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Abstract: A great deal of research in the alcoholic beverage industry was done on non-Saccharomyces
yeast strains in recent years. The increase in research interest could be attributed to the changing of
consumer tastes and the search for new beer sensory experiences, as well as the rise in popularity
of mixed-fermentation beers. The search for unique flavors and aromas, such as the higher
alcohols and esters, polyfunctional thiols, lactones and furanones, and terpenoids that produce
fruity and floral notes led to the use of non-cerevisiae Saccharomyces species in the fermentation process.
Additionally, a desire to invoke new technologies and techniques for making alcoholic beverages
also led to the use of new and novel yeast species. Among them, one of the most widely used
non-cerevisiae strains is S. pastorianus, which was used in the production of lager beer for centuries.
The goal of this review is to focus on some of the more distinct species, such as those species of
Saccharomyces sensu stricto yeasts: S. kudriavzevii, S. paradoxus, S. mikatae, S. uvarum, and S. bayanus.
In addition, this review discusses other Saccharomyces spp. that were used in alcoholic fermentation.
Most importantly, the factors professional brewers might consider when selecting a strain of yeast for
fermentation, are reviewed herein. The factors include the metabolism and fermentation potential of
carbon sources, attenuation, flavor profile of fermented beverage, flocculation, optimal temperature
range of fermentation, and commercial availability of each species. While there is a great deal
of research regarding the use of some of these species on a laboratory scale wine fermentation,
much work remains for their commercial use and efficacy for the production of beer.

Keywords: yeast; Saccharomyces; fermentation; alcohol; beer; wine

1. Introduction

Fermented beverages have played an important and special role over the course of human
history due to their economic and cultural importance, perhaps even lending to the beginning of
modern civilizations [1,2]. Archaeological evidence places the oldest fermented beverage in the fertile
crescent, as far back as 11,000 BCE [3,4], and based on the agricultural evidence of the time and
region, that beverage was likely beer. While beer originally could have been an accidental beverage,
it progressed into one of the most artfully crafted beverages known to man. No longer thought of as
just an art, the science of beer led to several very important landmarks in scientific history (Table 1).
As scientific discoveries keep developing, there are some amazing innovations that led to advances in
the quality and stability of beer, over the past 40 years [5]. However, minimal advancement was made
when considering the raw ingredients used in the brewing process.
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Table 1. Significant landmarks of the 150 years from 1760–1910 that came from scientists working at
breweries or specifically studying beer and its adjacent ingredients.

Year Scientist Employment Discovery

1762 Michael Combrune Brewer’s Company
Middlesex using a thermometer for analysis [2]

1769 James Baverstock family brewery using a hydrometer for analysis [2]

1833 Anselme Payen and
Jean-François Perzoz École Centrale Paris

discovered diastase enzyme and cellulose while
working with barley [2]

1843 Karl J.N. Balling Polytechnic in Prague invents the balling saccharimeter [6]

1843 James Joule and
Lord Kelvin family brewery create temperature scale and first law of

thermodynamics [7]

1857 Louis Pasteur University of Lille microbes are responsible for fermentation [8]

1860 P.E. Marcellin Berthelot Collège de France discovered invertase in Saccharomyces [2]

1873 Carl von Linde Spaten Brewery invented the refrigeration cycle [2]

1883 Johan Kjeldahl Carlsberg Brewery develops method for protein quantification [9]

1888 Emil Christian Hansen Carlsberg Brewery first isolation of pure yeast strain [9]

1908 William Sealy Gosset Guinness Brewery invents the statistical t-test for students [10]

1909 Søren Sørenson Carlsberg Brewery creates pH scale based on H+ ion concentration [11]

On a base level, beer consists of four main ingredients—malt, water, hops, and yeast, and the
brewing process could be separated into a hot side and a cold side. In the most basic overview of
the brewing process, the hot side begins when malted cereal grains are crushed and combined with
warm water so the maltose sugar is hydrolyzed from starch, the liquid is then boiled with hops to
add bitterness and flavor; this liquid, called wort, provides the nutrients for yeast. Moving from the
hot side to the cold side, wort is subsequently chilled for fermentation (Figure 1a); yeast is added,
metabolizing 50 to 80 percent of the sugar and nutrients to fermentation products, leaving behind non
metabolized proteins, oligosaccharides, and other compounds [12–14]. The resultant sugar profile of
brews can vary, based on the malting and mashing conditions, but typical mashes might contain 60.0%
maltose, 20.0% glucose, 10.0% maltotriose, and 5.0% of both sucrose and fructose [15].

Conversely, wine has just two main ingredients, grapes and yeast, and tends to have a much
simpler process flow than beer (Figure 1b). Grapes are picked and sorted from the vineyard before
being crushed, to release the sugary juice from the interior, for the varying fermentation profiles of
red or white wine. When producing white wine the skins and pomace are pressed and filtered from
the juice before the addition of yeast for fermentation. While red wine is fermented on the pomace to
get the color from the polyphenols within the skins and seeds, before being pressed and filtered for
aging. Wine might also have an additional malolactic fermentation to soften the malic acid into lactic
acid, but the lactic acid bacteria can produce a buttery diacetyl flavor that is only desirable in certain
styles [16]. In wine, the resultant sugar profile can vary, based on that of the grapes used, but the
majority (~95.0%) of sugars are already present in monosaccharide form, as equal parts glucose and
fructose, which the yeast can ferment without the assistance of enzymes [17,18].

For most of the scientific history of beer, Saccharomyces cerevisiae was the yeast used to produce
alcohol [19–21] although the first pure culture isolate of brewing yeast was S. carlsbergensis (later renamed
S. pastorianus) [22]. For alcoholic fermentation, the general rule of thumb for the amount of yeast to use,
known as the pitching rate, is one million cells per milliliter per percent of sugar in solution [9,12,23].
S. cerevisiae, when used at the proper pitching rate, takes the maltose and other sugars produced
from the hot side of the brewing process [15], and anaerobically converts the disaccharides into
carbon dioxide (CO2) and ethanol. More than 600 flavor active compounds can also be produced
during the alcoholic fermentation process, depending on type of beverage produced (Figure 2) [24–26].
Yeast works via an anaerobic pathway of glycolysis; if oxygen is present it performs respiration and
cell reproduction [27].
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In Stage 1 of alcoholic fermentation, free glucose is assimilated first, followed by the hydrolyzation
of maltose or other disaccharides into two glucose, by the enzyme alpha glucosidase (a.k.a maltase,
EC 3.2.1.20). Several other enzymatic destabilization and phosphorylation reactions then happen
in Stage 1, which turns the substrate into glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone
phosphate (DHAP). Stage 2 oxidizes G3P and DHAP, as well as the ADP generated previously,
to create ATP as energy for the cell and pyruvate. Stage 3 enzymatically decarboxylates pyruvate to
acetaldehyde and CO2 that leaves the cell, before the alcohol dehydrogenase converts the acetaldehyde
to ethanol in Stage 4 (Figure 2). In brewing, yeast is typically reused (repitched) for ten generations or
more [9], while in wine, the yeast is generally used far lesser times, due to the prominence of other
microorganisms and the higher mortality from more stressful conditions of osmotic pressure and
higher ethanol concentrations [28]. In most cases, serial repitching can cause genetic mutation within
the cells and the desired flavor profile might no longer be attainable [29–32].
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Figure 2. The metabolic role of Saccharomyces yeast in the development of flavor for fermented alcoholic
beverages. The sole products of yeast fermentation are not just ethanol and CO2, this schematic
representation shows the derivation and synthesis of flavor active compounds from sugar, amino acids,
and sulfur metabolism, delineated by the arrows on the diagram. Alcoholic fermentation of beer by
Saccharomyces is the substrate level phosphorylation anaerobic pathway of glycolysis, which converts
maltose sugar into ethanol and carbon dioxide.

Interest in brewing beer with novel yeast strains and applying Saccharomyces cerevisiae in new
methods outside of traditional beer fermentation [33,34] has increased in recent years, due to the
growing consumer tastes of sour and wild mixed-fermentation beers, as well as using some of these
novel species for low or no alcohol beer production [35,36]. A great deal of research in the brewing
industry was done on non-Saccharomyces yeast strains, such as Brettanomyces, Pichia, Hanseniaspora,
Metschnikowia, and Torulaspora [37–39]. Furthermore, the search for unique flavors and aromas, and a
desire to invoke new technologies and techniques for making alcoholic beverages led to the use of
non-cerevisiae Saccharomyces spp. in the alcoholic fermentation process [40,41].

While the most widely used non-cerevisiae species is S. pastorianus, traditionally used in the
production of lager beer around the world [42–44], this review focuses on some of the more distinct
species. The focus is on five species of Saccharomyces sensu stricto (Sss) yeasts, S. kudriavzevii, S. paradoxus,
S. mikatae, S. uvarum, and S. bayanus, as well as other novel species not currently in the Sss, such as
S. abulensis and S. florentinus. When selecting yeast strains for fermentation, brewers consider
its attenuation (the amount of sugar consumed by the yeast), flocculation (the yeast’s ability to
clump together and fall out of solution), fermentation temperature range, effects on flavor profile,
capacity for reuse, and supply chain availability [45]. These facets, as well as a yeast’s ability to ferment
various carbon sources, morphological characteristics, and genetic hybridization can all assist brewers,
when adopting a new strain.

2. Saccharomyces Species Diversity

Since Louis Pasteur’s groundbreaking and historic report that fermentation was caused by a
microorganism instead of a spontaneous mystery [8], the Saccharomyces genome was continuously
studied, with several distinct species identified [46]. This diversity was termed the Saccharomyces sensu
stricto (Sss) complex and is currently composed of ten genetically distinct species, all of which are
capable of metabolizing glucose to produce ethanol (Figure 3). Each of these species was perceptibly
delineated from other Saccharomyces species, through studies of reproductive isolation and application
of the biological species concept [31,47–49]. All Sss species were isolated from unique sources in nature,
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including tree bark, flowers, fruit, and insects, demonstrating their lineage from wild type to the
cultured stock of Saccharomyces spp. While all members of the Sss were proven to produce energy with
fermentation, and many of these species are novel, some were used and studied for their potential
use in commercial alcohol production for human consumption. The distribution of S. cerevisiae and
S. pastorianus were long linked to alcoholic beverage production, along with minor mentions of other
species in the Sss complex. Cultured species, specific to beer production, were shown to have evolved
from European wine and Asian sake fermentations [21,50], therefore, its relation to wine production
proliferates much of the research.
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Figure 3. Saccharomyces species phylogeny shown; all were effectively isolated from natural sources
(i.e., trees, fruit, insects). Saccharomyces bayanus is listed in parenthesis to indicate it was derived from
multiple hybridization events. S. pastorianus is shown as a genetic hybrid of S. eubayanus and S. cerevisiae.
Usage indicated with plus signs (+) for current use in industry, with S. cerevisiae and S. pastorianus
showing the most profound use in the current alcoholic fermentation industry, and negative signs (−)
for no known use. S. cariocanus is known to be harboring just four translocated chromosomes different
than S. paradoxus. Figure adapted from Fay 2012 [51].

3. Saccharomyces kudriavzevii

S. kudriavzevii was first isolated from a decaying leaf and has since been isolated repeatedly
from the bark of oak trees in Portugal and France [52,53]. The yeast is a multipolar budding species,
with a size of 5–10 µm, and an oval to slightly elongated shape [47]. It was shown to ferment
glucose, sucrose, and maltose, but it did not ferment lactose, melibiose, or starch, which are common
characteristics of Sss yeast (Table 2). S. kudriavzevii is a naturally occurring S. cerevisiae hybrid that
might constitute 23–100% of the genome for some yeast [54,55], including Belgian trappist ale strains,
such as Chimay, Westmalle, and Orval, and wass also genetically isolated in draft beer from the United
Kingdom, Germany, and New Zealand [56]. This implies that the attenuation, flocculation, and flavor
profiles of S. kudriavzevii might be similar to that of most Belgian strains. This meant low flocculation,
high attenuation, and phenolic off-flavor positive (POF+) [45,57], though there is research in the wine
industry that suggests S. kudriavzevii ferments slowly and produces less ethanol when used on grape
juice [58]. Other research suggests it has high flocculation, as in overnight liquid culture, it grew into
spherical 2–3 mm pellets [31].
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Table 2. Physiological characteristics that distinguish each species of the Saccharomyces sensu stricto
complex are discussed. Growth ability scored as positive (+), negative (−), evidence of both positive
and negative (−,+), and unknown (u). Ethanol tolerance is defined as being able to grow in the presence
of 2.5% v/v EtOH, the low-end strength of standard beer. Attenuation and flocculation scored on
a relative basis scale, ranging from low, to moderate, to high. Type strain as defined in MycoBank
(mycobank.org), origin, isolation, and commercial availability, as defined in the cited literature.

S. kudriavzevii S. paradoxus S. uvarum S. mikatae S. bayanus

Fermentation Of:
Maltose + + + + +

Melibiose − − + + −,+
Dextrins (STA1) −,+ − −,+ − −

Ethanol Tolerant + + + + +

Characteristics:

Attenuation moderate low-moderate moderate moderate moderate
Flocculation moderate-high moderate high moderate moderate

Growth at 10 ◦C + + + + +
Growth at 25 ◦C + + + + +
Growth at 37 ◦C − − + − +

POF + u − u +
Region of Origin Western Europe Northeastern Europe Scandinavia Japan Europe

Isolated From Oak tree bark Oak sap Fruit/Seeds Soil/Leaves Insects/Leaves
Type Strain NCYC 2889T DBVPG 6411 DBVPG 6173 NCYC 2888T CBS 380

CommercialAvailability Anchor Vin7 Anchor Exotics SPH AWRI 1176 & 1375 AB Biotek/AWRI 2526 Lalvin S6U

It is advised to ferment S. kudriavzevii in tandem with a traditional Saccharomyces [59] and it was
shown to form a triple hybrid complex with S. cerevisiae and S. uvarum, as it was isolated as such from
farmhouse ciders made in France [60,61]. S. kudriavzevii is a cryophilic strain in the Sss that prefers
fermentation temperatures in the 10–15 ◦C range [52,62,63], and is currently used to ferment lower
temperature pinot noir and lager beer in Europe [54]. The only current commercially available example
is Anchor Oenology’s Vin7 strain, developed in Stellenbosch, South Africa, for enhancing thiol aromas
in white wine [64,65], but it stands to reason that it can be isolated from previously noted commercial
beer examples. Due to its cryophilic tendencies and aromatic potential, S. kudriavzevii has potential for
use in the production of hoppy lager beers in the brewing industry. Further research remains to be
done on this species, considering it is POF+ and it is likely also diastaticus (STA1) positive, meaning it
could ferment residual maltodextrins. Additionally, minimal commercial production was done with
the direct intention of using S. kudriavzevii, as most fermentations did not take place with the intention
of the use of this species.

4. Saccharomyces paradoxus

S. paradoxus is one of the first isolates of the Sss [66], a wild-type strain commonly isolated from
the bark of deciduous trees and occasionally from fruit and insects in North America and Eastern
Europe [67–69]. Even though genetically S. cerevisiae and S. paradoxus were proven to be distinct
species [70], phylogenetically the two were the closest relatives in the Sss (Figure 3) and were 90%
genetically similar [55]. They share the same morphological and phenotypic characteristics, such as
being spherical or ellipsoid in shape, with a diameter of 1–5 µm [71]. Previous research indicates
mixed results of the fermentative capacity of S. paradoxus, but it has the ability to convert glucose
into ethanol and a relatively high alcohol tolerance [47,72,73]. It is a positive fermenter for glucose,
sucrose, and maltose, but it does not ferment lactose, melibiose, or starch (Table 2). Little evidence
exists for the domestication and commercial use of S. paradoxus in alcohol fermentation, but it was
found to be naturally co-fermenting with S. cerevisiae in Eastern European wine fermentations [73,74],
as well as with S. cerevisiae, S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, and S. pastorianus in
indigenous African sorghum beer [75].

In laboratory fermentations, the optimal growth temperature for S. paradoxus falls 7 ◦C lower
than S. cerevisiae, and is likely cryophilic, due to the climates in which it is found, but S. paradoxus
is yet to be trialed extensively in a production environment [76,77]. Unfortunately, no information
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exists on the attenuation or flocculation characteristics of S. paradoxus, nor are there any commercially
produced examples of the purely isolated species, but it does seem to have positive sensory attributes
in white wine fermentations [73,74]. There is a commercially available hybrid of S. paradoxus and
S. cerevisiae produced by Anchor Oenology, which when used for Syrah and Merlot wine fermentations,
shows increased aromas of cherries, strawberries, cocoa, and floral notes, and the wine is described as
full-bodied, well-balanced, complex and intense [78]. Much work remains to be done on the versatility
of this species for the brewing industry, but it might have potential for unique and novel flavor
characteristics if a pure culture from a genetic bank is obtained for further experimentation.

5. Saccharomyces mikatae

S. mikatae is a natural genetic hybrid that results from introgression events with S. cerevisiae and
S. paradoxus [55,79], and its current hybrids are described for use in industrial wine fermentation.
This hybrid was deliberate, created in a lab with the intent of creating greater complexity in resultant
wines, akin to those that are spontaneously fermented, but more easily controlled due to the inclusion
of typical S. cerevisiae yeast [80,81] S. mikatae was first isolated from decaying leaves and soil in
Japan [47,60]. It is ovoid in shape and approximately 5–9 µm in diameter; it reproduces by multipolar
budding, and generally appears in pairs or short chains. S. mikatae was also shown to form a pellicle
after 25 days at 20 ◦C, similar to Brettanomyces and other wild-type yeasts [47]. The inclusion of S. mikatae
in the Sss means it is capable of alcoholic fermentation and assimilation of glucose, it is also capable of
fermenting maltose, sucrose, and melibiose, but not lactose or starch (Table 2). However, S. mikatae
might have a lower attenuation, due to genetic diversion from S. cerevisiae, while still exhibiting similar
levels of flocculence [31].

S. mikatae readily creates hybrids with S. cerevisiae, and these hybrids were shown to produce
higher concentrations of multiple compounds that yield fruity, banana, floral, and sweet perfume
aromas in the fermentation of white wine [80,81]. Although no information on beer fermentation with
either the type strain or any hybrids exist, the additional amounts of certain volatile compounds in the
research by Bellon et al. (2013, 2019) might show signs of this yeast’s production of phenolic off flavors.
S. mikatae grows readily in temperatures from 4–30 ◦C, with expected slower growth in the range limits
and no growth outside the range, making it a cryotolerant fermenter [47,63]. Commercial availability
is limited, but yeast manufacturer AB Biotek commenced exploratory production of an S. mikatae and
S. cerevisiae hybrid, AWRI 2526; brewers and winemakers can expect the hybrid as an active dried yeast
product that is expected to be available for trials, by the fall of 2020 [81].

6. Saccharomyces uvarum

S. uvarum is a fairly well-known member of the Sss, originally believed to be identical to
S. bayanus and often referred to as S. bayanus var. uvarum, it was shown to be a genetically
distinct Saccharomyces species [82–84]. S. uvarum is also similar in size and shape to S. bayanus,
being spherical or ellipsoid in shape, with a diameter of 1–5 µm, and reproducing by multipolar
budding. S. uvarum was isolated in natural European wine and cider fermentations [85–87], as well
as in South American chicha fermentations [88,89], but was first isolated in 1894 and described in
1898 by M.W. Beijerinck, from spontaneous wine fermentation [90]. S. uvarum is known to hybridize
with S. cerevisiae, S. bayanus, and S. pastorianus [85,91,92], and thus can show signs of being POF+

and possibly might have the STA1 gene for diastaticus [91,93]. S. uvarum showed the capacity to
ferment glucose, sucrose, melibiose, and maltose, but it does not ferment lactose. S. uvarum is a known
bottom-fermenting yeast, meaning it acts similar to a S. bayanus or S. pastorianus when not in hybrid
form, offering cryotolerance [94], moderate attenuation, and high flocculation (Table 2).

Research with wine showed that S. uvarum produces comparatively higher amounts
of volatile aromatics when fermented cold [95], implying potential use as a lager strain.
In Chardonnay winemaking trials, wines were described as showing apricot, cooked orange peel,
citrus, lime, honey, and nutty aromas with some tasters, and estery, pineapple, peach, melon, and floral
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aromas with others [80,96]. While S. uvarum continues to predominate in spontaneous European
wine fermentations [86,87,97] and is a known species in some Norwegian kveik hybrid strains [91],
its commercial availability is limited to the Australian Wine Research Institute at this time [98].
Cryotolerance and increased aromatic potential means S. uvarum could be used in the production of
some complex and eccentric lagers in the brewing industry, but currently, it has only been isolated as
part of a hybrid culture in the aforementioned kveik beer. Further research remains to be done on the
brewing potential of S. uvarum, but brewers should be aware of the increased aromatic character that
might come from the POF+ genes.

7. Saccharomyces bayanus

S. bayanus is a well-studied species in the Sss and is often used as a model organism for comparative
functional genomics studies of yeast, based on introgression and interspecific hybridization [99]. It is
genetically similar to S. cerevisiae, but evolved to be a distinct member of the Saccharomyces sensu
stricto complex [55,100], and is now referred to as S. bayanus var. bayanus, in order to delineate it
from S. eubayanus and S. uvarum [43,101]. S. bayanus was previously thought to be the parent of the
lager strain, S. pastorianus [43,60,85], but the hybridization event that produced lager brewing yeast is
now proven to have occurred between S. cerevisiae and S. eubayanus [21,50,102,103]. While S. bayanus
might not be the true hybrid parent of the most used brewing yeast in the world, it still forms natural
hybrids with other members of the Sss and was identified in these complexes in the fermentation of
wine [62,85,104]. While it was first isolated from turbid beer in 1927 [105], S. bayanus was also isolated
from beer, wine, fruit, and even soda [47]. S. bayanus is ellipsoid to elongate in shape, with a diameter
of 1–5 µm, and reproduces by multipolar budding. Research showed it to be a positive fermenter for
glucose, sucrose, and maltose. Other studies reported S. bayanus to show both positive and negative
fermentation of melibiose, but it does not ferment lactose or starch (Table 2).

S. bayanus is well-known as a fermenter of beer and cider [43,105,106], but is most commonly used
in wine [96,103,107]. It can be purchased from several commercial suppliers, but unfortunately several
commercially available strains were genetically identified as S. cerevisiae, including the famous Lalvin
EC-1118 strain that was originally typed S. bayanus [108,109]. S. bayanus ferments best in the upper end
of the lager strain temperature range of 10 to 21 ◦C [77,101], is moderately flocculant [31], and has a
fairly standard attenuation [110], as expected, given its genetic similarity to S. pastorianus lager yeast.
The commercially available hybrid of S. bayanus and S. cerevisiae available from Lallemand, Lalvin S6U,
is known to increase the varietal characteristics in white wine, and might produce elevated levels of
POF [111,112]. More research needs to be carried out with regards to the flavor profile of beers made
with S. bayanus, but the research on wine and its history as a potential lager strain means, it is capable
of fermenting remarkable lager style beers.

8. Other Saccharomyces spp. Used in Alcoholic Fermentation

Several other novel species of Saccharomyces used in alcoholic fermentation were determined to
be genetically distinct by current research but might not yet be included in the Saccharomyces sensu
stricto complex. S. abulensis is a novel species dubbed the “Santa Maria strain” and was isolated from
yeast originating from breweries in Madrid and Sevilla, Spain [92]. S. florentinus, formerly known as
S. pyriformis, is a species of yeast isolated from the scoby of traditionally fermented ginger beer, known as
“bees wine,” but is yet to be used in commercial production of beer [113,114]. Three other strains included
in the phylogenetic tree of the Sss (Figure 3) exist—S. arboricola, S. jurei, and S. cariocanus—but research is
limited on their fermentation capacity. S. arboricola is a wild-type hybrid of S. bayanus and S. kudriavzevii,
which was isolated from oak and beechwood bark in China [115,116], and is currently being used in
sake production [117]. S. jurei is closely related to S. mikatae and S. paradoxus and was isolated from
a high altitude tree bark in France; little is known of its fermentative capacity [118]. S. cariocanus,
isolated from insects in South America [119], is a wild-type hybrid of S. paradoxus, which is capable of
fermenting sucrose and shows ethanol tolerance [120].
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These yeasts are not members of the Sss, but is likely to be included, as the complex underwent
many changes over the years, in accordance with the system employed in classifying yeast cultures.
Very little information exists on these yeasts’ ability to ferment beer or their use in a commercial
setting, but by contacting genetic banks and yeast culture collections directly, the strain type could be
obtained for further experimentation. There also exists multiple variants of S. cerevisiae, such as var.
boulardii, which is known to produce higher levels of polyphenols, and can thus be used in functional
probiotic beer [121–126]. Another variant, var. diastaticus, can cause over-attenuation [127–129],
which was discussed earlier as having the STA1 gene.

9. Conclusions

The non-cerevisiae Saccharomyces species discussed in this review, have the ability to ferment
glucose and maltose into ethanol, anaerobically. Most are members of the Saccharomyces sensu stricto
complex, while some are yet to be defined within the species complex classification. S. kudriavzevii is
available commercially as a hybrid with S. cerevisiae and can increase thiol aromatic qualities during
fermentation, at lower temperatures, making it ideal for distinctive lagers. S. paradoxus is also available
commercially as a hybrid with S. cerevisiae and showed increased fruity and floral esters in wine,
and also lends unique characteristics to African umqombothi beer. Hybrids of S. mikatae and S. cerevisiae
are not yet commercially available, but they were known to produce increased fruity and perfume
aromas even when fermented at low temperatures, marking its potential for remarkable lager beer
production. Due to debate on the classification and isolation process of S. uvarum in genetic research,
there is no commercially available version of this species, but it shows potential as a cryotolerant lager
yeast, with more character than S. pastorianus. After recent research, many commercially available
S. bayanus strains were reclassified as variants of S. cerevisiae, but the true hybrids of S. bayanus
and S. cerevisiae showed increased ethyl esters and spicy notes that could add a complexity to beer
production. While much of the research regarding flavor and aroma that is presented in this review
might be focused on wine, these species all have potential for novel fermentations and new sensory
experiences, if used in beer.
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