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ABSTRACT OF THE DISSERTATION
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Alexandra Gabrielle Bermudez

Doctor of Philosophy in Bioengineering
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Professor Neil Lin, Chair

Epithelial cells play a crucial role as they line every organ in our bodies and perform

essential physiological functions. During the development of epithelial tissue, injury

repair, or wound healing, these cells undergo cell crowding – a canonical tissue process

where the cells continuously migrate and proliferate until they form a tightly packed,

quiescent layer. To understand the underlying mechanism of such a “fluid-to-solid”

transition in epithelia, researchers have successfully utilized the jamming transition

framework to describe its physical control parameters including cell density, morphology,

and motility. However, the molecular events governing these control parameters, as

well as their downstream biological impacts, remain relatively underexplored. In my

thesis, I developed a platform for investigating the modulus heterogeneity in a live

monolayer to identify a correlation between cell size and stiffness, facilitating a deeper

understanding of how cell mechanical properties influence morphological phenotype. I

then combined transcriptomics and metabolomics to characterize cell behavior during

crowding and identified the functional role of cell metabolism in regulating cell motility. I

then described the origin of morphological heterogeneity in epithelial monolayers and how

such heterogeneity can promote variations in gene expression.
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CHAPTER 1

Introduction

Multicellular systems, such as epithelial cell collectives, undergo a fascinating transition

reminiscent of inert physical systems like grains and foams. Initially adaptable, they

can transition between a fluid-like state and a structurally stable, solid-like state — a

phenomenon termed “cell jamming.” While jamming and unjamming in multicellular

collectives resemble those in granular collectives, understanding the origin of these phe-

nomena and their implications for cell biology remains challenging. Specifically, although

they adhere to the fundamental physics principles delineated by the jamming diagram,

cell jamming and unjamming are inherently biological processes. In this introduction, I

discuss how biological events, guided by biochemical and biomechanical cues, regulate

this transition. This discussion focuses on the biological regulation of jamming axes that

comprise the jamming phase diagram, with an emphasis on fluctuation (cell crawling)

and geometric incompatibility, as well as the interplay between cytoskeletal activities,

cell-cell interactions, and upstream signaling pathways that orchestrate cell crawling and

morphology during this dynamic process.

Driven by internal forces, tissue patterning and reorganization involve locally control-

ling cell flux while maintaining global structural stability. This architectural change, which

relies on the delicate balance between fluid-like deformability and solid-like structural

integrity, is crucial for orchestrating development, guiding regeneration, and preserving

tissue functions. To achieve such a balance, many multicellular systems, including epithe-

lial cell collectives, can transition between a fluid-like, malleable state and a solid-like,

structurally stable state, a process akin to familiar particulate systems like sand. Just as

sand flows initially but becomes jammed as particles pack tightly, cell collectives undergo
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a similar transition. Understanding the rheological aspects of cell jamming, such as

transitions between viscoelastic liquids and solids, provides valuable insights into tissue

behavior.

Cell jamming has been proposed to be governed by a universal phase diagram, similar

to the traditional jamming transition observed in inert systems. In this introduction, I

adopt a recently proposed version wherein jammed states are situated near the origin

of a parameter space with axes representing inverse density, fluctuation, and geometric

incompatibility. Both the density and fluctuation axes are directly derived from the

classical jamming diagram. As the density of cells in a system increases, they become

more crowded, eventually reaching a point where they have no space to move. The

fluctuation axis describes cell crawling, providing cells with the energy to escape the ”cage”

created by their neighbors, akin to the role of temperature in glass transition. Finally,

geometric incompatibility accounts for force balance between cells due to contractility,

cell–cell adhesion, and cytoskeletal elasticity.

While whether a tissue is fluidized or solidified needs to adhere to basic physics

principles described by the jamming diagram, such a process is essentially driven by

biological events dictated by biochemical and biomechanical cues. Therefore, in this

introduction, I provide a brief discussion on the molecular regulation of the jamming

axes with a focus on the fluctuation (cell crawling) and geometric incompatibility. I will

first describe four representative jamming and unjamming examples observed in in vivo

and in vitro systems. I will then discuss how cell crawling and morphology are regulated

by cytoskeletal activities and cell-cell interactions as well as their upstream signaling

pathways.

1.0.1 Biology insights in cell jamming

Tissue development and injury repair require more than just biochemical signaling, in

which cell jamming and unjamming have been implicated in multiple fundamental stages

that underlie these processes. In this introduction, I discuss four representative in vivo
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and in vitro settings that have been widely employed for studying cell jamming and

unjamming.

1.0.1.1 Ventral furrow formation

Gastrulation is a fundamental embryonic development stage where a single-layered blastula

(a hollow ball of cells, formed after the zygote cleavage) undergoes extensive morphogenetic

changes to form the three primary germ layers: ectoderm, mesoderm, and endoderm. In

Drosophila, gastrulation begins with the ventral furrow formation (Fig. 1a), where cells on

the ventral side of the embryo fold inward, creating a furrow-like depression. This process,

known as invagination, is one of the first steps of gastrulation and leads to the formation

of the mesoderm, playing a key role in establishing the embryonic germ layers and body

axis. To initiate ventral furrow, localized cell shape changes and actomyosin-driven

contraction collectively induce invagination, influenced by mechanical cues from tissue

tension. As cells undergo apical constriction, cell jamming stabilizes tissue structure.

Ventral furrow formation is a biomechanically driven process, in which reduced junction

integrity and myosin II activity result in diminished driving forces, leading to ventral

furrow failure (Kasza et al., 2019; Brodland et al., 2010). Furthermore, the directional

tissue flows arise from the interaction between myosin-driven tissue contraction and the

embryo curvature (Gehrels et al., 2023). By analyzing the cell packing during ventral

furrow formation, researchers found that cell shape and its variability are governed by

a purely geometrical relationship, indicating a connection between jamming behavior

and geometric constraint that transcends living organisms and physical systems (Atia

et al., 2018; Bi et al., 2014; Schoetz et al., 2013). In the same system, two packing order

parameters, volumetric and shear order parameters, have been proposed to distinguish the

jammed and unjammed states (Yang et al., 2021). After the ventral furrow establishment,

the germband is then formed through the invagination of cells on the ventral side of the

embryo. During germband extension, cell alignment becomes crucial, along with cell

shape, in determining whether the embryonic tissue exhibits characteristics of a solid-like

or fluid-like state (Wang et al., 2020).
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1.0.1.2 Blastoderm spreading

Another fundamental embryonic development stage is blastoderm spreading. Blastoderm

forms during the blastulation phase when the zygote undergoes cleavage divisions, resulting

in a hollow ball of cells called the blastula. This single-layered epithelium envelops the

blastocoel, the fluid-filled cavity within the blastula, and serves as the precursor for the

embryo’s germ layers, which ultimately give rise to all the specialized tissues and organs.

After blastulation, a blastoderm spreads to establish the embryonic axis and organize the

future body plan of the embryo (Fig. 1b). This process involves a series of coordinated

steps (Pinheiro et al., 2022), beginning with the expansion of blastoderm cells over the

yolk surface, followed by convergence and extension movements that shape the embryonic

tissue, all through the precise orchestration of cell movements and interactions. At the

onset of spreading, the viscosity of the central blastoderm changes by roughly two orders

of magnitude within 30 minutes, thereby initiating ’doming’ movements (Petridou et al.,

2019). In contrast to Drosophila furrow formation, in zebrafish blastoderm spreading,

cell shape changes or packing configurations do not reliably predict the jamming and

unjamming states. Instead, changes in the pattern of cell-cell contacts are a reliable proxy

for the blastoderm viscosity (Petridou et al., 2021).

1.0.1.3 Wound healing

Modern study of epithelial wound healing can be traced back to early 20th century (Ross

et al., 1970; BUSCHKE, 1949; Burrows, 1912) enabled by the maturation of light mi-

croscopy, but has only been recently considered as a jamming/unjamming transition. The

wound healing process can be roughly divided into two steps. First, when a wound is

introduced, epithelial cells at the wound edge migrate to re-epithelialize the exposed area,

often accompanied by cell proliferation to replenish the lost cells (Fig. 1c). At this stage,

the presence of a wound decreases the local stress on the boundary cells, inducing changes

of the cell propulsion (Chepizhko et al., 2018), alignment strength (Chepizhko et al.,

2018), and metabolism (Verstappe and Berx, 2023) that are subsequently transmitted
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to the bulk cells, eventually leading to unjamming of the entire monolayer. Moreoever,

tissue fluidity directly determines the wound healing speed, controlled by the intercelular

junction tension and corresponding intercalating rate (Tetley et al., 2019). After the

cells have closed the gap, they then re-establish adherens junctions and tight junctions

to re-establish tissue integrity and barrier function. This stage of wound healing can

be considered as a fluid-to-solid transition, which is usually studied using cell crowding

models (Sadati et al., 2014; Angelini et al., 2011; Garcia et al., 2015).

1.0.1.4 Airway epithelium

During an asthma exacerbation, the airway undergoes narrowing, leading to epithelial

buckling (i.e., tissue fold due to mechanical forces), resulting in exposure to compressive

stress. This condition can be mimicked in vitro by subjecting cells to mechanical com-

pression with a pressure differential of 30 cm-H2O from the apical to the basal side (Fig.

1d) (Park et al., 2015; Mitchel et al., 2020). Using primary human bronchial epithelial

cells, it has been shown that the applied mechanical compression induces unjamming

transition with elongated cell phenotype (Park et al., 2015). In this specific case, the

cell shape elongation (shape index, cell perimeter divided by square root of area) acts

as a predictor of the phase transition. Strikingly, such unjammed cells preserve many

epithelial phenotypes such as apical-basal polarity, matured E-cadherin junctions and

lack of epithelial-to-mesenchymal marker expression. This finding suggests that both

the epithelial-to-mesenchymal transition and the unjamming transition may provide

alternative gateways to cellular migration (Park et al., 2016).

1.0.2 Physics insights in cell jamming

One exciting perspective in using physics to understand complex systems is to identify

emergent behaviors and self-organizing principles that arise from the constituent interac-

tions. Jamming transition exhibits many hallmarks akin to conventional second-order

phase transitions, demonstrating critical behavior near the transition point, characterized
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by diverging length scales (Bi et al., 2011) and power-law trends (O’hern et al., 2003;

Majmudar et al., 2007) without involvement of latent heat. In other words, jamming

transition is characterized by universality, where systems with diverse microscopic details

display similar macroscopic behavior near the critical point with shared critical exponents

and scaling laws (Goodrich et al., 2016; Charbonneau et al., 2015; O’hern et al., 2003;

Behringer and Chakraborty, 2018).

Because of the relatively established understanding in jamming transition across

various physical systems, such as granular materials, colloidal suspensions, foams, emul-

sions, and glass-forming liquids, cell jamming studies often draw inspirations from these

pioneering work. However, most experiments mainly focused on the changes in tissue

structure, rheological properties, and dynamic heterogeneity. Studies of scaling and

critical phenomena in cell jamming remain mainly theoretical.

1.0.2.1 Cell jamming phase diagram

While the jamming diagram elucidates how the system state can be predicted by its physical

parameters, comprehending the mechanism of cell jamming requires understandings of

the molecular regulation of these parameters. In cell biology, all three jamming axes

(i.e., density, crawling, and geometry) are regarded as downstream phenotypes regulated

by intricate signaling pathways and intracellular molecular events. This explains why

jamming or unjamming often occurs when more than one axis is changing. A better

understanding of the upstream control of these cell phenotypes will enhance our ability

to manipulate them, enabling us to identify the primary mechanism driving jamming

and unjamming. Fortunately, the fields of developmental biology and mechanobiology

have amassed a wealth of knowledge on the mechanistic regulations of cell morphology

and migration. This introduction aims to underscore several relevant findings concerning

cell jamming to elucidate the close interplay among jamming axes. For simplicity, this

introduction will focus on density-independent jamming, as cell number is generally

maintained through a balance between proliferation and extrusion in a wide array of
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biological processes.

1.0.2.2 Density-regulated cell jamming

In non-confluent tissues, each cell has the ability to move in various directions, such as

left or right, and forward or backward in two dimensions. If we consider the cells as ”hard

spheres” for simplicity, the total number of degrees of freedom in this system is simply the

number of cells (Nc) times the number of dimensions (d). As these ”hard-sphere” cells

become crowded, the contacts between them impose constraints on their movement, in

which each intercellular contact adds one constraint. The system becomes jammed when

the number of constraints matches the number of degrees of freedom Ncd. Conversely, in

situations where the system is less dense and the number of contacts low, the cells can

easily switch neighbors, allowing the tissue to ”flow”. Compared to ideal hard spheres, the

first layer of complexity to consider in understanding density-driven cell jamming is that

cells are soft and motile. Therefore, cell jamming always occurs beyond confluence, where

glassy dynamics (Angelini et al., 2011; Sadati et al., 2014; Czajkowski et al., 2019) and

cell size reduction (Devany et al., 2023) must be taken into account. Here, cells exhibiting

glassy dynamics display sluggish movement, prolonged relaxation times, and a tendency

to become trapped in metastable configurations, reminiscent of the behavior observed in

glasses and amorphous materials. Second, intercellular interactions are typically adhesive,

akin to ”sticky particles”. Thus, the density-driven cell jamming transition is more

dictated by the percolation of cell network connectivity, which is based on the cell-cell

adhesion. For example, zebrafish blastoderm exhibits a drastic viscosity change with

a slight change in cell packing that readily determines the long-range connectivity of

cells (Petridou et al., 2021), consistent with the findings in particulate jamming with

attractive inter-particle forces (Trappe et al., 2001).
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1.0.2.3 Density-independent cell jamming

Studies have revealed many density-independent pathways that lead to jamming and

unjamming, which mostly happen in confluent tissues, where all cells are in contact with

their neighbors and the packing density reaches a constant of unity. For instance, in the

self-propelled Voronoi (SPV) model of confluent tissues, it has been demonstrated that

the processes of unjamming and fluidization are driven by the magnitude of fluctuating

propulsive forces, the persistence of these forces, and the strength of cell-cell adhesion (Bi

et al., 2016, 2015). Using multiphase field models that describe the melting of a confluent

layer of motile deformable particles, it has been shown that jamming and unjamming are

intricately controlled by the trade-off between deformability and overlap of cells (Loewe

et al., 2020). Predictions in simulations have been recently observed in experiments

that utilized morphogen graident (Pinheiro et al., 2022), irradiation (Phung et al., 2023),

hydrostatic pressure (Mitchel et al., 2020), or mechanical compression (Cai et al., 2022)

to induce unjamming transition without significantly altering cell density.

1.1 Cell motility and jamming

1.1.1 Fluctuation-regulated cell jamming

The concept of fluctuation-regulated cell jamming was derived from the temperature axis

of the original jamming diagram. An intuitive way to understand this jamming-unjamming

mechanism is that as the system’s temperature increases, the constituent element (e.g.,

an atoms, particles, or cells) gains more energy to escape the constraints imposed by its

neighbors, fluidizing the system. In atomic systems, such as glassy liquids, the kinetic

energy of atoms directly result from thermal fluctuations. In contrast, most systems

that undergo jamming transition, such as granular and cellular systems, are far from

thermodynamic equilibrium. For example, the particle kinetic energy in granular systems

relies on the continuous energy injection through external mechanical perturbations. In

cellular systems, the cell kinetic energy arises from the controlled release of chemical
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energy stored in intracellular molecules. Therefore, the ”temperature” of these far-from-

equilibrium systems is often considered as a concept used to describe the thermal-like

behavior.

In this introduction, the focus will be on the fluctuations associated with cell self-

propulsion force, often referred to as motility in jamming studies. However, I aim to

highlight recent works that generalize fluctuations. If we consider tissue fluidization

as a series of structural changes, these changes can arise from two types of cellular

events. The first type is T1 transition (i.e., cage escape), where a cell boundary shrinks

to zero length, forming a fourfold vertex, which subsequently decomposes, creating a

new cell bond. This process alters neighbor relationships while preserving cell numbers.

Alternatively, tissue reorganization can result from cell division and extrusion, directly

regulating tissue rheology. (Godard and Heisenberg, 2019; Siedlik et al., 2017; Ranft et al.,

2010). Furthermore, the fluctuation of cells can be in the form of temporal fluctuation of

junctional tension that arises from stochastic contractions due to turnover of junctional

Myosin (Devany et al., 2019; Yamamoto et al., 2022; Krajnc, 2020).

1.1.2 Molecular regulation of cell motility

The biological coordination of cell motility involves the interplay of molecular signaling

cascades, mechanical cues, and environmental influences. While cell motility has been

extensively studied in developmental biology and mechanobiology, with significant progress

made in understanding the mechanisms underlying single-cell and collective cell migration,

its exploration within the context of unjamming transition remains limited. It is important

to note two primary distinctions between unjamming studies and conventional collective

cell migration systems as follows: (1) Typical collective cell migration studies, such as

wound healing, chemotaxis, or durotaxis, exhibit directionality, with a global migration

direction, unlike unjamming transitions where tissue-level cues are absent. Consequently,

uncoordinated motion prevails, and the absence of a clear leading edge in the sample results

in the absence of well-defined leader cells during tissue fluidization. (2) In motility-driven
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unjamming experiments, intercellular adhesions are either maintained or strengthened,

contrasting with the cell motility associated with the mesenchymal phenotype observed

in collective migration. Despite of these differences, many fundamental mechanisms

regulating cell motility discovered in cell migration studies are likely conserved across

various settings. Specifically, I focus on discussing the role of cytoskeletal activity and

cell-cell interactions in governing cell motion. At the molecular level, networks of signaling

pathways, including those mediated by small GTPases such as Rho, Rac, and Cdc42,

regulate cytoskeletal dynamics, cell adhesion, and protrusion-retraction cycles. These

processes, in turn, determine the cell’s ability to navigate through its microenvironment

and interact with neighboring cells. By discussing these regulatory mechanisms, I provide

a brief summary of how cells coordinate their movements within tissues, thereby driving

jamming or unjamming phenomena.

1.1.2.1 Cytoskeletal activities

RhoA/Rac mutual inhibition The mutual inhibition between RhoA and Rac serves

as an important regulatory mechanism orchestrating cytoskeletal dynamics and cellular

motility. Within this machinery, activated RhoA inhibits Rac activity, while activated

Rac reciprocally inhibits RhoA activation, creating a dynamic balance between the two

GTPases. This regulatory feedback loop between RhoA and Rac then regulates cell

motility through reorganizing cytoskeleton. For example, RhoA activates Rho-associated

protein kinase (ROCK), which phosphorylates and activates myosin light chain (MLC),

leading to actomyosin contractility and stress fiber formation. Rac, on the other hand,

activates WAVE (Wiskott-Aldrich syndrome protein-family verprolin-homologous protein)

complex, which promotes actin polymerization and branching, facilitating lamellipodia

formation. As such, activation of RhoA leads to decreased cell protrusion and increased

cell-substrate adhesion, favoring a static state. Conversely, activation of Rac promotes cell

protrusion and reduces cell-substrate adhesion, favoring a more motile state. Importantly,

the effects of RhoA and Rac on the cytoskeleton are often localized to specific regions of the

cell, allowing for spatially coordinated cytoskeleton activity. During front-rear polarization,
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Rac activation at the leading edge of cells promotes the formation of lamellipodia, while

RhoA activity is concentrated at the rear of the cell, promoting contractility and retraction.

Several upstream regulators of the RhoA/Rac pathway have been identified, which

control the activation or inactivation of these small GTPases in response to various

extracellular signals. For example, activation of receptor Tyrosine Kinases (RTKs) via

growth factor response leads to the activation of small GTPases including RhoA and

Rac through downstream signaling pathways such as Ras and phosphoinositide 3-kinase

(PI3K). Other regulators include Guanine Nucleotide Exchange Factors (GEFs), which

catalyze the exchange of GDP for GTP on Rho GTPases, initiating their activation,

while GTPase-activating Proteins (GAPs) accelerate the hydrolysis of GTP, leading to

inactivation. Guanine Nucleotide Dissociation Inhibitors (GDIs) also regulate RhoA/Rac

activity by sequestering Rho GTPases in the cytoplasm in their inactive GDP-bound

form, preventing their interaction with membranes and downstream effectors. GDIs such

as RhoGDI regulate the cycling of Rho GTPases between the cytoplasm and membrane

which influence their activation state. Moreover, Regulators of G Protein Signaling (RGS),

integrins, and cell-cell adhesion molecules can also modulate RhoA and Rac signaling

pathways, integrating extracellular cues to regulate cellular responses. These upstream

regulators integrate various extracellular signals to tightly control the activation state

of RhoA and Rac, thereby regulating diverse cellular processes including cytoskeletal

dynamics, cell migration, adhesion, and tissue organization.

Microprotrusions Another cytoskeletal feature observed in motile confluent epithelia

is a microprotrusion, or cryptic protrusions. These dynamic microscopic structures

facilitate cell locomotion and movement by exerting forces on the surrounding environment.

Microprotrusions, encompassing filopodia and lamellipodia are primarily composed of

actin filaments, in which actin polymerizes at the leading edge, mediated by Arp2/3

complex. Concurrently, myosin motor proteins contract actin filaments, generating

propulsive forces necessary for cell migration. Adhesion molecules like integrins link the

actin cytoskeleton to the extracellular matrix, providing traction for cell movement. Key
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regulators of microprotrusion formation include Rho GTPases, which modulate actin

dynamics and cell contractility. Rac1 and Cdc42 promote lamellipodia and filopodia

formation, respectively, while RhoA regulates actomyosin contractility. Tyrosine kinases,

such as EGFR and PDGFR, activate downstream signaling cascades that influence

cytoskeletal dynamics and cell motility. Small GTPases like Ras and Arf also play pivotal

roles in regulating microprotrusions through their involvement in signaling networks

controlling actin polymerization and membrane trafficking. Moreover, integrins and cell-

cell adhesion complexes transmit mechanical signals that impact cytoskeletal organization

and protrusion dynamics.

1.1.2.2 Cell-cell interactions

Contact inhibition of locomotion (CIL) Contact inhibition of locomotion (CIL)

refers to the phenomenon where the movement of a cell is inhibited upon physical contact

with neighboring cells. At the molecular level, cell-cell adhesion molecules, such as

cadherins, mediate the physical interactions between neighboring cells. Upon cell-cell

contact, cadherins cluster at the junction between cells active various downstream signaling

molecules, including Rho family GTPases. The activation of Rho GTPases leads to

dynamic changes in the actin cytoskeleton via RhoA Rac1 and Cdc42 activity. Specifically,

RhoA activation stimulates myosin II activity, leading to increased contractility of the

actin cytoskeleton. Meanwhile, Rac1 and Cdc42 activation promotes the formation of

actin-rich membrane protrusions, facilitating cell migration.

Front-rear cell polarization Another type of cell-cell interaction that regulates cell

motility is front-rear polarization in pathways such as the gradient of RhoA-Rac activity

and ERK signaling. Central to this process is the reorganization of the cytoskeleton,

particularly through modulation of actin dynamics. As described in previous sections,

RhoA, activated by factors like integrin signaling and cell-cell interactions, promotes

actin polymerization and myosin-mediated contractility, leading to the formation of

stress fibers and focal adhesions at the rear of migrating cells. Conversely, Rac activation
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stimulates actin polymerization at the leading edge, facilitating lamellipodia and membrane

protrusions.

A mechanism to establish and maintain the RhoA-Rac gradient in collectively moving

cells is through ERK(Extracellular Signal-Regulated Kinase)-mediated mechanochemical

waves. In migrating cells, mechanical forces between neighboring cells trigger ERK waves

that travel in the opposite direction of migration. Activated ERK signaling triggers

polarized rear contraction, inducing the pulling of the immediate following cells. To do

this, ERK activation induces the accumulation of actin fibers and myosin phosphorylation

at the cell periphery through the activation of Rho-associated kinases. Meanwhile, ERK

signaling also strengthens cell protrusion through promoting actin capping and bundling.

1.2 Cell geometry and jamming

1.2.1 Geometry-regulated cell jamming

Because of geometric principles, all cell movements in confluent tissue requires geometric

changes, and any cell passing its neighbor must induce cell rearrangements such as con-

vergent extension (T1 transition) and intercalation (T2 transition). Geometry-regulated

jamming has been mainly studied theoretically, primarily using vertex models (Farhadifar

et al., 2007; Bi et al., 2015) and multi-phase models. In these simulations, the geometry-

regulated jamming transition in tissues is governed by the ’shape index,’ which represents

the ratio of the preferred cell perimeter to the square root of the cell area. Tissues with a

small shape index display rigidity due to geometrically incompatible cell arrangements,

leading to energy barriers for cell rearrangement. Conversely, tissues with a large shape

index allow for compatibility of neighboring cell shapes, leading to the fluidization of

tissues as energy barriers associated with cell rearrangements disappear. In other words,

cells fail to achieve target area and perimeter values in the jammed state, while in the

fluid state, cells achieve both targets, yielding a ground state.

It is important to note that the geometry-regulated cell jamming is tension-driven,
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in contrast to the repulsion-driven jamming in granular systems. Just as in tensegrity

structures where isolated components are held together by tension, cells within a tissue

are interconnected by intercellular junctions. When the junctional tension increases, akin

to tension in a tensegrity structure, it restricts the cells’ ability to rearrange or move

freely, resulting in jamming. Such a mechanism is common in biopolymer systems (Storm

et al., 2005; Koenderink et al., 2009; Rens et al., 2016).

1.2.2 Molecular regulation of cell geometry

The regulation of cell geometry involves a range of molecular events that control junctional

tension and cell-cell adhesion. In recent decades, the vertex model has offered valuable

insights into the mechanical aspects of cell geometry regulation. However, there has been

a lack of extensive experimental research on the molecular regulation of cell geometry

during the jamming transition. As such, I will draw principles from developmental biology

to provide a concise overview of epithelial cell shape regulation during tissue development.

Specifically, this introduction will concentrate on the regulation of junctional tension, as

it directly influences cell shape by maintaining force balance. Additionally, I will discuss

how cell-cell adhesion influences cell geometry by modulating cytoskeletal organization

and activities.

1.2.2.1 Cytoskeletal activities

Essentially, the shape of cells is determined by networks of junctions that must maintain

a mechanical force balance. According to D’Arcy Thompson’s theory and the vertex

model, the mechanical equilibrium of a cell monolayer is achieved by minimizing an energy

function. This function entails each cell in the tissue striving to attain specific target areas

and perimeters. These targets are primarily influenced by the tension in the junctions

and the contractility of the cortex, both of which are directly controlled by cytoskeleton

activity. The three components of the cytoskeleton—actin, microtubules, and intermediate

filaments—each have unique roles in influencing cell morphology. However, they often
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interact or affect each other when altering cell size and shape. Among these components,

actin typically plays the dominant role. For instance, the balance of junctional tension, and

thus cell shape, is primarily determined by cortical tension regulated by the actomyosin

cortex. Cell area is mainly controlled by the contractile belt, which forms through cortical

flows driven by increased myosin motor density at the cortex. These cortical flows align

the actin filaments, enhancing cortical belt tension and reducing cell area.

The actin cortex consists of a network of crosslinked actin filaments located beneath

the cell’s plasma membrane. Its pivotal role in controlling cell shape arises from its

attachment to the cell membrane and its capacity for contraction. Contractile forces

are crucial; heightened contraction generally results in a reduced cell area, while non-

uniform forces across the tissue can induce changes in cell shape and tissue remodeling.

These forces are regulated by the alignment and positioning of actin, as well as the

molecular control of the actin network. The primary components responsible for actin

network contraction are actin filaments and myosin II. Their interaction gives rise to two

types of contraction: myosin II motor-independent and myosin II-dependent contraction.

Contraction independent of myosin II motor activity occurs through the polymerization

and depolymerization of actin filaments. In myosin II-dependent contraction, myosin II

serves as the primary force generator, converting energy into motion and interacting with

the cytoskeletal network via its motor heads, which ”walk” in an antiparallel manner along

actin filaments to induce contraction. Even in myosin II-independent contraction, myosin

II still functions as one of many crosslinkers that facilitate actin filament depolymerization

and contraction, thereby reducing cell area. Both processes play crucial roles in cell

contraction and can operate individually or in tandem.

In addition to actin, microtubules also play a role in regulating cell area and elongation.

Microtubules primarily influence cell area by controlling cell height. The protrusion

and reorganization of microtubules transition the cell from a squamous to a columnar

morphology. Disruption of microtubules leads to a significant decrease in cell height and

consequently an increase in cell area due to volume conservation. Moreover, aligning the

microtubules along the apicobasal axis enhances cell elongation. The interaction between
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microtubules and actin is crucial for regulating cell morphology. For instance, microtubules

help balance actomyosin tension at proximal-distal junctions during polarization and

control actomyosin organization, particularly junctional actin filaments. Microtubule

shortening drives actomyosin contraction through stimulation of RhoA activity. These

modulations of the actomyosin cytoskeleton also stabilize and regulate the junctional

clustering of E-cadherin, thereby promoting the epithelial phenotype and corresponding

cell morphology.

Intermediate filament networks, although less studied, also significantly influence

cell morphology. Specifically, keratin intermediate filaments form extensive cytoskeletal

networks that offer mechanical support to cells by bundling filaments. Due to their me-

chanical integrity, the positioning of intermediate filaments within the cell also governs cell

shape. Similar to actin and microtubules, keratin filaments do not function independently.

Disruption of contractile actin filaments leads to the reorganization of the keratin filament

network. It is important to note that actin and keratin filaments form separate networks

with distinct biomechanical properties. For example, keratin filaments are crucial for

elasticity and flexibility, while actin filaments primarily contribute to contractile force

and cell stiffness.

1.2.2.2 Cell-cell interactions

While cell-cell interactions do not biomechanically control cell geometry, they significantly

regulate cell phenotype and actomyosin tension, thereby affecting cell morphology. Ad-

herens junctions, for instance, facilitate the transmission of mechanical forces between

neighboring cells, which is crucial for processes like morphogenesis and tissue remodeling.

Cadherins serve as the principal structural components of adherens junctions, governing

cortical actin organization. Specifically, the cadherin-catenin complex forms through the

binding of cadherin adhesion molecules to cytoplasmic catenin proteins (such as β-catenin

and α-catenin), which then connect to the actin cytoskeleton. These interactions confer

mechanical strength to adherens junctions and regulate the dynamics of actin polymeriza-
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tion, depolymerization, and bundling. Moreover, β-catenin can translocate to the nucleus

and modulate gene expression, thereby influencing the expression of actin regulatory

proteins at the transcriptional level.

As cell-cell junctions govern cytoskeletal dynamics, stabilizing these junctions is crucial

for regulating cell shape. Actin filaments play a vital role in the assembly of adherens

junctions, where the disruption of the cadherin-actin linkage can lead to the disorganization

of adherens junctions, thereby altering cell shape. Moreover, the desmosome-keratin

filament complex is pivotal for cell-cell adhesion, where desmosomal cell-cell junctions and

keratin intermediate filaments act together as an opposing force to actomyosin contraction.

Consequently, weakened interactions between desmosomes and keratin filaments can

impair cell-cell attachment. Beyond actin and intermediate filaments, microtubules also

impact adhesion by serving as tracks for delivering adhesive molecules, such as cadherins

and integrins, to cell-cell junctions.

Lastly, recent studies have also highlighted the potential significance of tricellular

junctions, specialized regions where three cells meet, in regulating cell geometry. Tri-

cellulin, a primary protein component of tricellular junctions, plays a crucial role in

organizing actomyosin during junction formation and controlling actomyosin contractility.

Additionally, it regulates the configuration of cell-cell junctions at tricellular contacts.

These contacts are particularly important for determining cell shape through junctional

tension. Knockdown of tricellulin results in cells exhibiting irregular polygonal shapes

with tortuous cell borders and impairs the organization of F-actin fibers at tricellular

contacts during cell-cell junction formation.
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CHAPTER 2

Supracellular Measurement of Spatially Varying

Mechanical Heterogeneities in Live Monolayers

2.1 Overview

The mechanical properties of tissues have profound impacts on a wide range of biological

processes such as embryo development (Handorf et al., 2015; Stooke-Vaughan and Campàs,

2018), wound healing (Darby et al., 2014; Valero et al., 2014; Smith et al., 2019; Wiegand

and White, 2013), and disease progression (Wei and Yang, 2016). Specifically, the spatially

varying moduli of cells largely influence the local tissue deformation and intercellular

interaction. Despite the importance of characterizing such a heterogeneous mechanical

property, it has remained difficult to measure the supracellular modulus field in live cell

layers with a high-throughput and minimal perturbation. In this work, we developed a

monolayer effective modulus measurement by integrating a custom cell stretcher, light

microscopy, and AI-based inference. Our approach first quantifies the heterogeneous

deformation of a slightly stretched cell layer, and converts the measured strain fields

into an effective modulus field using an AI inference. This method allowed us to directly

visualize the effective modulus distribution of thousands of cells virtually instantly. We

characterized the mean value, standard deviation, and correlation length of the effective

cell modulus for epithelial cells and fibroblasts, which are in agreement with previous

results. We also observed a mild correlation between cell area and stiffness in jammed

epithelia, suggesting the influence of cell modulus on packing. Overall, our reported

experimental platform provides a valuable alternative cell mechanics measurement tool

that can be integrated with microscopy-based characterizations.

18



2.2 Introduction

The mechanical properties of tissues play an essential role in regulating various biological

processes and can be used as a biomarker for label-free, low cost, and rapid disease

diagnosis (Handorf et al., 2015; Wells, 2013; Chiang et al., 2013; Sorba et al., 2019;

Christ et al., 2010; Discher et al., 2005; Franze et al., 2009; Thompson et al., 2019).

During embryogenesis, tissue viscoelasticity instructs the differentiation, migration, and

organization of cells (Christ et al., 2010; Discher et al., 2005; Franze et al., 2009; Thompson

et al., 2019). In developed organs, tissue stiffness regulates the cellular homeostasis and

physiological functions (Handorf et al., 2015; Wells, 2013). In diseased organs, tissue

modulus has been shown to act as a physical cue influencing the pathogenesis and

progression of fibrosis (Wells, 2013), asthma (Polio et al., 2019), and Crohn’s disease

(de Bruyn et al., 2018). Moreover, the tumoral tissue elasticity has been found to correlate

with malignancy, metastatic potential, and drug resistance (Gavara, 2017; Chiang et al.,

2013).

To study these mechanically regulated processes, the ability to characterize cell

modulus heterogeneities at the supracellular scale is critical. For example, cell migration

is largely impacted by local cell stiffness, which determines the system’s response to

the intercellular force (Remmerbach et al., 2009; Lange and Fabry, 2013; Wang et al.,

2002). This cell modulus variation has also been shown to induce cell competition that

functions as a quality control mechanism by expelling “loser cells” (Amoyel and Bach, 2014;

Di Gregorio et al., 2016). Recently, it has been demonstrated that this modulus-regulated

cell competition can be harnessed as a defense against precancerous cells (Powell, 2019;

Murphy et al., 2020).

While many pioneering cell stiffness measurement methods have been developed

in the past few decades, characterizing the supracellular spatial distribution of cell

modulus remains challenging. One of the earliest methods for measuring cell modulus is

micropipette aspiration, a cost-effective technique that can track a sample’s mechanical

properties over time in vivo (Lee and Liu, 2014; Guevorkian and Mâıtre, 2017). Although
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micropipette aspiration can achieve a cell-level resolution, it does so in a low-throughput

manner and requires cell detachment for characterizing adherent cells (Lee and Liu, 2014;

Mierke). Atomic force microscopy (AFM) is currently the most widely used tool for

studying adherent cell stiffness at a subcellular resolution. When using a pyramidal tip,

the measured modulus, however, may correspond to a specific organelle which does not

represent the overall cell stiffness, introducing uncertainties in interpreting the supracellular

measurement (You and Yu, 1999; Müller and Dufrêne, 2011; Hoh and Schoenenberger,

1994). Moreover, depending on the indentation used or region probed, it can be difficult

to distinguish the cellular contributions to the measurement from that of the substrate for

penetration depths greater than 10% of the cell thickness (Gavara, 2017). Lastly, AFM

cannot directly probe the in-plane modulus of the monolayer, which is more relevant to

physiological processes compared to the transverse modulus typically acquired by AFM.

Another common technique is magnetic twisting cytometry (MTC), which is a high-

throughput method able to characterize hundreds of cells by twisting magnetic microbeads

that bind to membrane receptors (Zhang et al., 2017). The binding of the microbead

to the cell surface, however, can induce formation of focal adhesion complex, which

reorganizes the cytoskeleton and can alter cells’ rheological properties. Additionally,

the substrate can interfere with the MTC measurement, akin to AFM (Zhang et al.,

2017). Similar to the working mechanism of MTC, a recent experiment used magnetic

droplets to probe the local tissue stiffness. While this method addresses the cytoskeletal

reorganization and substrate issues, it can be difficult to generate cell-scale ferrofluid

droplets, which determine the spatial resolution of the measurement (Serwane et al.,

2017). Cell shape based inference models are a non-perturbative approach for extracting a

monolayer’s mechanical property at the cellular or tissue level using microscopy (Gómez-

González et al., 2020). In this method, only stress is directly determined, thus requiring

independent local strain measurements to infer the modulus (Kong et al., 2019; Mâıtre

et al., 2016, 2015), in which this approach, however, has remained untested. Alternatively,

cell stretchers are a versatile device that have been routinely used to characterize in

vitro cell monolayer mechanics. It has been demonstrated that by either culturing cell

20



layers on thin elastomer substrates, or by detaching intact cell layers from the substrates,

the overall monolayer stiffness can be determined using a stretcher (Sorba et al., 2019).

Building upon these studies, we developed a monolayer mechanics measurement platform

by integrating a custom-built stretcher, transmitted light microscopy, and AI inference.

This integration allows us to directly visualize the heterogeneous effective modulus field in

live cell monolayers. Additionally, we unmask the mechanical contributions of cells from

the substrate by growing the cells on a soft (12.7 kPa) and thin (18.9 µm) biocompatible

membrane (Figs. 2.1A and 2.1B). Our stretcher features an imaging window that enables

us to conduct high-magnification transmitted light microscopy during experiments, which

resolves the supracellular variation of cell deformation due to the applied strain. The AI

inference model then converts the measured deformation field into an effective modulus

field (Fig. 2.1C). Using this measurement platform, we characterized the effective modulus

distribution in live epithelial (Fig. 2.1D) and fibroblast cell layers. These results allowed

us to identify a mild correlation between cell moduli and morphological features in jammed

Madin-Darby canine kidney (MDCK) cells.

2.3 Materials and Methods

Cell culture

MDCK cells were cultured in 1X Dulbecco’s Modified Eagle media (Gibco, 11885084)

supplemented with 5% fetal bovine serum (FBS) (Gibco, 16000044) and 1% penicillin–

streptomycin (P/S) (Gibco, 15140122), where media was changed every 2 days. During

weekly subculturing, ∼80% confluent cells were passaged using 0.05% trypsin-EDTA

(Gibco, 25300054). 3T3 cells were cultured using the same base media but supplemented

with 10% FBS and 1% P/S with all other conditions identical to that of the MDCK cells.

MDCK and 3T3 cells were seeded using a density of 10,000 cells/cm2.
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PDMS membrane fabrication

To fabricate the polydimethylsiloxane (PDMS) membrane, we spin coated Sylgard 184

(base-curing agent ratio = 50:1) at a 2,000 RPM speed for 5 minutes on a glass coverslip

that was previously coated with 10% (m/v%) polyvinyl alcohol (PVA) at a speed of 1,000

RPM for 2 minutes. We found that using concentrated 10% PVA for coating the sacrificial

layer ensures membrane thickness uniformity. After attaching a cell stretcher jig to the

PDMS surface, the composite was then cured at 150◦C for 35 minutes. The PDMS-jig

setup was autoclaved, treated with 25 µg/ml fibronectin (R&D Systems, 1030FN05M),

and incubated at 37◦C for 30 minutes. The sample was then washed with phosphate-

buffered saline twice before seeding cells at a 10,000 cells/cm2 density. During culture,

the media dissolved the water-soluble PVA layer, lifting-off the PDMS from the coverslip.

To measure the stiffness of the PDMS, we fabricated and clamped 70 mm × 18 mm

× 2 mm PDMS strips to an Instron 5944 and stretched it at a rate of 10 mm/min. The

acquired stress-strain curves were used to calculate the Young’s modulus by analyzing

their slopes in the linear regime (Fig. 6.1). PDMS membrane thickness was characterized

by optically imaging (40X objective) the cross-section of a PDMS layer on the coverslip

(Fig. 6.1B) and measuring its thickness using ImageJ (Figs. 6.1C-E).

Cell stretching data acquisition and analysis

To prepare the cell-PDMS bilayer sample for stretching (Fig. 6.1F), the bilayer spanning

the two jig legs was cut and then mounted to the cell stretcher as shown in Fig. 6.1G

and 6.2A. Subsequently, media was added to the media chamber to submerge the sample,

and the supportive T-bar was removed. The stretcher assembly (Fig. 6.2B) was placed

on a microscope (Nikon Ti) and stretched the sample at a rate of 25 µm/sec until 5%

strain (0.5%strain/sec), corresponding to a 250 µm stretch for a duration of 10 seconds.

Simultaneously, differential interference contrast (DIC) images were acquired using a

10X objective (NA 0.45) at 20 fps. The acquired images were registered using the

ImageJ plugin StackReg (Thevenaz et al., 1998), and used for particle image velocimetry
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(PIV) analysis with PIVlab (Thielicke and Sonntag, 2021) to determine the displacement

of cells between the initial unstretched image and the final stretched image. Strain-xx

(ϵxx = ∆ux/∆x), strain-xy (ϵxy = 0.5(∆uy/∆y+∆vx/∆x)), and strain-yy (ϵyy = ∆vy/∆y)

values were calculated and assigned to points in the image using MATLAB, where ∆ux

is x-displacement difference of x-adjacent elements, ∆uy is x-displacement difference of

y-adjacent elements, ∆vx is y-displacement difference of x-adjacent elements, ∆vy is

y-displacement difference of y-adjacent elements, ∆x is x-position difference of adjacent

elements, and ∆y is y-position difference of adjacent elements.

Cell-PDMS bilayer mechanical measurement

To measure the overall sample stiffness, the cell-PDMS bilayer was cyclically stretched to

5% strain using the cell stretcher while force was recorded by a force transducer (FUTEK

LSB201 LSB205 Load Cell). Following this, the media in the chamber was replaced

with 0.5% trypsin-EDTA and the sample was incubated at 37 ◦C for cell detachment

(Fig. 2.2A). After confirming cell detachment using light microscopy, the cell-free PDMS

membrane was then again cyclically stretched to 5% strain while force was measured.

AI inference model training

To generate the datasets for training the strain-to-modulus AI inference, we performed a

series of finite element analyses (FEA) that described the mechanical response of cell-

PDMS bilayers under tensile strain. The PDMS and cell layers were individually modeled

in 3D using triangular shell elements in Abaqus, in which the model parameters including

cell mean modulus (4.0 kPa for MDCK and 12.2 kPa for 3T3 cells), cell height (9.2 mum

for MDCK and 6.3 µm for 3T3 cells (Liu et al., 2019)), Poisson ratio (0.5 for both MDCK

and 3T3 cells (Schulze et al., 2017; Harris et al., 2012)), PDMS modulus (12.7 kPa),

and PDMS thickness (18.9 µm), were either taken from previous studies or determined

experimentally (Fig. 6.1). We discretize the finite element to 16,638 three-node elements,

in which the size of the FE mesh is controlled to be ∼ 8.3 µm. This fine mesh setting
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allows us to vary the length scale of heterogeneities in FEA simulations on supracellular

scales, in which all data were included for AI model training.

The cell layer and PDMS membrane were modeled as incompressible elastic materials.

We impose material continuity in simulations, suggesting that the cell layer mechanically

interacts with its surroundings, where the interpretation of such continuity may have

different implications depending on the size of the cell. Specifically, for small (10-15 µm)

MDCK cells, this continuity implies that cells are directly interacting with neighboring

cells, whereas in larger (∼ 50 µm) 3T3 cells, this continuity implies continuity of cellular

components within a cell.

To simulate cell modulus heterogeneity, we generated random cell modulus fields from

normal or log-normal distribution with a standard deviation ranging from 30% to 70% of

the mean modulus. In simulation, one side of the sample was uniaxially stretched to 5%

strain where a non-slip boundary condition was applied at the cell-PDMS interface.

In other cell stretching experiments, cell-substrate adhesions have been observed to

remain intact and stable, especially for short time and length scales (Kreutzer et al.,

2014; Bartalena et al., 2011; Gong et al., 2018). The displacement of individual cells was

recorded, and the corresponding strain fields were calculated (Fig. 6.3A). The resulting

strain (ϵxx, ϵxy, and ϵyy) and modulus fields were loaded into the AI model training

framework, as summarized in Fig. 6.3B.

Statistical analysis

Data were reported as mean values ± standard deviation. Statistical analysis was

performed using OriginLab. Statistical significance was determined using paired t-tests.

Significance levels are indicated with asterisks in each figure. P-values less than 0.05, 0.01,

and 0.001 were denoted by *, **, and ***, respectively.
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2.4 Results

Visualizing monolayer mechanical heterogeneities

To visualize the spatially varying mechanical properties of cell monolayers, we cultured

MDCK cells on a PDMS membrane (Fig. 2.1B) and imaged its heterogeneous response

to a tensile strain. During stretching, the tested cell-PDMS bilayer behaves analogously

to a spring system, in which individual cells with different moduli can be considered as

springs with different spring constants Fig. 2.1A). In this approach, it is critical to use a

thin, soft, and freestanding PDMS membrane to prevent the substrate from masking the

cell contribution to the overall strain response. Stretched elastomeric membranes such as

PDMS have been routinely used to demonstrate uniform displacement fields and have

been widely used for characterizing cell deformation (Ghosh et al., 2021; Seelbinder et al.,

2020; Friedrich et al., 2019).

The freestanding PDMS membrane was fabricated by adapting a previous protocol

(Boulogne et al., 2016; Addae-Mensah et al., 2007) in which a sacrificial PVA layer was

utilized to facilitate the membrane lift-off process, as described in PDMS Membrane

Fabrication. We then mounted the sample on our custom-made cell stretcher, which

features an imaging window that is compatible with inverted microscopy and functions

as a cell culture media reservoir (Fig. 6.2A). The piezomotors of our stretcher provide

stretching motion stability to ensure imaging focus during experiments. To prevent folding

and tearing of the thin bilayer, the two jig legs that suspend the sample are fixed by a

connecting T-bar during handling, which is then removed after sample mounting (Fig.

6.1G).

To confirm that the mechanical contribution from the cells can be observed in our

bilayer system, we used a force transducer to measure the stress response difference

between the cell-PDMS bilayer and PDMS-only samples. We first measured the effective

modulus of the bilayer and repeated the measurement for the cell-free PDMS membrane by

enzymatically detaching the cells (Fig. 2.2A). This procedure is similar to the cell removal

25



protocol routinely used in traction force microscopy for characterizing the substrate

deformation (Plotnikov et al., 2014; Sabass et al., 2008). As shown in Fig. 2.2B, we found

that the cell-PDMS bilayer stress-strain curve exhibited a slope greater than that of the

cell-free PDMS, which is attributed to the mechanical contribution from the cell layer.

Using the spring analogy as depicted in Fig. 2.1A, we then calculated the cell monolayer

modulus (Fig. 2.2C) Ec:

Ec =
Eb(Am + Ac) − EmAm

Ac

∼ 4.0 ± 1.5 kPa (2.1)

Here, Eb = 16.7 ± 1.5 kPa, Em = 12.7 ± 4.2 kPa, Am = 18.9 ± 0.5 µm, and Ac = 9.2 ± 0.7

µm is the bilayer effective modulus, membrane modulus, membrane cross-sectional area,

and cell monolayer cross-sectional area, respectively for MDCK samples. In MDCK FEA

simulations, Ec was used as the mean modulus, and Ac was determined using confocal

microscopy (Fig. 6.1F). The remaining parameters were determined as described in AI

inference model training. In addition, using a similar measurement approach, MDCK cells

treated with 25 µM blebbistatin for 24 hours exhibited a 3-fold lower modulus compared

to untreated MDCK cells (Figs. 6.4A-D). This finding further validates that the PDMS

membrane can reveal the mechanical contribution arising from the cell layer.

After validating the mechanical contribution from cells in our bilayer samples, we

mounted the stretcher on a microscope and applied a 5% tensile strain to a cell-PDMS

sample while simultaneously imaging cell deformation. With the acquired image data, we

performed PIV to determine the displacement field (Fig. 2.2D) resulting from the stretch.

Since our applied tensile deformation is symmetric, the displacement field shows minimal

x-y translation which maximizes the analyzable field of view.

We then calculated the corresponding strain fields, where the components (ϵxx, ϵxy,

and ϵyy) are shown in Figs. 2.2E-H. Specifically, we found that ϵxx has a mean of ∼

4.9%, which was consistent to the applied global strain value. In agreement with previous

studies (Vincent et al., 2015; Serra-Picamal et al., 2012), we observed spatial fluctuations

in all strain components which suggest the presence of mechanical heterogeneity in the
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tested MDCK monolayer. For example, ϵxx had a relative standard deviation of ∼ 20%.

Additionally, we found that ϵxy and ϵyy have mean values and fluctuations an order of

magnitude less than that of ϵxx (Fig. 2.2I), which was anticipated since the stretch

was applied uniaxially in the x-direction. Importantly, all these values are greater than

the strain uncertainty associated with PIV limitations (Nobach and Bodenschatz, 2009).

Furthermore, the high image resolution (1 pixel ∼ 0.65 µm) of our system allowed us

to visualize strain field heterogeneity at the cellular level. As shown in Fig. 2.2F, we

found that the strain fluctuation of ϵxx spans a few cells. This finding is consistent with

the cell mechanical heterogeneity found in AFM measurements (Fujii et al., 2019) and

free-standing epithelium stretching experiments (Harris et al., 2012).

Converting strain responses to modulus fields

The strain field of a deformed material is directly determined by the moduli of its

constituents and the globally applied strain. Conversely, having access to the strain

components of cells within a stretched cell monolayer allows us to infer the effective

modulus field from the strain fields. However, converting strain fields into a modulus

distribution can be challenging due to their complex relationship in structurally disordered

and mechanically heterogeneous systems. In our approach, the deformation of a cell

is influenced by both its own stiffness and the surrounding modulus field. Thus, the

determination of local effective modulus values requires the knowledge of the entire strain

fields for all components, rather than just the value at a local position. To capture

such a high-dimensional strain-modulus relationship, we employed a U-net based neural

network architecture that analyzes both strain and modulus fields across multiple length

scales. Specifically, our AI model utilized a generator and a discriminator, which are

both convolutional neural networks (Fig. 2.1C). The generator network was based on a

U-Net architecture (Ronneberger et al., 2015; Ounkomol et al., 2018) and learned the

nonlinear relationship between the FEA simulated ϵxx, ϵxy, and ϵyy distributions and its

corresponding FEA simulated modulus distribution. During the training process, the

neural network minimizes the loss function by calculating the pixel-to-pixel differences
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between the prediction and target. Here, the target is the FEA simulated modulus

distribution of a cell layer. Our three strain inputs first propagated through the U-

Net, where the resulting generator output (predicted modulus) was loaded into the

discriminator network. The discriminator network then used a conditional generative

adversarial network (cGAN) (Isola et al., 2017) to estimate the probability of similarity

between the predicted and target image. The discriminator output, which is an adaptive

loss function, is iterated over a set number of cycles through the model to optimize the

prediction. Once this iteration process is completed, the resulting trained model was used

for predicting effective modulus distributions of cell layers from experimental ϵxx, ϵxy, and

ϵyy distributions. Similar methods have been commonly utilized in a wide range of 2D

field conversion tasks including the translation, segmentation, and classification of image

data (Elitas and Sengul, 2021; Zhang et al., 2019; Hashemi-Beni and Gebrehiwot, 2020).

To train our AI model, we used FEA to numerically model a stretched bilayer system

that closely recapitulates the heterogeneous modulus distribution in the cell monolayer.

Specifically, since our experiment operates on the time scale of seconds, we model our

cell and PDMS layer individually as elastic materials (Khalilgharibi et al., 2019; Pajic-

Lijakovic and Milivojevic, 2019; Thoumine and Ott, 1997). Here, we assume a non-slip

boundary condition between the cell and PDMS layers such that the applied strain results

in a direct mechanical deformation of cell layer (Figs. 6.5A-C). This training framework

is synthetic data-based, which has been commonly used in vision research, and shown to

yield robust and traceable AI prediction performance (Liu, 2019; Tallman et al., 2019).

More importantly, the use of FEA data grants us access to the strain inputs ϵxx, ϵxy, and

ϵyy and the corresponding modulus outputs (i.e., ground truth), which is infeasible to

obtain experimentally. The AI model was trained by utilizing the generated FEA data to

infer the general strain-modulus relationship, which was used to construct a conversion

function capable of determining the effective modulus field from experimental strain fields.

To characterize the AI prediction accuracy, we compared the ground truth (i.e.,

modulus distribution assigned in FEA) to the AI predicted effective modulus field (Fig.

2.3A and Fig. 6.6A). Additionally, to test whether a single-component strain measurement
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would be sufficient for inferring the effective modulus field, we included an ϵxx predicted

modulus distribution, which was obtained by using the best fit between FEA simulated

ϵxx and modulus values (Fig. 6.6B). We found that while the effective modulus field can

be roughly estimated using solely the tensile strain component, ϵxx, the most accurate

effective modulus field is inferred by considering the spatial distribution of all three strain

components. As shown in Fig. 2.3A, the AI prediction captures both the localization

and fluctuation level of the modulus ground truth significantly better than the ϵxx

prediction, suggesting that some mechanical heterogeneities are only reflected in the

spatial distribution of ϵxy and ϵyy.

To quantify the accuracy of different effective modulus prediction methods, we calcu-

lated the Pearson correlation coefficient between ground truth modulus values and the

values predicted using the AI, ϵxx, ϵxy, and ϵyy inferences. Our results, shown in Fig. 2.3B,

suggest that the strain components ϵxy, and ϵyy alone do not provide adequate information

for predicting modulus. Furthermore, we found that the AI prediction accuracy (corre-

lation ∼ 0.91) is significantly higher than that achieved by ϵxx prediction (correlation

∼ 0.66). This finding confirms our hypothesis that the spatial distribution of all strain

components are required to accurately predict the effective modulus field. We also found

that the high accuracy of AI prediction can be achieved by training the model within 400

FEA data sets (Fig. 6.6C). Lastly, compared to conventional reverse problem approaches

(Cho et al., 2007; Varady et al., 1997; Martin et al., 1997), our AI-based forward method

enables us to overcome technical solution limitations such as existence, uniqueness, and

continuity, which are requirements for solution stability (Bertero et al., 1980).

Spatial distributions of cell moduli

We applied our AI model to convert the MDCK strain data into an effective modulus

field (Figs. 2.4A and 6.7A). The resulting MDCK effective modulus was 4.0 kPa ± 1.5

kPa (∼38% fluctuation), in which its probability distribution can be approximated by a

Gaussian function (Fig. 2.4B). Compared to literature values obtained from AFM, our
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measured mean effective modulus is of the same order of magnitude (Fig. 2.4B), in which

the differences may be attributed to different levels of jamming and substrates used (Fujii

et al., 2019; Nehls et al., 2019; Pietuch et al., 2015). The similarity between our modulus

and AFM measurement may suggest that the in-plane elastic modulus (stretching) is

comparable to the transverse elastic modulus (AFM) in MDCK cells, implying that the

cellular and organelle structural anisotropies do not necessarily lead to cell modulus

anisotropy. We also characterized the length scale of the effective modulus fluctuation by

calculating the spatial autocorrelation function:

C(d⃗) =
⟨(E(x⃗ + d⃗) − Ē)(E(x⃗) − Ē)⟩x⃗

Evar

(2.2)

Here, E(x⃗) is the effective modulus value at position x⃗, whereas Ē and Evar are the mean

and variance of the effective modulus, respectively. For simplicity, we plot the radial

part of the correlation function (i.e., using the magnitude of d⃗ as the variable) in Fig.

2.4C. As shown, we observed an exponential decay ∼ e−d/45.2m, suggesting a correlation

length of 45.2m ∼ 3 cells. Our measurement is consistent with the intercellular modulus

correlation determined using AFM, confirming the spontaneous modulus correlation in

jammed epithelial monolayers (Fujii et al., 2019).

To demonstrate that our approach is compatible with other adherent cell types, we

implemented the same experimental approach to characterize 3T3 fibroblast cell layers

(Figs. 2.4D and 6.7B). Consistent with previous studies (Guimarães et al., 2020; Luo

et al., 2016; Michaelson et al., 2012; Hutter et al., 2005; Fujii et al., 2019; Nehls et al.,

2019; Pietuch et al., 2015), we found that 3T3 cells exhibited a higher mean effective

modulus (12.2 kPa) compared to MDCK cells (4.0 kPa) (Fig. 2.4E) . Moreover, we

observed that the 3T3 culture shows a greater effective modulus fluctuation than that

of MDCK (Fig. 2.4F). The large effective modulus fluctuation may be related to the

differences in underlying cytoskeletal activity observed in 3T3 cells (Rotsch et al., 1999)

We also found the correlation length of 3T3 cell effective modulus is approximately half

that of MDCK cell effective modulus (Fig. 2.4G). As suggested by previous studies, the
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relatively long correlation length of MDCK effective modulus might be associated with

their intercellular adhesions (Fujii et al., 2019). We acknowledge that unlike MDCK

monolayers, there are no intercellular junctions present in 3T3 monolayers, and thus the

lack of such junctions may not be captured in the continuity assumption imposed in our

FEA simulations. Nevertheless, the space between cell boundaries only occupied roughly

5% of the analyzable field of view (Figs. 6.7A and 6.7B), suggesting that a majority of

the heterogeneity observed is within the cell, and can therefore be interpreted as cellular

mechanical heterogeneity.

Since our effective modulus measurement is microscopy-based, we can additionally

evaluate the morphological phenotype of cells under tensile strain. This capability enabled

us to investigate the relationship between effective modulus and morphology in MDCK

cells. We analyzed and plotted cell moduli as a function of four morphological features:

cell area (Figs. 2.4H and 6.8A), aspect ratio (Figs. 6.8B and S8C), circularity (Figs.

6.8D and 6.8E), and shape index (Figs. 6.8F and 6.8G). Overall, the distribution of

raw data did not show a visually obvious correlation between cell effective modulus

and area. The difficulty to visualize such a correlation is associated with the relatively

narrow distribution of cell size, in which most data points are between the area of 200

m2 and 400 m2. To balance the contributions from the data points outside this range,

we resampled the data such that cells across the range of area are randomly selected

with equal probability. Specifically, we resampled the data so that there was an equal

number of cells in bins of 50 m2. The resampled dataset then revealed a mild effective

modulus-area correlation that was previously masked (Fig. 6.8A). Using the same data

sampling approach, we also analyzed the cell aspect ratio, circularity, and shape index, in

which we did not observe a strong correlation with cell effective modulus (Fig. 2.4I).

Our modulus-area result suggests that the cell modulus may play a role in determining

the size of large cells. This finding is consistent with previous studies (Nehls et al., 2019).

Biological stochasticity (e.g., gene expression fluctuation and asymmetric cell division)

and local geometric constraints have been identified to largely influence cell morphology

in jammed epithelia. For example, cells that assemble more stress fibers and spread out
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more have been shown to be stiffer (Vichare et al., 2012; Tee et al., 2011; Stroka and

Aranda-Espinoza, 2011). Additionally, the local force balance in jammed systems is often

achieved by compressing the softer constituents and reducing their size. Alternatively, it

is also possible for the converse of this hypothesis to be true, such that cell morphology

instead may play a role in regulating cell modulus, although further studies such as

micropatterning experiments or inhibition of specific signaling pathways are required to

validate these hypotheses.

2.5 Discussion

We reported a microscopy-based cell mechanics characterization platform that allows

visualization of supracellular modulus heterogeneities. Our method measures the het-

erogeneous strain fields in a stretched cell-PDMS bilayer, and converts them into an

effective modulus field using an AI-based inference. Using this approach, we measured the

effective modulus distribution in MDCK (4.0 ± 1.5 kPa) and 3T3 (12.2 ± 3.1 kPa) cell

layers. Our measured effective mean modulus values, standard deviations, and correlation

lengths are in agreement with previous studies (Rotsch et al., 1999; Pietuch et al., 2015;

Nehls et al., 2019). Furthermore, we observed a mild correlation (Pearson correlation

coefficient ∼ 0.24) between MDCK cell modulus and area, implying that the cellular

stiffness may affect the size and packing of jammed epithelial cells. Collectively, our

reported experimental platform and results can provide useful cell mechanics information

for improving theoretical models of epithelial jamming (Fujii et al., 2019), collective

migration (Ebata and Kidoaki, 2021), and homeostasis (Cox and Erler, 2011), all of which

can be influenced by cell stiffness heterogeneity (Handorf et al., 2015).

In our method, we applied a 5% tensile strain to reveal the cell modulus heterogeneity.

While such a strain can potentially induce changes in cell behavior, cell stretching

experiments are considered relatively non-perturbative (Cui et al., 2015; Kamble et al.,

2016; Wang et al., 2005) compared to contact-based cell mechanics measurements (Schaus

and Henderson, 1997). In future studies, we aim to reduce the applied strain by improving
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the imaging resolution and PIV accuracy. In addition, because our stretching experiment

operates on the time scale of seconds, we consider the cell layer viscoelasticity, which

typically emerges on the time scales of minutes to hours (Esfahani et al., 2021; Pajic-

Lijakovic and Milivojevic, 2019; Thoumine and Ott, 1997; Schulze et al., 2017; Khalilgharibi

et al., 2019; Harris et al., 2012; Kubitschke et al., 2017; Sorba et al., 2019), relatively

negligible. Furthermore, the timescale of seconds prevents the cell-substrate contacts from

rearranging as this typically occurs on the timescale of minutes, and thus ensures the

imposed non-slip boundary condition. Overall, our relatively short timescale of stretching

primarily probes the elastic response of cell monolayers, which was captured by our

FE model. A limitation of our current inference model is that any experimental strain

measurement error would lead to AI prediction error, since the FEA strain fields used

for training the inference model do not contain any noise. In the future, it would be

useful to implement other AI training frameworks including data augmentation and neural

network perturbations to improve the robustness of the inference model (Wang et al.,

2019; Miko lajczyk and Grochowski, 2018; Kong et al., 2021; Mustafa and Mantiuk, 2020;

Romero et al., 2019).

Similar to other stretching experiments, our method requires growing cells on soft

substrates, which can potentially alter cell properties (Discher et al., 2005; Yeung et al.,

2005; Tee et al., 2011). For example, it has been shown that cells exhibit a lower modulus

when cultured on a soft substrate (Chiang et al., 2013; Jalali et al., 2015). While our

previous work has shown that jammed epithelial cells with well established intercellular

adhesions are not strongly influenced by substrate stiffness (Choi et al., 2022), it would

be useful to conduct further cell mechanics measurements in future experiments. We

also acknowledge that the PDMS substrate uniformity plays an important role in our

measurement. While it would be ideal to characterize the substrate uniformity of the

specific substrate used in experiments, doing so proved to be technically challenging since

introducing detectable particles to our substrate for PIV to track significantly altered

the local mechanical properties of such a thin, soft substrate. Nevertheless, previous

work has demonstrated the mechanical homogeneity of similar elastomeric substrates
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also used in stretching experiments by calculating the strain resulting from the applied

deformation using traction force microscopy (Seelbinder et al., 2020). The results of such

an experiment demonstrate a uniform strain distribution under 10% strain. In addition,

other past works have shown that PDMS produces equiaxial and uniform strain fields

under stretching (Kreutzer et al., 2014; Bartalena et al., 2011), and that both stretched

and unstretched PDMS substrate homogeneity has been validated by measuring the

modulus of three distinct spatial locations on the substrate, in which all were in statistical

agreement with one another (Boulter et al., 2020).

Our effective modulus measurement approach is a useful alternative tool for conducting

supracellular-level mechanics studies that require simultaneous access to microscopy. For

example, our system can be used for investigating the relationship between cell signaling,

gene expression, and mechanics in developing or injured tissues. Moreover, our stretcher

is compatible with microscope on-stage incubators, enabling the characterization of the

effective modulus field evolution in cell monolayers that undergo phenotypic changes.

Such measurements could be utilized to identify mechanical signatures in the development

of fibrotic diseases and solid tumors (Handorf et al., 2015).

34



Figure 2.1: Visualization of mechanical heterogeneities in cell monolayers
(A) By growing a cell monolayer (MDCK) on a ultrasoft PDMS membrane, the cell
mechanical heterogeneity, which is illustrated by distinct Hookean springs, can be revealed
by stretching the bilayer system. (B) 3D reconstruction of a cell-PDMS bilayer tested in
our experiment. (C) An AI inference model is used to convert experimentally measured
strain fields into effective modulus distributions, in which the inference model (cGAN
U-Net) is trained using finite element analysis data. (D) Example DIC (left) and effective
modulus (right) data of MDCK cells. Dashed box indicates the zoom-in area. (E) Our cell
stretcher applies a uniform tensile strain to a free-standing cell-PDMS bilayer suspended
by the jig legs, using piezomotors. The imaging window allows for microscopy while
containing the media during experiments. For B, scale bar = 50 µm. For D, scale bars =
200 µm and 50 µm for top and bottom images, respectively. For E, scale bar = 2.5 cm.
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Figure 2.2: Heterogeneous strain responses in MDCK monolayers
(A) After measuring the effective modulus of the cell-PDMS sample, we used trypsin to
detach the cells and measured the cell-free PDMS membrane modulus. (B) Stress-strain
curves for cell-PDMS (MDCK+PDMS) and PDMS samples. Shaded area denotes the
standard deviation. (C) Using the Hookean model illustrated in Fig. 2.1A, MDCK
stiffness (4.0 ± 1.5 kPa) was estimated using equation (1). n = 16. (D) DIC image of
a stretched MDCK sample annotated with displacement fields. (E) Heatmap of the xx
component (ϵxx) of strain calculated from the displacement field in (D). (E-H) Close up
of (E) showing heatmaps of ϵxx, ϵxy, and ϵyy, respectively. (I) Histograms for all strain
components fitted by Gaussian curves. Scale bar for D-E = 200 µm. Scale bar for F-H =
50 µm.
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Figure 2.3: Strain-modulus AI inference
(A) Comparison of the modulus fields generated by FEA simulation (Target), predicted by
the AI inference model, and predicted from only strain-xx values. (B) Pearson correlation
between the target modulus values and predictions made using the AI inference, ϵxx, ϵxy,
and ϵyy. We found that ϵxx exhibits a higher correlation than xy and yy components, and
AI-predicted values are significantly more correlated than ϵxx. Scale bars for A = 200
mum.
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Figure 2.4: Effective modulus fields in MDCK and 3T3 cell monolayers
(A) Effective modulus heatmap of an MDCK monolayer predicted by AI inference. (B)
Histogram of (A) showing the AI-predicted MDCK effective modulus in comparison to
literature values. The cyan, gray, and pink lines denote the mean moduli reported in
(Fujii et al., 2019; Nehls et al., 2019; Pietuch et al., 2015), respectively, with the standard
deviation illustrated by the shaded area. (C) Correlation function of the measured MDCK
effective modulus field exhibits an exponential decay ∼ e−d/45.2 (dashed magenta line).
(D) Effective modulus heatmap of a 3T3 cell layer predicted by the AI inference. (E)
Mean moduli for MDCK and 3T3 cells determined using the force measurement. The
3T3 cells are approximately four times stiffer than MDCK cells. (F) 3T3 cells exhibit a
greater effective modulus fluctuation (standard deviation ∼ 27%) than that of MDCK cells
(standard deviation ∼ 7%). (G) MDCK cells exhibited an effective modulus distribution
that is more spatially correlated (correlation length ∼ 40 m) than that of 3T3 cells
(correlation length ∼ 20 m). (H) Effective modulus and area measurements for individual
cells (n = 286). Blue points denote a resampled dataset (n = 36) that has an even
probability distribution across area values. The fit for resampled data (red line) shows
a correlation between effective cell modulus and area. (I) Pearson correlation between
morphological features and effective modulus values. We observed weak correlation
between effective cell modulus, area, and aspect ratio. Scale bar for A and D = 200 µm.
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CHAPTER 3

Metabolic Reprogramming during Epithelial

Crowding Underlies Jamming Transition

3.1 Overview

Jamming, crucial for maintaining tissue integrity during morphogenesis and wound healing,

becomes dysregulated in carcinoma metastasis and asthma. Despite its pathological

significance, the molecular mechanisms governing jamming remain poorly understood. In

this study, we utilized time-course transcriptome analysis and isotopologue metabolomics

to elucidate the metabolic changes associated with jamming. Our findings reveal an

energy-independent increase in glucose oxidation, specifically pyruvate anaplerosis, during

cell jamming. We further demonstrated that reverting this metabolic shift by inhibiting the

mitochondrial pyruvate carrier leads to upregulation of cell motility, effectively abolishing

the jamming transition. This metabolically induced tissue fluidization is characterized

by uncoordinated cell movements with enriched Rac/RhoA activity, in contrast to the

collective migration observed in previous unjamming experiments. Additionally, we

show that the preserved E-cadherin junction facilitates motility-driven elongation of cells.

The identification of this metabolic regulation of jamming transition holds significant

implications for understanding cancer dissemination and embryonic morphogenesis, both

of which involve substantial metabolic reprogramming.
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3.2 Introduction

Epithelial tissues typically maintain a stable, solid-like structure under healthy physiolog-

ical conditions, but can exhibit a fluid-like and migratory behavior during developmental

processes, tissue remodeling, wound healing, and in cases of malignant invasion or metas-

tasis (Thiery et al., 2009; Friedl and Gilmour, 2009). This transition from solidity to

fluidity is governed by a complex interplay of biochemical and physical interactions among

cells and their environment. As tissue density increases, cell motility becomes constrained

until a critical density is reached, leading to a jamming transition that solidifies the

collective. This transition not only ensures proper tissue development, but also acts as a

mechanism suppressing tumor growth. Conversely, a reversal of this transition, known

as unjamming, facilitates epithelial cell motility and tissue flow. In carcinogenesis, a

certain degree of fluidity is necessary for tissue proliferation, migration, and dissemina-

tion of cancer cells (Coghlin and Murray, 2010). Cellular unjamming, characterized by

cooperative cellular motion akin to fluid flow, represents a key process enabling epithelial

cells to acquire migratory behavior. The transition from a static to a migratory state is

crucial in various physiological and pathological contexts, such as embryonic development

and cancer progression (Guillot and Lecuit, 2013; Friedl and Gilmour, 2009). While

experimental observations suggest that this transition resembles the jamming transition

seen in particulate matter (Alt et al., 2017), the molecular mechanism driving cellular

jamming and unjamming in biological systems remains largely unknown.

Increased motility generally entails higher energy demand, a topic often explored in

the context of cell motility and metabolism, primarily through the lens of epithelial to

mesenchymal transition (EMT) and cancer biology. The Warburg Effect, seen in cancer

cells, highlights their preference for time-effcient aerobic glycolysis over yield-efficient

mitochondrial respiration, potentially enhancing invasiveness and motility (Lu, 2019).

However, the importance of studying metabolism’s role in regulting cell behavior extends

beyond cancer. For example, during development neural crest cells undergoing EMT

demonstrate a unique metabolic phenotype with increase glycolytic flux (Bhattacharya
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et al., 2020). Recent advancements have been able to investigate metabolism in context

of wound healing in which they demonstrate that collective cell migration initiated from

wound repair induces a glycolytic phenotype in a migrating epithelium (DeCamp et al.,

2020). However, how unjamming is influenced by cell metabolism in a physiological setting

remains unclear. Our data works towards addressing this knowledge gap by integrating

multiomic time course experimetns to identify cell metabolism as a key molecular regulator

of the jamming transition in which a shift from glutaminolysis to pyruvate aneplerosis was

observed as cells jam, and that mitochondrial pyruvate inhibition promotes fluidization

fueled by T1 transitions in a jammed epithelium.

3.3 Materials and Methods

Cell Culture and Drug Treatment

All experiments were conducted using Madin Darby Canine Kidney cells (MDCK) cultured

in MEM-α (Fisher Scientific, 12561-056) supplemented with 10% fetal bovine serum (FBS)

(Fisher Scientific, 12662-029) and 1% Penicillin-Streptomycin (Fisher Scientific, 15140-

122). Cells were maintained at 37 °C and 5% CO2 with humidity. For all assays, cells

were passaged when they reached ∼ 80% confluence using Trypsin/EDTA solution (Fisher

Scientific, 25300-054). Cells utilized in all experiments were seeded at 30,000 cells/cm2.

For MPC inhibition, 2 or 5 µ M UK5099 was used (Selleckchem, S5317). These optimal

concentrations were determined by titrating doses to achieve their primary functions

without causing other adverse effects, such as apoptosis. All pharmacological agents were

administered at 37 °C and 5% CO2 near the onset of confluence, or roughly 64 hours after

seeding at 30k cells/cm2.

RNA extraction

RNA was extracted from cells using the Zymo RNA extraction kit (R2072) following

the manufacturer’s protocol. Sequencing was performed on one lane of a Novaseq S4
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200cycles, for a 44M/sample read depth.

ATAC-seq sample processing

Briefly, the omni-ATAC-seq protocol was utilized fro sample preparation (Corces et al.,

2017). The optimized transposition reaction was performed by pelleting 50k cells at 500

RCF at 4◦C for 5 minutes before resuspending in a solution of 0.1% NP40 (Thermo Sci-

entific, 28324), 0.1% Tween20 (Thermo Scientific, 28320), and 0.01% digitonin (Promega,

G9441). After incubating on ice for 3 minutes the lysis was washed with a buffer containing

0.1% Tween20. Nuclei were then pelleted at 500 RCF for 10 min at 4C followed by

supernatent aspiration and resuspended in a transposition mixture containing 100nM

transposase, PBS, 1% digitonin, 0.5 µl 10% Tween20, and ultra pure water (Invitrogen,

10977-015). Samples were then incubated at 37C for 30 minutes in a thermomixer with

1000 RPM mixing. Samples were then cleanup use using a Zymo DNA Clean and Con-

centrator Kit (D4014) following the manufacturer’s instructions. Resulting elution was

then amplified using a mixture containing 25 µM i5 adaptor, 25 µM i7 adaptor, NEBNext

master mix (M0541L), and 20 µl of the sample. Thermocycling settings used were: 72C

for 5 min 98C for 30 sec followed by 5 cycles of [98C for 10 sec, 63C for 30 sec, 72C for

1 min] then held at 4C. qPCR was then performed to determine the additional number

of cycles required using the amplification plot. A mixture of ultra pure water, PCR

primer mix, SYBR Gold (in DMSO) (Invitrogen, S11494), NEBNext master mix, and

5 µl pre-amplified sample were used for qPCR and the cycling conditions utilized were:

98C for 30 sec, followed by 20 cycles of [98C for 10 sec, 63C for 30 sec, 72C for 1 min].

The libraries were then purified using AMPure XP beads (Beckman Coulter, A63881).

Libraries were quantified using quibit and tapestation. Sequencing was performed on a

Novaseq S4 (2000-2500M/lane).
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RNA-seq and ATAC-seq analysis

The RNA-seq and ATAC-Seq reads were preprocessed for the quality control using

fastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and then trimmed

to remove the adapter and low quality sequences using Cutadapt (Martin, 2011) be-

fore they were used for alignment. The ultrafast universal RNA-seq aligner, STAR

program (version 2.7.10a) (Dobin et al.) was employed to align the RNA-seq reads

to the dog genome canFam4 and RefSeq All (ncbiRefSeq) genes obtained from the

USCS genome site (https://genome.ucsc.edu). The read counts of the genes from the

STAR output were subsequently normalized and analyzed for differential comparison

using R limma package (Ritchie et al., 2015). The ATAC-Seq reads were mapped

to the canFam4 genome using bowtie2 (Langmead and Salzberg). The non-unique

mapped and duplicate reads were subsequently removed from the alignments using

Picard tools (http://broadinstitute.github.io/picard/). MACS2 (Zhang et al., 2008)

was used to identify peaks in each sample. The R package DiffBind (Ramı́rez et al.,

2016) was then implemented to compute read counts and generate the consensus peaks

present in more than 3 out of 45 samples. The genomic features associated with the

peaks were then annotated using the annotatePeaks function from Homer package

(http://homer.ucsd.edu/homer/ngs/peaks.html). For the creation of heatmap plots,

the count matrix within the 5k bp upstream and downstream of the peak regions was

calculated using computeMatrix function of deepTools (Stark et al., 2011).

Immunostaining

Cells plated in a 4-chamber Ibidi slide (Ibidi, 80426) were fixed in 10% neutral buffered

formalin with 0.03% Eosin (Sigma-Aldrich, F5304-4L) for 10 minutes at room temperature.

Permeabilization and blocking were performed with 2% Donkey Serum (Fisher Scientific,

D9663-10ML) and 0.25% Triton X-100 in PBS with calcium and magnesium (Fisher

Scientific, 14040-133) for 30 minutes. After three washes with PBS, cells were incubated

with primary antibodies: E-cadherin, YAP, RhoA, Rac, or ECCD2 (abcam, ab11512;
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Novus Biologicals, NB110-58358; Cell Signaling Technology, 2117T; Invitrogen, PA1-091

or Invitrogen, 13-1900, respectively) for 30 minutes. Subsequently, cells were washed

thrice with PBS and incubated with secondary antibodies (anti-mouse Alexa Fluor 488

or anti-rabbit Alexa Fluor 647) (Invitrogen, A21042 and 4414S, respectively), along with

DAPI (abcam, ab228549) and either phalloidin (Invitrogen, A12379) or actin (Invitrogen,

R37110), for 30 minutes at room temperature.

Imaging and Analysis

Fluorescent images were acquired using either a confocal microscope (RCM1 with Nikon

Eclipse Ti-E, NIS-Elements software, or NL5+ with Nikon Ni-E, Micromanager software)

or a widefield fluorescent microscope (Etaluma LS720 Lumaview 720/600-Series software,

or ECHO (76490-288). A 20× WI/0.95 NA, 20×/0.75 NA, or 40× oil/1.30 NA objective

was used for images taken using confocal microscopy. A 20×/0.40 NA objective was

used for the widefield fluorescent images with the Etaluma microscope and 20×/0.75 NA

objective for the ECHO microscope. The imaging conditions were consistently maintained

across all experiments. To quantify fluorescent intensity, z-projected images obtained

from z-stack imaging using a step size of ∼2 µm were used. In time lapse imaging, images

were taken using the Etaluma microscope every 15 minutes with media changes performed

every two days. Morphological segmentation was performed using Cellpose (Stringer

et al., 2021). Quantifications were performed using MATLAB (version R2023a) or ImageJ

(version 2.1.0/1.53c).

Glucose and glutamine tracing

MDCK cells were seeded at 30k cells/cm2 in a 6-well plate such that all cells for every time

point were harvested at the same time. UK5099 samples were treated with 2µM UK5099

for 80 hours. Cells were cultured for 24 hours in glucose free DMEM medium (Gibco,

11966-025) or glutamine free DMEM medium (cat) supplemented with [U-13C]glucose

(Cambridge Isotope Laboratories, CLM-1396-PK) or [U-13C]glutamine, respectively. Be-
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fore metabolite extraction, the [U-13C]glucose or [U13C]glutamine medium was aspirated

and cells were washed with cold 150 mM ammonium acetate at a pH of 7.3. 500 µL of

cold 80 % methanol was then added to each well and cell detachemnt was facilitated using

a cell scraper. 10 µl of 1mM norvaline (Sigma) was added to the resulting suspension

as an internal standard. Each sample was briefly vortexed before being centrifuged at

17,000g for 5 min at 1 ◦C. 400 µL of the resulting supernatant was then transferred to an

ABC vial (Fisher Scientific) and evaporated (EZ-2Elite evaporator, Genevac).

Dried metabolites were resuspended in 300 µL 50% ACN: water and centrifuged for

15 min at 4◦C. 5 µL of the clarified extract was loaded onto a Luna 3um NH2 100A

(150 × 2.0 mm) column (Phenomenex). The chromatographic separation was performed

on a Vanquish Flex (Thermo Scientific) with mobile phases A (5 mM NH4AcO pH 9.9)

and B (ACN) and a flow rate of 200 µL/min. A linear gradient from 15% A to 95% A

over 18 min was followed by 7 min isocratic flow at 95% A and reequilibration to 15% A.

Metabolites were detected with a Thermo Scientific Q Exactive mass spectrometer run

with polarity switching in full scan mode with a range of 70-975 m/z and 70.000 resolution.

Maven (v 8.1.27.11) was utilized to quantify the targeted metabolites by AreaTop using

accurate mass measurements (¡ 5 ppm) and expected retention time previously verified

with standards.

Values were normalized to cell number or protein content of extracted material.

Normalization was performed by trypsinizing a sacrificial well at each time point and

performing a cell count with the suspension. For the cell count, an automated cell

counter (Countess II) and trypan blue was used and the average of two measurements was

utilized as the cell count. Relative amounts of metabolites were calculated by summing

up the intensity values for all detected isotopologues of a given metabolite. C13 natural

abundance corrections were made using AccuCor. Data analysis was performed using

in-house R scripts.
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Seahorse assay

Oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were

measured in a Seahorse XFe24 Extracellular Flux Analyzer (Agilent Technologies). A

total of 57,000 cells/well were seeded on a Seahorse XF24 plates. On the day of the assay,

cells were washed with assay medium (unbuffered DMEM assay medium supplemented

with 8 mM glucose, 2 mM glutamine, 1 mM sodium pyruvate, and 5 mM HEPES; pH 7.4).

Compounds were injected sequentially during the assay resulting in final concentrations

of 2 µM oligomycin (Port A), 0.75 µM FCCP (Port B), 1.35 µM FCCP (Port C), and 1

µM rotenone and 2 µM antimycin (Port D). OCR and ECAR were measured in parallel.

Rate measurements were normalized to the number of nuclei stained with 10 µg/mL

Hoechst dye counted on an Operetta High-Content Imaging System (PerkinElmer). ATP

production rates were calculated as described by Desousa et al. (Desousa et al., 2023).

Data was analyzed according to Divakaruni et al. (Divakaruni et al., 2014).

Data analysis and Statistics

GraphPad PRISM (version 10) and MATLAB (version R2023a) were used to perform

statistical analysis and create figures. Data is presented as mean ± standard deviation. For

correlative analyses, both the Pearson correlation coefficient and the Spearman correlation

coefficient were calculated in addition to the p-value, false discovery rate (FDR), and

confidence interval (CI), all of which are summarized in tables 6.1-6.3. False discovery

rate (FDR) was evaluated using a Monte Carlo simulation that randomly permutes the

X Y values of data points. P-values > 0.05 are denoted as not significant (ns), while

p-values ≤ 0.05, ≤ 0.01, ≤ 0.001, and ≤ 0.0001, are represented as *, **, ***, and ****,

respectively.
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3.4 Results

Multi-omic characterization revealed dynamic changes in cell morphology,

gene expression, and epigenetic landscape, during the cell crowding

To understand the molecular regulation of cell motility during the epithelial jamming

transition, we began by conducting a multi-omic time course experiment using Madin-

Darby canine kidney (MDCK) cells in which we performed morphological, RNA-sequencing,

and ATAC-sequencing analysis at 15 time points throughout crowding (Fig. 3.1A). The 15

time point data acquisition began 24 hours after seeding to avoid any potential artifacts

due to cell settling, and ended 144 hours after seeding at 30k cells/cm2 to capture the

fully jammed state. The intermediate timepoints were selected to capture critical changes

in cell behavior resulting from crowding at a fine temporal resolution.

A well-known hallmark of a jammed system is the decline of cell motility (Park et al.,

2015). We therefore performed a motility analysis using MDCK cells for approximately

six days, beginning from when cells were in small colonies to several days after reaching

confluence (Fig. 3.1B). We confirmed that the root mean squared (RMS) velocity was

high, ∼ 75µm/hr, when the cells were subconfluent, but quickly decayed after the cells

reached confluence. Furthermore, we also observed that the cells reached a kinetic steady

state after ∼ 120 hours post-seeding, validating that our timepoint selection encompassed

immotile, jammed cells.

In addition to cell motility, we also characterized two additional hallmarks of crowding:

E-cadherin (E-cad) junction formation and YAP-inactivation (Figs. 3.1C-3.1F). Specifi-

cally, we performed immunofluorescent imaging of MDCK cells probed for E-cad (Fig.

3.1C) and quantified its localization at the cell-cell junction (Fig. 3.1D). We also investi-

gated YAP translocation using immunofluorescent imaging (Fig. 3.1E) by quantifying

the ratio between YAP in the cytoplasm and nucleus (Fig. 3.1F). This ratio is often

used as a metric to characterize YAP activity, as inactive and active YAP corresponds to

YAP sequestered in the cytoplasm and nucleus, respectively. We found that the E-cad
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localization and YAP translocation occurred roughly around the same timepoint when

cells reached confluence. Together, the maturation of E-cad and the inactivation of YAP

both further validate our timepoint selection to capture key molecular events associated

with crowding.

After validating our experimental model, we used our morphology, gene expression, and

chromatin accessibility data from 15 timepoints to understand the evolution of these cell

properties in response to crowding (Figs. 3.1G-3.1I). Using principal component analysis

(PCA) we found that all three properties displayed similar non-monotonic trajectories.

Specifically, we found the time evolutions to be non-linear with the turning point occurring

roughly at the same time, temporally coinciding with onset of confluence in our system.

We then used our RNA-sequencing data to unbiasedly screen transcriptional signatures

that may underlie cell jamming by performing gene set enrichment analysis (GSEA) on the

first and last time points in our sample collection (Fig. 3.1J). Interestingly, we observed

consistent transcriptional signatures between early and late crowding (Figs. 3.1K-3.1L)

in which early crowding analyzes the first and fifth time point and late crowding analyzes

the fifth and last time point. The fifth timepoint was chosen as the division point since it

roughly coincides with the turning point of the three PCA trajectories. These similar

enrichment profiles suggest that transcriptional changes being early the crowding process

and are not fully governed by canonical biochemical activities, such as YAP inactivation

or E-cad maturation as these events do not begin to occur until approximately when

cells reach confluence. Our GSEA results revealed that in addition to the enrichment of

several anticipated pathways associated with cell motion, epithelial phenotype, and cell

cycle, there was also significant enrichment of metabolic pathways including glycolysis,

oxidative phosphorylation (oxphos), and fatty acid metabolism. Intrigued by this finding,

we plotted a heatmap of the key genes comprising the glycolysis, oxphos, and fatty acid

metabolism pathways and found that they were roughly linearly differential over time

(Fig. 3.1M).

Focusing on related metabolic enzymes associated with this GSEA result, we then

integrated our RNA-seq data with our ATAC-seq data to understand the role epigenetics
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played in regulating the metabolic activity of MDCK cells during crowding. In this

analysis, we only considered promoters from the ATAC-seq data since this refers to

a region of DNA where transcription initiation occurs and thus plays a strong role in

regulating gene expression. As demonstrated in Fig. 3.1N, most of these metabolic

enzymes exhibit consistent differential expression between transcript levels and chromatin

accessibility, suggesting that the metabolic changes we observe during crowding may be

driven by epigenetic modifications. We then calculated the Pearson correlation between

the RNA expression and ATAC peak values using the 15 time points for the previously

identified metabolic enzyme encoding genes (Fig. 3.1O). In doing so, we discovered that

most of the 31 genes showed a positive correlation, while 16 of these genes exhibited a

moderate to strong correlation, with a Pearson correlation coefficient greater than or equal

to 0.5. Collectively, by integrating our multi-omic analyses, we showed that there are

dynamic changes in cell morphology, gene expression, and epigenetic landscape beginning

early in the cell crowding, and that cell metabolism may play a role in governing the cell

behavior during crowding via epigenetic modifications.

Pyruvate aneplerosis increased while glutaminolysis reduced during cell jam-

ming

After identifying cell metabolism to play a role in coordinating epithelial jamming,

we established an approach to perform metabolic characterization of MDCK cells at

three critical timepoints during crowding using metabolic profiling and nutrient tracing.

Specifically, we focused on cells at the 48, 64, and 144 hour time point as they respectively

correspond to subconfluent, confluent, and fully jammed cells, which also align with the

timepoints used to define the two phases of jamming previously described. We first began

by performing [U-13C]glucose tracing, which uses an isotope of glucose comprised of six

carbons labeled with an extra neutron to monitor how glucose is utilized by tracking the

fate of these labeled carbons through metabolic pathways. In this experiment, we mainly

focused on studying glucose oxidation (Fig. 3.2A), which is the metabolic process by which

glucose is broken down in cells to produce energy in the form of adenosine triphosphate
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Figure 3.1: Multi-omic characterization revealed dynamic changes in cell mor-
phology, gene expression, and epigenetic landscape, during the cell crowding.

(A) Experiment overview. MDCK cells were seeded at 30,000 cells/cm2 until fully
jammed (144 hours). The cell morphology, gene expression, and chromatin accessibility
were analyzed at 15 timepoints throughout the crowding process using quantitative
microscopy, RNA-sequencing, and ATAC-sequencing, respectively. (B) Cell motility
decreases and reaches a steady state root mean squared (RMS) velocity in response
to jamming. Solid line denotes the mean while the shaded band denotes standard
deviation. (C) Immunofluorescent images of MDCK cells probed for E-cadherin (E-
cad) at three representative timepoints. Scale bar = 20 µm. (D) E-cad quantification
demonstrating that E-cad intensity and localization to the junction increases as cells
undergo crowding. (E) Immunofluorescent images of MDCK cells probed for YAP at three
representative timepoints. Scale bar = 20 µm. (F) YAP quantification demonstrating
YAP translation from the nucleus to cytoplasm, suggestive of YAP inactivation in response
to crowding. Principal component analysis of (G) morphology (H) gene expression and
(I) chromatin accessibility throughout crowding. Each data point represents the average
of three replicates for each timepoint. Gene set enrichment analysis (GSEA) using RNA-
sequencing results for pairwise comparisons of (J) the first and last timepoints (K) the
first and 5th timepoint, and (L) the 5th and last timepoint. The 5th timepoint was
identified as a point of interest since it roughly coincides with the turning point of the
trajectories shown in (G-I). (M) Heatmaps of the metabolic pathways glycolysis (left),
oxidative phosphorylation (oxphos) (middle), and fatty acid (right) metabolism identified
by GSEA. (N) Scatter plot of log2 RNA-seq expression enrichment versus log2 ATAC-seq
peak enrichment for metabolic enzymes. Only promoters were considered in the ATAC-seq
peak enrichment analysis. (O) Bar chart of the Pearson correlation coefficients between
the RNA expression and ATAC peak values for metabolic enzymes.

(ATP). Using our [U-13C]glucose tracing data, we first performed a PCA using the

fractional contribution of all detected metabolites. Here, the factional contribution refers

to the proportion or percentage of a specific metabolic pathway or process that is fueled by

the labeled glucose compared to other sources, revealing how much of a particular nutrient

is being utilized in a given metabolic pathway. This analysis indicated that the metabolic

phenotypes of the cells are distinct, illustrated by the tight clustering of the replicates for

each condition, and that the metabolic phenotype evolves over time (Fig. 3.2B). We then

assessed TCA cycle activity by plotting a heatmap of the fractional contribution of key

TCA cycle intermediates (Fig. 3.2C). The collective upregulation of these metabolites

suggests that TCA cycle activity has more of a demand as cells jam, and that pyruvate

aneplerosis is increased. We also plotted bar charts of these intermediates to confirm the
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statistical significance of these results, in which nearly all metabolite displayed significant

fractional contribution differences between the first and last timepoint (Fig. 3.2D).

Next, we similarly performed [U-13C]glutamine tracing at the same timepoints. Here,

we focused on glutamine oxidation (Fig. 3.2E), which is the metabolic process by which

glutamine is broken down and utilized for energy production. Glutamine serves as a

crucial substrate for replenishing TCA cycle intermediates and fueling cellular metabolism.

Parallel to our glucose tracing analysis, we began by performing an unbiased PCA

encompassing the fractional contribution of all detected metabolites, which similarly

revealed distinct metabolic phenotypes for each timepoint that continuously evolved

throughout jamming (Fig. 3.2F). Using the same TCA cycle metabolites as the glucose

tracing analysis, we plotted a heatmap of their corresponding fraction contribution

and discovered that glutamine oxidation, specifically glutaminolysis, was decreased in

response to jamming (Fig. 3.2G). This result was validated by plotting the bar charts

of the corresponding metabolites, as it revealed a statistically significant decrease in

glutamine labeled metabolite fractional contribution over time (Fig. 3.2H). Together,

these results demonstrate that pyruvate aneplerosis and glutaminolysis are upregulated

and downregulated, respectively, during jamming.

After characterizing how glucose and glutamine are utilized during crowding, we sought

to examine how these findings translate the ATP production. To do so, we performed

a Seahorse assay investigating the oxygen consumption rate (OCR) and extracellular

acidification rate (ECAR) for cells at the same three timepoints during jamming. This

assay allows us to analyze how cells utilize oxygen and glucose during the different phases

of crowding and thus further characterize their metabolic phenotypes. Here, OCR reflects

mitochondrial respiration and ATP production through oxidative metabolism, or oxphos,

while ECAR reflects glycolytic activity and the production of lactate under anaerobic or

aerobic conditions (Fig. 3.2I). We began by studying the basal OCR (Fig. 3.2J) and basal

ECAR (Fig. 3.2K) and discovered that jammed cells have a lower basal OCR and basal

ECAR compared to subconfluent cells. This result demonstrates that there is a reduction

of cellular respiration and glycolysis, which can be due to either a shift in metabolism

52



or reduced energy demand. To get a better understanding of what is generating such

reductions, we plotted the basal OCR/ECAR (Fig. 3.2L) and the oxphos/glycolysis ATP

production rate (Fig. 3.2M). This analysis unveiled that the oxphos/glycolysis activity

was both relatively high and constant between the 48 and 144 hour timepoints, implying

that there is no obvious metabolic shift between glycolysis and oxphos, but that ATP is

mainly produced through oxphos.

Collectively, these results demonstrate that while the utilization of oxphos and gly-

colysis remains unchanged during crowding, ATP is always mainly produced through

oxphos. Integrating this with the nutrient tracing results, we found that glucose oxidation

is relatively independent of energy production and that glucose oxidation may play a

functional role in regulating jamming. We concluded that ATP is mainly generated

through oxphos, in which glutamine oxidation is a main pathway of oxphos. We also

discovered that an increase of glucose oxidation does not change ATP generation, as they

serve different functional roles.

Inhibition of the mitochondrial pyruvate inhibitor induced uncoordinated cell

movements and reverted jamming transition

In light of these findings highlighting the altered ATP source and the distinct functional

roles of glucose oxidation and glutamine oxidation in ATP generation, we next explored

how UK5099, a mitochondrial pyruvate carrier (MPC) inhibitor, modulates cellular

phenotypes. To do so, we first began by performing [U-13C] glucose tracing on untreated

jammed and UK5099 treated cells (Fig. 3.3A). Specifically, we seeded both the control

and UK5099 samples at 30k cells/cm 2. At the 64 hour time point, roughly when cells

reach confluence, we administered 2 µM UK5099 to the UK5099 sample only. The media

was then supplemented for labeled glucose for the last 24 hours of the experiment to allow

a metabolic steady state to be achieved. We began by validating that the UK5099 was on

target, in which we found that the fractional contribution of key TCA cycle metabolites

expected to be down-regulated upon MPC inhibition were reduced in the UK5099 sample
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Figure 3.2: Glucose oxidation increased while glutamine oxidation reduced
during cell crowding.
(A) Schematic of the glucose oxidation pathway, illustrating the [U-13C] glucose tracing
pathway. (B) Principal component analysis (PCA) of fractional contribution from [U-
13C]glucose metabolic tracing data. Ellipses represent the 95% confident ellipse for
each condition. (C) Normalized heatmap of the fractional contribution of TCA-cycle
intermediate metabolites from [U-13C] glucose tracing throughout crowding. Each column
represents a replicate. (D) Fractional contribution from [U-13C] glucose to TCA cycle
intermediate metabolites throughout crowding with four replicates per timepoint. (E)
Schematic of the glutamine oxidation pathway, illustrating the [U-13C] glutamine tracing
pathway. (F) Principal component analysis (PCA) of fractional contribution from [U-
13C] glutamine metabolic tracing data. Ellipses represent the 95% confident ellipse for
each condition. (G) Normalized heatmap of the fractional contribution of TCA-cycle
intermediate metabolites from [U-13C] glutamine tracing throughout crowding. Each
column represents a replicate. (H) Fractional contribution from [U-13C] glutamine to TCA
cycle intermediate metabolites throughout crowding with four replicates per timepoint.
(I) Schematic illustrating mitochondrial respiration and glycolysis to obtain oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) measurements.
(J) Basal OCR of MDCK cells throughout crowding. (K) Basal ECAR of MDCK cells
throughout crowding. (L) Basal OCR/ECAR of MDCK cells throughout crowding. (M)
Oxidative phosphorylation (Oxphos)/glycolysis ATP production rate of MDCK cells
throughout crowding. ”ns”, **, ***, ****, refer to p-values ≥ 0.05, < 0.01, < 0.001, and
< 0.0001, respectively.
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relative to the control (Fig. 3.3B). Similar to the Seahorse assay performed using the three

different time points previously discussed, we next performed the same assay on control

and UK5099 treated cells. We found that the basal OCR and basal ECAR remained

unchanged in response to UK5099 treatment. Together, these results demonstrate that

UK5099 reduces glucose oxidation without perturbing energy production. It is well

known metabolic activity is closely linked to cell cycle activity due to the high energy

demand of cell division (Antico Arciuch et al., 2012). To rule out the possibility of any

phenotypic changes observed being due to an artifact of differences in cell cycle or density,

we confirmed that there were no differences in cell number between the two samples

(Fig. 3.3E) or mean cell area due to UK5099 treatment. We also confirmed that UK5099

treatment did not alter the cell cycle by performing EdU staining (Fig. 6.13).

After validating that UK5099 does not perturb cell cycle or cell density, we next sough

to understand how this metabolic perturbation impacts cell jamming. By performing time-

lapse imaging, we discovered that UK5099 treatment results in increased cell movement

(Fig. 3.3F), after about roughly three days of UK5099 treatment. The root mean squared

(RMS) velocity in both samples were relatively high around the time cells have just

reached confluence as there is little to no geometric constraint imparted on cells, and

begins to decrease as the geometric constraint increases to induce cells jamming. However,

the RMS velocity trajectories interestingly begin to bifurcate after this point in which the

UK5099 treated sample’s velocity increases by nearly 1.5 fold (Fig. 3.3G). This time-delay

is in accordance with previous studies that report that UK5099 treatment may require a

few days to take full effect on cells (Yang et al., 2014). Finally, we confirm that there

are initially no significant differences in the RMS velocities between control and UK5099

treated cells, but that the velocity begins to significantly diverge after treatment (Fig.

3.3H).

Motivated by this discovery, we sought to further characterize the phenotype of these

fluidized cells. There are two main type of motion in epithelial monolayers. The first

type corresponds to collective cell migration in which a group of cells coordinate to travel

together in the same direction, and the second type corresponds to uncoordinated cell
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motion, in which T1 and T2 transitions are responsible for tissue remodeling. To gain

an understanding of the type of motion being induced by UK5099, we analyzed the

velocity field to first understand the direction of cell motion in context of the collective

(Fig. 3.3I). This analysis revealed that the motion was relatively uncoordinated, as there

was no observation of a large group of cells with velocity fields pointing in the same

direction. To quantify this observation, we analyzed the velocity-velocity autocorrelation

function, which reveals how correlated one cell’s velocity is with its neighbor’s velocity at

a given time (Fig. 3.3J) in which similar correlation functions were observed. We then

extracted the correlation length from this analysis (Fig 3K) to furher classify the mode of

fluidization. The results indicated that although the UK5099 sample had a slightly higher

correlation length, the mean correlation of both conditions spanned a length roughly

consistent with the diameter of two jammed MDCK cells, representative of uncoordinated

cell motion.

This relatively short ranged velocity-velocity correlation length implies that the

increased cell motion is more likely resulting from neighbor swapping rather than collective

cell migration. To evaluate this possibility, we analyzed the strain rates of the cells. We

began by investigating the isotropic strain rate, which can report compression or extension.

Physically, isotropic strain occurs when a cell experiences the same amount of deformation

in all directions, similar to the strain profile anticipated to be induced by a T2 transition.

We found that the UK5099 sample expressed a substantially higher strain rate magnitude

compared to control cells (Fig. 3.3L). Although it is possible cell division events can

similar isotropic strain rate profiles, this is unlikely to be the reason for observation

since our EdU staining revealed that there contributions from cell division are negligible

in a jammed UK5099 treated monolayer (Fig. 6.13). Since the isotropic strain rate

encompasses both compression and extension, we quantified our observations by plotting

the standard deviation of the isotropic strain rate, which was significantly higher in

UK5099 treated cells (Fig. 3.3M).

To assess the contribution of T1 transitions in our observed fluidization, we next

investigated the deviatoric strain rate. In doing so, we observed a higher deviatoric strain
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rate in UK5099 treated cells (Fig. 3.3N). Here, deviatoric strain rate characterizes the

rate of change of deformation that results in shear or shape changes within the monolayer,

assuming incompressibility. We therefore considered deviatoric strain rate to represent T1

transitions, implying that UK5099 treated cells have more T1 transitions. To quantify

our observations, we evaluated the mean shear strain rate of both conditions and found

that the UK5099 treated cells exhibited a significantly higher mean shear strain rate (Fig.

3.3O).

With these experiments we have demonstrated for the first time that MPC inhibition

alters cell metabolic phenotype to induce tissue fluidization in MDCK cells, suggesting that

cell metabolism could be a potential molecular mechanism dictating tissue unjamming.

This metabolically induced fluidization is characterized by increased cell velocity resulting

from T1 and/or T2 transitions.

UK5099-induced motility is driven by Rac/RhoA activity

How does UK5099 upregulate cell motion? We hypothesized that the RhoA/Rac pathway

could be a key signaling pathway involved in regulating the metabolically induce motility

we observed due to UK5099 treatment. RhoA and Rac are small GTPases associated

with cell migration in which RhoA stimulates the assembly of actin stress fibers and

focal adhesions, while Rac activation leads to the polymerization of actin filaments at

the cell periphery, facilitating cell movement (Ridley, 2001). To test this, we performed

immunofluorescent imaging of control and UK5099 treated cells stained with RhoA (Fig.

3.4A) and Rac (Fig. 3.4B). Quantitative analysis revealed that UK5099 treated cells

displayed increased levels of both RhoA and Rac (Figs. 3.4C and 3.4D, respectively),

suggesting that this could be the pathway cells utilize during metabolically induced

motility, although further analysis of GTPase activity and other experiments such as

traction force microscopy would be required to rule out other possibilities.
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Caption on next page.

Metabolically unjammed cells preserved intercellular junctions while exhibiting

a motility-driven elongation morphology

Previous literature has suggested that there are two main modes of epithelial fluidization:

the unjamming transition (UJT) and partial epithelial to mesemchymal transition (pEMT)

(Mitchel et al., 2020). One main feature distinguishing the two is the presence of E-cad,

in which E-cad is maintained during the UJT, but becomes downregulated during pEMT

(Mitchel et al., 2020). To further characterize the type of fluidization we observed, we

stained cells for both E-cad (Fig. 3.5A) and ECCD2 (Fig. 3.5B), in which the latter
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Figure 3.3: Inhibition of glucose oxidation induced uncoordinated cell move-
ments and reverted jamming transition.

(A) Schematic illustrating experiment overview. Cells for both the control and UK5099
sample were seeded at 30k cells/cm2 and tracer media containing [U-13C]Glucose was
exchanged for unlabeled media 120 hours after seeding to allow for a 24 hour incubation
time. The UK5099 sample was treated with 2 µM UK5099 64 hours after seeding while
the control remained untreated. (B) Reduction in the fractional contribution of key TCA
cycle metabolites demonstrated the UK5099 treatment is on target. (C) Basal oxygen
consumption rate (OCR) remains unchanged in response to UK5099 treatment. (D)
Basal extracellular acidification rate (ECAR) remains unchanged in response to UK5099
treatment. (E) UK5099 treatment does not impact cell density. (F) Velocity heatmap
of control (top) and UK5099 (bottom) treated cells at three time points illustrates that
MPC inhibition increases cell motility in MDCK cells. Scale bar = 20 µm. (G) Root
mean squared (RMS) velocity versus time for control and UK5099 treated cells. Line
represents the mean RMS velocity while the shaded band denotes its standard deviation.
(H) Box and whisker plot comparing control and UK5099 sample RMS velocities at 65,
85, and 110 hours throughout crowding. (I) Velocity field (cyan arrows) overlaid on phase
contrast images of control and UK5099 treated cells. Scale bar = 50 µm. (J) The log of
the velocity-velocity auto-correlation function versus time for control and UK5099 treated
cells. Line represents the mean correlation function while the shaded band denotes its
standard deviation.(K) Cell velocity correlation length box and whisker plot for control
and UK5099 treated cells. (L) Isotropic strain rate heatmaps for control and UK5099
treated cells. Scale bar = 50 µm. (M) Box and whisker plot of the standard deviation
of the isotropic strain rate for control and UK5099 treated cells. (N) Deviatoric strain
rate heatmaps for control and UK5099 treated cells. Scale bar = 50 µm. (O) Box and
whisker plot of the mean of the deviatoric strain rate for control and UK5099 treated
cells. ”ns”, *, **, ***, ****, refer to p-values ≥ 0.05, < 0.05, < 0.01, < 0.001, and <
0.0001, respectively.

Figure 3.4: UK5099-induced motility is driven by Rac/RhoA activity.
(A) Immunofluorescent images of jammed MDCK cells probed for RhoA in control (left)
and UK5099 treated cells (right). (B) Immunofluorescent images of jammed MDCK cells
probed for Rac in control (left) and UK5099 treated cells (right). (C) RhoA intensity
quantification and (D) Rac intensity quantification demonstrate upregulation of the
respective protein in UK5099 treated cells. ***, ****, refer to p-values < 0.001 and <
0.0001, respectively.
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recognizes homophillically bound E-cad. Using the E-cad images, we quantified the E-cad

intensity localized to the cell-cell junction (Fig. 3.5C), and the thickness of such junctions

(Fig. 3.5D). In both analyses, we observed no differences in either parameter, suggesting

that E-cadherin is maintained in UK5099 treated cells. Intrigued by this result, we

wanted to ensure that the E-cad we observed was in its functional form, so we repeated

the intensity analysis using ECCD2 staining. ECCD2 only recognizes the extracellular

domain of E-cad under homophilic interactions, and thus reports ”functional” E-cad

(Chen and Chen, 2009). In doing so, we still observed no differences in ECCD2 intensity

(Fig. 3.5E), demonstrating that UK5099 cells still retain functional E-cad at levels similar

to untreated cells.

In addition to differences in E-cad, it has been demonstrated that the UJT and pEMT

produce their own morphological signatures related to cell shape (Mitchel et al., 2020).

We therefore next assessed the cell morphology resulting from UK5099 treatment. To

do so, we stained control and UK5099 treated cells with phalloidin to visualize the cell

contour (Fig. 3.5F). Using these images, we performed segmentation (Stringer et al., 2021)

to obtain the cell aspect ratio (Fig. 3.5G) and shape index (Fig. 3.5H), in which the shape

index is a dimensionless structural order parameter defined by P/
√
A where P is perimeter

and A is area (Park et al., 2015). In this analysis, we observed an increase in cell aspect

ratio accompanied by no changes in shape index. It is also well known that cells often

adapt a more elongated morphology to promote motility (Mendez et al., 2010). In vertex

model simulations, it has been demonstrated that by including a ”propulsion” parameter

without altering cortical tension or junctional tension, the cell aspect ratio could be

perturbed without altering shape index (Mitchel et al., 2020). This finding coupled with

our results, suggests that our observed cell elongation due to UK5099 treatment may be

due to cell propulsion during fluidization.

To categorize fluidization mode, previous studies assess the linear relationship between

aspect ratio and shape index (Mitchel et al., 2020). Doing so enables the separates UJT

phenotype from pEMT phenotypes since UJT cells exhibit more aspect ratio perturbation

compared the shape index, and vice versa. We thus investigated the relationship between
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Figure 3.5: Metabolically unjammed cells preserved intercellular junctions
while exhibiting a motility-driven elongation morphology.
(A) MDCK cells probed for E-cadherin in control and UK5099 treated cells. (B) MDCK
cells probed for ECCD2 (recognizing homophillically bound E-cad) in control and UK5099
treated cells. (C) Quantification of E-cadherin intensity localized at the cell-cell junction.
(D) Quantification of E-cadherin junction thickness. (E) Quantification of active E-
cadherin intensity localized at the cell-cell junction. (F) MDCK cells stained using
phalloidin in control and UK5099 treated cells. (G) Quantification of cell aspect ratio.
(H) Quantification of cell shape index. (I) Scatter plot of cell aspect ratio versus cell
shape index. Pink dashed line and green dashed line denotes the unjamming transition
(UJT) and partial epithelial to mesenchymal transition (pEMT) axes identified in previous
literature (Mitchel et al., 2020). Error bars represent standard error. (J) Quantification
of cell junction tortuosity. Green and pink solid lines denote the mean tortuosity observed
during pEMT and UJT reported in recent literature, respectfully (Mitchel et al., 2020).
”ns”, **, ***, refer to p-values ≥ 0.05, < 0.01, and < 0.001, respectively.

aspect ratio and shape index in our system by plotting the two against each other (Fig.

3.5I). We observed morphological changes consistent with motility driven elongation in

UJT, suggestive that metabolism may be a molecular driver of the UJT.

To further validate this characterization, we evaluated the cell junction tortuosity,

as previous work has reported that fluidization resulting from pEMT produces tortuous

junctions while the junctions during UJT-induced fluidization demonstrate little tortuosity

(Mitchel et al., 2020). In our UK5099 system, we found that most of the cell junctions

displayed a tortuosity akin to UJT cells (Fig. 3.5J) reported in previous literature (Mitchel

et al., 2020), further implying that UK5099 treatment may induce the UJT.
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3.5 Discussion

The epithelial layer typically exists in its functional ”solid-like” state, where cells area

immotile and quiescent, but can transition to a migratory state when events such as tissue

development, growth, remodeling, or wound repair is required. These adaptive transitions

can also be exploited in diseases such as tumor invasion or asthmatic airway wall remod-

eling (Park et al., 2016). In an MDCK monolayer undergoing jamming, we integrated

multi-omic time course experiments to characterize cell morphology, transcriptome, and

chromatin accessibility, leading to the unbiased identification of cell metabolism as a

significantly enriched pathway during jamming. We identified a new molecular pathway

to reinstate fluidization in an otherwise jammed, quiescent epithelium. We demonstrated

that during jamming, there is a metabolic reprogramming that shift cell metabolism

from glutaminolysis to pyruvate aneplerosis, while the oxidative phosphorylation pathway

remains the main source of ATP production regardless of the state of confluence. We also

discovered that mitochondrial pyruvate carrier inhibition increases uncoordinated cell

motion in MDCK cells by physically promoting cytoskeletal elongation and biochemically

upregulating the RhoA/Rac pathway. This metabolically-induced motility acts indepen-

dently of EMT, as we observed maintenance of the E-cadherin junctional thickness and

intensity. This finding may reveal important implications in our understanding of cancer

dissemination and embryonic morphogenesis, both of which involve substantial metabolic

reprogramming (Faubert et al., 2020; Lemma and Nelson, 2023; Tennessen et al., 2014).

While these findings significantly advance our understanding of the epithelial jamming

transition, they simultaneously bring attention to important open questions in the field.

Previous studies have demonstrated that migrating cells in an advancing epithelium

take on a glycolytic metabolic phenotype during wound healing, independent of their

position relative to the wound site (DeCamp et al., 2020). Our findings not only agree with

this result, but also further shed light on this phenomena by more specifically identifying

the metabolic reprogramming from glutaminolysis to pyruvate aneplerosis metabolism

observed during jamming. Treating cells with UK5099 could be a useful tool to study how
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metabolism-driven unjamming potentially accelerates wound healing, and to understand

weather or not collective motion is required for wound healing.

Furthermore, our finding further decouples the effects of density and motility, which

are two essential axes comprising the field’s current understanding of the jamming

phase diagram framework. By only perturbing cell metabolism while leaving the density

consistent between conditions, we uncovered that such a metabolic signature is directly

associated with cell motility and thus identified the molecular pathway responsible for

tuning the fluctuation axis of the jamming phase diagram. It would be important for

future work to expand on this finding to test how cells at different densities, and thus

with relatively weaker cell-cell junctions, respond to UK5099 treatment to further clarify

the metabolic-induced unjamming trajectory in phase space.

This study reveals that metabolism-induced motility lies along the unjamming transi-

tion axis rather than partial EMT, as cells maintain E-cad positive with minimal tortuosity

of cell-cell junctions. This has important implications in cancer biology, as it may suggest

that EMT is not essential for metastasis, potentially revealing metabolism as a biomarker

for metastatic potential. Future experiments should explore the effects of UK5099 in

cancer spheroid cultures to investigate its effects on metastatic potential, dissemination,

and migration phenotype. It would be insightful to study how UK5099 perturbs cell

motility in a 3D setting where cells have more surface area to form cell-cell junctions with

neighbors, as an increase in cell-cell adhesions has been associated with flocking, which is

in contrast to the motility we observed in a 2D setting.

Relatedly, we also morphologically confirmed our system aligned with the UJT phe-

notype by plotting cell aspect ratio against shape index in which we found UK5099

treatment mainly perturbed aspect ratio. In previous studies, it has been suggested

that cell metabolism can be linked to morphology in which cells with a large perimeter

demonstrate increased glycolytic activity (DeCamp et al., 2020). Interestingly, it has

also been demonstrated that cell morphology can potentially regulate gene expression via

epigenetic modifications (Jain et al., 2013). It would therefore be insightful to assess how

this metabolic reprogramming influences gene expresion. In our finding, we only observed
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a minute perimeter change in response to UK5099 treatment, indicated by the narrow

range of shape indices in Fig. 3.5I. Spatial transriptomics could be a powerful tool to

harness in unraveling the relationship between morphological and metabolic phenotypes,

and if heterogenity in these properties is related to the likelihood of a cell undergoing

T1-driven fluidization.

The study of metabolism and epigenetic state is currently and active research field, as

many metabolic phenotypes have been associated with post-translational modifications

(Kaelin and McKnight, 2013). In our work, we identified a strong correlation between

RNA-seq expression and ATAC-seq promoter peak height of metabolic enzymes, suggesting

that this may also be the case in our system. Follow up work will investigate the role

of chromatin accessibility in metabolically-induced fluidization by performing ATAC-seq

in UK5099 treated cells. It would also be important to integrate these findings with

spatial transcriptomics to get a more complete understanding of the intricate relationship

between morphology, metabolism, and epigenetics. Such experiments will substantially

advance the cancer biology and mechanobiology fields.

Although we observed upregulation of Rac and RhoA protein expression, the precise

molecular mechanism facilitating the metabolic-induced unjamming requires additional

investigation for a complete understanding. Previous studies have identified RAB5A, a

GTPase, as a pathway to induce collective cell flocking in an otherwise jammed system

(Palamidessi et al., 2019). It would be interesting to investigate RAB5A levels and ERK

activity in a UK5099 system to understand if this molecular pathway of unjamming is

aligns with the molecular machinery governing the UK5099-induced fluidization, or if

this pathways is a unique signature of flocking. Such an experiment will reveal important

advancements on our understanding of collective versus uncoordinated motion and thus

dissemination.

The jamming transition is an essential process epithelial cells must undergo to maintain

tissue integrity, homeostasis, and barrier function, however, these tissues have been

known to fluidize to accommodate migration, plasticity, or developmental processes. Our

observations gathered from this work suggest that cell metabolism could be a novel way to
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initiate tissue fluidization via the RhoA/Rac pathway activation promoting T1 transitions.

We also identified that during the jamming transition, cells adopt a metabolism more

dependent on pyruvate aneplerosis rather than the glutaminolysis pathway they initially

dependent on when subconfluent. This work addresses important open questions in the

field investigating how cells receive extracellular cues to biophysically regulate physicals

control parameters governing the unjamming transition. Compared to other known

pathways to induce unjamming, our metabolic approach occurs physiologically during

crowding and can be easily implemented in therapeutic settings.
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CHAPTER 4

Epithelial Cell Morphology Heterogeneity Regulates

Chromatin Modifications via Nucleus Size

Coordination

4.1 Overview

Heterogeneity in cell morphology is ubiquitous across all epithelial collectives and is

intimately linked to the tissue mechanical state. However, the origins of cell morphol-

ogy heterogeneity within a system and its downstream biological effects remain poorly

understood. Here, we investigate the morphological evolution of epithelial cells and

their nuclei during crowding and identify a persistent correlation between them. We

find a consistent log-normal probability distribution for both cell and nucleus areas

across several crowding stages and in different epithelial models. This morphological

variability is introduced by uneven partitioning during cell division and is sustained

thereafter through actomyosin-driven cell-nucleus size coordination. We further show

that nucleus morphology impacts the chromatin state, in which constraint of nucleus area

downregulates the euchromatic mark H3K9ac and upregulates the heterochromatic mark

H3K27me3 by reducing the expression of histone demethylase UTX. Our results reveal

that cell morphology heterogeneity extends beyond mere noise and generates diversity in

chromatin states.

66



4.2 Introduction

Variability is inherent in biological systems and can influence the regulations and outputs

of biological processes at all length scales (Ilan, 2023; Tsimring, 2014). At the molecular

level, chemical reaction noise leads to uncertainties in transcription (Struhl, 2007), trans-

lation (Bar-Even et al., 2006), and post-translational modifications (Bowman and Poirier,

2014). At the cellular level, stochastic gene expression imposes profound influences on

cell functions, including cell cycle progression (Talia et al., 2007), metabolism (Das Neves

et al., 2010), and stress response (Balaban et al., 2004; Rinott et al., 2011). Over the

past few decades, substantial efforts have been made to understand the role of noise in

gene expression and genome organization, which are usually considered as “upstream

noise” (Munsky et al., 2012; Thattai and Van Oudenaarden, 2004). In contrast, cell-to-cell

phenotypic heterogeneity, such as morphological variability, is viewed as a consequence of

genetic and environmental variations (Pevsner-Fischer et al., 2011; Kiger et al., 2003). As

a result, the emergence of cell morphological heterogeneity within a population and its

role in regulating gene expression has been relatively underexplored.

Morphological heterogeneity is one of the most noticeable features of phenotypic

variability in epithelial cells. Even in a clonal population where all cells are genetically

identical, each cell can exhibit a unique size and aspect ratio (AR) (Marcus et al.,

1956). Specifically, during epithelial cell crowding, a canonical process wherein cells

continue to proliferate until a tightly packed cell layer is formed, each cell’s shape

can be controlled by its cytoskeletal properties and interactions with the neighboring

cells and substrate (Luciano et al., 2022; Fletcher et al., 2014). In addition to these

biological regulations, recent studies have also found that cell shape AR in a population

follows a nearly universal distribution across different organisms and systems (Atia

et al., 2018; Sadhukhan and Nandi, 2022). This universal distribution can be explained

by physical principles, such as the packing constraint (Atia et al., 2018), fundamental

polygon geometric properties (Sadhukhan and Nandi, 2022), and topological optimal

transport (Skinner et al., 2021). These findings thus suggest that the statistical properties
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of epithelial cell shapes can be governed by mechanisms that transcend molecular details.

However, the process through which morphological heterogeneities initially arise during

crowding is not clear, and how similar mechanisms may also regulate the morphological

heterogeneity in other organelles, such as the nucleus, remains an important open question.

The functional significance of cell shapes are highlighted in several recent studies that

demonstrated the impact of cell shapes on chromatin structures and gene expression (Jain

et al., 2013; Makhija et al., 2016). Leveraging engineered single-cell systems, these studies

have uncovered the link between cell shapes and chromatin states. For example, cell shape

altered by micropatterns can directly influence the levels of lysine trimethylation (Pereira

et al., 2020) and acetylation (Jain et al., 2013) of histones, as well as influence the

chromosome position(Wang et al., 2017) and chromatin dynamics (Makhija et al., 2016).

In addition, deformation of nucleus and cell shapes using topological micro-pillars can

induce chromatin structure and gene expression changes (Wang et al., 2023; Li et al.,

2015). However, how the epigenetic states of cells are regulated by cell morphological

variations in a physiologically relevant setting is not well understood.

To address these questions, we base our analyses on collective cell studies during

epithelial crowding, which emulates physiological processes of epithelial biology and

has been widely used for studying functional roles of physical cues (Saw et al., 2017;

Blonski et al., 2021). In this study, we focus on the emergence of morphological variations

and their roles in determining chromatin modifications and organizations. Specifically,

we characterized both the cellular and nuclear sizes, in which the nucleus contains

several architectural structures that interact with the genome (Foster and Bridger, 2005;

Schneider and Grosschedl, 2007) and has been shown to be an important organelle in

mechanotransduction (Kalukula et al., 2022; Miroshnikova and Wickström, 2022). By

combining such quantitative measurements with pharmacological perturbations, we show

that cell and nucleus sizes follow a common log-normal probability distribution, and the

cell-nuclear size correlation is regulated by both actomyosin tension and intracellular

osmotic pressure balance. Importantly, cell and nucleus size variations are established

and maintained upon each cell doubling event, and these size differences have influence
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on the expression of UTX, a histone demethylase, which in turn modulates chromatin

methylation states, such that nuclear constraint leads to increased H3K27me3. Our

results thus demonstrate that cell morphological heterogeneity is not merely a noise

during epithelial crowding, but has functional implications on directing the nucleus size

and subsequently modulating chromatin changes.

4.3 Materials and Methods

Cell Culture and Drug Treatment

All experiments conducted using Madin Darby Canine Kidney cells (MDCK) were cultured

in MEM-α (Fisher Scientific , 12561-056) supplemented with 10% fetal bovine serum

(FBS) (Fisher Scientific, 12662-029) and 1% Penicillin-Streptomycin (Fisher Scientific,

15140-122). HaCaT cells were cultured under low-calcium conditions for growth and

propagation and under high-calcium conditions for differentiation, as outlined in previous

HaCaT culturing protocols (Wilson, 2014). DMEM was used as the base medium for

both low-calcium and high-calcium media. Low calcium media was supplemented with

2% 200 nM L-glutamine, 1% of 3.0 mM calcium chloride solution, and 10% low calcium

FBS. High-calcium media was made by adding 20 mL of 200 nM L-glutamine, 10 ml of

280 mM calcium chloride solution, and 100 ml of low-calcium FBS to 780 mL of DMEM.

Low-calcium FBS was prepared by adding 0.38 g of Chelex 100 resin to 50 mL of FBS

and incubating for one hour at 4 °C on a tube rotator. MDCK and HaCaT cells were

maintained at 37 °C and 5% CO2 with humidity. For all MDCK and HaCaT assays,

cells were passaged when they reached ∼ 80% confluence using Trypsin/EDTA solution

(Fisher Scientific, 25300-054). Cells utilized in time course experiments and subconfluent

experiments were seeded at 30,000 cells/cm2, while cells utilized in confluent experiments

were seeded at 80,000 cells/cm2.

To inhibit non-muscle Myosin II, microtubules, and nuclear export, blebbistatin (Mil-

lipore Sigma, B0560), nocodazole (Millipore Sigma, M1404), and selinexor (Selleckchem,
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KPT-330) were used, respectively. Concentrations used were 5 µM and 10 µM for bleb-

bistatin, 50 nM, 75 nM, and 100 nM for nocodazole, and 10 µM for selinexor. When

combined, 10 µM blebbistain was mixed with 30 nM nocodazole. GSK-J1 (Selleckchem,

S751) and DS3201 (Selleckchem, S8926) were respectively used as a histone demethylase

inhibitor and a histone methylase inhibitor at a concentration of 5 µM. These optimal

concentrations were determined by titrating doses to achieve their primary functions

without causing other adverse effects, such as apoptosis. All pharmacological agents were

administered for 24 hours at 37 °C and 5% CO2 once cells reached approximately 90%

confluence.

Mouse line and procedure

K14Cre (Dassule et al., 2000) and R26mT/mG (Muzumdar et al., 2007) mice were group

housed and genotyped as previously published. To generate K14Cre;R26mT/mG embryos

for experiments, timed pregnancy was set up between K14Cre;R26mT/mG mice, and E12.5

embryos were harvested subsequently. Pregnant mice were euthanized by CO2 followed by

cervical dislocation. Both membrane GFP-positive male and female embryos were selected

at random and used in all experiments. Embryonic tissues were harvested and fixed in

4% paraformaldehyde (PFA) in PBS overnight at 4 °C. Tissues were subsequently washed

with PBS three times and stained as previously described. All mice were maintained in

the University of California Los Angeles (UCLA) pathogen-free animal facility. All mouse

experiments were approved by the UCLA Institutional Animal Care and Use Committee

(Protocol Number ARC-2019-013).

Immunostaining

For cell culture experiments using HaCaT and MDCK cells, cells plated in a 4-chamber

Ibidi slide (Ibidi, 80426) were fixed in 10% neutral buffered formalin with 0.03% Eosin

(Sigma-Aldrich, F5304-4L) for 10 minutes at room temperature. Cells were then simulta-

neously permeabilized and blocked using a mixture of 2% Donkey Serum (Fisher Scientific,
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D9663-10ML) with 0.25% Triton X-100 diluted in PBS with calcium and magnesium

(Fisher Scientific, 14040-133) at room temperature for 30 minutes. After washing three

times with PBS, cells were then incubated in a primary antibody solution for 30 minutes at

room temperature. The primary antibodies utilized were H3K27me3 and H3K9ac (9733S,

61663, respectively). The cells were then washed three times using PBS before incubating

with the secondary staining solution using anti-mouse Alexa Fluor 488 and anti-rabbit

Alexa Fluor 647 (Invitrogen, A21042 and 4414S, respectively) secondary antibodies for 30

minutes at room temperature. Nuclei were labeled using DAPI was added along with the

secondary antibody.

For mouse embryo staining, the same protocol was utilized except with incubation

times of 1 hour for the permeablization/blocking buffer, 24 hours at 4◦C for the primary

staining solution, 3 hours for the secondary staining solution, and 2 hours for the PBS

washes.

Imaging and Analysis

Fluorescent images were acquired using either a confocal microscope (RCM1 with Nikon

Eclipse Ti-E, NIS-Elements software) or a widefield fluorescent microscope (Etaluma

LS720 Lumaview 720/600-Series software). A 20× WI/0.95 NA, 60× WI/1.00 NA, or

20×/0.75 NA objective was used for images taken using confocal microscopy. A 20×/0.40

NA objective was used for the widefield fluorescent images. The imaging conditions

were consistently maintained across all experiments. To quantify fluorescent intensity,

z-projected images obtained from z-stack imaging using a step size of ∼2 µm were used.

In time lapse imaging, images were taken using the Etaluma microscope every 5 minutes

for 6 days with media changes performed every other day. Morphological segmentation

was performed using Cellpose (Stringer et al., 2021) or Trackmate (Tinevez et al., 2017).

Quantifications were performed using MATLAB (version R2023a) or ImageJ (version

2.1.0/1.53c).
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Hypotonic shock experiment

MDCK cells with nuclear BFP and plasma membrane GFP were cultured in a 4-chamber

Ibidi slide (Ibidi, 80426) until confluent. Z-stack images of both BFP and GFP channels

were then acquired using a 60× WI objective. Following this, 10−4% V/V digitonin was

added to the cell culture media for 5 minutes and the same imaging protocol was repeated.

To introduce a hypotonic environment, the cell culture media containing digitonin is then

replaced with a solution 95% Milli-Q water and 5% MEM-α, in which the corresponding

osmolarity is then calculated based on the concentration of individual solutes in the final

solution. After a 4 minute incubation with the hypotonic solution, cells were imaged

using the same imaging procedure described above.

MDCK Cell Transduction

To label plasma membrane with GFP and nucleus with BFP for live imaging, cells were

first transfected with a pAcGFP1-Mem vector to produce a plasma-membrane line. These

cells were seeded at a density of 2 ∗ 104 cells per well in 12-well plates. Three days after

seeding, cells were infected with 250 µL of lentivirus expressing nucleus BFP and 8 ng/µL

polybrene (MilliporeSigma, TR-1003-G). The plate was immediately centrifuged at 500×g

for 1 hour at room temperature following the infection. After centrifugation, 750 µL

culture medium was added without removal of lentiviruses. BFP/GFP double positive

clonal populations were sorted by FACS using a BD FACS Aria H. To generate the KASH

reporter, MDCK cells were seeded at a density of 2 ∗ 104 cells per well in 12-well plates.

Cells were transfected three days after seeding using Lipofectamine Reagents (Invitrogen,

18324012) with 0.75 µg GFP-KASH2 vector (Addgene plasmid no. 187017) and 0.25 µg

PiggyBac transposon vector. After neomycin selection, clonal populations were sorted by

FACS using a BD FACS Aria H.
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Micro-patterning

Micropatterned polydimethylsiloxane (PDMS) stamps, containing circular pillar arrays,

were obtained from Research Micro Stamps (Clemson, SC). PDMS stamps underwent

sonication in an ethanol bath for sterilization. Following sterilization, the pillars of the

stamp were incubated with 20µg/mL fibronectin for 30 minutes at room temperature.

The PDMS stamp was then affixed to hydrophobic, untreated petri dishes to transfer

the fibronectin. The surface was then treated with Anti-Adherence Rinsing Solution

(STEMCELL technologies, 07010) for 45 minutes to minimize nonspecific cell binding.

Data analysis and Statistics

GraphPad PRISM (version 10) and MATLAB (version R2023a) were used to perform

statistical analysis and create figures. Data is presented as mean ± standard deviation. For

correlative analyses of all presented scatter plots, both the Pearson correlation coefficient

and the Spearman correlation coefficient were calculated in addition to the p-value, false

discovery rate (FDR), and confidence interval (CI), all of which are summarized in Table

S1. False discovery rate (FDR) was evaluated using a Monte Carlo simulation that

randomly permutes the X Y values of data points. P-values > 0.05 are denoted as not

significant (ns), while p-values ≤ 0.05, ≤ 0.01, ≤ 0.001, and ≤ 0.0001, are represented as

*, **, ***, and ****, respectively.

4.4 Results

Correlated evolution of cell and nucleus morphology throughout cell crowding

To understand how cell morphology affects cell behavior, we first set out to examine

the evolution of both cell and nucleus sizes, both of which have been shown to play an

essential role in transducing mechanical and geometric cues (Kalukula et al., 2022). To

do so, we cultured Madin Darby Canine Kidney (MDCK) cells with a seeding density 30k
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cells/cm2 and conducted cell and nucleus segmentation at 24, 64, 72, and 104 hours after

seeding (Fig. 4.1A). These timepoints were chosen to capture critical transitions in cell

confluency and behavior, encompassing subconfluence, confluence, crowding onset, and a

crowded steady-state (Gumbiner, 1996). These distinct stages capture the evolution of

cell-substrate and cell-cell interactions, and changes in adhesion strengths and motilities

(Garcia et al., 2015). Following known hallmarks of crowding, cell area and nucleus area

became progressively smaller, while the adherence junction protein E-cadherin (E-cad)

became upregulated and more localized to the intercellular junction (Puliafito et al.,

2012).

We next quantified the cell and the nucleus size changes across timepoints. While

nucleus and cell sizes refer to their three-dimensional (3D) volumes, within a monolayer,

their projected areas are well accepted to approximate the cell and nucleus sizes (Seelbinder

et al., 2020; Bankhead et al., 2017). Measuring areas has the benefit of improved statistics,

as it enables a higher throughput of data acquisition and analysis. Studying cell and

nucleus area would also allow us to compare results with previous studies that mainly

performed two-dimensional (2D) analyses (Perez Gonzalez et al., 2018). To validate using

area as an approximation for volume in our system, we analyzed the nucleus volume using

3D image stacks (Fig. 6.14A) and showed a strong correlation between area and volume

(Pearson correlation coefficient ∼ 0.81 ) in a confluent cell layer (Fig. 6.14B). We further

validated our size approximation by demonstrating that the cell layer is relatively flat

(Fig. 4.1A middle row and Fig. 6.14C) throughout crowding, consistent with previous

findings (Neelam et al., 2016). Together, these results confirmed the reduction of cell

and nuclear sizes during epithelial crowding (Fig. 4.1B, 4.1C). Importantly, we found

that both cells and nuclei exhibited morphological heterogeneity throughout crowding.

The magnitude of such morphological variability, denoted by the large whiskers shown in

Figs. 4.1B and 4.1C, well surpassed the magnitude of overall decrease in cell and nucleus

area. This finding suggests that the intrapopulation cell-cell variability should not be

overlooked when assessing individual cell behavior, as interpreting cell properties solely

based on the global average may gloss over important biological information (Han et al.,
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2013).

While the variabilities in both cell and nucleus areas may be initially regarded as

biological noise, we identified a significant correlation between these characteristics (Fig.

4.1D). Specifically, we found that the nucleus and cell areas are positively correlated

throughout crowding, indicating a constant nucleus area to cell area ratio (NC ratio) at

each timepoint. Furthermore, this ratio becomes constant upon the 64 hr timepoint when

the cell layer reaches confluence. The lower NC ratio at the 24 hr timepoint may be due

to cell spreading associated with higher traction forces and actomyosin tension in the
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Figure 4.1: Coordinated morphological changes in cells and nuclei during
crowding.

(A) Images of MDCK cells demonstrating evolution in cell and nucleus morphology
from being subconfluent to crowded (top). Cross-sectional 3D reconstruction of MDCK
cells demonstrating monolayer flatness throughout crowding (middle). Scale bar =
10µm. DAPI and actin staining shows that cells progressively acquire a cobblestone-like
morphology with decreasing sizes of both cell and nucleus during crowding. E-cadherin
(E-cad) staining illustrates the maturation of intercellular junctions in late crowding.
Scale bar = 50µm. (B) Quantification of cell area throughout crowding illustrates that
the cell area variability surpasses the mean change. N = 124, 732, 803 and 1033 for 24,
64, 72, and 104 hour analyses, respectively. (C) Quantification of nucleus area throughout
crowding illustrates that the nucleus area variability also surpasses the mean change. N =
147, 837, 840 and 1107 for 24, 64, 72, and 104 hour analyses, respectively. (D) Persisting
nucleus-cell area correlation throughout crowding. 64 hr, 72 hr, 104 hr datasets exhibit
the same NC ratio, indicated by the same slope of the best fits (solid lines). N = 124,
808, 802 and 1033 for 24, 64, 72, and 104 hour analyses, respectively. Solid lines represent
best linear fits. p-value < 0.0001 for all timepoints. (E) Normalized probability density
functions (PDF) for MDCK, HaCaT, and developing E12.5 mouse epithelium cell and
nucleus area. All PDFs, except the MDCK cell 24 hr PDF, collapse on a master curve
and can be described by a log-normal fit. (F) Quantification of cell aspect ratio (AR)
throughout crowding. N = 124, 732, 803 and 1033 for 24, 64, 72, and 104 hour analyses,
respectively. (G) Quantification of nucleus AR throughout crowding. N = 124, 808,
803 and 1033 for 24, 64, 72, and 104 hour analyses, respectively. (H) Nucleus-cell AR
correlation during crowding showing progressively increased slopes over time. Solid lines
represent best linear fits (solid lines). N = 124, 808, 803 and 1033 for 24, 64, 72, and 104
hour analyses, respectively. p-value < 0.0001 for all timepoints. (I) Normalized PDFs for
MDCK, HaCaT, and mouse epithelium cell and nucleus AR collapse on a master curve,
which can be described by a gamma distribution. **** refers to p-values < 0.0001.

subconfluent state when compared to confluent cells (Hur et al., 2012). To further test if

NC ratio is also correlated in other epithelial model systems, we examined the human

keratinocyte cell line (HaCaT) and the developing mouse epithelium at embryonic day

(E) 12.5, in which the scatter plots are shown in Fig. 6.15. In both cases, we observed NC

correlations. Here, while the mouse epithelium is a three dimensional tissue, we analyzed

the outermost cells, which form a differentiated and flat layer that can be considered as

a two dimensional model system (Richardson et al., 2014). The consistent observation

of NC correlation in different models suggests that the nucleus-cell area co-regulation is

conserved and likely regulated by a common mechanism across systems.

The observed ubiquitous NC correlation suggests that the morphological variability
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of cell and nucleus could be governed by a coordinated process throughout the highly

dynamic cell crowding process. To understand the nature of this NC correlation, we next

assessed the statistical commonality of such a morphological variability by normalizing

the cell and nucleus areas to their respective means (Fig. 4.1E). Aside from the MDCK 24

hr cell area, this normalization revealed a universal collapse of all probability distribution

function (PDF) curves, indicating that the area variability for both nucleus and cell

share the same statistical properties. We further found that these distributions can be

described by a log-normal fit PDF(x) ∼ 0.25
x

exp
(
− (lnx+0.05)2

0.19

)
, consistent with previous

findings (Puliafito et al., 2012). Also, the collapse of all curves demonstrates that the

degree of area heterogeneity is independent of the post-confluent cell density and model

systems, suggesting that the observed feature is conserved in human cells and epithelial

development.

Another morphological hallmark of crowding is the transition from an elongated to

rounded cell shape, which we confirmed in our MDCK system by measuring the cell AR

across different timepoints (Fig. 4.1F). Similar to the area analysis, we also measured

nucleus AR throughout crowding (Fig. 4.1G) and found that as the cell AR decreased by

20%, the nuclear AR increased by 10% from the 24 hr timepoint to the 104 hr timepoint.

Moreover, both cell and nuclei ARs exhibited variabilities that are greater than the

mean change over time (∼ 1.5×mean). Consistent with our area measurements, this

observation suggests that heterogeneity must be considered to understand differences

between individual cells.

Similar to the nucleus-cell area correlation, there is a mild, but statistically significant,

correlation between cell and nucleus ARs in MDCK cells (Fig. 4.1H), HaCaT cells

(Fig. 6.16A), and the mouse epithelium (Fig. 6.16B). The ratio between the nucleus

and cell ARs increases during crowding, reflecting the simultaneous decrease in cell AR

(Fig. 4.1F) and increase in nucleus AR (Fig. 4.1G). After scaling the AR distribution

using a previously published (Atia et al., 2018) form x = (AR− 1)/(⟨AR⟩ − 1) where ⟨⟩

denotes average, we found that all normalized AR PDFs collapsed to a common curve

that can be described by a Gamma distribution PDF(x; k) = kkxk−1e−kx/Γ(k) where
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Γ(k) is the Legendre gamma function with k ∼ 2.43 for our best fit (Fig. 4.1I). This

finding is consistent with previous work suggesting that AR heterogeneity in crowded

epithelia may be universally described by geometric constraint during jamming transition

(Atia et al., 2018). Notably, we found the correlation between area and AR negligible,

in which the mean Pearson correlation coefficient is ∼ 0.05 (Fig. 6.17). This finding

suggests that these two variables are independent morphological features and governed

by distinct mechanisms. Overall, our results illustrate that both cells and nuclei share

common statistical properties of morphological variability across three distinct epithelial

cell models.

Size heterogeneity emerges following cell division

The overall reduction in cell area during crowding must arise from the production of

new cells through cell proliferation within a limited space. It is also well known that cell

division plays a key role in inducing morphological changes from confluence to a crowded

state (Atia et al., 2018). In our experiment, we observed that the cell number tripled

from the 64 hr to 104 hr timepoints (Fig. 6.18). This cell number increase prompted us

to hypothesize that cell and nuclear morphological heterogeneity may arise following cell

divisions, at which point the regulation of NC ratio may have also begun. We therefore set

out to track the cellular and nuclear area of dividing cells and their daughter cells, where

the plasma membrane is labelled with green fluorescent protein (GFP) and the nucleus is

labelled with blue fluorescent protein (BFP) (Fig. 4.2A). We focused our analysis using

∼ 95%-confluent monolayers, where cells were crowded but remained proliferative (Fig.

6.18). We then measured the cellular and nuclear area of dividing cells and their daughter

cells for 6 hours to observe their morphological evolutions during cell growth. Here, we

study areas for up to 6 hours to confirm a stable size has been reached (Fig. 6.19).

As shown by the evolution of cell areas, we found that daughter cells from the same

mother do not possess equal areas (0 hr in Fig. 4.2B), rather one is larger than the

other. Despite having identical genomes, there is a corresponding difference in nucleus
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Figure 4.2: Variations in cell and nucleus morphologies arise from uneven cell
division.
(A) Images of live cells illustrating cell division and growth. A mother cell 1 hr before

division (left). Fuchsia outline denotes mother cell contour. Daughter cells possess
different sizes immediately upon division (middle). Yellow outline denotes the larger

daughter cell while orange outline denotes the smaller daughter cell. Daughter cells 6 hr
after division (right). Scale bar = 15 µm. (B) Cell area evolution of mother and daughter
cells shown in (A) illustrates that the area difference increased during cell growth. (C)
Corresponding nucleus size evolution shows that the nucleus area differences remained
during cell growth. (D) Cell areas at 0 and 6 hrs after division are correlated. N = 116.
p-value < 0.0001. (E) Nucleus areas at 0 and 6 hrs after division are correlated. N = 116.
p-value < 0.0001.(F) Histogram of cell areas 0 and 6 hrs after division. Inset shows that
the normalized cell area PDFs of the 0 hr and 6 hr data can be described by the same
log-normal distribution (black dashed line). (G) Corresponding histogram of nucleus

areas 0 and 6 hrs after division. Inset shows that the normalized nucleus area PDFs of
the 0 hr and 6 hr data can be described by the same log-normal distribution (black
dashed line). (H) Nucleus-cell area correlation immediately upon division. N = 116.

p-value < 0.0001. (I) Nucleus-cell area correlation 6 hrs after division. Black lines in D,
E, H, and I represent best linear fits. N = 116. p-value < 0.0001.

area, with the larger daughter cell owning a larger nucleus (0 hr in Fig. 4.2C). While

the size differences between daughter cell size increased, the differences between their

nuclei remained relatively constant after ∼ 3 hours of growth. By analyzing 58 pairs of
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daughters, we confirmed that the area disparity between the two daughters persisted as

the cells grew, as demonstrated by the positive correlation between the 0 hr and 6 hr

areas for both the cell (Fig. 4.2D) and the nucleus (Fig. 4.2E). The scatter plots also

illustrated that the cell area increased more, with a slope of ∼ 1.12m, than the nucleus

area, with a slope of ∼ 0.88, revealing that although co-regulated, most growth occurs

within the cells and less so in their nuclei.

The persisting area difference leads to the question of whether the area variability

observed in the steady-state system could simply originate from uneven cell divisions. To

assess this possibility, we analyzed the statistical properties of cell area and nucleus area

at 0 hr and 6 hr after division by plotting their PDFs in Figs. 4.2F and 4.2G, respectively.

Consistent with Figs. 4.2D and 4.2E, we found that the distributions of both cell and

nucleus area simply broadened as the cells grew. Notably, all PDFs were unimodal and

skewed. We found that after normalization, both cell (Fig. 4.2F, inset) and nucleus

(Fig. 4.2G, inset) area PDFs can be described by a universal log-normal distribution.

This finding suggests that the area variability emerged from uneven cell division and

was approximately linearly amplified during cell growth. To understand whether this

randomness dominates over any inherited lineage dependent trait, we calculated the cell

area-area autocorrelation function, which decays by an order of magnitude at the nearest

neighbor distance ∼ 10 µm (Fig. 6.20). Such a short correlation length suggests that the

final daughter cell area is not an inherit property from mother cells.

The similar evolution between cell and nucleus areas during cell growth indicates that

the NC ratio regulation begins as soon as division is completed. To test this, we studied

the NC ratio correlation at 0 hr (Fig. 4.2H) and 6 hr (Fig. 4.2I) after division. While we

observed a strong correlation regardless of the time after division, the ratio was higher at

the 0 hr than at the 6 hr timepoint, which can be attributed to the increase in cell size

due to subsequent cell growth after division. This finding indicates that the correlation

between cell and nucleus is established before cell growth reaches a steady state following

division, and such a correlation is maintained despite their disproportionate size increase

during cell growth.

80



Collectively, our cell division tracking experiments suggest that the cell and nucleus

area variability is established in two sequential steps. The first step involves uneven cell

division, similar to previously established bacteria models (Amir, 2014). In such models, it

has been shown that cell division involves a series of multiplicative random events, which

lead to a log-normal distribution of cell size, consistent with our measurements. The

second step in the establishment of area distribution is the variability amplification due to

size-regulated cell growth, in which the cell growth rate roughly scales with the cell size.

Such a cell growth regulation has mainly been observed in unconfined single cells (Cadart

et al., 2022). Our results demonstrated a similar mechanism in physiologically confined

cells. Lastly, the nucleus and cell size are correlated throughout this two stage process.

Our finding also suggests that the log-normal distribution observed in the steady-state

cells can simply arise from morphologically asymmetric divisions. In contrast to AR where

the origin of heterogeneity is mainly attributed to junctional remodeling (Atia et al., 2018;

Sadhukhan and Nandi, 2022), our results indicate that the geometric constraint due to

cell-cell interactions mainly determines the final mean size, but not area heterogeneity.

Actomyosin and osmotic pressure balance regulate NC ratio

Having established that all cells within a monolayer share a similar NC ratio, we next

asked what mechanism coordinates the nucleus and cell sizes. Previous studies in single

cells have shown that nucleus size can be controlled by either cytoskeleton (Li et al., 2014)

or intracellular osmotic pressure (Deviri and Safran, 2022; Lemière et al., 2022). To test

if these mechanisms play a role in propagating the size heterogeneity from cell to nucleus

in confluent epithelia, we performed a series of perturbation experiments to investigate

the functional requirement of the cytoskeleton, nucleus-cytoskeleton linkage, and osmotic

pressure balance in this context (Fig. 4.3A).

We first investigated whether actomyosin tension regulates nucleus size by measuring

the Pearson correlation coefficient of the NC ratio in confluent cells that have been treated

with blebbistatin, a non-muscle myosin II inhibitor, or control vehicle (Fig. 4.3B). We
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observed a dose-dependent response, as a higher concentration of blebbistatin further

attenuates the nucleus-cell area correlation. Notably, although functional actomyosin

has been shown to mainly restrict the nucleus height in isolated single cells (Ramdas

and Shivashankar, 2015), we here found that it also limits nuclear area and volume in

monolayers. We then obtained 3D image stacks of blebbistatin-treated and control nuclei

and measured their volumes, since the projected nucleus area change can be due to either

volume change or nucleus flattening (Ramdas and Shivashankar, 2015). We found that

the area, volume, and height increased by approximately 40%, 75%, and 25%, respectively

(Fig. 6.21), suggesting a nearly isotropic expansion of the nucleus when myosin activity is

inhibited.

We next assessed the contribution from microtubules, another main component of

the cytoskeleton, using nocodazole to inhibit microtubule assembly. However, regardless

of the concentrations used, inhibition of microtubules alone was insufficient to reduce

the nucleus-cell area correlation (Fig. 4.3C). When mysoin II and microtubules were

simultaneously inhibited, we observed a correlation reduction (∼ 30% reduction) similar

to the blebbistatin-only samples (Fig. 4.3D, ∼ 20% reduction). These results thus

suggest that, in confluent epithelia, actomyosin tension plays a more dominant role than

microtubules in coordinating the nucleus size with the cell size.

To further understand how cytoskeleton regulates the NC ratio, we investigated

the requirements of the nucleus-cytoskeleton linkage, which transfers the strain from

the cytoplasm to the nucleus through the Linker of Nucleoskeleton and Cytoskeleton

(LINC) complex (Kalukula et al., 2022). To inhibit the nucleus-cytoskeleton linkage, we

disrupted the LINC complex by expressing a dominant negative GFP-KASH2 (DN-KASH)

protein (Earle et al., 2020). To that end, we found that disruption of the LINC complex

significantly reduces the nucleus-cell area correlation (Fig. 4.3E), suggesting that the

linkage between the nucleus and cytoskeleton is required for regulating nucleus size.

Besides the cytoskeleton, osmotic pressure balance between the cytoplasm and the

nucleus has also been proposed to be a main regulator of nuclear-to-cytoplasmic volume

ratio (Deviri and Safran, 2022; Lemière et al., 2022). In this context, the osmotic pressure
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difference across the nuclear envelope is predominately driven by active nuclear transport

of macromolecules, causing subsequent nuclear size changes. To examine the contribution

of osmotic pressure in NC ratio regulation, we first performed a hypo-osmotic shock

experiment (Lemière et al., 2022), in which cells were analyzed before and after selective

cell membrane permeabilization, followed by an exchange of cell culture medium for a

mixture of 95% water and 5% cell culture medium (Fig. 4.3F). This medium exchange

reduced the cytoplasmic osmotic pressure from ∼ 290 mOsm to ∼ 14.5 mOsm (see

Materials and Methods), conducive for nuclear expansion. By live imaging cells with

nuclear-BFP and plasma membrane-GFP, we found that nuclei significantly swelled

after the osmotic pressure drop, while cell size remained roughly constant (Fig. 4.3G).

Quantitative measurement showed that nucleus size increased by ∼ 50% (Fig. 4.3H),

while the nucleus area and cell area correlation was significantly reduced (Fig. 4.3I), likely

due to the disproportionate increase in nuclear size across the sample. Osmotic pressure

is, therefore, critical for maintaining the NC ratio.

Because osmotic pressure is in part controlled by active transportation of macro-

molecules across the nuclear envelope (Mukherjee et al., 2016), we next investigated if

nuclear transport is required for NC correlation by inhibiting nuclear export using selinexor

(SLX), a selective exportin-1 inhibitor (Fig. 4.3J) (Camilli et al., 2023). Consistent with

the hypo-osmotic shock experiment described above, we found that nuclei swelled by ∼

1.4 folds in area (Figs. 4.3K,4.3L) 24 hours after selinexor treatment. The corresponding

volume increase was also validated by analyzing 3D image stacks (Fig. 6.21). This

observation of nuclear expansion is anticipated since molecules could not be shuttled out

of the nucleus, leading to an increased osmotic pressure within the nucleus. Importantly,

we also observed that the selinexor-treated cells exhibited a significantly lower nucleus-cell

area correlation (Fig. 4.3M), suggesting that the macromolecule homeostasis between

nuclear and cytoplasmic compartments is required for regulating nucleus size in confluent

epithelia. Collectively, our results show for the first time that both osmolarity and the

cytoskeleton play an essential role in NC regulation in confluent epithelia.
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Nucleus size impacts histone modifications

Is the morphological variability of cells merely a by-product of upstream biological events?

Alternatively, could the nucleus size heterogeneity have downstream biological impacts?

In the last few decades, seminal studies have demonstrated that physical confinement of

cells have profound influences on chromatin organizations, inducing changes in epigenetics

and gene expression (Wang et al., 2023; Shivashankar, 2011). Motivated by these findings,

we first examined different histone modifications, which control the physical properties

of chromatin and the corresponding epigenetic states. For instance, Histone H3 Lysine

27 trimethylation (H3K27me3) is associated with gene silencing, or repression, and with

the formation of facultative heterochromatin, while Histone H3 Lysine 9 acetylation

(H3K9ac) is an euchromatic mark associated with gene activation (Zhang et al., 2015). By

immunostaining H3K27me3 in confluent MDCK cells (Fig. 4.4A) and then analyzing the

correlation between nucleus area and H3K27me3 intensity, we found that the H3K27me3

intensity was anti-correlated with the nucleus area (Fig. 4.4B). To control for the intrinsic

dependence of intensity measurement on the nucleus size and potential variations in

staining and imaging, we normalized the H3K27me3 intensity to the DAPI intensity

(Stachecka et al., 2021). The anti-correlation between the normalized H3K27me3 intensity

and nucleus area was further confirmed by analyzing isolated nuclei with imaging flow

cytometry (Fig. 6.22). Our observed anti-correlation results illustrate that larger nuclei

contain less H3K27me3 compared to smaller nuclei. We repeated the same measurement

using the developing E11.5 (Fig. 6.23) and E12.5 (Fig. 4.4C) mouse epithelia and observed

a similar correlation (Fig. 4.4D), indicative of a conserved process in cultured cells and in

vivo systems.

Next, we assessed the expression of the euchromatic mark H3K9ac in confluent MDCK

cells (Fig. 4.4E). In contrast to the H3K27me3 result, we observed a positive correlation

between the nucleus size and H3K9ac intensity, where H3K9ac was upregulated in larger

nuclei (Fig. 4.4F). This result was reproduced in the E12.5 mouse embryonic epithelium

(Figs. 4.4G, 4.4H). Our results in both MDCK cells and mouse embryos suggest that
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there is a universal mechanism dictating H3K27me3 and H3K9ac expression through

nucleus size regulation.

To further characterize how nucleus size impacts the chromatin state, we performed

systematic spatial analyses of the histone mark intensity within individual nuclei. We

focused on two higher-order organization features: chromatin radial distribution and

compaction. Here, the radial distribution reports how chromatin is arranged with respect to

nuclear lamina (Crosetto and Bienko, 2020), whereas chromatin compaction impacts DNA

replication (Liu et al., 2023; Villaseñor and Baubec, 2021) and damage response (Murga

et al., 2007). To quantify the radial distribution, we defined the outer 20% of a nucleus

as the nuclear periphery and the inner 80% as the center (Fig. 4.4I). We then calculated

the intensity ratio between these two nuclear regions. To illustrate the different levels of

euchromatin aggregation, we first showed that larger nuclei exhibited more chromatin

aggregation when compared to smaller nuclei (Fig. 4.4J). Such an euchromatin aggregation

morphology was then confirmed by calculating the coefficient of variation (CV) of the

histone intensity (Martin et al., 2021).

By characterizing the radial distribution of H3K9ac in crowded MDCK cells, we found

that larger nuclei have less centralized H3K9ac, as illustrated by the positive correlation

between the periphery-center ratio and nucleus area (Fig. 4.4K). We also found that

this observed correlation does not strongly depend on the split ratio between the nucleus

center and the periphery (Fig. 6.24). This finding confirms that nucleus size can influence

chromatin spatial distribution. To confirm our findings on the H3K9ac spatial distribution,

we performed Airyscan and stimulated emission depletion (STED) microscopy to further

visualize stained chromatin marks (Fig. 6.25). By analyzing 16 representative nuclei,

we reproduced the positive correlation between the H3K9ac periphery-center ratio and

nucleus area (Pearson correlation coefficient ∼ 0.29, Fig. 6.25). Lastly, we systematically

analyzed how CV and periphery-center ratio correlates with nucleus area for both H3K9ac

and H3K27me3, and summarized all the correlation coefficients in Fig. 4.4L. The summary

highlights that nuclear size mainly affects the organization of euchromatin, labeled by

H3K9ac, more than heterochromatin, labeled by H3K27me3.
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Our observed effect of nuclear size on chromatin states is reminiscent to previous

micro-patterning constraint studies. In our system, the physical confinement arises from

the neighboring cells. To examine if geometric constraint alone without the effect of

cell-cell adhesion can induce a similar histone modification change, we micro-patterned

10 µm-diameter fibronectin disks on an anti-adherent substrate to mimic the geometric

constraint found in crowded MDCK cells (Fig. 4.4M). We showed that the micro-printed

fibronectin was able to confine individual cells. In comparison, subconfluent, unconfined

cells exhibited a larger area and irregular cell shape (Fig. 4.4M). Consistent with both

previous literature and our findings in monolayers, we found that confinement upregulated

H3K27me3 (Fig. 4.4N) and downregulated H3K9ac (Fig. 4.4O) (Hsia et al., 2022;

Jain et al., 2013). This finding confirms that geometric constraint can play a role in

regulating chromatin modifications. Compared to previous confinement studies, which

typically impose a constraint much smaller than the nucleus size (Hsia et al., 2022), our

finding suggests that a relatively mild, physiologically relevant constraint emerging during

crowding is sufficient to alter chromatin states.

Nucleus size regulates H3K27me3 levels via UTX

To understand how nucleus size alters chromatin states, we investigated the levels of

histone-modifying enzymes, which are predominantly responsible for post-translational

modifications of histones (Agger et al., 2007). We first characterized how the histone

demethylase level depends on nucleus size by immunostaining MDCK cells with UTX

(Fig. 4.5A) and compared the normalized UTX/DAPI intensities in the top and bottom

20% of nuclei based on size (Fig. 4.5B). This analysis indicates that UTX levels are

anti-correlated with nucleus size (Fig. 6.26A), consistent with our previously observed

anti-correlation between the H3K27me3 level and nucleus size. We also assessed how

the methylase EZH2 levels relate to nucleus size (Fig. 4.5C), but did not observe a

significant correlation (Figs. 4.5D and 6.26). Since UTX and EZH2 play antagonistic

roles, we next calculated their intensity ratio (Fig. 4.5E), which could determine the

H3K27 methylation level. To that end, we observed a lower EZH2/UTX intensity ratio
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in larger nuclei, corroborating the notion that UTX facilitates the coordination between

nucleus size and H3K27me3 levels.

To further examine the functional roles of these enzymes, we administered GSK-J1

and DS3201 to inhibit UTX and EZH2, respectively (Fig. 4.5F). We validated both

drugs’ effects by observing increased H3K27me3 expression upon GSK-J1 treatment and

reduced expression upon DS3201 treatment (Fig. 4.5G). By calculating the Pearson

correlation coefficient between nucleus size and H3K27me3/DAPI level, we found that

the anti-correlation observed in the control group was abolished by either treatment (Fig.

4.5H), demonstrating that both enzymes are required to regulate H3K27me3 levels in

response to changes in nucleus sizes. Lastly, since we found that cytoskeletal tension

regulates the NC ratio and has been suggested to affect the histone-modifying enzyme

recruitment (Jain et al., 2013), we also examined how it affects histone modifications in

our system. We found that blebbistatin significantly reduced the UTX level (Figs. 4.5I

and 4.5J). Importantly, we also observed reduced correlation between nucleus area and

H3K27me3 (Fig. 4.5K) or H3K9ac (Fig. 6.27) levels, indicating that actomyosin is critical

for coordinating chromatin modifications with nuclear sizes. Equipped with these findings,

we propose in Fig. 4.5L that uneven cell division introduces cell size variation, which

propagates into nucleus size variation by actomyosin tension and intracellular osmotic

pressure balance. This nucleus size variation, in turn, promotes variation in histone

modifications in part through the regulation of UTX expression.

4.5 Discussion

Our paralleled statistical analyses of both the cell morphology and nucleus morphology

have provided a detailed statistical description of morphological variabilities in epithelial

cells. These analyses unveiled a constant correlation between the cell and the nucleus size,

such that they are co-scaled as cell density increases. These results have two important

implications on the epithelial cell jamming transition, in which a tissue transitions from a

fluid-like state that permits cell rearrangement to a solid-like state that is characterized
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by tight cell packing, increased cell-cell adhesion, and reduced cell motility (Angelini

et al., 2011; Mongera et al., 2018). First, we demonstrated that the nearly universal

distribution of cell size and AR can be extended to the nucleus morphology. This nucleus-

cell correlation shows that cells and their nuclei share a similar morphological signature

during jamming transition. Therefore, as the cells undergo jamming transition that

is facilitated by direct intercellular interactions, nuclei are concurrently influenced by

this jamming process through the cytoskeletal tension and osmotic pressure balance.

Second, our findings suggest that the variabilities of cell AR and area are governed by

distinct mechanisms. Previous studies have demonstrated that cell AR variations are

largely impacted by remodeling the intercellular junction (Moshe et al., 2018), which

is a multi-cellular effect due to packing. Our result shows that cell area differences, in

contrast, are predominantly determined at cell birth, which is mainly a unicellular effect.

Our finding that variability in cell size can arise from uneven cell divisions unveils

a source of cell size variability and its universality in a biological system (Ou et al.,

2010; Cadart et al., 2014). The current understanding of variability origin is mainly

built on conjectures predicting PDFs that are subsequently tested by experiments with a

focus on the role of packing geometry. Given that cell divisions can generate daughter

cells with different sizes (Kiyomitsu, 2015), our findings here provide a framework on

how cell divisions can introduce cell and nucleus size variations within a population,

that are subsequently maintained by each cell to generate the observed morphological

heterogeneities inherent in the system. Furthermore, our observed persisting cell size

disparity supports previously proposed cell growth model by which the molecular synthesis,

self-assembly, and transport determine the cell growth rate (Cadart et al., 2019). In

future studies, it would be important to determine how cell-cell forces regulate cell cycles

and growths, thereby determining the final size of steady-state cells.

To understand how the nucleus-cell size coordination is achieved, we investigated the

roles of both active nuclear exportation of macromolecules and actomyosin functions. Our

results obtained using a confluent cell layer highlight the importance of intracellular osmotic

pressure balance in nuclear size regulation, as well as its requirement for coordinating the
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nucleus-cell size ratio. Similarly, perturbations of actomyosin functions or the physical

connection of cytoskeleton to the nucleus via LINC resulted in loss of nucleus-cell size

coordination as well. Therefore, both osmotic pressure balance and actomyosin are

critical for coordinating cell and nucleus sizes. However, it remains unclear whether

inhibition of actomyosin hinders nucleus-cell size regulation mechanically or via nuclear

transport (Andreu et al., 2022). Future experiments will decipher the two possibilities

by observing the elastic response of nucleus upon laser ablation of cytoskeleton. Finally,

because asymmetric actomyosin localized at cell cortex can generate unequal forces during

cell division to produce daughter cells of unequal sizes (Ou et al., 2010; Cadart et al.,

2014), it will be important in the future to determine actomyosin’s role in driving size

heterogeneities, in addition to the nucleus-cell size correlation we have identified here.

How nucleus morphology can control gene expression, such as through chromatin

modifications, is an active research topic (Mukherjee et al., 2016). Leveraging the cell-to-

cell variability in our steady-state monolayer system, we directly tested the regulation of

chromatin by nucleus sizes without perturbing transient intracellular molecular events, and

observed a positive or negative correlation between the nucleus area and the H3K9ac or

H3K27me3, respectively. When compared to previous micro-patterning experiments that

examined isolated single cells, our observation unveils the pivotal role of nucleus geometry

in regulating chromatin organizations in an epithelial monolayer setting. Our result also

unveils that UTX facilitates these nucleus size-driven chromatin modifications, in which

the UTX levels are controlled by the nucleus size and actomyosin tension. Our finding of

the correlation between UTX levels and nucleus size is consistent with recent experiments

where nuclear envelope curvature was found to regulate the nuclear pore complex confor-

mation, altering molecular weight-dependent nucleocytoplasmic transport(Andreu et al.,

2022). This finding is also consistent with recent theoretical predictions, which posit that

the nucleus volume alone can impact the chromatin state by altering the intra-nuclear

electrostatic potential (Efremov et al., 2022) and surface area to volume ratio, affecting

expression of genes associated with the nuclear lamina (Guelen et al., 2008). Lastly,

previous studies have shown that chromatin state and its interaction with the nuclear
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envelope can determine nuclear morphology (Lionetti et al., 2020). Our work highlights

that a reverse regulation can too take place, as the nuclear morphology, controlled by the

cytoskeleton and nuclear transport, can modulate the levels and distributions of different

chromatin marks.

Finally, our findings here provide a potential mechanism by which cells in living

tissues can generate diversity in cell shapes, fates, and behaviors. For instance, con-

comitant changes in cell/nucleus sizes and differentiation can occur following asymmetric

cell divisions during Drosophila neuroblast differentiation (Albertson and Doe, 2003),

mouse keratinocyte differentiation (Gdula et al., 2013), and mouse blastocyst pattern-

ing (Niwayama et al., 2019). In a pathological setting, cancer cells with larger nuclei are

often linked to a more metastatic state (Zink et al., 2004). It is therefore plausible that

variations in cell and nucleus sizes, regardless of how they are produced, help generate

a spectrum of chromatin modifications that in turn modulate gene expression and fate

changes across different cells. Taken together, our results unveil the process through which

cell and nucleus sizes are coordinated to control chromatin modifications and distribution,

thus translating variations in cell sizes into differences in chromatin organizations. Cell

morphological heterogeneity that is present in any tissue may therefore play an important

role in generating cell diversity.
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Figure 4.3: Actomyosin and osmotic pressure balance coordinate the cell and
nucleus areas.
(A) Experimental overview. Inhibitions of myosin II (blebbistain or Bleb), microtubules
(nocodazole or Noco), and the nucleo-cytoskeletal coupling through LINC (KASH) were
performed for 24 hours before sample characterization. (B-E) Pearson correlation co-
efficient of cell area and nucleus area in (B) Bleb-treated cells, (C) Noco-treated cells,
(D) Bleb- and Noco-treated cells, and (E) KASH cells. (F) Schematic illustrating the
hypotonic experiment overview and timeline. Cells were first treated with digitonin for
5 minutes to selectively permeabilize the cell membrane (dotted outline). Cell culture
medium was subsequently exchanged with a 95% water solution, inducing a decrease in
osmotic pressure. Purple and gold arrows indicate osmotic pressure into and out of the
nucleus, respectively. Reduction of arrow size in the hypotonic cell illustrates a decrease in
osmotic pressure. (G) Image of control and hypotonic-shocked cells. Nuc-BFP/PM-GFP
cells were used for real-time visualization of cell and nucleus morphology. Scale bar = 25
µm. (H) Nucleus area of untreated and hypotonic-shocked cells. (I) Pearson correlation
coefficient of cell area and nucleus area of untreated and hypotonic-shocked cells. (J)
Schematic illustrating that selinexor (SLX) inhibits nuclear exportation through nuclear
pore complex (NPC), increasing the intranuclear osmotic pressure. Cells were treated
with SLX for 24 hours before characterization. (K) Image of control and SLX-treated
cells. Scale bar = 25 µm. (L) Nucleus area of control and SLX-treated cells. (M) Pearson
correlation coefficient of cell area and nucleus area of control and SLX-treated cells. All
correlation measurements shown in B, C, D, E, I, and M were conducted using at least N
= 100 cells, in which all p-values < 0.05. ”ns”, *, **, ***, ****, refer to p-values ≥ 0.05,
< 0.05, < 0.01, < 0.001, and < 0.0001, respectively.
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Figure 4.4: Nucleus size regulates the expression of histone marks.

(A) Image of MDCK cells stained with Histone H3 Lysine 27 trimethylation (H3K27me3)
illustrating its variable expression levels in different cells. Scale bar = 50 µm. (B)
Correlation between normalized H3K27me3 expression level and nucleus area in MDCK
cells. N = 461. (C) Image of an E12.5 mouse epithelium stained with H3K27me3. Scale
bar = 25 µm. (D) Correlation between normalized H3K27me3 expression and nucleus area
in the mouse epithelium. N = 130. (E) Image of MDCK cells stained with Histone H3
Lysine 9 acetylation (H3K9ac). Scale bar = 50 µm. (F) Correlation between normalized
H3K9ac expression and nucleus area in MDCK cells. N = 1130. (G) Image of an E12.5
mouse epithelium stained with H3K9ac. Scale bar = 25 µm. (H) Correlation between
normalized H3K9ac expression and nucleus area in the mouse epithelium. N = 713.
(I) Schematic of the nucleus region split for radial distribution analysis. Yellow shaded
region occupying 80% of total nucleus area is classified as the center, while the outer 20%
shaded in blue is classified as the periphery. (J) Airyscan image of a small (top) and large
(bottom) nucleus of crowded MDCK cells illustrating differences in the radial distribution
of H3K9ac. Scale bar = 5 µm. (K) Correlation between H3K9ac periphery-center ratio
and nucleus area of crowded MDCK cells. N = 1246. (L) Summary of the absolute
value of the Pearson correlation coefficient between nucleus area and intensity or spatial
distribution analyses in crowded MDCK cells. N = 5. (M) Images of unconfined (left)
and confined (right) MDCK cells stained with H3K27me3 (top) or H3K9ac (bottom).
Cells were confined using circular 10 µm fibronectin micro-patterned substrates. Scale bar
= 50 µm. (N) Box and whisker chart demonstrating an increase of normalized H3K27me3
intensity in confined cells. N= 59 and 75 for unconfined and confined cells, respectively.
(O) Box and whisker chart showing a decrease of normalized H3K9ac intensity in confined
cells. N = 50 and 52 for unconfined and confined cells, respectively. *, **, and ***, refer
to p-values < 0.05, < 0.01, and < 0.001 respectively.
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Figure 4.5: UTX coordinates with nucleus size and regulates H3K27me3 levels.

(A) MDCK cells stained for UTX with example images of small (upper right) and large
nuclei (bottom right). (B) The UTX/DAPI intensity of the smallest 20% of nuclei

(Small) is significantly lower than that of largest 20% of nuclei (Large). N = 295 pooled
from 3 replicates. (C) MDCK cells stained for EZH2 with example images of small

(upper right) and large nuclei (bottom right). (D) EZH2 levels displayed no significant
difference between small and large nuclei. N = 295 pooled from 3 replicates. (E)

EZH2/UTX intensity ratio is higher in small nuclei than in large nuclei. N = 295 pooled
from 3 replicates. (F) MDCK cells stained for H3K27me3 in control, GSK-J1 and DS3201
samples. (G) GSK-J1 and DS3201 respectively increased and decreased the H3K27me3
levels. N = 77, 217, and 294 for control, GSK-J1, and DS3201, respectively. (H) Pearson
correlation coefficient between nucleus size and H3K27me3 intensity for control, GSK-J1,
and DS3201 treated cells. GSK-J1 and DS3201 treatments reduced the anti-correlation
between nucleus size and H3K27me3 intensity. Dotted line denotes no correlation. (I)
MDCK cells stained for UTX in control and blebbistatin-treated (Bleb) samples. (J)

Bleb samples exhibited lower UTX levels than control. (K) Pearson correlation coefficient
between between nucleus size and H3K27me3 intensity for control and Bleb samples.

Dotted line denotes no correlation. (L) Proposed mechanism of how heterogeneous cell
morphology generates diversity in nucleus size and chromatin states. In a crowded

epithelial monolayer, a mother cell divides unevenly into two daughter cells with different
sizes, which persists thereafter. Each cell size then propagates through actomyosin
tension and intracellular osmotic pressure balance to determine the corresponding

nucleus size. Cell size heterogeneity thus gives rise to nucleus size heterogeneity, which in
turn contributes to the varying UTX levels and thus chromatin modifications. Scale bar
= 10 µm. p-value < 0.05 for B, D, F, H, and K. ”ns”, *, **, ***, ****, refer to p-values

≥ 0.05, < 0.05, < 0.01, < 0.001, and < 0.0001, respectively.
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CHAPTER 5

Conclusions

5.1 Summary

Epithelial cells are integral components of our body’s organs, fulfilling vital physiological

functions by forming linings throughout. In processes like tissue development, injury

repair, and wound healing, these cells undergo a phenomenon known as cell crowding,

or jamming, where they migrate and multiply until they form a compact, quiescent

layer. To comprehend the transition from fluid-like to solid-like behavior in epithelial

tissues, researchers have applied the jamming transition framework originally developed

to describe inert granular systems, focusing on factors such as cell density, shape, and

movement. However, the molecular mechanisms governing these factors and their biological

consequences are still relatively unexplored. In my thesis, I established a methodology to

investigate modulus variation within live cell layers, revealing a relationship between cell

size and stiffness. To do so, I developed a platform integrating AI, cell stretching, and

confocal imaging to reveal supracellular mechanical heterogeneity within an epithelial

monolayer. This exploration deepens our understanding of how cellular mechanical

properties influence morphology. Additionally, through integrating transcriptomics and

metabolomics, I delineated the role of cellular metabolism in regulating motility during

crowding. Using a multi-omic approach, I identified metabolism to play a role in regulating

jamming. Through inhibition experiments using UK5099, I found that pyruvate plays a

role in regulating the cell motility. I also determined that the metabolically-driven motility

changes are largely constituted from T1 transitions rather than flocking. Furthermore, I

elucidated the origins of morphological diversity in epithelial layers and how such diversity
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can impact gene expression patterns. I identified asymmetric cell division to induce cell

size heterogeneity which then gets propagated to nucleus size heterogeneity via osmotic

pressure and cytoskeletal regulation. I then discovered that nucleus size heterogeneity

is correlated with histone modifications for both a heterochromatic and euchromatic

mark. Lastly, I found that histone modifying enzymes play an important role in such a

coordination. Collectively, these discoveries advance our understanding of epithelial cell

behavior, the jamming transition, and mechanobiology with important applications in

development and cancer studies.

5.2 Outlook

While this work led to many exciting discoveries in understanding epithelial cell behavior

during crowding, it also opened many interesting avenues for future investigation. For

example, what regulates cell metabolism during crowding? How does metabolism regulate

cell motility? What is actomyosin’s role in driving size heterogeneities? Can we engineer a

tissue to be morphologically homogeneous? In this section I will discuss the most critical

follow up work I envision the field will address in the near future.

Using a multi-omic approach, I identified metabolism as a molecular regulator of the

jamming transition, specifically of the fluctuation axis of the jamming phase diagram

for active matter. However, to fully understand this regulator, it will be important to

further investigate the mechanism of how the cell metabolism is regulating motility. Our

preliminary results suggest that the upregulation of the RhoA/Roc activity could be

a possible pathway. To understand this regulation, it would be essential to perform

traction force microscopy on control and UK5099 treated cells. This could reveal if there

is increased traction in the UK5099 system.

It is, however, possible that we do not see any increase in traction. Recent theoretical

have demonstrated (Petridou et al., 2021; Bi et al., 2015) that cells can increase their

motility without increasing traction forces. In context of our system, I see this as a strong

possibility. In our jammed system, we observed that the E-cad junction strength and

97



thickness is maintained in the UK5099 treated system. This suggests that the cell-cell

adhesion strength is likely much stronger than the cell-substrate adhesion. In fact, it

is important to note that in an in vivo system, many epithelia are not attached to a

substrate, but instead float on a fluid layer or yolk, as observed in developmental processes

such as Drosophila and Zebrafish early ectoderm and embryonic disks of mammalian and

avian embryos. In these systems, forces exerted between the cells dominate the mechanics

compared to traction forces with the substrate. Therefore, in our system, it is possible

that traction forces are negligible compared to the junctional tensions on the apical side.

To assess this possibility functional inference analysis would be required.

Understanding what induces this metabolic reprogramming will also be valuable to

developmental and cancer biology fields. Our preliminary results suggests that epigenetics

could be the driver of this reprogramming. We observed similar trajectories of chromatin

accessibility and gene expression, illustrated by Figs 3.1 H and I. When further investigating

genes related to metabolic enzymes, we found not only that the ATAC and RNA expressions

were in qualitative agreement (Figs 3.1 N), but also that the Pearson correlation coefficient

between the two was moderate to high and significant for most genes (Figs 3.1 O).

Performing ATAC-seq on jammed, untreated cells and jammed, UK5099-treated cells

would be insightful to reveal any differences in promoter accessibility to guide future

inhibition experiments.

To get a more complete picture of how tissue solidification and/or fluidization acts as

an upstream cue to induce downstream phenotypic changes, it is important to further

investigate how this cue perturb gene expression. Although I demonstrated how nucleus

size, which is strongly correlated wit cell size, can perturb epigenetic state, further

investigations should explore how this finding translate to the gene expression level.

Specifically, future work should harness spatial transcriptomics to unravel the relationship

between cell morphology and gene expression. Coupled with the findings presented

here, this analysis may provide convincing evidence that cell morphology influences gene

expression and thus cell behavior which is in contrast to the current paradigm in the field

suggesting that gene expression is the regulator of cell morphology.
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Lastly, at a higher-level, the question of how studying heterogeneity advances the

biology field should be considered. Heterogeneity is often utilized as a survival mechanism

for cancer cells, making it much more difficult to treat as it is more likely at least some

population of the tumor is treatment-resistant. This heterogeneity significantly impacts

disease prognosis and patient quality of life. Despite its role in diseases, heterogeneity

is not always a burden. In developmental biology, Conrad Hal Waddington introduced

the concept of the ”epigenetic landscape” (Moris et al., 2016) to illustrate how cells

differentiate into various cell types during development. This landscape metaphorically

depicts the process of differentiation as a ball rolling down a landscape of hills and valleys,

with each valley representing a stable cell type. Here, heterogeneity can be thought of

as the property that drives cells to different fates. Heterogeneity arises as cells within a

population follow different paths or trajectories as they undergo differentiation. Some

cells may differentiate into one cell type, while others may follow a different developmental

pathway and differentiate into another cell type. Since heterogeneity is essential for

determining the biological ecosystem and is also an important survival mechanism, it

will be important to explore of findings in context of developmental biology and disease

models.
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Figure 6.1: PDMS membrane characterization.
(A) Stress-strain curves for 4 independent samples of Sylgard 184 (50:1 base-curing agent
formulation). Modulus values were obtained by determining the slope of each curve in
the linear regime. The mean modulus (12.7 ± 4.2 kPa) of the 4 samples is shown in
red. (B) PDMS sample thickness uniformity. Three representative samples of 50:1 S184
spin coated on glass coverslips were measured to have thicknesses of 19.0 µm, 18.8 µm,
and 18.6 µm, respectively. (C) Box plot summarizing the thickness measurement of the
samples shown in (D). Results show a mean thickness of 18.9 µm, which is consistent from
sample to sample. Standard deviation demonstrates ¡10% thickness fluctuation. This
measurement demonstrates high uniformity and reproducibility of membrane thickness.
Scale bar = 40 µm. (D) Corresponding thickness histograms of the samples shown in
(D). The histograms can be described by a Gaussian distribution, with a relatively small
standard deviation, suggesting a uniform thickness across each sample. (E) Thickness
histogram of all three samples shown in (D) combined. Similarly, the combined thickness
measurements can be fit by a Gaussian distribution centered at 18.9 µm. (F) 3D confocal
reconstruction of MDCK cells. MDCK monolayer thickness was measured using confocal
z-stack imaging and found to be 9.2 ± 0.7 µm. This cell height measurement was used
for FEA. Scale bar = 20 µm. (G) Freestanding PDMS monolayer supported by jig. A
PDMS layer suspended between jig legs was measured to be 18.9 ± 0.5 µm. This PDMS
thickness measurement was used as an FEA simulation parameter.
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Figure 6.2: Bilayer sample preparation and cell stretcher schematic.
(A) Schematic illustrating the main sample preparation steps: cell seeding and sample
mounting. Cells are seeded on an autoclaved PDMS membrane that was spin coated on
top of a PVA-covered glass coverslip. Cells are then cultured as described in the Materials
and Methods, where the culture media dissolves the sacrificial PVA layer. Upon cell
confluency, a scalpel is used to make an incision around area spanned by the jig legs.
Following this, the jig can be freed from the substrate to yield a freestanding cell-PDMS
bilayer, which is then mounted onto the stretcher arms using screws. Finally, the T-bar is
removed to enable stretching and imaging. (B) Explosion diagram showing the individual
components of our custom cell stretcher. The boxed components (T-bar and jig leg)
represent the jig used for sample transportation and mounting. Together, the coverslip,
liquid retaining ring, and O-ring form a liquid reservoir that can be imaged through. The
base of the cell stretcher can be placed directly on top of a microscope for imaging. Scale
bar = 50mm.
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Figure 6.3: Generation of FEA simulation training data.
(A) Approach overview used during FEA simulations to generate AI training data. After
ensuring our simulations numerically describe the mechanical response of our cell-PDMS
bilayer as previously described, we randomly assigned modulus values to cells in an FEA
simulated monolayer. Following this, a 5% tensile strain is applied to the simulated
cell-PDMS bilayer to obtain a displacement field. This displacement field was then
used to calculate ϵxx (shown), ϵxy, and ϵyy. This process was repeated to generate ∼
500 training data sets to be used as inputs in our AI inference model. The resulting
FEA strain heatmaps exhibit a heterogenous strain distribution due to varying cell
stiffness. An example of an FEA ϵxx heatmap is shown. (B) FEA simulation flowchart of
strain calculations performed using ABAQUS with a randomly distributed heterogeneous
modulus of elasticity. Several parallel calculations are performed in Matlab. For certain
randomly generated input parameters, Matlab produces meshes, creates inputs files,
assemblies, and boundary conditions, and transfers the user-defined cell modulus map to
the Fortran subroutine. The inputs files and assemblies are needed to form parts that
record the total number of finite element for different layers, and define how different
layers are connected, respectively. The Fortran subroutine is an interface for ABAQUS
which allows the program to be customized for particular applications, such as varying the
Modulus in our case. Given the input files and input from Fortran subroutine, Abaqus
Kernel is performed. The results in the Abaqus output file (ODB file) are read using
Python script and are presented in the manuscript.
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Figure 6.4: Blebbistatin treated MDCK cells demonstrate a 3-fold lower mean
modulus compared to control MDCK cells.
MDCK cells were grown to confluence before being treated with 25 µm blebbistatin for
24 hours. (A) Comparison of untreated MDCK cells in DMEM (control) to blebbistatin
treated cells (blebbistatin) between 0 to 24 hours. (B) Using the Hookean model illustrated
in Fig. 2.1A, blebbistatin treated MDCK cell (Bleb MDCK) stiffness (1.4 ± 0.5 kPa)
was estimated using equation (1). (C) Stress-strain curve for blebbistatin treated MDCK
cells-PDMS bilayer (PDMS + Bleb MDCK) and PDMS samples. Shaded area denotes the
standard deviation. (D) Comparison of control MDCK modulus to blebbistatin treated
MDCK cells. Blebbistatin treated MDCK cells (1.4 ± 0.5 kPa) display a 3-fold decrease
in modulus compared to MDCK control cells (4.2 ± 0.75 kPa). n=6

107



Figure 6.5: Non-slip boundary conditions are demonstrated at the cell-jig
interface during stretching.
(A) Plasma membrane GFP (green) florescent image of unstretched MDCK cells cultured
on PDMS substrate. Red dashed line denotes the cell-jig interface. (B) Same as (A)
except with MDCK cells under 20% strain. Cells remain attached to both the substrate
and jig under mechanical deformation. (C) DIC images of MDCK cells cultured on PDMS
substrate under various applied strains. Red dashed line denotes the cell-jig interface.
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Figure 6.6: Modulus inference model characterization.
(A) Plot of ground truth modulus vs. AI predicted modulus. AI-predicted values and
target modulus values yielded a Pearson correlation of 0.93, which is significantly greater
than that produced by the ϵxx predicted modulus shown in (A). This increased accuracy
relative to (A) further supports that using the three strain components to predict modulus,
and thus using AI to identify the relationship between the three strain components, is
necessary to yield more accurate results than ϵxx alone. (B) Scatter plot of ground truth
modulus vs. ϵxx predicted modulus. ϵxx predicted modulus was obtained using the best fit
between FEA simulated ϵxx values and modulus values. The resulting Pearson correlation
coefficient of -0.57 between ϵxx values and target modulus values suggests that while ϵxx
and modulus are strongly related, ϵxx alone is not sufficient for accurately predicting
modulus. n = 1000 (C) Pearson correlation between AI predicted values and target
modulus values as a function of increasing training sets. Pearson correlation coefficient
increases with the number of training sets and achieves 93% accuracy with 364 sets of
training data.
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Figure 6.7: Stretched and unstretched images of MDCK and 3T3 cells used
for modulus inference in Figs. 2.4A and 2.4D, respectively.
(A) MDCK (left) and 3T3 cells (right) used as PIV inputs to obtain modulus fields
presented in Figs. 2.4A and 2.4D, respectively. Both MDCK and 3T3 cells are stretched
to 5% strain. Scale bar is 200 µm. (B) 3D reconstruction of a 3T3 cell-PDMS bilayer
tested in our experiment. Scale bars are 50 µm.
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Figure 6.8: Modulus-morphology characterization.
(A) Box plot generated by binning all of the raw data points shown in Fig. 2.4H, confirming
the observed effective modulus-area correlation for the large cells (area larger than 233
µm2). (B) Modulus vs. aspect ratio measurements for individual cells. Fuchsia points
denote a resampled dataset that has an even probability distribution across aspect ratio
values. The fit for resampled data (red line) shows virtually no correlation between
cell modulus and aspect ratio. (C) Box plot generated by binning all the raw data
points in (B). Results further demonstrate a lack of modulus-aspect ratio correlation. (D)
Modulus vs. circularity measurements for individual cells. Similar to (B), green points
denote a resampled dataset that has an even probability distribution across circularity
values. The fit for resampled data (red line) shows virtually no correlation between cell
modulus and circularity. (E) Box plot generated by binning all the raw data points in
(D). Results further demonstrate a lack of modulus-circularity correlation. (F) Modulus
vs. shape index measurements for individual cells. Similar to (B), purple points denote a
resampled dataset that has an even probability distribution across circularity values. The
fit for resampled data (red line) shows virtually no correlation between cell modulus and
circularity. (G) Box plot generated by binning all the raw data points in (F). Results
further demonstrate a lack of modulus-shape index correlation. n=286
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Figure 6.9: Heatmap of genes associated with glycolysis for each timepoint
throughout jamming.
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Figure 6.10: Heatmap of genes associated with oxidative phosphorylation for
each timepoint throughout jamming.
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Figure 6.11: Heatmap of genes associated with fatty acid metabolism for each
timepoint throughout jamming.

114



Figure 6.12: Bar chart of the Pearson correlation coefficients between the
RNA expression and ATAC peak values for metabolic enzymes.
Pearson correlation coefficient was calculated using three replicates for each timepoint.
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Figure 6.13: UK5099 treatment does not impact cell number or proliferation.
(A) Images of control and UK5099 treated 144 hours after seeding. Cells were stained
with Hoechst (red) and EdU (green). (B) No significant differences in cell number were
detected due to UK5099 treatment. (C) No significant differences in proliferation were
detected due to UK5099 treatment.
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Figure 6.14: Area can be used to approximate volume in MDCK cells.
(A) Analysis pipeline overview for volume measurement acquisition. First, z-stack imaging
is performed using a fine 0.6 µm step size. Next, the image stack is imported into
ImageJ and duplicated. A 3D Gaussian blur is then applied the duplicate stack using
σx,y,z=2. This blurred duplicate is then used to set the masking threshold using the 3D
objects counter analysis feature. Measurements are performed on the unfiltered z-stack.
After the 3D objects counter analysis is performed, the 3D voxel measurement is output
for each nucleus. (B) High correlation between nucleus volume and nucleus area in
confluent MDCK cells suggests that area can be used in place of volume to characterize
cell morphological behavior. (C) Orthogonal view of MDCK cells throughout crowding
illustrating sample flatness. Time stamp refers to time post seeding at 30k cells/cm2.
Scale bar 10 µm.
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Figure 6.15: Nucleus-to-cell (NC) area correlations are demonstrated in
HaCaT and mouse epithelium, akin to MDCK results.
NC area correlation exhibited in (A) confluent HaCaT cells and (B) E12.5 mouse arm
epithelium.

Figure 6.16: Nucleus-to-cell (NC) aspect ratio (AR) correlations are demon-
strated in HaCaT and mouse epithelium, akin to MDCK results.
NC AR correlation exhibited in (A) confluent HaCaT cells and (B) E12.5 mouse arm
epithelium.
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Figure 6.17: Cell area correlation with cell aspect ratio (AR) in MDCK cells.
Negligible correlation between cell area and AR is observed at all investigated time
points, suggesting that these two morphological features are independent and regulated
by distinctive mechanisms.

Figure 6.18: Cell division is required to induce cell crowding, and thus required
for cell size reduction during crowding.
(A) Confluent MDCK monolayer (left) has less cells and larger cells compared to a crowded
monolayer (right). Scale bar 20 µm. (B) Cell density approximately triples 80 hours after
reaching confluence, suggesting that cell division and cell area reduction can be coupled.
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Figure 6.19: Cell growth rate plateaus approximately 2 hours post division.
Three representative examples of cell growth trajectories illustrate that the cell growth
phase lasts approximately 2 hours after division for most of the analyzed cell pairs. Gray
shaded band indicates growth plateau regime.
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Figure 6.20: Area-area autocorrelation function of crowded MDCK cells
reveals essentially no correlation between neighboring cells.
For distances greater than the diameter of a crowded MDCK cell ( 10-15 µm), no significant
correlation is observed, suggesting that there is no genetic memory or inheritance of final
cell size. The correlation C(r) is calculated using C(r) = Σi,j

(A(ri)−⟨A⟩)(A(rj)−⟨A⟩)
⟨A2⟩−⟨A⟩2 , where i,

r, A and ⟨X⟩ denote the cell index, distance, area, and arithmetic mean, respectively.
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Figure 6.21: Nucleus volume increases in response to blebbistatin (bleb) and
Selinexor (SLX) treatments.
(A) 3D projected confocal immunofluorescence images of untreated, bleb, and SLX treated
nuclei, illustrating size differences. Scale bar 10 µm. (B) Nucleus area quantification
demonstrates a 1.4 fold increase in nucleus area in treated groups. (C) Such a size
increase is also reflected in nucleus volume, which was measured using the Imaris volume
measurement function. Specifically, we found that bleb- and SLX-treated cells exhibit
a 1.75 fold increase in nucleus volume. (D) Nucleus volume/area is used to estimate
nucleus height, in which a slight ( 1.25 fold) increase was observed in both treated groups.
Treatment concentration was 10 µM for both bleb and SLX.
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Figure 6.22: Anti-correlation between histone mark correlation with nucleus
area in MDCK cells analyzed using imaging flow cytometry (Image Stream).
(A) Experiment schematic for preparing samples for imaging flow cytometry analysis.
First, cells were detached from the substrate using trypsin before being pelleted by
centrifugation. The supernatant was aspirated, and cells were resuspended in a cell lysis
buffer containing 0.1% NP40, 0.01% digitonin, and 0.1% Tween20. After a 5-minute
incubation on ice, the lysis buffer was quenched using a resuspension buffer containing
ultra pure water, 1M Tris0HCL, 5M NaCl, 1M MgCl2, and 0.1% Tween20. Resulting
nuclei were then centrifuged to remove supernatant and resuspended in formalin for 10
minutes to perform fixation. Nuclei were then centrifuged to remove the formalin and
washed twice using PBS and centrifugation. After the last wash, nuclei were stained for
DAPI and H3K27me3 as described in the Materials and Methods section. These samples
were then used for imaging flow cytometry analysis. (B) Representative images from
imaging flow cytometry analysis demonstrating small and large nuclei express more and
less H3K27me3, respectively. (C) Analysis of imaging flow cytometry data quantifying
anti-correlation between normalized H3K27me3 intensity and nucleus size.
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Figure 6.23: H3K27me3 intensity analysis in E11.5 mouse epithelium demon-
strates that H3K27me3 is anti-correlated with nucleus size, in agreement with
the MDCK result and other mouse epithelium results at E12.
(A) Representative image of mouse arm epithelium stained with H3K27me3. (B) Anti-
correlation between normalized H3K27me3 intensity and nucleus size.
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Figure 6.24: H3K27me3 and H3K9ac spatial distribution analysis in MDCK
cells.
(A) H3K27me3 localization within the nucleus was examined using a single midplane

image using a split ratio in which either the inner 90% of the nucleus was considered the
center and the outer 10% was considered the periphery or (B) the inner 75% of the

nucleus was considered the center and the outer 25% was considered the periphery. (C)
Same analysis as (A) using a maximal z-projection instead of a single midplane slice. (D)

Same analysis as (B) using a maximal z-projection instead of a single midplane slice.
(E-F) Same analysis as A-D, respectively, investigating H3K9ac instead of H3K27me3.
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Figure 6.25: Super-resolution analysis of H3K27me3 and H3K9ac in crowded
MDCK cells reproduces correlation between H3K9ac localization and nucleus
area obtained from confocal microscopy.
(A) Airyscan images of MDCK nuclei illustrates distinct localization of active H3K9ac
mark and repressive H3K27me3 mark. H3K9ac is localized as puncta within the nuclei
while H3K27me3 localized around nuclear folds and edges. Scale bar 10 µm. (B) Radial
analysis of H3K9ac using airyscan images. A positive correlation between H3K9ac
periphery/center intensity and nucleus area reproduces confocal result shown in figure 4.
FDR = 0.13. (C) STED image of H3K27me3 and H3K9ac stained nucleus demonstrates
histone mark localization consistent with airyscan and confocal results. Scale bar is 5 µm.
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Figure 6.26: Histone demethylation UTX is correlated with nucleus size.
(A) UTX/DAPI intensity is positive correlated with Nucleus size. (B) EZH2/UTX
intensity is anti-correlated with nucleus size.

Figure 6.27: Myosin II is required for maintaining the positive correlation
between nucleus area and H3K9ac level.
(A) Image of control (left) and Bleb-treated (right) MDCK cells stained with H3K9ac.
Scale bar = 10 µm. (B) Pearson correlation coefficient between H3K9ac/DAPI intensity
and nucleus area for control and Bleb-treated cells.
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Figure 6.28: Summary of correlative analyses.
To quantify correlation, both the Pearson (column 2) and Spearman (column 3)

correlation coefficient were measured. To quantify statistical significance the p-value
(column 4), false discovery rate (FDR) (column 5), and 95% confidence interval (column

6) were computed.
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F., and Hiiragi, T. (2016). Asymmetric division of contractile domains couples cell
positioning and fate specification. Nature, 536(7616):344–348. 20

Majmudar, T., Sperl, M., Luding, S., and Behringer, R. P. (2007). Jamming transition
in granular systems. Physical review letters, 98(5):058001. 6

Makhija, E., Jokhun, D., and Shivashankar, G. (2016). Nuclear deformability and
telomere dynamics are regulated by cell geometric constraints. Proceedings of the
National Academy of Sciences, 113(1):E32–E40. 68

Marcus, P. I., Cieciura, S. J., and Puck, T. T. (1956). Clonal growth in vitro of
epithelial cells from normal human tissues. The Journal of experimental medicine,
104(4):615–628. 67
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Stooke-Vaughan, G. A. and Campàs, O. (2018). Physical control of tissue morphogenesis
across scales. Current opinion in genetics & development, 51:111–119. 18

Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., and Janmey, P. A.
(2005). Nonlinear elasticity in biological gels. Nature, 435(7039):191–194. 14

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021). Cellpose: a generalist
algorithm for cellular segmentation. Nature methods, 18(1):100–106. 44, 60, 71

Stroka, K. M. and Aranda-Espinoza, H. (2011). Effects of morphology vs. cell–cell
interactions on endothelial cell stiffness. Cellular and molecular bioengineering, 4(1):9–
27. 32

Struhl, K. (2007). Transcriptional noise and the fidelity of initiation by rna polymerase
ii. Nature structural & molecular biology, 14(2):103–105. 67

Talia, S. D., Skotheim, J. M., Bean, J. M., Siggia, E. D., and Cross, F. R. (2007). The
effects of molecular noise and size control on variability in the budding yeast cell cycle.
Nature, 448(7156):947–951. 67

Tallman, J. A., Osusky, M., Magina, N., and Sewall, E. (2019). An assessment of
machine learning techniques for predicting turbine airfoil component temperatures,
using fea simulations for training data. In Turbo Expo: Power for Land, Sea, and Air,
volume 58646, page V05AT20A002. American Society of Mechanical Engineers. 28

Tee, S.-Y., Fu, J., Chen, C. S., and Janmey, P. A. (2011). Cell shape and substrate
rigidity both regulate cell stiffness. Biophysical journal, 100(5):L25–L27. 32, 33

Tennessen, J. M., Bertagnolli, N. M., Evans, J., Sieber, M. H., Cox, J., and Thummel,
C. S. (2014). Coordinated metabolic transitions during drosophila embryogenesis and
the onset of aerobic glycolysis. G3: Genes, Genomes, Genetics, 4(5):839–850. 62

Tetley, R. J., Staddon, M. F., Heller, D., Hoppe, A., Banerjee, S., and Mao, Y. (2019).
Tissue fluidity promotes epithelial wound healing. Nature physics, 15(11):1195–1203. 5

Thattai, M. and Van Oudenaarden, A. (2004). Stochastic gene expression in fluctuating
environments. Genetics, 167(1):523–530. 67

Thevenaz, P., Ruttimann, U. E., and Unser, M. (1998). A pyramid approach to subpixel
registration based on intensity. IEEE transactions on image processing, 7(1):27–41. 22

Thielicke, W. and Sonntag, R. (2021). Particle image velocimetry for matlab: Accuracy
and enhanced algorithms in pivlab. Journal of Open Research Software, 9(1). 23

145



Thiery, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. (2009). Epithelial-
mesenchymal transitions in development and disease. cell, 139(5):871–890. 40

Thompson, A. J., Pillai, E. K., Dimov, I. B., Foster, S. K., Holt, C. E., and Franze, K.
(2019). Rapid changes in tissue mechanics regulate cell behaviour in the developing
embryonic brain. Elife, 8:e39356. 19

Thoumine, O. and Ott, A. (1997). Time scale dependent viscoelastic and contractile
regimes in fibroblasts probed by microplate manipulation. Journal of cell science,
110(17):2109–2116. 28, 33

Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds, G. D., Laplantine,
E., Bednarek, S. Y., Shorte, S. L., and Eliceiri, K. W. (2017). Trackmate: An open
and extensible platform for single-particle tracking. Methods, 115:80–90. 71

Trappe, V., Prasad, V., Cipelletti, L., Segre, P., and Weitz, D. A. (2001). Jamming
phase diagram for attractive particles. Nature, 411(6839):772–775. 7

Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2):026601.
67
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