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Abstract
At least five million American homes have Internet-connect-
ed thermostats. These devices improve comfort and reduce 
energy consumption using cloud-based algorithms. Every 
five minutes, they collect and transmit detailed operating 
information, including thermostat setpoints, actual indoor 
temperatures, occupancy, and HVAC operation. One thermo-
stat provider established a program that enables customers 
to anonymously “donate” their data to researchers and more 
than 50,000 customers have opted in. This dataset represents 
the most comprehensive public data on home temperature 
preferences for North America and provides far more detail 
than any previous method based on surveys or monitoring 
programs. The data show in detail preferred temperatures 
while occupants are home, sleeping, and away. On average, 
these households lower their thermostats about 1 °C when 
they are asleep compared to when awake, though this average 
conceals both widespread constant operation and deeper set-
backs. The peak usage of air conditioners in Texas was shown 
to precisely match the grid’s systemwide peak. The connect-
ed thermostats also raise a survey research question: when 
should policymakers rely on a small sample of rigorously se-
lected buildings instead of a huge, unrepresentative sample 
with detailed data? Many fruitful applications of this dataset 
will be constrained by privacy protections and reluctance of 
firms to share information.

Introduction
In North America and Europe, space heating and cooling is re-
sponsible for about half of all residential energy use (U.S. Energy 
Information Administration 2018). It is therefore a target for 
energy-saving actions, both in new and existing homes. Many 
technologies are available to reduce a home’s heating and cool-
ing use, though most are directed towards reducing envelope 
losses, raising the efficiency of the heating, cooling, and ventila-
tion (HVAC) systems, and more precisely controlling their op-
eration. The thermostat is a key element of the control system. 
Thermostats play a more important role in North America than 
in Europe because homes rely primarily on forced-air heat-
ing and their wood construction gives them less thermal mass 
(Peffer et al. 2011). In these constructions, temperature setbacks 
(for nights and absences) can achieve significant energy savings. 
Temperature setbacks (or set-ups in summer) require vigilance 
by the occupants or a programmable thermostat. Consumers 
have long had difficulty operating thermostats and achieving the 
maximum energy savings potential, especially with program-
mable thermostats (Peffer et al. 2011). The problems were so 
common that, in 2009, ENERGY STAR – a U.S. government 
program that endorses high-efficiency products (U.S. Envi-
ronmental Protection Agency 2019) – ceased endorsing pro-
grammable thermostats as a reliable energy-saving technology, 
primarily because there were insufficient documented savings.

The Internet-connected thermostat appeared in about 2011, 
most notably with the Nest Learning Thermostat. These ther-
mostats learned the habits of the occupants with the aid of an 
occupancy sensor, and then applied various algorithms – usu-
ally in the cloud – to optimize heating and cooling. The Internet 
connection also allows occupants to control the thermostats 
remotely through a web portal or smartphone. ENERGY STAR 
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restarted its recognition program in 2017 but limited the pro-
gram exclusively to Internet-connected thermostats. Based on 
discussions with manufacturers, 5–10 million homes appear to 
have Internet-connected thermostats. Major suppliers include 
Nest, ecobee, Honeywell, and Emerson.

In 2015, ecobee established the Donate Your Data (DYD) 
program (Ecobee Inc. 2018). The DYD program enables us-
ers to anonymously donate their operation data for research 
use. User data is gathered in servers managed by ecobee. Every 
five minutes, the ecobee thermostat records the thermostat set-
points, the actual inside temperature, relative humidity, mo-
tion, and HVAC run-time. Some models record occupancy and 
temperatures in other rooms. These data are collected by the 
thermostat and then transmitted via WiFi and the Internet to 
an ecobee server. Note that energy consumption data are not 
collected through this system.

Ecobee shares limited metadata about each participating 
DYD home with researchers, including the home’s location 
(city and state or province), floor area, number of stories, 
number of occupants, and age. Ecobee also supplies outside 
temperatures from nearby weather stations. This is a very large 
dataset – about 1 terabyte (TB) – which enables analyses that 
were heretofore inconceivable. For example, it is now possible 
to estimate with high confidence the average temperature in 
American homes at, say, 11 AM on February 14, 2018 (though 
it’s not clear what value this information has).

The DYD program began in 2015 and the number of partici-
pants increased rapidly. Figure 1 shows the monthly trend of 
the total number of devices (some homes have more than one 
device) and the populations of those in the largest ten states. 
The dataset includes homes in Canada and Europe but these 
were not included in this analysis. By mid-2018, about 50,000 
thermostats were in the DYD program and it was growing at 
a rate of ~1,700 per month. This study used only 8,575 homes 
because it was conducted relatively early in the program and 
many homes did not yet have 12 months of complete data.

The ecobee DYD research dataset provides insights into resi-
dential heating and cooling behaviors (and potentially, energy 
use) that were never before available. Researchers have only 
begun to explore the DYD dataset. For example, Huchuk et al. 
(2018) investigated how different climates, seasons, and utility 
tariffs affected the occupants’ selection of indoor temperatures. 
Other studies are underway.

What can be learned from connected thermostat data? Can it 
inform energy policy or assist in evaluating energy-saving pro-
grams? Can it help understand people’s behavior and thermal 
comfort preferences? In this paper, we explore insights that can 
be obtained from this extraordinary dataset. At the same time, 
this exploration shows its serious limitations.

Results

COMPARISON WITH THE RESIDENTIAL ENERGY CONSUMPTION SURVEY
Every four years the U.S. Energy Information Administration 
conducts the Residential Energy Consumption Survey (EIA 
2015). The RECS gather information to help explain differences 
in energy use among households. The results are also used to 
better forecast future energy consumption. The 2015 survey 
asked about space heating, air conditioning, water heating, 
appliances, electronics, structural features and, importantly, 
thermostat practices. RECS also collect energy consumption 
data for each home. About 6,000  homes were surveyed, of 
which about 4,000 were single-family homes (which reflects 
the national proportions). Rigorous sampling methods were 
employed to ensure a representative group, and energy pro-
viders are required (by law) to provide billing data. The RECS 
results are widely considered to be the most reliable source of 
information for describing U.S. residential energy use. How do 
the DYD homes compare to the homes in RECS? 

The DYD dataset differs from RECS in several fundamental 
ways. First, the RECS sample was designed to be representative 

 

Figure 1. Monthly trend of participating thermostats by state (DYD data).
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of all homes in the United States, while the 8,575 DYD homes 
are self-selected. The DYD homes are mostly single-family. As 
early adopters of this technology, the participants probably 
have higher incomes and are more technically proficient (they 
must have a reliable broadband connection, for example) than 
the United States as a whole.

A variety of comparisons were undertaken to determine how 
different the DYD homes were from the whole stock of U.S. 

homes. These comparisons included: geographic distribution, 
floor area, number of occupants, type of heating system, and 
age of home. Three comparisons are presented graphically in 
Figures 2–4.

There are some differences between the groups but fewer 
than one might expect. The DYD homes are geographically 
distributed roughly the same as RECS. There are relatively 
fewer DYD homes in the Northeast (but not hugely). The DYD 

Figure 2. Geographical distribution of DYD participants compared to RECS.

 

 

Figure 3. Distribution of floor areas with respect to number of occupants for DYD participants and RECS.
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and RECS homes are nearly the same size – DYD average floor 
area is only 4 % larger. The relationship between the number 
of occupants and floor area is very close. With the exception 
of 1-person homes, DYD and RECS have a similar occupancy 
distribution. For example, 35 %–40 % of the homes in both 
groups have two occupants. The age distribution of homes in 
the two groups is also similar (data not shown). The heating 
systems differ because the ecobee thermostat is not fully com-
patible with electric resistance heating systems and heat pumps 
(data not shown). Overall, the DYD homes are not perfectly 
representative of the U.S. housing stock of single-family homes 
but are surprisingly good given their different origins.

Which data are more accurate? The RECS survey asks house-
holds only a few questions about their thermostat settings, such 
as what temperature they maintain while away. In contrast, the 
ecobee thermostat reports the thermostat setpoint and the ac-
tual temperature every five minutes. An increasing number of 
ecobee thermostats have additional temperature sensors in oth-
er rooms – these are also reported. So which source is closer to 
“ground truth”? Are self-reported average values from a small, 
but rigorously representative, group of homes more credible 
than exact values collected every five minutes from many more 
homes that are self-selected? This dilemma will be a central 
analytical issue for many future applications of big data. Ulti-
mately, combining the two different sources of data will provide 
results with the greatest confidence. However, these data fusion 
techniques still need development.

HOURLY LOAD SHAPES FOR HEATING AND COOLING 
Obtaining representative hourly load shapes for major end uses 
is important for energy forecasting but expensive to obtain. 
The DYD data offers a simple means of obtaining hourly load 
shapes for air conditioning and heating because the run-times 

of HVAC units are collected every five minutes. The fraction of 
HVAC run-time (per hour) at each hour will have the shape of 
an hourly load curve. This load shape – technically, a “run-time 
curve” – can be generated for a specific day (such as the system 
peak day) or for a specific home, or it can be aggregated for all 
homes in a utility region.

The run-time of each HVAC system must still be converted 
into power before it becomes a load curve. This conversion re-
quires the rated power consumption of the HVAC system. Un-
fortunately, ecobee does not know this value, and the DYD par-
ticipants do not provide it, so it must be estimated with external 
data. A survey of actual HVAC capacities would of course be 
more accurate. The shape of the average run-time curve (con-
structed by assuming each HVAC system has the same power 
consumption whenever it runs) can nevertheless provide in-
sights even without the conversion from run-time to power.

The state of Texas, which is also its own grid authority (ER-
COT – The Electric Reliability Council of Texas) experienced 
its system peak electrical demand for 2017 on 28 July at 16:00–
17:00. This peak is driven by hot weather and because nearly 
every Texas home has air conditioning (and needs it). Figure 5 
shows the average air conditioning run-time load shape for 
2,131 DYD homes in Texas on 28 July. The run-time – a proxy 
for power – is expressed in seconds of run-time per five-minute 
metering interval. The DYD homes and the ERCOT system 
peaked at almost exactly the same time.

Separate analysis revealed that the DYD Texas homes also 
experienced their summer peak demand on 28 July. Thus, the 
DYD homes and the Texas grid experienced their peaks on the 
same day and one hour apart. This coincidence demonstrates 
the potential value of thermostat data in understanding the 
components of electrical demand and, ultimately, strategies to 
reduce it. 

Figure 4. Distribution of number of occupants in homes for DYD participants and single-family detached homes in the RECS sample.

 



4. MONITORING AND EVALUATION FOR GREATER IMPACT

 ECEEE SUMMER STUDY PROCEEDINGS 653     

4 -042 -19 MEIER ET AL

Figure 5 also shows that, at the peak, the average air con-
ditioner run-time is about 210  seconds/5  minutes or about 
70 % of the time. Texas is larger than France and covers several 
climate zones; nevertheless, this heat wave engulfed the entire 
state. These results suggest that Texan’s homes may have spare 
cooling capacity to accommodate the extreme events of near-
term climate change or expanding heat islands. 

The situation for space heating is very different. Figure 6 shows 
the average load shape for all 417 DYD homes in the state of 
Massachusetts – a cold region – on the system peak winter day 
when the minimum temperature was about -12 °C. All of these 
homes controlled by ecobee thermostats have gas or oil furnaces, 
so the heating run-time shape has less immediate impact on elec-

trical load than air conditioning does. However, the winter load 
shape may become more important as climate change policies 
are implemented. Many regions have de-carbonization plans 
which will, ultimately, require homes to switch from fuel heating 
to electric heating (Williams et al. 2018).

Figure 6 shows how conversion to electric heating will af-
fect the systemwide load shape. The grid operator for Massa-
chusetts experienced its peak demand at 18:00–19:00 (Babula 
2018). Thus, electrification of space heating in Massachusetts 
will initially not add to the system peak. The magnitude of the 
homes’ contribution to peak load cannot be directly estimated, 
however, until the HVAC run-time is converted into electrical 
demand. This requires knowledge of current fuel-based furnace 

Figure 5. Run-time load shape of DYD homes in Texas (N = 2131) on 28 July 2017, the same day as ERCOT’s system peak.

 

Figure 6. Run-time load shape of DYD homes in Massachusetts (N = 417) on 9 January 2017, the winter system peak day for the New 
England grid.
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capacities and efficiencies of the heat pumps that will replace 
them (which are not known). Note that the DYD homes are 
operating at only a little above 50 % of maximum capacity dur-
ing the coldest hours. This suggests that they have considerable 
spare capacity, possibly as a consequence of oversizing or years 
of adding insulation and air-sealing.

Estimating the load impacts from fuel-switching as de-
scribed above would be difficult because few utilities or re-
searchers collect hourly natural gas usage at the customer level. 
Instead, most researchers rely on building energy simulations 
of prototype homes to estimate future electrical loads. These 
simulations include grossly uncertain thermostat setpoint as-
sumptions. So, the DYD dataset offers a new approach to this 
question.

INFORMATION FOR BUILDING ENERGY SIMULATION
When simulating a building’s energy use, the researcher must 
make assumptions regarding the indoor temperature settings 
and schedules. RECS or similar surveys are often used as a 
source for this information. More often than not, the results 
are average temperatures for a few situations, e.g., “home” and 
“away” for summer and winter seasons. The duration of these 
settings is rarely collected. The building scientist must then 
convert this single-point information to thermostat schedules 
for 24 hours/day and 365 days per year.

The DYD dataset permits much more precise characteriza-
tions of temperatures and schedules. Figures 7 and 8 illustrate 
average hourly setpoint temperatures during the heating and 
cooling seasons for each day of the week. Even at this very high 
level of aggregation, the schedules are obvious. It is also clear 
that weekends have different schedules than weekdays.

Note that the changes in temperatures (when the setpoint is 
adjusted) are less than 2 °F (1 °C). This set-up/setback is small-
er than typically recommended setbacks or set-ups. ENERGY 
STAR, for example, recommends setbacks and set-ups in the 

range of 8 °F (~5 °C). Some people appear to adopt “round 
numbers” for setbacks, that is, 5 °F.

The small absolute changes in setpoints observed here prob-
ably reflect the fact that the curves are composites of thousands 
of different schedules and represent very few actual homes. A 
better approach is to segment users into temperature sched-
ule clusters, simulate several combinations of temperatures 
and schedules, and weight the results to reflect the fraction of 
homes in those bins. For now, only simple averages are avail-
able. On average in the winter, the DYD households lower 
their thermostats about 1 °C when they are asleep compared 
to when awake, though this conceals both constant operation 
and deeper setbacks. 

Note also the cool temperature settings – under 20 °C – for 
space heating, even when people are home. This suggests that 
a significant fraction of the homes is continuously maintained 
at rather low temperatures, thus lowering the average. This 
phenomenon is reversed for cooling, that is, the average tem-
perature setting is relatively high (from a comfort standpoint), 
suggesting that a significant fraction of households maintains 
quite warm indoor conditions.

The methods described above show how the energy impacts 
of building code changes and new technologies can be more 
realistically estimated because they capture the diversity of be-
haviors and usage patterns.

INFLUENCE OF DEFAULT THERMOSTAT SETTINGS
Behavioral “nudges” have been shown to be an effective strat-
egy to save energy (Sunstein and Thaler 2008) and with ther-
mostats in particular (Brown et al. 2013; Ge and Ho 2018). 
Having default settings is one type of nudge because many us-
ers will simply adopt them, believing that these settings must 
be the recommended values (or they are not able to program 
it themselves). The extent to which users retain the default set-
tings was explored.

Figure 7. Average hourly setpoint temperatures for DYD homes for each day of the week for days when the heating system operated.
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If a person buys an ecobee thermostat and rushes through 
the set-up procedure, the default setpoints shown in Table 1 
will be adopted (Huchuk 2019). Furthermore, the “Home” op-
tion is scheduled to begin at 06:30 and continues to 23:30, when 
“sleep” is resumed.

During the winter (see Figure 7) the sleep and at-home set-
points adopted by DYD homes are considerably lower (colder) 
than the defaults. Put another way, the households have adopted 
more energy-conserving temperatures than the defaults. The 
summer situation (Figure 8) is reversed. In the summer, the 
actual sleep and at-home setpoints are lower (cooler) than the 
defaults. These settings translate into lower indoor temperatures 
and greater air conditioning energy use compared to the default.

This preliminary analysis suggests that DYD homes found 
the ecobee defaults uncomfortably warm in the winter and not 
cool enough during the summer. This interpretation is only 
tentative, however, until the distributions of users are exam-
ined. In any event, the DYD households are clearly not accept-
ing the default temperatures. They may still be accepting the 
default schedules (or at least for weekdays). These nudges – if 
they were indeed deliberate – were probably unsuccessful.

EQUIPMENT SIZING
Climate change and heat islands are contributing to ever-high-
er summer temperatures in cities. Are current air conditioning 
systems capable of handling rising thermal loads? The DYD 
dataset can give insights into future comfort and peak electric-
ity demand problems. Specifically, to what extent are today’s air 
conditioning systems already unable to supply adequate cool-
ing during peak temperatures?

Homes with undersized cooling systems can be identified 
by continuous operation during multiple high-temperature 
events. (Multiple events must be identified because a system 
will not be sized for the maximum event.) However, not all pe-
riods of continuous operation will be caused by undersizing. 
Continuous operation may occur when the setpoint is lowered 

on a hot afternoon; the air conditioner may require longer time 
than usual to reach the lower target temperature. Each home’s 
operating data must be carefully screened to remove these 
kinds of events.

We have not yet performed a sizing analysis beyond inspec-
tion of small samples of homes. The first large-scale analyses 
will target smaller regions that experience exceptional heat 
waves because they may reveal other trends, such as health 
impacts.

What the DYD dataset cannot tell us
The DYD dataset is tantalizing: five-minute data about thou-
sands of homes distributed across North America makes pos-
sible dozens of promising avenues of research. The discussions 
above demonstrate that much can be learned from the DYD 
homes, often at lower cost or with greater confidence than 
with other methods. These data also give insights into top-
ics not directly related to temperatures and HVAC use. For 
example, occupancy patterns revealed by the motion sensors 
in the thermostats may be more accurate than diaries and self-
reporting. When a home’s thermostat stops reporting data to 
ecobee’s server, a likely explanation is a power failure. It is pos-
sible to exploit these interruptions to track power outages with 
a high degree of geospatial precision, and nearly as quickly as 
the electricity utilities (Ueno, Pritoni, and Meier 2018). At the 

Figure 8. Average hourly setpoint temperatures for DYD homes for each day of the week for days when the cooling system operated.

 

Heating (°F/°C) Cooling (°F/°C)

Home 69/20.6 78/25.6

Sleep 67/19.4 80/26.7

Away 64/17.8 82/27.8

Table 1. Default temperature setpoints for ecobee thermostats.
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same time, many avenues of inquiry are blocked by techni-
cal and legal reasons. Some of these constraints are described 
below.

Combining thermostat and energy data would make possi-
ble detailed evaluations of thermal performance. Such evalua-
tions could identify energy-conservation opportunities, broken 
equipment, or perhaps even an open window. These could be 
performed retrospectively or in real-time when smart meters 
are available. (Some energy enthusiasts have actually done 
this.) A smartphone app (doing most of the computation in 
the Cloud) could perform these functions. The constraints to 
merging thermostat and utility data are both legal and com-
mercial. The thermostat companies are legally obliged to pro-
tect their customers’ privacy. (Most thermostat companies have 
extended European Union [EU] privacy regulations to North 
America because they sell some units in the EU.) The thermo-
stat companies also resist sharing their data because it has com-
mercial value. 

The utilities have similar privacy requirements. In the United 
States, these rules are established by state regulatory commis-
sions, so each utility has unique data privacy standards. The 
patchwork nature of these regulations prevents “scaling up” 
data sharing solutions. At the same time, utilities are also be-
ginning to recognize the value of consumption data, so they are 
less eager to share. To date, no legal pathway exists to routinely 
merge the data, either for an individual customer or an entire 
utility service area.

A home’s energy consumption for heating and cooling can 
be estimated if the HVAC system’s input rating – electricity or 
fuel – is known. This is a simple calculation of the unit’s rat-
ing (in kW) times the run-time (hours/year). As noted earlier, 
the DYD participants do not report the input ratings of their 
HVAC systems, so this conversion and calculation cannot 
be performed. This data gap could probably be solved with a 
survey of homes’ HVAC ratings. A survey of several thousand 
homes could potentially populate a model that would reliably 
predict HVAC input rating based on floor area, age of home, 
and other independent variables.

The lack of detailed demographic and economic information 
about the DYD occupants’ limits exploration of behaviors relat-
ed to thermostat settings, technology, and innovations. While 
some simple investigations are possible, such as the relation-
ship between number of occupants and run-time, it’s not pos-
sible to investigate the impact of children (and especially babies 
and the elderly). Is there, for example, a relationship between 
a household’s income and levels of thermal comfort? Parallel 
surveys of homes connected thermostats might answer some 
of these questions.

Conclusions
To answer the question posed in this paper’s title, connected 
thermostats can give insights into the way households in a re-
gion keep thermally comfortable. The DYD dataset could give 
immediate insight into nationwide setpoints, actual tempera-
tures, and schedules, which were not available in such detail be-
fore now. This information is useful for policymaking, includ-
ing establishing guidelines and simulating building energy use. 
The HVAC run-times showed how residential air conditioning 
contributed to a grid’s systemwide peak. It was a surprise that 

the DYD homes’ peak demand exactly coincided with Texas’ 
systemwide peak because commercial buildings and industry 
also contribute to the peak. These results show the extent to 
which residential air conditioning practices drive total electric-
ity demand in Texas and where load-reduction policies should 
be directed.

The data from connected thermostats raise new questions 
for building science. The concept of “indoor temperature” will 
need more careful definition. Connected thermostats measure 
indoor temperature every five minutes and those with multiple 
sensors may be recording conditions in several rooms. What 
do occupants prefer? How can these conditions be provided in 
an energy-efficient manner? Finally, this level of building tem-
perature modeling exceeds the capabilities of most simulation 
models. 

The DYD dataset raises a survey research question, too. 
When should policymakers rely on a small sample of rigorously 
selected buildings – RECS in the United States – versus a huge, 
unrepresentative sample with high-fidelity data? Put another 
way, when does the value of a statistically representative sample 
selection outweigh its poor data quality? One part of the answer 
is to find research techniques in which the two approaches can 
complement each other and provide greater insights.

Connected thermostats, combined with energy, social, and 
economic data, could provide even greater insights. Many of 
those insights will not happen because legal, commercial, and 
technical barriers exist. Nevertheless, data from connected 
thermostats can provide actionable and valuable information.
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