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Analogue Magnitudes and Knower-Levels: Re-Visiting the Variability Argument  
 

James Negen and Barbara W. Sarnecka ({jnegen,sarnecka}@uci.edu) 
Department of Cognitive Sciences, 2201 Social & Behavioral Sciences Gateway Building 

Irvine, CA, 92697-5100 USA 
 
 

Abstract 
What cognitive system(s) initially provide the numerical 
content that defines the cardinal number words for young 
children? Le Corre and Carey (2007) argued that the answer 
cannot be the analogue magnitude system. Here we re-
examine the most powerful of their arguments, which 
concerned the system’s signature scalar variability (the 
standard deviation of answers grows linearly with the mean). 
Using adult data, we explore a nuance of this signature: that 
while it is certainly true of the continuous, underlying 
activation in the brain, it may not always be true of the 
number-word responses that people produce. With this in 
mind, we re-examine the aforementioned variability 
argument; contrary to Le Corre and Carey, we conclude that 
young children’s estimates of small set sizes (up to and 
including their number-knower-level) do show scalar 
variability.  

Keywords: Cognitive Science, Psychology, Cognitive 
Development, Perception, Bayesian Modeling, 
Developmental Experimentation, Human Experimentation 

 
How children acquire the meaning of number words is a 
question of great interest in cognitive development. In 
infancy, the child can create exact representations only of 
very small sets (up to 3 items) and can create only 
approximate representations of larger sets (for review, see 
Feigenson, Dehaene, & Spelke, 2004). It is from these 
foundations that the child must build an understanding of 
integers.  

There are at least two families of theories about the role 
that the analogue magnitude number system plays in 
number-word learning. One says that (a) the numerical 
content of number words initially comes from the analogue 
magnitude system (i.e., the representations of numerosity 
are only approximate) and (b) number-word meanings are 
learned in the same way as any other words for antecedently 
available percepts (e.g., Dehaene, 1997; Gelman & 
Galistell, 1978; 2004). On this view, the child essentially 
understands the logic of numbers from the beginning, but 
must learn the exactness of number words. That is, the child 
must learn that “seven” means exactly 7 – not 
approximately 5 to 9.  

The other family of theories contend that (a) the 
numerical content initially comes from enriched parallel 
individuation representations, (which are exact, but cannot 
go higher than 3 or 4) and (b) number-word meanings are 
learned one at a time, and in order (e.g., Carey, 2009; Le 
Corre & Carey, 2007; Sarnecka & Lee, 2009; Lee & 
Sarnecka 2010). On this view, the child figures out the 
principle of cardinality and the logic of the integer system 

by extrapolating from the first three or four exemplars—the 
words one, two, three and possibly four. 

Our proposal takes something from both views. We 
consider it adequately demonstrated that children do learn 
the first few cardinal number-word-meanings one at a time, 
and in order (Carey, 2009; Le Corre, Van de Walle, 
Brannon & Carey, 2006; Lee & Sarnecka, 2010; Sarnecka & 
Lee, 2009; Wynn, 1990, 1992). Thus, in this paper we will 
use the knower-levels framework, wherein a one-knower is 
a child who just knows “one”, a two-knower knows “one” 
and “two”, etc., and a CP-knower understands how counting 
works and what it is used for. Though this view has 
historically been paired with the view that the numerical 
content of these words comes exclusively from enriched 
parallel-individuation representations, that linkage is not 
logically necessary.  

This issue has been examined before by Le Corre and 
Carey (2007), who made a forceful argument against the 
analogue magnitude system being involved in number-word 
learning. The argument was based on variability signatures: 
Noise in analogue magnitude representations grows at the 
same rate as the number of objects being estimated. In other 
words, if you briefly show people 10 dots, and ask them 
how many are there, they will respond with variability σ. If 
you then show them 20 dots, they will respond with 
variability 2σ. More formally, the standard deviation of a 
person’s responses, divided by the mean of their responses, 
will be a constant (the ‘coefficeint of variance’, hereafter 
COV). This scalar variability is a defining characteristic of 
the analogue magnitude system throughout the lifespan.  

Le Corre and Carey (2007) argued that children’s 
estimates of the number of items in a picture did not show 
scalar variability. Le Corre and Carey used a Give-N task 
(where children give a certain number of items to the 
experimenter) as well as a Cards task (where children 
quickly estimate the number of items on a card). Le Corre 
and Carey first identified children who were one-, two-, 
three-, or four-knowers as measured by the Give-N task. 
Then they analyzed the variability of children’s estimates 
(on the Cards task) for sets of 1, 2, 3 and 4 items. The mean 
COV grew from 0 (for estimates of 1 item) to 0.4 (for 
estimates of 4 items), leading Le Corre and Carey to 
conclude that early on, the cardinal meanings of these words 
are not defined in terms of the analogue magnitude system.  

However, there is a problem with this argument. 
Logically, scalar variability could be found in two places: in 
the underlying activations in the brain, or in the distribution 
of number-word responses. Most studies of the analogue 
magnitude system in adults treat these as the same. That is, 
they assume that number-word responses transparently 
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reveal the underlying activations. This is a reasonable 
assumption when the numbers involved are large. But with 
small numbers, the available words (i.e., one, two, three and 
four) may not be sufficient to express the variation in the 
underlying activations. Below, we describe these ideas in 
more detail, then support our argument with some new data 
from adults.  

Scalar Variability of Activations versus Responses 
Creating and using an analogue magnitude representation is 
a multi-step process. One place that scalar variability might 
be found is in the actual number-word responses that people 
produce. For example, if you show someone 10 and 20 dots 
in alternation, over and over again, and they say something 
like: 9, 22, 11, 18, … their responses could show scalar 
variability. That is, the standard deviation of the responses 
could grow linearly with the number of items to be 
estimated.  

Another place you could look for scalar variability would 
be in a latent, real-valued variable – possibly the logarithm 
of activation in certain ‘number neurons’ – that describes 
the person’s perception of how many dots are present. Thus, 
when shown 10 and 20 dots, the person may experience 
something like 8.82, 21.58, 11.21 and 18.44 units of 
activation. But of course, participants do not say that there 
are 11.21 dots on the screen – they just say “eleven”1. 
Scalar variability of the activations means that the standard 
deviation of this latent variable (as opposed to the 
responses) grows linearly with the number of dots shown. 

For large numbers, these two ideas make almost exactly 
the same predictions. However, the predictions differ for 
smaller numbers. Imagine that a person says “four” when 
shown four dots, on a large number of trials. The variability 
in responses is zero, but the variability in activations could 
be much larger. The person might be experiencing anywhere 
from 3.5 to 4.5 units of activation on each trial. If we add 
the constraint that activation must be normally distributed, 
then the continuous standard deviation could be as large as 
0.1 while the discrete standard deviation stays very near 
zero (out to several decimal places).  

An analogy may be helpful: Imagine you are about to play 
a game with a friend. You will see a number of dots on a 
screen. Your friend has to say how many there are, but can’t 
see the screen. You have to tell your friend how many dots 
there are, but you’re not allowed to speak – only to draw a 
single line on a piece of paper. Your partner can then 
measure the line accurately with a ruler. Before the game 
starts, you agree on a simple code: 1 inch = 1 item. It’s easy 
to see that the average amount of error in your line length 
will be proportional to the number of items.  

Let’s imagine that, when you see 2 items, all of your lines 
fall between 1.25 and 2.75 inches; you are accurate to ± .75 
inches. Now cut that in half for when you see 1 item, and 

                                                           
1 It may be more satisfying to imagine that this is the center of a 

confidence distribution. In other words, the participant would 
experience 11.21 units of activation, and be most confident in the 
integer 11 (which is closest), followed by 12, then 10, then 13, etc.  

you are accurate to ± .375 inches. As such, your line lengths 
show scalar variability. But what about the answers your 
partner gives? There will be some variation at 2 (when she 
rounds 2.75 inches to 3, for example) but none at 1 (where 
all lines fall between .625 and 1.375 inches, and so are 
rounded to 1). The zero variation in her responses for trials 
of 1 cannot be half of the above-zero variation for trials of 2.  

Thus, the length of your lines can show scalar variability 
while the number-word answers after measuring do not. 
This happens whenever the variation is small compared to 
the minimum distance between values after rounding. In 
more traditional statistical language, the variation is very 
fine-grained and the rounding is very coarse-grained, 
leading to the phenomenon of heaping: all of the data gets 
heaped onto one point. 

Le Corre and Carey (2007) argued that one could expect 
to see scalar variability in the verbal responses all the way 
down to cards with 1 item. This claim was based on work 
by Cordes, Gelman, Galistell, and Whalen (2001). In that 
paper, the experimenters had instructed participants to tap a 
space bar a certain number of times in a steady rhythm, 
while saying “the” with each press to suppress counting. 
Cordes et al. found that participants’ verbal responses 
showed scalar variability for numbers down to 2. However, 
they did not test on the number 1, and participants showed a 
relatively high amount of noise in their answers (a standard 
deviation of around .4 at minimum). As such, Cordes et al’s 
data don’t tell us where the variability was located: at such 
high levels of noise, the two sources of variability make 
much the same predictions.  

The Present Study 
In experiment 1, we examine the two sources of variability 
by extending the experiment by Cordes et al. (2001). Like 
them, we showed adult participants a numeral on a screen, 
and the participants’ task was to tap the space bar that 
number of times. They had to do this in a steady rhythm 
while repeating “the” with each tap. We made one 
modification to reduce the amount of noise in the data: 
participants' responses were slowed to 2 Hz by having them 
tap along with a metronome.  
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Figure 1: Different behavioral predictions for scalar 

variability in activations vs. responses.   
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The two predictions from the two sources of scalar 
variability are illustrated in Figure 1. Conveniently, the 
pattern predicted by scalar variability in the responses is 
identical to the null hypothesis for a repeated-measures 
ANOVA.  

In Experiment 1, we show that small-number estimation 
data from adults is consistent with the assumption of scalar 
variability in the activations. In experiment 2, we develop a 
simple model that incorporates number-knower-levels and 
the analogue magnitude system, and we test it using data 
from children’s performance on the Give-N and Cards tasks. 
We find that the model provides a good fit to these child 
data, with no problems of variability.  

Experiment 1 

Methods 
Participants Eleven undergraduates were recruited from the 
University of California, Irvine and successfully completed 
the task. Two additional participants were excluded because 
they could not keep a steady rhythm during training trials. 
Participants were each given a half point of extra credit in 
an introductory Psychology course.  
 
Procedure On each trial, participants saw a numeral on the 
screen. They were asked to tap the space bar that many 
times, along with a 2Hz metronome, saying “the” with each 
tap to suppress counting. Participants were asked to avoid 
trying alternate strategies, like chunking, and to just keep 
tapping until they felt the number had been reached. The 
numerals used were 1, 2, 3, 4, 5, 6, 9, 12, and 15. For 
training, there were two trials with each number, and all 
participants declined the offer to go through training again. 
For data recording, there were 40 trials with the number 1, 
and 20 trials with each of the other numbers, for a total of 
200 trials. Participants were allowed as many brief breaks as 
they wanted, though none took more than two. All 
participants finished the testing session in under 20 minutes.  

Results and Discussion 
All but two participants were able to keep a steady rhythm 
throughout the experiment (the two who couldn’t were 
excluded). The mean coefficient of variance (COV) for each 
stimulus is shown in Figure 2. A repeated-measures 
ANOVA with the Greenhouse-Geisser correction suggests 
that the mean COV across stimuli is not constant, F(2.8, 
28.2) = 8.16, p = .001. This discredits the idea of scalar 
variability in responses: if such variability were true of adult 
performance, then we should expect the mean COV in 
responses to be the same for all the numbers we tested.  

On the other hand, these data are very consistent with the 
assumption of scalar variability of activations, with a 
correlation between prediction and observation of over r = 
.8. There appears to be a section where the rounding-off 
occurs (numbers 1 to 3), and a section with full observed 
variance (numbers 5 to 15), as predicted. It’s a little 
surprising that there was so much variability in responses to 

1, but this variability comes from only 2 of the participants, 
representing 3 errors out of 440 trials, and still appears to be 
lower than the section with full observed variance. It is clear 
that these data are better explained by scalar variability in 
the activations than in the responses. 

 

 
Figure 2: Observed COVs (standard deviation divided by 
mean) in the responses were lower on average for lower 

numbers of requested taps, consistent with scalar variability 
in the activations (but not in the responses). 

  
The amount of variability at numbers 1 to 4 suggests that 

we were successful in repressing subitization, replicating 
Cordes et al., 2001. Also, subitizing is usually characterized 
by a hard limit at 4, but the lowest number where each 
participant made a mistake ranged from 1 to 6. In addition, 
if the effect was due to subitizing, we would be able to 
eliminate it by subtracting out all of the jumps from 4 to 5 
(across the limit of what people can subitize). However, this 
is not the case, F(7,4) = 7.546, p = .035. Finally, all 
participants reported that they found it impossible to track 
individual taps during the task. (Tracking individual taps 
would show that participants were using the parallel 
individuation system).  All of these facts point away from 
subitizing as an explanation.  

Next, we test these predictions against a corpus of child 
behavioral data, to re-examine the question of whether the 
analogue magnitude number system may be involved in 
early number-word learning. 

Experiment 2 
We made a simple model of how children would solve the 
Cards task using the analogue magnitude system. In this 
task, children are shown a certain number of items on a card 
and are asked to guess the number of items. This is the same 
as Le Corre and Carey’s (2007) Cards task, but without the 
time limit. (The purpose of the time limit is to prevent 
counting, but children who do not yet understand the 
cardinality principle do not use counting to answer anyway.) 

This is how the model works: the child looks at the card 
once and forms an analogue magnitude representation of the 
number of items present. This representation could be 
measured in units of activation. The child then rounds off 
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this activation level to the nearest positive (non-zero) whole 
number. If the child knows this number word, she says it. If 
the child does not know the word for that number, she says 
a number from among the number words whose meanings 
she does not know. (For a discussion of how the child 
chooses which undefined number to guess, see Sarnecka & 
Lee, 2009; Lee & Sarnecka 2010.) 

For example, suppose we show a two-knower 2 items on 
several trials. On the first, she experiences 2.3 units of 
activation, rounds it to 2, and says “two”. On the second, 
she experiences .38 units, rounds it to 1, and says “one”. On 
the third, she experiences 3.3 units, rounds to 3, and picks 
“six” from among the words that she does not know (“three” 
and up). These activation levels are being drawn from a 
normal distribution with a mean of 2.  

The computations involved are based on the normal 
cumulative density function. Say that this child has a COV 
of α when shown a card with 2 items on it. The chances of 
saying “one” are Ф((1.5-2)/α). The chances of saying “two” 
are Ф((2.5-2)/α)-Ф((1.5-2)/α). The chances of saying 
“three” and up (beyond the knower-level) are proportional 
to 1-Ф((2.5-2)/α). The lower α is, the more often the child 
will be correct.   

 

 
 
Figure 3: An example of the model: a two-knower, shown 2 
items, draws an activation level from a normal distribution 

N(2,1) and responds accordingly. 
 

Furthermore, we assume that for each stimulus γ (each 
number of items shown on the card, up to 4) and knower-
level τ, a particular child’s COV is drawn from a normal 
distribution with mean μγ,τ and standard deviation σ. A 
variable δ describes the constant difference between each μγ 
and the next one up. So μ2,2 = μ1,2 + δ, etc. We planned to 
use Bayesian inference on these latent variables: if δ ≠ 0, 
then this method of describing variation does not show 
scalar variability – i.e., a constant COV – and our model is 
wrong.  

It may bother the reader that this model allows for the 
analogue magnitude system to output a negative number. 

However, there is no empirical argument against this– 
assuming the participant knows to round to the nearest 
positive whole number. A log-normal distribution may be 
substituted, which would limit the outputs to positive 
numbers, but this generally has little effect; having low 
outputs rounded to 1 accomplishes the same basic goal as 
making the distribution of outputs stay above zero. Since a 
normal distribution is symmetric, we assume that the 
variation to the higher side is sufficient to estimate total 
variation, e.g., the variation around 1 item is well-
represented by the number of times the child says “two” or 
“three”. Put another way, a two-knower has an equal 
probability of saying “two” as experiencing between   -.5 
and .5 units of activation, when shown 1 item. In any case, 
the probability of negative activation is often very small.   

Methods  
These data were taken from a longitudinal study testing 
children on both the Give-N task and the Cards task. The 
dataset thus offers a way of independently assessing the 
child’s knower-level (using Give-N) and then estimating δ 
(using the Cards task).  

 
Participants A total of 97 monolingual English-speaking 
children participated. Children were tested once every two 
weeks for twenty weeks, resulting in a total of 454 sessions. 0.4

Because little is known about the week-to-week consistency 
of children’s knower-levels and/or analogue magnitude 
acuity, each session was modeled as a new child. We 
included all children who were two-, three-, or four-knowers 
(as determined by Give-N), and who completed at least 15 
trials of both the Give-N and the Cards task. This resulted in 
a total of 161 sessions (45 sessions with two-knowers, 51 
with three-knowers, and 65 with four-knowers). 
  
Give-N The purpose of this task was to determine what 
number-word meanings each child knew (i.e., to determine 
the child’s number-knower-level.) The experimenter began 
the game by bringing out a stuffed animal (e.g., a lion), a 
plate, and 3 bowls, each containing 15 small identical rubber 
toys (e.g., toy bananas, approx. 3 cm long). The 
experimenter said to the child, “In this game, you’re going 
to give something to the lion, like this [experimenter 
pantomimes putting an item on the plate and sliding it over 
to the lion]. I'm going to tell you what to give him.” 
Instructions were of the form, “Can you give the lion TWO 
bananas?” 

Trials were in pseudorandom order, always starting with a 
request for one item. There were a total of eighteen trials: 
six trials each asking for one, two, three, four, six, and eight 
items. Children were given generalized positive feedback 
after each trial (e.g., “Thank you!”), regardless of their 
responses. 

The child’s knower-level was estimated using Lee & 
Sarnecka’s (2010) model. In this model, the child has a prior 
probability of giving each number of objects: small handfuls 
are very likely, as is giving the entire bucket. When the 

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Says “one” 

Says “two” 

Says any undefined 
number word (three, 
four, five, six, etc.) 

1255



child is asked for a specific number, the response 
probabilities are updated according to her knower-level. 
Every child is given a uniform prior chance to be each 
knower-level, and a posterior distribution is calculated 
based on the data. We sampled over this posterior 
distribution with 3 independent chains, 2,000 burn-in 
samples and 10,000 data collection samples. We then 
assigned each child’s knower-level based on the expected 
value2 from this posterior distribution.  
 
Cards Task This was our comparison task, which provides 
a set of responses independent from Give-N, so that one can 
be used to determine knower-level and the other to model 
the analogue magnitude response. The stimuli were 
photographs of the same stimuli used in Give-N, on a white 
background. The difference is that children were asked to 
label the numerosity instead of generating it. For example, if 
a child was asked for three red trains in Give-N, she was 
later shown a picture of three red trains and asked the 
number on it. As a check that the child was paying attention, 
trials were thrown out if the child did not produce the 
correct object name (e.g., trains) along with the number 
word. Before the first trial, there was a check that the 
children knew the words for the objects being used, which 
did not seem to pose a problem for our participants.  

Again there were eighteen trials: three trials each for one, 
two, three, four, six and eight items, in pseudorandom order. 
We asked children the question “What’s on this card?” 
because questions that start with “How many …” are often 
interpreted as commands to count (Sarnecka & Carey, 
2008). Children were given generalized positive feedback 
after every trial. Order of tasks was counterbalanced across 
sessions.  

Results and Discussion 
There were a total of 1,903 usable trials from the Cards 
Task. We decided to give the model a unit normal prior on 
effect size δ/σ, as a way to make the prior dimensionless and 
reasonably vague (Jeffreys, 1961; Rouder, Speckman, Sun, 
Morey & Iverson, 2009; Wetzels, Raaijmakers, Jakab, & 
Wagenmakers, in press). We then ran the model with 
MATLAB and WinBUGS, which uses a form of Gibbs 
sampling to describe the posterior distribution. We ran five 
independent chains, with 10,000 burn-in samples and 
25,000 collection samples. The within-chain variability 
matched the between-chain variability, even though the 
chains were initialized with different effect sizes, which is a 
good indication of proper convergence. 

At the point of the null hypothesis (δ = 0; i.e., the average 
COV is the same for every number of items shown), there 
was a prior density of .39. At the same point, there was a 
posterior density of 5.72, estimated with a normal kernel 
density method. By the Savage-Dickey Theorem (Dickey & 

                                                           
2 Another reasonable method would be to take the mode instead 

of the expected value. This method has high agreement in this 
case, r = .992.  

Lientz, 1970), the Bayes factor is 5.72/.39 = 14.34, meaning 
that the data were 14.34 times more likely to be generated 
by the null hypothesis than the alternate. This is very strong 
evidence in support of the null hypothesis. In other words, 
Children do show scalar variability in at least one task that 
taps number-word knowledge – but it is scalar variability of 
activations, not of responses. 
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Figure 4: Prior and posterior distributions of δ/σ. There is a 
great deal of support for the null hypothesis (δ = 0; i.e., the 

mean COV for every stimulus is the same within each 
knower-level) in the child data. 

General Discussion 
In Experiment 1, we showed that scalar variability of adult 
small-number estimates may be located in the activations, 
but not in the responses. Our analysis suggests that scalar 
variability is not always present in the answers that people 
give when you ask them to estimate a number of items. 
Instead, scalar variability is present in the latent continuous 
variable that serves as input, and which gets rounded off in 
people’s answers. In Experiment 2, we modeled how 
children respond when asked how many items are on a card. 
Our model included (a) the use of analogue magnitudes 
assuming scalar variability in the activations and (b) 
knower-levels, which are stages of number-word knowledge 
(e.g., Sarnecka & Lee, 2009). We showed that, contrary to 
previous reports, there is no problem fitting the well-known 
signature of scalar variability to real child data. In fact, we 
found strong evidence that children‘s responses do show 
scalar variability, with a Bayes factor of 14.34.  

This reverses one of the most powerful arguments against 
the involvement of the analogue magnitude system in early 
number-word learning. Scalar variability is a very reliable 
feature of the analogue magnitude system. We have 
presented evidence that this signature is found in children’s 
verbal responses to a small-number estimation task, even 
before the children have figured out the cardinal principle of 
counting. The statistical method we used has a very useful 
feature: it can quantify support for the null hypothesis, 
rather than simply rejecting or failing to reject it. Thus, we 
can report positive evidence that children’s responses do 
show scalar variability. This suggests that children do imbue 
the first few number words (up to and including their 
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knower-level) with numerical content from the analogue-
magnitude system.  

Of course, evidence for the involvement of analogue 
magnitudes is not evidence against the involvement of 
enriched parallel individuation; it’s possible that a parallel-
individuation-based model could also be fit sensibly to these 
data. There are still many reasons to think that parallel 
individuation is involved. In particular, we do not dispute 
Le Corre and Carey’s finding that new CP-knowers do not 
connect numbers above 5 to the analogue magnitude system 
(Le Corre & Carey, 2007; see Sarnecka & Lee, 2009 for a 
convergent finding). In addition, children seem to become 
three-knowers or four-knowers, but not five-knowers or six-
knowers. The limit after 4 coincides with the set-size limit 
on the parallel individuation system (e.g., Feigenson & 
Carey, 2003).  

Moving forward, we think tasks that tap more than just 
the child’s number-word knowledge should be part of the 
debate. For example, there is new interest in the question of 
whether number-word knowledge is related to estimation 
acuity, after it was shown that acuity at age 14 retroactively 
predicts math grades back to first grade (Halberda, 
Mazzocco & Feigenson, 2008). In particular, the present 
model predicts that estimation acuity should correlate with 
the number of within-knower-level errors on the Cards task. 
This kind of argument could be very useful in determining 
which systems are important to number-word learning and 
how they contribute.  

We hope that this line of work will lead to increasingly 
accurate descriptions of how children acquire integers, and 
will help to, resolve debates over the roles of various 
cognitive systems in number-word learning. The test case of 
number may then inform more general theories of how new 
representational resources are acquired.  
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