
UCLA
UCLA Previously Published Works

Title
From Pressure to Path: Barometer-based Vehicle Tracking.

Permalink
https://escholarship.org/uc/item/9bc89798

Authors
Ho, Bo-Jhang
Martin, Paul
Swaminathan, Prashanth
et al.

Publication Date
2015-11-01

DOI
10.1145/2821650.2821665

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bc89798
https://escholarship.org/uc/item/9bc89798#author
https://escholarship.org
http://www.cdlib.org/

From Pressure to Path: Barometer-based Vehicle Tracking

Bo-Jhang Ho†, Paul Martin†, Prashanth Swaminathan, and Mani Srivastava
University of California, Los Angeles, Los Angeles, California

Abstract

Pervasive mobile devices have enabled countless context-and location-based applications that

facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is

important to leverage the rich sensing modalities that these numerous devices have to offer. This

work demonstrates how mobile devices can be used to accurately track driving patterns based

solely on pressure data collected from the device’s barometer. Specifically, by correlating pressure

time-series data against topographic elevation data and road maps for a given region, a centralized

computer can estimate the likely paths through which individual users have driven, providing an

exceptionally low-power method for measuring driving patterns of a given individual or for

analyzing group behavior across multiple users. This work also brings to bear a more nefarious

side effect of pressure-based path estimation: a mobile application can, without consent and

without notifying the user, use pressure data to accurately detect an individual’s driving behavior,

compromising both user privacy and security. We further analyze the ability to predict driving

trajectories in terms of the variance in barometer pressure and geographical elevation,

demonstrating cases in which more than 80% of paths can be accurately predicted.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Time series analysis; I.5.4 [Pattern Recognition]: Applications—
Signal processing; K.6.5 [Security and Protection]: Invasive Software

General Terms

Algorithms; Experimentation; Security

1. INTRODUCTION

The increasing ubiquity of mobile computing devices has been accompanied by new sensing

modalities and data fusion methods to sense or infer a wide array of physical phenomena

and stimuli. The result of this is a distributed mobile sensor network whose sensors can yield

information about users’ behaviors and surrounding environments. Inferences made from

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
†Equal contribution authors

HHS Public Access
Author manuscript
BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
BuildSys15 (2015). 2015 November ; 2015: 65–74. doi:10.1145/2821650.2821665.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

these mobile sensors often provide valuable services such as accelerometer-based motion

tracking, camera-based heart rate monitors, and life-logging or quantified-self services.

These services have also proven to be integral components for environmental monitoring [5],

traffic analyses [15, 17], event discovery [19], and population-level analytics in general in

what are increasingly referred to as smart cities.

Recent mobile devices have introduced yet another sensing modality in the form of

barometric pressure sensors. These sensors can already be seen on mobile devices such as

the Apple iPhone 6, Google Nexus 5, and Nexus 6. Barometric pressure sensors introduce a

level of geographical dependency unseen in previous sensors, including magnetometers.

While a magnetic compass might behave differently in different geographical locations, a

barometric sensor is designed to differentiate between different pressures and thus, to a large

degree, different elevations. In this paper, we show that the high correlation between

pressure sensors and elevation allow for accurate tracking of driving patterns based on

pressure from mobile devices collected by a centralized computer. Tracking vehicles in this

manner provides a low power method for analyzing a user’s driving behavior over long

periods of time, while the power consumption associated with GPS, cellular, or WiFi

positioning methods may prove prohibitively high.

In addition, both Apple’s iOS and Google’s Android OS treat the barometer as a non-private

sensor such as an accelerometer or gyroscope. In other words, an application that wishes to

read a mobile device’s barometer can do so without alerting the device user. We demonstrate

how this public data access model, while easing data collection for city-level traffic

analytics, can compromise a user’s privacy and security, allowing malicious third parties to

estimate a user’s location over time, undetected by the user. There have been a number of

similar efforts that have demonstrated such nefarious inferences made from mobile sensory

data. Several notable works in this vein include accelerometer touch-type keystroke

identification [14, 20] and gyrophone-based microphones [13] for identifying spoken digits,

such as credit card or social security numbers. These privacy and security threats are only

made worse by the increasing tendency towards wearable and pervasive sensing [22]. In the

face of these unceasing efforts to record and analyze personal user data, mobile computing

and users thereof can no longer remain agnostic to the security ramifications of this data

deluge.

In this work, mobile devices are treated as distributed sensors collecting pressure data and

storing it locally. These sensors then opportunistically transmit their pressure data to a

remote server whenever power and connectivity (e.g. WiFi) permit. This pressure data is

then analyzed by a more capable and less power-constrained server to reveal the traffic

patterns of each user. To do this, a user’s coarse-grained location estimate is obtained by

associating the device’s IP Address with an ISP’s geolocation. From there, the user’s time-

series pressure data is compared against a database of possible road segments and their

corresponding elevation signatures. Under certain conditions regarding the uniqueness of the

observed pressure data with respect to the elevation of the underlying map, this allows us to

obtain a series of ‘ranked’ paths, ordered by descending likelihood. When a high confidence

path can be obtained, the estimated path can be treated as an approximation of the user’s

Ho et al. Page 2

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

driving route. This provides mobile devices with a low power path logging utility for

scenarios where power consumption is an important consideration.

Though many factors affect the pressure reported by barometer sensors (not the least of

which are weather, air movement, and sensor drift), mobile barometric sensors can still be

correlated with elevation changes with surprising precision. Using a simple linear model (the

details of which are discussed in Section 3), height can be predicted to within an error of

several meters. An example of this correlation is shown for 30 minutes of driving data in

Figure 1, where the error rarely exceeds ±2 m. This correlation, however, is made difficult

due to several important factors: first, the conversion from pressure to elevation is time-

varying and unknown a priori. Second, the user’s vehicle is traveling at an unknown speed,

essentially ‘sampling’ elevation points at variable and unknown rates. This makes it difficult

to directly correlate pressure data to the elevation of a given road segment. Third and most

importantly, the search space of possible paths against which to compare the user’s collected

pressure data is immense, even given coarse grained location estimates such as those

obtained from IP Address geolocation.

1.1 Contributions

In order to elucidate the degree to which pressure can be used to determine a user’s driving

path in the face of the difficulties mentioned above, we make the following contributions:

• We evaluate the accuracy with which pressure data can be used to predict the

correct path from a fixed database of candidate paths using dynamic time

warping (DTW). We also describe an algorithm for pressure-based path

prediction using dynamic programming and DTW to find a jointly minimal cost

path through an arbitrary graph of road segments.

• We evaluate the performance of our path estimation algorithms over a number of

real test cases totaling 150 km and 4.6 hours of driving data.

• By modeling errors in barometer sensors and elevation estimates, we simulate

path estimation results for random driving paths selected across a large number

of cities with varying geographical landscapes.

• We evaluate the accuracy of our path prediction algorithms in terms of the

distinctness of the pressure data with respect to the surrounding landscape,

offering insights into the conditions under which driving paths can be accurately

predicted.

2. RELATED WORK

Related work in this area can roughly be divided into two categories: low power GPS,

cellular, & WiFi positioning methods, and location- or transportation-specific inference

mechanisms using low power sensor data.

Low Power GPS, Cell, & WiFi Positioning

Considerable work has gone into decreasing the power consumption of global (GPS) and

regional (Cell & WiFi) positioning schemes. This includes the numerous assisted GPS (A-

Ho et al. Page 3

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GPS) techniques [6] and cloud-offloaded (CO) post-processing of raw GPS [12]. These

technologies range from power consumption in the hundreds of milliwats (traditional GPS)

to milliwatts (A-GPS) and even hundreds of microwatts (CO-GPS), while the latter requires

highly customized GPS receiver hardware. By comparison, barometer power consumption is

typically less than 10 μW [1], requiring no specialized hardware and providing a very

practical tradeoff between traditional high power, high accuracy positioning techniques and

ultra-low power mobile path estimation and analytics, where highly robust positioning may

not be a hard requirement. As a comparison, a GPS module like the GlobalSat EM-506

would consume 170 mW even during a hot start measurement (acquisition recently

acquired) and requiring up to 1 second to achieve a new fix [2]. Duty cycling such a GPS

receiver to achieve 10 μW average power consumption would allow for just 1 reading every

4 hours.

Inferring Location and Transportation

In the realm of location discovery techniques, recent work has demonstrated trajectory

identification through inertial navigation (dead-reckoning) for both pedestrians [21] and

vehicles [9]. Han et al. further demonstrate in [10] that accelerometer time-series data can be

used to constrain a user’s driving path to a subset of possible candidate paths within a given

map. Hemminki et al. [11] demonstrate methods for inferring transportation modes using

mobile accelerometer data, and Sankaran et al. demonstrates methods for inferring

transportation modes using barometer data [23]. Finally, Zhou et al. demonstrate in [25] that

app usage statistics, network address-resolution, and speaking detection can be used to infer

user identity, coarse geo-location, and even whether or not a person has a certain disease.

The methods presented in this paper demonstrate how pressure data collected from mobile

barometers can be used to predict driving paths. Unlike methods like those presented in [9]

and [10], the proposed methods allow for accurate absolute path predictions, benefiting from

the high correlation between barometer and elevation, as detailed in [16].

3. ESTIMATING ELEVATION

Though barometric sensors are strong indicators of geographic elevation, they are sensitive

to a host of other pressure changes as well, making the conversion from pressure to elevation

non-trivial. As elevation changes, changes in air density due to Earth’s gravitational pull and

many other factors cause a pressure gradient dictated by the barometric formula. Ignoring

the effects of temperature change as a function of altitude, this formula is given in [4] as

(1)

where P is the pressure in hecto-pascals (hPa) at height h meters above reference level h0, g
is the gravitational acceleration constant, M is the molar mass of Earth’s air, and R is the

universal gas constant for air. P0 is the pressure measured at the reference height h0 with

temperature T0, all of which can be measured beforehand. From (1), we can derive the

equation . for relatively small changes in elevation

Ho et al. Page 4

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(hundreds of meters), this can be approximated by a simple linear function in P. Because the

reference pressure P0 is in general a function of time, height h can be more generally

approximated as

(2)

for scalar β and time-varying offset α(t). Over short periods of time (less than 1 hour), this

prediction can be quite accurate. In fact, though the Bosch BMP280 pressure sensor used in

both the iPhone 6 and Nexus 5 specifies a vertical pressure resolution of about 1 m [1], we

have experimentally validated relative pressure sensitivity closer to 10–20 cm. Despite this

strong correlation, determining the parameters α(t) and β can be challenging, especially

given the time-varying aspect of the offset α(t) due to, among other things, weather.

3.1 Elevation Model Estimation

The model parameters α(t) and β in (2) dictate the accuracy of absolute elevation prediction.

Thankfully, the scaling term β can be considered constant over very large ranges in

elevation, due to the relative flatness of earth’s surface with respect to its diameter. The

offset α(t), on the other hand, varies wildly with time and coarse location. This can be seen

in Figure 2(a), where pressure collected at a static location over a 70-hour period exhibits

pressure changes nearing 7 hPa or nearly 60 m estimation error. Muralidharan et al. describe

this problem in detail in [16]. Note, however, if we look at the pressure change over 1 hour

periods, the change rarely exceeds ±1 hPa (or roughly 8.3 m). Furthermore, a survey of

hourly pressure data from 2,309 cities in the U.S. provided by the National Oceanic and

Atmospheric Administration (NOAA) Climatic Data Center [3] shows that, the pressure

change in 1-hour periods is below 1 hPa over 99% of the time. Additionally, analyzing these

changes in the frequency domain indicates that the vast majority of pressure changes happen

at the scale of 1 or more days, rather than hourly. This is shown in Figure 2(b). Given the

slow dynamics of weather, pressure data provided by weather stations can be used to

calibrate the offset term α(t) to within 1 hPa error—the typical resolution of pressure

reported by weather stations. If such a station does not exist in close proximity to a user’s

coarse location, in some scenarios relative elevation can still be used to estimate a user’s

driving path with some reduction in estimation accuracy. This is discussed in more detail in

Section 4.

3.2 Pressure Events & Noise Sources

In addition to model dynamics caused by weather, mobile barometers experience ‘noise’

from a number of events causing changes in air flow. This includes opening and closing

doors and windows as well as changing air conditioning. Examples of this are shown in

Figure 2(c). The largest magnitude pressure change is 0.5 hPa (or 4.2 m error) when air

conditioning is turned completely on or off. Our path detection algorithm must be resilient to

these slight perturbations.

Finally, barometer sensors themselves are not perfect and typically exhibit (small) drift over

time. This error is in general non-gaussian, exhibiting temporary drifts from the true

Ho et al. Page 5

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

pressure while periodically returning to accurate estimates. We propose modeling this error

using an Ohnstein-Uhlenbeck diffusion process, which is similar to a low-pass-filtered white

noise process [7]. This error model will be used to generate realistic barometric pressure

traces for simulations, as outlined in Section 5.2.

4. SYSTEM OVERVIEW

Our path prediction system is composed of two main components: (1) a low power mobile

app that continually monitors barometer data, periodically sending the data back to the

second component: (2) a centralized analytics server that maintains road maps and elevation

data and uses the collected sensory data together with the map and elevation database to

estimate likely paths. This is shown in more detail in Figure 3.

Each server for a given city contains the corresponding road maps and elevation data from

publicly available online databases. Specifically, the server downloads and manipulates data

from (i) Open Street Map (OSM) [18], providing road topologies including segments and

intersections, and (ii) the Google Elevation API [8], which provides a database from which

to query the elevation of individual latitude and longitude points. Upon receiving the

barometer data from a mobile device, the server’s elevation conversion module converts the

pressure readings to an estimate of absolute elevation values. If the sensor data is collected

in a region close to a weather station, the pressure from that station can be used to calculate

the offset α(t) in (2) and absolute pressure can be obtained. Otherwise, the system reduces to

comparing relative elevation changes instead. Finally, we perform a number of pattern

recognition routines including dynamic time warping (DTW) to perform path matching.

These estimation routines are the main contribution of this work and the subject of the

following sections.

4.1 Elevation Map Generation

In order to estimate the path along which a user has driven, the server must first generate a

database of possible road segments and their corresponding elevations. To do this, we

combine the OSM road topologies with Google’s publicly available Elevation API. Road

maps are downloaded from OSM in an XML format composed of 64-bit unique node
identifiers and their corresponding latitude and longitude values. These ‘nodes’ are

connected by elements termed ways—ordered lists of connected road nodes. In general,

either endpoint of a way aligns with road intersections. Ways composed of more than 2

nodes are often used to better represent road curvatures between intersections. From the

OSM road nodes and ways, we construct a graph G = (V, E) where V is the set of road nodes

such as intersections and dead ends on the map, and each edge in E represents a road

segment. The elevation of each segment is then queried every 10 meters, creating new

internal nodes belonging to set N and extending the original graph to G′ = (V, E, N). All

nodes n ∈ N are augmented with latitude, longitude, and elevation attributes.

4.2 Dynamic Time Warping

Because the user is traveling at an unknown and variable speed, the corresponding pressure

data behaves as a sampled version of the true elevation with variable sampling rate. In other

Ho et al. Page 6

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

words, the collected pressure may be of a short duration, long duration, or it may contain

pauses (when the vehicle is not in motion) or increased speeds. To compute the similarity of

two signals which could potentially be scaled by time, we use dynamic time warping (DTW)

algorithms like those developed for speech recognition (where the same word may be

spoken with variable durations) [24]. DTW is a time-series alignment algorithm in which

two signals are compared against each other by means of a cost matrix. If the two series are

denoted by column vectors , representing the elevation corresponding to a

candidate path in G′, and , corresponding to the barometer-based elevation

estimate, the cost matrix C contains Np × Nb elements where element . The

function f(·) serves as a distance function to represent the difference between the two signals

at given indices and is typically defined by an ℓ2-norm. The goal of DTW is to find the

minimum-cost path through cost matrix C starting at c0,0 and ending at The details of

the DTW algorithm are given in Algorithm 1. For each element di,j in a DP matrix D, we

store the minimum cost of all possible paths from c0,0 to ci,j. Each element ψi,j in a

traceback matrix Ψ records the last transition which leads to the minimum cost of di,j. Thus,

the final similarity between sp and sb is embedded in . if sp and sb are similar, their

corresponding DTW score will be low, and if they are dissimilar their cost will be high,

regardless of variable lengths or sampling rates. An example of the DTW procedure is

illustrated in Figure 4(a) for example map path-and barometer-based elevation data collected

from Los Angeles, CA, with the corresponding DP matrix D in Figure 4(b). Following

Algorithm 1, the complexity of the DTW algorithm is .

DTW can correctly identify paths using barometer measurements provided that the errors in

the barometer sensor and Model (2) are sufficiently smaller than the variance in the traversed

path elevation—i.e. when the path elevation is sufficiently distinct in the presence of noise.

The result of an initial experiment performed over 29 road segments using DTW to compare

measured pressure to “candidate” path elevations is shown in Figure 5. Here the true path is

correctly identified by the minimum DTW score for all test cases, and the runner-up paths

have anywhere from 10× to 10000× higher cost.

4.3 Candidate Path Generation

DTW provides the means for comparing measured pressure data against candidate path

elevations: the server must search for a path through G′ such that the elevation along ,

denoted by , and and the elevation converted from barometer data, denoted by sb, are

similar, i.e.,

Unfortunately, the search space of all candidate paths can be quite large. In fact, if we allow

for path loops, the search space can be infinite—i.e., there are infinite combinations of paths

in G′. Because of this, the server must perform DTW while traversing G′ in an efficient

manner. In the following sections we present two potential methods for doing so: (i) a naive

Ho et al. Page 7

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

breadth-first graph traversal method with pruning heuristics, and (ii) a joint optimization

approach using dynamic programming.

Algorithm 1

Dynamic Time Warping via Dynamic Programming with traceback.

4.3.1 Greedy Path Finding—In order to determine which of all possible candidate paths

would most likely generate an observed series of pressure data, we can use an agent-based

approach in which each agent traverses G′ beginning at one specific node in V. Because G′
is not necessarily (and in general is not) free of cycles, a breadth-first traversal will quickly

escalate into an exponential problem. To combat this, each agent ensures that no path it

explores creates a loop of length less than a threshold Γloop. If Γloop is large enough, this

allows for reasonable driving trajectories while greatly limiting the search space.

At each iteration, agents perform an exploration phase and a pruning phase. Pruning occurs

in three stages: (1) after all agents have finished exploring new nodes, the solver calculates

all candidate path scores using a path-length-normalized version of Algorithm 1. These

scores are sorted and a threshold Tscore is computed so that (2) any path whose DTW score

exceeds Tscore is pruned, and finally (3) all agents are instructed to prune their worst paths

until they contain no more than Γmaxpath paths. This allows for diversity in possible path

starting locations and reduces the complexity of the search algorithm to polynomial time.

The solver terminates if the minimum cost of all candidate paths does not change by more

Ho et al. Page 8

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

than ε (1%) across a recent period of W (10) iterations. Upon terminating, the greedy solver

returns the top ranked (lowest cost) paths and their corresponding scores. A series of

snapshots from the operation of a single agent in the greedy solver is shown in Figure 6.

Here we have set Γmaxpath to 4, so that at each iteration only 4 paths are being considered

(labeled by green squares). For each iteration, the minimum cost path is displayed by a

string of magenta triangles, while other candidate paths are displayed with a dashed blue

line. At each iteration, there are at most paths, where is the

maximum out-degree of any node in V. As a result, the time complexity can be bounded by

. In practice, we truncate the map elevation segment

to at most length Nb, giving a final complexity of . These calculations are

performed over a number of iterations, but by setting a maximum number of iterations (30 in

our experiments), the computational complexity remains unchanged.

4.3.2 DP-based Path Finding—The greedy search algorithm explained in the previous

section is intuitive and can search efficiently over large maps. However, the pruning

heuristics and search space reduction can easily lead to local minima and non-optimal path

prediction. Additionally, the greedy search heuristics do not consider path timing

information, reducing estimation accuracy once more. To overcome these drawbacks, we

instead consider an approach inspired by Dijkstra’s shortest path search algorithm, whose

underlying algorithm is again solved via dynamic programming. We call this the DP-based
path finding algorithm.

Intuitively, we would like to use a shortest path algorithm such as Dijkstra’s, where the cost

of each edge is calculated by DTW. However, there are two obstacles in doing this: first, the

cost of each edge cannot be determined statically, as the cost of traversing a road segment

depends on what segments were crossed previously. For example, road segment A might be

a poor match for the start of our collected pressure data, but it may be a very close match if

the user passed through segment B first on their way to A. Second, we must have some

notion of time—e.g., for each node vi ∈ V, what is the minimum cost of visiting that node

given arrival time ti? This adds an additional dimension to our dynamic cost shortest path

algorithm.

To provide a notion of time, we consider a path to be not just a series of locations but also a

series of corresponding timestamps. Thus, we redefine path p to encompass a series of states
[q0, q1, …, qk] where each state qi is a 2-tuple (vi, ti) indicating that the user has reached

intersection vi at time ti. Rather than define cost in terms of the DTW score between two

entire paths, we can now define the marginal cost in transitioning from state qi to qj.

Specifically, if we have already discovered a portion of the true path, say q′ = [(v0, t0), (v1,

t1), …, (vi, ti)] whose matching cost thus far is , then the cost of transitioning to qj = (vj, tj)

is defined as cost (qi, qj), so that .

Thus, for each state q = (v, t), the optimal δq is defined as a partial path ending at vertex v at

time t and can be determined by the following recursive function:

Ho et al. Page 9

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(3)

where t− and v− specify the time and node corresponding to the previous state q−, sp =

Elev(〈v−, v〉) is the elevation along the edge 〈v−, v〉, and is the barometer-

based elevation estimate from time t− to t. This recursive definition successfully reduces the

exponential number of candidate paths to a polynomial time search algorithm: the

complexity is decided by (1) the table size of δ, (2) the number of state transitions, and (3)

the complexity of DTW, leading to the final complexity of . This does not

scale to large maps as well as the greedy approach discussed in Section 4.3.1, but the jointly

minimal solution provided by dynamic programming provides a drastically increased

accuracy in path prediction.

4.3.3 Improving DP-based Search Complexity—The DP-based path finding

algorithm suffers from high complexity due to many redundant calculations, both across

time and location (i.e., vertex). For example, state δq=(v,t) is updated by any prior state q−

with edge 〈v−, v〉 ∈ E. As described in (3), DTW is performed for each possible transition to

q. It is possible to amortize this DTW cost by flattening out this recursive relation.

The root cause of this redundancy is that we treat each node v ∈ V as a ‘checkpoint’

representing a temporary path. Traveling from va to vb requires enumerating possible arrival

times tb. If, however, we consider intermediate nodes n ∈ N and treat adjacent nodes as

‘micro’ edges, the cost of computing each edge cost by DTW is reduced since each edge

length is always 1. Furthermore, we can assume that it takes at least one time unit to travel to

any adjacent node if the barometer sampling rate is sufficiently low. This removes our

dependency on time, and the number of possible state transitions reduces to

(4)

which is bounded by the constant , yielding a final complexity of . The

runtime of the DP-based prediction algorithm written in MATLAB and running on an Intel

i7 laptop takes roughly 7–15 minutes for a 92 km2 map running on a single thread, while the

greedy algorithm typically completes in 5–10 minutes.

4.3.4 Additional Pruning Metrics—In addition to pressure data, a number of other

inertial sensors can be used to further improve path prediction accuracy and prune

improbable paths to increase runtime efficiency. Most notably, mobile accelerometers,

gyroscopes, and magnetomers can be combined to give accurate turn estimation as described

Ho et al. Page 10

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in [10]. These additional metrics can be easily integrated into both the greedy and DP-based

path discovery algorithms at the cost of increased power consumption on the mobile devices.

4.3.5 Elevation estimation robustness—As described in Section 3.1, it is not always

possible to achieve a high accuracy absolute elevation estimate. Our path search routines

remain robust to errors in elevation estimation in two ways: first, the path search algorithm

can be operated in relative elevation mode, in which only relative pressure changes are

considered. Additionally, the DP-based search routine can be instructed to search over a

range of possible elevation offset values, α(t). In doing so, the minimum score of all paths

from all offset values is reported. This inevitably reduces the accuracy of the prediction

algorithms, but it allows for some error margin in Eq. (2).

5. EVALUATION

In order to evaluate the performance of our path prediction algorithms, we collected real

driving data and per formed extensive simulations over a wide range of geographical

landscapes.

5.1 Tests on Real Driving Data

We collected real driving data across 150 km, totaling 4.6 hours of driving time and covering

a range of different map topologies. Data was collected using a Nexus 5 smartphone with

barometer pressure data sampled at 30 Hz and GPS sampled at 1 Hz for ground truth

analysis.

The results of the two path prediction algorithms over all driving data are shown in Figure 7.

For each, we plot the CDF of prediction root-mean-square errors (RMSE) for a number of

ranked paths versus the average error induced by a random walk. More specifically, for each

point on the predicted path we calculate the squared distance to the corresponding point on

the true path, averaging the squared errors and taking the square root to give us our final

RMSE value. The result from ‘5 paths’ represents the best result from the 5 lowest cost paths

as estimated by the solver, the result from ‘1 path’ represents the single lowest cost path

from the solver, and so forth. The random results represent the minimum error from 5

random walks of G′. Figure 7(a) shows that the Greedy solver demonstrates a median of

around 800 m error, versus the random walk’s median error of 1600 m—only a marginal

improvement over a random guess. On the other hand, the median error reduces to less than

60 m by using the dynamic programming algorithm, as shown in Figure 7(b). Additionally,

in 80% of the cases the lowest cost path has an average error of just 200 m—roughly the

length of a standard city block—and in 90% of cases one of the 5 lowest cost paths is correct

to within 200 m.

5.2 Simulation

In lieu of collecting driving data across multiple cities for many hours, we conducted a series

of simulated test cases. To begin, we downloaded 92 km2 regions of road data and

corresponding elevation data for 26 high-population cities in the U.S with, on average, 1046

km of roads per map. For each city, we conducted a series of random walks of variable

Ho et al. Page 11

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

lengths and speeds and with barometer noise modeled using an Ohnstein-Uhlenbeck

diffusion process as stated in Section 3.2. This random process simulates a signal with

periodic deviations from a mean μ (true pressure). The frequency and magnitude of these

deviations are dictated by a volatility constant σ and reversion time θ describing how

quickly disturbances return to the mean. For barometric sensors, we determined empirically

that values of σ = 0.04 and θ = 150 accurately simulate the errors observed in our collected

data sets. These simulated barometer pressures and map/elevation databases were passed to

our estimation algorithms in an identical manner to solving the real driving cases. The

results of path estimations over these simulated data are summarized in Figure 8. Here, the

greedy solver shows an improvement over the real driving data, but the DP-based algorithm

shows a reduced estimation performance. On average over more than 500 simulated test

cases, the greedy solver can predict paths to within about 200 m with 50% probability while

the DP-based algorithm can predict paths to within 100 m with 50% probability and to

within 300 m with around 80% probability.

5.3 Analysis of Parameters

The results from real and simulated experiments demonstrated in the previous section

indicate that under certain circumstances, driving paths can be quite accurately predicted

from pressure alone. In this section, we provide some intuition into factors that affect this

prediction accuracy.

5.3.1 Path Length—As more barometer data is collected, the probability of distinguishing

the correct path from the set of all candidate paths increases. In other words, increased path

length typically (though not always) leads to increased path uniqueness. This can be seen in

Figure 9 for a city with low elevation variation (a particular 9.5 km × 9.5 km block in

Chicago) and one with high variation (a 9.5 km × 9.5 km block in Seattle). For each

iteration, we generate two random paths pa and pb with the same length. Path is generated

by adding modeled barometer noise over pa. A confusion error is defined when DTW fails to

distinguish the correct, noisy path from the incorrect path pb. Over multiple iterations of

simulation, we observe that an increase in length decreases this confusion error.

5.3.2 Map Size—Surprisingly, there does not seem to be a high correlation between map

size and path error, as shown in Figure 10. This is most likely due to variations in the

underlying map’s elevation—if absolute elevation estimates can be accurately made,

increasing the map size is unlikely to add potential paths whose starting points are of a

similar elevation and who exhibit similar relative elevation signatures.

5.3.3 Geographical Landscape—The elevation variation of the underlying map also

plays a significant role in the ability to accurately predict paths based on pressure. The

variations in elevation for the 26 city maps tested in this work are shown sorted in Figure 11.

Revisiting Figure 9, we see that high variation cities like Seattle have a much lower % Error

than low variation cities like Chicago. This trend was also observed in general over the 26

cities studied in this paper. For example, Figure 12 shows the probability of confusing a

given random path with any other path in a particular map. As the elevation variation of the

underlying map increases (cross-listing again with Figure 11), there is an increased chance

Ho et al. Page 12

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for path confusion, i.e. an increased probability that any given path may exhibit non-unique

elevation signatures.

6. DISCUSSION

We have shown through extensive tests in real driving experiments and simulated test-cases

that it is often possible to predict a user’s driving path with high accuracy from a time-series

of barometer data. This prediction, however, is not without its limitations, as discussed

below.

6.1 Prediction Robustness

As discussed in Section 3, the process of converting pressure to elevation depends largely on

determining the pressure offset α(t). When this cannot be determined by nearby weather

stations, the accuracy will be greatly decreased. This can be counteracted by including

additional sensor data such as turn-detection using accelerometers, gyroscopes, and

magnetometers. For example, the greedy path estimation algorithm can operate on relative

elevation rather than absolute, obviating the need for α(t) entirely. If in addition to using

relative elevation estimates we use information from mobile inertial sensors such as

accelerometers and gyroscopes, the solver is still able to predict 50% of paths to within 500

m RMSE. This may be further improved by considering metrics such as driving speed

estimation, driving mobility models, high traffic/highly probable routes, etc.

6.2 Privacy Implications

This work demonstrates real driving data in which 80% of tested paths can be predicted to

within 200 m RMSE using barometer data alone. Additionally, this accuracy considers only

single prediction instances—by combining data across multiple days it is likely that

commonly traveled routes can be predicted with a much higher accuracy. With increasingly

tight integration of social media applications in mobile devices, the potential privacy risks

escalate from associating an anonymous user with an estimated driving path to associating a

specific, personally identified user with a given driving path. When user anonymity, location,

and behavior are compromised, the potential for breaches in security and privacy are all-the-

more impressive. Additionally, mitigating privacy leaks through innocuous sensors like

barometers may not be as simple as implementing stricter access controls— balancing

usability with utility is a non-trivial task, both technically and philosophically.

6.3 Future Work

This work demonstrates methods for accurately predicting driving paths based on barometric

pressure data, resulting in a very low power method for large scale traffic analysis in

emerging smart cities. The high correlation between pressure and elevation and the inclusion

of these sensors on modern mobile devices raises a number of additional research questions.

For example, can barometer pressure be leveraged to improve location-services in real-time

to aid in spotty GPS coverage or to further reduce power consumption of location services?

In addition, can similar methods to those discussed in this work be used to predict pedestrian

paths in an unconstrained environment, such as for hikers? Finally, leveraging results

describing pressure changes as a function of vertical motion indoors (i.e. elevators,

Ho et al. Page 13

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

escalators, and stairs) [16], is it possible to infer which building or subset of buildings a user

may be walking through based on unique patterns of floor changes, enhancing path

estimation and occupancy detection algorithms? In future work, we plan to explore these

questions in an attempt to further evaluate the benefits of a city-wide, distributed network of

pressure sensors.

7. CONCLUSION

We have demonstrated methods by which barometric pressure data collected on mobile

phones can be used to infer driving paths with surprisingly high accuracy. Specifically, we

described both a greedy graph traversal approach and a dynamic-programming approach to

estimating likely driving paths given pressure-based elevation estimates and a map of

potential road segments. These methods leverage results from dynamic time warping

literature to calculate a rate-independent similarity score between estimated and candidate

path elevation signatures. Pressure data collected over a total of 4.6 hours and 150 km

demonstrates that these algorithms can predict upwards of 90% of paths with less than 100

m error. Additionally, we illustrated the accuracy of these prediction methods for more than

500 simulated test cases across 26 cities. The results of these simulations show that across

all cities more than 70% of paths can be predicted to within an error of 200 m. We further

evaluated the ability to estimate a user’s driving path as a function of several variables,

including length of barometer data, map size, and the elevation variance of the underlying

map.

The results of the methods described in this paper serve to emphasize the importance of

distributed networks of smart devices in emerging smart cities as well as the growing

problem of personal data privacy, lending credence to research efforts focused on treating

data in a privacy-preserving and security-aware manner. Finally, all sensor data and software

described in this paper is open source and available at https://github.com/nesl/mercury.

Acknowledgments

This research is funded in part by the National Science Foundation under awards CNS-1136174 and CNS-1213140
and by the Center for Excellence for Mobile Sensor Data-to-Knowledge under National Institutes of Health grant
#1U54-EB020404. The first author also acknowledges support from a Taiwan Technologies Incubation Scholarship.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the above-mentioned funding agencies.

References

1. Bmp280 digital pressure sensor. https://ae-bst.resource.bosch.com/media/products/dokumente/
bmp280/BST-BMP280-DS001-10.pdf. Accessed: 2015-03-04

2. Globalsat em-506 gps module. http://www.globalsat.com.tw/. Accessed: 2015-09-12

3. National oceanic and atmospheric administration (noaa) national climatic data center. http://
www.ncdc.noaa.gov. Accessed: 2015-03-05

4. US Standard Atmopshere. U.S Government Printing Office; Washington, D.C.: 1976.

5. Aram S, Troiano A, Pasero E. Environment sensing using smartphone. Sensors Applications
Symposium (SAS), 2012 IEEE. Feb.2012 :1–4.

6. Diggelen, V., Tromp, FS. A-gps: Assisted gps, gnss, and sbas. Boston: Artech House; 2009.

Ho et al. Page 14

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nesl/mercury
https://ae-bst.resource.bosch.com/media/products/dokumente/bmp280/BST-BMP280-DS001-10.pdf
https://ae-bst.resource.bosch.com/media/products/dokumente/bmp280/BST-BMP280-DS001-10.pdf
http://www.globalsat.com.tw/
http://www.ncdc.noaa.gov
http://www.ncdc.noaa.gov

7. Enrico Bibbona PT, Panfilo Gianna. The ornstein-uhlenbeck process as a model of a low pass
filtered white noise. Metrologia, Metrologia. 2008; 45

8. Google. Google elevation api. 2015. https://developers.google.com/maps/documentation/elevation/
[Online; accessed 7-March-2015]

9. Guha, S., Plarre, K., Lissner, D., Mitra, S., Krishna, B., Dutta, P., Kumar, S. Proceedings of the 8th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’10. New York, NY, USA:
ACM; 2010. Autowitness: Locating and tracking stolen property while tolerating gps and radio
outages; p. 29-42.

10. Han J, Owusu E, Nguyen L, Perrig A, Zhang J. Accomplice: Location inference using
accelerometers on smartphones. Communication Systems and Networks (COMSNETS), 2012
Fourth International Conference on. Jan.2012 :1–9.

11. Hemminki, S., Nurmi, P., Tarkoma, S. Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13. New York, NY, USA: ACM; 2013. Accelerometer-based
transportation mode detection on smartphones; p. 13:1-13:14.

12. Liu, J., Priyantha, B., Hart, T., Ramos, HS., Loureiro, AAF., Wang, Q. Proceedings of the 10th
ACM Conference on Embedded Network Sensor Systems, SenSys ’12. New York, NY, USA:
ACM; 2012. Energy efficient gps sensing with cloud offloading; p. 85-98.

13. Michalevsky, Y., Boneh, D., Nakibly, G. 23rd USENIX Security Symposium (USENIX Security
14). San Diego, CA: USENIX Association; Aug. 2014 Gyrophone: Recognizing speech from
gyroscope signals; p. 1053-1067.

14. Miluzzo, E., Varshavsky, A., Balakrishnan, S., Choudhury, RR. Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services, MobiSys ’12. New York,
NY, USA: ACM; 2012. Tapprints: Your finger taps have fingerprints; p. 323-336.

15. Mohan, P., Padmanabhan, VN., Ramjee, R. Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08. New York, NY, USA: ACM; 2008. Nericell: Rich
monitoring of road and traffic conditions using mobile smartphones; p. 323-336.

16. Muralidharan, K., Khan, AJ., Misra, A., Balan, RK., Agarwal, S. Proceedings of the 15th
Workshop on Mobile Computing Systems and Applications, HotMobile ’14. New York, NY, USA:
ACM; 2014. Barometric phone sensors: More hype than hope!; p. 12:1-12:6.

17. Musa, ABM., Eriksson, J. Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, SenSys ’12. New York, NY, USA: ACM; 2012. Tracking unmodified
smartphones using wi-fi monitors; p. 281-294.

18. OpenStreetMap. Main page — openstreetmap wiki. 2015. http://wiki.openstreetmap.org[Online;
accessed 7-March-2015]

19. Ouyang, RW., Srivastava, M., Toniolo, A., Norman, TJ. Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, CIKM ’14. New York,
NY, USA: ACM; 2014. Truth discovery in crowdsourced detection of spatial events; p. 461-470.

20. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J. Proceedings of the Twelfth Workshop on Mobile
Computing Systems and Applications, HotMobile ’12. New York, NY, USA: ACM; 2012.
Accessory: Password inference using accelerometers on smartphones; p. 9:1-9:6.

21. Park, J-g, Patel, A., Curtis, D., Teller, S., Ledlie, J. Online pose classification and walking speed
estimation using handheld devices. Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, UbiComp ’12. 2012:113–122.

22. Raij A, Ghosh A, Kumar S, Srivastava M. Privacy risks emerging from the adoption of innocuous
wearable sensors in the mobile environment. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11. 2011:11–20.

23. Sankaran, K., Zhu, M., Guo, XF., Ananda, AL., Chan, MC., Peh, LS. Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems, SenSys ’14. New York, NY, USA:
ACM; 2014. Using mobile phone barometer for low-power transportation context detection; p.
191-205.

24. Vintsyuk T. Speech discrimination by dynamic programming. Cybernetics. 1968; 4(1):52–57.

25. Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., Gunter, CA., Nahrstedt, K.
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security,

Ho et al. Page 15

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://developers.google.com/maps/documentation/elevation/
http://wiki.openstreetmap.org

CCS ’13. New York, NY, USA: ACM; 2013. Identity, location, disease and more: Inferring your
secrets from android public resources; p. 1017-1028.

Ho et al. Page 16

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Elevation estimation from pressure with corresponding error, using simple linear model.

Ho et al. Page 17

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Noise and variations in barometric pressure measurements.

Ho et al. Page 18

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
System overview, from pressure data collection to path estimation and confidence score.

Ho et al. Page 19

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
An illustration of path elevation matching using dynamic time warping.

Ho et al. Page 20

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Normalized DTW scores for 29 barometer traces collected while driving. False paths have

between 10 and 10000× higher DTW scores.

Ho et al. Page 21

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Snapshots of an agent from greedy pathfinding, exploring 4 possible paths.

Ho et al. Page 22

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Path prediction errors for real driving data

Ho et al. Page 23

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Path prediction errors for simulated driving data

Ho et al. Page 24

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Path length v.s. DTW Confusion Error

Ho et al. Page 25

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Path prediction errors vs. map size.

Ho et al. Page 26

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Elevation variations for sampled city maps.

Ho et al. Page 27

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
CDF of path confusion factors for cities of varying elevation variation.

Ho et al. Page 28

BuildSys15 (2015). Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1. INTRODUCTION
	1.1 Contributions

	2. RELATED WORK
	Low Power GPS, Cell, & WiFi Positioning
	Inferring Location and Transportation

	3. ESTIMATING ELEVATION
	3.1 Elevation Model Estimation
	3.2 Pressure Events & Noise Sources

	4. SYSTEM OVERVIEW
	4.1 Elevation Map Generation
	4.2 Dynamic Time Warping
	4.3 Candidate Path Generation

	Algorithm 1
	5. EVALUATION
	5.1 Tests on Real Driving Data
	5.2 Simulation
	5.3 Analysis of Parameters
	5.3.1 Path Length
	5.3.2 Map Size
	5.3.3 Geographical Landscape

	6. DISCUSSION
	6.1 Prediction Robustness
	6.2 Privacy Implications
	6.3 Future Work

	7. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

