layer was transferred using the same process as the first layer. To pattern the DLG, 

we used a bilayer photoresist (PMGI/AZ1512) and etched the graphene with oxygen plasma, 

followed by acetone/isopropyl alcohol cleaning. To protect the DLG during the next steps, 

we sputtered a 25 nm silicon dioxide etch-stop layer on the patterned graphene. Then, we 

deposited PC (2 μm) as the encapsulation layer and patterned it with oxygen plasma to 

define the electrode openings. To remove the protective silicon dioxide layer and get access 

to the DLG, we used a 6:1 buffered oxide etchant. Finally, we detached the arrays from 

the wafer by immersing it in acetone and applying slight physical force to the edges of the 

wafer.

PtNP deposition and electrode characterization

The electrochemical deposition of PtNPs and electrochemical characterizations were 

conducted with Gamry 600 plus and 1× phosphate-buffered saline. Both EIS and cyclic 

voltammetry were measured under a three-electrode configuration using Ag/AgCl as the 

reference electrode and platinum as the counter electrode. To avoid electromagnetic noise, 

all the measurements were conducted inside a Faraday cage. PtNP deposition was conducted 

under a two-electrode configuration in a H2PtCl6 (0.05 M) and K2HPO4 (0.01 M) solution, 

with a 50 nA current flown from the id-DLG electrode to the counter electrode under 

ambient conditions. Since the impedance of the electrodes saturated after 150 s of PtNP 

deposition (with a value of around 200 kΩ), we decided to set the deposition time to 150 s.

Equivalent circuit models

To quantitatively analyse the electrodes, we modified the conventional Randles model 

to capture the quantum capacitance effect, resistance of graphene wires and pseudo-

capacitance of PtNP. Unlike a previously reported circuit model for the PtNP/SLG 

electrode43, there is no need for a parallel branch to explain the electrochemical reaction 

at the electrolyte/electrode interface as the graphene electrode openings are completely 

covered by PtNPs and the interface is converted from electrolyte/id-DLG to electrolyte/
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PtNP. Therefore, the quantum capacitance component is removed from the equivalent circuit 

model for the electrode/electrolyte interface and Cp and Rct are added to represent the 

pseudo-capacitance of PtNP.

To extract the capacitances in the equivalent circuit models, we first obtained the values 

of CPEGr and CQ by fitting the EIS measurement data to the circuit model of the id-DLG 

electrode. Then, we extracted the CPE parameters (capacitance parameter Y  and phase-

change element exponent α) and used equation (1) to calculate the Cdl value59. Here Rs is the 

solution resistance.

Cdl = Y × Rs

1
α

Rs

(1)

We used equation (2) and the measured open-circuit voltage to calculate the impurity 

concentrations for SLG, DLG and id-DLG43,44.

CQ = 2e2
ℏνF π

eV
ℏvF π

2
+ n*

1/2

(2)

Here vF is the Fermi velocity, ℏ is the Planck constant and V  is the open-circuit voltage. 

To plot the capacitances shown in Fig. 2a, we used equation (2) and swept the open-circuit 

voltage from −0.4 to 0.4 V (Cdl is not a function of V , so its value is constant).

Animal procedures

All the procedures were performed in accordance with the protocols approved by the 

University of California San Diego’s Institutional Animal Care and Use Committee and 

guidelines of the National Institute of Health. Three animals were used in this study. 

Adult mice (cross between CaMKIIa-tTA (JAX 003010)60 and tetO-GCaMP6s (JAX 

024742)61, two months old) were anaesthetized with isoflurane (3% for induction and 1% 

for maintenance). Both eyes were protected by Vaseline, and a circular piece of scalp was 

removed. After cleaning the underlying bone using a razor blade, a custom-built head plate 

was implanted to the exposed skull (~1 mm posterior to the lambda) with cyanoacrylate glue 

and cemented with a dental acrylic (Lang Dental). Two stainless steel screws (F000CE156, 

J.I. Morris) were implanted over the olfactory bulb as the reference and ground. A square 

craniotomy was made over the left hemisphere (~3.50 × 4.00 mm, centred at ~1.75 mm 

lateral and 2.00 mm posterior to the bregma), and the dura of the craniotomized area was 

carefully removed with a hooked needle. The transparent PtNPs/id-DLG electrode array was 

first attached to a glass window with ultraviolet glue and connected to the amplifier board. 

Then, the assembled interface was gently placed onto the exposed cortex with the electrode 

array facing the cortical surface. The glass window was gradually pressed down through a 
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micromanipulator (Sutter Instrument) until the whole electrode array was tightly attached 

to the cortical surface. Although our target area of the brain was the primary visual cortex 

(V1), other neighbouring cortical areas were covered by the array including the primary 

somatosensory cortex (S1), posterior parietal cortex (PPC) and retrosplenial cortex (RSC). 

Vetbond (3M) was applied to fill the gap between the skull and the glass window, and the 

glass window was further secured with cyanoacrylate glue and dental acrylic. A cocktail of 

dexamethasone (2.0 mg kg−1 body weight), buprenorphine (0.1 mg kg−1 body weight) and 

Baytril (10.0 mg kg−1 body weight) was given at the end of the surgery. The animal was 

fully recovered from anaesthesia before recording.

Visual stimulation

Square-wave drifting grating stimuli (100% contrast, 0.04 cycles per degree, 3 cycles 

per second, covering the entire contralateral receptive field) were presented on an LCD 

monitor (30 × 38 cm2) positioned 15 cm away from the right eye using Psychtoolbox (http://

psychtoolbox.org/). Each of the eight orientations (45° apart) were presented for 2.0 or 2.5 s 

on each trial in a pseudorandom order, with an 8 s interstimulus interval. We presented each 

orientation at least 30 times in a session. Moreover, we conducted experiments to record the 

spontaneous activities without any stimuli.

Two-photon imaging and analysis of imaging data

Two-photon imaging was conducted for a head-fixed awake mouse through a ×16, 0.8-

numerical-aperture objective (Nikon) mounted on a commercial two-photon microscope 

(B-Scope, Thorlabs) and using a 925 nm laser (Ti:sapphire laser, Newport). The images 

were acquired at ~29 Hz and a resolution of 512 × 512 pixels, covering 960 × 960 μm of 

the V1 area (Fig. 3b). The laser power was ~15 mW for imaging L1 (~50 μm deep) and 

~40 mW for imaging L2/3 (~225 μm deep). The acquired images were motion corrected 

offline62. For the quantification of calcium signals from L1, pixels in the blood vessels 

and ten pixels close to the frame edges were excluded. The fluorescence time course F
was calculated as the ground average of the remaining pixels in each frame. At each time 

point, the baseline (F0) was estimated by the tenth percentile of the fluorescence distribution. 

For the quantification of calcium signals from L2/3 cell bodies, regions of interest (ROIs) 

were first identified by the Suite2p package63 and then visually inspected to remove the non-

somatic ones. Next, the fluorescence time course of each cellular ROI and its surrounding 

neuropil ROI was extracted using the Suite2p package. Then, the fluorescence signal of 

a cell body was estimated as Fcellbody = FcellRoI − 0.7 × FneuropilRoI. Finally, ΔF /F0 was computed 

as Fcellbody − F0 /F0, where F0 is the eighth percentile of the intensity distribution during the 

recording session. Unlike L2/3, L1 is mainly occupied by intermingled neuropils, including 

dendrites and axons extended from deeper layers and its fluorescence represents dendritic 

and axonal activities. Therefore, for L1, we used the average (pixel-level) fluorescence 

changes in the FoV, excluding the blood vessels.

To analyse the stimulus response of the imaged cells in L2/3, we subtracted the baseline 

activity (2 s before the stimulus onset) from the trial-averaged fluorescence signal for each 

cell body and normalized it with the baseline activity. To categorize the cells, we sorted 

them based on their averaged normalized stimulus response from 0.3 to 3.0 s after the 
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stimulus onset. We considered the first and last 20 cells as modulated and rest of the cells as 

non-modulated cells.

Electrophysiological recordings and noise characterization

Electrophysiological recordings were conducted with the RHD2000 amplifier board and 

RHD2000 evaluation system (Intan Technologies). The sampling rate was set to 20 kHz, and 

the d.c. offset was removed with the recording system’s built-in filtering above 0.1 Hz. The 

Intan data were imported into MATLAB (MathWorks) and analysed using custom scripts in 

MATLAB v. 2022b. To characterize the noise level, we calculated the standard deviation of 

the bandpass-filtered (0.5–4.0 kHz) signals for all the channels and plotted it as a function of 

wire length for all the electrodes (Extended Data Fig. 5a,b).

Electrophysiology data analysis and correlation with calcium activity

Electrodes with impedances above 10 MΩ were excluded from the analyses. To remove 

common artefacts (imaging and power line), a bank of notch filters was applied to the 

surface recordings (the filters were separately optimized for each channel). The signals were 

lowpass filtered below 250 Hz using a fourth-order Butterworth filter to extract the local 

field potentials. The visually evoked potentials for each trial were extracted from the local 

field potentials and the trial-averaged peak-to-peak amplitude and propagation delay of the 

stimulus responses were visualized using two-dimensional colour maps. To further filter the 

signals into common low-frequency bands (δ, 1–4 Hz; θ, 4–7 Hz; α, 8–15 Hz; β, 15–30 

Hz; γ, 31–59 Hz; H-γ, 61–200 Hz), sixth-order Butterworth bandpass filters were applied 

with the corresponding frequency ranges. The MUA was extracted by applying a sixth-order 

bandpass filter from 0.5 to 4.0 kHz followed by common average referencing. The powers 

at different bands (δ, θ, α, β, γ, H-γ and MUA) were calculated by taking the square of 

the bandpass-filtered signals and applying a 100 ms Gaussian filter to reduce the noise. 

The power changes due to visual stimulus were calculated by trial averaging the powers 

at different bands and subtracting the baseline activity (2 s before stimulus onset) and the 

peak of the power changes (in a 4 s window after the stimulus onset) were demonstrated 

using two-dimensional spatial maps to visualize the localization of different bands. To detect 

the MUA events, we applied the threshold-crossing method on bandpass-filtered (0.5–4.0 

kHz) signals with a threshold set at −4 times the standard deviation. To compute the 

event-triggered MUA averages, we identified the MUA event times for a target channel and 

calculated the average MUA waveform for all the 64 channels, spanning a time window of 1 

ms before to 1 ms after each event in the target channel.

To analyse the MUA and average cellular calcium correlation, we first determined the peaks 

of the normalized cell-averaged ΔF /F  (‘findpeaks’; the minimum peak height is set to 0.75) 

and then took the time average of the MUA power in a 2 s window [−1.5 s, 0.5 s] around 

the onset times of those peaks for all the 64 channels. The Pearson correlation values were 

calculated for each channel between the calcium peaks and the averaged MUA powers. 

The same procedure is followed to calculate the correlation of the average cellular calcium 

activity with other frequency bands (δ, θ, α, β, γ and H-γ).
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Decoding model for prediction of calcium activity

Python (version 3.6.9) was used to develop the inference models. A neural network model 

with a sequential stack of a linear hidden layer, one BiLSTM layer and a linear readout 

layer was implemented. Batch normalization and dropout (p = 0.3) were used for improved 

training and a rectified linear unit as the activation function. The surface potential power at 

different frequency bands (δ to MUA) were downsampled to match the sampling rates of the 

calcium signal (29 Hz) and clipped with a threshold of 95 percentile to suppress the potential 

artefacts. These signals were then used as inputs to the neural network model. To decode the 

neural activity at time step t, the power segments within t − 1.5 s, t + 1.5 s  were used 

(total time steps, 90). The first linear layer had 25 neurons and the BiLSTM had 15 hidden 

neurons. The last layer outputs the predicted cell-averaged calcium signal.

Adam was used to train and optimize the parameters of the model, with the following 

parameters: learning rate = 6 × 10−5, beta1 = 0.9, beta2 = 0.999, epsilon = 10−8. The batch 

size was set to 128 and the training converged within ~20 epochs. The mean squared error 

was used as the loss function. Fivefold cross-validation was performed by splitting the 40 

min recordings into 8 min segments. The Pearson correlation between the decoded and 

ground-truth data was used to evaluate the model performance. The correlation values were 

averaged over five folds to get a single value for the decoding performance.

Low-dimensional latent space of population activity

We used GPFA—a generative model that unifies dimensionality reduction and smoothing 

in one framework—for the extraction of latent representations that describe the shared 

variability of high-dimensional data64. We identified eight distinct latent variables that 

explain most of the variance of the high-dimensional data (Supplementary Fig. 3a). GPFA 

models observations as a Gaussian model that is related to the latent variable through the 

following equation:

y: , t ∣ x: , t ≈ N Cx: , t + d, R

(3)

Here x: , t represents the latent variable at time point t, d is the signal mean, C is the factor 

loading matrix and R represents the covariance matrix. The ith latent variable x is modelled 

as a Gaussian process with a covariance matrix K that correlates the latent variables across 

time points:

xi ≈ N 0, Ki .

(4)

Using the training data of calcium signal Y , we train a GPFA model that learns the 

parameters and infers the trajectory of latent variable x.

E[X ∣ Y ] = KC′(CKC + R)−1(Y − d)
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(5)

We used the latent variable x and the inferred latent variable x̂ from the BiLSTM model to 

project into a single-cell calcium activity space (Extended Data Fig. 6).

E[Y ] = CX + d

(6)

E Y = CX + d

(7)

Here Y  is the projected calcium signal using the originally inferred latent variables and Y  is 

the projected calcium signal using the latent variables predicted by the BiLSTM model. The 

projected calcium signals are then compared with the true calcium signals.

Statistics and reproducibility

Two-sided Wilcoxon rank sum test was used to compare the decoding performances of the 

modulated (n = 40) and non-modulated (n = 96) cells (p < 0.001).

Extended Data

Extended Data Fig. 1 |. Comparison of optical transmittance and normalized impedance of our 
transparent graphene array with other neural interfaces.
Optical transmittance as a function of normalized impedance for all the electrode 

technologies listed in Extended Data Table 1.
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Extended Data Fig. 2 |. Comparison of conventional gold electrodes with transparent graphene 
arrays.
(a) Conventional 64-channels gold array with 20 μm and (b) 6 μm wire widths and smaller 

gold pads. (c) Fully transparent 64-channels graphene array without surrounding gold wires. 

(d) Shadows created by opaque gold wires in the field of view during two-photon imaging at 

50 μm (left) and 250 μm (right) depth under the electrodes. The scale bars are 100 μm. (e) 

Signals recorded by gold and graphene arrays shown in b and c during two-photon imaging 

(at 50 μm depth underneath the electrodes) showing light-induced artifacts in gold but not 

graphene electrode. (f) Power spectral density of signals recorded by gold and graphene 

electrodes during two-photon Z-scan from 50 μm to 150 μm underneath the electrodes.
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Extended Data Fig. 3 |. Characterization of defects in SLG and DLG wires.
(a) SLG and DLG wire pinhole images using two-photon microscopy. SLG wire with 

different width 20 μm, (b) 30 μm, and (c) 40 μm. DLG wire with different width (d) 20 μm, 

(e) 30 μm, and (f) 40 μm. Scale bars are 20 μm.
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Extended Data Fig. 4 |. Reducing the impedance of electrodes using PtNP deposition.
(a) Measured electrochemical impedance spectroscopy (EIS) and the fitted values using 

the equivalent circuit model for id-DLG electrode. (b) The Impedance of PtNP/id-DLG 

with various PtNP deposition time measured at 1 kHz. (c) SEM images of PtNP/id-DLG 

with various PtNP deposition times. Scale bars are 3 μm and 1 μm in the top and bottom 

row, respectively. (d) Cyclic voltammetry (CV) measurement result for id-DLG (red) and 

PtNP/id-DLG (black). (e) The ratio of the graphene wire resistance (RGr) to the electrode 

impedance (ZElectrode - RGr) for channels with different wire lengths. The gray dots in the 
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graph represent the ratios for individual channels, while the red dots and bars indicate the 

mean and standard deviation, respectively, for groups of eight channels (n = 8) with similar 

wire lengths.

Extended Data Fig. 5 |. Transparent graphene arrays do not affect the signal quality.
(a) The noise level of all channels with different graphene wire lengths. The gray dots in the 

graph represent the noise level for individual channels, while the red dots and lines represent 

the mean and standard deviation of each group of eight channels with same graphene wire 

length. (b) The heatmap of noise level of all channels overlaid with microscope image of 

the 64-channel array. (c) Pyramidal cells around (blue ROIs) and underneath (red ROI) the 

electrode (green circle) and (d) their ΔF/F signals show that the PtNP/id-DLG electrode does 

not obstruct the FoV and affect the two-photon signal quality. Scale bars in c and d indicate 

20 μm and 5 z-score, respectively.
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Extended Data Fig. 6 |. Schematic of the decoding model used for single-cell calcium inference.
The main steps of the single-cell calcium inference pipeline are explained in detail. Calcium 

latent variables are extracted using GPFA (red panel) and predicted by the ECoG powers at 

different frequency bands (green panel). The predicted calcium latents are then projecting 

into single-cell space (blue panel).

Extended Data Fig. 7 |. Decoding spontaneous calcium activity at single-cell resolution.
(a) Representative examples for decoded (orange) vs ground truth (black) ΔF/F of five 

best-decoded cells in the spontaneous session. The scale bar is 3 z-score. (b) Decoding 

results for all 114 cells in the spontaneous session presented with their locations outlined in 
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the FoV. The 9 channels inside the FoV are marked with black circles. The scale bars are 

100 μm.

Extended Data Fig. 8 |. The relationship between population coupling and single-cell calcium 
decoding.
(a) Comparison of population coupling across cells (n = 114) in the spontaneous and evoked 

sessions using method 1 (Eq. 1 in the Supplementary Information), and (b) method 2 (Eq. 

2 in the Supplementary Information). The red (blue) circles indicate highly coupled cells in 

the spontaneous (evoked) session with low population coupling in the evoked (spontaneous) 
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session. (c) Decoding results as a function of population coupling for the spontaneous and 

(d) evoked sessions using method 2 (Eq. 2 in the Supplementary Information). The green 

boxes highlight highly coupled cells with poor decoding results. Yellow boxes highlight 

cells with high decoding performance, but low population couplings. (e) Decoding results 

and (f) population couplings of the top 25 decoded cells in the evoked and spontaneous 

sessions. (g) Decoding results and (h) population couplings of the top N decoded cells (N = 

5 to 30) in the evoked and spontaneous sessions. Solid lines and shaded regions indicate the 

mean and s.e.m., respectively. Population couplings are calculated among the top N decoded 

cells.

Extended Data Table 1 |

Transparent neural recording arrays compatible with multimodal experiments

Material
Electrode 

area 
(μm2)

Channel 
count

Pitch 
(μm)

Normalized 
Impedance 

(Ω*cm2)

Coverage 
(mm2)

Transmittance 
(%)

Chronic 
Recording Issues Reference

Gr

314 64 (256) 350 0.78 6 (31.3) 90 Acute N/A This 
work

2,500 8 300 13.5 0.8 90 Acute

N/A

[12]

31,400 16 750 76.3 3.6 90 2+ months [13]

7,800 16 500 22.3 2.25 90 Acute [16]

10,000 16 400 11 1.44 80 Acute [43]

10,000 16 500 96.3 2.25 85 Acute [14]

10,000 16 500 87.2 2.25 90 20+ days [48]

2,500 16 500 22.7 2.25 90 Acute [15]

10,000 16 500 140 2.25 85 2+ months [40]

10,000 16 500 110 2.25 85 20 days [38]

ITO

196,350 49 800 21.6 23 90 Acute

Brittle

[17]

31,400 16 700 6.3 4.4 80 Acute [18]

49,090 16 500 14.7 2.25 80 Acute [20]

CNT 10,000 16 400 20 1.44 85 Acute Cytotoxicity [21]

Au

2,500 36 1000 2.57 25 Not reported 14 days

Light-
induced 
artifacts

[21]*

5,000 32 400 0.6 4 70 20 days [28]

31,400 16 700 3.7 4.4 75 Acute [26]

Ag

53,090 16 850 1.16 1.65 70 2 months [24]

102,400 9 2,500 1.22 25 57 Ex-vivo [22]

196,000 4 1,000 39.2 1.5 62 Acute [23]

PEDOT: 
PSS

706 9 150 1.17 0.09 84 Acute

Delamination

[31]

490 16 200 0.81 9 85 Acute [30]

90,000 16 700 54 4.4 85 Acute [29]

*
In the Supplementary Information

A comparison of electrode area, channel count, electrode pitch, normalized impedance, areal coverage, optical 
transmittance, and chronic recording reliability between the state-of-the-art in transparent array technologies and our 
ultra-high density transparent graphene array.
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Extended Data Table 2 |

Parameters in the equivalent circuit models of id-DLG and PtNP/id-DLG

Rs 
(kΩ)

RGr 
(kΩ)

CQ 
(μF/
cm2)

Cp 
(μF/
cm2)

Rct 
(MΩ) Y (S.seca) a W 

(S.sec1/2)
B 

(sec1/2)

id-DLG 25 8.97 9.39 - 20.7 4.35×10−11 9.89×10−1 5.2×10−9 0.51

PtNP/id
-DLG 25 8.97 - 80 5.6 3.03×10−9 8.25×10−1 19.0×10−9 1.20

The parameters obtained by fitting the EIS measurements to the equivalent circuit models of the id-DLG and PtNP/id-DLG 
electrodes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. High-density transparent graphene array.
a, Transparent and flexible 64-channel graphene array (left) and a magnified part of it with 

graphene wires shown with white dashed lines (right). Scale bar, 100 μm. b, Schematic of 

HNO3 id-DLG. c, Two-photon microscopy image of pinhole defects on the graphene wires. 

The top and bottom wires are SLG and DLG, respectively. Scale bars, 10 μm. d, Graphene 

wire resistance for SLG, DLG and id-DLG wires as a function of wire length. The circles 

and error bars indicate the mean and standard deviation, respectively (n = 4). e, Optical 

image of high-density 256-channel graphene array. Scale bar, 1 mm.
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Fig. 2 |. Overcoming quantum capacitance and reducing the impedance with PtNP deposition.
a, Quantum capacitance for SLG, DLG, id-DLG and the Helmholtz electrical double-layer 

(EDL) capacitance are plotted as a function of voltage. The quantum capacitance is 

dominant in the open-circuit potential range of graphene (−100 to 100 mV). b, Optical 

image of the 64-channel array (left) and example scanning electron microscopy images 

of the electrode openings before and after PtNP deposition (right). Scale bars, 5 μm. c, 

Impedance distribution of 64 channels at 1 kHz measured before and after PtNP deposition. 

The average impedances of the electrodes are 5.4 ± 1.1 MΩ and 250 ± 56 kΩ (mean ± 
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standard deviation), before and after PtNP deposition, respectively. d, Equivalent circuit 

model for the id-DLG electrode with and without PtNPs. Rs is the solution resistance; 

RGr is the graphene wire resistance; CQ is the quantum capacitance; CPEGr and CPEPt are 

the constant phase elements (CPEs) representing the EDL of id-DLG and PtNP/id-DLG 

electrodes, respectively. WB is the bounded Warburg element explaining the diffusion 

process, and Rct is the charge-transfer resistance that simulates the Faradaic reactions. WE 

and CE stand for the working electrode and counter electrode, respectively. e, Measured EIS 

data of the PtNP/id-DLG electrode and the fitted values using the equivalent circuit model. 

f, Transmittance of different stacks that constitute the array. PC and Gr stand for parylene C 

and graphene, respectively.
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Fig. 3 |. Multimodal experiments combining the recordings of cortical potentials from surface 
and two-photon imaging at two different depths.
a, Schematic of the multimodal experimental setup. b, Exposed cortex area covered by 

the array with the imaging FoV depicted by the black square (left) and time-averaged two-

photon images of L1 (middle) and L2/3 (right). PtNP/id-DLG electrodes are shown by the 

yellow circles. Scale bars, 700 μm (left) and 150 μm (middle and right). c, Representative 

surface potentials recorded from the 64 channels of the array. The red line shows the 

duration of visual stimulus. d, Trial-averaged population activity (relative to the 2 s baseline 

before stimulus onset) of neurons detected in L2/3. The black dashed lines show the onset 

and offset of visual stimuli. e,f, Ten neurons highlighted from the red box in b (e) and their 

normalized ΔF/F signals (f). g, Pixel-level average ΔF/F signal of L1. Scale bars, 5 z-score 

(f,g). The black arrows and grey bars in f and g show the direction and duration of drifting 

gratings, respectively.
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Fig. 4 |. Stimulus-evoked local field potentials and high-frequency activities detected using 
electrodes on the cortical surface.
a, Cortical regions covered by the 64 channels of the array. The total area covered is 

2.45 × 2.45 mm2. b, Peak-to-peak amplitude (left) and delay map (right) of the visually 

evoked responses. Scale bars, 250 ms (horizontal) and 100 μV (vertical). c, Spatial maps 

of the evoked powers (relative to the baseline) at different frequency bands across the 

array. High-frequency activities are spatially localized, whereas low-frequency bands have 

broad propagation ranges. d, Representative event-triggered MUA waveforms on different 
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channels. Scale bars, 2 ms (horizontal) and 20 μV (vertical). If multiple nearby channels 

also captured the neural events, they were assigned the same colour as the target channel. e, 

Correlation between the cell-averaged calcium peaks and MUA power around the peak onset 

for all the 64 channels. The channels in the FoV show the highest correlation values. The 

yellow box shows the channel with the maximum correlation (r = 0.71). The black dashed 

boxes and black circles in the colour maps in b, c and e indicate the FoV and the electrodes’ 

locations, respectively. f, Representative cell-averaged ΔF/F and MUA power of the channel 

with the maximum correlation (yellow box in e). The correspondence between the two 

signals is evident from the sharp deflections in the MUA power followed by the peaks in the 

calcium signal. Black scale bar, 2 z-score (calcium). Red scale bar, 0.5 dB (MUA power). g, 

Scatter plot of the cell-averaged calcium peaks and the corresponding MUA powers for the 

channel with the maximum correlation (yellow box in e).
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Fig. 5 |. Decoding the average calcium activity from recorded surface potentials.
a, Schematic of the decoding model. The signal powers at different frequency bands (ten 

channels are shown as an example) around time t are used as inputs to the model to 

decode the calcium activity at time t. The model consists of a linear hidden layer, a single-

layer BiLSTM network and a linear readout layer. b, Decoded (orange) versus ground-

truth (black) ΔF/F values of L1 (pixel averaged) and L2/3 (cell averaged). c, Decoding 

performances of L1 and L2/3 (cell and pixel averaged) using all the seven frequency bands 

but different numbers of channels. The circles and error bars indicate the mean and standard 

error of the mean, respectively (n = 5). d, Decoding performances of L1 and L2/3 (cell and 

pixel averaged) using the low-frequency (δ, θ, α and β) and high-frequency (γ, H-γ and 

MUA) components of the 20 channels closest to the FoV. The bars and black lines indicate 

the mean and standard error of the mean, respectively (n = 5).

Ramezani et al. Page 32

Nat Nanotechnol. Author manuscript; available in PMC 2025 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6 |. Decoding single-cell calcium activity from surface potentials using latent variables.
a, Schematic of the single-cell decoding model. Eight latent variables (L1 to L8) extracted 

using GPFA are used to train the BiLSTM models (similar to that shown in Fig. 5a). The 

inferred latent variables are projected to the high-dimensional space to achieve single-cell 

ΔF/F signals. b, Representative examples for the decoded (orange) versus ground-truth 

(black) ΔF/F values of the five best-decoded cells. Scale bar, 3 z-score. c, Decoding 

performance for all the 136 cells with their locations outlined in the FoV. The black circles 

are the nine channels inside the FoV. Scale bars, 100 μm.
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