
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Quantization for High-dimensional Data and Neural Networks: Theory and Algorithms

Permalink
https://escholarship.org/uc/item/9bd2k7gf

Author
Zhang, Jinjie

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bd2k7gf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Quantization for High-dimensional Data and Neural Networks: Theory and Algorithms

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Jinjie Zhang

Committee in charge:

Professor Rayan Saab, Chair
Professor Alexander Cloninger, Co-Chair
Professor Ery Arias-Castro
Professor Sanjoy Dasgupta

2023

Copyright

Jinjie Zhang, 2023

All rights reserved.

The Dissertation of Jinjie Zhang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my wife, my parents, and people who helped me over the past
five years.

iv

EPIGRAPH

Number rules the universe.

—Pythagoras

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Quantization Fundamentals . 2

1.1.1 Scalar Quantization . 2
1.1.2 Accelerated Computing . 3
1.1.3 Calibration . 4
1.1.4 Sigma-Delta Quantization . 5

1.2 Thesis Structure . 7
1.2.1 Data Quantization. 7
1.2.2 Model Quantization. 8

References . 9

Chapter 2 Faster Binary Embeddings for Preserving Euclidean Distances 16
2.1 Introduction . 17

2.1.1 Related Work . 17
2.1.2 Methods and Contributions . 20

2.2 Preliminaries . 22
2.2.1 Notation and definitions . 22
2.2.2 condensed Johnson-Lindenstrauss Transforms . 23

2.3 Sigma-Delta quantization . 24
2.4 Main Results . 25
2.5 Computational and Space Complexity . 27
2.6 Numerical Experiments . 29
2.7 Comparisons on different datasets . 32
2.8 Proof of Lemma 2.2.6 . 34
2.9 Stable Sigma-Delta quantization and its properties . 36

vi

2.10 Proof of Theorem 2.4.2 . 40
2.11 Comparison with product quantization . 42

2.11.1 Data-dependent product quantization . 42
2.12 Acknowledgements . 45
References . 45

Chapter 3 Sigma-Delta and Distributed Noise Shaping Quantization Methods for
Random Fourier Features . 51

3.1 Introduction . 51
3.1.1 Related Work . 53
3.1.2 Methods and Contributions . 55

3.2 Noise Shaping Quantization Preliminaries . 56
3.3 Main Results and Space Complexity . 59

3.3.1 Approximation error bounds . 59
3.3.2 Space complexity . 62

3.4 Numerical Experiments . 63
3.4.1 Kernel Ridge Regression . 63
3.4.2 Kernel SVM . 64
3.4.3 Maximum Mean Discrepancy . 66

3.5 Conclusion . 68
3.6 Stable Quantization Methods . 70
3.7 A comparison of kernel approximations . 71
3.8 More Figures in Section 3.4 . 72
3.9 Proof of Theorem 3.3.1 . 74

3.9.1 Useful Lemmata . 75
3.9.2 Upper bound of (I) . 80
3.9.3 Upper bound of (II) & (III) . 84
3.9.4 Upper Bound of (IV) . 88
3.9.5 Proof of Theorem 3.3.1 . 90

3.10 Proof of theorem 3.3.3 . 90
3.11 Acknowledgements . 102
References . 103

Chapter 4 Post-training Quantization for Neural Networks with Provable Guarantees . 108
4.1 Introduction . 109

4.1.1 Related Work . 110
4.1.2 Contribution . 110

4.2 Preliminaries . 112
4.2.1 Notation . 112
4.2.2 GPFQ . 114

4.3 New Theoretical Results for GPFQ . 116
4.3.1 Bounded Input Data . 116
4.3.2 Gaussian Clusters . 122
4.3.3 Convolutional Neural Networks . 125

vii

4.4 Sparse GPFQ and Error Analysis . 125
4.5 Experiments . 127

4.5.1 Experimental Setup . 128
4.5.2 Results on ImageNet . 130

4.6 Useful Lemmata . 135
4.7 Fusing Convolution and Batch Normalization Layers . 140
4.8 Quantizing Large Weights . 141
4.9 Theoretical Analysis for Gaussian Clusters . 147

4.9.1 Proof of Theorem 4.3.4 . 147
4.9.2 Proof of Corollary 4.3.5 . 153

4.10 Theoretical Analysis for Sparse GPFQ . 156
4.10.1 Sparse GPFQ with Soft Thresholding . 157
4.10.2 Sparse GPFQ with Hard Thresholding . 159

4.11 Acknowledgements . 161
References . 161

Chapter 5 A Stochastic Algorithm and its Error Analysis for Neural Network Quanti-
zation . 166

5.1 Introduction . 167
5.1.1 Related work . 168
5.1.2 Contributions and organization . 169

5.2 Stochastic Quantization Algorithm . 170
5.2.1 Notation and Preliminaries . 170
5.2.2 SPFQ . 172
5.2.3 A two phases pipeline . 175
5.2.4 SPFQ Variants . 176

5.3 Error Bounds for SPFQ with Infinite Alphabets . 179
5.4 Error Bounds for SPFQ with Finite Alphabets . 194
5.5 Experiments . 200
5.6 Properties of Convex Orders . 202
5.7 Useful Lemmata . 204
5.8 Perturbation analysis for underdetermined systems . 213
5.9 Acknowledgements . 218
References . 218

viii

LIST OF FIGURES

Figure 2.1. Plots of ℓ2 distance reconstruction error when r = 1,2 30

Figure 2.2. Plots of ℓ2 distance reconstruction error with fixed p = 64 and optimal
p = p(m) . 31

Figure 2.3. Plot of MAPE of Method 2 on four datasets with fixed p = 64 and order
r = 1,2 . 33

Figure 3.1. Kernel ridge regression with b = 1. The labels RFF, s1, s2, StocQ, r1,
r2, β represent k̂RFF, k̂s for scenarios (1), (2), k̂StocQ, k̂(1)

Σ∆
, k̂(2)

Σ∆
, and k̂β

respectively. 65

Figure 3.2. Kernel SVM with b = 1. The labels RFF, s1, s2, StocQ, r1, r2, β represent
k̂RFF, k̂s for scenarios (1), (2), k̂StocQ, k̂(1)

Σ∆
, k̂(2)

Σ∆
, and k̂β respectively. 66

Figure 3.3. Two distributions and the MMD values based on the RBF kernel. 67

Figure 3.4. Power of the permutation test with b = 1. The labels RFF, s, StocQ, r1, r2,
β represent k̂RFF, k̂s, k̂StocQ, k̂(1)

Σ∆
, k̂(2)

Σ∆
, and k̂β respectively. 67

Figure 3.5. The empirical distributions of MMD values under H0 and H1. 69

Figure 3.6. Kernel Approximations with b = 3. 71

Figure 3.7. Kernel ridge regression with b = 2. 72

Figure 3.8. Kernel ridge regression with b = 3. 72

Figure 3.9. Kernel SVM with b = 2. 73

Figure 3.10. Kernel SVM with b = 3. 73

Figure 3.11. Power of the permutation test with b = 2. 73

Figure 3.12. Power of the permutation test with b = 3. 74

Figure 4.1. Top-1 (dashed lines) and Top-5 (solid lines) accuracy for original and
quantized models on ImageNet. 131

Figure 4.2. (1) Left y-axis: Top-1 (dashed-dotted lines) and Top-5 (dash lines) accuracy
for original (in red) and quantized (in blue) models on ImageNet. (2) Right
y-axis: The sparsity of quantized models plotted by dotted green lines. . . . 133

ix

Figure 5.1. Top-1 and Top-5 validation accuracy for SPFQ (dashed lines) and GPFQ
(solid lines) on ImageNet. 201

x

LIST OF TABLES

Table 2.1. Here “Time” is the time needed to embed a data point, while “Space” is
the space needed to store the embedding matrix. “Storage” contains the
memory usage to store each encoded sequence. “Query time” is the time
complexity of pairwise distance estimation. 29

Table 2.2. Comparison between the proposed method and product quantization per
data point . 43

Table 3.1. The memory usage to store each encoded sample. 63

Table 4.1. Top-1/Top-5 accuracy drop using b = 5 bits. 129

Table 4.2. ImageNet Top-1 accuracy with weight quantization. 132

Table 4.3. Top-1 accuracy drop for ResNet-18 and ResNet-50. 141

Table 5.1. Top-1/Top-5 validation accuracy for SPFQ on ImageNet. 199

xi

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Professor

Rayan Saab who inspires me throughout my doctoral studies and helps me grow as a researcher

with curiosity, self-reliance, and independent thinking. I enjoy and cherish the eureka moment

when brainstorming new ideas with him in front of a white board. In addition, I would like

to thank my co-advisor Professor Alexander Cloninger who gives me invaluable instruction in

machine learning research and helps me to set up connections with other researchers. This dis-

sertation would not have been possible without their immeasurable support and encouragement.

I would like to thank Professor Ery Arias-Castro, Professor Sanjoy Dasgupta, and

Professor Kamalika Chaudhuri for serving as my committee members, offering meaningful

discussions, and sharing invaluable career advice. I would also like to thank Professor Caroline

Moosmüller, Professor Lek-Heng Lim, and Professor Shmuel Friedland for their help to crack

challenging problems together. I appreciate all the research opportunities and resources provided

by Amazon, AMD, and Lenovo, where I obtained industry experience from many excellent

researchers: Samir Touzani, Jiangchuan Huang, Yanan Yu, Jonathan Toner, Michael Wagner,

Alireza Khodamoradi, Zhicheng Fu.

Finally, I would like to express my deep gratitude to my wife Yichao (Rachel) and my

parents Yumin and Ting. Without their tremendous understanding and encouragement in the past

five years, it would be impossible for me to complete my doctoral journey.

Chapter 2, in full, is joint work with Rayan Saab and has been published in International

Conference on Learning Representations (ICLR), 2021. The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in full, is joint work with Harish Kannan, Alexander Cloninger, Rayan Saab,

and has been submitted for publication. The dissertation author was the primary investigator and

author of this paper.

Chapter 4, in full, is joint work with Yixuan Zhou, Rayan Saab, and has been published

in the SIAM Journal on Mathematics of Data Science (SIMODS), 2023. The dissertation author

xii

was the primary investigator and author of this material.

Chapter 5, in full, is joint work with Rayan Saab and is currently being prepared for

submission for publication. The dissertation author was the primary investigator and author of

this material.

xiii

VITA

2012–2016 Bachelor of Science in Information and Computing Science, Beijing Jiaotong
University

2016–2018 Master of Science in Statistics, University of Chicago

2018–2023 Doctor of Philosophy in Mathematics, University of California San Diego

PUBLICATIONS

J. Zhang, Y. Zhou, R. Saab. “Post-training quantization for neural networks with provable
guarantees”. SIAM Journal on Mathematics of Data Science 5 (2), 373-399, 2023.

J. Zhang, J. Huang, Y. Yu. “The Markov chain model for DP engagement”. Amazon Machine
Learning Conference (AMLC), 2022.

J. Zhang, H. Kannan, A. Cloninger, R. Saab, “Sigma-delta and distributed noise-shaping quanti-
zation methods for random Fourier features”. arXiv preprint arXiv:2106.02614, 2021.

J. Zhang, R. Saab. “Faster binary embeddings for preserving euclidean distances”. International
Conference on Learning Representations (ICLR), 2021.

S. Friedland, L. Lim, J. Zhang. “Grothendieck constant is norm of Strassen matrix multiplication
tensor”, Numerische Mathematik 143, 2019.

S. Friedland, L. Lim, J. Zhang. “An elementary and unified proof of Grothendieck’s inequality”,
L’Enseignement Mathématique 64.3, 2019.

J. Zhang, S. Zheng. “On refined Hardy-Knopp type inequalities in Orlicz spaces and some
related results”. Journal of Inequalities and Applications, 2015.

xiv

ABSTRACT OF THE DISSERTATION

Quantization for High-dimensional Data and Neural Networks: Theory and Algorithms

by

Jinjie Zhang

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Rayan Saab, Chair
Professor Alexander Cloninger, Co-Chair

Over the past few years, quantization has shown great and consistent success in com-

pressing high-dimensional data and over-parameterized models. This dissertation focuses on

theoretical guarantees and applications of quantization algorithms for fast binary embeddings

(FBEs), random Fourier features (RFFs), and neural networks (NNs). Chapter 1 presents an

introduction to quantization and background information for topics covered by later chapters.

In Chapter 2, we introduce a novel fast binary embedding algorithm that transforms

data points from high-dimensional space into low-dimensional binary sequences. We prove

that the ℓ2 distances among original data points can be recovered by the ℓ1 norm on binary

embeddings and its associated approximation error is comparable to that of a continuous valued

Johnson-Lindenstrauss embedding plus a quantization error that admits a polynomial decay as

xv

the embedding dimension increases. So the length of the binary codes required to achieve a

desired accuracy is quite small which is empirically verified by our experiments over natural

images.

As a natural extension of Chapter 2, Chapter 3 proposes low-bit Σ∆ and distributed

noise-shaping methods for quantizing RFFs associated with shift-invariant kernels. We show

that the quantized RFFs achieve a high accuracy approximation of the underlying kernels with

the approximation error decaying polynomially as the dimension of the RFFs increases, and

decaying exponentially as a function of the bits used. Moreover, we test our method on multiple

machine learning tasks that involve the kernel method.

In Chapter 4, we generalize a post-training neural-network quantization method, GPFQ,

that is based on a greedy path-following mechanism. We expands the results of previous work on

GPFQ to handle general quantization alphabets and a range of input distributions, showing that

for quantizing a single-layer network, the relative square error essentially decays linearly in the

number of weights – i.e., level of over-parametrization. Additionally, we propose modifications

to promote sparsity of the weights, and rigorously analyze the associated error. Without fine-

tuning, we can quantize several common architectures to 4 bits, while attaining an accuracy loss

less than 1%.

Since the theoretical results in Chapter 4 are limited to single-layer neural networks, in

Chapter 5, we propose a new stochastic algorithm for quantizing pretrained neural networks.

We establish, for the first time, rigorous full-network error bounds, under an infinite alphabet

condition and minimal assumptions on the weights and input data. Moreover, we demonstrate

that it is possible to achieve error bounds equivalent to those obtained in the infinite alphabet

case, using a mere log2 logN bits, where N represents the maximum width across all layers.

xvi

Chapter 1

Introduction

Quantization is a widely used process with applications in various fields, including signal

acquisition and processing, as well as data and model compression. Its primary objective is to

efficiently represent signals or data, usually by mapping a range of values to a smaller set of

discrete values known as the quantization alphabet. When the quantization alphabet is finite,

its elements can be enumerated hence easily represented using finite bit-strings. As a result,

quantizing data in signal processing, or model parameters in machine learning offers potential

benefits such as memory savings and simplified operations for faster computation. This thesis

focuses on studying quantization algorithms and theory in the following contexts.

1. Geometry preserving data quantization: This involves mapping high-dimensional data to a

low-dimensional discrete space while preserving important geometric information, such as

Euclidean or kernel distances.

2. Model quantization: This refers to converting the parameters of deep neural networks

from, say, 32-bit representations to lower-bit representations, while ensuring the network’s

performance is maintained.

Quantization enables information compression by reducing redundancies in high dimen-

sional data and over-parameterized neural networks. While it offers memory and time efficiency,

quantization also inevitably introduces an unavoidable approximation error that can negatively

affect performance. Therefore, this thesis introduces and studies algorithms with favorable

1

trade-offs between controlling the quantization error and minimizing the number of bits used

for encoding. Moreover, we provide rigorous error bounds for different families of quantization

designs and compare their performance over various machine learning tasks. In this opening

chapter, we review the mathematical foundations of quantization and introduce the topics covered

by this thesis.

1.1 Quantization Fundamentals

Throughout this thesis, we focus on uniform symmetric quantization as it enables faster

computation in the integer domain and allows high throughput in hardware. Specifically, it

converts real and floating-point numbers to elements from fixed grid-like sets, called alphabets.

In this thesis, an important alphabet we consider is symmetric with evenly distributed elements,

given by

A := {±kδ : 0≤ k ≤ K,k ∈ Z}. (1.1)

Here δ > 0 denotes the step size and we refer to K ∈ N as the number of levels of the alphabet.

Note that (1.1) is widely used for neural network quantization which we study in Chapter 4 and

Chapter 5. In many applications, including those considered in Chapter 2 and Chapter 3, one may

also use a variant of (1.1) that excludes 0. Our discussion of quantization herein is motivated by

this thesis’s focus on applications in machine learning. Thus, we will next discuss computation

and calibration issues that are salient to such applications. Then, we will introduce Sigma-Delta

quantization, a prominent approach used in signal processing applications as it will be heavily

used in Chapter 2 and Chapter 3.

1.1.1 Scalar Quantization

Scalar quantization is a prevalent method to perform quantization by leveraging the

“rounding-to-nearest element” operation. For example, for the alphabet given by (1.1), we define

2

the associated scalar quantizer Q : R→A by

Q(z) := arg min
p∈A
|z− p|= δ sign(z)min

ß∣∣∣∣õ z
δ
+

1
2

û∣∣∣∣,K™. (1.2)

For a vector y ∈ Rm, we generalize the scalar quantization by applying Q pointwise, that is,

Q(y) := (Q(y1),Q(y2), . . . ,Q(ym)) ∈A m. Note that this operation is also called a memoryless

scalar quantizer (MSQ) in later chapters.

1.1.2 Accelerated Computing

In practice, scalar quantization (1.2) can be decomposed into two steps:

(1) Convert a real or floating-point number z to an integer representation that is used for acceler-

ated computing in hardware.

zq := clip
(
round

(z
δ

)
,K
)
∈ Z.

Here, for any x ∈ R,

round(x) := argmin
i∈Z
|x− i| and clip(x,K) =


x if |x| ≤ K,

−K if x <−K,

K if x > K.

(2) Transform zq into a floating-point number ẑ:

ẑ := δ zq.

It is easy to verify that ẑ = Q(z). So we use Q(z) for theoretical analysis in most cases. However,

to understand the impact of using quantization on computational cost, we will use the two-step

process introduced above and take neural networks as an example. Consider a fully-connected

3

layer that performs a matrix multiplication Y = XW , where X ∈ Rm×p is the input activation

coming from previous layers, W ∈ Rp×n is the weight matrix with n neurons (i.e. columns), and

Y ∈Rm×n is the pre-activation for the current layer. Suppose that we quantize X and W pointwise

with step size δa > 0 and δw > 0 respectively. Then the real-valued matrix multiplication can be

approximated as follows

Yi j =
p

∑
k=1

XikWk j ≈
p

∑
k=1

X̂ik“Wk j = δaδw

p

∑
k=1

(Xik)q(Wk j)q.

Since (Xik)q,(Wk j)q ∈ Z, the approximation above invokes faster integer mutiply-add operations

∑
p
k=1(Xik)q(Wk j)q followed by a singe floating-point operation which is cheap. In general, rather

than adopt a 32-bit floating point format for the model parameters, one uses significantly fewer

bits for representing weights, activations, and even gradients. Since the floating-point operations

are substituted by more efficient low-bit operations, quantization can reduce inference time and

power consumption.

1.1.3 Calibration

The scalar quantizer Q in (1.2) has two parameters K and δ . For a specific quantization

problem, the number of bits b ∈ N is usually given and thus K = 2b−1 is fixed. It remains to

determine the value of δ in the hope that the quantization error is minimized for multiple inputs

in a batch. The process of choosing a proper step size δ > 0 is called calibration. There are

three commonly used calibration approaches:

(1) Max calibration: pick δ > 0 such that the largest element qmax := Kδ ≥ |z| for all values z

seen during calibration, or simply for all values z in the input set of interest.

(2) Percentile calibration: set δ > 0 such that qmax is a percentile of the distribution of absolute

values |z| seen during calibration.

(3) Entropy calibration: by selecting an optimal δ > 0, the Kullback–Leibler (KL) divergence

between the original floating-point distribution and the quantized distribution is minimized.

4

Apart from these calibration methods, one can learn the step size δ using backpropagation,

see [41, 13].

1.1.4 Sigma-Delta Quantization

Although the MSQ in (1.2) can encode the input x with minimal computational cost, it

does not adapt to the down-stream tasks for which quantization is being performed. For example,

in various contexts, one is interested in minimizing ∥D(Q(x))−D(x)∥ rather than ∥Q(x)− x∥,

where D is an operator acting on the quantized data. In this case, simply minimizing the scalar

error associated with each entry of the vector is far from optimal.

In contrast, noise-shaping quantization (see, e.g., [6, 7, 8, 1]) schemes attempt to push

the quantization error err(x) := Q(x)− x as close to the kernel of the operator D as possible. In

particular, in the case of linear D, one seeks ∥D(Q(x))−D(x)∥= ∥D(err(x))∥≈ 0. While placing

the reconstruction error completely in the null space of the reconstruction operator is generally

impossible, there are quantization schemes like Σ∆ quantization that utilizes quantization errors

from previous steps to increase the overall accuracy of the quantized sequence. As a result, Σ∆

quantization offers much better error guarantees than MSQ in a variety of applications, ranging

from bandlimited function quantization [10, 17, 11, 4], to quantization of compressed sensing

measurements [22, 33, 32, 29], and as we will see in Chapter 2 and Chapter 3, to the quantization

of high-dimensional data [14, 37] and random Fourier features [31].

Given r ∈ N, an r-th order Σ∆ quantizer Q(r) : Rm → A m maps an input signal y =

(yi)
m
i=1 ∈ Rm to a quantized sequence q = (qi)

m
i=1 ∈ A m via a quantization rule ρ and the

following iterations. For i = 1,2, . . . ,m,


u0 = u−1 = . . .= u1−r = 0,

qi = Q(ρ(yi,ui−1, . . . ,ui−r)),

ui = ∑
r
j=1(−1) j−1(r

j

)
ui− j + yi−qi,

(1.3)

5

where Q(z) is the scalar quantizer as in (1.2) and u ∈ Rm is the state vector. Note that the last

equation in (1.3) is equivalent to

Dru = y−q (1.4)

where D ∈ Rm×m is the first order difference matrix defined by

Di j =


1 if i = j,

−1 if i = j+1,

0 otherwise.

An important example is the first order Σ∆ quantizer in which we choose r = 1 and quantization

rule ρ(yi,ui−1, . . . ,ui−r) = yi +ui−1. It follows that Q(1) is given by


u0 = 0,

qi = Q(yi +ui−1),

ui = ui−1 + yi−qi.

(1.5)

Moreover, the quantization scheme Q(r) in (1.3) is stable if there exists µ > 0 such that for each

input with ∥y∥∞ ≤ µ , the state vector u ∈ Rm satisfies ∥u∥∞ ≤C. Here, µ and C are constants

that do not depend on m. Stability heavily depends on the choice of quantization rule ρ and it is

essential for controlling the quantization error y−q = Dru via boundedness. Although (1.5) is

proved to be stable [11], it is a non-trivial task to design a stable Q(r) for r > 1. To achieve this

goal, we adopt the techniques used in [11]. Specifically, an r-th order Σ∆ quantization scheme

can arise from the following difference equation

y−q = H ∗ v (1.6)

where ∗ is the convolution operator and the sequence H := Drg with g ∈ ℓ1. Then any bounded

6

solution v of (1.6) gives rise to a bounded solution u of (1.4) via u = g∗v. By change of variables,

(1.4) can be reformulated as (1.6). By choosing a proper filter h := δ (0)−H, where δ (0) denotes

the Kronecker delta sequence supported at 0, one can implement (1.6) by vi = (h∗ v)i + yi−qi

and the corresponding stable quantization scheme Q(r) reads as


qi = Q((h∗ v)i + yi),

vi = (h∗ v)i + yi−qi.

(1.7)

Proposition 1.1.1 ([11, 21]). There exists a universal constant C > 0 such that the Σ∆ schemes

(1.5) and (1.7) are stable, and

∥y∥∞ ≤ µ < 1 =⇒∥u∥∞ ≤ c(K,r) :=
CCr

1rr

2K−1
,

where C1 =
(⌈

π2

(cosh−1
γ)2

⌉ e
π

)
with γ := 2K− (2K−1)µ .

1.2 Thesis Structure

Throughout this dissertation, we will focus on the scalar quantizer (1.2), the stable noise-

shaping quantizer (1.3), and their applications for data quantization in Chapter 2 and Chapter 3,

and model compression in Chapter 4 and Chapter 5. These topics are briefly introduced below

and we will take a deep dive into each of them in later chapters.

1.2.1 Data Quantization.

Large-scale high-dimensional data has become increasingly common nowadays, which

challenges machine learning algorithms to extract and preserve discriminative information from

the data. As an important branch of representation learning [2, 40, 20], fast binary embedding

(FBE) [38, 16, 39, 24, 44] methods quantize high-dimensional data into binary sequences such

that input distances can be recovered from the binary codes. So we can perform efficient learning

and similarity search, e.g. for image retrieval, directly in the binary space. In Chapter 2, we

7

propose a new FBE method to preserve pairwise ℓ2 distances and rigorously analyze the trade-off

between the approximation accuracy and the embedding dimension.

Although Kernel methods [34, 35] have long been demonstrated as effective techniques

in various machine learning tasks such as support vector machines, logistic regression, and

dimensionality reduction, they have limited scalability for large datasets. Specifically, an

N×N kernel matrix derived from N data points suffer from O(N2) storage cost and O(N3)

computational cost for common learning tasks. In order to overcome this bottleneck, one popular

approach is to “linearize” the kernel by using random Fourier features (RFFs) [31]. Moreover,

a low-precision quantization of RFFs [42, 43, 25] can further speed up training and alleviate

the memory burden for large-scale data. Chapter 3 applies Σ∆ and distributed noise-shaping

methods for quantizing the RFFs with low bitwidth and shows an excellent trade-off between

memory use and accuracy.

1.2.2 Model Quantization.

The past decade has witnessed the resurrection of deep learning in many tasks, such as

computer vision (CV), natural language processing (NLP), and multimodal learning, among

others. Nevertheless, over-parameterized deep neural networks (DNNs) are computationally

expensive to train, memory intensive to store, and energy consuming to apply. For example,

pretrained generative models from the transformer [36] family, commonly known as GPT or

OPT [30, 3, 46], have achieved great success in various applications, including zero-shot and

few-shot learning.

Released in 2020, GPT-3 [3] marked a significant milestone in generative AI. With

an astounding 175 billion parameters, it requires 800 GB to store and incurs a training cost

of over 4.6 million dollars. The example of GPT-3 demonstrates the importance of model

compression while maintaining performance, making this an important active area of deep

learning research [18, 12, 15]. As a prominent approach to compress DNNs, quantization uses

significantly fewer bits to represent weights and activations, which reduces inference time and

8

power consumption. Following [23], we can categorize neural network quantization methods

into two classes: quantization-aware training (QAT) [13, 5, 9, 19] and post-training quantization

(PTQ) [26, 27, 45, 28]. QAT retrains the quantized model and requires the training dataset to

perform end-to-end backpropagation. In contrast to QAT, PTQ directly quantizes pretrained

DNNs without retraining and it only needs a small amount of data.

In Chapter 4, we study a PTQ method for quantizing the weights of pretrained DNNs

called greedy path following quantization (GPFQ). Moreover, we substantially improve GPFQ’s

theoretical analysis, propose a modification to handle convolutional layers, and propose a sparsity

promoting version to encourage the algorithm to set many of the weights to zero. We demonstrate

that the performance of our quantization methods is not only good in experimental settings, but,

equally importantly, has favorable and rigorous error guarantees. Note that all technical proofs in

Chapter 4 only apply for a single-layer neural network with certain assumed input distributions.

This limitation naturally comes from the fact that a random input and a deterministic quantizer

lead to intractable distributions after passing through multiple nonlinear layers.

To overcome this main obstacle to obtaining theoretical guarantees for multiple layer

neural networks, in Chapter 5, we propose a new stochastic quantization framework, called

stochastic path following quantization (SGPFQ), which introduces randomness into the quantizer.

For the first time, we prove rigorous quantization error bounds for multi-layer neural networks,

under both infinite and finite alphabet conditions. Moreover, by quantizing several common

neural network architectures, we empirically show that the developed method presents only

minor loss of accuracy compared to unquantized models.

References

[1] John J Benedetto, Alexander M Powell, and Ozgur Yilmaz. “Sigma-delta quantization and

finite frames”. In: IEEE Transactions on Information Theory 52.5 (2006), pp. 1990–2005.

9

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A review

and new perspectives”. In: IEEE transactions on pattern analysis and machine intelligence

35.8 (2013), pp. 1798–1828.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

“Language models are few-shot learners”. In: Advances in neural information processing

systems 33 (2020), pp. 1877–1901.

[4] Emmanuel J Candès, Justin Romberg, and Terence Tao. “Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency information”. In: IEEE

Transactions on information theory 52.2 (2006), pp. 489–509.

[5] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-

shmi Srinivasan, and Kailash Gopalakrishnan. “Pact: Parameterized clipping activation

for quantized neural networks”. In: arXiv preprint arXiv:1805.06085 (2018).

[6] Evan Chou and C Sinan Güntürk. “Distributed noise-shaping quantization: I. Beta duals

of finite frames and near-optimal quantization of random measurements”. In: Constructive

Approximation 44.1 (2016), pp. 1–22.

[7] Evan Chou and C Sinan Güntürk. “Distributed noise-shaping quantization: II. Classical

frames”. In: Excursions in Harmonic Analysis, Volume 5. Springer, 2017, pp. 179–198.

[8] Evan Chou, C Sinan Güntürk, Felix Krahmer, Rayan Saab, and Özgür Yılmaz. “Noise-

shaping quantization methods for frame-based and compressive sampling systems”. In:

Sampling theory, a renaissance (2015), pp. 157–184.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training

deep neural networks with binary weights during propagations”. In: Advances in neural

information processing systems. 2015, pp. 3123–3131.

10

[10] Ingrid Daubechies and Ron DeVore. “Approximating a bandlimited function using very

coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order”. In:

Annals of mathematics (2003), pp. 679–710.

[11] Percy Deift, Felix Krahmer, and C Sınan Güntürk. “An optimal family of exponentially

accurate one-bit Sigma-Delta quantization schemes”. In: Communications on Pure and

Applied Mathematics 64.7 (2011), pp. 883–919.

[12] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. “Model compression and

hardware acceleration for neural networks: A comprehensive survey”. In: Proceedings of

the IEEE 108.4 (2020), pp. 485–532.

[13] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and

Dharmendra S. Modha. “Learned step size Quantization”. In: International Conference on

Learning Representations. 2020. URL: https://openreview.net/forum?id=rkgO66VKDS.

[14] Simon Foucart and Holger Rauhut. “An invitation to compressive sensing”. In: A mathe-

matical introduction to compressive sensing. Springer, 2013, pp. 1–39.

[15] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt

Keutzer. “A survey of quantization methods for efficient neural network inference”. In:

arXiv preprint arXiv:2103.13630 (2021).

[16] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. “Iterative quanti-

zation: A procrustean approach to learning binary codes for large-scale image retrieval”. In:

IEEE transactions on pattern analysis and machine intelligence 35.12 (2012), pp. 2916–

2929.

[17] C Sinan Güntürk. “One-bit sigma-delta quantization with exponential accuracy”. In:

Communications on Pure and Applied Mathematics: A Journal Issued by the Courant

Institute of Mathematical Sciences 56.11 (2003), pp. 1608–1630.

11

https://openreview.net/forum?id=rkgO66VKDS

[18] Yunhui Guo. “A survey on methods and theories of quantized neural networks”. In: arXiv

preprint arXiv:1808.04752 (2018).

[19] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding”. In: arXiv preprint

arXiv:1510.00149 (2015).

[20] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. “Contrastive representation

learning: A framework and review”. In: Ieee Access 8 (2020), pp. 193907–193934.

[21] Felix Krahmer, Rayan Saab, and Rachel Ward. “Root-exponential accuracy for coarse

quantization of finite frame expansions”. In: IEEE transactions on information theory

58.2 (2012), pp. 1069–1079.

[22] Felix Krahmer, Rayan Saab, and Özgür Yilmaz. “Sigma–delta quantization of sub-gaussian

frame expansions and its application to compressed sensing”. In: Information and Infer-

ence: A Journal of the IMA 3.1 (2014), pp. 40–58.

[23] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient

inference: A whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[24] Ping Li, Anshumali Shrivastava, Joshua L Moore, and Arnd C König. “Hashing algorithms

for large-scale learning”. In: Advances in neural information processing systems. 2011,

pp. 2672–2680.

[25] Xiaoyun Li and Ping Li. “Quantization algorithms for random fourier features”. In:

International Conference on Machine Learning. PMLR. 2021, pp. 6369–6380.

[26] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei

Wang, and Shi Gu. “Brecq: Pushing the limit of post-training quantization by block

reconstruction”. In: International Conference on Learning Representations (2021).

12

[27] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen B. “Up

or down? adaptive rounding for post-training quantization”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 7197–7206.

[28] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex

M Bronstein, and Avi Mendelson. “Loss aware post-training quantization”. In: Machine

Learning 110.11-12 (2021), pp. 3245–3262.

[29] Alexander M Powell, Rayan Saab, and Özgür Yılmaz. “Quantization and finite frames”.

In: Finite Frames: Theory and Applications (2013), pp. 267–302.

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.

“Language models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9.

[31] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”. In:

Advances in neural information processing systems 20 (2007), pp. 1177–1184.

[32] Rayan Saab, Rongrong Wang, and Özgür Yılmaz. “From compressed sensing to com-

pressed bit-streams: practical encoders, tractable decoders”. In: IEEE Transactions on

Information Theory 64.9 (2017), pp. 6098–6114.

[33] Rayan Saab, Rongrong Wang, and Özgür Yılmaz. “Quantization of compressive samples

with stable and robust recovery”. In: Applied and Computational Harmonic Analysis 44.1

(2018), pp. 123–143.

[34] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. Adaptive Computation and Machine

Learning series, 2018.

[35] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cam-

bridge university press, 2004.

13

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in

neural information processing systems 30 (2017).

[37] Roman Vershynin. High-dimensional probability: An introduction with applications in

data science. Vol. 47. Cambridge university press, 2018.

[38] Xinyang Yi, Constantine Caramanis, and Eric Price. “Binary embedding: Fundamental

limits and fast algorithm”. In: International Conference on Machine Learning. 2015,

pp. 2162–2170.

[39] Felix Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang. “Circulant binary embed-

ding”. In: International conference on machine learning. 2014, pp. 946–954.

[40] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. “Network representation

learning: A survey”. In: IEEE transactions on Big Data 6.1 (2018), pp. 3–28.

[41] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. “Lq-nets: Learned

quantization for highly accurate and compact deep neural networks”. In: Proceedings of

the European conference on computer vision (ECCV). 2018, pp. 365–382.

[42] Jian Zhang, Avner May, Tri Dao, and Christopher Ré. “Low-precision random Fourier

features for memory-constrained kernel approximation”. In: The 22nd International

Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 1264–1274.

[43] Jinjie Zhang, Harish Kannan, Alexander Cloninger, and Rayan Saab. “Sigma-delta and

distributed noise-shaping quantization methods for random fourier features”. In: arXiv

preprint arXiv:2106.02614 (2021).

[44] Jinjie Zhang and Rayan Saab. “Faster Binary Embeddings for Preserving Euclidean

Distances”. In: International Conference on Learning Representations. 2021. URL: https:

//openreview.net/forum?id=YCXrx6rRCXO.

14

https://openreview.net/forum?id=YCXrx6rRCXO
https://openreview.net/forum?id=YCXrx6rRCXO

[45] Jinjie Zhang, Yixuan Zhou, and Rayan Saab. “Post-training quantization for neural net-

works with provable guarantees”. In: SIAM Journal on Mathematics of Data Science 5.2

(2023), pp. 373–399.

[46] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,

Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. “OPT: Open pre-trained

transformer language models”. In: arXiv preprint arXiv:2205.01068 (2022).

15

Chapter 2

Faster Binary Embeddings for Preserving
Euclidean Distances

We propose a fast, distance-preserving, binary embedding algorithm to transform a

high-dimensional dataset T ⊆ Rn into binary sequences in the cube {±1}m. When T consists

of well-spread (i.e., non-sparse) vectors, our embedding method applies a stable noise-shaping

quantization scheme to Ax where A ∈ Rm×n is a sparse Gaussian random matrix. This contrasts

with most binary embedding methods, which usually use x 7→ sign(Ax) for the embedding.

Moreover, we show that Euclidean distances among the elements of T are approximated by the

ℓ1 norm on the images of {±1}m under a fast linear transformation. This again contrasts with

standard methods, where the Hamming distance is used instead. Our method is both fast and

memory efficient, with time complexity O(m) and space complexity O(m) on well-spread data.

When the data is not well-spread, we show that the approach still works provided that data is

transformed via a Walsh-Hadamard matrix, but now the cost is O(n logn) per data point. Further,

we prove that the method is accurate and its associated error is comparable to that of a continuous

valued Johnson-Lindenstrauss embedding plus a quantization error that admits a polynomial

decay as the embedding dimension m increases. Thus the length of the binary codes required to

achieve a desired accuracy is quite small, and we show it can even be compressed further without

compromising the accuracy. To illustrate our results, we test the proposed method on natural

images and show that it achieves strong performance.

16

2.1 Introduction

Analyzing large data sets of high-dimensional raw data is usually computationally de-

manding and memory intensive. As a result, it is often necessary as a preprocessing step to

transform data into a lower-dimensional space while approximately preserving important geomet-

ric properties, such as pairwise ℓ2 distances. As a critical result in dimensionality reduction, the

Johnson-Lindenstrauss (JL) lemma [23] guarantees that every finite set T ⊆Rn can be (linearly)

mapped to a m = O(ε−2 log(|T |)) dimensional space in such a way that all pairwise distances

are preserved up to an ε-Lipschitz distortion. Additionally, there are many significant results to

speed up the JL transform by introducing fast embeddings, e.g. [1, 2, 27, 32], or by using sparse

matrices [25, 24, 6]. Such fast embeddings can usually be computed in O(n logn) versus the

O(mn) time complexity of JL transforms that rely on unstructured dense matrices.

2.1.1 Related Work

To further reduce memory requirements, progress has been made in nonlinearly embed-

ding high-dimensional sets T ⊆ Rn to the binary cube {−1,1}m with m≪ n, a process known

as binary embedding. Provided that d1(·, ·) is a metric on Rn, a distace preserving binary embed-

ding is a map f : T →{−1,1}m and a function d2(·, ·) on {−1,1}m×{−1,1}m to approximate

distances, i.e.,

|d2(f (x), f (y))−d1(x,y)| ≤ α, for ∀x,y ∈T . (2.1)

The potential dimensionality reduction (m≪ n) and 1-bit representation per dimension imply

that storage space can be considerably reduced and downstream applications like learning and

retrieval can happen directly using bitwise operations. Most existing nonlinear mappings f in

(2.1) are generated using simple memory-less scalar quantization (MSQ). For example, given a

set of unit vectors T ⊆ Sn−1 with finite size |T |, consider the map

qx := f (x) = sign(Gx) (2.2)

17

where G ∈Rm×n is a standard Gaussian random matrix and sign(·) returns the element-wise sign

of its argument. Let d1(x,y) = 1
π

arccos(∥x∥−1
2 ∥y∥

−1
2 ⟨x,y⟩) be the normalized angular distance

and d2(qx,qy) =
1

2m∥qx−qy∥1 be the normalized Hamming distance. Then, Yi, Caramanis, and

Price [40] show that (2.1) holds with probability at least 1−η if m ≳ α−2 log(|T |/η), so one

can approximate geodesic distances with normalized Hamming distances. While this approach

achieves optimal bit complexity (up to constants) [40], it has been observed in practice that

m is usually around O(n) to guarantee reasonable accuracy [15, 37, 41]. Much like linear JL

embedding techniques admit fast counterparts, fast binary embedding algorithms have been

developed to significantly reduce the runtime of binary embeddings [17, 30, 16, 15, 29, 35].

Indeed, fast JL transforms (FJLT) and Gaussian Toeplitz matrices [40], structured hashed

projections [4], iterative quantization [17], bilinear projection [15], circulant binary embedding

[41, 13, 12, 33, 26], sparse projection [39], and fast orthogonal projection [42] have all been

considered.

These methods can decrease time complexity to O(n logn) operations per embedding, but

still suffer from some important drawbacks. Notably, due to the sign function, these algorithms

completely discard all magnitude information, as sign(Ax) = sign(A(αx)) for all α > 0. So, all

points in the same direction embed to the same binary vector and cannot be distinguished. Even

if one settles for recovering geodesic distances, using the sign function in (2.2) is an instance of

MSQ so the estimation error α in (2.1) decays slowly as the number of bits m increases [40].

In addition to the above data independent approaches, there are data dependent embedding

methods for distance recovery, including product quantization [22, 14], LSH-based methods

[3, 38, 7] and iterative quantization [18]. Their accuracy, which can be excellent, nevertheless

depends on the underlying distribution of the input dataset. Moreover, they may be associated

with larger time and space complexity for embedding the data. For example, product quantization

performs k-means clustering in each subspace to find potential centroids and stores associated

lookup tables. LSH-based methods need random shifts and dense random projections to quantize

each input data point.

18

Recently Huynh and Saab [21] resolved these issues by replacing the simple sign function

with a Sigma-Delta (Σ∆) quantization scheme, or alternatively other noise-shaping schemes (see

[5]) whose properties will be discussed in Section 2.3. They use the binary embedding

qx := Q(DBx) (2.3)

where Q is now a stable Σ∆ quantization scheme, D ∈ Rm×m is a diagonal matrix with random

signs, and B ∈ Rm×n are specific structured random matrices. To give an example of Σ∆

quantization in this context, consider w := DBx. Then the simplest Σ∆ scheme computes qx via

the following iteration, run for i = 1, ...,m:


u0 = 0,

qx(i) = sign(wi +ui−1),

ui = ui−1 +wi−qi.

(2.4)

The choices of B in [21] allow matrix vector multiplication to be implemented using the

fast Fourier transform. Then the original Euclidean distance ∥x− y∥2 can be recovered via a

pseudo-metric on the quantized vectors given by

dṼ (qx,qy) := ∥Ṽ (qx−qy)∥2 (2.5)

where Ṽ ∈ Rp×m is a “normalized condensation operator”, a sparse matrix that can be applied

fast (see Section 2.3). Regarding the complexity of applying (2.3) to a single x ∈ Rn, note

that x 7→ DBx has time complexity O(n logn) while the quantization map needs O(m) time and

results in an m bit representation. So when m≤ n, the total time complexity for (2.3) is around

O(n logn).

19

2.1.2 Methods and Contributions

We extend these results by replacing DB in (2.3) by a sparse Gaussian matrix A ∈ Rm×n

so that now

qx := Q(Ax). (2.6)

Given scaled high-dimensional data T ⊂ Rn contained in the ℓ2 ball Bn
2(κ) with radius κ , we

put forward Algorithm 1 to generate binary sequences and Algorithm 2 to compute estimates

of the Euclidean distances between elements of T via an ℓ1-norm rather than ℓ2-norm. The

contribution of this work is threefold. First, we prove Theorem 2.1.1 quantifying the performance

of our algorithms.
Algorithm 1: Fast Binary Embedding for Finite T

Input: T = {x(j)}k
j=1 ⊆ Bn

2(κ) ▷ Data points in ℓ2 ball

1 Generate A ∈ Rm×n as in Definition 2.2.2 ▷ Sparse Gaussian matrix A

2 for j← 1 to k do

3 z(j)← Ax(j)

4 q(j) = Q(z(j)) ▷ Stable Σ∆ quantizer Q as in (2.4), or more generally (2.21).

Output: Binary sequences B = {q(j)}k
j=1 ⊆ {−1,1}m

Algorithm 2: ℓ2 Norm Distance Recovery

Input: q(i),q(j) ∈B ▷ Binary sequences produced by Algorithm 1

1 y(i)← Ṽ q(i) ▷ Condense the components of q

2 y(j)← Ṽ q(j)

Output: ∥y(i)− y(j)∥1 ▷ Approximation of ∥x(i)− x(j)∥2

Theorem 2.1.1 (Main result). Let T ⊆ Rn be a finite, appropriately scaled set with elements

satisfying ∥x∥∞ = O(n−1/2∥x∥2) and ∥x∥2 ≤ κ < 1. If m ≳ p := Ω(ε−2 log(|T |2/δ)) and r ≥ 1

is the integer order of Q, then with probability 1− 2δ on the draw of the sparse Gaussian

matrix A, the following holds uniformly over all x,y in T : Embedding x,y into {−1,1}m using

Algorithm 1, and estimating the associated distance between them using Algorithm 2 yields the

20

error bound ∣∣∣dṼ (qx,qy)−∥x− y∥2

∣∣∣≤ c
Å

m
p

ã−r+1/2
+ ε∥x− y∥2

where c > 0 is a constant.

Theorem 2.1.1 yields an approximation error bounded by two components, one due

to quantization and another that resembles the error from a linear JL embedding into a p-

dimensional space. The latter part is essentially proportional to p−1/2, while the quantization

component decays polynomially fast in m, and can be made harmless by increasing m. Moreover,

the number of bits m ≳ ε−2 log(|T |) achieves the optimal bit complexity required by any oblivi-

ous random embedding that preserves Euclidean or squared Euclidean distance, see Theorem

4.1 in [11]. Theorem 2.4.2 is a more precise version of Theorem 2.1.1, with all quantifiers, and

scaling parameters specified explicitly, and with a potential modification to A that enables the

result to hold for arbitrary (not necessarily well-spread) finite T , at the cost of increasing the

computational complexity of embedding a point to O(n logn). We also note that if the data did

not satisfy the scaling assumption of Theorems 2.1.1 and 2.4.2, then one can replace {−1,1} by

{−C,C}, and the quantization error would scale by C.

Second, due to the sparsity of A, (2.6) can be computed much faster than (2.3), when

restricting our results to “well-spread” vectors x, i.e., those that are not sparse. On the other hand,

in Section 2.5, we show that Algorithm 1 achieves O(m) time and space complexity in contrast

with the common O(n logn) runtime of fast binary embeddings, e.g., [15, 40, 41, 13, 12, 21] that

rely on fast JL transforms or circulant matrices. Meanwhile, Algorithm 2 requires only O(m)

runtime.

Third, Definition 2.2.3 shows that Ṽ is sparse and essentially populated by integers

bounded by (m/p)r where r,m, p are as in Theorem 2.1.1. In Section 2.5, we note that each

y(i) = Ṽ q(i) (and the distance query), can be represented by O(p log2(m/p)) bits, instead of m

bits, without affecting the reconstruction accuracy. This is a consequence of using the ℓ1-norm in

Algorithm 2. Had we instead used an ℓ2-norm, we would have required O(p(log2(m/p))2) bits.

21

Finally, we remark that while the assumption that the vectors x are well-spread (i.e.

∥x∥∞ = O(n−1/2∥x∥2)) may appear restrictive, there are important instances where it holds.

Natural images seem to be one such case, as are random Fourier features [36]. Similarly, Gaussian

(and other subgaussian) random vectors satisfy a slightly weakened ∥x∥∞ = O(log(n)n−1/2∥x∥2)

assumption with high probability, and one can modify our construction by slightly reducing the

sparsity of A (and slightly increasing the computational cost) to handle such vectors. On the

other hand, if the data simply does not satisfy such an assumption, one can still apply Theorem

2.4.2 part (ii), but now the complexity of embedding a point is O(n logn).

2.2 Preliminaries

2.2.1 Notation and definitions

Throughout, f (n) = O(g(n)) and f (n) = Ω(g(n)) mean that | f (n)| is bounded above

and below respectively by a positive function g(n) up to constants asymptotically; that is,

limsupn→∞

| f (n)|
g(n) < ∞. Similarly, we use f (n) = Θ(g(n)) to denote that f (n) is bounded both

above and below by a positive function g(n) up to constants asymptotically. We next define

operator norms.

Definition 2.2.1. Let α,β ∈ [1,∞] be integers. The (α,β) operator norm of K ∈ Rm×n is

∥K∥α,β = maxx ̸=0
∥Kx∥β

∥x∥α
.

We now introduce some notation and definitions that are relevant to our construction.

Definition 2.2.2 (Sparse Gaussian random matrix). Let A = (ai j) ∈ Rm×n be a random matrix

with i.i.d. entries such that ai j is 0 with probability 1− s and is drawn from N (0, 1
s) with

probability s.

We adopt the definition of a condensation operator of Chou and Güntürk [5] and Huynh

and Saab [21].

22

Definition 2.2.3 (Condensation operator). Let p, r, λ be fixed positive integers such that λ =

rλ̃ − r+1 for some integer λ̃ . Let m = λ p and v be a row vector in Rλ whose entry v j is the j-th

coefficient of the polynomial (1+ z+ . . .+ zλ̃−1)r. Define the condensation operator V ∈ Rp×m

by

V = Ip⊗ v =


v

. . .

v

 .

For example, when r = 1, λ = λ̃ , and v ∈ Rλ is simply the vector of all ones. The normalized

condensation operator is given by

Ṽ =

√
π/2

p∥v∥2
V.

The fast JL transform was first studied by Ailon and Chazelle [1]. It admits many variants

and improvements, e.g. [27, 31]. The idea is that given any x ∈ Rn we use a fast “Fourier-like”

transform, like the Walsh-Hadamard transform, to distribute the total mass (i.e. ||x||2) of x

relatively evenly to its coordinates.

Definition 2.2.4 (FJLT). The fast JL transform can be obtained by

Φ := AHD ∈ Rm×n. (2.7)

Here, A ∈ Rm×n is a sparse Gaussian random matrix, as in Definition 2.2.2, while H ∈ Rn×n is

a normalized Walsh-Hadamard matrix defined by Hi j = n−1/2(−1)⟨i−1, j−1⟩ where ⟨i, j⟩ is the

bitwise dot product of the binary representations of the numbers i and j. Finally, D ∈ Rn×n is

diagonal with diagonal entries drawn independently from {−1,1} with probability 1/2 for each.

2.2.2 condensed Johnson-Lindenstrauss Transforms

Definition 2.2.5. When Ṽ is a condensation operator, and A is a sparse Gaussian, we refer to

Ṽ A as a condensed sparse JL transform (CSJLT). When A is replaced by Φ as in Definition 2.2.4

we refer to Ṽ Φ as a condensed fast JL transform (CFJLT).

23

The definition above is justified by the following lemma (see Appendix 2.8 for the proof).

Lemma 2.2.6 (CJLT lemma). Let T be a finite subset of Rn, λ ∈ N, ε ∈ (0, 1
2), δ ∈ (0,1),

p = O(ε−2 log(|T |2/δ)) ∈ N and m = λ p. Let Ṽ ∈ Rp×m be as in Definition 2.2.3, A ∈ Rm×n

be the sparse Gaussian matrix in Definition 2.2.2 with s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2)≤ 1, and

Phi = AHD ∈Rm×n be the FJLT in Definition 2.2.4 with s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2 logn)≤ 1.

If T consists of well-spread vectors, that is, ∥x∥∞ = O(n−1/2∥x∥2) for all x ∈T , then

∣∣∣∥Ṽ A(x− y)∥1−∥x− y∥2

∣∣∣≤ ε∥x− y∥2 (2.8)

holds uniformly for all x,y ∈T with probability at least 1−δ . If T is finite but arbitrary, then

∣∣∣∥Ṽ Phi(x− y)∥1−∥x− y∥2

∣∣∣≤ ε∥x− y∥2 (2.9)

holds uniformly for all x,y ∈T with probability at least 1−δ .

So T ⊆ Rn is embedded into Rp with pairwise distances distorted at most ε , where

p = O(ε−2 log |T |) as one would expect from a JL embedding. This will be needed to guarantee

the accuracy associated with our embeddings algorithms. Note that the bound on p does not

require extra logarithmic factors, in contrast to the bound O(ε−2 log |T | log4 n) in [21].

2.3 Sigma-Delta quantization

An r-th order Σ∆ quantizer Q(r) : Rm→A m maps an input signal y = (yi)
m
i=1 ∈ Rm to a

quantized sequence q = (qi)
m
i=1 ∈A m via a quantization rule ρ and the following iterations


u0 = u−1 = . . .= u1−r = 0,

qi = Q(ρ(yi,ui−1, . . . ,ui−r)) for i = 1,2, . . . ,m,

Pru = y−q

(2.10)

24

where Q(y) = argminv∈A |y− v| is the scalar quantizer related to alphabet A and P ∈ Rm×m is

the first order difference matrix defined by

Pi j =


1 if i = j,

−1 if i = j+1,

0 otherwise.

Note that (2.10) is amenable to an iterative update of the state variables ui as

Pru = y−q ⇐⇒ ui =
r

∑
j=1

(−1) j−1

Ç
r
j

å
ui− j + yi−qi, i = 1,2, . . . ,m. (2.11)

Definition 2.3.1. A quantization scheme is stable if there exists µ > 0 such that for each input

with ∥y∥∞ ≤ µ , the state vector u ∈Rm satisfies ∥u∥∞ ≤C. Crucially, µ and C do not depend on

m.

Stability heavily depends on the choice of quantization rule and is difficult to guarantee

for arbitrary ρ in (2.10) when the alphabet is small, as is the case of 1-bit quantization where

A = {±1}. When r = 1 and A = {±1}, the simplest stable Σ∆ scheme Q(1) : Rm→ A m is

equipped with the greedy quantization rule ρ(yi,ui−1) := ui−1 + yi giving the simple iteration

(2.4) from the introduction, albeit with yi replacing wi.

A description of the design and properties of stable Q(r) with r ≥ 2 can be found in

Appendix 2.9.

2.4 Main Results

The ingredients that make our construction work are a JL embedding followed by Σ∆

quantization. Together these embed points into {±1}m, but it remains to define a pseudometric

so that we may approximate Euclidean distances by distances on the cube. We now define this

pseudometric.

25

Definition 2.4.1. Let A m = {±1}m and let V ∈ Rp×m with p≤ m. We define dV on A m×A m

as

dV (q1,q2) = ∥V (q1−q2)∥1 ∀q1,q2 ∈A m.

We now present our main result, a more technical version of Theorem 2.1.1, proved in

Appendix 2.10.

Theorem 2.4.2 (Main result). Let λ , r ∈ N, ε ∈ (0, 1
2), δ ∈ (0,1), β = Ω(log(|T |/δ)) > 0,

µ ∈ (0,1), p = Ω(ε−2 log(|T |2/δ)) ∈ N, and m = λ p. Let Ṽ ∈ Rp×m be as in Definition 2.2.3,

A∈Rm×n be the sparse Gaussian matrix in Definition 2.2.2 with s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2)≤

1, and Φ be the FJLT in Definition 2.2.4 with s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2 logn)≤ 1.

Let T be a finite subset of Bn
2(κ) := {x ∈ Rn : ∥x∥2 ≤ κ} and suppose that

κ ≤ µ

2
√

β + log(2m)
.

Defining the embedding maps f1 : T → {±1}m by f1 = Q(r) ◦ A and f2 : T → {±1}m by

f2 = Q(r) ◦Φ, there exists a constant C(µ,r) such that the following are true:

(i) If the elements of T satisfy ∥x∥∞ = O(n−1/2∥x∥2), then the bound

∣∣∣dṼ (f1(x), f1(y))−∥x− y∥2

∣∣∣≤C(µ,r)λ−r+1/2 + ε∥x− y∥2 (2.12)

holds uniformly for all x,y ∈T with probability exceeding 1−δ −|T |e−β .

(ii) On the other hand, for arbitrary T ⊂ Bn
2(κ)

∣∣∣dṼ (f2(x), f2(y))−∥x− y∥2

∣∣∣≤C(µ,r)λ−r+1/2 + ε∥x− y∥2 (2.13)

holds uniformly for any x,y ∈T with probability exceeding 1−δ −2|T |e−β .

26

Under the assumptions of Theorem 2.4.2, we have

ε = O
Å

log(|T |2/δ)

p

ã
≲

1
√

p
. (2.14)

By (2.12), (2.13) and (2.14), we have that with high probability the inequality

∣∣∣dṼ (fi(x), fi(y))−∥x− y∥2

∣∣∣≤C(µ,r)
(m

p

)−r+1/2
+ ε∥x− y∥2

≤C(µ,r)
(m

p

)−r+1/2
+2κε

≤C(µ,r)
(m

p

)−r+1/2
+

µ√
β + log(2m)

· C2√
p

(2.15)

holds uniformly for x,y ∈T . The first error term in (2.15) results from Σ∆ quantization while

the second error term is caused by the CJLT. So the term O((m/p)−r+1/2) dominates when

λ = m/p is small. If m/p is sufficiently large, the second term O(1/
√

p) becomes dominant.

2.5 Computational and Space Complexity

In this section, we assume that T = {x(j)}k
j=1 ⊆ Rn consists of well-spread vectors.

Moreover, we will focus on stable r-th order Σ∆ schemes Q(r) :Rm→A m with A = {−1,1}. By

Definition 2.2.3, when r = 1 we have v = (1,1, . . . ,1)∈Rλ , while when r = 2, v = (1,2, . . . , λ̃ −

1, λ̃ , λ̃ − 1, . . . ,2,1) ∈ Rλ . In general, ∥v∥∞/∥v∥2 = O(λ−1/2) holds for all r ∈ N. We also

assume that s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2) = Θ(ε−1n−1λ−1) ≤ 1 as in Theorem 2.4.2. We

consider b-bit floating-point or fixed-point representations for numbers. Both entail the same

computational complexity for computing sums and products of two numbers. Addition and

subtraction require O(b) operations while multiplication and division require M (b) = O(b2)

operations via “standard” long multiplication and division. Multiplication and division can

be done more efficiently, particularly for large integers and the best known methods (and best

possible up to constants) have complexity M (b) = O(b logb) [20]. We also assume random

27

access to the coordinates of our data points.

Embedding complexity. For each data point x(j) ∈ T , one can use Algorithm 1 to

quantize it. Since A has sparsity constant s = Θ(ε−1n−1λ−1) and ε−1 = O(p1/2) by (2.14), and

since λ = m/p, computing Ax(j) needs O(snm) = O(λ−1ε−1m) = O(p3/2) time. Additionally, it

takes O(m) time to quantize Ax(j) based on (2.21). When p3/2 ≤m, Algorithm 1 can be executed

in O(m) for each x(j). Because A has O(snm) = O(m) nonzero entries, the space complexity

is O(m) bits per data point. Note that the big O notation here hides the space complexity

dependence on the bit-depth b of the fixed or floating point representation of the entries of A and

x(j). This clearly has no effect on the storage space needed for each q(j), which is exactly m bits.

Complexity of distance estimation. If one does not use embedding methods, storing T

directly, i.e., by representing the coefficients of each x(j) by b bits requires knb bits. Moreover, the

resulting computational complexity of estimating ∥x−y∥2
2 where x,y ∈T is O(nM (b)). On the

other hand, suppose we obtain binary sequences B = {q(j)}k
j=1 ⊆A m by performing Algorithm

1 on T . Using our method with accuracy guaranteed by Theorem 2.4.2, high-dimensional data

points T ⊆ Rn are now transformed into short binary sequences, which only require km bits

of storage instead of knb bits. Algorithm 2 can be applied to recover the pairwise ℓ2 distances.

Note that Ṽ is the normalization of an integer valued matrix V = Ip⊗ v (by Definition 2.2.3) and

q(i) ∈A m is a binary vector. So, by storing the normalization factor separately, we can ignore it

when considering runtime and space complexity. Thus we observe:

1. The number of bits needed to represent each entry of v is at most log2(∥v∥∞) ≈ (r−

1) log2 λ = O(log2 λ) when r > 1 and O(1) when r = 1. So the computation of y(i) =

Ṽ q(i) ∈ Rp only involves m additions or subtractions of integers represented by O(log2 λ)

bits and thus the time complexity in computing y(i) is O(m log2 λ).

2. Each of the p entries of y(i) is the sum of λ terms each bounded by λ r−1. We can store y(i)

in O(p log2 λ) bits.

3. Computing ∥y(i)− y(j)∥1 needs O(p log2 λ) time and O(p log2 λ) bits.

28

So we use O(p log2 λ) bits to recover each pairwise distance ∥x(i)− x(j)∥2 in O(m log2 λ) time.

Table 2.1. Here “Time” is the time needed to embed a data point, while “Space” is the space
needed to store the embedding matrix. “Storage” contains the memory usage to store each
encoded sequence. “Query time” is the time complexity of pairwise distance estimation.

Method Time Space Storage Query Time

Gaussian Toeplitz [40] O(n logn) O(n) O(m) O(m)

Bilinear [15] O(n
√

m) O(
√

mn) O(m) O(m)

Circulant [41] O(n logn) O(n) O(m) O(m)

BOE or PCE⋆ [21] O(n logn) O(n) O(p log2 λ) O(pM (log2 λ))

Our Algorithm⋆ O(m) O(m) O(p log2 λ) O(p log2 λ)

⋆ These algorithms recover Euclidean distances and others recover geodesic distances.

Comparisons with baselines. In Table 2.1, we compare our algorithm with various JL-

based methods from Section 2.1. Here n is the input dimension, m is the embedding dimension

(and number of bits), and p = m/λ is the length of encoded sequences y = Ṽ q. In our case, we

use O(p log2 λ) to store y = Ṽ q. See Appendix 2.11 for a comparison with product quantization.

2.6 Numerical Experiments

To illustrate the performance of our fast binary embedding (Algorithm 1) and ℓ2 distance

recovery (Algorithm 2), we apply them to real-world datasets: Yelp open dataset1, ImageNet

[10], Flickr30k [34], and CIFAR-10 [28]. All images are converted to grayscale and resampled

using bicubic interpolation to size 128×128 for images from Yelp, ImageNet, and Flickr30k

and 32×32 for images from CIFAR-10. So, each can be represented by a 16384-dimensional or

1024-dimensional vector. The results are reported here and in Appendix 2.7. We consider the

two versions of our fast binary embedding algorithm from Theorem 2.4.2:

Method 1. Quantize FJLT embeddings Φx and recover distances based on Algorithm 2.

1Yelp open dataset: https://www.yelp.com/dataset

29

https://www.yelp.com/dataset

(a) MAPE of Method 1 (r = 1) (b) MAPE of Method 2 (r = 1)

(c) MAPE of Method 1 (r = 2) (d) MAPE of Method 2 (r = 2)

Figure 2.1. Plots of ℓ2 distance reconstruction error when r = 1,2

Method 2. Quantize sparse JL embeddings Ax and recover distances by Algorithm 2.

In order to test the performance of our algorithm, we compute the mean absolute per-

centage error (MAPE) of reconstructed ℓ2 distances averaged over all pairwise data points, that

is,
2

k(k−1) ∑
x,y∈T

∣∣∣∣∥Ṽ (qx−qy)∥1−∥x− y∥2

∥x− y∥2

∣∣∣∣.
Experiments on the Yelp dataset. To give a numerical illustration of the relation among the

length m of the binary sequences, embedding dimension p, and order r, as compared to the upper

bound in (2.15), we use both Method 1 and Method 2 on the Yelp dataset. We randomly sample

k = 1000 images and scale them by the same constant so all data points are contained in the

30

ℓ2 unit ball. The scaled dataset is denoted by T . Based on Theorem 2.4.2, we set n = 16384

and s = 1650/n≈ 0.1. For each fixed p, we apply Algorithm 1 and Algorithm 2 for various m.

We present our experimental results for stable Σ∆ quantization schemes, given by (2.21), with

r = 1 and r = 2 in Figure 2.1. For r = 1, we observe that the curve with small p quickly reaches

an error floor while with high p the error decays like m−1/2 and eventually reach a lower floor.

The reason is that the first error term in (2.15) is dominant when m/p is relatively small but the

second error term eventually dominates as m becomes larger and larger. When r = 2 the error

curves decay faster and eventually achieve the same flat error because now the first term in (2.15)

has power −3/2 while the second flat error term is independent of r. Moreover, the performance

of Method 2 is very similar to that of Method 1.

(a) MAPE of Method 1 (p = 64) (b) MAPE of Method 2 (p = 64)

(c) MAPE of Method 1 (p = p(m)) (d) MAPE of Method 2 (p = p(m))

Figure 2.2. Plots of ℓ2 distance reconstruction error with fixed p = 64 and optimal p = p(m)

31

Next, we illustrate the relationship between the quantization order r and the number

of measurements m in Figure 2.2. The curves obtained directly from an unquantized CFJLT

(resp. CSJLT) as in Lemma 2.2.6, with m = 256,512,1024,2048,4096, and p = 64 are used

for comparison against the quantization methods. The first row of Figure 2.2 depicts the

mean squared relative error when p = 64 is fixed for all distinct methods. It shows that stable

quantization schemes with order r > 1 outperform the first order greedy quantization method,

particularly when m is large. Moreover, both the r = 2 and r = 3 curves converge to the

CFJLT/CSJLT result as m goes to 4096. Note that by using a quarter of the original dimension,

i.e. m = 4096, our construction achieves less than 10% error. Furthermore, if we encode Ṽ q as

discussed in Section 2.5, then we need at most rp log2 λ = 64r log2(4096/64) = 384r bits per

image, which is ≲ 0.023 bits per pixel.

For our final experiment, we illustrate that the performance of the proposed approach

can be further improved. Note that the choice of p only affects the distance computation in

Algorithm 2 and does not appear in the embedding algorithm. In other words, one can vary p in

Algorithm 2 to improve performance. This can be done either analytically by viewing the right

hand side of (2.15) as a function of p and optimizing for p (up to constants). It can also be done

empirically, as we do here. Following this intuition, if we vary p as a function of m, and use the

empirically optimal p := p(m) in the construction of Ṽ , then we obtain the second row of Figure

2.2 where the choice r = 3 exhibits lower error than other quantization methods. Note that the

decay rate, as a function of m, very closely resembles that of the unquantized JL embedding

particularly for higher orders r (as one can verify by optimizing the right hand side of (2.15)).

2.7 Comparisons on different datasets

Experiments on the Yelp dataset in Section 2.6 showed that Method 2 based on sparse JL

embeddings performs as well as Method 1 which usues an FJLT to enforce the well-spreadness

assumption. Now, we only focus on Method 2 and check its performance on all four different

32

Figure 2.3. Plot of MAPE of Method 2 on four datasets with fixed p = 64 and order r = 1,2

datasets: Yelp, ImageNet, Flickr30k, and CIFAR-10.

Specifically, for each dataset we randomly sample k = 1000 images and scale them such

that all scaled data points are contained in the ℓ2 unit ball. Then we apply Method 2 to each

dataset separately and compute the corresponding MAPE metric, see Figure 2.3, where we fix

p = 64 and let r = 1,2. We can observe that curves with r = 1 fluctuate, but displays a clear

downward trend, when m≤ 8192 and reach an error floor around 0.08. In contrast to the first

order quantization scheme, curves with r = 2 decays faster and eventually achieve a lower floor

around 0.07. Additionally, Method 2 performs well on all datasets and implies that assumption

of well-spread input vectors is not too restrictive on natural images.

33

2.8 Proof of Lemma 2.2.6

We will require the following lemmas, adapted from the literature, to prove the distance-

preserving properties of our condensed sparse Johnson-Lindenstrauss transform (CSJLT) and

condensed fast Johnson-Lindenstrauss transform (CFJLT) in Lemma 2.2.6.

Lemma 2.8.1 (Theorem 5.1 in [31]). Let n ∈N, ε ∈ (0, 1
2), δ ∈ (0,1),α ∈ [1√

n ,1] be parameters

and set m = Cε−2 log(δ−1) ∈ N where C is a sufficiently large constant. Let s = 2α2/ε ≤ 1,

A ∈ Rm×n be as in Definition 2.2.2. Then

P
(
(1− ε)∥x∥2 ≤

√
π/2
m
∥Ax∥1 ≤ (1+ ε)∥x∥2

)
≥ 1−δ (2.16)

holds for all x ∈ Rn with ∥x∥∞ ≤ α∥x∥2.

Lemma 2.8.2 below is adapted from [1, Lemma 1], and we present its proof for complete-

ness.

Lemma 2.8.2. Let H ∈Rn×n and D ∈Rn×n be as in Definition 2.2.4. For any λ > 0 and x ∈Rn

we have

P
(
∥HDx∥∞ ≤ λ∥x∥2

)
≥ 1−2ne−nλ 2/2. (2.17)

Proof. Without loss of generality, we can assume ∥x∥2 = 1. Let u = HDx = (u1, . . . ,un). Fix

i ∈ {1, . . . ,n}. Then ui = ∑
n
j=1 a jx j with P

(
a j =

1√
n

)
= P

(
a j =− 1√

n

)
= 1

2 for all j. Moreover,

a1,a2, . . . ,an are independent and symmetric. So ui is also symmetric, that is, ui and −ui share

the same distribution. For any t ∈ R we have

E(etnui) =
n

∏
j=1

E[exp(tna jx j)] =
n

∏
j=1

exp(t
√

nx j)+ exp(−t
√

nx j)

2

≤
n

∏
j=1

exp(nt2x2
j/2) = exp(nt2/2).

34

Since ui is symmetric, by Markov’s inequality and the above result, we get

P(|ui| ≥ λ) = 2P(eλnui ≥ eλ 2n)≤ 2e−λ 2nE(eλnui) = 2e−λ 2n/2.

Inequality (2.17) follows by the union bound over all i ∈ {1, . . . ,n}.

Lemma 2.8.3. Let n,λ ∈ N, ε ∈ (0, 1
2), δ ∈ (0,1), p = O(ε−2 log(δ−1)) ∈ N and m = λ p. Let

Ṽ ∈ Rp×m be as in Definition 2.2.3, A ∈ Rm×n be the sparse Gaussian matrix in Definition 2.2.2

with s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2)≤ 1, and Φ = AHD ∈ Rm×n be the FJLT in Definition 2.2.4

with s = Θ(ε−1n−1(∥v∥∞/∥v∥2)
2 logn) ≤ 1. Then for x ∈ Rn with ∥x∥∞ = O(n−1/2∥x∥2), we

have

P
(
(1− ε)∥x∥2 ≤ ∥Ṽ Ax∥1 ≤ (1+ ε)∥x∥2

)
≥ 1−δ , (2.18)

and for arbitrary x ∈ Rn, we have

P
(
(1− ε)∥x∥2 ≤ ∥Ṽ Φx∥1 ≤ (1+ ε)∥x∥2

)
≥ 1−δ . (2.19)

Proof. Recall that V = Ip⊗ v and Φ = AHD. Let y ∈ Rn and K :=VA = (Ip⊗ v)A ∈ Rp×n. For

1≤ i≤ p and 1≤ j ≤ n, we have

Ki j =
λ

∑
k=1

vka(i−1)λ+k, j.

Denote the row vectors of A by a1,a2, . . . ,am. It follows that

(Ky)i =
n

∑
j=1

Ki jy j =
n

∑
j=1

λ

∑
k=1

y jvka(i−1)λ+k, j =
λ

∑
k=1

vk⟨y,a(i−1)λ+k⟩= [B(vT⊗ y)]i

35

where

B :=


a1 a2 . . . aλ

aλ+1 aλ+2 . . . a2λ

...
...

...

a(p−1)λ+1 a(p−1)λ+2 . . . apλ

 ∈ Rp×λn and vT⊗ y =


v1y

v2y
...

vλ y

 ∈ Rλn.

Hence VAy = Ky = B(vT⊗ y) holds for all y ∈ Rn. Additionally, we get a reshaped sparse

Gaussian random matrix B by rearranging the rows of A.

For the first assertion in the theorem, note that x ∈ Rn satisfies ∥x∥∞ = O(∥x∥2/
√

n). So,

we have VAx = B(vT⊗x), ∥vT⊗x∥2 = ∥v∥2∥x∥2 and ∥vT⊗x∥∞ = ∥v∥∞∥x∥∞. Then (2.18) holds

by applying Lemma 2.8.1 to random matrix B and vector v⊤⊗ x with α = Θ(n−1/2∥v∥∞/∥v∥2).

For the second assertion, if x ∈ Rn is arbitrary, then by substituting HDx for y one

can get V Φx = B(vT⊗ (HDx)). Note that ∥vT⊗ (HDx)∥2 = ∥v∥2∥HDx∥2 = ∥v∥2∥x∥2 and

∥vT⊗ (HDx)∥∞ = ∥v∥∞∥HDx∥∞. Inequality (2.19) follows immediately by using the above fact

and applying Lemma 2.8.1 and Lemma 2.8.2 to the random operator B and vector vT⊗ (HDx)

with α = Θ((n−1 logn)1/2∥v∥∞/∥v∥2).

Now we can embed a set of points in a high dimensional space into a space of much lower

dimension in such a way that distances between the points are nearly preserved. By substituting

δ with 2δ/|T |2 in Lemma 2.8.3 and using the fact 1−
(|T |

2

) 2δ

|T |2 = 1− |T |(|T |−1)
2 · 2δ

|T |2 > 1−δ ,

Lemma 2.2.6 follows from the union bound over all pairwise data points in T .

2.9 Stable Sigma-Delta quantization and its properties

Although it is a non-trivial task to design a stable quantization rule ρ when r > 1, families

of one-bit Σ∆ quantization schemes that achieve this goal have been designed by [8, 19, 9], and

we now describe one such family. To start, note that an r-th order Σ∆ quantization scheme may

36

also arise from a more general difference equation of the form

y−q = f ∗ v (2.20)

where ∗ denotes convolution and the sequence f = Prg with g ∈ ℓ1. Then any (bounded) solution

v of (2.20) generates a (bounded) solution u of (2.11) via u = g∗ v. Thus (2.11) can be rewritten

in the form (2.20) by a change of variables. Defining h := δ (0)− f , where δ (0) denotes the

Kronecker delta sequence supported at 0, and choosing the quantization rule ρ in terms of the

new variable as (h∗ v)i + yi. Then (2.10) reads as


qi = Q((h∗ v)i + yi),

vi = (h∗ v)i + yi−qi.

(2.21)

By designing a proper filter h one can get a stable r-th order Σ∆ quantizer, as was done in [9, 19],

leading to the following result from [19], which exploits the above relationship between v and u

to bound ∥u∥∞.

Proposition 2.9.1. Fix an integer r, an integer σ ≥ 6 and let n j = σ(j−1)2+1 for j = 1,2, . . . ,r.

Let the filter h be of the form

h =
r

∑
j=1

d jδ
n j

where δ n j is the Kronecker delta supported at n j and d j = ∏i̸= j
ni

ni−n j
for j = 1,2, . . . ,r. There

exists a universal constant C > 0 such that the rth order Σ∆ scheme (2.21) with 1-bit alphabet

A = {−1,1}, is stable, and

∥y∥∞ ≤ µ < 1 =⇒∥u∥∞ ≤Cc(µ)rrr, (2.22)

where c(µ)> 0 is a constant only depends on µ .

Having introduced stable Σ∆ quantization, we now present a lemma controlling an

37

operator norm of Ṽ Pr. We will need this result in controlling the error in approximating distances

associated with our binary embedding.

Lemma 2.9.2. For a stable r-th order Σ∆ quantization scheme,

∥Ṽ Pr∥∞,1 ≤
»

π/2(8r)r+1
λ
−r+1/2.

Proof. By the same method used in the proof of Lemma 4.6 in [21], one can get

∥V Pr∥∞,∞ ≤ r23r−1 and ∥v∥2 ≥ λ
r−1/2r−r.

It follows that

∥Ṽ Pr∥∞,1 =

√
π/2

p∥v∥2
∥V Pr∥∞,1 ≤

√
π/2
∥v∥2

∥V Pr∥∞,∞ ≤
»

π/2(8r)r+1
λ
−r+1/2.

The following result guarantees that the linear part of our embedding generates a bounded

vector, and therefore allows us to later appeal to the stability property of Σ∆ quantizers. In other

words, it will allow us to use (2.22) to control the infinity norm of state vectors generated by Σ∆

quantization.

Lemma 2.9.3 (Concentration inequality for ∥·∥∞). Let β > 0, ε ∈ (0,1), A∈Rm×n be the sparse

Gaussian matrix in Definition 2.2.2 with s = Θ(ε−1n−1) ≤ 1, and Φ = AHD ∈ Rm×n be the

FJLT in Definition 2.2.4 with s = Θ(ε−1n−1 logn)≤ 1. Suppose that

2
»

β + log(2m)≤ µ ≤ 4√
ε
. (2.23)

Then

P
(
∥Ax∥∞ ≤ µ∥x∥2

)
≥ 1− e−β (2.24)

38

holds for x ∈ Rn with ∥x∥∞ = O(n−1/2∥x∥2) and

P
(
∥Φx∥∞ ≤ µ∥x∥2

)
≥ 1−2e−β (2.25)

holds for x ∈ Rn.

Proof. Without loss of generality, we can assume that x is a unit vector with ∥x∥2 = 1. We start

with the proof of (2.25). By applying Lemma 2.8.2 to x with λ = Θ(
√

logn/n), we have

P
(
∥HDx∥∞ ≤ λ

)
≥ 1− e−β . (2.26)

Let A be as in Definition 2.2.2 with s = 2λ 2/ε = Θ(ε−1n−1 logn)≤ 1 and recall that Φ = AHD.

Suppose that y ∈ Rn with ∥y∥2 = 1 and ∥y∥∞ ≤ λ . Let Y = Ay. Then Yi := (Ay)i =

∑
n
j=1 ai jy j for 1 ≤ i ≤ m. For t ≤ t0 :=

√
2s/λ = 2/

√
ε , we get t2y2

j/2s ≤ 1 for all j. Since

ex≤ 1+2x for all x∈ [0,1] and 1+x≤ ex for all x∈R, set2y2
j/2s+1−s≤ s(1+t2y2

j/s)+1−s =

1+ t2y2
j ≤ et2y2

j .

It follows that

E(etYi) =
n

∏
j=1

E(etai jy j) =
n

∏
j=1

(
set2y2

j/2s +1− s
)
≤

n

∏
j=1

et2y2
j = et2

holds for all 1≤ i≤m and t ∈ [0, t0]. So for t ∈ [0, t0], by Markov inequality and above inequality

we have

P
(

Yi ≥ µ

)
= P

(
etYi ≥ etµ

)
≤ e−tµE(etYi)≤ e−tµ+t2

.

According to (2.23) we can set t = µ/2≤ t0 = 2/
√

ε , then P
(

Yi ≥ µ

)
≤ e−µ2/4. By symmetry

we have P
(
−Yi ≥ µ

)
≤ e−µ2/4. Consequently, for all 1≤ i≤ m we have

P
(
|Yi| ≥ µ

)
≤ 2e−µ2/4. (2.27)

39

By a union bound, (2.23), and (2.27)

P
(
∥Ay∥∞ ≥ µ

)
= P

(
max

1≤i≤m
|Yi| ≥ µ

)
≤ mP

(
|Yi| ≥ µ

)
= 2me−µ2/4 ≤ e−β . (2.28)

It follows immediately from (2.26) and (2.28) with y = HDx that

P(∥Φx∥∞ ≤ µ) = P(∥AHDx∥∞ ≤ µ)

≥ P(∥AHDx∥∞ ≤ µ,∥HDx∥∞ ≤ λ)

= P(∥AHDx∥∞ ≤ µ | ∥HDx∥∞ ≤ λ)P(∥HDx∥∞ ≤ λ)

≥ (1− e−β)2

≥ 1−2e−β .

Furthermore, if we replace y by x in (2.28) and use A with s = Θ(ε−1n−1), then inequality (2.24)

follows. The difference in the choice of s is due to the fact that for vectors in the unit ball with

∥x∥∞ = O(n−1/2∥x∥2) we have that ∥x∥∞ ≤ n−1/2.

2.10 Proof of Theorem 2.4.2

Proof. Since the proofs of (2.12) and (2.13) are almost identical except for using different

random projections A and Φ, we shall only establish the result for (2.13) in detail. For any

x ∈T ⊆ Bn
2(κ) we have ∥x∥2 ≤ κ . By applying Lemma 2.9.3 we get

P
(
∥Φx∥∞ < µ

)
≥ P

(
∥Φx∥∞ < µ∥x∥2/κ

)
≥ P

(
∥Φx∥∞ < 2

»
β + log(2m)∥x∥2

)
≥ 1−2e−β .

40

Since above inequality holds for arbitrary x ∈T , by union bound one can get

P
(

max
x∈T
∥Φx∥∞ < µ

)
≥ 1−2|T |e−β .

Suppose that ux is the state vector of input signal Φx which is produced by stable r-th order Σ∆

scheme. Using Lemma 2.9.2 and formula (2.22) to get

∥Ṽ Pr∥∞,1∥ux∥∞ ≤Cc(µ)rrr(8r)r+1
»

π/2λ
−r+1/2, (2.29)

which holds uniformly for all x ∈T with probability exceeding 1−2|T |e−β .

Furthermore, by Lemma 2.2.6 the probability that

∣∣∣∥Ṽ Φ(x− y)∥1−∥x− y∥2

∣∣∣≤ ε∥x− y∥2 (2.30)

holds simultaneously for all x,y ∈T is at least 1−δ .

We deduce from triangle inequality and equations (2.29), (2.30) that

∣∣∣dṼ (f2(x), f2(y))−∥x− y∥2

∣∣∣
=
∣∣∣∥Ṽ Q(r)(Φx)−Ṽ Q(r)(Φy)∥1−∥x− y∥2

∣∣∣
≤
∣∣∣∥Ṽ Q(r)(Φx)−Ṽ Q(r)(Φy)∥1−∥Ṽ Φ(x− y)∥1

∣∣∣+ ∣∣∣∥Ṽ Φ(x− y)∥1−∥x− y∥2

∣∣∣
≤ ∥Ṽ (Q(r)(Φx)−Φx)−Ṽ (Q(r)(Φy)−Φy)∥1 +

∣∣∣∥Ṽ Φ(x− y)∥1−∥x− y∥2

∣∣∣
≤ ∥Ṽ Prux∥1 +∥Ṽ Pruy∥1 +

∣∣∣∥Ṽ Φ(x− y)∥1−∥x− y∥2

∣∣∣
≤ ∥Ṽ Pr∥∞,1(∥ux∥∞ +∥uy∥∞)+

∣∣∣∥Ṽ Φ(x− y)∥1−∥x− y∥2

∣∣∣
≤ 2Cc(µ)rrr(8r)r+1

»
π/2λ

−r+1/2 + ε∥x− y∥2

=
√

2πCc(µ)rrr(8r)r+1
λ
−r+1/2 + ε∥x− y∥2

=C(µ,r)λ−r+1/2 + ε∥x− y∥2

41

holds uniformly for any x,y ∈T with probability at least 1−δ −2|T |e−β . The bound (2.12)

is associated with a weaker condition on β due to the associated weaker condition in Lemma

2.9.3.

2.11 Comparison with product quantization

Note that the distance preserving quality (as well as performance on retrieval and classifi-

cation tasks) of MSQ binary embeddings using bilinear projection [15] or circulant matrices [41]

has be shown to be at least as good as product quantization [22], LSH [3, 38] and ITQ [18]. Our

method uses Sigma-Delta quantization, which

1. gives provably better error rates than the MSQ design as shown in this paper, and in [21];

2. is more efficient in terms of both memory and distance query computation as shown in

Section 2.5.

In order to more explicitly compare our algorithm with data dependent methods, as an example,

we now briefly analyze product quantization as presented in [22]. We then present a brief

analysis of optimal data-independent methods as well as data-independent product quantization,

in comparison with our method.

2.11.1 Data-dependent product quantization

The key idea here is to decompose the input vector space Rn into the Cartesian product of

M low-dimensional subspaces Rd with n=Md and quantize each subspace into k∗ codewords, for

example by using the k-means algorithm. So the total number of centroids (codewords) in Rn is

k = (k∗)M and the time complexity of learning all k centroids is O(nNk∗t) where N is the number

of training data points and t is the number of iterations in the k-means algorithm. Moreover,

converting each input vector x ∈ Rn to the index of its codeword needs time O(Mdk∗) = O(nk∗)

and the length of binary codes is m = log2 k = M log2 k∗. Since we have to store all k centroids

and M lookup tables, memory usage is O(M(dk∗+(k∗)2)) = O(nk∗+M(k∗)2). Moreover, the

42

query time, i.e. the time complexity of pairwise distance estimation is O(Mk∗) using lookup

tables. As a result, we obtain Table 2.2, whose column headings are analogous to those in

Table 2.1.

Table 2.2. Comparison between the proposed method and product quantization per data point

Method Time Space Storage Query Time

Product Quantization O(nk∗) O(nk∗+M(k∗)2) O(M log2 k∗) O(Mk∗)

Our Method O(m) O(m) O(p log2 λ) O(p log2 λ)

(on well-spread T)

A direct comparison of the associated errors is not possible due to the fact that the error

associated with data-dependent product quantization is a function of the input data distribution,

and the convergence of the k-means algorithm. Nevertheless, one can note some tradeoffs from

Table 2.2. Namely, the embedding time and the space needed to store our embedding matrix are

lower than those associated with product quantization. On the other hand, the space needed to

store the embedded data points and the query time associated with product quantization depend

on the parameter choices M and k∗, which also affect the resulting accuracy. Finally, we note

that product quantization (using k-means clustering) is associated with a pre-processing time

O(nNk∗t), which is significantly larger than our method.

Data-independent product quantization and optimality of our method

If one were to just encode, in a data independent way, the ℓ2 ball of Rn, so that the

encoding error is at most θ , then a simple volume argument shows that one needs at least θ−n

codewords, hence n log2(1/θ) bits. This lower bound holds, independent of the encoding method,

i.e., whether one uses product quantization or any other technique. To reduce the number of bits

below n, one approach is to capitalize on the finiteness of the data, and use a JL type embedding

(such as random sampling for well-spread data) to reduce the dimension to p≈ log |T |/ε2 (up to

log factors), and therefore introduce a new embedding error of ε , on top of the encoding error.

43

The advantage is that one would then only need to encode an ℓ2 ball in the p-dimensional space.

Again, independently of the encoding method, one would now need p log(1/θ) bits to get an

encoding error of θ . If we denote cx,cy, the encoding of x and y, then this gives the error estimate

∣∣∥cx− cy∥−∥x− y∥
∣∣≲ θ + ε∥x− y∥.

If we rewrite the error now in terms of the number of bits b = p log(1/θ), we get

∣∣∥cx− cy∥−∥x− y∥
∣∣≲ 2−b/p + ε∥x− y∥.

Note that in all of this, no computational complexity was taken into account.

One can envision replacing k-means clustering in product quantization, with a data-

independent encoding. With a careful choice of parameters, this may be significantly more

computationally efficient than the above optimal encoding, albeit at the expense of a sub-optimal

error bound.

On the other hand, consider that our computationally efficient scheme uses m bits, and

that those m bits can be compressed into b≈ rp log(m/p) bits (see Section 2.5), then our error,

by Theorem 2.4.2 is

∣∣∥cx− cy∥−∥x− y∥
∣∣≲ c(m/p)−r+1/2 + ε∥x− y∥,

which in rate-distortion terms is

∣∣∥cx− cy∥−∥x− y∥
∣∣≲ 2−

b
p

r−1/2
r + ε∥x− y∥.

In other words, up to constants in the exponent, and possible logarithmic terms, our result is

near-optimal.

44

2.12 Acknowledgements

The authors would like to thank Sjoerd Dirksen for inspiring discussions and suggestions.

Our work was supported in part by NSF Grant DMS-2012546 and a UCSD senate research award.

This chapter, in full, is joint work with Rayan Saab and has been published in International

Conference on Learning Representations (ICLR), 2021. The dissertation author was the primary

investigator and author of this paper.

References

[1] Nir Ailon and Bernard Chazelle. “The fast Johnson–Lindenstrauss transform and ap-

proximate nearest neighbors”. In: SIAM Journal on computing 39.1 (2009), pp. 302–

322.

[2] Nir Ailon and Edo Liberty. “An almost optimal unrestricted fast Johnson-Lindenstrauss

transform”. In: ACM Transactions on Algorithms (TALG) 9.3 (2013), pp. 1–12.

[3] Alexandr Andoni and Piotr Indyk. “Near-optimal hashing algorithms for approximate near-

est neighbor in high dimensions”. In: 2006 47th annual IEEE symposium on foundations

of computer science (FOCS’06). IEEE. 2006, pp. 459–468.

[4] Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony Jebara, Sanjiv

Kumar, and Yann LeCun. “Binary embeddings with structured hashed projections”. In:

International Conference on Machine Learning. 2016, pp. 344–353.

[5] Evan Chou and C Sinan Güntürk. “Distributed noise-shaping quantization: I. Beta duals

of finite frames and near-optimal quantization of random measurements”. In: Constructive

Approximation 44.1 (2016), pp. 1–22.

[6] Kenneth L Clarkson and David P Woodruff. “Low-rank approximation and regression in

input sparsity time”. In: Journal of the ACM (JACM) 63.6 (2017), pp. 1–45.

45

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. “Locality-sensitive

hashing scheme based on p-stable distributions”. In: Proceedings of the twentieth annual

symposium on Computational geometry. 2004, pp. 253–262.

[8] Ingrid Daubechies and Ron DeVore. “Approximating a bandlimited function using very

coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order”. In:

Annals of mathematics 158.2 (2003), pp. 679–710.

[9] Percy Deift, Felix Krahmer, and C Sınan Güntürk. “An optimal family of exponentially

accurate one-bit Sigma-Delta quantization schemes”. In: Communications on Pure and

Applied Mathematics 64.7 (2011), pp. 883–919.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A

large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision

and pattern recognition. Ieee. 2009, pp. 248–255.

[11] Sjoerd Dirksen and Alexander Stollenwerk. “Binarized Johnson-Lindenstrauss embed-

dings”. In: arXiv preprint arXiv:2009.08320 (2020).

[12] Sjoerd Dirksen and Alexander Stollenwerk. “Fast binary embeddings with Gaussian circu-

lant matrices”. In: 2017 International Conference on Sampling Theory and Applications

(SampTA). IEEE. 2017, pp. 231–235.

[13] Sjoerd Dirksen and Alexander Stollenwerk. “Fast binary embeddings with gaussian

circulant matrices: improved bounds”. In: Discrete & Computational Geometry 60.3

(2018), pp. 599–626.

[14] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. “Optimized product quantization

for approximate nearest neighbor search”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2013, pp. 2946–2953.

46

[15] Yunchao Gong, Sanjiv Kumar, Henry A Rowley, and Svetlana Lazebnik. “Learning binary

codes for high-dimensional data using bilinear projections”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2013, pp. 484–491.

[16] Yunchao Gong, Sanjiv Kumar, Vishal Verma, and Svetlana Lazebnik. “Angular quantiza-

tion based binary codes for fast similarity search”. In: Advances in neural information

processing systems. 2012, pp. 1196–1204.

[17] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. “Iterative quanti-

zation: A procrustean approach to learning binary codes for large-scale image retrieval”. In:

IEEE transactions on pattern analysis and machine intelligence 35.12 (2012), pp. 2916–

2929.

[18] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. “Iterative quanti-

zation: A procrustean approach to learning binary codes for large-scale image retrieval”. In:

IEEE transactions on pattern analysis and machine intelligence 35.12 (2012), pp. 2916–

2929.

[19] C Sinan Güntürk. “One-bit sigma-delta quantization with exponential accuracy”. In:

Communications on Pure and Applied Mathematics: A Journal Issued by the Courant

Institute of Mathematical Sciences 56.11 (2003), pp. 1608–1630.

[20] David Harvey and Joris Van Der Hoeven. “Integer multiplication in time O (n log n)”. In:

Preprint (2019).

[21] Thang Huynh and Rayan Saab. “Fast binary embeddings and quantized compressed

sensing with structured matrices”. In: Communications on Pure and Applied Mathematics

73.1 (2020), pp. 110–149.

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid. “Product quantization for nearest

neighbor search”. In: IEEE transactions on pattern analysis and machine intelligence 33.1

(2010), pp. 117–128.

47

[23] William B Johnson and Joram Lindenstrauss. “Extensions of Lipschitz mappings into a

Hilbert space”. In: Contemporary mathematics 26.189-206 (1984), p. 1.

[24] Daniel M Kane and Jelani Nelson. “A derandomized sparse Johnson-Lindenstrauss trans-

form”. In: arXiv preprint arXiv:1006.3585 (2010).

[25] Daniel M Kane and Jelani Nelson. “Sparser johnson-lindenstrauss transforms”. In: Journal

of the ACM (JACM) 61.1 (2014), pp. 1–23.

[26] Saehoon Kim, Jungtaek Kim, and Seungjin Choi. “On the Optimal Bit Complexity of

Circulant Binary Embedding.” In: AAAI. 2018, pp. 3423–3430.

[27] Felix Krahmer and Rachel Ward. “New and improved Johnson–Lindenstrauss embeddings

via the restricted isometry property”. In: SIAM Journal on Mathematical Analysis 43.3

(2011), pp. 1269–1281.

[28] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. “Cifar-10 (canadian institute for

advanced research)”. In: URL http://www. cs. toronto. edu/kriz/cifar. html 5 (2010).

[29] Ping Li, Anshumali Shrivastava, Joshua L Moore, and Arnd C König. “Hashing algorithms

for large-scale learning”. In: Advances in neural information processing systems. 2011,

pp. 2672–2680.

[30] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. “Hashing with graphs”. In: ICML.

2011.

[31] Jiřı́ Matoušek. “On variants of the Johnson–Lindenstrauss lemma”. In: Random Structures

& Algorithms 33.2 (2008), pp. 142–156.

[32] Jelani Nelson, Eric Price, and Mary Wootters. “New constructions of RIP matrices with

fast multiplication and fewer rows”. In: Proceedings of the twenty-fifth annual ACM-SIAM

symposium on Discrete algorithms. SIAM. 2014, pp. 1515–1528.

48

[33] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi. “Near-optimal sample com-

plexity bounds for circulant binary embedding”. In: 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2017, pp. 6359–6363.

[34] Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C. Caicedo, Julia

Hockenmaier, and Svetlana Lazebnik. “Flickr30K Entities: Collecting Region-to-Phrase

Correspondences for Richer Image-to-Sentence Models”. In: IJCV 123.1 (2017), pp. 74–

93.

[35] Maxim Raginsky and Svetlana Lazebnik. “Locality-sensitive binary codes from shift-

invariant kernels”. In: Advances in neural information processing systems. 2009, pp. 1509–

1517.

[36] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”. In:

Advances in neural information processing systems 20 (2007), pp. 1177–1184.

[37] Jorge Sánchez and Florent Perronnin. “High-dimensional signature compression for large-

scale image classification”. In: CVPR 2011. IEEE. 2011, pp. 1665–1672.

[38] Anshumali Shrivastava and Ping Li. “In defense of minhash over simhash”. In: Artificial

Intelligence and Statistics. 2014, pp. 886–894.

[39] Yan Xia, Kaiming He, Pushmeet Kohli, and Jian Sun. “Sparse projections for high-

dimensional binary codes”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2015, pp. 3332–3339.

[40] Xinyang Yi, Constantine Caramanis, and Eric Price. “Binary embedding: Fundamental

limits and fast algorithm”. In: International Conference on Machine Learning. 2015,

pp. 2162–2170.

[41] Felix Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang. “Circulant binary embed-

ding”. In: International conference on machine learning. 2014, pp. 946–954.

49

[42] Xu Zhang, Felix X Yu, Ruiqi Guo, Sanjiv Kumar, Shengjin Wang, and Shi-Fu Chang.

“Fast orthogonal projection based on kronecker product”. In: Proceedings of the IEEE

International Conference on Computer Vision. 2015, pp. 2929–2937.

50

Chapter 3

Sigma-Delta and Distributed Noise Shap-
ing Quantization Methods for Random
Fourier Features

We propose the use of low bit-depth Sigma-Delta and distributed noise-shaping methods

for quantizing the Random Fourier features (RFFs) associated with shift-invariant kernels. We

prove that our quantized RFFs – even in the case of 1-bit quantization – allow a high accuracy

approximation of the underlying kernels, and the approximation error decays at least polynomially

fast as the dimension of the RFFs increases. We also show that the quantized RFFs can be further

compressed, yielding an excellent trade-off between memory use and accuracy. Namely, the

approximation error now decays exponentially as a function of the bits used. Moreover, we

empirically show by testing the performance of our methods on several machine learning tasks

that our method compares favorably to other state of the art quantization methods in this context.

3.1 Introduction

Kernel methods have long been demonstrated as effective techniques in various machine

learning applications, cf. [33, 32]. Given a dataset X ⊂ Rd with |X | = N, kernel methods

implicitly map data points to a high, possibly infinite, dimensional feature space H by φ : X →

H . However, instead of working directly on that space the inner products between feature

embeddings can be preserved by a kernel function k(x,y) := ⟨φ(x),φ(y)⟩H that coincides

51

with the inner product. Nevertheless, in cases where N is large, using nonlinear kernels for

applications like, say, support vector machines (SVM) and logistic regression requires the

expensive computation of the N×N Gram matrix of the data [24]. In order to overcome this

bottleneck, one popular approach is to “linearize” k by using the random Fourier features (RFFs)

originally proposed by [29], and in turn built on Bochner’s theorem [26]. Given a continuous,

shift-invariant real-valued kernel k(x,y) = κ(x−y) with κ(0) = 1, then κ is the (inverse) Fourier

transform of a probability measure Λ over Rd and we have

κ(u) = Eω∼Λ exp(iω⊤u) = Eω∼Λ cos(ω⊤u). (3.1)

As an example, the radial basis function (RBF) kernel k(x,y) = exp(−∥x− y∥2
2/2σ2)

corresponds to the multivariate normal distribution Λ = N (0,σ−2Id). Following [29], for a

target dimension m, the associated RFFs (without normalization) are

z(x) := cos(Ω⊤x+ξ) ∈ Rm (3.2)

where Ω := (ω1, . . . ,ωm) ∈ Rd×m is a random matrix generated as ω j
iid∼ Λ and ξ ∈ Rm is a

random vector with ξ j
iid∼U([0,2π)) for all j. Additionally, the identity E(⟨z(x),z(y)⟩) = m

2 k(x,y)

implies that the inner product of low-dimensional features
»

2
mz(x),

»
2
mz(y) can approximate

k(x,y) in kernel-based algorithms. Learning a linear model on the (normalized) RFFs then

amounts to using the approximation

k̂RFF(x,y) :=
2
m
⟨z(x),z(y)⟩ (3.3)

as a reference kernel during training. For instance, performing linear SVM and linear ridge

regression on RFFs winds up training nonlinear kernel-based SVM and ridge regression with k̂RFF.

It turns out that using RFFs in such a way with adjustable dimension m can remarkably speed up

training for large-scale data and alleviate the memory burden for storing the kernel matrix. As an

52

additional and very important benefit, the entire kernel function k is approximated accurately,

i.e., the approximation error |k(x,y)− k̂RFF(x,y)| has been shown to be small, particularly when

m is large, e.g., in [30, 5, 37, 35, 3, 4].

The need for large m for guaranteeing good generalization performance on large datasets

[38, 27, 1, 25] provides an opportunity for further savings in memory usage. Rather than store

the RFFs in full precision, quantization methods have been proposed to encode RFFs (3.2)

into a sequence of bits and subsequently approximate k(x,y) by taking inner product between

quantized RFFs, thereby introducing a new level of approximation. One of our goals is to propose

quantization techniques that favorably trade off approximation accuracy against number of bits

used.

3.1.1 Related Work

To make the discussion more precise, let us start by defining the 2K-level quantization

alphabet that we use throughout as

A =
{ a

2K−1

∣∣∣a =±1,±3, . . . ,±(2K−1)
}
, (3.4)

and note that one can use b := log2(2K) bits to represent each element of A . The goal of

quantization in the RFF context is to map z(x) = cos(ΩT x+ξ) ∈ Rm 7→ q(x) ∈A m. We will be

interested in very small values of K, particularly K = 1, which corresponds to very few bits per

RFF sample.

It is natural to start our discussion of quantization methods with the simplest quantizer,

namely memoryless scalar quantization (MSQ), where we round each coordinate of the input

vector z ∈ Rm to the nearest element in A . Specifically, QMSQ : Rm→A m is defined by

qi := (QMSQ(z))i := argminv∈A |zi− v|, i = 1, . . . ,m.

53

Moreover, by setting K = 1, one can get a binary embedding QMSQ(z) = sign(z) with A =

{−1,1} where sign is an element-wise operation. This yields the so-called one-bit universal

quantizer [8, 31] for RFFs, which generates a distorted (biased) kernel

k̂q(x,y) :=
1
m
⟨sign(z(x)),sign(z(y))⟩. (3.5)

Although replacing the sign function in (3.5) by QMSQ with K > 1 and renormalizing

the inner product correspondingly can alleviate the distortion, there are better choices in terms

of approximation error. In [23], a Lloyd-Max (LM) quantization scheme is designed based

on the MSQ where, rather than use the evenly spaced alphabet in (3.4), one has to construct

specific alphabets for different K. Recently with an eye towards asymmetric sensor network

applications, an asymmetric semi-quantized scheme (SemiQ) was proposed in [31], and shown

to be unbiased. It generates k̂s(x,y), which is an inner product between an unquantized RFF

vector and a quantized one, i.e.

k̂s(x,y) :=
π

2m
⟨z(x),QMSQ(z(y))⟩. (3.6)

However, this asymmetric setting is restrictive on many kernel machines because it only works

for the inference stage and the model still has to be trained based on unquantized RFFs. Another

unbiased quantization scheme resorts to injecting randomness into the quantization, and is known

as randomized rounding [40], or stochastic quantization (StocQ) [23]. Specifically, for each

z ∈R, one chooses the two consecutive points s, t ∈A with z ∈ [s, t]. Then one randomly assigns

the quantization via P(QStocQ(z) = s) = t−z
t−s , P(QStocQ(z) = t) = z−s

t−s . It follows that

k̂StocQ(x,y) :=
2
m
⟨QStocQ(z(x)),QStocQ(z(y))⟩ (3.7)

where QStocQ operates on each component separately. Due to the Bernoulli sampling for QStocQ,

the quantization process involves additional randomness for each dimension of RFFs, which

54

leads to extra variance especially in the case of binary embedding, i.e., b = 1. Nevertheless, the

kernel approximation error for k̂s and k̂StocQ is bounded by O(m−1/2) with high probability, see

[31, 40].

3.1.2 Methods and Contributions

We explore the use of Σ∆ [14, 15, 18] and distributed noise-shaping [9, 10] quantization

methods on RFFs. These techniques, explicitly defined and discussed in Section 3.2 and

Section 3.6, yield superior performance to methods based on scalar quantization in contexts

ranging from bandlimited function quantization [14, 18], to quantization of linear measurements

[6, 7], of compressed sensing measurements [19], of non-linear measurements [20], and even for

binary embeddings that preserve (Euclidean) distances [21, 41]. It is therefore natural to wonder

whether they can also yield superior performance in the RFF context. Let Q(r)
Σ∆

be the r-th order

Σ∆ quantizer and let Qβ be the distributed noise shaping quantizer with β ∈ (1,2), and let ṼΣ∆

and Ṽβ be their associated sparse condensation matrices defined in Section 3.2. Then our method

approximates kernels via

k̂(r)
Σ∆
(x,y) := ⟨ṼΣ∆Q(r)

Σ∆
(z(x)),ṼΣ∆Q(r)

Σ∆
(z(y))⟩ (3.8)

and

k̂β (x,y) := ⟨Ṽβ Qβ (z(x)),Ṽβ Qβ (z(y))⟩. (3.9)

Specifically, given large-scale data T contained in a compact set X ⊂ Rd , we put forward

Algorithm 3 to generate and store quantized RFFs such that one can subsequently use them for

training and inference using linear models.

For illustration, Section 3.7 presents a pointwise comparison of above kernel approxima-

tions on a synthetic toy dataset. A summary of our contributions follows.

• We give the first detailed analysis of Σ∆ and distributed noise-shaping schemes for quan-

tizing RFFs. Specifically, Theorem 3.3.1 provides a uniform upper bound for the errors

55

Algorithm 3: Quantized kernel machines
Input: Shift-invariant kernel k, alphabet A , and training data T = {xi}N

i=1 ⊂X
1 Generate random matrix Ω ∈ Rd×m and random vector ξ ∈ Rm as in (3.2)
2 for i = 1 to N do
3 zi← cos(Ω⊤xi +ξ) ∈ Rm ▷ Compute RFFs

4 qi← Q(zi) ∈A m ▷ Q = Q(r)
Σ∆

or Qβ as in (3.10) and (3.13)
5 yi← Ṽ qi ▷ Further compression with Ṽ = ṼΣ∆ or Ṽβ as in (3.14)

6 Store {yi}N
i=1 and use it to train kernel machines with a linear kernel, i.e. inner

product

|̂k(r)
Σ∆
(x,y)− k(x,y)| and |̂kβ (x,y)− k(x,y)| over compact (possibly infinite) sets. Our anal-

ysis shows that the quantization error decays fast as m grows. Additionally, Theorem 3.3.3

provides spectral approximation guarantees for first order Σ∆ quantized RFF approximation

of kernels.

• Our methods allow a further reduction in the number of bits used. Indeed, to imple-

ment (3.8) and (3.9) in practice, one would store and transmit the condensed bitstreams

ṼΣ∆Q(r)
Σ∆
(z(x)) or Ṽβ Qβ (z(x)). For example, since the matrices ṼΣ∆ are sparse and essen-

tially populated by bounded integers, each sample can be represented by fewer bits, as

summarized in Table 3.1.

• We illustrate the benefits of our proposed methods in several numerical experiments

involving kernel ridge regression (KRR), kernel SVM, and two-sample tests based on

maximum mean discrepancy (MMD) (all in Section 3.4). Our experiments show that Q(r)
Σ∆

and Qβ are comparable with the semi-quantization scheme and outperforms the other

fully-quantized method mentioned above, both when we fix the number of RFF features m,

and when we fix the number of bits used to store each quantized RFF vector.

3.2 Noise Shaping Quantization Preliminaries

The methods we consider herein are special cases of noise shaping quantization schemes

(see, e.g., [11]). For a fixed alphabet A and each dimension m, such schemes are associated with

56

an m×m lower triangular matrix H with unit diagonal, and are given by a map Q : Rm→A m

with y 7→ q designed to satisfy y−q = Hu. The schemes are called stable if ∥u∥∞ ≤C where

C is independent of m. Among these noise shaping schemes, we will be interested in stable rth

order Σ∆ schemes Q(r)
Σ∆

[18, 15], and distributed noise shaping schemes Qβ [9, 10]. For example,

in the case of Σ∆ with r = 1, the entries qi, i = 1, ...,m of the vector q = Q(1)
Σ∆
(y) are assigned

iteratively via 
u0 = 0,

qi = QMSQ
(
yi +ui−1

)
,

ui = ui−1 + yi−qi,

(3.10)

where QMSQ(z) = argminv∈A |z− v|. This yields the difference equation y−q = Du where D is

the first order difference matrix given by Di j = 1 if i = j, Di j =−1 if i = j+1, and 0 otherwise.

Stable Σ∆ schemes with r > 1, are more complicated to construct (see Section 3.6), but satisfy

Dru = y−q. (3.11)

On the other hand, a distributed noise-shaping quantizer Qβ : Rm → A m converts the input

vector y ∈ Rm to q = Qβ (y) ∈A m such that

Hu = y−q (3.12)

where, again, ∥u∥∞ ≤ C. Here, denoting the p× p identity matrix by Ip and the Kronecker

product by ⊗, H is a block diagonal matrix defined as H := Ip⊗Hβ ∈ Rm×m where Hβ ∈ Rλ×λ

is given by (Hβ)i j = 1 if i = j, (Hβ)i j =−β if i = j+1, and 0 otherwise. Defining ‹H := Im−H,

one can implement the quantization step q = Qβ (y) via the following iterations for i = 1,2, . . . ,m

57

[9, 10]: 
u0 = 0,

qi = QMSQ
(
yi +‹Hi,i−1ui−1

)
,

ui = yi +‹Hi,i−1ui−1−qi,

(3.13)

where QMSQ(z) = argminv∈A |z− v|. The stability of (3.13) is discussed in Section 3.6. It is

worth mentioning that since Q(r)
Σ∆

and Qβ are sequential quantization methods, they can not be

implemented entirely in parallel. On the other hand, blocks of size λ can still be run in parallel.

Next, we adopt the definition of a condensation operator in [9, 21, 41].

Definition 3.2.1 (Σ∆ condensation operator). Let p, r, λ be fixed positive integers such that

λ = rλ̃ − r+1 for some integer λ̃ . Let m = λ p and v be a row vector in Rλ whose entry v j is

the j-th coefficient of the polynomial (1+ z+ . . .+ zλ̃−1)r. Define the condensation operator

VΣ∆ ∈ Rp×m as VΣ∆ := Ip⊗ v.

For example, when r = 1, λ = λ̃ and the vector v ∈ Rλ is simply the vector of all ones

while when r = 2, λ = 2λ̃ −1 and v = (1,2, . . . , λ̃ −1, λ̃ , λ̃ −1, . . . ,2,1) ∈ Rλ .

Definition 3.2.2 (Distributed noise-shaping condensation operator). Let p,λ be positive integers

and fix β ∈ (1,2). Let m = λ p and vβ := (β−1,β−2, . . . ,β−λ) ∈ Rλ be a row vector. Define the

distributed noise-shaping condensation operator Vβ ∈ Rp×m as Vβ := Ip⊗ vβ .

We will also need the normalized condensation operators given by

ṼΣ∆ :=

√
2

√
p∥v∥2

VΣ∆, Ṽβ :=

√
2

√
p∥vβ∥2

Vβ . (3.14)

If Ṽ is either of the two normalized matrices in (3.14), Lemma 3.9.3 (Section 3.9) shows that

E(⟨Ṽ z(x),Ṽ z(y)⟩) = k(x,y). (3.15)

58

3.3 Main Results and Space Complexity

Our approach to quantizing RFFs given by (3.8) and (3.9) is justified by (3.15), along

with the observation that, for our noise-shaping schemes, we have q = z−Hu with guarantees

that ∥Ṽ Hu∥2 is small.

Moreover, as we will see in Section 3.3.1, we are able to control the approximation error

such that k̂Σ∆(x,y)≈ k(x,y) and k̂β (x,y)≈ k(x,y) hold with high probability. In fact Theorem

3.3.1 shows more: the approximation error of the quantized kernel estimators in (3.8) and (3.9)

have polynomial and exponential error decay respectively as a function of m, the dimension

of the RFFs. Armed with this result, in Section 3.3.2 we also present a brief analysis of the

space-complexity associated with our quantized RFFs, and show that the approximation error

due to quantization decays exponentially as a function of the bits needed.

Additionally, in various applications such as Kernel Ridge Regression (KRR), spectral

error bounds on the kernel may be more pertinent than point-wise bounds. For example, it

was shown in [4, 40] that the expected loss of kernel ridge regression performed using an

approximation of the true kernel is bounded by a function of the spectral error in the kernel

approximation (Lemma 2 of [4], Proposition 1 of [40]). In Theorem 3.3.3, we provide spectral

approximation guarantees for first order Σ∆ quantized RFF approximation of kernels, in the spirit

of the analogous guarantees in [40] for stochastic quantization.

3.3.1 Approximation error bounds

Point-wise error bounds on the approximation

We begin with Theorem 3.3.1, with its proof in Section 3.9.

Theorem 3.3.1. Let X ⊆Rd be compact and k : X ×X →R be a normalized, i.e. k(0,0) = 1,

shift-invariant kernel. Let Λ be its corresponding probability measure as in (3.1), and suppose

that the second moment σ2
Λ
= Eω∼Λ∥ω∥2

2 exists. Let β ∈ (1,2), p,r ∈N, λ = O(
»

p log−1 p) ∈

N, and m = λ p. For x,y ∈X , and b-bit alphabet A in (3.4) with b = log2(2K), consider the

59

approximated kernels k̂(r)
Σ∆
(x,y) and k̂β (x,y) defined as in (3.8) and (3.9) respectively. Then there

exist positive constants {αi}10
i=1 that are independent of m, p,λ such that

sup
x,y∈X

∣∣k̂(r)
Σ∆
(x,y)− k(x,y)

∣∣≲ (log p
p

)1/2
+

log1/2 p
λ r−1(2b−1)

+
1

λ 2r−1(2b−1)2 (3.16)

holds with probability at least 1−α1 p−1−α2−α3 exp(−α4 p1/2 +α5 log p), and

sup
x,y∈X

∣∣k̂β (x,y)− k(x,y)
∣∣≲ (log p

p

)1/2
+

p1/2

β λ−1(2b−1)
+

1
β 2λ−2(2b−1)2 (3.17)

holds with probability exceeding 1−α6 p−1−α7−α8 exp(−α9 p1/2 +α10 log p).

Note that the first error term in (3.16), (3.17) results from the condensation of RFFs, i.e.

Theorem 3.9.8, while the remaining two error terms are due to the corresponding quantization

schemes.

Spectral approximation guarantees for first order Sigma-Delta quantized RFFs

We begin with a definition of a (∆1,∆2)-spectral approximation of a matrix as the error

bounds ∆1 and ∆2 play a key role in bounding the generalization error in various applications

such as Kernel Ridge Regression (KRR) (Lemma 2 of [4], Proposition 1 of [40]).

Definition 3.3.2 ((∆1,∆2)-spectral approximation). Given ∆1,∆2 > 0, a matrix A is a (∆1,∆2)-

spectral approximation of another matrix B if (1−∆1)B ≼ A ≼ (1+∆2)B.

For the tractability of obtaining spectral error bounds, in this section we consider a

variation of the sigma-delta scheme for r = 1. In particular, given a b-bit alphabet as in (3.4)

with b = log2(2K), we consider the following first-order Σ∆ quantization scheme for a random

Fourier feature vector z(x) ∈ [−1,1]m corresponding to a data point x ∈ Rd , where, the state

60

variable (ux)0 is initialized as a random number, i.e.

(ux)0 ∼U
ï
− 1

2b−1
,

1
2b−1

ò
qi+1 = QMSQ((z(x))i+1 +(ux)i)

(ux)i+1 = (ux)i +(z(x))i+1−qi+1

(3.18)

where q ∈ A m represents the Σ∆ quantization of z(x) and (ux)0 is drawn randomly from the

uniform distribution on
î
− 1

2b−1 ,
1

2b−1

ó
.

Let QΣ∆ be the first order Σ∆ quantizer represented by (3.18) and let ṼΣ∆ be the associated

sparse condensation matrix as in definition 3.2.1. Then the elements of the corresponding

approximation K̂Σ∆ of the kernel K is given by

K̂Σ∆(x,y) := ⟨ṼΣ∆QΣ∆(z(x)),ṼΣ∆QΣ∆(z(y))⟩.

Now, we state Theorem 3.3.3 whose proof can be found in Section 3.10.

Theorem 3.3.3. Let K̂Σ∆ be an approximation of a true kernel matrix K using m-feature first-

order Σ∆ quantized RFF (as in (3.18)) with a b-bit alphabet (as in (3.4)) and m = λ p. Then

given ∆1 ≥ 0,∆2 ≥ δ

η
where η > 0 represents the regularization and δ =

8+ 26
3p

λ (2b−1)2 , we have

P[(1−∆1)(K +ηI)≼ (K̂Σ∆ +ηI)≼ (1+∆2)(K +ηI)]

≥ 1−4n

[
exp(

−pη2∆2
1

4nλ (1
η
(∥K∥2 +δ)+2∆1/3)

)+ exp(
−pη2(∆2− δ

η
)2

4nλ (1
η
(∥K∥2 +δ)+2(∆2− δ

η
)/3)

)

]
.

The above result differs from the spectral bound results presented in [40] for stochastic

quantization in a particular aspect of the the lower bound requirement on ∆2, namely, the lower

bound for ∆2 in Theorem 3.3.3 for first order Σ∆ quantization has another controllable parameter

λ in addition to the number of bits b. Specifically, provided 8 >> 26
3p , we have δ ≈ 8

λ (2b−1)2 ,

which is monotonically decreasing in λ .

61

3.3.2 Space complexity

At first glance, Theorem 3.3.1 shows that Qβ has faster quantization error decay as a

function of λ (hence m) as compared to Q(r)
Σ∆

. However, a further compression of the bit-stream

resulting from the latter is possible, and results in a similar performance of the two methods from

the perspective of bit-rate versus approximation error, as we will now show.

Indeed, our methods entail training and testing linear models on condensed bitstreams

Ṽ q ∈ ṼA m ⊂ Rp where q is the quantized RFFs generated by Q(r)
Σ∆

or Qβ , and Ṽ is the cor-

responding normalized condensation operator. Thus, when considering the space complexity

associated with our methods, the relevant factor is the number of bits needed to encode Ṽ q. To

that end, by storing the normalization factors in Ṽ (see (3.14)) separately using a constant number

of bits, we can simply ignore them when considering space complexity. Let us now consider b-bit

alphabets A with b = log2(2K). Since the entries of v are integer valued and ∥v∥1 = O(λ r), one

can store ṼΣ∆q using B := O(p log2(2K∥v∥1)) = O(p(b+ r log2 λ)) bits. Then λ−r ≈ 2−cB/p

and thus the dominant error terms in (3.16) decay exponentially as a function of bit-rate B. On

the other hand, for distributed noise shaping each coordinate of Ṽβ q is a linear combination of λ

components in q, so Ṽβ q takes on at most (2K)λ values. This implies we need p log2(2K)λ = mb

bits to store Ṽβ q in the worst case.

Remark 3.3.4. Despite this tight upper bound for arbitrary β ∈ (1,2), an interesting observation

is that the number of bits used to store Ṽβ q can be smaller than mb with special choices of β , e.g.,

when β k = β +1 with integer k > 1. For example, if k = 2 and b = 1, then β = (
√

5+1)/2 is

the golden ratio and one can see that vβ = (β−1, . . . ,β−λ) satisfies vβ (i) = vβ (i+1)+vβ (i+2)

for 1≤ i≤ λ −2. Since b = 1, we have q ∈ {±1}m and Ṽβ q (ignoring the normalizer) can be

represented by p log2(β
λ) = m log2(β) < m bits. Defining the number of bits used to encode

each RFF vector by R := m log2(β), then (3.17) shows that β−λ = 2−λR/m = 2−R/p dominates

the error. In other words, up to constants, the error is essentially equal to the error obtained by

a λ bit MSQ quantization of a p-dimensional RFF embedding.

62

If we assume that each full-precision RFF is represented by 32 bits, then the storage

cost per sample for both full-precision RFF and semi-quantized scheme QSemiQ in (3.6) is 32m.

Because QStocQ in (3.7) does not admit further compression, it needs mb bits. A comparison of

space complexity of different methods is summarized in Table 3.1.

Table 3.1. The memory usage to store each encoded sample.

Method RFFs QSemiQ QStocQ Q(r)
Σ∆

Qβ

Memory 32m 32m mb O(p(b+ r log2 λ)) mb∗

⋆ This can be reduced to mb log2 β for certain β .

3.4 Numerical Experiments

We have established that both Q(r)
Σ∆

and Qβ are memory efficient and approximate their

intended kernels well. In this section, we will verify via numerical experiments that they perform

favorably compared to other baselines on machine learning tasks.

3.4.1 Kernel Ridge Regression

Kernel ridge regression (KRR) [28] corresponds to the ridge regression (linear least

squares with ℓ2 regularization) in a reproducing kernel Hilbert space (RKHS). We synthesize

N = 5000 highly nonlinear data samples (xi,yi) ∈ R5×R such that for each i, we draw each

component of xi ∈ R5 uniformly from [−1,1) and use it to generate

yi = f (xi) := γ
⊤
1 xi + γ

⊤
2 cos(x2

i)+ γ
⊤
3 cos(|xi|)+ εi

where γ1 = γ2 = γ3 = [1,1, . . . ,1]⊤ ∈R5, and εi ∼N (0, 1
4). This is split into 4000 samples used

for training and 1000 samples for testing. Given a RBF kernel k(x,y) = exp(−γ∥x− y∥2
2) with

γ = 1/d = 0.2, by the representer theorem, our predictor is of the form f̂ (x) = ∑
N
i=1 αik(xi,x)

where the coefficient vector α := (α1, . . . ,αN) ∈ RN is obtained by solving (K +ηIN)α = y.

Here, K = (k(xi,x j)) ∈ RN×N is the kernel matrix and η = 1 is the regularization parameter.

63

Since the dimension of RFFs satisfies m = λ p, there is a trade-off between p and λ .

According to Theorem 3.3.1, increasing the embedding dimension p can reduce the error caused

by compressing RFFs, while larger λ leads to smaller quantization error and makes the memory

usage of Q(r)
Σ∆

more efficient (see Table 3.1). Beyond this, all hyperparameters, e.g. λ , β , are

tuned based on cross validation. In our experiment, we consider the kernel approximations k̂RFF,

k̂StocQ, k̂(1)
Σ∆

with λ = 15, k̂(2)
Σ∆

with λ = 15, and k̂β with β = 1.9, λ = 12. These are applied for

both training (solving for α) and testing (computing f̂ (x) based on α), while the semi-quantized

scheme k̂s is only used for testing and its coefficient vector α is learned by using k̂RFF on the

training set. Furthermore, according to [31], k̂s can be used in two scenarios during the testing

stage:

1. Training data is unquantized RFFs while test data is quantized, i.e., f̂ (x) = ∑
N
i=1 αik̂s(xi,x);

2. Quantize training data and leave testing points as RFFs, i.e., f̂ (x) = ∑
N
i=1 αik̂s(x,xi).

We summarize the KRR results averaging over 30 runs for b = 1 bit quantizers in Figure 3.1, in

which solid curves represent our methods and the dashed lines depict other baselines. Note that

in both cases, the noise-shaping quantizer Qβ achieves the lowest test mean squared error (MSE)

among all quantization schemes, and it even outperforms the semi-quantization scheme k̂s with

respect to the number of measurements m. Moreover, due to the further compression advantage,

Q(r)
Σ∆

and Qβ are more memory efficient than the fully-quantized scheme QStocQ in terms of the

usage of bits per sample. More experiments for b = 2,3 can be found in Section 3.8.

3.4.2 Kernel SVM

To illustrate the performance of our methods for classification tasks, we perform Kernel

SVM [32, 36] to evaluate different kernel approximations on the UCI ML hand-written digits

dataset [2, 39], in which N = 1797 grayscale images compose C = 10 classes and they are

vectorized to d = 64 dimensional vectors. Additionally, all pixel values are scaled in the range

64

Figure 3.1. Kernel ridge regression with b = 1. The labels RFF, s1, s2, StocQ, r1, r2, β represent
k̂RFF, k̂s for scenarios (1), (2), k̂StocQ, k̂(1)

Σ∆
, k̂(2)

Σ∆
, and k̂β respectively.

[0,1] and we randomly split this dataset into 80% for training and 20% for testing. As for the

classifier, we use the soft margin SVM with a regularization parameter R = 1.

Note that in the binary classification case, i.e. labels yi ∈ {−1,1}, our goal is to learn

the coefficients αi, the intercept b, and the index set of support vectors S in a decision function

during the training stage:

g(x) := sign
(
∑
i∈S

αiyik(x,xi)+b
)
. (3.19)

Here, we use a RBF kernel k(x,y) = exp(−γ∥x− y∥2
2) with γ = 1/(dσ2

0)≈ 0.11 and σ2
0 being

equal to the variance of training data. In the multi-class case, we implement the “one-versus-one”

approach for multi-class classification where C(C−1)
2 classifiers are constructed and each one

trains data from two classes. In our experiment, we found that a large embedding dimension

p = m/λ is needed and approximations k̂RFF, k̂StocQ, k̂(1)
Σ∆

with λ = 2, k̂(2)
Σ∆

with λ = 3, and k̂β

with β = 1.1, λ = 2, are implemented for both training (obtaining αi, b, and S in (3.19)) and

testing (predicting the class of an incoming sample x by g(x)) phases, whereas the asymmetric

scheme k̂s is only performed for inference with its parameters in (3.19) learned from k̂RFF during

the training stage. Moreover, as before there are two versions of k̂s used for making predictions:

1. Keep the support vectors as unquantized RFFs and quantize the test point x, i.e. substitute

k̂s(xi,x) for k(x,xi) in (3.19);

65

2. Quantize the support vectors and leave the testing point x as unquantized RFFs, i.e., replace

k(x,xi) in (3.19) with k̂s(x,xi).

Figure 3.2. Kernel SVM with b = 1. The labels RFF, s1, s2, StocQ, r1, r2, β represent k̂RFF, k̂s

for scenarios (1), (2), k̂StocQ, k̂(1)
Σ∆

, k̂(2)
Σ∆

, and k̂β respectively.

For each binary quantization scheme (with b = 1), the average test accuracy over 30

independent runs is plotted in Figure 3.2. We observe that, in regard to m, Qβ substantially

outperforms other fully-quantized schemes including Q(r)
Σ∆

and QStocQ, but, as expected, it is still

worse than the semi-quantized methods. Memory efficiency is characterized in the right plot by

estimating the test accuracy against the storage cost (in terms of bits) per sample. Note that both

Qβ and Q(1)
Σ∆

have significant advantage over the baseline method QStocQ, which means that our

methods require less memory to achieve the same test accuracy when b = 1. See Section 3.8 for

extra experiment results with b = 2,3.

3.4.3 Maximum Mean Discrepancy

Given two distributions p and q, and a kernel k over X ⊂ Rd , the maximum mean

discrepancy (MMD) has been shown to play an important role in the two-sample test [17], by

proposing the null hypothesis H0 : p = q against the alternative hypothesis H1 : p ̸= q. The

square of MMD distance can be computed by

MMD2
k(p,q) = Ex,x′(k(x,x

′))+Ey,y′(k(y,y
′))−2Ex,y(k(x,y))

66

where x,x′ iid∼ p and y,y′ iid∼ q. Here, we set k to a RBF kernel, which is characteristic [34]

implying that MMDk(p,q) is metric, i.e. MMDk(p,q) = 0 ⇐⇒ p = q, and the following

hypothesis test is consistent.

(a) True distributions: p and q (b) Samples of size 60 from p, q (c) Counts vs MMD values

Figure 3.3. Two distributions and the MMD values based on the RBF kernel.

Figure 3.4. Power of the permutation test with b = 1. The labels RFF, s, StocQ, r1, r2, β

represent k̂RFF, k̂s, k̂StocQ, k̂(1)
Σ∆

, k̂(2)
Σ∆

, and k̂β respectively.

In our experiment, the distribution p is supported on a quadrant of the unit circle while q

is generated by perturbing p by a gap of size δ at various regions, see Figure 3.3a. Let n = 60

and choose finite samples X = {x1, . . . ,xn} ∼ p and Y = {y1, . . . ,yn} ∼ q. Then MMDk(p,q)

can be estimated by’MMD
2
k(X ,Y) :=

1
n2

n

∑
i, j=1

k(xi,x j)+
1
n2

n

∑
i, j=1

k(yi,y j)−
2
n2

n

∑
i, j=1

k(xi,y j). (3.20)

67

Under the null hypothesis H0, one can get the empirical distribution of (3.20) by reshuffling the

data samples X ∪Y many times (t = 2000) and recomputing ’MMD
2
k(X

′,Y ′) on each partition

X ′ ∪Y ′. For a significance level of α = 0.05, H0 is rejected if the original ’MMD
2
k(X ,Y) is

greater than the (1−α) quantile from the empirical distribution. Figure 3.3c shows that the

empirical distributions of (3.20) under both H0 and H1 are separated well, where we use the

ground truth RBF kernel with small bandwidth σ = 0.05.

In order to compare different quantization methods when b = 1, we use the following

approximations with optimal λ to perform the permutation test: k̂RFF, k̂StocQ, k̂(1)
Σ∆

with λ = 4, k̂(2)
Σ∆

with λ = 5, and k̂β with β = 1.5, λ = 4. Due to the symmetry in (3.20), k̂s can be implemented

without worrying about the order of inputs. Additionally, if the probability of Type II error, i.e.

false negative rate, is denoted by β , then the statistical power of our test is defined by

power = 1−β = P(rejectH0|H1is true)

In other words, the power equals to the portion of MMD values under H1 that are greater than

the (1−α) quantile of MMD distribution under H0. In Figure 3.4, we observe that, compared

with other fully-quantized schemes, Qβ has the greatest power in terms of m. The performance

of semi-quantized scheme is pretty close to the plain RFF approximation while it requires more

storage space, as discussed in Section 3.3. Moreover, Figure 3.5 presents the corresponding

changes of the MMD distributions under H0 and H1, in which the overlap between the two

distributions is considerably reduced as m increases. Regarding the number of bits per sample,

both Q(1)
Σ∆

and Qβ have remarkable advantage over QStocQ. Extra results related to b = 2,3 can

be found in Section 3.8.

3.5 Conclusion

In order to reduce memory requirement for training and storing kernel machines, we

proposed a framework of using Sigma-Delta and distributed noise-shaping quantization schemes,

68

Figure 3.5. The empirical distributions of MMD values under H0 and H1.

Q(r)
Σ∆

and Qβ , to approximate shift-invariant kernels. We have shown that these fully deterministic

quantization schemes are capable of saving more bits than other baselines without compro-

mising the performance. Importantly, we showed that, for all pairs of signals from an infinite

low-complexity set, the approximations have uniform probabilistic error bounds yielding an

exponential decay as the number of bits used increases. Empirically, we illustrated across popular

kernel machines that the proposed quantization methods achieve strong performance both as a

function of the dimension of the RFF embedding, and the number of bits used, especially in the

case of binary embedding.

69

3.6 Stable Quantization Methods

The general definition for stable Q(r)
Σ∆

. Although it is a non-trivial task to design a stable Q(r)
Σ∆

for r > 1, families of Σ∆ quantization schemes that achieve this goal have been designed [14, 15,

18], and we adopt the version in [15]. Specifically, an r-th order Σ∆ quantization scheme may

also arise from the following difference equation

y−q = H ∗ v (3.21)

where ∗ is the convolution operator and the sequence H := Drg with g ∈ ℓ1. Then any bounded

solution v of (3.21) gives rise to a bounded solution u of (3.11) via u = g ∗ v. By change of

variables, (3.11) can be reformulated as (3.21). By choosing a proper filter h := δ (0)−H,

where δ (0) denotes the Kronecker delta sequence supported at 0, one can implement (3.21) by

vi = (h∗ v)i + yi−qi and the corresponding stable quantization scheme Q(r)
Σ∆

reads as


qi = Q((h∗ v)i + yi),

vi = (h∗ v)i + yi−qi.

(3.22)

Furthermore, the above design leads to the following result from [15, 22], which exploits the

constant c(K,µ,r) to bound ∥u∥∞.

Proposition 3.6.1. There exists a universal constant C > 0 such that the Σ∆ schemes (3.10) and

(3.22) with alphabet A in (3.4), are stable, and

∥y∥∞ ≤ µ < 1 =⇒∥u∥∞ ≤ c(K,r) :=
CCr

1rr

2K−1
,

where C1 =
(⌈

π2

(cosh−1
γ)2

⌉ e
π

)
with γ := 2K− (2K−1)µ .

Note that even with the b = 1 bit alphabet, i.e. K = 1 and A = {−1,1}, stability can be

70

guaranteed with

∥y∥∞ ≤ µ < 1 =⇒ ∥u∥∞ ≤C ·Cr
1 · rr.

The stability of Qβ . The relevant result for stability of the noise-shaping quantization schemes

(3.13) is the following proposition, which can be simply proved by induction or can be found in

[10].

Proposition 3.6.2. The noise-shaping scheme (3.13) with alphabet A in (3.4) is stable and

∥y∥∞ ≤
2K−β

2K−1
=⇒∥u∥∞ ≤ c(K,β) :=

1
2K−1

.

(a) k̂(r)
Σ∆
(x,y) with r = 1 (b) k̂(r)

Σ∆
(x,y) with r = 2 (c) k̂β (x,y) with β = 1.1

Figure 3.6. Kernel Approximations with b = 3.

3.7 A comparison of kernel approximations

In Figure 3.6, we evaluate approximated kernels (3.8) and (3.9) in Section 3.1 on n= 1000

pairs of points {xi,yi}n
i=1 in Rd with d = 50 such that for each i

xi ∼N (0, Id), ui ∼N (0, Id), yi = xi +
5i
n
· ui

∥ui∥2
.

71

Moreover, each data point xi is represented by m= 3000 RFF features and we use 3-bit quantizers

to guarantee good performance for all methods. The target RBF kernel (red curves) is k(x,y) =

exp(−∥x− y∥2
2/2σ2) with γ := 1/2σ2 = 1

5 and note that the approximations (black dots) have

their ℓ2 distances ∥x− y∥2 uniformly distributed in the range [0,5]. We see that both k̂(r)
Σ∆

and k̂β

can approximate k well.

3.8 More Figures in Section 3.4

KRR. In Figure 3.7 and Figure 3.8, we show the KRR results for b = 2 and b = 3 respec-

tively. Same as in the Section 3.4, we see that the proposed methods Q(r)
Σ∆

and Qβ have strong

performance in terms of m and the number of bits used for each sample.

Figure 3.7. Kernel ridge regression with b = 2.

Figure 3.8. Kernel ridge regression with b = 3.

Kernel SVM. Figure 3.9 and Figure 3.10 illustrate the performance of kernel SVM with b = 2

and b = 3 respectively. As we expect, the gap across various schemes shrinks when we use

multibit quantizers, where QStocQ is comparable with Q(r)
Σ∆

and Qβ .

72

Figure 3.9. Kernel SVM with b = 2.

Figure 3.10. Kernel SVM with b = 3.

MMD. As a continuation of the two-sample test in Section 3.4, Figure 3.11 and Figure 3.12

imply that both semi-quantized scheme and QStocQ have better performance with respect to m,

while Q(r)
Σ∆

can save more memory than other quantization methods.

Figure 3.11. Power of the permutation test with b = 2.

73

Figure 3.12. Power of the permutation test with b = 3.

3.9 Proof of Theorem 3.3.1

Given x,y ∈X ⊂ Rd , we use either stable Q(r)
Σ∆

or stable Qβ to quantize their RFFs z(x),

z(y) as in (3.2). Then we get quantized sequences

q(r)
Σ∆
(x) := Q(r)

Σ∆
(z(x)), q(r)

Σ∆
(y) := Q(r)

Σ∆
(z(y)), or qβ (x) := Qβ (z(x)), qβ (y) := Qβ (z(y)),

and expect that both

k̂(r)
Σ∆
(x,y) = ⟨ṼΣ∆q(r)

Σ∆
(x),ṼΣ∆q(r)

Σ∆
(y)⟩, k̂β (x,y) = ⟨Ṽβ qβ (x),Ṽβ qβ (y)⟩

approximate the ground truth k(x,y) well.

In the case of Σ∆ quantization, by (3.11), one can get

ṼΣ∆q(r)
Σ∆
(x) = ṼΣ∆z(x)−ṼΣ∆Drux, ṼΣ∆q(r)

Σ∆
(y) = ṼΣ∆z(y)−ṼΣ∆Druy.

It follows that

k̂(r)
Σ∆
(x,y) = ⟨ṼΣ∆q(r)

Σ∆
(x),ṼΣ∆q(r)

Σ∆
(y)⟩= ⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩−⟨ṼΣ∆z(x),ṼΣ∆Druy⟩

−⟨ṼΣ∆z(y),ṼΣ∆Drux⟩+ ⟨ṼΣ∆Drux,ṼΣ∆Druy⟩.

74

The triangle inequality implies that

∣∣k̂(r)
Σ∆
(x,y)− k(x,y)

∣∣≤ ∣∣⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩− k(x,y)
∣∣︸ ︷︷ ︸

(I)

+
∣∣⟨ṼΣ∆z(x),ṼΣ∆Druy⟩

∣∣︸ ︷︷ ︸
(II)

(3.23)

+
∣∣⟨ṼΣ∆z(y),ṼΣ∆Drux⟩

∣∣︸ ︷︷ ︸
(III)

+
∣∣⟨ṼΣ∆Drux,ṼΣ∆Druy⟩

∣∣︸ ︷︷ ︸
(IV)

.

Similarly, for the noise-shaping quantization, one can derive the following inequality based on

(3.12),

∣∣k̂(r)
β
(x,y)− k(x,y)

∣∣≤ ∣∣⟨Ṽβ z(x),Ṽβ z(y)⟩− k(x,y)
∣∣︸ ︷︷ ︸

(I)

+
∣∣⟨Ṽβ z(x),Ṽβ Huy⟩

∣∣︸ ︷︷ ︸
(II)

(3.24)

+
∣∣⟨Ṽβ z(y),Ṽβ Hux⟩

∣∣︸ ︷︷ ︸
(III)

+
∣∣⟨Ṽβ Hux,Ṽβ Huy⟩

∣∣︸ ︷︷ ︸
(IV)

.

In order to control the kernel approximation errors in (3.23) and (3.24), we need to bound fours

terms (I), (II), (III), and (IV) on the right hand side.

3.9.1 Useful Lemmata

In this section, we present the following well-known concentration inequalities and

relevant lemmata.

Theorem 3.9.1 (Hoeffding’s inequality [16]). Let X1, . . . ,XM be a sequence of independent

random variables such that EXl = 0 and |Xl| ≤ Bl almost surely for all 1≤ l ≤M. Then for all

t > 0,

P
(∣∣∣ M

∑
l=1

Xl

∣∣∣≥ t
)
≤ 2exp

(
− t2

2∑
M
l=1 B2

l

)
.

Theorem 3.9.2 (Bernstein’s inequality [16]). Let X1, . . . ,XM be independent random variables

with zero mean such that |Xl| ≤ K almost surely for all 1 ≤ l ≤M and some constant K > 0.

75

Furthermore assume E|Xl|2 ≤ σ2
l for constants σl > 0 for all 1≤ l ≤M. Then for all t > 0,

P
(∣∣∣ M

∑
l=1

Xl

∣∣∣≥ t
)
≤ 2exp

(
− t2/2

σ2 +Kt/3

)

where σ2 := ∑
M
l=1 σ2

l .

Additionally, one can compute the moments of cos(ω⊤i x+ξi)cos(ω⊤j y+ξ j) as follows.

Lemma 3.9.3. Suppose x,y ∈ Rd with RFFs z(x) and z(y) as in (3.2). Let Ṽ be either of the two

normalized condensation operators defined in (3.14). Then

E(cos(ω⊤j x+ξ j)cos(ω⊤j y+ξ j)) =
1
2

k(x,y), j = 1,2, . . . ,m. (3.25)

E(cos2(ω⊤i x+ξi)cos2(ω⊤j y+ξ j)) =


1
4 +

1
8k(2x,2y) if i = j,

1
4 if i ̸= j.

(3.26)

E(⟨Ṽ z(x),Ṽ z(y)⟩) = k(x,y). (3.27)

Proof. (i) Using trigonometric identities, the independence of ω j and ξ j and formula (3.1), we

get

E(cos(ω⊤j x+ξ j)cos(ω⊤j y+ξ j)) =
1
2
Eω j∼Λ cos(ω⊤j (x− y)) =

1
2

κ(x− y) =
1
2

k(x,y).

(ii) If i = j, then

E(cos2(ω⊤i x+ξi)cos2(ω⊤i y+ξi)) =
1
4
E
(
(1+ cos(2ω

⊤
i x+2ξi))(1+ cos(2ω

⊤
i y+2ξi))

)
=

1
4

(
1+E(cos(2ω

⊤
i x+2ξi)cos(2ω

⊤
i y+2ξi))

)
=

1
4
+

1
8

k(2x,2y).

76

Similarly, when i ̸= j we have

E(cos2(ω⊤i x+ξi)cos2(ω⊤j y+ξ j)) =
1
4
+

1
4
E
(

cos(2ω
⊤
i x+2ξi)cos(2ω

⊤
j y+2ξ j)

)
=

1
4
+

1
4
E(cos(2ω

⊤
i x+2ξi))E(cos(2ω

⊤
j y+2ξ j))

=
1
4
.

(iii) According to (3.25), we have E(z(x)z(y)⊤) = 1
2k(x,y)Im and thus

E(⟨Ṽ z(x),Ṽ z(y)⟩) = E(tr(z(y)⊤Ṽ⊤Ṽ z(x)))

= E(tr(Ṽ⊤Ṽ z(x)z(y)⊤))

= tr(Ṽ⊤ṼE(z(x)z(y)⊤))

=
1
2

k(x,y)∥Ṽ∥2
F

= k(x,y).

Lemma 3.9.4. Let x,y ∈ Rd and ε > 0. Then

P
(∣∣⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩− k(x,y)

∣∣≥ ε

)
≤ 2exp

(
− ε2 p

2+ k(2x,2y)+2k2(x,y)+(4λ +2)ε/3

)
,

P
(∣∣⟨Ṽβ z(x),Ṽβ z(y)⟩− k(x,y)

∣∣≥ ε

)
≤ 2exp

(
− ε2 p

2+ k(2x,2y)+2k2(x,y)+(4λ +2)ε/3

)
.

Proof. (i) We first consider the case of Σ∆ scheme, i.e. (I) in (3.23). Note that

⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩= 2
p∥v∥2

2

p

∑
i=1

Si(x,y)

77

where S1(x,y), . . . ,Sp(x,y) are i.i.d. with

Si(x,y) :=
λ

∑
j,k=1

v jvk cos(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j)cos(ω⊤(i−1)λ+ky+ξ(i−1)λ+k).

Due to (3.25), (3.26), and

E
(

Si(x,y)−
k(x,y)∥v∥2

2
2

)
= 0,

one can get

Var
(

Si(x,y)−
k(x,y)∥v∥2

2
2

)
= Var(Si(x,y))

=
1
8

(
2(k2(x,y)+1)∥v∥4

2 +(k(2x,2y)−4k2(x,y))
λ

∑
i=1

v4
i

)
≤
∥v∥4

2
8

(
2k2(x,y)+2+ k(2x,2y)

)

and ∣∣∣Si(x,y)−
k(x,y)∥v∥2

2
2

∣∣∣≤ |Si(x,y)|+
∥v∥2

2
2
≤ ∥v∥2

1 +
∥v∥2

2
2
≤ (λ +1/2)∥v∥2

2

for all 1≤ i≤ p, it follows immediately from Bernstein’s inequality that

P
(∣∣⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩− k(x,y)

∣∣≥ ε

)
= P
(∣∣∣ p

∑
i=1

(
Si(x,y)−

k(x,y)∥v∥2
2

2

)∣∣∣≥ ε p∥v∥2
2

2

)
≤ 2exp

(
− ε2 p

2+ k(2x,2y)+2k2(x,y)+(4λ +2)ε/3

)
.

(ii) Since the proof in part (i) works for all vectors v∈Rλ with nonnegative components, a similar

result holds for the noise-shaping case by replacing VΣ∆ and v by Vβ and vβ respectively.

Lemma 3.9.5. Let x ∈ Rd and ε > 0. Then

P
(1

p∥v∥2
2
∥VΣ∆z(x)∥1 ≥ ε

)
≤ 2pexp

(
−

ε2∥v∥2
2

1+2ε∥v∥∞/3

)
,

78

P
(1

p∥v∥2
2
∥Vβ z(x)∥1 ≥ ε

)
≤ 2pexp

(
−

ε2∥vβ∥2
2

1+2ε∥vβ∥∞/3

)
.

Proof. (i) In the case of Σ∆ quantization, we note that VΣ∆ = Ip⊗ v and

1
∥v∥2

2
VΣ∆z(x) =

(Ip⊗ v)z(x)
∥v∥2

2
=


R1(x)

...

Rp(x)


where Ri(x) := 1

∥v∥2
2

∑
λ
j=1 v jz(x)(i−1)λ+ j =

1
∥v∥2

2
∑

λ
j=1 v j cos(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j) for 1≤ i≤

p.

Since E(v2
j cos2(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j)) = v2

j/2 and |v j cos(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j)| ≤

∥v∥∞ holds for all i and j, we can apply Theorem 3.9.2 to Ri(x) with K = ∥v∥∞, M = λ , and

σ2 =
∥v∥2

2
2 . Specifically, for all t > 0, we have

P(|Ri(x)| ≥ t)≤ 2exp
(
−

t2∥v∥2
2

1+2t∥v∥∞/3

)
. (3.28)

Since
1

p∥v∥2
2
∥VΣ∆z(x)∥1 =

1
p
∥ 1
∥v∥2

2
VΣ∆z(x)∥1 =

1
p

p

∑
i=1
|Ri(x)|,

by union bound, we have

P
(1

p∥v∥2
2
∥VΣ∆z(x)∥1 ≥ ε

)
= P
(p

∑
i=1
|Ri(x)| ≥ ε p

)
≤ P
(p⋃

i=1

{|Ri(x)| ≥ ε}
)

≤
p

∑
i=1

P(|Ri(x)| ≥ ε)

≤ 2pexp
(
−

ε2∥v∥2
2

1+2ε∥v∥∞/3

)

where the last inequality is due to (3.28).

79

(ii) Substituting VΣ∆ with Vβ = Ip⊗ vβ leads to a verbatim proof for the second inequality.

3.9.2 Upper bound of (I)

This section is devoted to deriving an upper bound of the term (I) in (3.23), (3.24). Here,

we adapt the proof techniques used in [37].

According to Theorem 3.3.1, X is a compact subset of Rd with diameter ℓ= diam(X)>

0. Then X 2 := X ×X is a compact set in R2d with diameter
√

2ℓ. Additionally, the second

moment of distribution Λ, that is, σ2
Λ

:= Eω∼Λ∥ω∥2
2 = tr(∇2κ(0)) exists where ∇2κ is the

Hessian matrix of κ in (3.1). We will need the following results in order to obtain a uniform

bound of term (I) over X , via an ε-net argument.

Lemma 3.9.6 ([12]). Let Bd
2(η) := {x∈Rd : ∥x∥2≤η}. Then the covering number N (Bd

2(η),ε)

satisfies

N (Bd
2(η),ε)≤

(4η

ε

)d
.

Lemma 3.9.7 (Jung’s Theorem [13]). Let K ⊆ Rd be compact with diam(K) > 0. Then K is

contained in a closed ball with radius

η ≤ diam(K)

d

2(d +1)
.

The boundary case of equality is attained by the regular n-simplex.

We can now prove the following theorem controlling term (I).

Theorem 3.9.8. Let ε,η1 > 0. Then

P
(

sup
x,y∈X

|⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩− k(x,y)|< ε

)
≥ 1−32σ

2
Λ

(
η1λ

ε

)2
−2
(4ℓ

η1

)2d
exp
(
− ε2 p

8+4k(2x,2y)+8k2(x,y)+(8λ +4)ε/3

)
,

80

and

P
(

sup
x,y∈X

|⟨Ṽβ z(x),Ṽβ z(y)⟩− k(x,y)|< ε

)
≥ 1−32σ

2
Λ

(
η1λ

ε

)2
−2
(4ℓ

η1

)2d
exp
(
− ε2 p

8+4k(2x,2y)+8k2(x,y)+(8λ +4)ε/3

)
.

Proof. Indeed, the following proof techniques are independent of the choice of row vector v in

ṼΣ∆. So we only prove the case related to ṼΣ∆ and everything works for Ṽβ by replacing v with

vβ . Let

s(x,y) := ⟨ṼΣ∆z(x),ṼΣ∆z(y)⟩, f (x,y) := s(x,y)− k(x,y).

Recall that E(s(x,y)) = k(x,y) and s(x,y) = 2
p∥v∥2

2
∑

p
i=1 Si(x,y) where S1(x,y), . . . ,Sp(x,y) are

i.i.d. with

Si(x,y) =
λ

∑
j,k=1

v jvk cos(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j)cos(ω⊤(i−1)λ+ky+ξ(i−1)λ+k).

According to Lemma 3.9.7, X 2 ⊆ R2d is enclosed in a closed ball with radius ℓ
»

2d
2d+1 . By

Lemma 3.9.6, one can cover X 2 using an η1-net with at most
(

4ℓ
η1

»
2d

2d+1

)2d
≤ T1 :=

(4ℓ
η1

)2d

balls of radius η1. Let ci = (xi,yi) denote their centers for 1≤ i≤ T1.

For 1≤ l ≤ d we have

∣∣∣ ∂ s
∂xl

(x,y)
∣∣∣= 2

p∥v∥2
2

∣∣∣ p

∑
i=1

∂Si

∂xl
(x,y)

∣∣∣
≤ 2

p∥v∥2
2

p

∑
i=1

∣∣∣ λ

∑
j,k=1

v jvk sin(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j)cos(ω⊤(i−1)λ+ky+ξ(i−1)λ+k)ω(i−1)λ+ j,l

∣∣∣
≤ 2

p∥v∥2
2

p

∑
i=1

λ

∑
j,k=1

v jvk|ω(i−1)λ+ j,l|.

81

Then

E
(2

p∥v∥2
2

p

∑
i=1

λ

∑
j,k=1

v jvk|ω(i−1)λ+ j,l|
)
≤ 2

p∥v∥2
2

p

∑
i=1

λ

∑
j,k=1

v jvkE(∥ω∥∞) =
2∥v∥2

1
∥v∥2

2
E(∥ω∥∞)< ∞.

Since
∣∣∣ ∂ s

∂xl
(x,y)

∣∣∣ is dominated by an integrable function, one can interchange expectations and

partial derivatives. In particular,

∂

∂xl

(
Es(x,y)

)
= E

(
∂ s
∂xl

(x,y)
)
,

and similarly
∂

∂yl

(
Es(x,y)

)
= E

(
∂ s
∂yl

(x,y)
)
.

It follows that

E∇s(x,y) = ∇Es(x,y) = ∇k(x,y). (3.29)

Let L f = ∥∇ f (x∗,y∗)∥2 be the Lipschitz constant with (x∗,y∗) = argmax(x,y)∈X 2 ∥∇ f (x,y)∥2.

Applying law of total expectation and (3.29) gives

E(L2
f) = E(∥∇s(x∗,y∗)−∇k(x∗,y∗)∥2

2)

= E
(
E(∥∇s(x∗,y∗)−∇k(x∗,y∗)∥2

2 |x∗,y∗)
)

= E
(
E(∥∇s(x∗,y∗)∥2

2 |x∗,y∗)+∥∇k(x∗,y∗)∥2
2−2E(⟨∇s(x∗,y∗),∇k(x∗,y∗)⟩ |x∗,y∗)

)
= E(∥∇s(x∗,y∗)∥2

2)+E
(
∥∇k(x∗,y∗)∥2

2−2⟨E(∇s(x∗,y∗) |x∗,y∗),∇k(x∗,y∗)⟩
)

= E(∥∇s(x∗,y∗)∥2
2)+E

(
∥∇k(x∗,y∗)∥2

2−2⟨∇k(x∗,y∗),∇k(x∗,y∗)⟩
)

= E(∥∇s(x∗,y∗)∥2
2)−E(∥∇k(x∗,y∗)∥2

2)

≤ E(∥∇s(x∗,y∗)∥2
2)

= E(∥∇xs(x∗,y∗)∥2
2)+E(∥∇ys(x∗,y∗)∥2

2). (3.30)

82

Note that

∥∇xs(x∗,y∗)∥2 ≤
2

p∥v∥2
2

p

∑
i=1
∥∇xSi(x∗,y∗)∥2

=
2

p∥v∥2
2

p

∑
i=1

∥∥∥ λ

∑
j,k=1

v jvk sin(ω⊤(i−1)λ+ jx
∗+ξ(i−1)λ+ j)cos(ω⊤(i−1)λ+ky∗+ξ(i−1)λ+k)ω(i−1)λ+ j

∥∥∥
2

=
2

p∥v∥2
2

p

∑
i=1

∥∥∥ λ

∑
k=1

vk cos(ω⊤(i−1)λ+ky∗+ξ(i−1)λ+k)

×
λ

∑
j=1

v j sin(ω⊤(i−1)λ+ jx
∗+ξ(i−1)λ+ j)ω(i−1)λ+ j

∥∥∥
2

=
2

p∥v∥2
2

p

∑
i=1

∣∣∣ λ

∑
k=1

vk cos(ω⊤(i−1)λ+ky∗+ξ(i−1)λ+k)
∣∣∣

×
∥∥∥ λ

∑
j=1

v j sin(ω⊤(i−1)λ+ jx
∗+ξ(i−1)λ+ j)ω(i−1)λ+ j

∥∥∥
2

≤ 2∥v∥1

p∥v∥2
2

p

∑
i=1

λ

∑
j=1

v j∥ω(i−1)λ+ j∥2.

By Cauchy–Schwarz inequality and the fact ∥v∥1 ≤
√

λ∥v∥2, we have

∥∇xs(x∗,y∗)∥2
2 ≤

4∥v∥2
1

p2∥v∥4
2

(p

∑
i=1

λ

∑
j=1

v j∥ω(i−1)λ+ j∥2

)2

≤
4∥v∥2

1
p∥v∥2

2

p

∑
i=1

λ

∑
j=1
∥ω(i−1)λ+ j∥2

2

≤ 4λ

p

p

∑
i=1

λ

∑
j=1
∥ω(i−1)λ+ j∥2

2.

Then

E(∥∇xs(x∗,y∗)∥2
2)≤ 4λ

2E(∥ω∥2
2) = 4λ

2
σ

2
Λ

and similarly

E(∥∇ys(x∗,y∗)∥2
2)≤ 4λ

2
σ

2
Λ.

83

Plugging above results into (3.30) shows

E(L2
f)≤ 8λ

2
σ

2
Λ.

Let ε > 0. Markov’s inequality implies

P
(

L f ≥
ε

2η1

)
≤

4η2
1E(L2

f)

ε2 ≤ 32σ
2
Λ

(
η1λ

ε

)2
. (3.31)

By union bound and Lemma 3.9.4, we get

P
(T1⋃

i=1

{| f (ci)| ≥ ε/2}
)
≤

T1

∑
i=1

P
(
| f (ci)| ≥ ε/2

)
≤ 2
(4ℓ

η1

)2d
exp
(
− ε2 p

8+4k(2x,2y)+8k2(x,y)+(8λ +4)ε/3

)
. (3.32)

If | f (ci)| < ε/2 for all i and L f < ε/2η1, then | f (x,y)| < ε for all (x,y) ∈X 2. It follows

immediately from (3.31) and (3.32) that

P
(

sup
x,y∈X

| f (x,y)|< ε

)
≥ 1−32σ

2
Λ

(
η1λ

ε

)2
−2
(4ℓ

η1

)2d
exp
(
− ε2 p

8+4k(2x,2y)+8k2(x,y)+(8λ +4)ε/3

)
.

3.9.3 Upper bound of (II) & (III)

By symmetry it suffices to bound (II) in (3.23), (3.24), and the same upper bound holds

for (III).

84

Theorem 3.9.9. Let ε,η2 > 0. Then we have

P
(

sup
x,y∈X

∣∣⟨ṼΣ∆z(x),ṼΣ∆Druy⟩
∣∣< ε

)
≥ 1−σ

2
Λ

(c(K,r)2r+2η2

ε

)2
−2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥v∥2
2

c(K,r)222r+4 + c(K,r)2r+3ε∥v∥∞/3

)
.

and

P
(

sup
x,y∈X

∣∣⟨Ṽβ z(x),Ṽβ Huy⟩
∣∣< ε

)
≥ 1−σ

2
Λ

(4η2c(K,β)

εβ λ

)2
−2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥vβ∥2
2β 2λ

16c(K,β)2 +8β λ c(K,β)ε∥vβ∥∞/3

)
,

where c(K,r) and c(K,β) are upper bounds of the ℓ∞ norm of state vectors in Proposition 3.6.1

and Proposition 3.6.2 respectively.

Proof. (i) We first prove the case associated with ṼΣ∆. Since diam(X) = ℓ, by Lemma 3.9.6 and

Lemma 3.9.7, one can cover X using an η2-net with at most T2 :=
(2
√

2ℓ
η2

)d balls with radius η2.

Let xk denote their centers for 1≤ k ≤ T2. For x ∈ Rd , define

g(x) :=
1

p∥v∥2
2
∥VΣ∆z(x)∥1 =

1
p∥v∥2

2

p

∑
i=1
|gi(x)|

where gi(x) := ∑
λ
j=1 v j cos(ω⊤(i−1)λ+ jx+ξ(i−1)λ+ j). By triangle inequality, we have

|g(x)−g(y)| ≤ 1
p∥v∥2

2

p

∑
i=1
|gi(x)−gi(y)| ≤

(1
p∥v∥2

2

p

∑
i=1
∥∇gi(x∗i)∥2

)
∥x− y∥2 = Lg∥x− y∥2

85

where x∗i = argmaxx∈X ∥∇gi(x)∥2 and Lg := 1
p∥v∥2

2
∑

p
i=1 ∥∇gi(x∗i)∥2. It follows that

Lg =
1

p∥v∥2
2

p

∑
i=1

∥∥∥ λ

∑
j=1

v j sin(ω⊤(i−1)λ+ jx
∗
i +ξ(i−1)λ+ j)ω(i−1)λ+ j

∥∥∥
2

≤ 1
p∥v∥2

2

p

∑
i=1

λ

∑
j=1

v j∥ω(i−1)λ+ j∥2.

Applying Cauchy-Schwarz inequality gives

L2
g ≤

1
p2∥v∥4

2

(p

∑
i=1

λ

∑
j=1

v2
j

)(p

∑
i=1

λ

∑
j=1
∥ω(i−1)λ+ j∥2

2

)
=

1
p∥v∥2

2

p

∑
i=1

λ

∑
j=1
∥ω(i−1)λ+ j∥2

2.

Taking expectation on both sides leads to

E(L2
g)≤

λ

∥v∥2
2
E(∥ω∥2

2)≤ E(∥ω∥2
2) = σ

2
Λ.

Let ε > 0. Markov’s inequality implies

P
(

Lg ≥
ε

2η2

)
≤

4η2
2E(L2

g)

ε2 ≤ σ
2
Λ

(2η2

ε

)2
. (3.33)

By union bound and Lemma 3.9.5, we get

P
(T2⋃

i=1

{|g(xi)| ≥ ε/2}
)
≤

T2

∑
i=1

P
(
|g(xi)| ≥ ε/2

)
≤ 2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥v∥2
2

4+4ε∥v∥∞/3

)
. (3.34)

If |g(xi)|< ε/2 for all i and Lg < ε/2η2, then |g(x)|< ε for all x ∈X 2. It follows immediately

86

from (3.33) and (3.34) that

P
(

sup
x∈X
∥VΣ∆z(x)∥1 < pε∥v∥2

2

)
= P
(

sup
x∈X
|g(x)|< ε

)
(3.35)

≥ 1−σ
2
Λ

(2η2

ε

)2
−2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥v∥2
2

4+4ε∥v∥∞/3

)
.

Because ∥VΣ∆Dr∥∞ = 2r and ∥uy∥∞ ≤ c(K,r) := c(K,1,r) in Proposition 3.6.1, we have

∣∣⟨ṼΣ∆z(x),ṼΣ∆Druy⟩
∣∣= 2

p∥v∥2
2

∣∣⟨VΣ∆z(x),VΣ∆Druy⟩
∣∣

≤ 2
p∥v∥2

2
∥VΣ∆z(x)∥1∥VΣ∆Druy∥∞

≤ 2
p∥v∥2

2
∥VΣ∆z(x)∥1∥VΣ∆Dr∥∞∥uy∥∞

≤ 2r+1c(K,r)g(x).

Therefore, one can get

P
(

sup
x,y∈X

∣∣⟨ṼΣ∆z(x),ṼΣ∆Druy⟩
∣∣< ε

)
≥ 1−σ

2
Λ

(c(K,r)2r+2η2

ε

)2
−2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥v∥2
2

c(K,r)222r+4 + c(K,r)2r+3ε∥v∥∞/3

)
.

(ii) By repeating the statements before (3.35) with VΣ∆ replaced with Vβ , one can get

P
(

sup
x∈X
∥Vβ z(x)∥1 < pε∥vβ∥2

2

)
≥ 1−σ

2
Λ

(2η2

ε

)2
−2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥vβ∥2
2

4+4ε∥vβ∥∞/3

)
.

(3.36)

87

Due to ∥Vβ H∥∞ = β−λ and ∥uy∥∞ ≤ c(K,β) in Proposition 3.6.2, we get

∣∣⟨Ṽβ z(x),Ṽβ Huy⟩
∣∣= 2

p∥vβ∥2
2

∣∣⟨Vβ z(x),Vβ Huy⟩
∣∣ (3.37)

≤ 2
p∥vβ∥2

2
∥Vβ z(x)∥1∥Vβ Huy∥∞

≤ 2
p∥vβ∥2

2
∥Vβ z(x)∥1∥Vβ H∥∞∥uy∥∞

≤ 2β−λ c(K,β)

p∥vβ∥2
2
∥Vβ z(x)∥1.

It follows from (3.36), (3.37) that

P
(

sup
x,y∈X

∣∣⟨Ṽβ z(x),Ṽβ Huy⟩
∣∣< ε

)
≥ 1−σ

2
Λ

(4η2c(K,β)

εβ λ

)2
−2p

(2
√

2ℓ
η2

)d
exp
(
−

ε2∥vβ∥2
2β 2λ

16c(K,β)2 +8β λ c(K,β)ε∥vβ∥∞/3

)
.

3.9.4 Upper Bound of (IV)

Theorem 3.9.10. Let r ∈ N+ and β ∈ (1,2).

1. If ux, uy are state vectors of the Σ∆ quantizer Q(r)
Σ∆

, then

∣∣⟨ṼΣ∆Drux,ṼΣ∆Druy⟩
∣∣≤ c(K,r)2c(r)

λ 2r−1 ,

where c(K,r) is the upper bound of the ℓ∞ norm of state vectors in Proposition 3.6.1 and

c(r)> 0 is a constant related to r.

2. If ux, uy are state vectors of the noise-shaping quantizer Qβ , then

∣∣⟨Ṽβ Hux,Ṽβ Huy⟩
∣∣≤ 2c(K,β)2

β 2λ−2 ,

88

where c(K,β) is the upper bound of the ℓ∞ norm of state vectors in Proposition 3.6.2.

Proof. (i) Cauchy-Schwarz inequality implies

∣∣⟨ṼΣ∆Drux,ṼΣ∆Druy⟩
∣∣≤ 2

p∥v∥2
2
∥VΣ∆Drux∥2∥VΣ∆Druy∥2.

One can easily verify that VΣ∆Dr is a sparse matrix such that each row has at most r+1 nonzero

entries {w0,w1, . . . ,wr} of the following form

wk = (−1)r+k

Ç
r
k

å
.

Since max{∥ux∥∞,∥uy∥∞} ≤ c(K,r) as indicated by Proposition 3.6.1, we have ∥VΣ∆Drux∥2 ≤

c(K,r)c(r)
√

p and ∥VΣ∆Druy∥2 ≤ c(K,r)c(r)
√

p. So above inequality becomes

∣∣⟨ṼΣ∆Drux,ṼΣ∆Druy⟩
∣∣≤ 2

p∥v∥2
2
∥VΣ∆Drux∥2∥VΣ∆Druy∥2 ≤

2c(r)2c(K,r)2

∥v∥2
2

≤ c(K,r)2c′(r)
λ 2r−1

where the last inequality is due to ∥v∥2
2 ≥ λ 2r−1r−2r.

(ii) In the case of noise-shaping quantization, similarly, we have

∣∣⟨Ṽβ Hux,Ṽβ Huy⟩
∣∣≤ 2

p∥vβ∥2
2
∥Vβ Hux∥2∥Vβ Huy∥2.

Note that Vβ H = (Ip⊗vβ)(Ip⊗Hβ) = Ip⊗ (vβ Hβ) with vβ Hβ = (0,0, . . . ,0,β−λ) ∈R1×λ , and

max{∥ux∥∞,∥uy∥∞} ≤ c(K,β) by Proposition 3.6.2. It follows that ∥Vβ Hux∥2 ≤ β−λ√p∥ux∥∞

and ∥Vβ Huy∥2 ≤ β−λ√p∥uy∥∞. Then one can get

∣∣⟨Ṽβ Hux,Ṽβ Huy⟩
∣∣≤ 2

p∥vβ∥2
2
∥Vβ Hux∥2∥Vβ Huy∥2 ≤

2β−2λ c(K,β)2

∥vβ∥2
2

≤ 2c(K,β)2

β 2λ−2

where the last inequality comes from ∥vβ∥2 ≥ β−1.

89

3.9.5 Proof of Theorem 3.3.1

Proof. Recall that the kernel approximation errors in (3.23) and (3.24) can be bounded by four

terms (I), (II), (III), (IV).

(i) For the Σ∆ scheme, in Theorem 3.9.8, we choose ε = O(
√

p−1 log p), λ = O(
»

p log−1 p)

and η1 = O(p−2−α) with α > 0. Moreover, since ∥v∥2
2 ≥ λ 2r−1r−2r and ∥v∥∞ = O(λ r−1)

(see Lemma 4.6 in [21]), in Theorem 3.9.9, we can choose ε = O(c(K,r)λ−r+1 log1/2 p) and

η2 = O(λ−r−1 log1/2 p). Then (3.16) follows immediately by combining above results with part

(1) in Theorem 3.9.10.

(ii) As for the noise-shaping scheme, in Theorem 3.9.8, we choose the same parameters as in part

(i): ε = O(
√

p−1 log p), λ = O(
»

p log−1 p) and η1 = O(p−2−α) with α > 0. Nevertheless,

according to ∥vβ∥2
2 ≥ β−2 and ∥vβ∥∞ = β−1, we set different values ε = O(c(K,β)β−λ+1√p)

and η2 = O(p−1) in Theorem 3.9.9. Therefore, (3.17) holds by applying above results and part

(2) in Theorem 3.9.10.

3.10 Proof of theorem 3.3.3

The architecture for the proof of theorem 3.3.3 closely follows the methods used in [40].

We start with some useful lemmata that aid in proving theorem 3.3.3.

Given a b-bit alphabet as in (3.4) with b = log2(2K), we consider the following first-order

Σ∆ quantization scheme for a random Fourier feature vector z(x) ∈ [−1,1]m corresponding to a

data point x ∈ Rd , where, the state variable (ux)0 is initialized as a random number, i.e.

(ux)0 ∼U
ï
− 1

2b−1
,

1
2b−1

ò
qk+1 = QMSQ((z(x))k+1 +(ux)k)

(ux)k+1 = (ux)k +(z(x)))k+1−qk+1

90

The corresponding recurrence equation can written as

Ṽ Q(z(x)) = Ṽ z(x)−Ṽ Dux +Ṽ (ux
0,0, . . . ,0)

⊤.

Lemma 3.10.1. Given the following first order Sigma-Delta quantization scheme with a b-bit

alphabet as in (3.4), for a vector z ∈ Rm with z ∈ [−1,1]m,

u0 ∼U
ï
− 1

2b−1
,

1
2b−1

ò
qk+1 = QMSQ(zk+1 +uk)

uk+1 = uk + zk+1−qk+1,

for each k = 0,1, · · ·m−1, we have uk ∼U
î
− 1

2b−1 ,
1

2b−1

ó
.

Proof. Let the inductive hypothesis be uk ∼U
î
− 1

2b−1 ,
1

2b−1

ó
. Note that this is true by definition

for u0.

Case: j
2b−1 ≤ zk+1 ≤ j+1

2b−1 where j ∈ {1,3, · · ·2b−3}.

uk ∼U
î
− 1

2b−1 ,
1

2b−1

ó
implies that zk+1 +uk ∼U

î
− 1

2b−1 + zk+1,
1

2b−1 + zk+1

ó
. Since by

assumption, j
2b−1 ≤ zk+1 ≤ j+1

2b−1 we see that zk+1 +uk ∈ [j−1
2b−1 ,

j+2
2b−1] and thus

QMSQ(zk+1 +uk) =


j

2b−1 if j−1
2b−1 ≤ zk+1 +uk ≤ j+1

2b−1 ,

j+2
2b−1 if j+1

2b−1 ≤ zk+1 +uk ≤ j+2
2b−1 ,

which in turn implies that

uk+1 =


zk+1 +uk− j

2b−1 if j−1
2b−1 ≤ zk+1 +uk ≤ j+1

2b−1 ,

zk+1 +uk− j+2
2b−1 if j+1

2b−1 ≤ zk+1 +uk ≤ j+2
2b−1 .

91

Now we can compute the CDF of uk+1 (conditioned on z) as follows

P(uk+1 ≤ α | z) = P
(

zk+1 +uk−
j

2b−1
≤ α , qk =

j
2b−1

∣∣∣ z)
+P
(

zk+1 +uk−
j+2

2b−1
≤ α , qk =

j+2
2b−1

∣∣∣ z)
= P

(j−1
2b−1

− zk+1 ≤ uk ≤min
ß

j
2b−1

+α− zk+1,
j+1

2b−1
− zk+1

™ ∣∣∣ z)
+P
(j+1

2b−1
− zk+1 ≤ uk ≤min

ß
j+2

2b−1
+α− zk+1,

j+2
2b−1

− zk+1

™ ∣∣∣ z)
= P

(
uk ≤min

ß
j

2b−1
+α− zk+1,

j+1
2b−1

™ ∣∣∣ z)
+P
(j+1

2b−1
− zk+1 ≤ uk ≤min

ß
j+2

2b−1
+α− zk+1,

j+2
2b−1

− zk+1

™ ∣∣∣ z).
Note that in the third equality we make use of the fact that j

2b−1 ≤ zk+1 ≤ j+1
2b−1 implies j−1

2b−1 −

zk+1 ≤− 1
2b−1 . Now note that

P
(

uk ≤min
ß

j
2b−1

+α− zk+1,
j+1

2b−1

™ ∣∣∣ z)
=



0 if α < zk+1− j+1
2b−1 ,∫ j

2b−1
+α−zk+1

− 1
2b−1

2b−1
2 = 2b−1

2

Ä
j+1

2b−1 +α− zk+1

ä
if zk+1− j+1

2b−1 ≤ α < 1
2b−1 ,∫ j+1

2b−1
−zk+1

− 1
2b−1

2b−1
2 = 2b−1

2

Ä
j+2

2b−1 − zk+1

ä
if α ≥ 1

2b−1 ,

and

P
(j+1

2b−1
− zk+1 ≤ uk ≤min

ß
j+2

2b−1
+α− zk+1,

j+2
2b−1

− zk+1

™ ∣∣∣ z)
=



0 if α <− 1
2b−1 ,∫ j+2

2b−1
+α−zk+1

j+1
2b−1
−zk+1

2b−1
2 = 2b−1

2

Ä
1

2b−1 +α

ä
if − 1

2b−1 ≤ α < zk+1− j+1
2b−1 ,∫ 1

2b−1
j+1

2b−1
−zk+1

2b−1
2 = 2b−1

2

Ä
zk+1− j

2b−1

ä
if α ≥ zk+1− j+1

2b−1 .

92

Thus

P(uk+1 ≤ α | z) =



0 if α <− 1
2b−1 ,

2b−1
2

Ä
1

2b−1 +α

ä
if − 1

2b−1 ≤ α < zk+1− j+1
2b−1 ,

2b−1
2

Ä
1

2b−1 +α

ä
if zk+1− j+1

2b−1 ≤ α < 1
2b−1 ,

0 if α ≥ 1
2b−1 ,

which shows that uk+1 | z∼U
î
− 1

2b−1 ,
1

2b−1

ó
.

Showing that uk+1 | z ∼ U
î
− 1

2b−1 ,
1

2b−1

ó
for the other cases, namely, j

2b−1 ≤ zk+1 ≤
j+1

2b−1 where j ∈ {0,2, · · ·2b− 2} and − j+1
2b−1 ≤ zk+1 ≤ − j

2b−1 where j ∈ {1,3, · · ·2b− 3} and

− j+1
2b−1 ≤ zk+1 ≤− j

2b−1 where j ∈ {0,2, · · ·2b−2} follow a similar argument as above and for

the sake of brevity is skipped from an explicit mention. Thus, by induction, we have shown that

uk+1 | z∼U
î
− 1

2b−1 ,
1

2b−1

ó
.

For the subsequent sections, we adopt the following notations . Let A be the matrix whose

rows are the vectors {(Ṽ z(x))T}x, B be the matrix whose rows are the vectors {(Ṽ Drux)
T}x

and C be the matrix whose first column is
√

2√
p∥v∥2

(ux1
0 ux2

0 · · · u
xn
0)T and all other columns as

zero. Let the columns of A,B,C be denoted by Ai,Bi,Ci respectively. Now the corresponding

approximation to the kernel can written as

K̂Σ∆ = (A−B+C)(A−B+C)T =
p

∑
i=1

(Ai−Bi +Ci)(Ai−Bi +Ci)
T .

Lemma 3.10.2.

E[K̂Σ∆] = K +
p

∑
i=1

Λi ≼ K +
1

λ (2b−1)2

Å
8+

26
3p

ã
I

where each Λi is a diagonal matrix with positive diagonal entries, δ > 0 and I is the identity

matrix.

93

Proof. We begin by noting that

E[K̂Σ∆] = E[
p

∑
i=1

(Ai−Bi +Ci)(Ai−Bi +Ci)
T]

= E[
p

∑
i=1

AiAT
i]−E[

p

∑
i=1

AiBT
i]−E[

p

∑
i=1

BiAT
i]+E[

p

∑
i=1

BiBT
i]+E[

p

∑
i=1

AiCT
i]

+E[
p

∑
i=1

CiAT
i]−E[

p

∑
i=1

BiCT
i]−E[

p

∑
i=1

CiBT
i]+E[

p

∑
i=1

CiCT
i]

= K−
p

∑
i=1

E[AiBT
i]−

p

∑
i=1

E[BiAT
i]+

p

∑
i=1

E[BiBT
i]+E[B1CT

1]+E[C1BT
1]+E[C1CT

1]

where we’ve used the result from lemma 3.9.3 that E[AAT] = K. Now, let F := Ṽ Dr ∈Rp×m and

{ f T
i }

p
i=1 denote the rows of F . Then let

Bi :=



f T
i ux1

f T
i ux2

...

f T
i uxn


where Bi is the i-th column of B, {x1, · · ·xn} represent the individual data samples and ux j ∈ Rm

for each j = 1, · · · ,n. Note that ux j (when conditioned on Z) across data points x j are independent

with respect to each other with their entries ∼U [−1/(2b−1),1/(2b−1)]. Thus,

E[AiBT
i] = E[Ai

(
f T
i ux1 f T

i ux2 · · · f T
i uxn

)
]

= EZ[Ai

(
Eux1

[f T
i ux1 | zx1] Eux2

[f T
i ux2 | zx2] · · · Euxn

[f T
i uxn | zxn]

)
]

= 0.

94

By a similar argument, E[BiAT
i] = 0 and E[∑p

i=1 AiCT
i] = E[∑p

i=1CiAT
i] = 0. Now,

p

∑
i=1

E[BiBT
i] =

p

∑
i=1

EZEU





(f T
i ux1)(f T

i ux1) (f T
i ux1)(f T

i ux2) · · · (f T
i ux1)(f T

i uxn)

(f T
i ux2)(f T

i ux1) (f T
i ux2)(f T

i ux2) · · · (f T
i ux2)(f T

i uxn)

...
...

...
...

(f T
i uxn)(f T

i ux1) · · · · · · (f T
i uxn)(f T

i uxn)



 .

First we note that ux j (when conditioned on Z) across data points x j are independent with respect

to each other with their entries ∼U [−1/(2b− 1),1/(2b− 1)] and thus E[BBT] is a diagonal

matrix. Then note that each row of V D has atmost 2 non-zero entries which are either {1,−1}.

Thus,

| f T
i uxi|= |⟨ fi,ux j⟩| ≤

√
2

√
p∥v∥2

2
2b−1

=
23/2

√
p(2b−1)∥v∥2

.

Further, since r = 1, ∥v∥2
2 = λ which implies | f T

i uxi| ≤ 23/2√
pλ (2b−1)

. Thus, the diagonal matrix

E[BiBT
i]≼

8
pλ (2b−1)2 I in turn implies E[BBT]≼ 8

λ (2b−1)2 I. Now, we have

E[B1CT
1] =

√
2

√
p∥v∥2

EZEU





(f T
1 ux1)(u

x1
0) (f T

1 ux1)(u
x2
0) · · · (f T

1 ux1)(u
xn
0)

(f T
1 ux2)(u

x1
0) (f T

1 ux2)(u
x2
0) · · · (f T

1 ux2)(u
xn
0)

...
...

...
...

(f T
1 uxn)(u

x1
0) · · · · · · (f T

1 uxn)(u
xn
0)



 .

Thus, by similar reasoning as in prior paragraphs, E[B1CT
1] is a diagonal matrix and also

|ux
0(f T

1 ux)| ≤
1

2b−1
| f T

1 ux| ≤
23/2√

pλ (2b−1)2

and thus √
2

√
p∥v∥2

|ux
0(f T

1 ux)| ≤
4

pλ (2b−1)2 .

95

So E[−B1CT
1]≼

4
pλ (2b−1)2 I. Similarly, E[−C1BT

1]≼
4

pλ (2b−1)2 I. Now,

E[C1CT
1] =

2
p∥v∥2

2
EZEU





(ux1
0)(ux1

0) (ux1
0)(ux2

0) · · · (ux1
0)(uxn

0)

(ux2
0)(ux1

0) (ux2
0)(ux2

0) · · · (ux2
0)(uxn

0)

...
...

...
...

(uxn
0)(ux1

0) · · · · · · (uxn
0)(uxn

0)




=

2
3pλ (2b−1)2

and thus E[C1CT
1]≼

Ä
2

3r−2r

ä
1

pλ 2r−1 . Thus, putting together the bounds for each of the terms, we

get

E[K̂Σ∆] = K +E[BBT]−E[B1CT
1]−E[C1BT

1]+E[C1CT
1]

= K +Λ

where Λ := E[BBT]−E[B1CT
1]−E[C1BT

1]+E[C1CT
1] is a diagonal matrix and

Λ ≼
1

λ (2b−1)2

ï
8+

8
p
+

2
3p

ò
I.

Thus E[Λ]≼ δ I where

δ :=
1

λ (2b−1)2

ï
8+

26
3p

ò
.

Lemma 3.10.3 ([40]). Let η > 0, K and K̂ be positive symmetric semi-definite matrices, then

(1−∆1)(K +ηI)≼ (K̂ +ηI)≼ (1+∆2)(K +ηI) ⇐⇒ −∆1I ≼ M(K̂−K)M ≼ ∆2I

where, M := (K +ηI)−1/2.

96

Proof. The proof is obtained using the following sequence of equivalent statements.

(1−∆1)(K +ηI)≼ (K̂ +ηI)≼ (1+∆2)(K +ηI)

⇐⇒ (1−∆1)I ≼ (K +ηI)−1/2(K̂ +ηI)(K +ηI)−1/2 ≼ (1+∆2)I

⇐⇒ −∆1I ≼ M(K̂ +ηI)M− I ≼ ∆2I

⇐⇒ −∆1I ≼ M(K̂ +ηI)M− (K +ηI)−1/2(K +ηI)(K +ηI)−1/2 ≼ ∆2I

⇐⇒ −∆1In ≼ M(K̂ +ηI−K−ηIn)M ≼ ∆2In

⇐⇒ −∆1I ≼ M(K̂−K)M ≼ ∆2I.

Note that the assumptions made on K, K̂ and η imply that K̂ +ηI is invertible and also (K +

ηI)−1/2 exists.

Lemma 3.10.4 ([40]). Let 0 ≼ Λ ≼ δ I where δ > 0. Also let η > 0, K and K̂ be positive

symmetric semi-definite matrices and M := (K +ηI)−1/2. Then

−∆1In ≼ M(K̂− (K +Λ))M ≼ (∆2−
δ

η
)In =⇒ −∆1In ≼ M(K̂−K)M ≼ ∆2In.

Proof. We begin by noting that 0 ≼ MΛM since M is invertible, 0 ≼ Λ and for all x ̸= 0,

xT MΛMx = (Mx)T Λ(Mx). Thus

−∆1In ≼ M(K̂− (K +Λ))M =⇒ −∆1In ≼ M(K̂−K)M.

Additionally, note that ∥M∥2
2 = ∥M2∥2 = ∥(K+ηI)−1∥2 where M and M2 are symmetric,

and ∥MΛM∥ ≤ ∥Λ∥∥(K +ηI)−1∥. Also since 0 ≼ K (positive semi-definite kernel), we have

that ∥(K +ηI)−1∥2 ≤ 1
η

. Hence, we get

−∆1In ≼ M(K̂− (K +Λ))M ≼ (∆2−
δ

η
)In =⇒ −∆1In ≼ M(K̂−K)M ≼ ∆2In.

97

Theorem 3.10.5 (Matrix-Bernstein inequality [40]). Consider a finite sequence {Si} of random

Hermitian matrices of the same size and assume that

E[Si] = 0 and λmax(Si)≤ l for each index i.

Let S = ∑i Si and E[S2]≼W, i.e. W is a semi-definite upper bound for the second moment of S.

Then, for t ≥ 0,

P[λmax(S)≥ t]≤ 4
tr(W)

∥W∥
.exp(

−t2/2
∥W∥+ lt/3

).

Recall our notations where A is the matrix whose rows are the vectors {(Ṽ z(x))T}x, B is

the matrix whose rows are the vectors {(Ṽ Drux)
T}x and C is the matrix whose first column is

√
2√

p∥v∥2
(ux1

0 ,ux2
0 , · · · ,uxn

0)T and all other columns as zero. Also the columns of A,B,C are denoted

by Ai,Bi,Ci respectively. Additionally let Ki := E[AiAT
i], M := (K +ηIn)

−1/2 and

Si := M(Ai−Bi−Ci)(Ai−Bi−Ci)
T MT −M(Ki +Λi)MT . (3.38)

Thus note that by design E[Si] = 0. We now will show that the remaining assumptions required

to apply Matrix-Bernstein inequality hold for the sequence of matrices {Si}p
i=1.

Lemma 3.10.6. The 2-norm of Si (defined in (3.38)) is bounded for each i = 1, · · · , p and E[S]2

has a semi-definite upper bound, where S = ∑i Si. In particular,

∥Si∥ ≤
2nλ

pη2 (:= l) and E[S2]≼ lM̃

where, n is the number of data samples, η is the regularization, m = λ p denotes the parameters

of Σ∆ quantization and M̃ := M(K +Λ)MT .

Proof. (i) λmax(Si) is bounded. Let ui := M(Ai−Bi−Ci), then Si = uiuT
i −E[uiuT

i]. First note

98

that

∥uiuT
i ∥= ∥ui∥2

= ∥M(Ai−Bi−Ci)∥2

≤ ∥M∥2∥Ai−Bi−Ci∥2.

Also, Ai−Bi−Ci is the i-th column of the matrix which has as its rows the vectors {Ṽ Q(z(x))T}x.

Thus, in general

Ai−Bi−Ci =



gT
i qx1

gT
i qx2

...

gT
i qxn


where, gT

i denotes the i-th row of Ṽ . Also note that the entries of Q(z(x)) are in A =
{

a
2K−1

∣∣∣a =

±1,±3, . . . ,±(2K−1)
}

. Thus,

∥Ai−Bi−Ci∥2
2 ≤ n∥gi∥2

1 ≤ n∥Ṽ∥2
∞.

Note that Ṽ =
√

2√
p∥v∥2

(Ip⊗ v) where for r = 1, v ∈ Rλ is the vector of all ones, which implies

∥Ṽ∥∞ =
√

2λ√
p . Thus,

∥M∥2∥Ai−Bi−Ci∥2 ≤ 2nλ

p
∥M∥2.

Further, since by definition M = (K +ηI)−1/2 we have,

∥M∥2∥Ai−Bi−Ci∥2 ≤ 2nλ

p
∥M∥2

=
2nλ

p
∥(K +ηI)−1∥2

≤ 2nλ

pη2 (:= l).

99

Thus we see that,

∥Si∥= ∥uiuT
i −E[uiuT

i]∥

≤ ∥uiuT
i ∥+∥E[uiuT

i]∥

≤ 2l.

So ∥Si∥ ≤ 2l implies λmax(Si)≤ 2l. Note that Ki and Λi are expectations of symmetric matrices

and thus Si is symmetric.

(ii) E[S2] has a semi-definite upper bound.

E[S2
i] = E[(uiuT

i)
2]−E[uiuT

i]
2

≼ E[(uiuT
i)

2] = E[∥ui∥2uiuT
i]

≼ l E[uiuT
i].

Now,

E[S2] =
p

∑
i=1

E[S2
i]

≼ l
p

∑
i=1

E[uiuT
i] = l

p

∑
i=1

M(Ki +Λi)MT

≼ lM(K +Λ)MT

≼ lM̃

where M̃ := M(K +Λ)MT and thus E[S2]≼ lM̃.

Now we are in a position to prove theorem 3.3.3 of the main text which we restate for

convenience.

Theorem 3.10.7. Let K̂Σ∆ be an approximation of a true kernel matrix K using m-feature first-

order Σ∆ quantized RFF (as in (3.18)) with a b-bit alphabet (as in (3.4)) and m = λ p. Then

100

given ∆1 ≥ 0,∆2 ≥ δ

η
where η > 0 represents the regularization and δ =

8+ 26
3p

λ (2b−1)2 , we have

P[(1−∆1)(K +ηI)≼ (K̂Σ∆ +ηI)≼ (1+∆2)(K +ηI)]

≥ 1−4n

[
exp(

−∆2
1/2

l(1
η
(∥K∥2 +δ)+2∆1/3)

)+ exp(
−(∆2− δ

η
)2/2

l(1
η
(∥K∥2 +δ)+2(∆2− δ

η
)/3)

)

]

where, l = 2nλ

pη2 .

Proof. We apply Matrix-Bernstein inequality (theorem 3.10.5) to {Si}p
i=1 (defined in 3.38) to

obtain that given t2 ≥ 0,

P[λmax(M(K̂Σ∆− (K +Λ))MT)≥ t2]≤ 4
tr(M̃)

∥M̃∥
exp(

−t2
2/2

l∥M̃∥+2lt2/3
).

Now, since λmax(S) = −λmin(−S), by repeating an identical argument for −S we obtain that

given t1 ≥ 0,

P[λmin(M(K̂Σ∆− (K +Λ))MT)≤−t1]≤ 4
tr(M̃)

∥M̃∥
exp(

−t2
1/2

l∥M̃∥+2lt1/3
).

Putting the above two equations together with the fact that M = (K +ηIn)
−1/2 we obtain that

for t1, t2 ≥ 0,

P[−t1In ≼ M(K̂Σ∆− (K +Λ))M ≼ t2In]

≥ 1−4
tr(M̃)

∥M̃∥

ñ
exp(

−t2
1/2

l∥M̃∥+2lt1/3
)+ exp(

−t2
2/2

l∥M̃∥+2lt2/3
)

ô
.

Thus, by lemmas 3.10.2, 3.10.3, 3.10.4 and 3.10.6, for the Σ∆-quantized RFF kernel K̂Σ∆, given

101

∆1 ≥ 0,∆2 ≥ δ

η
we have the following spectral approximation result:

P[(1−∆1)(K +ηI)≼ (K̂Σ∆ +ηI)≼ (1+∆2)(K +ηI)]

≥ 1−4
tr(M̃)

∥M̃∥

[
exp(

−∆2
1/2

l(∥M̃∥+2∆1/3)
)+ exp(

−(∆2− δ

η
)2/2

l(∥M̃∥+2(∆2− δ

η
)/3)

)

]

where M̃ = M(K +Λ)M, M = (K +ηIn)
−1/2, l = 2nλ

pη2 is the upper bound for ∥uiuT
i ∥ computed

in lemma 3.10.6 and δ =
8+ 26

3p
λ (2b−1)2 is the bound computed in lemma 3.10.2 such that E[K̂Σ∆]≼

K +δ I. Now, note that

∥M̃∥2 = ∥M(K +Λ)M∥2

≤ ∥M∥2
2∥K +Λ∥2

≤ ∥M∥2
2(∥K∥2 +∥Λ∥2)

= ∥(K +ηI)−1∥2(∥K∥2 +∥Λ∥2)

≤ 1
η
(∥K∥2 +δ).

Also given the positive semi-definite matrix M̃, we know that ∥M̃∥2 = λmax(M̃) and thus tr(M̃)≤

rank(M̃)∥M∥2 which implies tr(M̃)
∥M̃∥ ≤ rank(M̃)≤ n. Hence,

P[(1−∆1)(K +ηI)≼ (K̂Σ∆ +ηI)≼ (1+∆2)(K +ηI)]

≥ 1−4n

[
exp(

−∆2
1/2

l(1
η
(∥K∥2 +δ)+2∆1/3)

)+ exp(
−(∆2− δ

η
)2/2

l(1
η
(∥K∥2 +δ)+2(∆2− δ

η
)/3)

)

]
.

3.11 Acknowledgements

Jinjie Zhang was partially supported by grants NSF DMS 2012546 and 2012266. Alexan-

der Cloninger was partially supported by NSF DMS 1819222, 2012266. Rayan Saab was

102

partially supported by NSF DMS 2012546 and a UCSD senate research award. This chapter,

in full, is joint work with Harish Kannan, Alexander Cloninger, Rayan Saab, and has been

submitted for publication. The dissertation author was the primary investigator and author of this

paper.

References

[1] Raj Agrawal, Trevor Campbell, Jonathan Huggins, and Tamara Broderick. “Data depen-

dent compression of random features for large-scale kernel approximation”. In: The 22nd

International Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 1822–

1831.

[2] Ethem Alpaydin and Cenk Kaynak. “Cascading classifiers”. In: Kybernetika 34.4 (1998),

pp. 369–374.

[3] Haim Avron, Kenneth L Clarkson, and David P Woodruff. “Faster kernel ridge regres-

sion using sketching and preconditioning”. In: SIAM Journal on Matrix Analysis and

Applications 38.4 (2017), pp. 1116–1138.

[4] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker,

and Amir Zandieh. “Random Fourier features for kernel ridge regression: Approximation

bounds and statistical guarantees”. In: International Conference on Machine Learning.

PMLR. 2017, pp. 253–262.

[5] Francis Bach. “On the equivalence between kernel quadrature rules and random feature

expansions”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 714–751.

[6] John J Benedetto, Alexander M Powell, and Ozgur Yilmaz. “Sigma-delta quantization and

finite frames”. In: IEEE Transactions on Information Theory 52.5 (2006), pp. 1990–2005.

103

[7] John J Benedetto, Alexander M Powell, and Özgür Yılmaz. “Second-order sigma–delta

(Σ∆) quantization of finite frame expansions”. In: Applied and Computational Harmonic

Analysis 20.1 (2006), pp. 126–148.

[8] Petros T Boufounos and Shantanu Rane. “Efficient Coding of Signal Distances Using

Universal Quantized Embeddings.” In: DCC. 2013, pp. 251–260.

[9] Evan Chou and C Sinan Güntürk. “Distributed noise-shaping quantization: I. Beta duals

of finite frames and near-optimal quantization of random measurements”. In: Constructive

Approximation 44.1 (2016), pp. 1–22.

[10] Evan Chou and C Sinan Güntürk. “Distributed noise-shaping quantization: II. Classical

frames”. In: Excursions in Harmonic Analysis, Volume 5. Springer, 2017, pp. 179–198.

[11] Evan Chou, C Sinan Güntürk, Felix Krahmer, Rayan Saab, and Özgür Yılmaz. “Noise-

shaping quantization methods for frame-based and compressive sampling systems”. In:

Sampling theory, a renaissance (2015), pp. 157–184.

[12] Felipe Cucker and Steve Smale. “On the mathematical foundations of learning”. In:

Bulletin of the American mathematical society 39.1 (2002), pp. 1–49.

[13] Ludwig Danzer. “” Helly’s theorem and its relatives,” in Convexity”. In: Proc. Symp. Pure

Math. Vol. 7. Amer. Math. Soc. 1963, pp. 101–180.

[14] Ingrid Daubechies and Ron DeVore. “Approximating a bandlimited function using very

coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order”. In:

Annals of mathematics (2003), pp. 679–710.

[15] Percy Deift, Felix Krahmer, and C Sınan Güntürk. “An optimal family of exponentially

accurate one-bit Sigma-Delta quantization schemes”. In: Communications on Pure and

Applied Mathematics 64.7 (2011), pp. 883–919.

[16] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.

Springer, 2013.

104

[17] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander

Smola. “A kernel two-sample test”. In: The Journal of Machine Learning Research 13.1

(2012), pp. 723–773.

[18] C Sinan Güntürk. “One-bit sigma-delta quantization with exponential accuracy”. In:

Communications on Pure and Applied Mathematics: A Journal Issued by the Courant

Institute of Mathematical Sciences 56.11 (2003), pp. 1608–1630.

[19] C Sinan Güntürk, Mark Lammers, Alexander M Powell, Rayan Saab, and Ö Yılmaz.

“Sobolev duals for random frames and Σ∆ quantization of compressed sensing measure-

ments”. In: Foundations of Computational mathematics 13.1 (2013), pp. 1–36.

[20] Thang Huynh. “Accurate quantization in redundant systems: From frames to compressive

sampling and phase retrieval”. PhD thesis. New York University, 2016.

[21] Thang Huynh and Rayan Saab. “Fast binary embeddings and quantized compressed

sensing with structured matrices”. In: Communications on Pure and Applied Mathematics

73.1 (2020), pp. 110–149.

[22] Felix Krahmer, Rayan Saab, and Rachel Ward. “Root-exponential accuracy for coarse

quantization of finite frame expansions”. In: IEEE transactions on information theory

58.2 (2012), pp. 1069–1079.

[23] Xiaoyun Li and Ping Li. “Quantization algorithms for random fourier features”. In:

International Conference on Machine Learning. PMLR. 2021, pp. 6369–6380.

[24] Chi-Jen Lin. Large-scale kernel machines. MIT press, 2007.

[25] Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens. “Random features

for kernel approximation: A survey in algorithms, theory, and beyond”. In: arXiv preprint

arXiv:2004.11154 (2020).

[26] Lynn H Loomis. Introduction to abstract harmonic analysis. Courier Corporation, 2013.

105

[27] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, AurÃ©lien

Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian Kingsbury, Michael Picheny, and Fei

Sha. “Kernel Approximation Methods for Speech Recognition”. In: Journal of Machine

Learning Research 20.59 (2019), pp. 1–36. URL: http://jmlr.org/papers/v20/17-026.html.

[28] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[29] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel machines”. In:

Advances in neural information processing systems 20 (2007), pp. 1177–1184.

[30] Alessandro Rudi and Lorenzo Rosasco. “Generalization Properties of Learning with

Random Features.” In: NIPS. 2017, pp. 3215–3225.

[31] Vincent Schellekens and Laurent Jacques. “Breaking the waves: asymmetric random

periodic features for low-bitrate kernel machines”. In: arXiv preprint arXiv:2004.06560

(2020).

[32] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. Adaptive Computation and Machine

Learning series, 2018.

[33] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cam-

bridge university press, 2004.

[34] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and

Gert RG Lanckriet. “Hilbert space embeddings and metrics on probability measures”. In:

The Journal of Machine Learning Research 11 (2010), pp. 1517–1561.

[35] Bharath K Sriperumbudur and Zoltán Szabó. “Optimal rates for Random Fourier features”.

In: Proceedings of the 28th International Conference on Neural Information Processing

Systems-Volume 1. 2015, pp. 1144–1152.

[36] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science &

Business Media, 2008.

106

http://jmlr.org/papers/v20/17-026.html

[37] Dougal J Sutherland and Jeff Schneider. “On the error of random fourier features”. In:

Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. 2015,

pp. 862–871.

[38] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht. “Large scale

kernel learning using block coordinate descent”. In: arXiv preprint arXiv:1602.05310

(2016).

[39] Lei Xu, Adam Krzyzak, and Ching Y Suen. “Methods of combining multiple classifiers

and their applications to handwriting recognition”. In: IEEE transactions on systems, man,

and cybernetics 22.3 (1992), pp. 418–435.

[40] Jian Zhang, Avner May, Tri Dao, and Christopher Ré. “Low-precision random Fourier

features for memory-constrained kernel approximation”. In: The 22nd International

Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 1264–1274.

[41] Jinjie Zhang and Rayan Saab. “Faster Binary Embeddings for Preserving Euclidean

Distances”. In: International Conference on Learning Representations. 2021. URL: https:

//openreview.net/forum?id=YCXrx6rRCXO.

107

https://openreview.net/forum?id=YCXrx6rRCXO
https://openreview.net/forum?id=YCXrx6rRCXO

Chapter 4

Post-training Quantization for Neural
Networks with Provable Guarantees

While neural networks have been remarkably successful in a wide array of applications,

implementing them in resource-constrained hardware remains an area of intense research. By

replacing the weights of a neural network with quantized (e.g., 4-bit, or binary) counterparts,

massive savings in computation cost, memory, and power consumption are attained. To that end,

we generalize a post-training neural-network quantization method, GPFQ, that is based on a

greedy path-following mechanism. Among other things, we propose modifications to promote

sparsity of the weights, and rigorously analyze the associated error. Additionally, our error

analysis expands the results of previous work on GPFQ to handle general quantization alphabets,

showing that for quantizing a single-layer network, the relative square error essentially decays

linearly in the number of weights – i.e., level of over-parametrization. Our result holds across a

range of input distributions and for both fully-connected and convolutional architectures thereby

also extending previous results. To empirically evaluate the method, we quantize several common

architectures with few bits per weight, and test them on ImageNet, showing only minor loss of

accuracy compared to unquantized models. We also demonstrate that standard modifications,

such as bias correction and mixed precision quantization, further improve accuracy.

108

4.1 Introduction

Over the past decade, deep neural networks (DNNs) have achieved great success in many

challenging tasks, such as computer vision, natural language processing, and autonomous vehi-

cles. Nevertheless, over-parameterized DNNs are computationally expensive to train, memory

intensive to store, and energy consuming to apply. This hinders the deployment of DNNs to

resource-limited applications. Therefore, model compression without significant performance

degradation is an important active area of deep learning research [11, 6, 10]. One prominent

approach to compression is quantization. Here, rather than adopt a 32-bit floating point format

for the model parameters, one uses significantly fewer bits for representing weights, activations,

and even gradients. Since the floating-point operations are substituted by more efficient low-bit

operations, quantization can reduce inference time and power consumption.

Following [16], we can classify quantization methods into two categories: quantization-

aware training and post-training quantization. The fundamental difficulty in quantization-aware

training stems from the fact that it reduces to an integer programming problem with a non-convex

loss function, making it NP-hard in general. Nevertheless, many well-performing heuristic

methods exist, e.g., [4, 12, 35, 15, 33, 21, 31]. Here one, for example, either modifies the

training procedure to produce quantized weights, or successively quantizes each layer and then

retrains the subsequent layers. Retraining is a powerful, albeit computationally intensive way to

compensate for the accuracy loss resulting from quantization and it remains generally difficult to

analyze rigorously.

Hence, much attention has recently been dedicated to post-training quantization schemes,

which directly quantize pretrained DNNs having real-valued weights, without retraining. These

quantization methods either rely on a small amount of data [1, 3, 34, 23, 14, 30, 19, 22] or can

be implemented without accessing training data, i.e. data-free compression [24, 2, 32, 20].

109

4.1.1 Related Work

We now summarize some prior work on post-training quantization methods. The majority

of these methods aim to reduce quantization error by minimizing a mean squared error (MSE)

objective, e.g. minα>0

∥∥∥∥W−α

õ
W
α

§∥∥∥∥
F

, where W is a weight matrix and ⌊·⌉ is a round-off operator

that represents a map from the set of real numbers to the low-bit alphabet. Generally ⌊·⌉ simply

assigns numbers in different intervals or “bins” to different elements of the alphabet. Algorithms

in the literature differ in their choice of ⌊·⌉, as they use different strategies for determining the

quantization bins. However, they share the property that once the quantization bins are selected,

weights are quantized independently of each other. For example, Banner, Nahshan, and Soudry

[1] (see also [34]) choose the thresholds to minimize a MSE metric. Their numerical results

also show that for convolutional networks using different quantization thresholds “per-channel”

and bias correction can improve the accuracy of quantized models. Choukroun et al. [3] solve a

minimum mean squared error (MMSE) problem for both weights and activations quantization.

Based on a small calibration data set, Hubara et al. [14] suggest a per-layer optimization method

followed by integer programming to determine the bit-width of different layers. A bit-split and

stitching technique is used by [30] that “splits” integers into multiple bits, then optimizes each

bit, and finally stitches all bits back to integers. Li et al. [19] leverage the basic building blocks in

DNNs and reconstructs them one-by-one. As for data-free model quantization, there are different

strategies, such as weight equalization [24], reconstructing calibration data samples according to

batch normalization statistics (BNS) [2, 32], and adversarial learning [20].

4.1.2 Contribution

In spite of reasonable heuristic explanations and empirical results, all quantization meth-

ods mentioned in Section 4.1.1 lack rigorous theoretical guarantees. Recently, Lybrand and Saab

[22] proposed and analyzed a method for quantizing the weights of pretrained DNNs called

greedy path following quantization (GPFQ), see Section 4.2.2 for details. In this paper, we sub-

110

stantially improve GPFQ’s theoretical analysis, propose a modification to handle convolutional

layers, and propose a sparsity promoting version to encourage the algorithm to set many of

the weights to zero. We demonstrate that the performance of our quantization methods is not

only good in experimental settings, but, equally importantly, has favorable and rigorous error

guarantees. Specifically, the contributions of this paper are threefold:

1. We generalize the results of [22] in several directions. Indeed, the results of [22] apply

only to alphabets, A , of the form A = {0,±1} and standard Gaussian input because the proof

technique in [22] relies heavily on properties of Gaussians and case-work over elements of the

alphabet. It also requires the assumption that floating point weights are ε-away from alphabet

elements. In contrast, by using a different and more natural proof technique, our results avoid

this assumption and extend to general alphabets like A in (4.4) and make the main result in [22]

a special case of our Theorem 4.3.4, which in turn follows from Theorem 4.3.1. Moreover, we

extend the class of input vectors for which the theory applies. For example, in Section 4.3, we

show that if the input data X ∈ Rm×N0 is either bounded or drawn from a mixture of Gaussians,

then the relative square error of quantizing a neuron w ∈ RN0 satisfies the following inequality

with high probability:
∥Xw−Xq∥2

2
∥Xw∥2

2
≲

m logN0

N0
(4.1)

where q ∈A N0 is the quantized weights. A mixture of Gaussians is a reasonable model for the

output of some of the deeper layers in neural networks that focus on classification, thus our

results are relevant in those contexts. Further, to handle convolutional neural networks (CNNs),

we introduce a modification to GPFQ in Section 4.5.1 that relies on random subsampling to

make quantizing DNNs practically feasible with large batch size m. This also allows us to obtain

quantization error bounds that resemble (4.1), for single-layer CNNs in Section 4.3.3.

2. In order to reduce the storage, computational, and power requirements of DNNs one

complimentary approach to quantization is to sparsify the weights, i.e., set many of them to

zero. In Section 4.4, we propose modifications to GPFQ that leverage soft and hard thresholding

111

to increase sparsity of the weights of the quantized neural networks. We present error bounds,

similar to the ones in Theorem 4.3.1, and provide their proofs in Section 4.10.

3. We provide extensive numerical experiments to illustrate the performance of GPFQ and

its proposed modifications on common computer vision DNNs. First, we provide comparisons

with other post-training quantization approaches (Section 4.5) and show that GPFQ achieves

near-original model performance using 4 bits and that the results for 5 bits are competitive

with state-of-the-art methods. Our experiments also demonstrate that GPFQ is compatible with

various ad-hoc performance enhancing modifications such as bias correction [1], unquantizing

the last layer [35, 19], and mixed precision [7, 2]. To illustrate the effects of sparsity, we further

explore the interactions among prediction accuracy, sparsity of the weights, and regularization

strength in our numerical experiments. Our results show that one can achieve near-original model

performance even when half the weights (or more) are quantized to zero.

4.2 Preliminaries

In this section, we first introduce the notation that will be used throughout this paper and

then recall the original GPFQ algorithm in [22].

4.2.1 Notation

Various positive absolute constants are denoted by C, c. We use a ≲ b as shorthand

for a ≤ Cb, and a ≳ b for a ≥ Cb. Let S ⊆ Rn be a Borel set. Unif(S) denotes the uniform

distribution over S. An L-layer multi-layer perceptron, Φ, acts on a vector x ∈ RN0 via

Φ(x) := ϕ
(L) ◦A(L) ◦ · · · ◦ϕ

(1) ◦A(1)(x) (4.2)

where ϕ(i) : RNi → RNi is an activation function acting entrywise, and A(i) : RNi−1 → RNi is

an affine map given by A(i)(z) := W (i)⊤z+ b(i). Here, W (i) ∈ RNi−1×Ni is a weight matrix and

b(i) ∈RNi is a bias vector. Since w⊤x+b = ⟨(w,b),(x,1)⟩, the bias term b(i) can be treated as an

112

extra row to the weight matrix W (i), so we will henceforth ignore it. For theoretical analysis, we

focus on infinite mid-tread alphabets with step size δ > 0, i.e., alphabets of the form

A = A δ
∞ := {kδ : k ∈ Z} (4.3)

and their finite versions used in practice:

A = A δ
K := {±kδ : 0≤ k ≤ K,k ∈ Z}. (4.4)

For example, A 1
1 = {0,±1} is a ternary alphabet. Additionally, we use the following alphabets

for sparse GPFQ in Section 4.4.

Ã = A δ ,λ
∞ := {0}∪{±(λ + kδ) : k ≥ 0,k ∈ Z} (4.5)

and

Ã = A δ ,λ
K := {0}∪{±(λ + kδ) : 0≤ k ≤ K,k ∈ Z} (4.6)

where δ > 0 denotes the quantization step size and λ > 0 is a threshold. Moreover, for alphabet

A in (4.3) and (4.4), we define the associated memoryless scalar quantizer (MSQ) Q : R→A

by

Q(z) := arg min
p∈A
|z− p|=


δ sign(z)

∣∣∣∣õ z
δ
+ 1

2

û∣∣∣∣ if A = A δ
∞ ,

δ sign(z)min
ß∣∣∣∣õ z

δ
+ 1

2

û∣∣∣∣,K™ if A = A δ
K .

(4.7)

Further, the MSQ over Ã in (4.5) and (4.6) is given by

‹Q(z) :=


0 if |z| ≤ λ ,

arg min
p∈Ã
|z− p| otherwise,

113

which is equivalent to

Q̃(z) =


1{|z|>λ} sign(z)

Å
λ +δ

∣∣∣∣õ sλ (z)
δ

+ 1
2

û∣∣∣∣ã if Ã = A δ ,λ
∞ ,

1{|z|>λ} sign(z)
Å

λ +δ min
ß∣∣∣∣õ sλ (z)

δ
+ 1

2

û∣∣∣∣,K™ã if Ã = A δ ,λ
K .

(4.8)

Here, sλ (z) := sign(z)max{|z|−λ ,0} is the soft thresholding function and its counterpart, hard

thresholding function, is defined by

hλ (z) := z1{|z|>λ} =


z if |z|> λ ,

0 otherwise.

Algorithm 4: Using GPFQ to quantize MLPs

Input: A L-layer MLP Φ with weight matrices W (i) ∈ RNi−1×Ni , input mini-batches
{Xi}L

i=1 ⊂ Rm×N0

1 for i = 1 to L do
2 Phase I: Forward propagation
3 Generate X (i−1) = Φ(i−1)(Xi) ∈ Rm×Ni−1 and X̃ (i−1) = Φ̃(i−1)(Xi) ∈ Rm×Ni−1

4 Phase II: Parallel quantization for W (i)

5 repeat
6 Pick a column (neuron) w ∈ RNi−1 of W (i) and set u0 = 0 ∈ Rm

7 for t = 1 to Ni−1 do
8 Implement (4.11) and ut = ut−1 +wtX

(i−1)
t −qt X̃

(i−1)
t

9 until All columns of W (i) are quantized
10 Obtain quantized i-th layer Q(i) ∈A Ni−1×Ni

Output: Quantized neural network Φ̃

4.2.2 GPFQ

Given a data set X ∈ Rm×N0 with vectorized data stored as rows and a trained neural

network Φ with weight matrices W (i), the GPFQ algorithm [22] is a map W (i)→Q(i) ∈A Ni−1×Ni ,

giving a new quantized neural network Φ̃ with Φ̃(X) ≈ Φ(X). The matrices W (1), . . . ,W (L)

114

are quantized sequentially and in each layer every neuron (a column of W (i)) is quantized

independently of other neurons, which allows parallel quantization across neurons in a layer.

Thus, GPFQ can be implemented recursively. Let Φ(i), Φ̃(i) denote the original and

quantized neural networks up to layer i respectively. Assume the first i− 1 layers have been

quantized and define X (i−1) := Φ(i−1)(X), X̃ (i−1) := Φ̃(i−1)(X) ∈ Rm×Ni−1 . Then each neuron

w ∈ RNi−1 in layer i is quantized by constructing q ∈A Ni−1 such that

X̃ (i−1)q =
Ni−1

∑
t=1

qt X̃
(i−1)
t ≈

Ni−1

∑
t=1

wtX
(i−1)
t = X (i−1)w

where X (i−1)
t , X̃ (i−1)

t are the t-th columns of X (i−1), X̃ (i−1). This is done by selecting qt , for

t = 1,2, . . . ,Ni−1, so the running sum ∑
t
j=1 q jX̃

(i−1)
j tracks its analog ∑

t
j=1 w jX

(i−1)
j as well as

possible in an ℓ2 sense. So,

qt = arg min
p∈A

∥∥∥ t

∑
j=1

w jX
(i−1)
j −

t−1

∑
j=1

q jX̃
(i−1)
j − pX̃ (i−1)

t

∥∥∥2

2
. (4.9)

This is equivalent to the following iteration, which facilitates the analysis of the approxi-

mation error: 
u0 = 0 ∈ Rm,

qt = argminp∈A
∥∥ut−1 +wtX

(i−1)
t − pX̃ (i−1)

t
∥∥2

2,

ut = ut−1 +wtX
(i−1)
t −qt X̃

(i−1)
t .

(4.10)

By induction, one can verify that ut = ∑
t
j=1(w jX

(i−1)
j −q jX̃

(i−1)
j) for t = 0,1, . . . ,Ni−1, and thus

∥uNi−1∥2 = ∥X (i−1)w− X̃ (i−1)q∥2. Moreover, one can derive a closed-form expression of qt in

(4.10) as

qt = Q

Å⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
, (4.11)

which is proved in Lemma 4.6.1. The whole algorithm for quantizing multilayer perceptrons

(MLPs) is summarized in Algorithm 4. For the i-th layer, this parallelizable algorithm has run

115

time complexity O(mNi−1) per neuron. Note that in order to quantize convolutional neural

networks (CNNs), one can simply vectorize the sliding (convolutional) kernels and unfold, i.e.,

vectorize, the corresponding image patches. Then, taking the usual inner product on vectors, one

can reduce to the case of MLPs, also see Section 4.3.3.

4.3 New Theoretical Results for GPFQ

In this section, we present error bounds for GPFQ with single-layer networks Φ in (4.2) with

L = 1. Since the error bounds associated with the sparse GPFQ in (4.35) and (4.36) are very

similar to the one we have for (4.11), we focus on original GPFQ here and leave the theoretical

analysis for sparse GPFQ to Section 4.10.

In the single-layer case, we quantize the weight matrix W := W (1) ∈ RN0×N1 and im-

plement (4.10) and (4.11) using i = 1. Defining the input data X := X (0) = X̃ (0) ∈ Rm×N0 , the

iteration can be expressed as


u0 = 0 ∈ Rm,

qt = Q
(
wt +

X⊤t ut−1
∥Xt∥2

2

)
,

ut = ut−1 +wtXt−qtXt .

(4.12)

Moreover, we have ut = ∑
t
j=1(w jX j−q jX j) for t = 1,2 . . . ,N0. Clearly, our goal is to control

∥ut∥2. In particular, given t =N0, we recover the ℓ2 distance between full-precision and quantized

pre-activations: ∥uN0∥2 = ∥Xw−Xq∥2.

4.3.1 Bounded Input Data

We start with a quantization error bound where the feature vectors, i.e. columns, of the

input data matrix X ∈ Rm×N0 are bounded. This general result is then applied to data drawn

uniformly from a Euclidean ball, and to Bernoulli random data, showing that the resulting relative

square error due to quantization decays linearly with the width N0 of the network.

116

Theorem 4.3.1 (Bounded input data). Suppose that the columns Xt of X ∈ Rm×N0 are drawn

independently from a probability distribution for which there exists s ∈ (0,1) and r > 0 such that

∥Xt∥2 ≤ r almost surely, and such that for all unit vector u ∈ Sm−1 we have

E
⟨Xt ,u⟩2

∥Xt∥2
2
≥ s2. (4.13)

Let A =A δ
∞ be the alphabet in (4.3) with step size δ > 0. Let w∈RN0 be the weights associated

with a neuron. Quantizing w using (4.12), we have

P
Å
∥Xw−Xq∥2

2 ≤
r2δ 2

s2 logN0

ã
≥ 1− 1

N2
0

Å
2+

1√
1− s2

ã
, (4.14)

and

P
Å

max
1≤t≤N0

∥ut∥2
2 ≤

r2δ 2

s2 logN0

ã
≥ 1− 1

N0

Å
2+

1√
1− s2

ã
. (4.15)

Furthermore, if the activation function ϕ : R→ R is ξ -Lipschitz continuous, that is, |ϕ(x)−

ϕ(y)| ≤ ξ |x− y| for all x,y ∈ R, then we have

P
Å
∥ϕ(Xw)−ϕ(Xq)∥2

2 ≤
r2δ 2ξ 2

s2 logN0

ã
≥ 1− 1

N2
0

Å
2+

1√
1− s2

ã
. (4.16)

Proof. Let α > 0 and η > 0. In the t-th step, by Markov’s inequality, one can get

P(∥ut∥2
2 ≥ α) = P(eη∥ut∥2

2 ≥ eηα)≤ e−ηαEeη∥ut∥2
2. (4.17)

Since A = A δ
∞ is infinite, applying Lemma 4.6.3 with qmax = ∞, we have

∥ut∥2
2 ≤

δ 2

4
∥Xt∥2

2 +(1− cos2
θt)∥ut−1∥2

2 (4.18)

117

where θt = ∠(Xt ,ut−1) is the angle between Xt and ut−1. This yields

Eeη∥ut∥2
2 ≤ E(e

ηδ2
4 ∥Xt∥2

2eη∥ut−1∥2
2(1−cos2 θt)). (4.19)

Moreover, observing that ∥Xt∥2
2≤ r2 a.s., then applying the law of total expectation, Lemma 4.6.4

with β = 1, and assumption (4.13) sequentially, we obtain

E(e
ηδ2

4 ∥Xt∥2
2eη∥ut−1∥2

2(1−cos2 θt))≤ eηr2δ 2/4Eeη∥ut−1∥2
2(1−cos2 θt)

= eηr2δ 2/4E(E(eη∥ut−1∥2
2(1−cos2 θt) |Ft−1))

≤ eηr2δ 2/4E
(
−E(cos2

θt |Ft−1)(eη∥ut−1∥2
2−1)+ eη∥ut−1∥2

2

)
≤ eηr2δ 2/4E(−s2(eη∥ut−1∥2

2−1)+ eη∥ut−1∥2
2)

= (1− s2)eηr2δ 2/4Eeη∥ut−1∥2
2 + s2eηr2δ 2/4

Hence, for each t, inequality (4.19) becomes

Eeη∥ut∥2
2 ≤ aEeη∥ut−1∥2

2 +b (4.20)

where a :=(1−s2)eηr2δ 2/4 and b := s2eηr2δ 2/4. Then, noting that u0 = 0, the following inequality

follows from (4.20),

Eeη∥ut∥2
2 ≤ atEeη∥u0∥2

2 +b(1+a+ . . .+at−1) = at +
b(1−at)

1−a
≤ 1+

b
1−a

(4.21)

where the last inequality holds provided that a = (1− s2)eηr2δ 2/4 < 1. Since the result above

hold for all η > 0 such that (1− s2)eηr2δ 2/4 < 1, we can choose η = −2log(1−s2)
r2δ 2 . Then we get

118

a = (1− s2)1/2 and b = s2(1− s2)−1/2. It follows from (4.17) and (4.21) that

P(∥ut∥2
2 ≥ α)≤ e−ηα

Å
1+

b
1−a

ã
= exp

Å
2α log(1− s2)

r2δ 2

ãÅ
1+

s2(1− s2)−1/2

1− (1− s2)1/2

ã
= exp

Å
2α log(1− s2)

r2δ 2

ã(
1+(1− s2)−1/2(1+(1− s2)1/2)

)
= exp

Å
2α log(1− s2)

r2δ 2

ãÅ
2+

1√
1− s2

ã
≤ exp

Å−2αs2

r2δ 2

ãÅ
2+

1√
1− s2

ã
.

The last inequality can be obtained using the fact log(1 + x) ≤ x for all x > −1. Picking

α = r2δ 2 logN0
s2 , we get

P
Å
∥ut∥2

2 ≥
r2δ 2

s2 logN0

ã
≤ 1

N2
0

Å
2+

1√
1− s2

ã
. (4.22)

From (4.22) we can first deduce (4.14), by setting t = N0 and using the fact uN0 = Xw−Xq. If

the activation function ϕ is ξ -Lipschitz, then ∥ϕ(Xw)−ϕ(Xq)∥2 ≤ ξ∥Xw−Xq∥2 and (4.14)

implies (4.16). Moreover, applying a union bound over t to (4.22), one can get (4.15).

Theorem 4.3.1 makes the simplifying assumption that we use an infinite alphabet, namely

A δ
∞ . This assumption implies that the argument of the scalar quantizer Q in (4.12) is trivially

bounded by the largest alphabet element which in turn implies that
∣∣∣wt +

⟨Xt ,ut−1⟩
∥Xt∥2

2
−qt

∣∣∣ is bounded

by δ/2. This fact is used in inequality (4.18). In order to use a finite alphabet A δ
K instead and

still have (4.18), the argument of the quantizer must be bounded by Kδ . Corollary 4.3.2 shows

that with high probability this is indeed the case and Remark 4.3.3 shows that a finite alphabet

with K ≈ log(N0) suffices for our purposes.

Corollary 4.3.2. Let γ > 0. Under the conditions of Theorem 4.3.1, suppose that there exist

119

constants c1,c2 > 0 so that the columns Xt of X ∈ Rm×N0 also satisfy

P
(∣∣∣⟨Xt ,u⟩
∥Xt∥2

2

∣∣∣≥ s
√

γ logN0

r

)
≤ c1N−c2γ

0 (4.23)

for any unit vector u ∈ Sm−1. Then

max
1≤t≤N0

∣∣∣wt +
⟨Xt ,ut−1⟩
∥Xt∥2

2

∣∣∣≤ ∥w∥∞ + γ
1
2 δ logN0 and max

1≤t≤N0
∥ut∥2

2 ≤
r2δ 2

s2 logN0. (4.24)

hold with probability at least 1− 1
N0

Å
2+ 1√

1−s2

ã
− c1

Nc2γ−1
0

.

Proof. Consider the t-th iteration of (4.12) and let Et−1 be the event ∥ut−1∥2
2 ≤

r2δ 2

s2 logN0. By

Theorem 4.3.1, we have

P(Et−1)≥ 1− 1
N2

0

Å
2+

1√
1− s2

ã
. (4.25)

Conditioning on Et−1 and applying (4.23), we have

P
(∣∣∣wt +

⟨Xt ,ut−1⟩
∥Xt∥2

2

∣∣∣> ∥w∥∞ + γ
1
2 δ logN0 | Et−1

)
≤ P
(∣∣∣ ⟨Xt ,ut−1⟩
∥Xt∥2

2∥ut−1∥2

∣∣∣≥ γ
1
2 δ logN0

∥ut−1∥2
| Et−1

)
≤ P
(∣∣∣ ⟨Xt ,ut−1⟩
∥Xt∥2

2∥ut−1∥2

∣∣∣≥ s
√

γ logN0

r
| Et−1

)
≤ c1N−c2γ

0 . (4.26)

Combining (4.25) and (4.26), we obtain

P
(∣∣∣wt +

⟨Xt ,ut−1⟩
∥Xt∥2

2

∣∣∣≤ ∥w∥∞ + γ
1
2 δ logN0, Et−1

)
≥ 1− 1

N2
0

Å
2+

1√
1− s2

ã
− c1

Nc2γ

0
.

Taking a union bound over t, we obtain the desired result.

Remark 4.3.3 (Finite alphabets suffice). By (4.24) and the definition of qt in (4.12), we see that

with high probability only the elements q of the alphabet with |q| ≤ ∥w∥∞ + γ1/2δ logN0 +δ are

used. So, on this high probability event, we can simply replace A δ
∞ by A δ

K where the largest

120

element qmax = Kδ satisfies qmax = Kδ ≥ ∥w∥∞ + γ1/2δ logN0.

Next, we illustrate how Corollary 4.3.2 can be applied to obtain error bounds associated

with uniformly distributed and Bernoulli distributed inputs.

Uniformly Distributed Data

Let Br ⊂ Rm be the closed ball with center 0 and radius r > 0. Suppose that columns Xt

of X ∈ Rm×N0 are drawn i.i.d. from Unif(Br). Then we can represent Xt as Xt = rU
1
m Z where

U ∼ Unif([0,1]) and Z ∼ Unif(Sm−1) are independent, so that ∥Xt∥2 = rU
1
m and Xt/∥Xt∥2 = Z.

Fix a unit vector u∈ Sm−1 and γ > 0. Since Z is rotation invariant, we have E ⟨Xt ,u⟩2
∥Xt∥2

2
=E⟨Z,u⟩2 =

E⟨Z,e1⟩2 = EZ2
1 = 1

m . The last equality holds because ∥Z∥2 = 1 and EZ2
1 = EZ2

2 = . . .= EZ2
m =

1
mE
(

∑
m
i=1 Z2

i

)
= 1

m . Additionally, we have P(∥Xt∥2 ≥ r
2) = P(U

1
m ≥ 1

2) = 1− 1
2m and

P
(∣∣∣⟨Xt ,u⟩
∥Xt∥2

2

∣∣∣≥ 1
r

…
γ logN0

m
| ∥Xt∥2 ≥

r
2

)
= P
(
|⟨Z,u⟩| ≥ ∥Xt∥2

r

…
γ logN0

m
| ∥Xt∥2 ≥

r
2

)
≤ P
(
|⟨Z,u⟩| ≥ 1

2

…
γ logN0

m

)
= P
(
|Z1| ≥

1
2

…
γ logN0

m

)
≤ 4exp(−cγ logN0).

In the last step, we used Theorem 3.4.6 in [29]. It follows that P
(∣∣∣ ⟨Xt ,u⟩
∥Xt∥2

2

∣∣∣ ≥ 1
r

»
γ logN0

m

)
≤

4exp(−cγ logN0)+
1

2m . If m ≥ cγ log2 N0, then we have 4exp(−cγ logN0)+
1

2m ≤ 5N−cγ

0 and

thus (4.13) and (4.23) hold with s2 = 1
m . Choosing γ = 2c−1 and alphabet A δ

K with K ≥

δ−1∥w∥∞ + γ
1
2 logN0, Corollary 4.3.2 implies that, with high probability

∥Xw−Xq∥2
2 ≲ mr2

δ
2 logN0. (4.27)

Moreover, E∥Xt∥2
2 = r2EU

2
m = mr2

m+2 . Then E(X⊤X) =E∥X1∥2
2IN0 =

mr2

m+2 IN0 and thus E∥Xw∥2
2 =

w⊤E(X⊤X)w = mr2

m+2∥w∥
2
2. If the weight vector w ∈ RN0 is generic in the sense that ∥w∥2

2 ≳ N0,

then

E∥Xw∥2
2 ≳

mN0r2

m+2
. (4.28)

121

Combining (4.27) with (4.28), the relative error satisfies ∥Xw−Xq∥2
2

∥Xw∥2
2

≲ mδ 2 logN0
N0

.

Data from a Symmetric Bernoulli Distribution

We say that a random vector Z =(Z1,Z2, . . . ,Zm) is symmetric Bernoulli if the coordinates

Zi are independent and P(Zi = 1) = P(Zi = −1) = 1
2 . Now assume that columns Xt of X ∈

Rm×N0 are independent and subject to symmetric Bernoulli distribution. Clearly, ∥Xt∥2 =

√
m. Let u ∈ Rm be a unit vector and γ > 0. Then E ⟨Xt ,u⟩2

∥Xt∥2
2
=

u⊤E(XtX⊤t)u
m =

∥u∥2
2

m = 1
m and

P
(∣∣∣ ⟨Xt ,u⟩
∥Xt∥2

2

∣∣∣≥ √γ logN0
m

)
= P
(
|⟨Xt ,u⟩| ≥

√
γ logN0

)
≤ 2exp(−1

2γ logN0) = 2N
− γ

2
0 by Hoeffding’s

inequality. Thus (4.13) and (4.23) hold with s2 = 1
m . Picking γ = 4 and alphabet A δ

K with

K ≥ δ−1∥w∥∞ + γ
1
2 logN0, Corollary 4.3.2 implies that

∥Xw−Xq∥2
2 ≤ m2

δ
2 logN0 (4.29)

holds with high probability. Again, a generic w ∈ RN0 with ∥w∥2
2 ≳ N0 satisfies E∥Xw∥2

2 =

w⊤E(X⊤X)w = m∥w∥2
2 ≳ mN0 and therefore ∥Xw−Xq∥2

2
∥Xw∥2

2
≲ mδ 2 logN0

N0
.

4.3.2 Gaussian Clusters

Here, we consider data drawn from Gaussian clusters, which unlike the previously

considered models, are unbounded. One reason for considering Gaussian clusters is that they

are a reasonable model for the activations in deeper layers of networks designed for classi-

fication. Specifically, suppose our samples are drawn from d normally distributed clusters

Ki := N (z(i),σ2IN0) with fixed centers z(i) ∈ RN0 and σ > 0. Suppose, for simplicity, that we

independently draw n samples from each cluster and vertically stack them in order as rows of X

(this ordering does not affect our results in Theorem 4.3.4). Let m := nd. So, for 1≤ i≤ d, the

row indices of X ranging from (i−1)n+1 to in come from cluster Ki. Then the t-th column of

X is of the form

Xt = [Y (1)
t ,Y (2)

t , . . . ,Y (d)
t]⊤ ∈ Rm (4.30)

122

where Y (i)
t ∼N (z(i)t 1n,σ

2In).

Theorem 4.3.4 (Gaussian clusters). Let X ∈ Rm×N0 be as in (4.30) and let A = A δ
∞ be as in

(4.3), with step size δ > 0. Let p ∈ N, J := 1+(dσ2)−1 max1≤t≤N0 ∑
d
i=1(z

(i)
t)2, and w ∈ RN0 be

the weights associated with a neuron. Quantizing w using (4.12), we have

P
(
∥Xw−Xq∥2

2 ≥ 4pm2J2
δ

2
σ

2 logN0

)
≤ 7
√

mJ
N p

0
, and

P
(

max
1≤t≤N0

∥ut∥2
2 ≥ 4pm2J2

δ
2
σ

2 logN0

)
≤ 7
√

mJ

N p−1
0

.

If the activation function ϕ is ξ -Lipschitz continuous, then

P
Å
∥ϕ(Xw)−ϕ(Xq)∥2

2 ≥ 4pm2J2
ξ

2
δ

2
σ

2 logN0

ã
≤ 7
√

mJ
N p

0
.

Moreover, similar to Corollary 4.3.2, we show that, with high probability, the same error

bounds hold using finite alphabets A δ
K .

Corollary 4.3.5. Under the conditions of Theorem 4.3.4, suppose that X ∈ Rm×N0 also satisfies

J≤ 1+ logN0
36m and m≥max{1, 2

c1
} logN0 where c1 is an absolute constant defined in Lemma 4.9.3.

Then

max
1≤t≤N0

∣∣∣wt +
⟨Xt ,ut−1⟩
∥Xt∥2

2

∣∣∣≤ ∥w∥∞ +8δJ
√

p logN0 and max
1≤t≤N0

∥ut−1∥2
2 ≤ 4pm2J2

δ
2
σ

2 logN0

(4.31)

holds with probability at least 1− 7
√

mJ
N p−1

0
− 3

N0
.

According to (4.31), it is sufficient to quantize w using a finite alphabet A δ
K where K

satisfies

δ
−1∥w∥∞ +8J

√
p logN0 ≤ δ

−1∥w∥∞ +9
√

p logN0 ≤ K.

In the first step, we used J ≤ 1+ logN0
36m ≤

9
8 . The proof of Theorem 4.3.4 and Corollary 4.3.5 can

123

be found in Section 4.9.1 and Section 4.9.2 respectively.

Normally Distributed Data

As a special case of (4.30), let X ∈ Rm×N0 be a Gaussian matrix with Xi j
i.i.d.∼ N (0,σ2)

corresponding to d = 1, n = m, and z(1) = 0. Theorem 4.3.4 implies that J = 1 and

P
Å
∥Xw−Xq∥2

2 ≥ 4pm2
δ

2
σ

2 logN0

ã
≤ 7
√

m
N p

0
. (4.32)

Further, suppose that w ∈ RN0 is generic, i.e. ∥w∥2
2 ≳ N0. In this case, E∥Xw∥2

2 = mσ2∥w∥2
2 ≳

mσ2N0. So, with high probability, the relative error in our quantization satisfies

∥Xw−Xq∥2
2

∥Xw∥2
2

≲
mδ 2 logN0

N0
. (4.33)

Thus, here again, the relative square error for quantizing a single-layer MLP decays linearly (up

to a log factor) in the number of neurons N0. Note that (4.33), for ternary alphabets, is the main

result given by [22], which we now obtain as a special case of Theorem 4.3.4.

Remark 4.3.6. In Section 4.3.1 and Section 4.3.2, we have shown that if the columns of

X ∈ Rm×N0 are drawn from proper distributions, then the relative error for quantization is

small when m≪ N0. Now consider the case where the feature vectors {Xt}N0
t=1 live in a l-

dimensional subspace with l < m. In this case, X = V F where V ∈ Rm×l satisfies V⊤V = I,

and the columns Ft of F ∈ Rl×N0 are drawn i.i.d. from a distribution P . Suppose, for example,

that P = Unif(Br). Due to X = V F, one can express any unit vector in the range of X as

u =V v with v ∈Rl . Then we have 1 = ∥u∥2 = ∥V v∥2 = ∥v∥2, ∥Xt∥2 = ∥V Ft∥2 = ∥Ft∥2 ≤ r, and

E ⟨Xt ,u⟩2
∥Xt∥2

2
= E ⟨V Ft ,V v⟩2

∥V Ft∥2
2

= E ⟨Ft ,v⟩2
∥Ft∥2

2
= l−1 by our assumption for P . Because ut in Theorem 4.3.1

is a linear combination of X j, the proof of Theorem 4.3.1 remains unchanged if (4.13) holds

for all unit vectors u in the range of X. It follows that Theorem 4.3.1 holds for X with s2 = l−1

and thus the relative error for quantizing the data in a l-dimensional subspace is improved

124

to ∥Xw−Xq∥2
2

∥Xw∥2
2
≤ lδ 2 logN0

N0
. Applying a similar argument to P representing either a symmetric

Bernoulli distribution or Gaussian distribution, one can replace m in their corresponding relative

errors by l. In short, the relative error depends not on the number of training samples m but on

the intrinsic dimension of the features l.

4.3.3 Convolutional Neural Networks

In this section, we derive error bounds for single-layer CNNs. Let Z ∈RB×Cin×S1×S2 be a

mini-batch of images with batch size B, input channels Cin, height S1, and width S2. Suppose

that all entries of Z are i.i.d. drawn from N (0,1) and suppose we have Cout convolutional

kernels {wi}Cout
i=1 ⊆ RCin×k1×k2 . Let these kernels “slide” over Z with fixed stride (k1,k2) such

that sliding local blocks generated by moving wi on Z are disjoint. Additionally, if T is the

number of randomly selected sliding local blocks (in RCin×k1×k2) from each image, then one

can vectorize all BT local blocks and stack them together to obtain a single data matrix X ∈

RBT×Cink1k2 . Moreover, each kernel wi can be viewed as a column vector in RCink1k2 and thus

W = [w1,w2, . . . ,wCout] ∈ RCink1k2×Cout is the weight matrix to be quantized. Thus, we need to

convert W to Q = [q1,q2, . . . ,qCout] ∈A Cink1k2×Cout with XQ≈ XW , as before. Since extracted

local blocks from Z are disjoint, columns of X are independent and subject to N (0, IBT). Hence,

one can apply (4.32) with m = BT , N0 = Cink1k2, σ = 1, and any p ∈ N. Specifically, for

1≤ i≤Cout, we get P
(
∥Xwi−Xqi∥2

2 ≥ 4pB2T 2δ 2 log(Cink1k2)
)
≲

√
BT

(Cink1k2)p . By a union bound,

P
(

max1≤i≤Cout ∥Xwi−Xqi∥2
2 ≥ 4pB2T 2δ 2 log(Cink1k2)

)
≲ Cout

√
BT

(Cink1k2)p .

4.4 Sparse GPFQ and Error Analysis

Having extended the results pertaining to GPFQ to cover multiple distributions of the

input data, as well as general alphabets, we now propose modifications to produce quantized

weights that are also sparse, i.e., that have a large fraction of coefficients being 0. Our sparse

quantization schemes result from adding a regularization term to (4.10). Specifically, in order to

125

generate sparse q ∈A Ni−1 , we compute qt via

qt = arg min
p∈A

Å
1
2

∥∥∥ut−1 +wtX
(i−1)
t − pX̃ (i−1)

t

∥∥∥2

2
+λ |p|∥X̃ (i−1)

t ∥2
2

ã
(4.34)

where λ > 0 is a regularization parameter. Conveniently, Lemma 4.6.2 shows that the solution

of (4.34) is given by

qt = Q ◦ sλ

Å⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
(4.35)

where sλ denotes soft thresholding. It is then natural to consider a variant of (4.35) replacing sλ

with hard thresholding, hλ . Since hλ (z) has jump discontinuities at z =±λ , the corresponding

alphabet and quantizer should be adapted to this change. Thus, we use ‹Q(z) over Ã as in (4.8)

and qt ∈ Ã is obtained via

qt = ‹Q ◦hλ

Å⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
. (4.36)

In both cases, we update the error vector via ut = ut−1 +wtX
(i−1)
t − qt X̃

(i−1)
t , as before. In

summary, for quantizing a single-layer network, similar to (4.12) the two sparse GPFQ schemes

related to soft and hard thresholding are given by
u0 = 0 ∈ Rm,

qt = Q ◦ sλ

(
wt +

X⊤t ut−1
∥Xt∥2

2

)
,

ut = ut−1 +wtXt−qtXt .

(4.37)


u0 = 0 ∈ Rm,

qt = ‹Q ◦hλ

(
wt +

X⊤t ut−1
∥Xt∥2

2

)
,

ut = ut−1 +wtXt−qtXt .

(4.38)

Interesting, with these sparsity promoting modifications, one can prove similar error

bounds to GPFQ. To illustrate with bounded or Gaussian clustered data, we show that sparse

GPFQ admits similar error bounds as in Theorem 4.3.1 and Theorem 4.3.4. The following results

are proved in Section 4.10.

Theorem 4.4.1 (Sparse GPFQ with bounded input data). Under the conditions of Theorem 4.3.1,

we have the following.

126

(a) Quantizing w using (4.37) with the alphabet A in (4.3), we have

P
(
∥Xw−Xq∥2

2 ≤
r2(2λ +δ)2

s2 logN0

)
≥ 1− 1

N2
0

(
2+

1√
1− s2

)
.

(b) Quantizing w using (4.38) with the alphabet Ã in (4.5), we have

P
(
∥Xw−Xq∥2

2 ≤
r2 max{2λ ,δ}2

s2 logN0

)
≥ 1− 1

N2
0

(
2+

1√
1− s2

)
.

Theorem 4.4.2 (Sparse GPFQ for Gaussian clusters). Under the assumptions of Theorem 4.3.4,

the followings inequalities hold.

(a) Quantizing w using (4.37) with the alphabet A in (4.3), we have

P
(
∥Xw−Xq∥2

2 ≥ 4pm2J2(2λ +δ)2
σ

2 logN0

)
≤ 7
√

mJ
N p

0
.

(b) Quantizing w using (4.38) with the alphabet Ã in (4.5), we have

P
(
∥Xw−Xq∥2

2 ≥ 4pm2J2 max{2λ ,δ}2
σ

2 logN0

)
≤ 7
√

mJ
N p

0
.

Note that the sparsity regularization term λ only appears in the error bounds, making them

slightly worse than those where no sparsity is enforced. In Section 4.5.2, we will numerically

explore the impact of λ on the sparsity and accuracy of quantized neural networks.

4.5 Experiments

To evaluate the performance of our method and compare it with the approaches reviewed

in Section 4.1.1, we test our modified GPFQ on the ImageNet classification task 1. In particular,

we focus on ILSVRC-2012 [5], a 1000-category dataset with over 1.2 million training images

and 50 thousand validation images. All images in ILSVRC-2012 are preprocessed in a standard

1Our code for experiments is available: https : //github.com/YixuanSeanZhou/Quantized Neural Nets.git

127

https://github.com/YixuanSeanZhou/Quantized_Neural_Nets.git

manner before they are fed into neural networks: we resize each image to 256×256 and use the

normalized 224×224 center crop. The evaluation metrics we use are top-1 and top-5 accuracy

of the quantized models on the validation dataset.

4.5.1 Experimental Setup

For reproducibility and fairness of comparison, we use the pretrained 32-bit floating point

neural networks provided by torchvision2 in PyTorch [25]. We test several well-known neural

network architectures including: AlexNet [17], VGG-16 [26], GoogLeNet [27], ResNet-18,

ResNet-50 [13], and EfficeintNet-B1 [28]. In the following experiments, we will focus on

quantizing the weights of fully-connected and convolutional layers of the above architectures, as

our theory applies specifically to these types of layers3.

Let b ∈ N denote the number of bits used for quantization. Here, we fix b for all the

layers. In our experiments with GPFQ, we adopt the midtread alphabets A δ
K in (4.4) with

K = 2b−1, δ =
R

2b−1 , (4.39)

where R > 0 is a hyper-paramter. Indeed, according to (4.4), A δ
K is symmetric with maximal

element qmax = Kδ = R. Since b is fixed, all that remains is to select R in (4.39) based on

the distribution of weights. To that end, suppose we are quantizing the i-th layer of a neural

network with weight matrix W (i) ∈ RNi−1×Ni . Then, Theorem 4.3.1 and Theorem 4.3.4 require

that R = qmax ≥ maxk, j |W
(i)
k, j |, and yield error bounds that favor a smaller step size δ ∝ R. In

practice, however, the weights may have outliers with large magnitudes, which would entail

unnecessarily using a large R. Thus, rather than choosing R = maxk, j |W
(i)
k, j |, we will consider

the average infinity norm of weights across all neurons w, i.e. columns of W (i). That is

2https://pytorch.org/vision/stable/models.html
3Batch normalization layers, while not explicitly covered by our methods in the preceeding sections, are easy to

handle. Indeed, in Section 4.7, we show that our approach can effectively quantize batch normalization layers by
merging them with their preceding convolutional layers before quantization, and we demonstrate experimentally
that this does not negatively impact performance.

128

https://pytorch.org/vision/stable/models.html

R ∝
1
Ni

∑1≤ j≤Ni ∥W
(i)
j ∥∞. Then, by (4.39), the step size used for quantizing the i-th layer is given

by

δ
(i) :=

C
2b−1Ni

∑
1≤ j≤Ni

∥W (i)
j ∥∞. (4.40)

Here, C ≥ 1 is independent of i and fixed across layers, batch-sizes, and bit widths. To obtain a

good choice of C, we perform a grid search with cross-validation over the interval [1,2], albeit on

a small batch size m≤ 128. So the tuning of C takes very little time compared to the quantization

with the full training data. Note that the tuning and quantization scale linearly in the size of

the data set and the number of parameters of the network. This means that this entire process’s

computational complexity is dominated by the original training of the network and there is no

problem with its scaling to large networks. Moreover, by choosing the maximal element in our

alphabet, i.e. qmax = 2b−1δ (i), to be a constant C ∈ [1,2] times the average ℓ∞ norm of all the

neurons, we are selecting a number that is effectively larger than most of the weights and thereby

corresponding perfectly with the theory for most of the neurons. For the remaining neurons, the

vast majority of the weights will be below this threshold, and only the outlier weights, in general,

will exceed it. In Section 4.8, we present a theoretical analysis of the expected error when a

few weights exceed qmax. We not only show that the proposed algorithm is still effective in this

scenario, but also that in some cases, it may be beneficial to choose δ small enough such that

some weights exceed qmax. The analysis in Section 4.8 is consistent with, and helps explain the

experimental results in this section. Further, we comment that a more thorough search for an

optimal C depending on these individual parameters, e.g. b, may improve performance.

Table 4.1. Top-1/Top-5 accuracy drop using b = 5 bits.

Model C m Acc Drop (%) Model C m Acc Drop (%)

AlexNet 1.1 2048 0.85/0.33 GoogLeNet 1.41 2048 0.60/0.46
VGG-16 1.0 512 0.63/0.32 EfficientNet-B1 1.6 2048 0.45/0.18
ResNet-18 1.16 4096 0.49/0.23 ResNet-50 1.81 2048 0.62/0.11

As mentioned in Section 4.3.3, we introduce a sampling probability p ∈ (0,1], associated

129

with GPFQ for convolutional layers. This is motivated, in part, by decreasing the computational

cost associated with quantizing such layers. Indeed, a batched input tensor of a convolutional

layer can be unfolded as a stack of vectorized sliding local blocks, i.e., a matrix. Since, addi-

tionally, the kernel can be reshaped into a column vector, matrix-vector multiplication followed

by reshaping gives the output of this convolutional layer. On the other hand, due to potentially

large overlaps between sliding blocks, the associated matrices have large row size and thus the

computational complexity is high. To accelerate our computations, we extract the data used for

quantization by setting the stride (which defines the step size of the kernel when sliding through

the image) equal to the kernel size and choosing p = 0.25. This choice gives a good trade-off

between accuracy and computational complexity, which both increase with p. Recall that the

batch size m ∈ N denotes the number of samples used for quantizing each layer of a neural

network. In all experiments, b is chosen from {3,4,5,6}.

4.5.2 Results on ImageNet

Impact of b and m

The first experiment is designed to explore the effect of the batch size m, as well as

bit-width b, on the accuracy of the quantized models. We compute the validation accuracy of

quantized networks with respect to different choices of b and m. In particular, Table 4.1 shows

that, using b = 5 bits, all quantized models achieve less than 1% loss in top-1 and top-5 accuracy.

Moreover, we illustrate the relationship between the quantization accuracy and the batch size m

in Figure 4.1, where the horizontal lines in cyan, obtained directly from the original validation

accuracy of unquantized models, are used for comparison against our quantization method. We

observe that (1) all curves with distinct b quickly approach an accuracy ceiling while curves with

high b eventually reach a higher ceiling; (2) Quantization with b≥ 4 attains near-original model

performance with sufficiently large m; (3) one can expect to obtain higher quantization accuracy

by taking larger m but the extra improvement that results from increasing the batch size rapidly

diminishes.

130

(a) AlexNet (b) GoogLeNet (c) VGG-16

(d) ResNet-18 (e) ResNet-50 (f) EfficientNet-B1

Figure 4.1. Top-1 (dashed lines) and Top-5 (solid lines) accuracy for original and quantized
models on ImageNet.

Comparisons with Baselines

Next, we compare GPFQ against other post-training quantization schemes discussed

in Section 4.1.1 on various architectures. We note, however, that for a fixed architecture each

post-training quantization method starts with a potentially different set of parameters (weights

and biases), and these parameters are not available to us. As such, we simply report other

methods’ accuracies as they appear in their associated papers. Due to this, a perfect comparison

between methods is not possible. Another factor that impacts the comparison is that following

DoReFa-Net [36], many baseline quantization schemes [34, 14, 19] leave the first and the last

layers of DNNs unquantized to alleviate accuracy degradation. On the other hand, we quantize

all layers of the model. Table 4.2 displays the number of bits and the method used to quantize

131

each network. It also contains the accuracy of quantized and full-precision models respectively,

as well as their difference, i.e. accuracy drop. We report the results of GPFQ (without the †

superscript) for all models with b = 3,4,5. The important observation here is that our method is

competitive across architectures and bit-widths, and shows the best performance on a number of

them.

Table 4.2. ImageNet Top-1 accuracy with weight quantization.

Model Bits Method Quant Acc (%) Ref Acc (%) Acc Drop (%)

Alexnet

3 GPFQ (Ours) 53.22 56.52 3.30
GPFQ (Ours)† 54.77 56.52 1.75

4
OMSE[3] 55.52 56.62 1.10
GPFQ (Ours) 55.15 56.52 1.37
GPFQ (Ours)† 55.51 56.52 1.01

5 GPFQ (Ours) 55.67 56.52 0.85
GPFQ (Ours)† 55.94 56.52 0.58

8 DoReFa [36] 53.00 55.90 2.90

VGG-16

3 GPFQ (Ours) 69.67 71.59 1.92
GPFQ (Ours)† 70.24 71.59 1.35

4

MSE [1] 70.50 71.60 1.10
OMSE [3] 71.48 73.48 2.00
GPFQ (Ours) 70.70 71.59 0.89
GPFQ (Ours)† 70.90 71.59 0.69

5 GPFQ (Ours) 70.96 71.59 0.63
GPFQ (Ours)† 71.05 71.59 0.54

8 Lee et al. [18] 68.05 68.34 0.29

ResNet-18

3 GPFQ (Ours) 66.55 69.76 3.21
GPFQ (Ours)† 67.63 69.76 2.13

4

MSE [1] 67.00 69.70 2.70
OMSE [3] 68.38 69.64 1.26
S-AdaQuant [14] 69.40 71.97 2.57
AdaRound [23] 68.71 69.68 0.97
BRECQ [19] 70.70 71.08 0.38
GPFQ (Ours) 68.55 69.76 1.21
GPFQ (Ours)† 68.81 69.76 0.95

5
RQ [21] 65.10 69.54 4.44
GPFQ (Ours) 69.27 69.76 0.49
GPFQ (Ours)† 69.50 69.76 0.26

6 DFQ [24] 66.30 70.50 4.20
RQ [21] 68.65 69.54 0.89

ResNet-50

3 GPFQ (Ours) 71.80 76.13 4.33
GPFQ (Ours)† 72.18 76.13 3.95

4

MSE [1] 73.80 76.10 2.30
OMSE [3] 73.39 76.01 2.62
OCS + Clip [34] 69.30 76.10 6.80
PWLQ [8] 73.70 76.10 2.40
AdaRound [23] 75.23 76.07 0.84
S-AdaQuant [14] 75.10 77.20 2.10
BRECQ [19] 76.29 77.00 0.71
GPFQ (Ours) 75.10 76.13 1.03
GPFQ (Ours)† 75.30 76.13 0.83

5
OCS + Clip [34] 73.40 76.10 2.70
GPFQ (Ours) 75.51 76.13 0.62
GPFQ (Ours)† 75.66 76.13 0.47

8 IAOI [15] 74.90 76.40 1.50

132

Further Improvement of GPFQ

In this section, we show that the validation accuracy of the proposed approach can be

further improved by incorporating the following modifications used by prior work:

(a) AlexNet with (4.35) (b) AlexNet with (4.36)

(c) VGG-16 with (4.35) (d) VGG-16 with (4.36)

(e) ResNet-50 with (4.35) (f) ResNet-50 with (4.36)

Figure 4.2. (1) Left y-axis: Top-1 (dashed-dotted lines) and Top-5 (dash lines) accuracy for
original (in red) and quantized (in blue) models on ImageNet. (2) Right y-axis: The sparsity of
quantized models plotted by dotted green lines.

(1) mixing precision for quantization, such as using different bit-widths to quantize fully-

connected and convolutional layers respectively [2] or leaving the last fully-connected layer

133

unquantized [36]; (2) applying bias correction [1, 24] to the last layer, that is, subtracting the

average quantization error from the layer’s bias term. In Table 4.2, we examine some of these

empirical rules by leaving the last layer intact and performing bias correction to remove the

noise due to quantization. This variant of GPFQ is highlighted by a † symbol. By using the

enhanced GPFQ, the average increment of accuracy exceeds 0.2% for b = 4,5 bits, and is greater

than 0.7% for b = 3 bits. This demonstrates, empirically, that GPFQ can be easily adapted to

incorporate heuristic modifications that improve performance.

Sparse Quantization

For our final experiment, we illustrate the effects of sparsity via the sparse quantization

introduced in Section 4.4. Recall that the sparse GPFQ with soft thresholding in (4.35) uses

alphabets A δ
K as in (4.4) while the version of hard thresholding, see (4.36), relies on alphabets

A δ ,λ
K as in Equation (4.6). In the setting of our experiment, both K and δ are still defined and

computed as in Section 4.5.1, where the number of bits b = 5 and the corresponding scalar C > 0

and batch size m ∈ N for each neural network is provided by Table 4.1. Moreover, the sparsity

of a given neural network is defined as the proportion of zeros in the weights. According to

Equation (4.35) and Equation (4.36), in general, the sparsity of DNNs is boosted as λ increases.

Hence, we treat λ > 0 as a variable to control sparsity and explore its impact on validation

accuracy of different DNNs. As shown in Figure 4.2, we quantize AlexNet, VGG-16, and ResNet-

50 using both (4.35) and (4.36), with λ ∈ {0,0.0025,0.005,0.0075,0.01,0.0125}. Curves for

validation accuracy and sparsity are plotted against λ . We note that, for all tested models, sparse

GPFQ with hard thresholding, i.e. (4.36), outperforms soft thresholding, achieving significantly

higher sparsity and better accuracy. For example, by quantizing AlexNet and VGG-16 with

(4.36), one can maintain near-original model accuracy when half the weights are quantized to

zero, which implies a remarkable compression rate 0.5b
32 = 2.5

32 ≈ 7.8%. Similarly, Figure 4.2f

and Figure 4.2e show that ResNet-50 can attain 40% sparsity with subtle decrement in accuracy.

Additionally, in all cases, one can expect to get higher sparsity by increasing λ while the

134

validation accuracy tends to drop gracefully. Moreover, in Figure 4.2e, we observe that the

sparsity of quantized ResNet50 with λ = 0.0025 is even lower than the result when thresholding

functions are not used, that is, λ = 0. A possible reason is given as follows. In contrast with

A δ
K , the alphabet A δ ,λ

K has only one element 0 between −λ and λ . Thus, to compensate for the

lack of small alphabet elements and also reduce the path following error, sparse GPFQ in (4.36)

converts more weights to nonzero entries of A δ ,λ
K , which in turn dampens the upward trend in

sparsity.

4.6 Useful Lemmata

Lemma 4.6.1. In the context of (4.10), we have qt =Q

Å
⟨X̃ (i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
. Here, we suppose

X̃ (i−1)
t ̸= 0.

Proof. According to (4.10), qt = arg min
p∈A

∥∥ut−1 +wtX
(i−1)
t − pX̃ (i−1)

t
∥∥2

2. Expanding the square

and removing the terms irrelevant to p, we obtain

qt = arg min
p∈A

(
p2∥X̃ (i−1)

t ∥2
2−2p⟨X̃ (i−1)

t ,ut−1 +wtX
(i−1)
t ⟩

)
= arg min

p∈A

Å
p2−2p · ⟨X̃

(i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
= arg min

p∈A

Å
p− ⟨X̃

(i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã2

= arg min
p∈A

∣∣∣∣p− ⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

∣∣∣∣
= Q

Å⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
.

In the last equality, we used the definition of (4.7).

Lemma 4.6.2. Suppose X̃ (i−1)
t ̸= 0. The closed-form expression of qt in (4.34) is given by

qt =Q◦sλ

Å
⟨X̃ (i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
. Here, sλ (x) := sign(x)max{|x|−λ ,0} is the soft thresholding

function.

135

Proof. Expanding the square and removing the terms irrelevant to p, we obtain

qt = arg min
p∈A

(p2

2
∥X̃ (i−1)

t ∥2
2− p⟨X̃ (i−1)

t ,ut−1 +wtX
(i−1)
t ⟩+λ |p|∥X̃ (i−1)

t ∥2
2

)
= arg min

p∈A

Å
p2

2
− p · ⟨X̃

(i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

+λ |p|
ã

= arg min
p∈A

Å
p2

2
−αt p+λ |p|

ã
(4.41)

where αt := ⟨X̃ (i−1)
t ,ut−1+wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

. Define gt(p) := 1
2 p2−αt p+λ |p| for p ∈R. By (4.4), we have

qt = argminp∈A gt(p) = argmin|k|≤K
k∈Z

gt(kδ). Now we analyze two cases αt ≥ 0 and αt < 0. The

idea is to investigate the behaviour of gt(kδ) over k ∈ {−K, ...,K}.

(I) Assume αt ≥ 0. Since gt(kδ)> gt(0) = 0 for all −K ≤ k ≤−1, then gt(kδ) is minimized at

some k≥ 0. Note that gt(p) is a convex function passing through the origin. So, for 1≤ k≤K−1,

gt(kδ) is the minimum if and only if gt(kδ)≤min{gt((k+1)δ),gt((k−1)δ)}.

It is easy to verify that the condition above is equivalent to

(
k− 1

2

)
δ +λ ≤ αt ≤

(
k+

1
2

)
δ +λ . (4.42)

It only remains to check k = 0 and k = K. For k = 0, note that when αt ∈ [0,δ/2+λ], we have

gt(δ)≥ gt(0) = 0, (4.43)

and if αt ≥ (K− 1
2)δ +λ , then

gt(Kδ)≤ gt((K−1)δ). (4.44)

136

Combining (4.42), (4.43), and (4.44), we conclude that

qt = arg min
|k|≤K
k∈Z

gt(kδ) =


0 if 0≤ αt <

δ

2 +λ ,

kδ if |αt−λ − kδ | ≤ δ

2 and 1≤ k ≤ K−1,

Kδ if αt ≥ λ + δ

2 +(K−1)δ .

(4.45)

(II) In the opposite case where αt < 0, it suffices to minimize gt(kδ) with k ≤ 0 because

gt(kδ) > 0 for all k ≥ 1. Again, notice that gt(p) is a convex function on [−∞,0] satisfying

gt(0) = 0. Applying a similar argument as in the case αt ≥ 0, one can get

qt = arg min
|k|≤K
k∈Z

gt(kδ) =


0 if − δ

2 −λ < αt < 0,

kδ if |αt +λ − kδ | ≤ δ

2 and − (K−1)≤ k ≤−1,

−Kδ if αt ≤−λ − δ

2 − (K−1)δ .

(4.46)

It follows from (4.45) and (4.46) that qt = Q(sλ (αt)) = Q ◦ sλ

Å
⟨X̃ (i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
where

sλ (x) := sign(x)max{|x|−λ ,0} is the soft thresholding function.

Orthogonal Projections. Given a closed subspace S ⊆ Rm, we denote the orthogonal

projection onto S by PS. In particular, if z ∈ Rm is a vector, then we use Pz and Pz⊥ to represent

orthogonal projections onto span(z) and span(z)⊥ respectively. Hence, for any x ∈ Rm, we have

Pz(x) =
⟨z,x⟩z
∥z∥2

2
, x = Pz(x)+Pz⊥(x), and ∥x∥2

2 = ∥Pz(x)∥2
2 +∥Pz⊥(x)∥

2
2. (4.47)

Lemma 4.6.3. Let A be as in (4.4) with step size δ > 0, and largest element qmax. Suppose

that w ∈ RN0 satisfies ∥w∥∞ ≤ qmax, and consider the quantization scheme given by (4.12). Let

137

θt := ∠(Xt ,ut−1) be the angle between Xt and ut−1. Then, for t = 1,2, . . . ,N0, we have

∥ut∥2
2−∥ut−1∥2

2 ≤


δ 2

4 ∥Xt∥2
2−∥ut−1∥2

2 cos2 θt if
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax,

0 otherwise.
(4.48)

Proof. By applying (4.47) and (4.12), we get

∥PXt (ut)∥2
2 =

(X⊤t ut)
2

∥Xt∥2
2

=
(X⊤t ut−1 +(wt−qt)∥Xt∥2

2)
2

∥Xt∥4
2

∥Xt∥2
2

=
(

wt +
X⊤t ut−1

∥Xt∥2
2
−qt

)2
∥Xt∥2

2 =
(

wt +
∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
∥Xt∥2

2. (4.49)

The last equation holds because X⊤t ut−1 = ∥Xt∥2∥ut−1∥2 cosθt . Note that

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
−
(∥ut−1∥2

∥Xt∥2
cosθt

)2
=
(

wt +
2∥ut−1∥2

∥Xt∥2
cosθt−qt︸ ︷︷ ︸

(I)

)
(wt−qt︸ ︷︷ ︸

(II)

),

|wt | ≤ qmax, and qt = Q
(

wt +
∥ut−1∥2
∥Xt∥2

cosθt

)
. If

(
wt +

∥ut−1∥2
∥Xt∥2

cosθt

)
> qmax, then qt = qmax

and thus 0 ≤ qt −wt ≤ ∥ut−1∥2
∥Xt∥2

cosθt . So (I) ≥ wt + 2(qt −wt)− qt = qt −wt ≥ 0 and (II) ≤ 0.

Moreover, if
(

wt +
∥ut−1∥2
∥Xt∥2

cosθt

)
< −qmax, then qt = −qmax and ∥ut−1∥2

∥Xt∥2
cosθt ≤ qt −wt ≤ 0.

Hence, (I)≤ wt +2(qt−wt)−qt = qt−wt ≤ 0 and (II)≥ 0. It follows that

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
≤
(∥ut−1∥2

∥Xt∥2
cosθt

)2
(4.50)

when
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣ > qmax. Now, assume that
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣ ≤ qmax. In this case,

since the argument of Q lies in the active range of A , we obtain

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
≤ δ 2

4
. (4.51)

138

Applying (4.50) and (4.51) to (4.49), one can get

∥PXt (ut)∥2
2 ≤


δ 2

4 ∥Xt∥2
2 if

∣∣∣wt +
∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax,

∥ut−1∥2
2 cos2 θt otherwise.

(4.52)

Further, we have

PX⊥t
(ut) = PX⊥t

(ut−1 +wtXt−qtXt) = PX⊥t
(ut−1). (4.53)

It follows that

∥ut∥2
2−∥ut−1∥2

2 = ∥PXt (ut)∥2
2 +∥PX⊥t

(ut)∥2
2−∥ut−1∥2

2

= ∥PXt (ut)∥2
2 +∥PX⊥t

(ut−1)∥2
2−∥ut−1∥2

2 (by (4.53))

= ∥PXt (ut)∥2
2−∥PXt (ut−1)∥2

2 (using (4.47))

= ∥PXt (ut)∥2
2−∥ut−1∥2

2 cos2
θt .

Substituting ∥PXt (ut)∥2
2 with its upper bounds in (4.52), we obtain (4.48).

Lemma 4.6.4. Suppose that we quantize w ∈ RN0 using quantization scheme given by (4.12).

Additionally, denote the information of the first t−1 quantization steps by a σ -algebra Ft−1,

and let β ,η > 0. Then, for t = 1,2, . . . ,N0, we have

E(eηβ∥ut−1∥2
2(1−cos2 θt) |Ft−1)≤−E(cos2

θt |Ft−1)(eηβ∥ut−1∥2
2−1)+ eηβ∥ut−1∥2

2

where θt is the angle between Xt and ut−1.

139

Proof. Conditioning on Ft−1, the function f (x) = eηβx∥ut−1∥2
2 is convex. It follows that

E(eηβ∥ut−1∥2
2(1−cos2 θt) |Ft−1) = E(f (cos2

θt ·0+(1− cos2
θt) ·1) |Ft−1)

≤ E(cos2
θt +(1− cos2

θt)eηβ∥ut−1∥2
2 |Ft−1)

≤ E(cos2
θt |Ft−1)+(1−E(cos2

θt |Ft−1))eηβ∥ut−1∥2
2

=−E(cos2
θt |Ft−1)(eηβ∥ut−1∥2

2−1)+ eηβ∥ut−1∥2
2.

4.7 Fusing Convolution and Batch Normalization Layers

For many neural networks, e.g. MobileNets and ResNets, a convolutional layer is usually

followed by a batch normalization (BN) layer to normalize the output. Here, we show how

our quantization approach admits a simple modification that takes into account such BN layers.

Specifically, denote the convolution operator by * and suppose that a convolutional layer

fconv(x) := wconv ∗ x+bconv (4.54)

is followed by a BN layer given by

fbn(x) :=
x− µ̂√
σ̂2 + ε

·wbn +bbn. (4.55)

Here, wconv, wbn, bconv, and bbn are learned parameters and µ̂ , σ̂ are the running mean and

standard-deviation respectively while ε > 0 is to keep the denominator bounded away from 0.

Note that the parameters in both Equation (4.54) and Equation (4.55) are calculated per-channel

over the mini-batches during training, but fixed thereafter.

Thus, to quantize the convolutional and subsequent BN layers simultaneously, we first

140

Table 4.3. Top-1 accuracy drop for ResNet-18 and ResNet-50.

Model b m
Unfused Fused

C Acc Drop (%) C Acc Drop (%)

ResNet-18

4 2048

1.16

1.63

1.29

1.72
4 4096 1.21 1.18
5 2048 0.71 0.72
5 4096 0.49 0.51

ResNet-50
5 512

1.81
0.97

1.82
1.03

5 1024 0.90 0.81
5 2048 0.62 0.64

observe that we can write

fbn ◦ fconv(x) = wnew ∗ x+bnew (4.56)

with

wnew :=
wconvwbn√

σ̂2 + ε
, bnew :=

(bconv− µ̂)wbn√
σ̂2 + ε

+bbn.

As a result, to quantize the convolutional and subsequent BN layer simulatenously, we can

simply quantize the parameters wnew,bnew in (4.56) using our methods. Although BN layers are

not quantized in our experiments in Section 4.5, we will show here that the proposed algorithm

GPFQ is robust to neural network fusion as described above. In Table 4.3, we compare the

Top-1 quantization accuracy between fused ResNets and unfused ResNets when quantized using

our methods with different bits and batch sizes. Note that the scalar C for unfused networks

remains the same as in Table 4.1 while C for fused networks is selected using the procedure after

Equation (4.40). We observe that the performance of GPFQ for fused ResNet-18 and ResNet-50

is quite similar to that for unfused networks.

4.8 Quantizing Large Weights

In this section, we demonstrate that the proposed quantization algorithm (4.12) is still

effective for weights with magnitudes that exceed the largest element, qmax = Kδ , in the alphabet

set A .

141

Specifically, we prove Theorem 4.8.2, bounding the expected error when n := n(δ)

entries of w are greater than Kδ . In turn, Theorem 4.8.2 suggests that in some cases, choosing δ

such that n(δ) > 0 may be advantageous, a finding that is consistent with our experiments in

Section 4.5. We begin with the following lemma needed to prove Theorem 4.8.2.

Lemma 4.8.1. Let A be as in (4.4) with step size δ > 0, and largest element qmax. Suppose that

w ∈ RN0 satisfies ∥w∥∞ ≤ kqmax for some k > 1, and consider the quantization scheme given by

(4.12). Let θt := ∠(Xt ,ut−1) be the angle between Xt and ut−1. Then

∥ut∥2
2 ≤



δ 2

4 ∥Xt∥2
2 +∥ut−1∥2

2(1− cos2 θt) if
∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt
∣∣≤ qmax,

∥ut−1∥2
2 if

∣∣wt +
∥ut−1∥2
∥Xt∥2

cosθt
∣∣> qmax and |wt | ≤ qmax,

(∥ut−1∥2 +(k−1)qmax∥Xt∥2)
2 if

∣∣wt +
∥ut−1∥2
∥Xt∥2

cosθt
∣∣> qmax and |wt |> qmax

(4.57)

holds for t = 1,2, . . . ,N0.

Proof. The first two cases in (4.57) are covered by Lemma 4.6.3. So it remains to consider the

case where
∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt
∣∣ > qmax and |wt | > qmax. As in the proof of Lemma 4.6.3, we

have

∥ut∥2
2 = (vt−qt)

2∥Xt∥2
2 +(1− cos2

θt)∥ut−1∥2
2

where vt := wt +
∥ut−1∥2
∥Xt∥2

cosθt . Since qt = Q(vt) and |vt | > qmax, we get qt = sign(vt)qmax. It

follows that

∥ut∥2
2 = (vt− sign(vt)qmax)

2∥Xt∥2
2 +(1− cos2

θt)∥ut−1∥2
2

= (|vt |−qmax)
2∥Xt∥2

2 +(1− cos2
θt)∥ut−1∥2

2. (4.58)

By symmetry, we can assume without loss of generality that vt > qmax. In this case, since

142

|wt | ≤ ∥w∥∞ ≤ kqmax,

|vt |−qmax = vt−qmax = wt−qmax +
∥ut−1∥2

∥Xt∥2
cosθt ≤ (k−1)qmax +

∥ut−1∥2

∥Xt∥2
cosθt .

Then (4.58) becomes

∥ut∥2
2 ≤

(
(k−1)qmax +

∥ut−1∥2

∥Xt∥2
cosθt

)2
∥Xt∥2

2 +(1− cos2
θt)∥ut−1∥2

2

= (k−1)2q2
max∥Xt∥2

2 +∥ut−1∥2
2 +2(k−1)qmax⟨Xt ,ut−1⟩

= ∥(k−1)qmaxXt +ut−1∥2
2

≤ (∥ut−1∥2 +(k−1)qmax∥Xt∥2)
2.

This completes the proof.

We are now ready to bound the expected quantization error in the case when some

weights have magnitude greater than qmax.

Theorem 4.8.2. Suppose that the columns Xt of X ∈ Rm×N0 are drawn independently from a

probability distribution for which there exists s ∈ (0,1) and r > 0 such that ∥Xt∥2 ≤ r almost

surely, and such that for all unit vector u ∈ Sm−1 we have

E
(⟨Xt ,u⟩2

∥Xt∥2
2

∣∣∣Ht

)
P(Ht)≥ s2. (4.59)

Here, Ht represents the event {|wt +
⟨Xt ,ut−1⟩
∥Xt∥2

2
| ≤ qmax}. Let A be the alphabet in (4.4) with step

size δ > 0, and the largest element qmax. Let w ∈ RN0 be the weights associated with a neuron

such that ∥w∥∞ ≤ kqmax for some k > 1. Let n = |{t : |wt | > qmax}| be the number of weights

with magnitude greater than qmax. Quantizing w using (4.12), we have

E∥Xw−Xq∥2
2 ≤
Å

nr(k−1)qmax +
1
2

nrδ +
δ r
2s

ã2

. (4.60)

143

Proof. Let Et represent the event {|wt +
∥ut−1∥2
∥Xt∥2

cosθt | ≤ qmax} where θt is the angle between Xt

and ut−1. Denote the information of the first t−1 quantization steps by Ft−1. Additionally, we

define

pt := P(Et |Ft−1) and s2
t := E

(⟨Xt ,ut−1⟩2

∥Xt∥2
2∥ut−1∥2

2

∣∣∣Ft−1,Et

)
.

By (4.59), we have

pts2
t ≥ s2. (4.61)

Since ∥Xt∥2 ≤ r almost surely, by Lemma 4.8.1, we obtain

E(∥ut∥2
2 |Ft−1,Et)≤

1
4

δ
2r2 +(1− s2

t)∥ut−1∥2
2 (4.62)

and

E(∥ut∥2
2 |Ft−1,E

c
t)≤


∥ut−1∥2

2 if |wt | ≤ qmax,

(∥ut−1∥2 +(k−1)rqmax)
2 if |wt |> qmax.

(4.63)

Moreover, we have

E(∥ut∥2
2 |Ft−1) = E(∥ut∥2

2 |Ft−1,Et)P(Et |Ft−1)+E(∥ut∥2
2 |Ft−1,E

c
t)P(E

c
t |Ft−1)

= ptE(∥ut∥2
2 |Ft−1,Et)+(1− pt)E(∥ut∥2

2 |Ft−1,E
c

t). (4.64)

If |wt | ≤ qmax, then using (4.64), (4.63), and (4.62), we obtain

E(∥ut∥2
2 |Ft−1)≤

1
4

ptδ
2r2 + pt(1− s2

t)∥ut−1∥2
2 +(1− pt)∥ut−1∥2

2

≤ 1
4

δ
2r2 +(1− s2)∥ut−1∥2

2.

144

In the last step, we used (4.61) and pt ∈ [0,1]. Similarly, if |wt |> qmax, then

E(∥ut∥2
2 |Ft−1)≤

1
4

ptδ
2r2 + pt(1− s2

t)∥ut−1∥2
2 +(1− pt)(∥ut−1∥2 +(k−1)rqmax)

2

= (1− pts2
t)∥ut−1∥2

2 +2(k−1)rqmax(1− pt)∥ut−1∥2 +
1
4

ptδ
2r2 +(1− pt)(k−1)2r2q2

max

≤ ∥ut−1∥2
2 +2(k−1)rqmax∥ut−1∥2 +

1
4

δ
2r2 +(k−1)2r2q2

max.

Let a := 1− s2, b := 1
4δ 2r2, and c := (k−1)rqmax +

1
2δ r. It follows that

E∥ut∥2
2 = E(E(∥ut∥2

2 |Ft−1))≤


aE∥ut−1∥2

2 +b if |wt | ≤ qmax,

E∥ut−1∥2
2 +2cE∥ut−1∥2 + c2 if |wt |> qmax.

(4.65)

Define the indices t0 := 0 < t1 < .. . < tn < tn+1 := N0 + 1 where |wt j | > qmax and let m j :=

t j− t j−1−1 for 1≤ j ≤ n. Applying the first case in (4.65) recursively, one obtain

E∥ut1−1∥2
2 ≤ am1E∥u0∥2

2 +b(1+a+ . . .+am1−1) = b(1+a+ . . .+am1−1). (4.66)

In the last equation, we used the fact u0 = 0. Next, the second case in (4.65) can be used to

bound E∥ut1∥2
2. Specifically, we have

E∥ut1∥
2
2 ≤ E∥ut1−1∥2

2 +2cE∥ut1−1∥2 + c2 (using (4.65))

≤ E∥ut1−1∥2
2 +2c(E∥ut1−1∥2

2)
1
2 + c2 (by Jensen’s inequality)

= ((E∥ut1−1∥2
2)

1
2 + c)2

≤
(

c+
»

b(1+a+ . . .+am1−1)
)2

(using (4.66)). (4.67)

145

Since |wt | ≤ qmax for t1 < t < t2, using (4.65), we can derive

E∥ut2−1∥2
2 ≤ am2E∥ut1∥

2
2 +b(1+a+ . . .+am2−1)

≤ am2

(
c+

b · 1−am1

1−a

)2

+b · 1−am2

1−a
(using (4.67))

= am2c2 +b · 1−am1+m2

1−a
+2am2c

b(1−am1)

1−a

≤ c2 +b · 1−am1+m2

1−a
+2c

b(1−am1+m2)

1−a
(since 0 < a < 1)

≤

(
c+

b(1−am1+m2)

1−a

)2

. (4.68)

Hence, we obtain E∥ut2−1∥2
2 ≤

(
c+
»

b
1−a

)2
. Proceeding in the same way for the remaining

indices ti up to tn+1−1 = N0, we obtain

E∥uN0∥
2
2 ≤

(
nc+

b

1−a

)2

=

Å
nr(k−1)qmax +

1
2

nrδ +
δ r
2s

ã2

. (4.69)

Since uN0 = Xw−Xq, we have E∥Xw−Xq∥2
2 ≤ (nr(k−1)qmax +

1
2nrδ + δ r

2s)
2.

Our numerical experiments in Section 4.5 demonstrated that choosing our alphabet

with qmax < ∥w∥∞ can yield better results than if we strictly conformed to choosing A with

qmax ≥ ∥w∥∞. Let us now see how Theorem 4.8.2 can help explain these experimental results.

First, recall from (4.4) that qmax = Kδ = 2b−1δ where b is the number of bits, and observe that

the condition ∥w∥∞ ≤ kqmax in Theorem 4.8.2 implies that we can set k = ∥w∥∞/qmax. Thus

(4.60), coupled with Jensen’s inequality, yields

E∥Xw−Xq∥2 ≤ nr(∥w∥∞−qmax +
1
2

δ)+
δ r
2s

= nr(∥w∥∞− (2b−1−2−1)δ)+
δ r
2s

. (4.70)

Now, note that s,r are fixed parameters that only depend on the input data distribution so for a

146

fixed b, n = n(δ) = |{t : |wt |> 2b−1δ}| is a decreasing function of δ . In other words, the right

hand side of (4.70) is the sum of an increasing function of δ and a decreasing function of δ .

This means that there exists an optimal value of δ ∗ that minimizes the bound. In particular, it

may not always be optimal to choose a large δ such that ∥w∥∞ = 2b−1δ . This gives a theoretical

justification for why the simple grid search we used in Section 4.5 yielded better results.

4.9 Theoretical Analysis for Gaussian Clusters

In this section, we will prove Theorem 4.3.4, which we first restate here for convenience.

Theorem 4.3.4: Let X ∈ Rm×N0 be as in (4.30) and let A be as in (4.3), with step size δ > 0.

Let p ∈ N, J = 1+(dσ2)−1 max1≤t≤N0 ∑
d
i=1(z

(i)
t)2, and w ∈ RN0 be the weights associated with

a neuron. Quantizing w using (4.12), we have

P
(
∥Xw−Xq∥2

2 ≥ 4pm2J2
δ

2
σ

2 logN0

)
≤ 7
√

mJ
N p

0
, and

P
(

max
1≤t≤N0

∥ut∥2
2 ≥ 4pm2J2

δ
2
σ

2 logN0

)
≤ 7
√

mJ

N p−1
0

.

If the activation function ϕ is ξ -Lipschitz continuous, then

P
Å
∥ϕ(Xw)−ϕ(Xq)∥2

2 ≥ 4pm2J2
ξ

2
δ

2
σ

2 logN0

ã
≤ 7
√

mJ
N p

0
.

4.9.1 Proof of Theorem 4.3.4

Due to ∥Xt∥2
2 = ∑

d
i=1 ∥Y

(i)
t ∥2

2,

E∥Xt∥2
2 =

d

∑
i=1

E∥Y (i)
t ∥2

2 =
d

∑
i=1

(nσ
2 +n(z(i)t)2) = mσ

2 +n
d

∑
i=1

(z(i)t)2 (4.71)

Additionally, given a unit vector u = (u(1),u(2), . . . ,u(d)) ∈ Rm with u(i) ∈ Rn, we have ⟨Xt ,u⟩=

∑
d
i=1⟨Y

(i)
t ,u(i)⟩ ∼N

(
∑

d
i=1 z(i)t u(i)⊤1n,σ

2
)

. In fact, once we get the lower bound of E ⟨Xt ,u⟩2
∥Xt∥2

2

147

as in (4.13), the quantization error for unbounded data (4.30) can be derived similarly to the

proof of Theorem 4.3.1, albeit using different techniques. It follows from the Cauchy-Schwarz

inequality that

E
⟨Xt ,u⟩2

∥Xt∥2
2
≥ (E|⟨Xt ,u⟩|)2

E∥Xt∥2
2

. (4.72)

E∥Xt∥2
2 is given by (4.71) while E|⟨Xt ,u⟩| can be evaluated by the following results.

Lemma 4.9.1. Let Z ∼N (µ,σ2) be a normally distributed random variable. Then

E|Z| ≥ σ

…
2
π

Å
1− 4

27π

ã
. (4.73)

Proof. Let Ψ(x) = 1√
2π

∫ x
−∞

e−t2/2 dt be the normal cumulative distribution function. Due to Z ∼

N (µ,σ2), the folded normal distribution |Z| has mean E|Z|=σ

»
2
π

e−µ2/2σ2
+µ(1−2Ψ(−µ

σ
)).

A well-known result [9, 29] that can be used to bound Ψ(x) is

∫
∞

x
e−t2/2 dt ≤min

Å…
π

2
,
1
x

ã
e−x2/2, forx > 0. (4.74)

Additionally, in order to evaluate E|Z|, it suffices to analyze the case µ ≥ 0 because one can

replace Z by −Z without changing |Z| when µ < 0. So we suppose µ ≥ 0.

By (4.74), we obtain

E|Z|= σ

…
2
π

e−µ2/2σ2
+µ−2µΨ(−µ/σ) = σ

…
2
π

e−µ2/2σ2
+µ−µ

…
2
π

∫
∞

µ/σ

e−t2/2 dt

≥ σ

…
2
π

e−µ2/2σ2
+µ−min

Å
µ,σ

…
2
π

ã
e−µ2/2σ2

.

If µ ≥ σ

»
2
π

, then one can easily get E|Z| ≥ µ ≥ σ

»
2
π

. Further, if 0 ≤ µ < σ

»
2
π

, then

E|Z| ≥ (σ
√

2/π−µ)e−µ2/2σ2
+µ . Due to ex ≥ 1+ x for all x ∈ R, one can get

E|Z| ≥ (σ
»

2/π−µ)(1−µ
2/2σ

2)+µ =
1

2σ2 µ
3− 1

σ
√

2π
µ

2 +σ

…
2
π
≥ σ

…
2
π

Å
1− 4

27π

ã
.

148

In the last inequality, we optimized in µ ∈ (0,σ
√

2/π) and thus chose µ = 2
3 ·σ
»

2
π

.

Lemma 4.9.2. Let clustered data X = [X1,X2, . . . ,XN0] ∈ Rm×N0 be defined as in (4.30) and

u ∈ Rm be a unit vector. Then, for 1≤ t ≤ N0, we have

E
⟨Xt ,u⟩2

∥Xt∥2
2
≥ 5

9
· σ2

mσ2 +n∑
d
i=1(z

(i)
t)2

.

Proof. Since ⟨Xt ,u⟩ is normally distributed with variance σ2, (4.73) implies

E|⟨Xt ,u⟩| ≥ σ

…
2
π

Å
1− 4

27π

ã
.

Plugging the inequality above and (4.71) into (4.72), we obtain

E
⟨Xt ,u⟩2

∥Xt∥2
2
≥ (E|⟨Xt ,u⟩|)2

E∥Xt∥2
2
≥

2(1− 4
27π

)2

π
· σ2

mσ2 +n∑
d
i=1(z

(i)
t)2
≥ 5

9
· σ2

mσ2 +n∑
d
i=1(z

(i)
t)2

.

Now we are ready to prove Theorem 4.3.4.

Proof. Let α > 0 and η > 0. By using exactly the same argument as in (4.17), at the t-th step of

(4.12), we have

P(∥ut∥2
2 ≥ α)≤ e−ηαEeη∥ut∥2

2 . (4.75)

Moreover, applying Lemma 4.6.3 with qmax = ∞, we have

∥ut∥2
2 ≤

δ 2

4
∥Xt∥2

2 +(1− cos2
θt)∥ut−1∥2

2.

It follows that

Eeη∥ut∥2
2 ≤ E(e

ηδ2
4 ∥Xt∥2

2eη∥ut−1∥2
2(1−cos2 θt)). (4.76)

Until now our analysis here has been quite similar to what we did for bounded input data in

149

Theorem 4.3.1. Nevertheless, unlike Theorem 4.3.1, we will control the moment generating

function of ∥Xt∥2
2 because ∥Xt∥2

2 is unbounded. Specifically, applying the Cauchy-Schwarz

inequality and Lemma 4.6.4 with β = 2, we obtain

E(e
ηδ2

4 ∥Xt∥2
2eη∥ut−1∥2

2(1−cos2 θt) |Ft−1)≤
(
Ee

ηδ2
2 ∥Xt∥2

2
) 1

2
(
E(e2η∥ut−1∥2

2(1−cos2 θt) |Ft−1)
) 1

2

≤
(
Ee

ηδ2
2 ∥Xt∥2

2
) 1

2
(
−E(cos2

θt |Ft−1)(e2η∥ut−1∥2
2−1)+ e2η∥ut−1∥2

2
) 1

2 (4.77)

In the first step, we also used the fact that Xt is independent of Ft−1. By Lemma 4.9.2, we have

E(cos2
θt |Ft−1) = E

Å ⟨Xt ,ut−1⟩2

∥Xt∥2
2∥ut−1∥2

2

∣∣∣Ft−1

ã
≥ 5

9mJ
=: s2.

Plugging the inequality above into (4.77), we get

E(e
ηδ2

4 ∥Xt∥2
2eη∥ut−1∥2

2(1−cos2 θt) |Ft−1)≤
(
Ee

ηδ2
2 ∥Xt∥2

2
) 1

2
(
−s2(e2η∥ut−1∥2

2−1)+ e2η∥ut−1∥2
2

) 1
2

=
(
Ee

ηδ2
2 ∥Xt∥2

2
) 1

2
(

e2η∥ut−1∥2
2(1− s2)+ s2

) 1
2

≤
(
Ee

ηδ2
2 ∥Xt∥2

2
) 1

2 (eη∥ut−1∥2
2(1− s2)

1
2 + s)

≤
(
Ee

ηδ2
2 ∥Xt∥2

2
) 1

2 (eη∥ut−1∥2
2(1− 1

2
s2)+ s) (4.78)

where the last two inequalities hold due to (x2 + y2)
1
2 ≤ |x|+ |y| for all x,y ∈ R, and (1− x)

1
2 ≤

1− 1
2x whenever x≤ 1.

Now we evaluate Ee
ηδ2

2 ∥Xt∥2
2 and note that

Ee
ηδ2

2 ∥Xt∥2
2 = Eexp

(
ηδ 2

2

d

∑
i=1
∥Y (i)

t ∥2
2

)
=

d

∏
i=1

Eexp
(

ηδ 2

2
∥Y (i)

t ∥2
2

)
. (4.79)

150

Since Y (i)
t ∼N (z(i)t 1n,σ

2In), we have

Eexp
(

ηδ 2

2
∥Y (i)

t ∥2
2

)
=

ï
1

σ
√

2π

∫
R

exp
Å
−(x− z(i)t)2

2σ2 +
ηδ 2x2

2

ã
dx
òn

=

ß
1

σ
√

2π
· exp
Å

ηδ 2(z(i)t)2

2−2ηδ 2σ2

ã∫
R

exp
ï
−1−ηδ 2σ2

2σ2

Å
x− z(i)t

1−ηδ 2σ2

ã2ò
dx
™n

=

ï
(1−ηδ

2
σ

2)−
1
2 exp
Å

ηδ 2(z(i)t)2

2−2ηδ 2σ2

ãòn

where the last equality holds if ηδ 2σ2 < 1 and we use the integral of the normal density function:Å
1−ηδ 2σ2

2πσ2

ã 1
2 ∫

R
exp
ï
−1−ηδ 2σ2

2σ2

Å
x− z(i)t

1−ηδ 2σ2

ã2ò
dx = 1.

Notice that 1
1−x ≤ 1+2x for x ∈ [0, 1

2] and 1+x≤ ex for all x ∈R. Now, we suppose ηδ 2σ2 ≤ 1
2

and thus (1−ηδ 2σ2)−
1
2 =

(
1

1−ηδ 2σ2

) 1
2 ≤ (1+2ηδ 2σ2)

1
2 ≤ eηδ 2σ2

. It follows that

Eexp
(

ηδ 2

2
∥Y (i)

t ∥2
2

)
≤
ï
exp
Å

ηδ
2
σ

2 +
ηδ 2(z(i)t)2

2−2ηδ 2σ2

ãòn

≤
ï
exp
Å

ηδ
2
σ

2 +ηδ
2(z(i)t)2

ãòn

≤ exp
Å

nηδ
2
σ

2
Å

1+
(z(i)t)2

σ2

ãã
(4.80)

Substituting (4.80) into (4.79), we get

Ee
ηδ2

2 ∥Xt∥2
2 ≤ endJηδ 2σ2

= emJηδ 2σ2
. (4.81)

151

Combining (4.78) and (4.81), if ηδ 2σ2 ≤ 1
2 , then

E(e
ηδ2

4 ∥Xt∥2
2eη∥ut−1∥2

2(1−cos2 θt)) = E
(
E(e

ηδ2
4 ∥Xt∥2

2eη∥ut−1∥2
2(1−cos2 θt) |Ft−1)

)
≤ E

(
e

1
2 mJηδ 2σ2

(eη∥ut−1∥2
2(1− 1

2
s2)+ s)

)
= e

1
2 mJηδ 2σ2

(1− 1
2

s2)Eeη∥ut−1∥2
2 + se

1
2 mJηδ 2σ2

=: aEeη∥ut−1∥2
2 +b (4.82)

with a := (1− s2/2)e
1
2 mJηδ 2σ2

and b := se
1
2 mJηδ 2σ2

. Plugging (4.82) into (4.76), we have

Eeη∥ut∥2
2 ≤ aEeη∥ut−1∥2

2 +b. Next, similar to the argument in (4.21), iterating expectations yields

Eeη∥ut∥2
2 ≤ atE(eη∥u0∥2

2)+b(1+a+ . . .+at) = at + b(1−at)
1−a ≤ 1+ b

1−a where the last inequality

holds if a := (1− s2/2)emJηδ 2σ2/2 < 1. So we can now choose η = − log(1−s2/2)
mJδ 2σ2 , which satisfies

ηδ 2σ2 ∈ [0,1/2] as required from before. Indeed, due to m,J ≥ 1 and s2 = 5
9Jm ≤

5
9 , we have

ηδ 2σ2 = − log(1−s2/2)
mJ ≤− log(1− 5

18)<
1
2 . Then we get a=(1− 1

2s2)1/2 and b= s(1− 1
2s2)−1/2.

It follows from (4.75) and s2 = 5
9mJ that

P(∥ut∥2
2 ≥ α)≤ e−ηα

Å
1+

b
1−a

ã
= exp

Å
α log(1− s2/2)

mJδ 2σ2

ãÅ
1+

s(1− 1
2s2)−1/2

1−
√

1− s2/2

ã
≤ exp

Å −αs2

2mJδ 2σ2

ãÅ
1+

s(1− 1
2s2)−1/2 + s
s2/2

ã
(since log(1+ x)≤ x)

= exp
Å −αs2

2mJδ 2σ2

ãÅ
1+2

(1− 1
2s2)−1/2 +1

s

ã
= exp

Å
− 5α

18m2J2δ 2σ2

ãï
1+6

…
mJ
5

Å
1− 5

18mJ

ã−1/2

+6

…
mJ
5

ò
≤ 7
√

mJ exp
Å
− α

4m2J2δ 2σ2

ã
where c > 0 is an absolute constant. Pick α = 4m2J2δ 2σ2 log(N p

0) to get

P
Å
∥ut∥2

2 ≥ 4pm2J2
δ

2
σ

2 logN0

ã
≤ 7
√

mJN−p
0 . (4.83)

152

From (4.83) we can first conclude, by setting t = N0 and using the fact uN0 = Xw−Xq, that

P
Å
∥Xw−Xq∥2

2 ≥ 4pm2J2
δ

2
σ

2 logN0

ã
≤ 7
√

mJ
N p

0
.

If the activation function ϕ is ξ -Lipschitz, then ∥ϕ(Xw)−ϕ(Xq)∥2 ≤ ξ∥Xw−Xq∥2 and thus

P
Å
∥ϕ(Xw)−ϕ(Xq)∥2

2 ≥ 4pm2J2
ξ

2
δ

2
σ

2 logN0

ã
≤ 7
√

mJ
N p

0
.

Moreover, applying a union bound over t, yields

P
Å

max
1≤t≤N0

∥ut∥2
2 ≥ 4pm2J2

δ
2
σ

2 logN0

ã
≤ 7
√

mJ

N p−1
0

.

4.9.2 Proof of Corollary 4.3.5

We first need to bound the tail probability of |⟨Xt ,u⟩|
∥Xt∥2

2
as follows.

Lemma 4.9.3. Let clustered data X = [X1,X2, . . . ,XN0] ∈ Rm×N0 be defined as in (4.30) and

suppose that

n
d

∑
i=1

(z(i)t)2 ≤ mσ2

36
, 1≤ t ≤ N0. (4.84)

Let u ∈ Rm be a unit vector. For 1≤ t ≤ N0 and x≥ 16
9mσ2

»
n∑

d
i=1(z

(i)
t)2, we have

P
(|⟨Xt ,u⟩|
∥Xt∥2

2
≥ x
)
≤ 2exp

(
− 1

2σ2

[9mσ2x
16

−
(
n

d

∑
i=1

(z(i)t)2) 1
2
]2)

+ exp(−c1m)

where c1 > 0 is a constant.

Proof. Xt can be expressed as Xt = Zt +σG where Zt := [z(1)t 1n,z
(2)
t 1n, . . . ,z

(d)
t 1n]

⊤ and G ∼

153

N (0, I). Since ∥Zt∥2
2 = n∑

d
i=1(z

(i)
t)2, then by the triangle inequality and (4.84)

∥Xt∥2 ≥ σ∥G∥2−∥Zt∥2 ≥ σ∥G∥2−
σ
√

m
6

. (4.85)

By Theorem 3.1.1 in [29], for any x≥ 0, we have

P
(∣∣∣ 1

m
∥G∥2

2−1
∣∣∣≥max{x,x2}

)
≤ 2exp(−c0mx2)

where c0 > 0 is a constant. Choosing x = 23
144 , one can get

P
(
∥G∥2

2 ≥
121m
144

)
≥ 1− exp(−c1m) with c1 :=

(23
144

)2
c0. (4.86)

If follows from (4.86) and (4.85) that

P
(
∥Xt∥2 ≥

3σ
√

m
4

)
≥ P
(
∥G∥2 ≥

11
√

m
12

)
≥ 1− exp(−c1m). (4.87)

For a fixed Zt and u both in Rm with ∥u∥2 = 1, define f (z) := ⟨σz+Zt ,u⟩. Then | f (z)− f (y)|=

σ |⟨z− y,u⟩| ≤ σ∥z− y∥2. It follows from Theorem 8.40 of [9] that

P(|⟨Xt ,u⟩−⟨Zt ,u⟩| ≥ α) = P(| f (G)−E f (G)| ≥ α)≤ 2exp
(
− α2

2σ2

)
(4.88)

154

holds for all α ≥ 0. For x≥ 0, the tail probability can be bounded as follows:

P
(|⟨Xt ,u⟩|
∥Xt∥2

2
≥ x
)
= P
(|⟨Xt ,u⟩|
∥Xt∥2

2
≥ x,∥Xt∥2

2 ≥
9mσ2

16

)
+P
(|⟨Xt ,u⟩|
∥Xt∥2

2
≥ x,∥Xt∥2

2 <
9mσ2

16

)
≤ P
(
|⟨Xt ,u⟩| ≥

9mσ2x
16

,∥Xt∥2
2 ≥

9mσ2

16

)
+P
(
∥Xt∥2

2 <
9mσ2

16

)
≤ P
(
|⟨Xt ,u⟩| ≥

9mσ2x
16

)
+P
(
∥Xt∥2

2 <
9mσ2

16

)
≤ P
(
|⟨Xt ,u⟩−⟨Zt ,u⟩| ≥

9mσ2x
16

−|⟨Zt ,u⟩|
)
+P
(
∥Xt∥2

2 <
9mσ2

16

)
≤ P
(
|⟨Xt ,u⟩−⟨Zt ,u⟩| ≥

9mσ2x
16

−∥Zt∥2

)
+P
(
∥Xt∥2

2 <
9mσ2

16

)
.

If ∥Zt∥2 =
»

n∑
d
i=1(z

(i)
t)2 ≤ 9mσ2x

16 , then, by (4.87) and (4.88), we obtain

P
(|⟨Xt ,u⟩|
∥Xt∥2

2
≥ x
)
≤ 2exp

(
− 1

2σ2

(9mσ2x
16

−∥Zt∥2

)2)
+P
(
∥Xt∥2

2 <
9mσ2

16

)
≤ 2exp

(
− 1

2σ2

[9mσ2x
16

−
(
n

d

∑
i=1

(z(i)t)2) 1
2
]2)

+ exp(−c1m).

Now we are ready to prove Corollary 4.3.5.

Proof. Since J = 1 + (dσ2)−1 max1≤t≤N0 ∑
d
i=1(z

(i)
t)2 ≤ 1 + logN0

36m and m ≥ logN0, we have

∑
d
i=1(z

(i)
t)2 ≤ σ2

36n logN0 ≤ mσ2

36n for all t. Moreover, Lemma 4.9.3 and m ≥ 2
c1

logN0 indicate

that, for u ∈ Sm−1, we have

P
(|⟨Xt ,u⟩|
∥Xt∥2

2
≥ x
)
≤ 2exp

(
−1

2

(9mσx
16
−
√

logN0

6

)2)
+

1
N2

0
(4.89)

where x≥ 8
27mσ

√
logN0. Now, we consider the t-th iteration of (4.12) and let St−1 be the event

∥ut−1∥2
2 ≤ 4pm2J2δ 2σ2 logN0. By Theorem 4.3.4, we have

P(St−1)≥ 1− 7
√

mJ
N p

0
. (4.90)

155

Conditioning on St−1 and applying (4.89) with x = 4
√

logN0
mσ

, we have

P
(∣∣∣wt +

⟨Xt ,ut−1⟩
∥Xt∥2

2

∣∣∣> ∥w∥∞ +8δJ
√

p logN0 |St−1

)
≤ P
(∣∣∣ ⟨Xt ,ut−1⟩
∥Xt∥2

2∥ut−1∥2

∣∣∣≥ 8δJ
√

p logN0

∥ut−1∥2
|St−1

)
≤ P
(∣∣∣ ⟨Xt ,ut−1⟩
∥Xt∥2

2∥ut−1∥2

∣∣∣≥ 4
√

logN0

mσ
|St−1

)
≤ 3

N2
0
. (4.91)

Combining (4.90) and (4.91), we obtain

P
(∣∣∣wt +

⟨Xt ,ut−1⟩
∥Xt∥2

2

∣∣∣≤ ∥w∥∞ +8δJ
√

p logN0, St−1

)
≥ 1− 7

√
mJ

N p
0
− 3

N2
0
.

By a union bound over t, we obtain (4.31).

4.10 Theoretical Analysis for Sparse GPFQ

In this section, we will show that Theorem 4.4.1 and Theorem 4.4.2 (restated here for

convenience) hold.

Theorem 4.4.1: Under the conditions of Theorem 4.3.1, we have the following.

(a) Quantizing w using (4.37) with the alphabet A in (4.3), we have

P
(
∥Xw−Xq∥2

2 ≤
r2(2λ +δ)2

s2 logN0

)
≥ 1− 1

N2
0

(
2+

1√
1− s2

)
.

(b) Quantizing w using (4.38) with the alphabet Ã in (4.5), we have

P
(
∥Xw−Xq∥2

2 ≤
r2 max{2λ ,δ}2

s2 logN0

)
≥ 1− 1

N2
0

(
2+

1√
1− s2

)
.

Theorem 4.4.2: Under the assumptions of Theorem 4.3.4, the followings inequalities hold.

156

(a) Quantizing w using (4.37) with the alphabet A in (4.3), we have

P
(
∥Xw−Xq∥2

2 ≥ 4pm2J2(2λ +δ)2
σ

2 logN0

)
≤ 7
√

mJ
N p

0
.

(b) Quantizing w using (4.38) with the alphabet Ã in (4.5), we have

P
(
∥Xw−Xq∥2

2 ≥ 4pm2J2 max{2λ ,δ}2
σ

2 logN0

)
≤ 7
√

mJ
N p

0
.

Note that the difference between the sparse GPFQ and the GPFQ in (4.12) is the usage

of thresholding functions. So the key point is to adapt Lemma 4.6.3 for those changes.

4.10.1 Sparse GPFQ with Soft Thresholding

We first focus on the error analysis for (4.37) which needs the following lemmata.

Lemma 4.10.1. Let A be one of the alphabets defined in (4.4) with step size δ > 0, and the

largest element qmax. Let θt := ∠(Xt ,ut−1) be the angle between Xt and ut−1. Suppose that

w ∈ RN0 satisfies ∥w∥∞ ≤ qmax, and consider the quantization scheme given by (4.37). Then, for

t = 1,2, . . . ,N0, we have

∥ut∥2
2−∥ut−1∥2

2 ≤


(2λ+δ)2

4 ∥Xt∥2
2−∥ut−1∥2

2 cos2 θt if
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax +λ ,

0 otherwise.
(4.92)

Proof. By applying exactly the same argument as in Lemma 4.6.3, one can get

∥PXt (ut)∥2
2 =

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
∥Xt∥2

2. (4.93)

157

and

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
−
(∥ut−1∥2

∥Xt∥2
cosθt

)2
=
(

wt +
2∥ut−1∥2

∥Xt∥2
cosθt−qt︸ ︷︷ ︸

(I)

)
(wt−qt︸ ︷︷ ︸

(II)

),

where |wt | ≤ qmax and qt = Q ◦ sλ

(
wt +

∥ut−1∥2
∥Xt∥2

cosθt

)
. We proceed by going through the cases.

First, if
(

wt +
∥ut−1∥2
∥Xt∥2

cosθt

)
> qmax + λ , then qt = qmax and thus λ ≤ qt −wt + λ <

∥ut−1∥2
∥Xt∥2

cosθt . So (I) > wt + 2(qt −wt +λ)− qt = qt −wt + 2λ ≥ 2λ and (II) ≤ 0. Moreover,

if
(

wt +
∥ut−1∥2
∥Xt∥2

cosθt

)
< −qmax−λ , then qt = −qmax and ∥ut−1∥2

∥Xt∥2
cosθt < qt −wt −λ ≤ −λ .

Hence, (I) < wt +2(qt−wt−λ)−qt = qt−wt−2λ ≤−2λ and (II)≥ 0. It follows that

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
≤
(∥ut−1∥2

∥Xt∥2
cosθt

)2
(4.94)

when
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣> qmax +λ .

Now, assume that
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣ ≤ qmax + λ . In this case, let vt := sλ

(
wt +

∥ut−1∥2
∥Xt∥2

cosθt

)
. Then |vt | ≤ qmax and

∣∣∣wt +
∥ut−1∥2
∥Xt∥2

cosθt− vt

∣∣∣≤ λ . Since qt = Q(vt), we obtain

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
=
∣∣∣wt +

∥ut−1∥2

∥Xt∥2
cosθt− vt + vt−qt

∣∣∣2
≤
Å∣∣∣wt +

∥ut−1∥2

∥Xt∥2
cosθt− vt

∣∣∣+ |vt−qt |
ã2

≤
(

λ +
δ

2

)2
. (4.95)

Applying (4.94) and (4.95) to (4.93), one can get

∥PXt (ut)∥2
2 ≤


(2λ+δ)2

4 ∥Xt∥2
2 if

∣∣∣wt +
∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax +λ ,

∥ut−1∥2
2 cos2 θt otherwise.

(4.96)

158

Again, by the same discussion after (4.53) in Lemma 4.6.3, we have

∥ut∥2
2−∥ut−1∥2

2 = ∥PXt (ut)∥2
2−∥ut−1∥2

2 cos2
θt .

Replacing ∥PXt (ut)∥2
2 with its upper bounds in (4.96), we obtain (4.92).

Now we are ready to prove Theorem 4.4.1 as follows.

Proof. The only difference between Lemma 4.6.3 and its analogue Lemma 4.10.1 is that δ 2 in

Lemma 4.6.3 is replaced by (2λ +δ)2. Note that Lemma 4.6.3 was used in the proof of both

Theorem 4.3.1 and Theorem 4.3.4 in which δ 2 serves as a coefficient. Hence, by substituting δ 2

with (2λ +δ)2, every step in the proof still works and thus Theorem 4.4.1 holds.

4.10.2 Sparse GPFQ with Hard Thresholding

Now we navigate to the error analysis for (4.38). Again, Lemma 4.6.3 is altered as

follows.

Lemma 4.10.2. Let Ã be one of the alphabets defined in (4.6) with step size δ > 0, the largest

element qmax, and threshold λ ∈ (0,qmax). Let θt := ∠(Xt ,ut−1) be the angle between Xt and

ut−1. Suppose that w ∈ RN0 satisfies ∥w∥∞ ≤ qmax, and consider the quantization scheme given

by (4.38). Then, for t = 1,2, . . . ,N0, we have

∥ut∥2
2−∥ut−1∥2

2 ≤


max{2λ ,δ}2

4 ∥Xt∥2
2−∥ut−1∥2

2 cos2 θt if
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax,

0 otherwise.
(4.97)

Proof. By applying exactly the same argument as in Lemma 4.6.3, we obtain

∥PXt (ut)∥2
2 =

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
∥Xt∥2

2. (4.98)

159

where |wt | ≤ qmax and qt = Q ◦ hλ

(
wt +

∥ut−1∥2
∥Xt∥2

cosθt

)
. Due to λ ∈ (0,qmax), we have Q ◦

hλ (z) = Q(z) for |z|> qmax. Thus, it follows from the discussion in Lemma 4.6.3 that

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
≤
(∥ut−1∥2

∥Xt∥2
cosθt

)2
(4.99)

when
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣> qmax.

Now, assume that
∣∣∣wt +

∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax. In this case, because the argument of Q

lies in the active range of A , we obtain

(
wt +

∥ut−1∥2

∥Xt∥2
cosθt−qt

)2
≤max

{
λ ,

δ

2

}2
. (4.100)

Applying (4.99) and (4.100) to (4.98), one can get

∥PXt (ut)∥2
2 ≤


max{2λ ,δ}2

4 ∥Xt∥2
2 if

∣∣∣wt +
∥ut−1∥2
∥Xt∥2

cosθt

∣∣∣≤ qmax,

∥ut−1∥2
2 cos2 θt otherwise.

(4.101)

Again, by the same discussion after (4.53) in Lemma 4.6.3, we have

∥ut∥2
2−∥ut−1∥2

2 = ∥PXt (ut)∥2
2−∥ut−1∥2

2 cos2
θt .

Replacing ∥PXt (ut)∥2
2 with its upper bounds in (4.101), we obtain (4.97).

The proof of Theorem 4.4.2 is given as follows.

Proof. The only difference between Lemma 4.6.3 and its analogue Lemma 4.10.2 is that δ 2 in

Lemma 4.6.3 is replaced by max{2λ +δ}2. Note that Lemma 4.6.3 was used in the proof of both

Theorem 4.3.1 and Theorem 4.3.4 in which δ 2 serves as a coefficient. Hence, by substituting δ 2

with max{2λ +δ}2, it is not hard to verify that Theorem 4.4.2 holds.

160

4.11 Acknowledgements

We thank Eric Lybrand for stimulating discussions on the topics of this paper. This work

was supported in part by National Science Foundation Grant DMS-2012546. This chapter, in

full, is joint work with Yixuan Zhou, Rayan Saab, and has been published in the SIAM Journal

on Mathematics of Data Science (SIMODS), 2023. The dissertation author was the primary

investigator and author of this material.

References

[1] Ron Banner, Yury Nahshan, and Daniel Soudry. “Post training 4-bit quantization of convo-

lutional networks for rapid-deployment”. In: Advances in Neural Information Processing

Systems 32 (2019).

[2] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt

Keutzer. “Zeroq: A novel zero shot quantization framework”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 13169–

13178.

[3] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. “Low-bit Quantization of

Neural Networks for Efficient Inference.” In: ICCV Workshops. 2019, pp. 3009–3018.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training

deep neural networks with binary weights during propagations”. In: Advances in neural

information processing systems. 2015, pp. 3123–3131.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A

large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision

and pattern recognition. Ieee. 2009, pp. 248–255.

161

[6] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. “Model compression and

hardware acceleration for neural networks: A comprehensive survey”. In: Proceedings of

the IEEE 108.4 (2020), pp. 485–532.

[7] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. “Hawq:

Hessian aware quantization of neural networks with mixed-precision”. In: Proceedings of

the IEEE/CVF International Conference on Computer Vision. 2019, pp. 293–302.

[8] Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and

Joseph H Hassoun. “Post-training piecewise linear quantization for deep neural networks”.

In: European Conference on Computer Vision. Springer. 2020, pp. 69–86.

[9] Simon Foucart and Holger Rauhut. “An invitation to compressive sensing”. In: A mathe-

matical introduction to compressive sensing. Springer, 2013, pp. 1–39.

[10] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt

Keutzer. “A survey of quantization methods for efficient neural network inference”. In:

arXiv preprint arXiv:2103.13630 (2021).

[11] Yunhui Guo. “A survey on methods and theories of quantized neural networks”. In: arXiv

preprint arXiv:1808.04752 (2018).

[12] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding”. In: arXiv preprint

arXiv:1510.00149 (2015).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for

image recognition”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016, pp. 770–778.

[14] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. “Improving

post training neural quantization: Layer-wise calibration and integer programming”. In:

arXiv preprint arXiv:2006.10518 (2020).

162

[15] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. “Quantization and training of neural

networks for efficient integer-arithmetic-only inference”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018, pp. 2704–2713.

[16] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient

inference: A whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing

systems 25 (2012), pp. 1097–1105.

[18] Jun Haeng Lee, Sangwon Ha, Saerom Choi, Won-Jo Lee, and Seungwon Lee. “Quantiza-

tion for rapid deployment of deep neural networks”. In: arXiv preprint arXiv:1810.05488

(2018).

[19] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei

Wang, and Shi Gu. “Brecq: Pushing the limit of post-training quantization by block

reconstruction”. In: International Conference on Learning Representations (2021).

[20] Yuang Liu, Wei Zhang, and Jun Wang. “Zero-shot Adversarial Quantization”. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,

pp. 1512–1521.

[21] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max

Welling. “Relaxed Quantization for Discretized Neural Networks”. In: International

Conference on Learning Representations. 2019.

[22] Eric Lybrand and Rayan Saab. “A Greedy Algorithm for Quantizing Neural Networks”.

In: Journal of Machine Learning Research 22.156 (2021), pp. 1–38.

163

[23] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen B. “Up

or down? adaptive rounding for post-training quantization”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 7197–7206.

[24] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. “Data-free

quantization through weight equalization and bias correction”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. 2019, pp. 1325–1334.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch:

An imperative style, high-performance deep learning library”. In: Advances in neural

information processing systems 32 (2019), pp. 8026–8037.

[26] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-

scale image recognition”. In: International Conference on Learning Representations

(2015).

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going deeper

with convolutions”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2015, pp. 1–9.

[28] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolutional

neural networks”. In: International Conference on Machine Learning. PMLR. 2019,

pp. 6105–6114.

[29] Roman Vershynin. High-dimensional probability: An introduction with applications in

data science. Vol. 47. Cambridge university press, 2018.

[30] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. “Towards accurate post-training

network quantization via bit-split and stitching”. In: International Conference on Machine

Learning. PMLR. 2020, pp. 9847–9856.

164

[31] Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, and Jian Cheng. “Sparsity-inducing

binarized neural networks”. In: Proceedings of the AAAI Conference on Artificial Intelli-

gence. Vol. 34. 2020, pp. 12192–12199.

[32] Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and

Mingkui Tan. “Generative low-bitwidth data free quantization”. In: European Conference

on Computer Vision. Springer. 2020, pp. 1–17.

[33] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. “Lq-nets: Learned

quantization for highly accurate and compact deep neural networks”. In: Proceedings of

the European conference on computer vision (ECCV). 2018, pp. 365–382.

[34] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. “Improving neural

network quantization without retraining using outlier channel splitting”. In: International

conference on machine learning. PMLR. 2019, pp. 7543–7552.

[35] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. “Incremental network

quantization: Towards lossless cnns with low-precision weights”. In: arXiv preprint

arXiv:1702.03044 (2017).

[36] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. “Dorefa-

net: Training low bitwidth convolutional neural networks with low bitwidth gradients”. In:

arXiv preprint arXiv:1606.06160 (2016).

165

Chapter 5

A Stochastic Algorithm and its Error
Analysis for Neural Network Quantiza-
tion

Quantization is a widely used compression method that effectively reduces redundancies

in over-parameterized neural networks. However, existing quantization techniques for deep

neural networks often lack a comprehensive error analysis due to the presence of non-convex

loss functions and nonlinear activations. In this paper, we propose a stochastic algorithm for

quantizing the weights of fully trained neural networks. Our approach leverages a greedy path-

following mechanism in combination with a stochastic quantizer. Importantly, we establish,

for the first time, full-network error bounds, under an infinite alphabet condition and minimal

assumptions on the weights and input data. As an application of this result, we prove that when

quantizing a multi-layer network having Gaussian weights, the relative quantization error exhibits

a linear decay as the degree of over-parametrization increases. Furthermore, we demonstrate that

it is possible to achieve error bounds equivalent to those obtained in the infinite alphabet case,

using on the order of a mere loglogN bits, where N represents the largest width, i.e., largest

number of neurons, of a layer.

166

5.1 Introduction

Deep neural networks (DNNs) have shown impressive performance in a variety of areas

including computer vision and natural language processing among many others. However,

highly overparameterized DNNs require a significant amount of memory to store their associated

weights, activations, and – during training – gradients. As a result, in recent years, there has been

an interest in model compression techniques, including quantization, pruning, knowledge distilla-

tion, and low-rank decomposition [27, 12, 7, 15, 16]. Neural network quantization, in particular,

utilizes significantly fewer bits to represent the weights of DNNs. This substitution of original,

say, 32-bit floating-point operations with more efficient low-bit operations has the potential to

significantly reduce memory usage and accelerate inference time while maintaining minimal loss

in accuracy. Quantization methods can be categorized into two classes [22]: quantization-aware

training and post-training quantization. Quantization-aware training substitutes floating-point

weights with low-bit representations during the training process, while post-training quantization

quantizes network weights only after the training is complete.

To achieve high-quality empirical results, quantization-aware training methods, such as

those in [8, 6, 35, 10, 21, 37, 40], often require significant time for retraining and hyper-parameter

tuning using the entire training dataset. This can make them impractical for resource-constrained

scenarios. Furthermore, it can be challenging to rigorously analyze the associated error bounds as

quantization-aware training is an integer programming problem with a non-convex loss function,

making it NP-hard in general. In contrast, post-training quantization algorithms, such as [9, 36,

23, 38, 20, 26, 39, 25, 14], require only a small amount of training data, and recent research has

made strides in obtaining quantization error bounds for some of these algorithms [23, 38, 25] in

the context of shallow networks.

In this paper, we focus on this type of network quantization and its theoretical analy-

sis, proposing a stochastic quantization technique and obtaining theoretical guarantees on its

performance, even in the context of deep networks.

167

5.1.1 Related work

In this section, we provide a summary of relevant prior results concerning a specific

post-training quantization algorithm, which forms the basis of our present work. To make our

discussion more precise, let X ∈ Rm×N0 and w ∈ RN0 represent the input data and a neuron in a

single-layer network, respectively. Our objective is to find a mapping, also known as a quantizer,

Q : RN0 → A N0 such that q = Q(w) ∈ A N0 minimizes ∥Xq−Xw∥2. Even in this simplified

context, since A is a finite discrete set, this optimization problem is an integer program and

therefore NP-hard in general. Nevertheless, if one can obtain good approximate solutions to this

optimization problem, with theoretical error guarantees, then those guarantees can be combined

with the fact that most neural network activation functions are Lipschitz, to obtain error bounds

on entire (single) layers of a neural network.

Recently, Lybrand and Saab [23] proposed and analyzed a greedy algorithm, called

greedy path following quantization (GPFQ), to approximately solve the optimization problem

outlined above. Their analysis was limited to the ternary alphabet A = {0,±1} and a single-

layer network with Gaussian random input data. Zhang, Zhou, and Saab [38] then extended

GPFQ to more general input distributions and larger alphabets, and they introduced variations

that promoted pruning of weights. Among other results, they proved that if the input data X is

either bounded or drawn from a mixture of Gaussians, then the relative square error of quantizing

a generic neuron w satisfies
∥Xw−Xq∥2

2
∥Xw∥2

2
≲

m logN0

N0
(5.1)

with high probability. Extensive numerical experiments in [38] also demonstrated that GPFQ,

with 4 or 5 bit alphabets, can achieve less than 1% loss in Top-1 and Top-5 accuracy on common

neural network architectures. Subsequently, [25] introduced a different algorithm that involves

a deterministic preprocessing step on w that allows quantizing DNNs via memoryless scalar

quantization (MSQ) while preserving the same error bound in (5.1). This algorithm is more

computationally intensive than those of [23, 38] but does not require hyper-parameter tuning for

168

selecting the alphabet step-size.

5.1.2 Contributions and organization

In spite of recent progress in developing computationally efficient algorithms with

rigorous theoretical guarantees, all technical proofs in [23, 38, 25] only apply for a single-layer

of a neural network with certain assumed input distributions. This limitation naturally comes

from the fact that a random input distribution and a deterministic quantizer lead to activations

(i.e., outputs of intermediate layers) with dependencies, whose distribution is usually intractable

after passing through multiple layers and nonlinearities.

To overcome this main obstacle to obtaining theoretical guarantees for multiple layer

neural networks, in Section 5.2, we propose a new stochastic quantization framework, called

stochastic path following quantization (SPFQ), which introduces randomness into the quantizer.

We show that SPFQ admits an interpretation as a two-phase algorithm consisting of a data-

alignment phase and a quantization phase. This allows us to propose two variants given by

Algorithm 5 and Algorithm 6, which involve different data alignment strategies that are amenable

to analysis.

In Section 5.3, we prove the first error bounds for quantizing an entire L-layer neural

network Φ, under an infinite alphabet condition and minimal assumptions on the weights and

input data X . To illustrate the use of our results, we show that if the weights of Φ are standard

Gaussian random variables, then, with high probability, the quantized neural network Φ̃ satisfies

∥Φ(X)− Φ̃(X)∥2
F

EΦ∥Φ(X)∥2
F

≲
m(logNmax)

L+1

Nmin
(5.2)

where we take the expectation EΦ with respect to the weights of Φ, and Nmin, Nmax represent the

minimum and maximum layer width of Φ respectively. We can regard the relative error bound in

(5.2) as a natural generalization of (5.1).

In Section 5.4, we consider the finite alphabet case under the random network hypothesis.

169

Denoting by Ni the number of neurons in the i-th layer, we show that it suffices to use b ≤

C log logmax{Ni−1,Ni} bits to quantize the i-th layer while guaranteeing the same error bounds

as in the infinite alphabet case.

It is worth noting that we assume that Φ is equipped with ReLU activation functions,

i.e. max{0,x}, throughout this paper. This assumption is only made for convenience and

concreteness, and we remark that the non-linearities can be replaced by any 1-Lipschitz functions

without changing our results, except for the values of constants.

Finally, we empirically test the developed method in Section 5.5, by quantizing the

weights of several neural network architectures with ImageNet dataset, presenting only minor

loss of accuracy compared to unquantized models.

5.2 Stochastic Quantization Algorithm

In this section, we start with the notation that will be used throughout this paper and then

introduce our stochastic quantization algorithm, and show that it can be viewed as a two-stage

algorithm. This in turn will simplify its analysis.

5.2.1 Notation and Preliminaries

We denote various positive absolute constants by C, c. We use a ≲ b as shorthand for

a≤Cb, and a ≳ b for a≥Cb. For any matrix A ∈ Rm×n, ∥A∥max denotes maxi, j |Ai j|.

Quantization

An L-layer perceptron, Φ : RN0 → RNL , acts on a vector x ∈ RN0 via

Φ(x) := ϕ
(L) ◦A(L) ◦ · · · ◦ϕ

(1) ◦A(1)(x) (5.3)

where each ϕ(i) : RNi → RNi is an activation function acting entrywise, and A(i) : RNi−1 → RNi

is an affine map given by A(i)(z) :=W (i)⊤z+b(i). Here, W (i) ∈ RNi−1×Ni is a weight matrix and

170

b(i) ∈ RNi is a bias vector. Since w⊤x+ b = ⟨(w,b),(x,1)⟩, the bias term b(i) can simply be

treated as an extra row to the weight matrix W (i), so we will henceforth ignore it. For theoretical

analysis, we focus on infinite mid-tread alphabets, with step-size δ , i.e., alphabets of the form

A = A δ
∞ := {±kδ : k ∈ Z} (5.4)

and their finite versions, mid-tread alphabets of the form

A = A δ
K := {±kδ : 0≤ k ≤ K,k ∈ Z}. (5.5)

Given A = A δ
∞ , the associated stochastic scalar quantizer QStocQ : R→A randomly rounds

every z ∈ R to either the minimum or maximum of the interval [kδ ,(k+1)δ] containing it, in

such a way that E(QStocQ(z)) = z. Specifically, we define

QStocQ(z) :=


⌊ z

δ
⌋δ with probability p(
⌊ z

δ
⌋+1

)
δ with probability1− p

(5.6)

where p = 1− z
δ
+ ⌊ z

δ
⌋. If instead of the infinite alphabet, we use A = A δ

K , then whenever

|z| ≤ Kδ , QStocQ(z) is defined via (5.6) while QStocQ(z) is assigned −Kδ and Kδ if z <−Kδ

and z > Kδ respectively.

Orthogonal projections

Given a subspace S⊆ Rm, we denote by S⊥ its orthogonal complement in Rm, and by PS

the orthogonal projection of Rm onto S. In particular, if z ∈ Rm is a nonzero vector, then we use

Pz and Pz⊥ to represent orthogonal projections onto span(z) and span(z)⊥ respectively. Hence,

for any x ∈ Rm, we have

Pz(x) =
⟨z,x⟩z
∥z∥2

2
, x = Pz(x)+Pz⊥(x), and ∥x∥2

2 = ∥Pz(x)∥2
2 +∥Pz⊥(x)∥

2
2. (5.7)

171

Throughout this paper, we will also use Pz and Pz⊥ to denote the associated matrix representations

satisfying

Pzx =
zz⊤

∥z∥2
2

x and Pz⊥x =
(

I− zz⊤

∥z∥2
2

)
x. (5.8)

Convex orders

We now introduce the concept of convex order (see, e.g., [32]), which will be heavily

used in our analysis.

Definition 5.2.1. Let X ,Y be n-dimensional random vectors such that

E f (X)≤ E f (Y) (5.9)

holds for all convex functions f : Rn→ R, provided the expectations exist. Then X is said to be

smaller than Y in the convex order, denoted by X ≤cx Y .

For i = 1,2, . . . ,n, define functions φi(x) := xi and ψi(x) := −xi. Since both φi(x) and

ψi(x) are convex, substituting them into (5.9) yields EXi = EYi for all i. Therefore, we obtain

X ≤cx Y =⇒ EX = EY. (5.10)

Clearly, according to Definition 5.2.1, X ≤cx Y only depends on the respective distributions

of X and Y . It can be easily seen that the relation ≤cx satisfies reflexivity and transitivity. In

other words, one has X ≤cx X and that if X ≤cx Y and Y ≤cx Z, then X ≤cx Z. The convex order

defined in Definition 5.2.1 is also called mean-preserving spread [31, 24], which is a special

case of second-order stochastic dominance [17, 18, 32], see Section 5.6 for details.

5.2.2 SPFQ

We start with a data set X ∈Rm×N0 with (vectorized) data stored as rows and a pretrained

neural network Φ with weight matrices W (i) ∈ RNi−1×Ni having neurons as their columns. Let

172

Φ(i), Φ̃(i) denote the original and quantized neural networks up to layer i respectively so that, for

example, Φ(i)(x) := ϕ(i) ◦W (i) ◦ · · · ◦ϕ(1) ◦W (1)(x). Assuming the first i−1 layers have been

quantized, define the activations from (i−1)-th layer as

X (i−1) := Φ
(i−1)(X) ∈ Rm×Ni−1 and X̃ (i−1) := Φ̃

(i−1)(X) ∈ Rm×Ni−1, (5.11)

which also serve as input data for the i-th layer. For each neuron w ∈ RNi−1 in layer i, our goal is

to construct a quantized vector q ∈A Ni−1 such that

X̃ (i−1)q =
Ni−1

∑
t=1

qt X̃
(i−1)
t ≈

Ni−1

∑
t=1

wtX
(i−1)
t = X (i−1)w

where X (i−1)
t , X̃ (i−1)

t are the t-th columns of X (i−1), X̃ (i−1). Following the GPFQ scheme in [23,

38], our algorithm selects qt sequentially, for t = 1,2, . . . ,Ni−1, so that the approximation error

of the t-th iteration, denoted by

ut :=
t

∑
j=1

w jX
(i−1)
j −

t

∑
j=1

q jX̃
(i−1)
j ∈ Rm, (5.12)

is well-controlled in the ℓ2 norm. Specifically, assuming that the first t− 1 components of q

have been determined, the proposed algorithm maintains the error vector ut−1 =
t−1
∑
j=1

(w jX
(i−1)
j −

q jX̃
(i−1)
j), and sets qt ∈ A probabilistically depending on ut−1, X (i−1)

t , and X̃ (i−1)
t . Note that

(5.12) implies

ut = ut−1 +wtX
(i−1)
t −qt X̃

(i−1)
t (5.13)

173

and using (5.7), one can get

c∗ := argmin
c∈R
∥ut−1 +wtX

(i−1)
t − cX̃ (i−1)

t ∥2
2

= argmin
c∈R
∥P

X̃ (i−1)
t

(ut−1 +wtX
(i−1)
t)− cX̃ (i−1)

t ∥2
2

= argmin
c∈R

∥∥∥∥∥⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

X̃ (i−1)
t − cX̃ (i−1)

t

∥∥∥∥∥
2

2

=
⟨X̃ (i−1)

t ,ut−1 +wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

.

Hence, a natural design of qt ∈A is to quantize c∗. Instead of using a deterministic quantizer as

in [23, 38], we apply the stochastic quantizer in (5.6), that is

qt := QStocQ(c∗) = QStocQ

(
⟨X̃ (i−1)

t ,ut−1 +wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

)
. (5.14)

Putting everything together, the stochastic version of GPFQ, namely SPFQ in its basic form, can

now be expressed as follows.



u0 = 0 ∈ Rm,

qt = QStocQ

(
⟨X̃ (i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

)
,

ut = ut−1 +wtX
(i−1)
t −qt X̃

(i−1)
t

(5.15)

where t iterates over 1,2, . . . ,Ni−1. In particular, the final error vector is

uNi−1 =
Ni−1

∑
j=1

w jX
(i−1)
j −

Ni−1

∑
j=1

q jX̃
(i−1)
j = X (i−1)w− X̃ (i−1)q (5.16)

and our goal is to estimate ∥uNi−1∥2.

174

5.2.3 A two phases pipeline

An essential observation is that SPFQ in (5.15) can be equivalently decomposed into two

phases.

Phase I: Given inputs X (i−1), X̃ (i−1) and neuron w ∈ RNi−1 for the i-th layer, we first align the

input data to the layer, by finding a real-valued vector w̃ ∈ RNi−1 such that X̃ (i−1)w̃≈ X (i−1)w.

Similar to our discussion above (5.14), we adopt the same sequential selection strategy to obtain

each w̃t and deduce the following update rules.



û0 = 0 ∈ Rm,

w̃t =
⟨X̃ (i−1)

t ,ût−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

,

ût = ût−1 +wtX
(i−1)
t − w̃t X̃

(i−1)
t

(5.17)

where t = 1,2 . . . ,Ni−1. Note that the approximation error is given by

ûNi−1 = X (i−1)w− X̃ (i−1)w̃. (5.18)

Phase II: After getting the new weights w̃, we quantize w̃ using SPFQ with input X̃ (i−1), i.e.,

finding q̃ ∈A Ni−1 such that X̃ (i−1)q̃≈ X̃ (i−1)w̃. This process can be summarized as follows. For

t = 1,2, . . . ,Ni−1, 

ũ0 = 0 ∈ Rm,

q̃t = QStocQ

(
w̃t +

⟨X̃ (i−1)
t ,ũt−1⟩
∥X̃ (i−1)

t ∥2
2

)
,

ũt = ũt−1 +(w̃t− q̃t)X̃
(i−1)
t .

(5.19)

Here, the quantization error is

ũNi−1 = X̃ (i−1)(w̃− q̃). (5.20)

Proposition 5.2.2. Given inputs X (i−1), X̃ (i−1) and any neuron w ∈ RNi−1 for the i-th layer, the

175

two phase formulation given by (5.17) and (5.19) generate exactly same result as in (5.15), that

is, q̃ = q.

Proof. We proceed by induction on the iteration index t. If t = 1, then (5.17), (5.19) and (5.15)

imply that

q̃1 = QStocQ(w̃1) = QStocQ

(⟨X̃ (i−1)
1 ,w1X (i−1)

1 ⟩
∥X̃ (i−1)

1 ∥2
2

)
= q1.

For t ≥ 2, assume q̃ j = q j for 1 ≤ j ≤ t − 1 and we aim to prove q̃t = qt . Note that ût−1 =

∑
t−1
j=1(w jX j − w̃ jX̃ j) and ũt−1 = ∑

t−1
j=1(w̃ jX̃ j − q̃ jX̃ j) = ∑

t−1
j=1(w̃ jX̃ j − q jX̃ j) by our induction

hypothesis. It follows that ût−1 + ũt−1 = ∑
t−1
j=1(w jX j−q jX̃ j) = ut−1. Thus, we get

q̃t = QStocQ

(⟨X̃ (i−1)
t , ũt−1 + ût−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

)
= QStocQ

(⟨X̃ (i−1)
t ,ut−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

)
= qt .

This establishes q̃ = q and completes the proof.

Based on Proposition 5.2.2, the quantization error (5.16) for SPFQ can be split into two

parts:

uNi−1 = X (i−1)w− X̃ (i−1)q = X (i−1)w− X̃ (i−1)w̃+ X̃ (i−1)(w̃−q) = ûNi−1 + ũNi−1 .

Here, the first error term ûNi−1 results from the data alignment in (5.17) to generate a new “virtual”

neuron w̃ and the second error term ũNi−1 is due to the quantization in (5.19). It follows that

∥uNi−1∥2 = ∥ûNi−1 + ũNi−1∥2 ≤ ∥ûNi−1∥2 +∥ũNi−1∥2. (5.21)

Thus, we can bound the quantization error for SPFQ by controlling ∥ûNi−1∥2 and ∥ũNi−1∥2.

5.2.4 SPFQ Variants

The two-phase formulation of SPFQ provides a flexible framework that allows for the

replacement of one or both phases with alternative algorithms. Here, our focus is on replacing

176

Algorithm 5: SPFQ with perfect data alignment

Input: An L-layer neural network Φ with weight matrices W (i) ∈ RNi−1×Ni , input
data X ∈ Rm×N0

1 for i = 1 to L do
2 Generate X (i−1) = Φ(i−1)(X) ∈ Rm×Ni−1 and X̃ (i−1) = Φ̃(i−1)(X) ∈ Rm×Ni−1

3 repeat For each column w of W (i)

4 Phase I: Find a solution w̃ to (5.22)
5 Phase II: Obtain the quantized neuron q̃ ∈A Ni−1 via (5.19)
6 until All columns of W (i) are quantized
7 Obtain the quantized i-th layer weights Q(i) ∈A Ni−1×Ni

Output: Quantized neural network Φ̃

the first, “data-alignment”, phase to eliminate, or massively reduce, the error bound associated

with this step. Indeed, by exploring alternative approaches, one can improve the error bounds of

SPFQ, at the expense of increasing the computational complexity. Below, we present two such

alternatives to Phase I.

In Section 5.3 we derive an error bound associated with the second phase of SPFQ, namely

quantization, which is independent of the reconstructed neuron w̃. Thus, to reduce the bound on

∥uNi−1∥2 in (5.21), we can eliminate ∥ûNi−1∥2 by simply choosing w̃ with X̃ (i−1)w̃ = X (i−1)w. As

this system of equations may admit infinitely many solutions, we opt for one with the minimal

∥w̃∥∞. This choice is motivated by the fact that smaller weights can be accommodated by smaller

quantization alphabets, resulting in bit savings in practical applications. In other words, we

replace Phase I with the optimization problem

min
w̃∈RNi−1

∥w̃∥∞

s.t. X̃ (i−1)w̃ = X (i−1)w.

(5.22)

It is not hard to see that (5.22) can be formulated as a linear program and solved via standard

linear programming techniques [2]. Alternatively, powerful tools like Cadzow’s method [4, 5]

can also be used to solve linearly constrained infinity-norm optimization problems like (5.22).

177

Cadzow’s method has computational complexity O(m2Ni−1), thus is a factor of m more expensive

than our original approach but has the advantage of eliminating ∥ûNi−1∥2.

With this modification, one then proceeds with Phase II as before. Given a minimum ℓ∞

solution w̃ satisfying X̃ (i−1)w̃ = X (i−1)w, one can quantize it using (5.19) and obtain q̃ ∈A Ni−1 .

In this case, q̃ may not be equal to q in (5.15) and the quantization error becomes

X (i−1)w− X̃ (i−1)q̃ = X̃ (i−1)(w̃− q̃) = ũNi−1 (5.23)

where only Phase II is involved. We summarize this version of SPFQ in Algorithm 5.

The second approach we present herein aims to reduce the computational complexity

associated with (5.22). To that end, we generalize the data alignment process in (5.17) as follows.

Let r ∈ Z+ and w ∈ RNi−1 . For t = 1,2, . . . ,Ni−1, we perform (5.17) as before. Now however,

for t = Ni−1 +1,Ni−1 +2, . . . ,rNi−1, we run



v̂t−1 = ût−1−wtX
(i−1)
t + w̃t X̃

(i−1)
t ,

w̃t =
⟨X̃ (i−1)

t ,v̂t−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

,

ût = v̂t−1 +wtX
(i−1)
t − w̃t X̃

(i−1)
t

(5.24)

Here, we use modulo Ni−1 indexing for (the subscripts of) w, w̃,X (i−1), and X̃ (i−1). We call the

combination of (5.17) and (5.24) the r-th order data alignment procedure, which costs O(rmNi−1)

operations. Applying (5.19) to the output w̃ as before, the quantization error consists of two

parts:

X (i−1)w− X̃ (i−1)q̃ = X (i−1)w− X̃ (i−1)w̃+ X̃ (i−1)(w̃− q̃) = ûrNi−1 + ũNi−1. (5.25)

This version of SPFQ with order r is summarized in Algorithm 6. In Section 5.3, we prove that

the data alignment error ûrNi−1 = X (i−1)w− X̃ (i−1)w̃ decays exponentially in order r.

178

Algorithm 6: SPFQ with approximated data alignment

Input: An L-layer neural network Φ with weight matrices W (i) ∈ RNi−1×Ni , input
data X ∈ Rm×N0 , order r ∈ Z+

1 for i = 1 to L do
2 Generate X (i−1) = Φ(i−1)(X) ∈ Rm×Ni−1 and X̃ (i−1) = Φ̃(i−1)(X) ∈ Rm×Ni−1

3 repeat For each column of W (i)

4 Phase I: Pick a column (neuron) w ∈RNi−1 of W (i) and get w̃ using the r-th order
data alignment in (5.17) and (5.24)

5 Phase II: Quantize w̃ via (5.19)
6 until All columns of W (i) are quantized
7 Obtain quantized i-th layer Q(i) ∈A Ni−1×Ni

Output: Quantized neural network Φ̃

5.3 Error Bounds for SPFQ with Infinite Alphabets

We can now begin analyzing the errors associated with the above variants of SPFQ. On

the one hand, in Algorithm 5, since data is perfectly aligned by solving (5.22), we only have to

bound the quantization error ũNi−1 generated by procedure (5.19). On the other hand, Algorithm 6

has a faster implementation provided r < m, but introduces an extra error ûrNi−1 arising from the

r-th order data alignment. Thus, to control the error bounds for this version of SPFQ, we first

bound ũNi−1 and ûrNi−1 appearing in (5.23) and (5.25).

Lemma 5.3.1 (Quantization error). Assuming that the first i−1 layers have been quantized, let

X (i−1), X̃ (i−1) be as in (5.11) and w ∈ RNi−1 be the weights associated with a neuron in the i-th

layer, i.e. a column of W (i) ∈ RNi−1×Ni . Suppose w̃ is either the solution of (5.22) or the output

of (5.24). Quantize w̃ using (5.19) with alphabets A = A δ
∞ as in (5.4). Then, for any p ∈ N,

∥ũNi−1∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2 (5.26)

holds with probability at least 1−
√

2m
N p

i−1
.

Proof. We first show that

ũt ≤cx N (0,Σt) (5.27)

179

holds for all 1≤ t ≤ Ni−1, where Σt is defined recursively as follows

Σt := P
X̃ (i−1)⊥

t
Σt−1P

X̃ (i−1)⊥
t

+
πδ 2

2
X̃ (i−1)

t X̃ (i−1)⊤
t with Σ0 := 0.

At the t-th step of quantizing w̃, by (5.19), we have ũt = ũt−1 +(w̃t− q̃t)X̃
(i−1)
t . Define

ht := ũt−1 + w̃t X̃
(i−1)
t and vt :=

⟨X̃ (i−1)
t ,ht⟩
∥X̃ (i−1)

t ∥2
2

. (5.28)

It follows that

ũt = ht− q̃t X̃
(i−1)
t (5.29)

and (5.19) implies

q̃t = QStocQ

(
⟨X̃ (i−1)

t ,ht⟩
∥X̃ (i−1)

t ∥2
2

)
= QStocQ(vt). (5.30)

Since A = A δ
∞ , EQStocQ(z) = z for all z ∈ R. Moreover, conditioning on ũt−1 in (5.28), ht and

vt are fixed and thus one can get

E(QStocQ(vt)|ũt−1) = vt (5.31)

180

and

E(ũt |ũt−1) = E(ht− q̃t X̃
(i−1)
t |ũt−1)

= ht− X̃ (i−1)
t E(q̃t |ũt−1)

= ht− X̃ (i−1)
t E(QStocQ(vt)|ũt−1)

= ht− vt X̃
(i−1)
t

= ht−
⟨X̃ (i−1)

t ,ht⟩
∥X̃ (i−1)

t ∥2
2

X̃ (i−1)
t

=

(
I− X̃ (i−1)

t X̃ (i−1)⊤
t

∥X̃ (i−1)
t ∥2

2

)
ht

= P
X̃ (i−1)⊥

t
(ht).

The identity above indicates that the approximation error ũt can be split into two parts: its

conditional mean P
X̃ (i−1)⊥

t
(ht) and a random perturbation. Specifically, applying (5.29) and (5.7),

we obtain

ũt = P
X̃ (i−1)⊥

t
(ht)+P

X̃ (i−1)
t

(ht)− q̃t X̃
(i−1)
t = P

X̃ (i−1)⊥
t

(ht)+Rt X̃
(i−1)
t (5.32)

where

Rt := vt− q̃t .

Further, combining (5.30) and (5.31), we have

E(Rt |ũt−1) = vt−E(q̃t |ũt−1) = vt−E(QStocQ(vt)|ũt−1) = 0

and |Rt |= |vt−QStocQ(vt)| ≤ δ . Lemma 5.6.5 yields that, conditioning on ũt−1,

Rt ≤cx N
(

0,
πδ 2

2

)
. (5.33)

Now, we are ready to prove (5.27) by induction on t. When t = 1, we have h1 = w̃1X̃ (i−1)
1 .

181

We can deduce from (5.32) and (5.33) that ũ1 = P
X̃ (i−1)⊥

1
(w̃1X̃ (i−1)

1)+R1X̃ (i−1)
1 = R1X̃ (i−1)

1 with

R1 ≤cx N
(
0, πδ 2

2

)
. Applying Lemma 5.6.3, we obtain ũ1 ≤cx N (0,Σ1). Next, assume that

(5.27) holds for t− 1 with t ≥ 2. By the induction hypothesis, we have ũt−1 ≤cx N (0,Σt−1).

Using Lemma 5.6.3 again, we get

P
X̃ (i−1)⊥

t
(ht) = P

X̃ (i−1)⊥
t

(ũt−1 + w̃t X̃
(i−1)
t)

≤cx N
(

P
X̃ (i−1)⊥

t
(w̃t X̃

(i−1)
t),P

X̃ (i−1)⊥
t

Σt−1P
X̃ (i−1)⊥

t

)
= N

(
0,P

X̃ (i−1)⊥
t

Σt−1P
X̃ (i−1)⊥

t

)
.

Additionally, conditioning on ũt−1, (5.33) implies

Rt X̃
(i−1)
t ≤cx N

(
0,

πδ 2

2
X̃ (i−1)

t X̃ (i−1)⊤
t

)
.

Then we apply Lemma 5.6.4 to (5.32) by taking

X = P
X̃ (i−1)⊥

t
(ht), Y = ũt ,W = N

(
0,P

X̃ (i−1)⊥
t

Σt−1P
X̃ (i−1)⊥

t

)
, Z = N

(
0,

πδ 2

2
X̃ (i−1)

t X̃ (i−1)⊤
t

)
.

It follows that

ũt ≤cx W +Z

= N
(

0,P
X̃ (i−1)⊥

t
Σt−1P

X̃ (i−1)⊥
t

+
πδ 2

2
X̃ (i−1)

t X̃ (i−1)⊤
t

)
= N (0,Σt).

Here, we used the independence of W and Z, and the definition of Σt . This establishes inequality

(5.27) showing that ũt is dominated by N (0,Σt) in the convex order, where Σt is defined

recursively using orthogonal projections. So it remains to control the covariance matrix Σt .

182

Recall that Σt is defined as follows.

Σt = P
X̃ (i−1)⊥

t
Σt−1P

X̃ (i−1)⊥
t

+
πδ 2

2
X̃ (i−1)

t X̃ (i−1)⊤
t with Σ0 = 0.

Then we apply Lemma 5.7.1 with Mt = Σt , zt = X̃ (i−1)
t , and α = πδ 2

2 , and conclude that Σt ⪯ σ2
t I

with σ2
t = πδ 2

2 max1≤ j≤t ∥X̃
(i−1)
j ∥2

2. Note that ũt ≤cx N (0,Σt) and, by Lemma 5.6.2, we have

N (0,Σt)≤cx N (0,σ2
t I). Then we deduce from the transitivity of ≤cx that ũt ≤cx N (0,σ2

t I).

It follows from Lemma 5.7.2 that, for γ ∈ (0,1] and 1≤ t ≤ Ni−1,

P
Å
∥ũt∥∞ ≤ 2σt

»
log(
√

2m/γ)

ã
≥ 1− γ.

Picking γ =
√

2mN−p
i−1 and t = Ni−1,

∥ũNi−1∥2 ≤
√

m∥ũNi−1∥∞ ≤ 2σNi−1

√
pm logNi−1 = δ

√
2π pm logNi−1 max

1≤ j≤Ni−1
∥X̃ (i−1)

j ∥2

holds with probability exceeding 1−
√

2mN−p
i−1.

Next, we deduce a closed-form expression of ûrNi−1 showing that ∥ûrNi−1∥2 decays

polynomially with respect to r.

Lemma 5.3.2 (Data alignment error). Assuming that the first i−1 layers have been quantized,

let X (i−1), X̃ (i−1) be as in (5.11) and let w ∈ RNi−1 be a neuron in the i-th layer, i.e. a column of

W (i) ∈RNi−1×Ni . Applying the r-th order data alignment procedure in (5.17) and (5.24), we have

ûNi−1 =
Ni−1

∑
j=1

w jPX̃ (i−1)⊥
Ni−1

. . .P
X̃ (i−1)⊥

j+1
P

X̃ (i−1)⊥
j

(X (i−1)
j) (5.34)

and

ûrNi−1 = (P(i−1))r−1ûNi−1 (5.35)

where P(i−1) := P
X̃ (i−1)⊥

Ni−1

. . .P
X̃ (i−1)⊥

2
P

X̃ (i−1)⊥
1

.

183

Proof. We first prove the following identity by induction on t.

ût =
t

∑
j=1

w jPX̃ (i−1)⊥
t

. . .P
X̃ (i−1)⊥

j+1
P

X̃ (i−1)⊥
j

(X (i−1)
j), 1≤ t ≤ Ni−1. (5.36)

By (5.17), the case t = 1 is straightforward, since we have

û1 = w1X (i−1)
1 − w̃1X̃ (i−1)

1

= w1X (i−1)
1 −

⟨X̃ (i−1)
1 ,w1X (i−1)

1 ⟩
∥X̃ (i−1)

1 ∥2
2

X̃ (i−1)
1

= w1X (i−1)
1 −P

X̃ (i−1)
1

(w1X (i−1)
1)

= w1P
X̃ (i−1)⊥

1
(X (i−1)

1)

where we apply the properties of orthogonal projections in (5.7) and (5.8). For 2 ≤ t ≤ Ni−1,

assume that (5.36) holds for t−1. Then, by (5.17), one gets

ût = ût−1 +wtX
(i−1)
t − w̃t X̃

(i−1)
t

= ût−1 +wtX
(i−1)
t − ⟨X̃

(i−1)
t , ût−1 +wtX

(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

X̃ (i−1)
t

= ût−1 +wtX
(i−1)
t −P

X̃ (i−1)
t

(ût−1 +wtX
(i−1)
t)

= P
X̃ (i−1)⊥

t
(ût−1 +wtX

(i−1)
t).

Applying the induction hypothesis, we obtain

ût = P
X̃ (i−1)⊥

t
(ût−1)+wtPX̃ (i−1)⊥

t
(X (i−1)

t)

=
t−1

∑
j=1

w jPX̃ (i−1)⊥
t

. . .P
X̃ (i−1)⊥

j+1
P

X̃ (i−1)⊥
j

(X (i−1)
j)+wtPX̃ (i−1)⊥

t
(X (i−1)

t)

=
t

∑
j=1

w jPX̃ (i−1)⊥
t

. . .P
X̃ (i−1)⊥

j+1
P

X̃ (i−1)⊥
j

(X (i−1)
j).

184

This completes the proof of (5.36). In particular, if t = Ni−1, then we obtain (5.34).

Next, we consider ût when t > Ni−1. Plugging t = Ni−1+1 into (5.24), and recalling that

our indices (except for û) are modulo Ni−1, we have

ûNi−1+1 = ûNi−1 + w̃1X̃ (i−1)
1 −

⟨X̃ (i−1)
1 , ûNi−1 + w̃1X̃ (i−1)

1 ⟩
∥X̃ (i−1)

1 ∥2
2

X̃ (i−1)
1 = P

X̃ (i−1)⊥
1

(ûNi−1).

Similarly, one can show that ûNi−1+2 = P
X̃ (i−1)⊥

2
(ûNi−1+1) = P

X̃ (i−1)⊥
2

P
X̃ (i−1)⊥

1
ûNi−1 . Repeating this

argument for all Ni−1 < t ≤ rNi−1, we can derive (5.35).

Combining Lemma 5.3.1 and Lemma 5.3.2, we can derive a recursive relation between

the error in the current layer and that of the previous layer.

Theorem 5.3.3. Let Φ be an L-layer neural network as in (5.3) where the activation function is

ϕ(i)(x) = ρ(x) := max{0,x} for 1≤ i≤ L. Let A = A δ
∞ be as in (5.4) and p ∈ N.

(a) If we quantize Φ using Algorithm 5, then, for each 2≤ i≤ L,

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X (i−1)
j ∥2

+δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X (i−2)W (i−1)
j − X̃ (i−2)Q(i−1)

j ∥2.

holds with probability at least 1−
√

2mNi
N p

i−1
.

(b) If we quantize Φ using Algorithm 6, then, for each 2≤ i≤ L,

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X (i−1)
j ∥2

+
(

Ni−1∥W (i)∥max∥P(i−1)∥r−1
2 +δ

√
2π pm logNi−1

)
max

1≤ j≤Ni−1
∥X (i−2)W (i−1)

j − X̃ (i−2)Q(i−1)
j ∥2

holds with probability exceeding 1−
√

2mNi
N p

i−1
. Here, P(i−1) is defined in Lemma 5.3.2.

Proof. (a) Note that, for each 1≤ j ≤ Ni, the j-th columns W (i)
j and Q(i)

j represent a neuron and

185

its quantized version respectively. Applying (5.23) and (5.26), we obtain

P
(
∥X (i−1)W (i)

j − X̃ (i−1)Q(i)
j ∥2 ≤ δ

√
2π pm logNi−1 max

1≤ j≤Ni−1
∥X̃ (i−1)

j ∥2

)
≥ 1−

√
2m

N p
i−1

.

Taking a union bound over all j,

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2

holds with probability at least 1−
√

2mNi
N p

i−1
. By the triangle inequality, we have

max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2 ≤ max

1≤ j≤Ni−1
∥X (i−1)

j ∥2 + max
1≤ j≤Ni−1

∥X (i−1)
j − X̃ (i−1)

j ∥2

= max
1≤ j≤Ni−1

∥X (i−1)
j ∥2 + max

1≤ j≤Ni−1
∥ρ(X (i−2)W (i−1)

j)−ρ(X̃ (i−2)Q(i−1)
j)∥2

≤ max
1≤ j≤Ni−1

∥X (i−1)
j ∥2 + max

1≤ j≤Ni−1
∥X (i−2)W (i−1)

j − X̃ (i−2)Q(i−1)
j ∥2 (5.37)

It follows that, with probability at least 1−
√

2mNi
N p

i−1
,

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X (i−1)
j ∥2

+δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X (i−2)W (i−1)
j − X̃ (i−2)Q(i−1)

j ∥2.

(b) Applying Lemma 5.3.2 with w =W (i)
j and using the fact that ∥P∥2 ≤ 1 for any orthogonal

186

projection P, we have

∥ûNi−1∥2 =
∥∥∥Ni−1

∑
k=1

W (i)
k j P

X̃ (i−1)⊥
Ni−1

. . .P
X̃ (i−1)⊥

k+1
P

X̃ (i−1)⊥
k

(X (i−1)
k)

∥∥∥
2

≤
Ni−1

∑
k=1
|W (i)

k j |
∥∥∥P

X̃ (i−1)⊥
k

(X (i−1)
k)

∥∥∥
2

=
Ni−1

∑
k=1
|W (i)

k j |
∥∥∥P

X̃ (i−1)⊥
k

(X (i−1)
k − X̃ (i−1)

k)
∥∥∥

2

≤ Ni−1∥W
(i)
j ∥∞ max

1≤ j≤Ni−1
∥X (i−1)

j − X̃ (i−1)
j ∥2

= Ni−1∥W
(i)
j ∥∞ max

1≤ j≤Ni−1
∥ρ(X (i−2)W (i−1)

j)−ρ(X̃ (i−2)Q(i−1)
j)∥2

≤ Ni−1∥W (i)∥max max
1≤ j≤Ni−1

∥X (i−2)W (i−1)
j − X̃ (i−2)Q(i−1)

j ∥2. (5.38)

Then it follows from (5.25), (5.26), (5.37), and (5.38) that

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2

≤ ∥ûrNi−1∥2 +∥ũNi−1∥2

≤ ∥P(i−1)∥r−1
2 ∥ûNi−1∥2 +δ

√
2π pm logNi−1 max

1≤ j≤Ni−1
∥X̃ (i−1)

j ∥2

≤ Ni−1∥W (i)∥max∥P(i−1)∥r−1
2 max

1≤ j≤Ni−1
∥X (i−2)W (i−1)

j − X̃ (i−2)Q(i−1)
j ∥2 +δ

√
2π pm logNi−1

×
(

max
1≤ j≤Ni−1

∥X (i−1)
j ∥2 + max

1≤ j≤Ni−1
∥X (i−2)W (i−1)

j − X̃ (i−2)Q(i−1)
j ∥2

)

holds with probability at least 1−
√

2mN−p
i−1. By a union bound over all j, we obtain that

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X (i−1)
j ∥2

+
(

Ni−1∥W (i)∥max∥P(i−1)∥r−1
2 +δ

√
2π pm logNi−1

)
max

1≤ j≤Ni−1
∥X (i−2)W (i−1)

j − X̃ (i−2)Q(i−1)
j ∥2

holds with probability exceeding 1−
√

2mNi
N p

i−1
.

187

Applying Theorem 5.3.3 inductively for all layers, one can obtain an error bound for

quantizing the whole neural network.

Corollary 5.3.4. Let Φ be an L-layer neural network as in (5.3) where the activation function is

ϕ(i)(x) = ρ(x) := max{0,x} for 1≤ i≤ L. Let A = A δ
∞ be as in (5.4) and p ∈ N.

(a) If we quantize Φ using Algorithm 5, then

max
1≤ j≤NL

∥Φ(X) j− Φ̃(X) j∥2 ≤
L−1

∑
i=0

(2π pmδ
2)

L−i
2

(L−1

∏
k=i

logNk

) 1
2

max
1≤ j≤Ni

∥X (i)
j ∥2 (5.39)

holds with probability at least 1−∑
L
i=1

√
2mNi

N p
i−1

.

(b) If we quantize Φ using Algorithm 6, then

max
1≤ j≤NL

∥Φ(X) j− Φ̃(X) j∥2 ≤

L−1

∑
i=0

δ
√

2π pm logNi max
1≤ j≤Ni

∥X (i)
j ∥2

L−1

∏
k=i+1

(
Nk∥W (k+1)∥max∥P(k)∥r−1

2 +δ
√

2π pm logNk

)
(5.40)

holds with probability at least 1−∑
L
i=1

√
2mNi

N p
i−1

. Here, P(k) = P
X̃ (k)⊥

Nk

. . .P
X̃ (k)⊥

2
P

X̃ (k)⊥
1

is defined in

Lemma 5.3.2.

Proof. (a) For 1≤ j ≤ NL, by (5.11), we have

Φ(X) j = X (L)
j = ρ(X (L−1)W (L)

j) and Φ̃(X) j = X̃ (L)
j = ρ(X̃ (L−1)Q(L)

j)

where W (L)
j and Q(L)

j are the j-th neuron in the L-th layer and its quantized version respectively.

188

It follows from part (a) of Theorem 5.3.3 with i = L that

max
1≤ j≤NL

∥Φ(X) j− Φ̃(X) j∥2 = max
1≤ j≤NL

∥ρ(X (L−1)W (L)
j)−ρ(X̃ (L−1)Q(L)

j)∥2

≤ max
1≤ j≤NL

∥X (L−1)W (L)
j − X̃ (L−1)Q(L)

j ∥2

≤ δ
√

2π pm logNL−1 max
1≤ j≤NL−1

∥X (L−1)
j ∥2

+δ
√

2π pm logNL−1 max
1≤ j≤NL−1

∥X (L−2)W (L−1)
j − X̃ (L−2)Q(L−1)

j ∥2.

holds with probability at least 1−
√

2mNL
N p

L−1
. Moreover, by applying part (a) of Theorem 5.3.3 with

i = L−1 to the result above, we obtain that

max
1≤ j≤NL

∥Φ(X) j− Φ̃(X) j∥2 ≤ δ
√

2π pm logNL−1 max
1≤ j≤NL−1

∥X (L−1)
j ∥2 +2π pmδ

2

×
√

logNL−1 logNL−2

(
max

1≤ j≤NL−2
∥X (L−2)

j ∥2 + max
1≤ j≤Ni−1

∥X (i−2)W (i−1)
j − X̃ (i−2)Q(i−1)

j ∥2

)

holds with probability at least 1−
√

2mNL
N p

L−1
−
√

2mNL−1
N p

L−2
. Repeating this argument inductively for

i = L−2,L−3, . . . ,1, one can derive

max
1≤ j≤NL

∥Φ(X) j− Φ̃(X) j∥2 ≤
L−1

∑
i=0

(2π pmδ
2)

L−i
2

(L−1

∏
k=i

logNk

) 1
2

max
1≤ j≤Ni

∥X (i)
j ∥2

with probability at least 1−∑
L
i=1

√
2mNi

N p
i−1

.

(b) The proof of (5.40) is similar to the one we had in part (a) except that we need to use part (b)

189

of Theorem 5.3.3 this time. Indeed, for the case of i = L,

max
1≤ j≤NL

∥Φ(X) j− Φ̃(X) j∥2 = max
1≤ j≤NL

∥ρ(X (L−1)W (L)
j)−ρ(X̃ (L−1)Q(L)

j)∥2

≤ max
1≤ j≤NL

∥X (L−1)W (L)
j − X̃ (L−1)Q(L)

j ∥2

≤ δ
√

2π pm logNL−1 max
1≤ j≤NL−1

∥X (L−1)
j ∥2 +

(
NL−1∥W (L)∥max∥P(L−1)∥r−1

2

+δ
√

2π pm logNL−1

)
max

1≤ j≤NL−1
∥X (L−2)W (L−1)

j − X̃ (L−2)Q(L−1)
j ∥2

holds with probability exceeding 1−
√

2mNL
N p

L−1
. Then (5.40) follows by inductively using part (b)

of Theorem 5.3.3 with i = L−1,L−2, . . . ,1.

Remarks on the error bounds.

A few comments are in order regarding the error bounds associated with Corollary 5.3.4.

First, let us consider the difference between the error bounds (5.39) and (5.40). As (5.40) deals

with imperfect data alignment, it involves a term that bounds the mismatch between the quantized

and unquantized networks. This term is controlled by the quantity ∥P(k)∥r−1
2 , which is expected

to be small when the order r is sufficiently large provided ∥P(k)∥2 < 1. In other words, one

expects this term to be dominated by the error due to quantization. To get a sense for whether

this intuition is valid, consider the case where X̃ (k)
1 , X̃ (k)

2 , . . . , X̃ (k)
Nk

are i.i.d. standard Gaussian

vectors. Then Lemma 5.7.3 implies that, with high probability,

∥P(k)∥r−1
2 ≲

(
1− c

m

) (r−1)Nk
10

=
(

1− c
m

)−m
c ·
−c(r−1)Nk

10m ≤ e−
c(r−1)Nk

10m

where c > 0 is a constant. In this case, ∥P(k)∥r−1
2 decays exponentially with respect to r with

a favorable dependence on the overparametrization N
m . In other words, here, even with a small

order r, the error bounds in (5.39) and (5.40) are quite similar.

Keeping this in mind, our next objective is to assess the quality of these error bounds. We

will accomplish this by examining the relative error connected to the quantization of a neural

190

network. Specifically, we will concentrate on evaluating the relative error associated with (5.39)

since a similar derivation can be applied to (5.40).

We begin with the observation that both absolute error bounds (5.39) and (5.40) in

Corollary 5.3.4 only involve randomness due to the stochastic quantizer QStocQ. In particular,

there is no randomness assumption on either the weights or the activations. However, to evaluate

the relative error, we suppose that each W (i) ∈ RNi−1×Ni has i.i.d. N (0,1) entries and {W (i)}L
i=1

are independent. One needs to make an assumption of this type in order to facilitate the

calculation, and more importantly, to avoid adversarial scenarios where the weights are chosen

to be in the null-space of the data matrix X̃ (i). We obtain the following corollary which shows

that the relative error decays with the overparametrization of the neural network.

Corollary 5.3.5. Let Φ be an L-layer neural network as in (5.3) where the activation function is

ϕ(i)(x) = ρ(x) := max{0,x} for 1≤ i≤ L. Suppose the weight matrix W (i) has i.i.d. N (0,1)

entries and {W (i)}L
i=1 are independent. Let X ∈ Rm×N0 be the input data and X (i) = Φ(i)(X) ∈

Rm×Ni be the output of the i-th layer defined in (5.11). Then the following inequalities hold.

(a) Let p ∈ N with p≥ 2. For 1≤ i≤ L,

max
1≤ j≤Ni

∥X (i)
j ∥2 ≤ (4p)

i
2

(i−1

∏
k=1

Nk

) 1
2
(i−1

∏
k=0

logNk

) 1
2∥X∥F (5.41)

holds with probability at least 1−∑
i
k=1

2Nk
N p

k−1
.

(b) For 1≤ i≤ L, we have

EΦ∥X (i)∥2
F ≥
∥X∥2

F
(2π)i

i

∏
k=1

Nk (5.42)

where EΦ denotes the expectation with respect to the weights of Φ, that is {W (i)}L
i=1.

Proof. (a) Conditioning on X (i−1), the function f (z) := ∥ρ(X (i−1)z)∥2 is Lipschitz with Lips-

chitz constant L f := ∥X (i−1)∥2 ≤ ∥X (i−1)∥F and ∥X (i)
j ∥2 = ∥ρ(X (i−1)W (i)

j)∥2 = f (W (i)
j) with

W (i)
j ∼ N (0, I). Applying Lemma 5.7.4 to f with X = W (i)

j , Lipschitz constant L f , and

191

α =
√

2p logNi−1∥X (i−1)∥F , we obtain

P
(∣∣∥X (i)

j ∥2−E(∥X (i)
j ∥2 | X (i−1))

∣∣≤√2p logNi−1∥X (i−1)∥F

∣∣∣X (i−1)
)
≥ 1− 2

N p
i−1

. (5.43)

Using Jensen’s inequality and the identity E(∥ρ(X (i−1)W (i)
j)∥2

2 | X (i−1)) = 1
2∥X

(i−1)∥2
F , we have

E(∥X (i)
j ∥2 | X (i−1))≤

(
E(∥X (i)

j ∥
2
2 | X (i−1))

) 1
2

=
(
E(∥ρ(X (i−1)W (i)

j)∥2
2 | X (i−1))

) 1
2

=
1√
2
∥X (i−1)∥F .

It follows from the inequality above and (5.43) that, conditioning on X (i−1),

∥X (i)
j ∥2 ≤

(1√
2
+
√

2p logNi−1

)
∥X (i−1)∥F ≤ 2

√
p logNi−1∥X (i−1)∥F

holds with probability at least 1− 2
N p

i−1
. Conditioning on X (i−1) and taking a union bound over

1≤ j ≤ Ni, with probability exceeding 1− 2Ni
N p

i−1
, we have

∥X (i)∥F ≤
√

Ni max
1≤ j≤Ni

∥X (i)
j ∥2 ≤ 2

√
pNi logNi−1∥X (i−1)∥F . (5.44)

Applying (5.44) for indices i, i−1, . . . ,1 recursively, we obtain (5.41).

(b) Applying Jensen’s inequality and Proposition 5.7.5, we have

E(∥X (i)
j ∥

2
2 | X (i−1)) = E(∥ρ(X (i−1)W (i)

j)∥2
2 | X (i−1))

≥
(
E(∥ρ(X (i−1)W (i)

j)∥2 | X (i−1))
)2

≥ tr(X (i−1)X (i−1)⊤)

2π

=
∥X (i−1)∥2

F
2π

.

192

By the law of total expectation, we obtain EΦ∥X
(i)
j ∥2

2 ≥
1

2π
EΦ∥X (i−1)∥2

F and thus

EΦ∥X (i)∥2
F =

Ni

∑
j=1

EΦ∥X
(i)
j ∥

2
2 ≥

Ni

2π
EΦ∥X (i−1)∥2

F . (5.45)

Then (5.42) follows immediately by applying (5.45) recursively.

Now we are ready to evaluate the relative error associated with (5.39). It follows from

(5.39) and the Cauchy-Schwarz inequality that, with high probability,

∥Φ(X)− Φ̃(X)∥2
F

EΦ∥Φ(X)∥2
F
≤

NL max1≤ j≤NL ∥Φ(X) j− Φ̃(X) j∥2
2

EΦ∥Φ(X)∥2
F

≤ NL

EΦ∥Φ(X)∥2
F

(L−1

∑
i=0

(2π pmδ
2)

L−i
2

(L−1

∏
k=i

logNk

) 1
2

max
1≤ j≤Ni

∥X (i)
j ∥2

)2

≤ LNL

EΦ∥Φ(X)∥2
F

L−1

∑
i=0

(2π pmδ
2)L−i

(L−1

∏
k=i

logNk

)
max

1≤ j≤Ni
∥X (i)

j ∥
2
2. (5.46)

By Corollary 5.3.5, max1≤ j≤Ni ∥X
(i)
j ∥2

2 ≤ (4p)i∥X∥2
F logN0 ∏

i−1
k=1(Nk logNk) with high probabil-

ity, and EΦ∥Φ(X)∥2
F = EΦ∥X (L)∥2

F ≥
∥X∥2

F
(2π)L ∏

L
k=1 Nk. Plugging these results into (5.46),

∥Φ(X)− Φ̃(X)∥2
F

EΦ∥Φ(X)∥2
F
≤ L(2π)L

(L

∏
k=0

logNk

)L−1

∑
i=0

(2π pmδ 2)L−i(4p)i

∏
L−1
k=i Nk

≲
(L

∏
k=0

logNk

)L−1

∑
i=0

L−1

∏
k=i

m
Nk

(5.47)

gives an upper bound on the relative error of quantization method in Algorithm 5. Further, if we

assume Nmin ≤ Ni ≤ Nmax for all i, and 2m≤ Nmin, then (5.47) becomes

∥Φ(X)− Φ̃(X)∥2
F

EΦ∥Φ(X)∥2
F

≲ (logNmax)
L+1

L−1

∑
i=0

(m
Nmin

)L−i

≲
m(logNmax)

L+1

Nmin
.

This high probability estimate indicates that the squared error resulting from quantization decays

193

with the overparametrization of the network, relative to the expected squared norm of the neural

network’s output. It may be possible to replace the expected squared norm by the squared norm

itself using another high probability estimate. However, we refrain from doing so as the main

objective of this computation was to gain insight into the decay of the relative error in generic

settings and the expectation suffices for that purpose.

5.4 Error Bounds for SPFQ with Finite Alphabets

Our goal for this section is to relax the assumption that the quantization alphabet used

in our algorithms is infinite. We would also like to evaluate the number of elements 2K in

our alphabet, and thus the number of bits b := log2(K)+ 1 needed for quantizing each layer.

Moreover, for simplicity, here we will only consider Algorithm 5. In this setting, to use a

finite quantization alphabet, and still obtain theoretical error bounds, we must guarantee that

the argument of the stochastic quantizer in (5.19) remains smaller than the maximal element in

the alphabet. Indeed, if that is the case for all t = 1, ...,Ni−1 then the error bound for our finite

alphabet would be identical as for the infinite alphabet. It remains to determine the right size of

such a finite alphabet. To that end, we start with Theorem 5.4.1, which assumes boundedness

of all the aligned weights w̃ in the i-th layer, i.e., the solutions of (5.22), in order to generate an

error bound for a finite alphabet of size K(i) ≳
√

logmax{Ni−1,Ni}.

Theorem 5.4.1. Assuming that the first i− 1 layers have been quantized, let X (i−1), X̃ (i−1)

be as in (5.11). Let p,K(i) ∈ N and δ > 0 satisfying p ≥ 3. Suppose we quantize W (i) using

Algorithm 5 with A = A δ

K(i) and suppose the resulting aligned weights ‹W (i) from solving (5.22)

satisfy

∥‹W (i)∥max ≤
1
2

K(i)
δ . (5.48)

Then

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2 (5.49)

194

holds with probability at least 1−
√

2mNi
N p

i−1
−
√

2Ni

Ni−1

∑
t=2

exp
(
− (K(i))2∥X̃ (i−1)

t ∥2
2

8π max
1≤ j≤t−1

∥X̃ (i−1)
j ∥2

2

)
.

Proof. Fix a neuron w := W (i)
j ∈ RNi−1 for some 1 ≤ j ≤ Ni. By our assumption (5.48), the

aligned weights w̃ satisfy ∥w̃∥∞ ≤ 1
2K(i)δ . Then, we perform the iteration (5.19) in Algorithm 5.

At the t-th step, similar to (5.28), (5.30), and (5.32), we have

ũt = P
X̃ (i−1)⊥

t
(ht)+(vt− q̃t)X̃

(i−1)
t

where

ht = ũt−1 + w̃t X̃
(i−1)
t , vt =

⟨X̃ (i−1)
t ,ht⟩
∥X̃ (i−1)

t ∥2
2

, and q̃t = QStocQ(vt). (5.50)

If t = 1, then h1 = w̃1X̃ (i−1)
1 , v1 = w̃1, and q̃1 =QStocQ(v1). Since |v1|= |w̃1| ≤ ∥w̃∥∞ ≤ 1

2K(i)δ ,

we get |v1− q̃1| ≤ δ and the proof technique used for the case t = 1 in Lemma 5.3.1 can

be applied here to conclude that ũ1 ≤cx N (0,σ2
1 I) with σ2

1 = πδ 2

2 ∥X̃
(i−1)
1 ∥2

2. Next, for t ≥ 2,

assume that ũt−1 ≤cx N (0,σ2
t−1I) holds where σ2

t−1 =
πδ 2

2 max1≤ j≤t−1 ∥X̃
(i−1)
j ∥2

2 is defined as

in Lemma 5.3.1. It follows from (5.50) and Lemma 5.6.3 that

|vt |=
∣∣∣⟨X̃ (i−1)

t , ũt−1⟩
∥X̃ (i−1)

t ∥2
2

+ w̃t

∣∣∣≤ ∣∣∣⟨X̃ (i−1)
t , ũt−1⟩
∥X̃ (i−1)

t ∥2
2

∣∣∣+∥w̃∥∞ ≤
∣∣∣⟨X̃ (i−1)

t , ũt−1⟩
∥X̃ (i−1)

t ∥2
2

∣∣∣+ 1
2

K(i)
δ

with ⟨X̃
(i−1)
t ,ũt−1⟩
∥X̃ (i−1)

t ∥2
2

≤cx N
(

0, σ2
t−1

∥X̃ (i−1)
t ∥2

2

)
. Then we have, by Lemma 5.7.2, that

P(|vt | ≤ K(i)
δ)≥ P

(∣∣∣⟨X̃ (i−1)
t , ũt−1⟩
∥X̃ (i−1)

t ∥2
2

∣∣∣≤ 1
2

K(i)
δ

)
≥ 1−

√
2exp

(
−(K(i)δ)2

16σ2
t−1
∥X̃ (i−1)

t ∥2
2

)
.

On the event {|vt | ≤ K(i)δ}, we can quantize vt as if the quantizer QStocQ used the infinite

alphabet A δ
∞ . So ũt ≤cx N (0,σ2

t I). Therefore, applying a union bound,

P
(

ũNi−1 ≤cx N (0,σ2
Ni−1

I)
)
≥ 1−

√
2

Ni−1

∑
t=2

exp
(
−(K(i)δ)2

16σ2
t−1
∥X̃ (i−1)

t ∥2
2

)
. (5.51)

195

Conditioning on the event above, that ũNi−1 ≤cx N (0,σ2
Ni−1

I), Lemma 5.7.2 yields for γ ∈ (0,1]

P
(
∥ũNi−1∥∞ ≤ 2σNi−1

»
log(
√

2m/γ)
)
≥ 1− γ.

Setting γ =
√

2mN−p
i−1 and recalling (5.23), we obtain that

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 = ∥ũNi−1∥2 ≤
√

m∥ũNi−1∥∞ ≤ 2σNi−1

√
mp logNi−1 (5.52)

holds with probability at least 1−
√

2m
N p

i−1
. Combining (5.51) and (5.52), for each 1≤ j ≤ Ni,

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ 2σNi−1

√
mp logNi−1 = δ

√
2π pm logNi−1 max

1≤ j≤Ni−1
∥X̃ (i−1)

j ∥2

holds with probability exceeding 1−
√

2m
N p

i−1
−
√

2∑
Ni−1
t=2 exp

(
− (K(i)δ)2

16σ2
t−1
∥X̃ (i−1)

t ∥2
2

)
. Taking a union

bound over all 1≤ j ≤ Ni, we have

P
(

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2

)
≥ 1−

√
2mNi

N p
i−1
−
√

2Ni

Ni−1

∑
t=2

exp
(
−(K(i)δ)2

16σ2
t−1
∥X̃ (i−1)

t ∥2
2

)
≥ 1−

√
2mNi

N p
i−1
−
√

2Ni

Ni−1

∑
t=2

exp
(
−

(K(i))2∥X̃ (i−1)
t ∥2

2

8π max1≤ j≤t−1 ∥X̃
(i−1)
j ∥2

2

)
.

Next, in Theorem 5.4.2, we show that provided the activations X (i−1) and X̃ (i−1) of the

quantized and unquantized networks are sufficiently close, and provided the weights w follow

a random distribution, one can guarantee the needed boundedness of the aligned weights w̃.

This allows us to apply Theorem 5.4.1 and generate an error bound for finite alphabets. Our

focus on random weights here enables us to avoid certain adversarial situations. Indeed, one

can construct activations X (i−1) and X̃ (i−1) that are arbitrarily close to each other, along with

196

adversarial weights w that together lead to ∥w̃∥∞ becoming arbitrarily large. We demonstrate this

contrived adversarial scenario in Proposition 5.8.1. However, in generic cases represented by

random weights, as shown in Theorem 5.4.2, the bound on w̃ is not a major issue. Consequently,

one can utilize a finite alphabet for quantization as desired.

Theorem 5.4.2. Assuming that the first i−1 layers have been quantized, let X (i−1), X̃ (i−1) be as

in (5.11). Suppose the weight matrix W (i) ∈ RNi−1×Ni has i.i.d. N (0,1) entries and

∥X̃ (i−1)−X (i−1)∥2 ≤ ε
(i−1)

σ
(i−1)
1 < σ

(i−1)
m , (5.53)

where ε(i−1) ∈ (0,1), σ
(i−1)
1 and σ

(i−1)
m are the largest and smallest singular values of X (i−1)

respectively. Let p,K(i) ∈ N and δ > 0 such that p≥ 3 and

K(i)
δ ≥ 2η

(i−1)
√

2p logNi−1. (5.54)

where η(i−1) := σ
(i−1)
1

σ
(i−1)
m −ε(i−1)σ

(i−1)
1

. If we quantize W (i) using Algorithm 5 with A = A δ

K(i) , then

max
1≤ j≤Ni

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2 (5.55)

holds with probability at least 1− 2Ni

N p−1
i−1
−
√

2mNi
N p

i−1
−
√

2Ni ∑
Ni−1
t=2 exp

(
− (K(i))2∥X̃ (i−1)

t ∥2
2

8π max1≤ j≤t−1 ∥X̃
(i−1)
j ∥2

2

)
.

Proof. Pick a neuron w :=W (i)
j ∈ RNi−1 for some 1≤ j ≤ Ni. Then we have w∼N (0, I) and

since we are using Algorithm 5, we must work with the resulting w̃, the solution of (5.22).

Applying Proposition 5.8.3 to w with X = X (i−1) and X̃ = X̃ (i−1), we obtain

P
(
∥w̃∥∞ ≤ η

(i−1)
√

2p logNi−1

)
≥ 1− 2

N p−1
i−1

,

so that using (5.54) gives

P
(
∥w̃∥∞ ≤

1
2

K(i)
δ

)
≥ 1− 2

N p−1
i−1

. (5.56)

197

Conditioning on the event {∥w̃∥∞ ≤ 1
2K(i)δ} and applying exactly the same argument in Theo-

rem 5.4.1,

∥X (i−1)W (i)
j − X̃ (i−1)Q(i)

j ∥2 ≤ δ
√

2π pm logNi−1 max
1≤ j≤Ni−1

∥X̃ (i−1)
j ∥2 (5.57)

holds with probability exceeding 1−
√

2m
N p

i−1
−
√

2∑
Ni−1
t=2 exp

(
− (K(i))2∥X̃ (i−1)

t ∥2
2

8π max1≤ j≤t−1 ∥X̃
(i−1)
j ∥2

2

)
. Combining

(5.56) and (5.57), and taking a union bound over all 1≤ j ≤ Ni, we obtain (5.55).

Now we are about to approximate the number of bits needed for guaranteeing the derived

bounds. Note that, in Theorem 5.4.2, we achieved the same error bound (5.55) as in Lemma 5.3.1,

choosing proper ε(i−1) ∈ (0,1) and K(i) ∈ N such that (5.53) and (5.54) are satisfied and the

associated probability in (5.55) is positive. This implies that the error bounds we obtained in

Section 5.3 remain valid for our finite alphabets as well. In particular, by a similar argument we

used to obtain (5.47), one can get the following approximations

∥X̃ (i−1)−X (i−1)∥2
F

∥X (i−1)∥2
F

≲
(i−1

∏
k=0

logNk

) i−2

∑
j=0

i−2

∏
k= j

m
Nk

.

Due to ∥X (i−1)∥F ≤
√

m∥X (i−1)∥2 and ∥X̃ (i−1)−X (i−1)∥2 ≤ ∥X̃ (i−1)−X (i−1)∥F , we have

∥X̃ (i−1)−X (i−1)∥2
2

∥X (i−1)∥2
2

≤ m∥X̃ (i−1)−X (i−1)∥2
F

∥X (i−1)∥2
F

≲ m
(i−1

∏
k=0

logNk

) i−2

∑
j=0

i−2

∏
k= j

m
Nk

.

If ∏
i−2
k= j Nk ≳ mi− j

∏
i−1
k=0 logNk for 0 ≤ j ≤ i− 2, then it is possible to choose ε(i−1) ∈ (0,1)

such that (5.53) holds. Moreover, since σ
(i−1)
m ≤ σ

(i−1)
1 , we have η(i−1) =

σ
(i−1)
1

σ
(i−1)
m −ε(i−1)σ

(i−1)
1

≥

(1− ε(i−1))−1 and thus (5.54) becomes

K(i) ≥ 2δ
−1(1− ε

(i−1))−1
√

2p logNi−1 ≳
√

logNi−1. (5.58)

198

Assuming columns of X̃ (i−1) are similar in the sense of

max
1≤ j≤t−1

∥X̃ (i−1)
j ∥2 ≲

√
logNi−1∥X̃

(i−1)
t ∥2, 2≤ t ≤ Ni−1,

we obtain that (5.55) holds with probability exceeding

1− 2Ni

N p−1
i−1

−
√

2mNi

N p
i−1
−
√

2Ni

Ni−1

∑
t=2

exp
(
−

(K(i))2∥X̃ (i−1)
t ∥2

2

8π max1≤ j≤t−1 ∥X̃
(i−1)
j ∥2

2

)
≥ 1− 2Ni

N p−1
i−1

−
√

2mNi

N p
i−1
−
√

2Ni−1Ni exp
(
− (K(i))2

8π logNi−1

)
. (5.59)

To make (5.59) positive, we have

K(i) ≳ logmax{Ni−1,Ni}. (5.60)

It follows from (5.58) and (5.59) that, in the ith layer, we only need a number of bits b(i) that

satisfies

b(i) ≥ log2 K(i)+1 ≳ log2 logmax{Ni−1,Ni}

to guarantee the performance of our quantization method using finite alphabets.

Table 5.1. Top-1/Top-5 validation accuracy for SPFQ on ImageNet.

Model m b C Quant Acc (%) Ref Acc (%) Acc Drop (%)

VGG-16 1024
4 1.02 70.48/89.77 71.59/90.38 1.11/0.61
5 1.23 71.08/90.15 71.59/90.38 0.51/0.23
6 1.26 71.24/90.37 71.59/90.38 0.35/0.01

ResNet-18 2048
4 0.91 67.36/87.74 69.76/89.08 2.40/1.34
5 1.32 68.79/88.77 69.76/89.08 0.97/0.31
6 1.68 69.43/88.96 69.76/89.08 0.33/0.12

ResNet-50 2048
4 1.10 73.37/91.61 76.13/92.86 2.76/1.25
5 1.62 75.05/92.43 76.13/92.86 1.08/0.43
6 1.98 75.66/92.67 76.13/92.86 0.47/0.19

199

5.5 Experiments

In this section, we test the performance of SPFQ on the ImageNet classification task and

compare it with the non-random scheme GPFQ in [38]. In particular, we adopt the version of

SPFQ corresponding to (5.15) 1, i.e., Algorithm 6 with order r = 1. Note that the GPFQ algorithm

runs the same iterations as in (5.15) except that QStocQ is substituted with a non-random quantizer

QDetQ, so the associated iterations are given by



u0 = 0 ∈ Rm,

qt = QDetQ

Å
⟨X̃ (i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃ (i−1)
t ∥2

2

ã
,

ut = ut−1 +wtX
(i−1)
t −qt X̃

(i−1)
t

(5.61)

where QDetQ(z) := argminp∈A |z− p|. For ImageNet data, we consider ILSVRC-2012 [11], a

1000-category dataset with over 1.2 million training images and 50 thousand validation images.

Additionally, we resize all images to 256×256 and use the normalized 224×224 center crop,

which is a standard procedure. The evaluation metrics we choose are top-1 and top-5 accuracy

of the quantized models on the validation dataset. As for the neural network architectures, we

quantize all layers of VGG-16 [33], ResNet-18 and ResNet-50 [19], which are pretrained 32-bit

floating point neural networks provided by torchvision in PyTorch [28]. Moreover, we fuse the

batch normalization (BN) layer with the convolutional layer, and freeze the BN statistics before

quantization.

Since the major difference between SPFQ in (5.15) and GPFQ in (5.61) is the choice

of quantizers, we will follow the experimental setting for alphabets used in [38]. Specifically,

we use batch size m, fixed bits b ∈ N for all the layers, and quantize each W (i) ∈ RNi−1×Ni with

midtread alphabets A = A δ
K as in (5.5), where level K and step size δ are given by

1Code: https : //github.com/jayzhang0727/Stochastic−Path−Following−Quantization.git

200

https://github.com/jayzhang0727/Stochastic-Path-Following-Quantization.git

(a) Top-1 accuracy of VGG-16 (b) Top-5 accuracy of VGG-16

(c) Top-1 accuracy of ResNet-18 (d) Top-5 accuracy of ResNet-18

(e) Top-1 accuracy of ResNet-50 (f) Top-5 accuracy of ResNet-50

Figure 5.1. Top-1 and Top-5 validation accuracy for SPFQ (dashed lines) and GPFQ (solid lines)
on ImageNet.

K = 2b−1, δ = δ
(i) :=

C
2b−1Ni

∑
1≤ j≤Ni

∥W (i)
j ∥∞.

Here, C > 0 is a constant that is only dependent on bitwidth b, determined by grid search with

cross-validation, and fixed across layers, and across batch-sizes. One can, of course, expect to

do better by using different values of C for different layers but we refrain from doing so, as our

201

main goal here is to demonstrate the performance of SPFQ even with minimal fine-tuning.

In Table 5.1, for different combinations of m, b, and C, we present the corresponding

top-1/top-5 validation accuracy of quantized networks using SPFQ in the first column, while the

second and thrid columns give the validation accuracy of unquantized models and the accuracy

drop due to quantization respectively. We observe that, for all three models, the quantization

accuracy is improved as the number of bits b increases, and SPFQ achieves less than 0.5% top-1

accuracy loss while using 6 bits.

Next, in Figure 5.1, we compare SPFQ against GPFQ by quantizing the three models in

Table 5.1. These figures illustrate that GPFQ has better performance than that of SPFQ when

b = 3,4 and m is small. This is not particularly surprising, as QDetQ deterministically rounds its

argument to the nearest alphabet element instead of performing a random rounding like QStocQ.

However, as the batch size m increases, the accuracy gap between GPFQ and SPFQ diminishes.

Indeed, for VGG-16 and ResNet-18, SPFQ outperforms GPFQ when b = 6. Further, we note

that, for both SPFQ and GPFQ, one can obtain higher quantization accuracy by taking larger m

but the extra improvement that results from increasing the batch size rapidly decreases.

5.6 Properties of Convex Orders

Throughout this section, d
= denotes equality in distribution. A well-known result is that

the convex order can be characterized by a coupling of X and Y , i.e. constructing X and Y on the

same probability space.

Theorem 5.6.1 (Theorem 7.A.1 in [32]). The random vectors X and Y satisfy X ≤cx Y if and

only if there exist two random vectors X̂ and Ŷ , defined on the same probability space, such that

X̂ d
= X, Ŷ d

= Y , and E(Ŷ |X̂) = X̂ .

In Theorem 5.6.1, E(Ŷ |X̂) = X̂ implies E(Ŷ − X̂ |X̂) = 0. Let Ẑ := Ŷ − X̂ . Then we have

Ŷ = X̂ + Ẑ with E(Ẑ|X̂) = 0. Thus, one can obtain Ŷ by first sampling X̂ , and then adding a mean

0 random vector Ẑ whose distribution may depend on the sampled X̂ . Based on this important

202

observation, the following result gives necessary and sufficient conditions for the comparison of

multivariate normal random vectors, see e.g. Example 7.A.13 in [32].

Lemma 5.6.2. Consider multivariate normal distributions N (µ1,Σ1) and N (µ2,Σ2). Then

N (µ1,Σ1)≤cx N (µ2,Σ2) ⇐⇒ µ1 = µ2 and Σ1 ⪯ Σ2.

Proof. (⇒) Suppose that X ∼N (µ1,Σ1) and Y ∼N (µ2,Σ2) such that X ≤cx Y . By (5.10), we

have µ1 = µ2. Let a ∈ Rn and define f (x) := (a⊤x−a⊤µ1)
2. Since f (x) is convex, one can get

a⊤Σ1a = Var(a⊤X) = E f (X)≤ E f (Y) = Var(a⊤Y) = a⊤Σ2a.

Since this inequality holds for arbitrary a ∈ Rn, we obtain Σ1 ⪯ Σ2.

(⇐) Conversely, assume that µ1 = µ2 and Σ1 ⪯ Σ2. Let X ∼N (µ1,Σ1) and Z ∼N (0,Σ2−Σ1)

be independent. Construct a random vector Y := X +Z. Then Y ∼N (µ2,Σ2) and E(Y |X) =

E(X +Z|X) = X +EZ = X . Following Theorem 5.6.1, N (µ1,Σ1)≤cx N (µ2,Σ2) holds.

Moreover, the convex order is preserved under affine transformations.

Lemma 5.6.3. Suppose that X, Y are n-dimensional random vectors satisfying X ≤cx Y . Let

A ∈ Rm×n and b ∈ Rm. Then AX +b≤cx AY +b.

Proof. Let f : Rn→ R be any convex function. Since g(x) := f (Ax+ b) is a composition of

convex function f (x) and a linear map, g(x) is also convex. As X ≤cx Y , we now have

E f (AX +b) = Eg(X)≤ Eg(Y) = E f (AY +b),

so AX +b≤cx AY +b.

The following results, which will also be useful to us, were proved in Section 2 of [3].

203

Lemma 5.6.4. Consider random vectors X, Y , W, and Z. Let X and Y live on the same

probability space, and let W and Z be independent. Suppose that X ≤cx W and (Y −X)|X ≤cx Z.

Then Y ≤cx W +Z.

Lemma 5.6.5. Let X be a real-valued random variable with EX = 0 and |X | ≤ C. Then

X ≤cx N
(
0, πC2

2

)
.

Applying Lemma 5.6.4 inductively, one can show that the convex order is closed under

convolutions.

Lemma 5.6.6. Let X1,X2, . . . ,Xm be a set of independent random vectors and let Y1,Y2, . . . ,Ym

be another set of independent random vectors. If Xi ≤cx Yi for 1≤ i≤ m, then

m

∑
i=1

Xi ≤cx

m

∑
i=1

Yi. (5.62)

Proof. We will prove (5.62) by induction on m. The case m = 1 is trivial. Assume that the

lemma holds for m−1 with m≥ 2, and let us prove it for m. Applying Lemma 5.6.4 for X = Xm,

Y = ∑
m
i=1 Xi, W = Ym, and Z = ∑

m−1
i=1 Yi, inequality (5.62) follows.

5.7 Useful Lemmata

The following two lemmata are essential for the approximation of quantization error

bounds. The proof techniques follow [3].

Lemma 5.7.1. Let α > 0 and z1,z2, . . . ,zd ∈ Rm be nonzero vectors. Let M0 = 0. For 1≤ t ≤ d,

define Mt ∈ Rm×m inductively as

Mt := Pz⊥t
Mt−1Pz⊥t

+αztz⊤t

where Pz⊥t
= I− ztz⊤t

∥zt∥2
2

is the orthogonal projection as in (5.8). Then

Mt ⪯ βtI (5.63)

204

holds for all t, where βt := α max1≤ j≤t ∥z j∥2
2.

Proof. We proceed by induction on t. If t = 1, then M1 = αz1z⊤1 . By Cauchy-Schwarz inequality,

for any x ∈ Rm, we get

x⊤M1x = α⟨z1,x⟩2 ≤ α∥z1∥2
2∥x∥2

2 = β1∥x∥2
2 = x⊤(β1I)x.

It follows that M1 ⪯ β1I. Now, assume that (5.63) holds for t−1 with t ≥ 2. Then we have

Mt = Pz⊥t
Mt−1Pz⊥t

+αztz⊤t

⪯ βt−1P2
z⊥t
+αztz⊤t (by assumptionMt−1 ⪯ βt−1I)

⪯ βtPz⊥t
+αztz⊤t (sinceP2

z⊥t
= Pz⊥t

andβt−1 ≤ βt)

= βtI +(α∥zt∥2
2−βt)

ztz⊤t
∥zt∥2

2
(using (5.8))

⪯ βtI (asβt = α max
1≤ j≤t

∥z j∥2
2).

This completes the proof.

Lemma 5.7.2. Let X be an n-dimensional random vector such that X ≤cx N (µ,σ2I), and let

α > 0. Then

P
Å
∥X−µ∥∞ ≤ α

ã
≥ 1−

√
2ne−

α2

4σ2 .

In particular, if α = 2σ

»
log(
√

2n/γ) with γ ∈ (0,1], we have

P
(
∥X−µ∥∞ ≤ 2σ

»
log(
√

2n/γ)
)
≥ 1− γ.

Proof. Let x ∈ Rn with ∥x∥2 ≤ 1. Since X ≤cx N (µ,σ2I), by Lemma 5.6.2 and Lemma 5.6.3,

we get
⟨X−µ,x⟩

σ
≤cx N (0,∥x∥2

2)≤cx N (0,1).

205

Then we have

Ee
⟨X−µ,x⟩2

4σ2 ≤ EZ∼N (0,1)e
Z2/4 =

√
2.

where we used Definition 5.2.1 on the convex function f (x) = ex2/4. By Markov’s inequality

and the inequality above, we conclude that

P(|⟨X−µ,x⟩| ≥ α) = P
(

e
⟨X−µ,x⟩2

4σ2 ≥ e
α2

4σ2
)

≤ e−
α2

4σ2 Ee
⟨X−µ,x⟩2

4σ2

≤
√

2e−
α2

4σ2 .

Finally, by a union bound over the standard basis vectors x = e1,e2, . . . ,en, we have

P
Å
∥X−µ∥∞ ≤ α

ã
≥ 1−

√
2ne−

α2

4σ2 .

Lemma 5.7.3. Let X1,X2, . . . ,XN be i.i.d. random vectors drawn from N (0, Im). Let N ≥ 10

and P := PX⊥N
. . .PX⊥2

PX⊥1
∈ Rm×m. Then

P
(
∥P∥2

2 ≤ 4
(
1− c

m
)⌊N

5 ⌋
)
≥ 1−5me−

N
5 (5.64)

where c > 0 is an absolute constant.

Proof. This proof is based on an ε-net argument. By the definition of ∥P∥2, we need to bound

∥Pz∥2 for all vectors z ∈ Sm−1. To this end, we will cover the unit sphere using small balls with

radius ε , establish tight control of ∥Pz∥2 for every fixed vector z from the net, and finally take a

union bound over all vectors in the net.

We first set up an ε-net. Choosing ε = 1
2 , according to Corollary 4.2.13 in [34], we can

206

find an ε-net D ⊆ Sm−1 such that

Sm−1 ⊆
⋃

z∈D
B(z,ε) and |D | ≤

(
1+

2
ε

)m
= 5m. (5.65)

Here, B(z,ε) represents the closed ball centered at z and with radius ε , and |D | is the cardinality

of D . Moreover, we have (see Lemma 4.4.1 in [34])

∥P∥2 ≤
1

1− ε
max
z∈D
∥Pz∥2 = 2max

z∈D
∥Pz∥2. (5.66)

Next, let β ≥ 1, γ > 0, and z ∈ Sm−1. Applying (5.7) and setting ξ ∼N (0, Im), for 1≤ j ≤ N,

we obtain

P
(
∥PX⊥j

(z)∥2
2 ≥ 1− γ

)
= P
(
∥PX j(z)∥

2
2 ≤ γ

)
= P
(〈 X j

∥X j∥2
,z
〉2
≤ γ

)
= P
(〈

ξ

∥ξ∥2
,z
〉2
≤ γ

)
.

By rotation invariance of the normal distribution, we may assume without loss of generality that

z = e1 := (1,0, . . . ,0) ∈ Rm. It follows that

P
(
∥PX⊥j

(z)∥2
2 ≥ 1− γ

)
= P
(

ξ 2
1
∥ξ∥2

2
≤ γ

)
= P
(

ξ 2
1
∥ξ∥2

2
≤ γ, ∥ξ∥2

2 ≤ βm
)
+P
(

ξ 2
1
∥ξ∥2

2
≤ γ, ∥ξ∥2

2 > βm
)

≤ P(ξ 2
1 ≤ βγm)+P(∥ξ∥2

2 ≥ βm)

≤

2βγm

π
+2exp(−c′m(

√
β −1)2). (5.67)

207

In the last step, we controlled the probability via

P(ξ 2
1 ≤ βγm) =

∫ √
βγm

−
√

βγm

1√
2π

e−
1
2 x2

dx≤ 1√
2π

∫ √
βγm

−
√

βγm
1dx =

2βγm

π
,

and used the concentration of the norm (see Theorem 3.1.1 in [34]):

P(∥ξ∥2
2 ≥ βm)≤ 2exp(−c′m(

√
β −1)2), β ≥ 1,

where c′ > 0 is an absolute constant. In (5.67), picking β = (
»

3
c′ +1)2 and γ = 1

12βm = c
m with

c := 1
12(
»

3
c′ +1)−2, we have that

τ := P
(
∥PX⊥j

(z)∥2
2 ≤ 1− c

m

)
≥ 1−

…
1

6π
−2e−3m ≥ 1−

…
1

6π
−2e−3 ≥ 2

3
(5.68)

holds for all 1≤ j ≤ N and z ∈ Sm−1. So each orthogonal projection PX⊥j
can reduce the squared

norm of a vector to at most 1− c
m ratio with probability τ . Fix z ∈D . Since X1,X2, . . . ,Xn are

independent, we have

P
(
∥Pz∥2

2 ≥
(

1− c
m

)⌊N
5 ⌋)≤ ⌊N

5 ⌋

∑
k=0

Ç
N
k

å
τ

k(1− τ)N−k

≤
⌊N

5 ⌋

∑
k=0

Ç
N
k

å
(1− τ)N−k (sinceτ ≤ 1)

≤ (1− τ)N−⌊N
5 ⌋
⌊N

5 ⌋

∑
k=0

Ç
N
k

å
≤
(1

3

)N−⌊N
5 ⌋
⌊N

5 ⌋

∑
k=0

Ç
N
k

å
(by(5.68))

≤
(1

3

)N−⌊N
5 ⌋(eN
⌊N

5 ⌋

)⌊N
5 ⌋

(due to
l

∑
k=0

Ç
n
k

å
≤
(en

l

)l
). (5.69)

208

Since N
5 −1 < ⌊N

5 ⌋ ≤
N
5 and N ≥ 10, we have

(1
3

)N−⌊N
5 ⌋(eN
⌊N

5 ⌋

)⌊N
5 ⌋ ≤

(1
3

) 4N
5
(eN

N
5 −1

)N
5
=
(1

81
· 5e

1− 5
N

)N
5 ≤

(10e
81

)N
5 ≤ e−

N
5 .

Plugging this into (5.69), we deduce that

P
(
∥Pz∥2

2 ≤
(

1− c
m

)⌊N
5 ⌋)≥ 1− e−

N
5 .

holds for all z ∈D . By a union bound over |D | ≤ 5m points, we obtain

P
(

max
z∈D
∥Pz∥2

2 ≤
(

1− c
m

)⌊N
5 ⌋)≥ 1−5me−

N
5 . (5.70)

Then (5.64) follows immediately from (5.66) and (5.70).

Moreover, we present the following result on concentration of (Gaussian) measure

inequality for Lipschitz functions, which will be used in the proofs later.

Lemma 5.7.4. Consider an n-dimensional random vector X ∼N (0, I) and a Lipschitz function

f : Rn→ R with Lipschitz constant L f > 0, that is | f (x)− f (y)| ≤ L f ∥x− y∥2 for all x,y ∈ Rn.

Then, for all α ≥ 0,

P(| f (X)−E f (X)| ≥ α)≤ 2exp
Å
− α2

2L2
f

ã
.

A proof of Lemma 5.7.4 can be found in chapter 8 of [13]. Further, the following result

provides a lower bound for the expected activation of Gaussian distribution.

Proposition 5.7.5. Let ρ(x) := max{0,x} be the ReLU activation function, acting elementwise,

and let X ∼N (0,Σ). Then

E∥ρ(X)∥2 ≥

tr(Σ)
2π

.

To start the proof of Proposition 5.7.5, we need the following two lemmas. While these

results are likely to be known, we could not find proofs in the literature so we include the

209

argument for completeness.

Lemma 5.7.6. Let S denote the convex set of all positive semidefinite matrices A in Rn×n with

tr(A) = 1. Then the extreme points of S are exactly the rank-1 matrices of the form uu⊤ where

u is a unit vector in Rn.

Proof. We first let A ∈S be an extreme point of S and assume rank(A) = r > 1. Since A is

positive semidefinite, the spectral decomposition of A yields A =
r
∑

i=1
λiuiu⊤i where λi > 0 and

∥ui∥2 = 1 for 1≤ i≤ r. Then A can be rewritten as

A =
(r−1

∑
j=1

λ j

)
B+λruru⊤r

where B =
r−1
∑

i=1

λi

∑
r−1
j=1 λ j

uiu⊤i . Note that B and uru⊤r are distinct positive semidefinite matrices

with tr(B) = tr(uru⊤r) = 1, and
r
∑
j=1

λ j = tr(A) = 1. Thus, B,uru⊤r ∈S and A is in the open line

segment joining B and uru⊤r , which is a contradiction. So any extreme point of S is a rank-1

matrix of the form A = uu⊤ with ∥u∥2 = 1.

Conversely, consider any rank-1 matrix A = uu⊤ with ∥u∥2 = 1. Then we have A ∈S .

Assume that A lies in an open segment in S connecting two distinct matrices A1,A2 ∈S , that is

A = α1A1 +α2A2 (5.71)

where α1 +α2 = 1 and 0 < α1 ≤ α2. Additionally, for any x ∈ ker(A), we have

0 = x⊤Ax = α1x⊤A1x+α2x⊤A2x (5.72)

and thus A1x = A2x = 0. It implies ker(A)⊆ ker(A1)∩ker(A2). By the rank–nullity theorem, we

get 1 = rank(A) ≥ max{rank(A1), rank(A2)}. Since A1 and A2 are distinct matrices in S , we

have rank(A1) = rank(A2) = 1 and there exist unit vectors u1,u2 such that A1 = u1u⊤1 , A2 = u2u⊤2 ,

210

and u1 ̸=±u2. Hence,

rank(A1 +A2) = rank([u1,u2][u1,u2]
⊤) = rank([u1,u2]) = 2.

Moreover, it follows from (5.71) that A = α1(A1 +A2)+(α2−α1)A2. Due to α2−α1 ≥ 0, one

can get rank(A)≥ rank(A1 +A2) = 2 by a similar argument we applied in (5.72). However, this

contradicts the assumption that A is a rank-1 matrix. Therefore, for any unit vector u, A = uu⊤ is

an extreme point of S.

Lemma 5.7.7. Suppose X ∼N (0,Σ). Then E∥X∥2 ≥
»

2tr(Σ)
π

.

Proof. Without loss of generality, we can assume that tr(Σ) = 1. Let Z ∼ N (0, I). Since

Σ
1
2 Z ∼N (0,Σ), we have

E∥X∥2 = E∥Σ
1
2 Z∥2 = E

√
Z⊤ΣZ. (5.73)

Define a function f (A) :=E
√

Z⊤AZ and let S denote the set of all positive semidefinite matrices

whose traces are equal to 1. Then f (A) is continuous and concave over S that is convex and

compact. By Bauer maximum principle, f (A) attains its minimum at some extreme point Ã of

S . According to Lemma 5.7.6, Ã = uu⊤ with ∥u∥2 = 1. If follows that

min
A∈S

f (A) = f (Ã) = E
√

Z⊤ÃZ = E|u⊤Z|=
…

2
π
. (5.74)

In the last step, we used the fact u⊤Z ∼N (0,1). Combining (5.73) and (5.74), we obtain

E∥X∥2 = f (Σ)≥ min
A∈S

f (A) =

…
2
π
.

This completes the proof.

Lemma 5.7.8. Given an n-dimensional random vector X ∼N (0,Σ), we have

E∥ρ(X)∥2 ≥
1
2
E∥X∥2

211

where ρ(x) = max{0,x} is the ReLU activation function.

Proof. We divide Rn into J := 2n−1 pairs of orthants {(Ai,Bi)}J
i=1 such that −Ai = Bi. For

example, {(x1,x2, . . . ,xn) : xi > 0, i = 1,2, . . . ,n} and {(x1,x2, . . . ,xn) : xi < 0, i = 1,2, . . . ,n}

compose one of these pairs. Since X is symmetric, that is, X and −X have the same distribution,

one can get ∫
Ai

∥ρ(−x)∥2 dPX =
∫

Bi

∥ρ(x)∥2 dPX (5.75)

and ∫
Ai

∥x∥2 dPX =
∫

Bi

∥x∥2 dPX (5.76)

where PX denotes the probability distribution of X . It follows that

E∥ρ(X)∥2 =
∫
Rn
∥ρ(x)∥2 dPX

=
J

∑
j=1

∫
A j∪B j

∥ρ(x)∥2 dPX

=
J

∑
j=1

∫
A j

∥ρ(x)∥2 dPX +
∫

A j

∥ρ(−x)∥2 dPX (using(5.75))

≥
J

∑
j=1

∫
A j

∥ρ(x)+ρ(−x)∥2 dPX (by triangle inequality)

=
J

∑
j=1

∫
A j

∥x∥2 dPX

=
1
2

J

∑
j=1

∫
A j∪B j

∥x∥2 dPX (using(5.76))

=
1
2
E∥X∥2.

Proposition 5.7.5 then follows immediately from Lemma 5.7.7 and Lemma 5.7.8.

212

5.8 Perturbation analysis for underdetermined systems

In this section, we investigate the minimal ℓ∞ norm solutions of perturbed underdeter-

mined linear systems like (5.22), which can be used to bound the ℓ∞ norm of w̃ generated by

the perfect data alignment. Specifically, consider a matrix X ∈ Rm×N with rank(X) = m < N. It

admits the singular value decomposition

X =USV⊤ (5.77)

where U = [U1, . . . ,Um] ∈ Rm×m, V = [V1, . . . ,Vm] ∈ RN×m have orthonormal columns, and

S = diag(σ1, . . . ,σm) consists of singular values σ1 ≥ σ2 ≥ . . . ≥ σm > 0. Moreover, suppose

ε > 0, w ∈ RN , and E ∈ Rm×N satisfying ∥E∥2 ≤ ε∥X∥2. Let X̃ := X +E be the perturbed

matrix and define

ŵ := argmin∥z∥∞ subject to Xz = Xw, (5.78)

w̃ := argmin∥z∥∞ subject to X̃z = Xw. (5.79)

Our goal is to evaluate the ratio ∥w̃∥∞

∥ŵ∥∞
.

The proposition below highlights the fact that one can construct systems where arbitrarily

small perturbations can yield arbitrarily divergent solutions. The proof relies on the system being

ill-conditioned, and on a particular construction of X and E to exploit the ill-conditioning.

Proposition 5.8.1. For ε,γ ∈ (0,1), there exist a matrix X ∈ Rm×N , a perturbed version X̃ =

X +E with ∥E∥2 ≤ ε∥X∥2, and a unit vector w ∈RN , so that the optimal solutions to (5.78) and

(5.79) satisfy ∥w̃∥∞

∥ŵ∥∞
= 1

γ
.

Proof. Let U ∈ Rm×m be any orthogonal matrix and let V ∈ RN×m be the first m columns of

a normalized Hadamard matrix of order N. Then we have V⊤V = I and entries of V are

either 1√
N

or − 1√
N

. Set X = USV⊤ where S ∈ Rm×m is diagonal with diagonal elements

213

σ1 = σ2 = . . .= σm−1 = 1 and σm = ε . Define a rank one matrix E = ε(γ−1)UmV⊤m . Then we

have
∥E∥2

∥X∥2
= ε(1− γ)< ε, X̃ = X +E =Udiag(1, . . . ,1,εγ)V⊤.

Picking a unit vector w = εV S−1em with em := (0, . . . ,0,1) ∈ Rm, the feasibility condition in

(5.78), together with the definition of X , implies that Xz = Xw is equivalent to

V⊤z = em. (5.80)

Since VV⊤z = PIm(V)(z) is the orthogonal projection of z onto the image of V , for any feasible z

satisfying (5.80), we have

∥z∥∞ ≥
∥z∥2√

N
≥ ∥VV⊤z∥2√

N
=
∥V⊤z∥2√

N
=
∥em∥2√

N
=

1√
N
.

Note that z = Vm satisfies (5.80) and ∥Vm∥∞ = 1√
N

achieves the lower bound. Thus, we have

found an optimal solution ŵ =Vm with ∥ŵ∥∞ = 1√
N

.

Meanwhile the corresponding feasibility condition in (5.79), coupled with the definition

of X̃ , implies that X̃z = Xw can be rewritten as V⊤z = 1
γ
em. By a similar argument we used for

solving (5.78), we obtain that w̃ = 1
γ
Vm is an optimal solution to (5.79) and thus ∥w̃∥∞ = 1

γ
√

N
.

Therefore, we have ∥w̃∥∞

∥ŵ∥∞
= 1

γ
as desired.

Proposition 5.8.1 constructs a scenario in which adjusting the weights to achieve X̃w̃ =

Xŵ = Xw, under even a small perturbation of X , inexorably leads to a large increase in the

infinity norm of w̃. In Proposition 5.8.3, we consider a more reasonable scenario where the

original weights w is Gaussian that is more likely to be representative of ones encountered in

practice. The proof of the following lemma follows [1].

Lemma 5.8.2. Let ∥ · ∥ be any vector norm on Rn. Let X ∼N (0,Σ1) and Y ∼N (0,Σ2) be

214

n-dimensional random vectors. Suppose Σ1 ⪯ Σ2. Then, for t ≥ 0, we have

P(∥X∥ ≤ t)≥ P(∥Y∥ ≤ t).

Proof. Fix t ≥ 0. Define g : Rn→ [0,1] by

g(z) := P(∥X + z∥ ≤ t) =
∫
Rn

fX(x)1{∥x+z∥≤t} dx

where

fX(x) := (2π)−
n
2 det(Σ1)

− 1
2 exp(−1

2
x⊤Σ

−1
1 x)

is the density function of X . Since log fX(x) = −1
2x⊤Σ

−1
1 x is concave and 1{∥x+z∥≤t} is an

indicator function of a convex set, both fX(x) and 1{∥x+z∥≤t} are log-concave. It follows that the

product h(x,z) := fX(x)1{∥x+z∥≤t} is also log-concave. Applying the Prékopa–Leindler inequality

[29, 30], the marginalization g(z) =
∫
Rn h(x,z)dx preserves log-concavity. Additionally, by

change of variables and the symmetry of fX(x), we have

g(−z) =
∫
Rn

fX(x)1{∥x−z∥≤t} dx =
∫
Rn

fX(x)1{∥x+z∥≤t} dx = g(z).

So g(z) is a log-concave even function, which implies that, for any z ∈ Rn,

g(z) = g(z)
1
2 g(−z)

1
2 ≤ g

(1
2

z− 1
2

z
)
= g(0) = P(∥X∥ ≤ t). (5.81)

Now, let Z ∼N (0,Σ2−Σ1) be independent of X . Then X +Z d
= Y ∼N (0,Σ2) and, by (5.81),

215

Eg(Z)≤ P(∥X∥ ≤ t). It follows that

P(∥X∥ ≤ t)≥ Eg(Z)

=
∫
Rn

fZ(z)g(z)dz

=
∫
Rn

∫
Rn

fX(x) fZ(z)1{∥x+z∥≤t} dxdz

=
∫
Rn×Rn

f(X ,Z)(x,z)1{∥x+z∥≤t} d(x,z)

= P(∥X +Z∥ ≤ t)

= P(∥Y∥ ≤ t)

where fZ(z) and f(X ,Z)(x,z) are density functions of Z and (X ,Z) respectively.

Proposition 5.8.3. Let X ∈ Rm×N admit the singular value decomposition X = USV⊤ as in

(5.77) and let w ∈ RN be a random vector with i.i.d. N (0,1) entries. Let p ∈ N with p ≥ 2.

Given ε ∈ (0,1), suppose X̃ = X +E ∈ Rm×N with ∥E∥2 ≤ εσ1 < σm.Then, with probability at

least 1− 2
N p−1 ,

∥w̃∥∞ ≤
σ1

σm− εσ1

√
2p logN

holds for all optimal solutions w̃ of (5.79).

Proof. Let w♯ :=VV⊤w be the orthogonal projection of w onto Im(V). Let Ṽ = [V,V̂] ∈ RN×N

be an expansion of V such that Ṽ is orthogonal. Define

Ẽ :=U⊤EṼ = [U⊤EV,U⊤EV̂] = [E , Ê] ∈ Rm×N

where E :=U⊤EV and Ê :=U⊤EV̂ . Then E =U Ẽ Ṽ⊤ and thus

εσ1 ≥ ∥E∥2 = ∥Ẽ ∥2 ≥ ∥E ∥2. (5.82)

216

Define z♯ :=V (S+E)−1 SV⊤w ∈ RN . Since Ẽ Ṽ⊤V = E , we have

X̃z♯ = Xz♯+Ez♯

=US(S+E)−1SV⊤w+U Ẽ Ṽ⊤V (S+E)−1SV⊤w

=US(S+E)−1SV⊤w+UE (S+E)−1SV⊤w

=USV⊤w

= Xw.

Moreover, since w∼N (0, I), we have z♯ ∼N (0,BB⊤) with B :=V (S+E)−1S and thus

BB⊤ ≼ ∥BB⊤∥2I = ∥B∥2
2I = ∥(S+E)−1S∥2

2I ≼
(

σ1

σm−∥E ∥2

)2
I ≼

(
σ1

σm− εσ1

)2
I. (5.83)

Applying Lemma 5.8.2 to (5.83) with Σ1 = BB⊤ and Σ2 = (σ1
σm−εσ1

)2I, we obtain that, for t ≥ 0,

P(∥z♯∥∞ ≤ t)≥ P
(∥∥∥ σ1ξ

σm− εσ1

∥∥∥
∞

≤ t
)
≥ 1−2N exp

(
−1

2
(σm− εσ1

σ1

)2t2
)

(5.84)

where ξ ∼N (0, I). In the last inequality, we used the following concentration inequality

P(∥ξ∥∞ ≤ t)≥ 1−2Ne−
t2
2 , t ≥ 0.

Choosing t = σ1
σm−εσ1

√
2p logN in (5.84), we obtain

P
(
∥z♯∥∞ ≤

σ1

σm− εσ1

√
2p logN

)
≥ 1− 2

N p−1 .

Further, since z♯ is a feasible vector of (5.79), we have ∥w̃∥∞≤∥z♯∥∞. Therefore, with probability

at least 1− 2
N p−1 ,

∥w̃∥∞ ≤
σ1

σm− εσ1

√
2p logN.

217

5.9 Acknowledgements

The authors thank Yixuan Zhou for discussions on the numerical experiments in this

paper. This work was supported in part by National Science Foundation Grant DMS-2012546 and

a Simons Fellowship. This chapter, in full, is joint work with Rayan Saab, and is currently being

prepared for submission for publication. The dissertation author was the primary investigator

and author of this material.

References

[1] Iosif Pinelis (https://mathoverflow.net/users/36721/iosif-pinelis). ℓ∞ norm of two gaussian

vector. MathOverflow. URL:https://mathoverflow.net/q/410242. 2021. eprint: https:/ /

mathoverflow.net/q/410242.

[2] Nabih N Abdelmalek. “Minimum L∞ solution of underdetermined systems of linear

equations”. In: Journal of Approximation Theory 20.1 (1977), pp. 57–69.

[3] Ryan Alweiss, Yang P Liu, and Mehtaab Sawhney. “Discrepancy minimization via a

self-balancing walk”. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on

Theory of Computing. 2021, pp. 14–20.

[4] James A Cadzow. “A finite algorithm for the minimum L∞ solution to a system of

consistent linear equations”. In: SIAM Journal on Numerical Analysis 10.4 (1973), pp. 607–

617.

[5] James A Cadzow. “An Efficient Algorithmic Procedure for Obtaining a Minimum L∞-

Norm Solution to a System of Consistent Linear Equations”. In: SIAM Journal on Numer-

ical Analysis 11.6 (1974), pp. 1151–1165.

218

https://mathoverflow.net/q/410242
https://mathoverflow.net/q/410242

[6] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt

Keutzer. “Zeroq: A novel zero shot quantization framework”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 13169–

13178.

[7] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. “A survey of model compression and

acceleration for deep neural networks”. In: arXiv preprint arXiv:1710.09282 (2017).

[8] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-

shmi Srinivasan, and Kailash Gopalakrishnan. “Pact: Parameterized clipping activation

for quantized neural networks”. In: arXiv preprint arXiv:1805.06085 (2018).

[9] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. “Low-bit Quantization of

Neural Networks for Efficient Inference.” In: ICCV Workshops. 2019, pp. 3009–3018.

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training

deep neural networks with binary weights during propagations”. In: Advances in neural

information processing systems. 2015, pp. 3123–3131.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A

large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision

and pattern recognition. Ieee. 2009, pp. 248–255.

[12] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. “Model compression and

hardware acceleration for neural networks: A comprehensive survey”. In: Proceedings of

the IEEE 108.4 (2020), pp. 485–532.

[13] Simon Foucart and Holger Rauhut. “An invitation to compressive sensing”. In: A mathe-

matical introduction to compressive sensing. Springer, 2013, pp. 1–39.

[14] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. “Gptq: Accurate

post-training quantization for generative pre-trained transformers”. In: arXiv preprint

arXiv:2210.17323 (2022).

219

[15] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt

Keutzer. “A survey of quantization methods for efficient neural network inference”. In:

arXiv preprint arXiv:2103.13630 (2021).

[16] Yunhui Guo. “A survey on methods and theories of quantized neural networks”. In: arXiv

preprint arXiv:1808.04752 (2018).

[17] Josef Hadar and William R Russell. “Rules for ordering uncertain prospects”. In: The

American economic review 59.1 (1969), pp. 25–34.

[18] Giora Hanoch and Haim Levy. “The efficiency analysis of choices involving risk”. In:

Stochastic Optimization Models in Finance. Elsevier, 1975, pp. 89–100.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for

image recognition”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016, pp. 770–778.

[20] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. “Improving

post training neural quantization: Layer-wise calibration and integer programming”. In:

arXiv preprint arXiv:2006.10518 (2020).

[21] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. “Quantization and training of neural

networks for efficient integer-arithmetic-only inference”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018, pp. 2704–2713.

[22] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for efficient

inference: A whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[23] Eric Lybrand and Rayan Saab. “A Greedy Algorithm for Quantizing Neural Networks”.

In: Journal of Machine Learning Research 22.156 (2021), pp. 1–38.

[24] Mark Machina and John Pratt. “Increasing risk: some direct constructions”. In: Journal of

Risk and Uncertainty 14.2 (1997), pp. 103–127.

220

[25] Johannes Maly and Rayan Saab. “A simple approach for quantizing neural networks”. In:

Applied and Computational Harmonic Analysis 66 (2023), pp. 138–150.

[26] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen B. “Up

or down? adaptive rounding for post-training quantization”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 7197–7206.

[27] James O’ Neill. “An overview of neural network compression”. In: arXiv preprint

arXiv:2006.03669 (2020).

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch:

An imperative style, high-performance deep learning library”. In: Advances in neural

information processing systems 32 (2019), pp. 8026–8037.

[29] András Prékopa. “Logarithmic concave measures with application to stochastic program-

ming”. In: Acta Scientiarum Mathematicarum 32 (1971), pp. 301–316.

[30] András Prékopa. “On logarithmic concave measures and functions”. In: Acta Scientiarum

Mathematicarum 34 (1973), pp. 335–343.

[31] Michael Rothschild and Joseph E Stiglitz. “Increasing risk: I. A definition”. In: Journal of

Economic theory 2.3 (1970), pp. 225–243.

[32] Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer, 2007.

[33] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-

scale image recognition”. In: International Conference on Learning Representations

(2015).

[34] Roman Vershynin. High-dimensional probability: An introduction with applications in

data science. Vol. 47. Cambridge university press, 2018.

221

[35] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. “Haq: Hardware-aware auto-

mated quantization with mixed precision”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2019, pp. 8612–8620.

[36] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. “Towards accurate post-training

network quantization via bit-split and stitching”. In: International Conference on Machine

Learning. PMLR. 2020, pp. 9847–9856.

[37] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. “Lq-nets: Learned

quantization for highly accurate and compact deep neural networks”. In: Proceedings of

the European conference on computer vision (ECCV). 2018, pp. 365–382.

[38] Jinjie Zhang, Yixuan Zhou, and Rayan Saab. “Post-training quantization for neural net-

works with provable guarantees”. In: SIAM Journal on Mathematics of Data Science 5.2

(2023), pp. 373–399.

[39] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. “Improving neural

network quantization without retraining using outlier channel splitting”. In: International

conference on machine learning. PMLR. 2019, pp. 7543–7552.

[40] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. “Incremental network

quantization: Towards lossless cnns with low-precision weights”. In: arXiv preprint

arXiv:1702.03044 (2017).

222

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Quantization Fundamentals
	Scalar Quantization
	Accelerated Computing
	Calibration
	Sigma-Delta Quantization

	Thesis Structure
	Data Quantization.
	Model Quantization.

	References

	Faster Binary Embeddings for Preserving Euclidean Distances
	Introduction
	Related Work
	Methods and Contributions

	Preliminaries
	Notation and definitions
	condensed Johnson-Lindenstrauss Transforms

	Sigma-Delta quantization
	Main Results
	Computational and Space Complexity
	Numerical Experiments
	Comparisons on different datasets
	Proof of Lemma 2.2.6
	Stable Sigma-Delta quantization and its properties
	Proof of Theorem 2.4.2
	Comparison with product quantization
	Data-dependent product quantization

	Acknowledgements
	References

	Sigma-Delta and Distributed Noise Shaping Quantization Methods for Random Fourier Features
	Introduction
	Related Work
	Methods and Contributions

	Noise Shaping Quantization Preliminaries
	Main Results and Space Complexity
	Approximation error bounds
	Space complexity

	Numerical Experiments
	Kernel Ridge Regression
	Kernel SVM
	Maximum Mean Discrepancy

	Conclusion
	Stable Quantization Methods
	A comparison of kernel approximations
	More Figures in Section 3.4
	Proof of Theorem 3.3.1
	Useful Lemmata
	Upper bound of (I)
	Upper bound of (II) & (III)
	Upper Bound of (IV)
	Proof of Theorem 3.3.1

	Proof of theorem 3.3.3
	Acknowledgements
	References

	Post-training Quantization for Neural Networks with Provable Guarantees
	Introduction
	Related Work
	Contribution

	Preliminaries
	Notation
	GPFQ

	New Theoretical Results for GPFQ
	Bounded Input Data
	Gaussian Clusters
	Convolutional Neural Networks

	Sparse GPFQ and Error Analysis
	Experiments
	Experimental Setup
	Results on ImageNet

	Useful Lemmata
	Fusing Convolution and Batch Normalization Layers
	Quantizing Large Weights
	Theoretical Analysis for Gaussian Clusters
	Proof of Theorem 4.3.4
	Proof of Corollary 4.3.5

	Theoretical Analysis for Sparse GPFQ
	Sparse GPFQ with Soft Thresholding
	Sparse GPFQ with Hard Thresholding

	Acknowledgements
	References

	A Stochastic Algorithm and its Error Analysis for Neural Network Quantization
	Introduction
	Related work
	Contributions and organization

	Stochastic Quantization Algorithm
	Notation and Preliminaries
	SPFQ
	A two phases pipeline
	SPFQ Variants

	Error Bounds for SPFQ with Infinite Alphabets
	Error Bounds for SPFQ with Finite Alphabets
	Experiments
	Properties of Convex Orders
	Useful Lemmata
	Perturbation analysis for underdetermined systems
	Acknowledgements
	References

