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Scaling Stratified Stochastic Gradient Descent
for Distributed Matrix Completion

Nabil Abubaker, M. Ozan Karsavuran, and Cevdet Aykanat

Abstract—Stratified SGD (SSGD) is the primary approach for achieving serializable parallel SGD for matrix completion. State-of-the-art
parallelizations of SSGD fail to scale due to large communication overhead. During an SGD epoch, these methods send data proportional
to one of the dimensions of the rating matrix. We propose a framework for scalable SSGD through significantly reducing the
communication overhead via exchanging point-to-point messages utilizing the sparsity of the rating matrix. We provide formulas to
represent the essential communication for correctly performing parallel SSGD and we propose a dynamic programming algorithm for
efficiently computing them to establish the point-to-point message schedules. This scheme, however, significantly increases the number
of messages sent by a processor per epoch from O(K) to O(K2) for a K-processor system which might limit the scalability. To remedy
this, we propose a Hold-and-Combine strategy to limit the upper-bound on the number of messages sent per processor to O(K lgK). We
also propose a hypergraph partitioning model that correctly encapsulates reducing the communication volume. Experimental results show
that the framework successfully achieves a scalable distributed SSGD through significantly reducing the communication overhead. Our
code is publicly available at: github.com/nfabubaker/CESSGD

Index Terms—Recommender Systems, Collaborative Filtering, Matrix Completion, SGD, HPC, Combinatorial algorithms, Hypergraph
partitioning, Communication cost minimization, Latency cost, Bandwidth cost.

F

1 INTRODUCTION

R ECOMMENDER systems are omnipresent in e-commerce
as well as social, professional and academic networks.

These systems help businesses improve profit by targeted
advertisements to interested parties, facilitate the recruitment
process by matching more relevant candidates to jobs, and
help academics explore cross-disciplinary research works as
well as expand their collaboration networks. Recommender
systems can involve one or more techniques, among which
Collaborative Filtering (CF) is the most widely used.

CF approaches recommend an item to a target user by
using other users’ ratings given that those other users
and the target user have rated some other items similarly.
The rating data produced nowadays, whether by social
networks or e-commerce, is rather huge and change very
often. Recommender systems for such huge data are usually
implemented on distributed-memory systems that might
involve multiple data centers. Therefore, the CF component
should be performant and scalable to utilize the provided
computational resources as well as the high-speed networks.

Low-rank matrix factorization have been successfully
used in CF via revealing feature vectors that represent the
users and the items (latent factors). In matrix-factorization-
based CF methods, the known ratings are stored as a
sparse matrix, rows of which represent users and columns
of which represent items. The sparse matrix is factorized
into two dense matrices representing the feature vectors of
items and users, and these dense matrices are then used to
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predict missing ratings in the original rating matrix. This
use of matrix factorization is commonly referred to as matrix
completion. The matrix factorization can be computed with
different methods, including stochastic gradient descent
(SGD), alternating least squares (ALS), cyclic coordinate
descent (CCD) and more.

SGD is very efficient and usually achieves high comple-
tion accuracy compared to other methods [1]. However, given
its sequential nature it has been a challenge to efficiently
parallelize while maintaining accuracy and convergence guar-
antee. For this reason, serializable parallel SGD algorithms
are most desired. Serializability of parallel SGD refers to the
existence of an equivalent serially-executed SGD algorithm
with the same update order. Serializability guarantees the
convergence and assures that no two processors update the
same feature vector at the same time (race condition) thus
leading to faster convergence [2]. Stratified SGD [3] is the
de-facto algorithm for achieving a serializable parallel SGD.

The state-of-the-art methods implementing SSGD (such
as DSGD [3], DSGD++ [4], and NOMAD [5]) achieve the
inter-processor communication necessary for the correctness
of the SSGD through sending/receiving feature vectors with
sizes proportional to one of the dimensions of the input
rating matrix. In other words, these methods perform dense
communications without exploiting the sparse nature of the
rating matrix, leading to a huge amount of unnecessary
communication especially when the nonzero density of the
rating matrix is low. The extra communication did not pose
a concern because these methods are tested on a relatively
small number of processors (up to 64) in distributed setting.
At such small scale, the SGD runtime is expected to be
dominated by computation; and investing in improving the
communication component does not drastically affect the
overall running time.



2

On large scale (hundreds and thousands of processors),
the communication component becomes dominant, and
therefore reducing the communication overhead becomes
essential for the scalability of the SSGD algorithm. The
dense communications of the state-of-the-art methods imple-
menting SSGD prohibit their scalability. This is empirically
confirmed by us (Section 6) as well as by another work [6]
that runs DSGD on thousands of processors (cf. Fig. 8 in [6]).

In this work, we propose a communication-efficient
framework for the SSGD algorithm. Our framework starts
with exploiting the sparsity of the rating matrix by perform-
ing sparse communications instead of dense communications.
This is achieved with efficiently finding the essential feature
vectors to be communicated between processors and commu-
nicating them through point-to-point (P2P) messages. This
approach, although invaluable for reducing the volume of
communication performed, has the down side of increasing
the number of messages sent per processor from O(K) (as
in DSGD) to O(K2).

Inter-processor communication cost ideally consists of
latency term and bandwidth term. The latency term is
proportional to the number of messages sent, whereas the
bandwidth term is proportional to the volume of data
transferred. If the number of messages is high, the latency
cost might dominate the overall communication component
since each message’s startup time might be higher than that
of sending a few kilobytes of data [7]. The O(K2) bound
of the new sparse communication method has the potential
to increase the latency overhead and possibly affecting the
scalability as K increases, which makes it latency-unsafe. To
remedy this, we propose a novel approach called hold and
combine that reduces the upper bound on the number of
messages from O(K2) to O(K lgK) which renders the new
sparse communication method latency-safe.

The volume of the sparse communication in parallel
SSGD is also affected by how the ratings are distributed
to different processors. This property indicates that there is
a room for reducing the volume of communication combi-
natorialy via intelligent partitioning methods. We propose
a partitioning method utilizing a hypergraph partitioning
model that correctly encapsulates the total volume of commu-
nication between processors. In this method, the objective of
reducing the cutsize of the hypergraph model partition also
corresponds to reducing the total volume of communication
in an SSGD epoch.

The rest of the paper is organized as follows: Section 2
gives the essentials of using and parallelizing SGD for matrix
completion. In Section 3, the communication requirement in
parallel SSGD is studied in detail. In Section 4, the proposed
framework for scaling P2P SSGD, including the hold-and-
combine scheme, is presented. In Section 5, the proposed
hypergraph partitioning (HP) method is presented. Section 6
contains the experiments conducted on an HPC system along
with the results and discussions. Related works are discussed
in Section 7 and the paper is concluded in Section 8.

2 BACKGROUND

2.1 Matrix Completion with SGD
We define the matrix completion problem in the context of
collaborative filtering as follows: Given a set U of N users, a

set I of M items, and a set Ω of ratings as the known entries
of a sparse rating matrix R ∈ RN×M . The problem is to
find two dense factor matrices W ∈ RN×F and H ∈ RM×F
such that a low-rank approximation R ≈WH> is achieved.
Here, F �M,N is called the dimension or the rank of the
factorization. The approximation r̂ij of rating rij can then be
calculated as

r̂ij = wih
>
j , (1)

where wi and hj respectively denote the ith row of W
and the jth row of H. The quality of the approximation is
usually measured by an application-dependent loss function
L, thus the problem becomes argminW,H L(R,W,H). For
collaborative filtering, L is usually the eculedian distance
and thus the problem becomes

argmin
W,H

∑
(i,j)3 rij∈Ω

(
(rij − r̂ij)2 + γ(‖wi‖2 + ‖hj‖2

)
, (2)

where γ is a regularization parameter to avoid over-fitting,
and r̂ij is computed with (1).

Since the minimization problem in (2) has two unknowns
W and H, L is a non-convex function [8]. SGD has been
widely used to optimize (minimize) such functions due to
its ability to escape local minimas. At an SGD epoch, each
rating rij ∈ Ω is used to update the objective function’s
parameters. The gradient of the objective function at point
rij is calculated (∇rijLrij (R,W,H)) and the corresponding
wi and hj rows are updated as

wi = wi − ε[(rij − r̂ij)hj + γwi], (3)
hj = hj − ε[(rij − r̂ij)wi + γhj ] (4)

where ε is the step size.
It is clear from (3) and (4) that SGD is sequential in

nature, thus parallelizing it requires communicating up-
to-date W- and H-matrix rows. Trivially, the up-to-date
W- and H-matrix rows should be communicated after each
SGD update which enforces very high communication and
synchronization overheads. Otherwise, some SGD updates
will be performed on stale versions of W- and H-matrix
rows which may drastically affect the learning process and
the convergence guarantee. The parallel SGD methods that
allow updating on stale W- and H-matrix rows (i.e., allow
staleness) are called asynchronous. These methods are usually
non-serializable. Simple parallelizations of the SGD-based
matrix completion, such as row-wise or column-wise parti-
tioning of the rating matrix, are examples of asynchronous
SGD (see Fig. 1).

2.2 Stratified SGD (SSGD) and Its Parallelization
2.2.1 SSGD
The SSGD method is proposed by Gemulla et al. [3] in
order to mitigate the staleness problem. In SSGD, the
rating matrix is divided into K2 2D blocks using K-way
mutually exclusive and exhaustive partitions on the rows
ΠR = {R1, . . . , RK} and columns ΠC = {C1, . . . , CK} of
R. The rows of the dense matrices W and H are partitioned
conformably with ΠR and ΠC , respectively. We denote the
row blocks of W and H that respectively conform with Rα
and Cβ as Wα and Hβ . We denote a block of R with rows
in Rα and columns in Cβ as Rαβ .
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Fig. 1: Stale updates in simple row- or column-wise parti-
tions (upper part) versus stale-free DSGD (bottom). In the
row-wise partition of R, the rows of W are partitioned
conformably and thus each W-matrix row is accessed by one
processor. However, this is not the case for H-matrix rows.
For instance, ratings ril and rjl are respectively assigned to
p1 and p2 and both used to update hl possibly at the same
time thus either p1 or p2 will update on a stale hl. A similar
discussion holds for column-wise partition in a dual manner
regarding rjl, rjn and wj . Black starts are known ratings.

In SSGD, a set of K 2D non-overlapping sub-matrix
blocks are called a stratum (denoted by S hereafter). Two
2D sub-matrix blocks are said to be non-overlapping
if they do not share any row or column. A set of K
stratums S = {S1, . . . ,SK} that exhausts all of the
K2 sub-matrix blocks is called correct strata. Fig. 2
shows the strata S = 〈S1 = {R1,1,R2,2, . . . ,R8,8},S2 =
{R1,2,R2,3, . . . ,R8,1}, . . . ,S8 ={R1,8,R2,1, . . . ,R8,7}〉.

Given correct strata to be used in an SSGD epoch, each
stratum is processed in a separate mini epoch (called sub-
epoch), and the order in which these sub-epochs are executed
can be random. Although the SSGD algorithm is serial,
its distinguishing property is that no ratings in different
blocks of a stratum can update the same row of the factor
matrices W and H, which makes it suitable for stale-free
parallelization.

2.2.2 Parallel SSGD

In [3], the parallel algorithm that utilizes SSGD is called
the Distributed Stochastic Gradient Descent (DSGD) al-
gorithm. In DSGD, each stratum is executed in parallel
in one sub-epoch, where the W- and H-matrix rows are
updated with the ratings in the stratum according to (3)
and (4). Then, inter-processor communications are performed

to synchronize all updated rows of factor matrices. If a
row-parallel execution is chosen, that is the R matrix is
partitioned row-wise such that each row block is executed
by a single processor, then communication is restricted to the
H-matrix rows. Row-parallel execution is usually preferred
because the number of items is generally much less than
the number of users which means the amount of data to be
communicated (H) is small compared to W. In row-parallel
execution, we abuse the stratum notation S to also be viewed
as a mapping function S : [K]→ [K] (where [K] is used to
denote the set {1, . . . ,K} hereafter) from a processor pk to
the index β of a column block Cβ . For instance, S2(p4) = 5
means that during sub-epoch 2, processor p4 will exclusively
update the rows of the H5 sub-matrix. We also use S−1

β (px)
to retrieve the sub-epoch at which px updates Hβ . As
mentioned previously in the introduction, DSGD performs
dense communications. We will utilize the parallelization
style of DSGD in our methods while changing how the
communication is performed. Hereafter, we will refer to the
parallelization style of DSGD as “parallel SSGD”, and we
will use the name “DSGD” to distinguish the algorithm that
performs dense communication.

2.2.3 Generating Correct Strata
There are several ways to generate a correct strata that covers
the whole dataset and schedule the strata to sub-epochs.
For simplicity, we consider a simple form of scheduling as
follows: at sub-epoch 1, processor px, for x = 1, 2, . . . ,K,
processes the ratings in Rxx to update the rows in Wx

and Hx; at sub-epoch k, processor px processes the rat-
ings in Rxβ to update the rows in Wx and Hβ , where
β = 1 + (x+ k − 2) mod K . We refer to this scheduling as
“ring scheduling” or “ring strata” hereafter. A general form of
the ring scheduling consists of a seed, where 1 ≤seed≤ K.
At sub-epoch k, the processor pseed processes the ratings in
Rseed,k to update the rows in Wseed and Hk. At sub-epoch
k, processor px processes the ratings in Rxβ to update the
rows in Wx and Hβ , where

β =1 +(k+(seed+ x− 1) mod K−2) mod K. (5)

3 COMMUNICATION IN PARALLEL SSGD
In this section, we analyze the communication requirement
of parallel SSGD. We define the essential required communi-
cation in an SSGD epoch that utilizes the data sparsity, and
compare it with the dense communication of DSGD.

Given strata S where each stratum is to be processed in
a sub-epoch in row-parallel execution. For an H-matrix row
block Hβ , we define the sequence

Υβ = 〈pi1 , pi2 , . . . , piK 〉

of processors that compute the gradient using ratings in the
column block Cβ according to S. That is, pi1 updates the
rows of Hβ in the first sub-epoch, pi2 in the second sub-
epoch and so forth. Furthermore, we define a distance metric
dxyβ between two processors px and py updating Hβ as

dxyβ = S−1
β (px)− S−1

β (py). (6)

This distance quantifies the number of sub-epochs elapsed
after px updates rows in Hβ and before py does so.
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Fig. 2: The numbers identify the sub-matrix blocks that
constitute a stratum in a ring strata with seed=1. Stratum
S2 is highlighted. Side arrows show the processor update
order of hi and hj in H>1 .

3.1 Defining essential required communication

The communication of H-matrix rows required for correctly
executing SSGD in a distributed fashion is described accord-
ing to the following definition:

Definition 1 (d-gap rows). During parallel SSGD, if a row
hj ∈ Hβ is updated by both pix and pix+1

, then hj is called a
zero-gap row. If hj is updated by both pix and pix+2

but not
pix+1

, then hj is called a one-gap row. Then for the general
case, consider two nonadjacent processors in Υβ : pix and piy
such that x < y. hj is called a d-gap row if it is updated
by both pix and piy but not any of the d= dxyβ processors
in-between (that is, in 〈pix+1

, . . . , piy−1
〉). The set of all such

d-gap rows between pix and piy in Hβ is given by

H
ixiy
β = {hj | (∃rij)[rij ∈ Rxβ ∩Ryβ

∧ rij /∈ R(x+1)β ∪ · · · ∪R(y−1)β ]}. (7)

Communicating H
ixiy
β from pix to piy after pix processes the

ratings in 2D block Rixβ and before piy starts processing the
ratings in Riyβ guarantees a correct distributed row-parallel
SSGD execution.

3.2 Communication in DSGD

In the original DSGD algorithm [3], after processor px
updates row block Hβ in sub-epoch k, it sends the rows
in Hβ to the the processor that will update Hβ in sub-epoch
k + 1. Therefore, at each sub-epoch, each processor sends a
whole row block of H to exactly one processor. For instance,
assuming the DSGD is executed according to the ring strata
given in Fig. 2, after sub-epoch 1 is completed p1 sends H1

to p8, p8 sends H8 to p7 and so forth.
The communication scheme of DSGD guarantees the cor-

rectness of the SSGD algorithm since up-to-date hj ∈ H
ixiy
β

will eventually reach piy from pix , assuming x < y in Υβ ,
via forwarding through 〈pix+1 , . . . , piy−1〉. Furthermore, the

Fig. 3: Illustrating the extra communication of DSGD. The
figure shows two blocks of R that belong to processors px
and px+1 such that px+1 updates column block Hβ right
after px. A row hj ∈ Hβ shas to be sent from px to px+1 if
both processors contain a nonzero with column index equal
to hj because px+1 has to know the up-to-date version of hj
after px updates it. When either only one of px or px+1 has
such nonzero, or neither of them, the communication of hj
at this stage is considered extra and can be avoided.

communication scheme of the DSGD has the nice property
of very low latency overhead since it restricts the number
of messages sent by any processor at any sub-epoch to one.
However, this scheme suffers from increasing the bandwidth
overhead (communication volume) due to forwarding the
H-matrix rows. For each epoch, the communication volume
sent by all processors is equal to F×M×K words as each
processor sends approximately M/K dense H-matrix rows
each of size F words during each of the K sub-epochs.
Especially for highly sparse rating matrices, it is clear that
the volume of communication performed is much more than
the required, and the increased bandwidth overhead due to
forwarding can be prohibitive as K increases, see Fig. 3.

In Fig. 2, the update sequence for row block H1 is
Υ1 = 〈p1, p8, p7, p6, p5, p4, p3, p2〉. The communication of
hi ∈ H1 through the subsequence/subchain p1 → p8 →
p7 → p6 does not incur any extra volume since each of
these processors update hi. However, p5 does not update hi
but still p5 needs to receive the up-to-date hi from p6 and
forward it to p4 in the next sub-epoch. In this case, hi incurs
F words of forwarding overhead. In the case of hj ∈ H1,
the first processor to update it after p1 is p4. Therefore, four
forwarding communications, each of size F , are incurred
due to hj in p1 → p8 → p7 → p6 → p5.

Let λ(hj) denote the number of processors that update
hj ∈ Hβ , then the amount of forwarding overhead of hj
in DSGD is F (K − λ(hj)). The total amount of forwarding
overhead per epoch then becomes F (MK −

∑
hj∈H λ(hj)).

The clear difference between the communication in DSGD
and the essential required communication is that the former
is a direct factor of K and M , whereas the latter is upper
bounded by the number of nonzeros (nnz) of the rating
matrix. This can be shown as follows: at sub-epoch k,
processor px sends nnz(Rx,Sk(px)) H-matrix rows at the
worst case. This means that, at worst case, the total volume
of communication sent by all processors per an SSGD epoch
is equal to F

∑
x∈[K]

∑
k∈[K] nnz(Rx,Sk(px)) = F ×nnz(R).
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4 A FRAMEWORK FOR SCALING SSGD
4.1 Communicating d-gap rows through P2P messages

We propose to avoid the forwarding overhead by sending
an updated H-matrix row to the processor that updates it
next directly through P2P communications. At the beginning
of sub-epoch k, processor px sends P2P messages to a set of
processors SendSetk(px) and receives from RecvSetk(px).
These two sets can be respectively constructed as

SendSetk(px) = {py | Hxy
Sk−1(px) 6= ∅}, (8)

RecvSetk(px) = {py | Hyx
Sk(px) 6= ∅}. (9)

For example, in Fig. 2, at the beginning of the second sub-
epoch p1 sends hi to p8 and hj to p4.

Algorithm 1 Point-to-Point parallel SSGD on processor px
Require: Rating matrix R, Processor count K

1: Initialize local factor matrices W and H randomly
2: repeat
3: Receive strata S from p1 through Bcast.
4: Construct P2P communication according to S
5: for k = 1 to K do . For each sub-epoch
6: βprev ← Sk−1(px)
7: βcurr ← Sk(px);
8: for each py ∈ SendSetk(px) do
9: Send Hxy

βprev
to py

10: end for
11: for each pz ∈ RecvSetk(px) do
12: Receive Hzx

βcurr
from pz

13: end for
14: for each rij ∈ Rxβcurr do
15: wi = wi − ε[(rij − r̂ij)hj + γwi]
16: hj = hj − ε[(rij − r̂ij)wi + γhj ]
17: end for
18: end for
19: until convergence or max. number of epochs reached

Algorithm 1 presents the P2P-based parallel SSGD al-
gorithm for processor px. At line 3, processor p1 picks
strata S and broadcasts to all other processors. At line 4,
px determines the communication requirement according
to (7) and constructs the send/receive information of the P2P
messages according to (8) and (9). Then, the up-to-date rows
required in the current sub-epoch are communicated at lines
8-13 through P2P messages. The SGD updates are performed
at lines 15 and 16 respectively according to (3) and (4).

4.2 Efficiently constructing d-gap row sets

Computing d-gap H-matrix rows using (7) has recurring
computations for different instances. For example, com-
puting H

ixiy
β and H

ixiy+1

β would require computing the
same R(x+1)β ∪ · · · ∪ R(y−1)β term twice. For an efficient
computation, we devise an algorithm that utilizes a dynamic
programming formulation leveraging efficient bulk bit-wise
operations.

Consider a binary string Bixβ ∈ {0, 1}nβ of length
nβ = |Hβ |, such that the bth entry of Bixβ is set to ‘1’ if
pix updates the bth row in Hβ , and set to ‘0’ otherwise. Then,

Algorithm 2 Find d-gap H-matrix rows on processor px
Require: Rating matrix R, Processor count K , Strata S

1: for each Hβ ∈ H do
2: Compute Υpx

β

3: mask ← B
Υpxβ [2]

β
4: for k = 2 to K do
5: py ← Υpx

β [k]

6: Ψ
px,py
β ← Bxβ ∧B

y
β ⊕ (Bxβ ∧B

y
β ∧mask)

7: Hxy
β ← {hi ∈ Hβ | Ψ

px,py
β [i] = 1}

8: mask ← mask ∨Byβ
9: end for

10: end for

the indices of the rows to be communicated between pix and
piy are the indices of the 1-bits in

Ψ
ix,iy
β = Bixβ ∧B

iy
β ⊕(Bixβ ∧B

iy
β ∧(B

ix+1

β ∨· · ·∨Biy−1

β )), (10)

where ⊕, ∧ and ∨ respectively denote logical exclusive OR
(XOR), logical AND and logical OR operations. The term
(B

ix+1

β ∨ · · · ∨Biy−1

β ) in (10) can be computed incrementally
thanks to the associativity property of the ∨ operation.

Given Hβ and Υβ , we define Υpx
β as the sequence

of processors updating Hβ starting from px. Υpx
β can be

obtained from Υβ by left-rotating the sequence until px is at
the first index. Algorithm 2 presents the efficient dynamic-
programming-based computation of the d-gap H-matrix
rows between px and the other K−1 processors. For each
Hβ , the order of processors updating Hβ starting from px
according to strata S is maintained in Υpx

β (line 3). Then, in
lines 4-9, px constructs the d-gap rows one by one according
to this order leveraging the bottom-up construction of the
term (B

ix+1

β ∨ · · · ∨Biy−1

β ).

4.3 Hold & Combine strategy for reducing latency

Using P2P messages to communicate the updated rows with-
out forwarding is indispensable for reducing the bandwidth
overhead of the communication. However, it has a high
potential of increasing the latency overhead via increasing
the number of messages performed per epoch compared
to DSGD. In DSGD, a processor sends K messages per
epoch (one message to one processor at each sub-epoch),
whereas using the P2P requires sending at most K × (K−1)
messages per epoch (up to K−1 messages from each of the
K processors at each sub-epoch). We propose the hold and
combine (H&C) strategy to reduce the upper-bound on the
number of messages sent per epoch to O(K lgK).

Definition 2. Fixed-distance strata is any strata that satisfies

dxyα = dxyβ for any pair of H-matrix rows α and β. (11)

That is, the fixed-distance strata have the property of constant
distance between any two processors regardless of the H-
matrix row block they are updating. We refer to the distance
between two processors px and py in a fixed-distance strata
as dxy . Any ring strata scheduled with (5) is a fixed-distance
strata.

During an SGD epoch, the communication of Hxy
β

should be performed after px updates Hβ in sub-epoch
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Fig. 4: An example TSMS for p3. The rows are the processors
that p3 communicates with sorted according to their distance
from p3. The columns represent both the sub-epochs and the
H-matrix blocks to be updated at each sub-epoch. An entry
(py , Hβ) gives the sub-epoch at which py updates Hβ after
p3 does (note that this sub-epoch might be in the next epoch).
The circles show the messages that can be combined.

k and before py starts updating Hβ . This means that Hxy
β

can be sent at the beginning of any sub-epoch between
k + 1 and k + dxyβ . Now consider the communication of
Hxy
β at sub-epoch k in a fixed-distance strata. Observe

that when sub-epoch k + dxy is reached, all the rows
in Hxy

Sk+1(px),H
xy
Sk+2(px), . . . ,H

xy
Sk+dxy−1(px) are already up-

dated by px and ready to be sent to py . So, these rows can
be held by px and sent all at once in one message to py in
sub-epoch k + dxy along with Hxy

β .
Utilizing fixed-distance strata, we propose to hold P2P

messages and combine them as follows: If dxy ≥ K/2, then
the messages between px and py in an epoch can be combined
into two or more P2P messages. This is because if dxy = K−1
then one message is needed for K−1 H-matrix row blocks
and another message needed for the last block. Otherwise
if dxy < K/2, then the messages between px and py can be
combined in dK/dxye P2P messages. Therefore, the number
of messages sent per processor per epoch can be computed
by

K
2∑
i=1

2 +

K−1
2∑
i=1

K

i
.

The second summation is a harmonic series which can be
approximated by ln(K − 1)/2 + 1, thus

K
2∑
i=1

2 +

K−1
2∑
i=1

K

i
≈ K + K ln(K − 1)/2 ≤ K lgK (12)

is the upper bound on the number of messages sent per
processor per epoch.

To facilitate the presentation of the H&C strategy, we
assume that each processor constructs a tabular-shaped
message schedule (TSMS). In the TSMS of px, rows are
the K− 1 processors that px communicates with during

an epoch, and columns represent sub-epochs as well as the
corresponding H-matrix row blocks updated by px. Each
table entry TSMS(py , Hβ) represents the sub-epoch S−1

β (py).

Algorithm 3 Message combining strategy on processor px

Require: SendSetk(px), Hxy ∀k, y ∈ [K] ∧ y 6= x, S
1: for k = 1 to K do
2: for each py ∈ SendSetk(px) do
3: mid ← d k

dxy e . get the message ID
//get the H-matrix block that px updates at SE k

4: β ← Sk(px)
//add the d-gap rows Hxy

β to Msg mid

5: Mxy
mid ←Mxy

mid ∪Hxy
β

// When does px update the first block of mid ?

6: t← (mid − 1) ∗ dxy + 1
// get the H-matrix block that px updates at SE t

7: η ← St(px)
// get the sub-epoch s at which py updates Hη

8: s← S−1
η (py)

9: cSendSets(px)← cSendSets(px) ∪ {py}
10: end for
11: end for

Fig. 4 shows a TSMS for p3 using strata with seed = 5.
In the figure, the circled TSMS entries denote the messages
(H-matrix row blocks) that can be combined. For instance,
the communication requirement between p3 and p7 during
an SGD epoch can be done with two messages. The first
message, required at the beginning of sub-epoch 5, consists
of H3,7

7 ∪H
3,7
8 ∪H

3,7
1 ∪H

3,7
2 . The second message, required at

the beginning of sub-epoch 1 of the next SGD epoch, consists
of H3,7

3 ∪H3,7
4 ∪H3,7

5 ∪H3,7
6 . Observe that the sub-epoch

at which the combined message should be sent is decided
by the first H-matrix block of the combined message. For
instance, the first message to p7 must arrive before p7 starts
updating rows in H7 which is sub-epoch 5.

Algorithm 3 shows the procedure to construct com-
bined messages from P2P messages at px. Given the
SendSetk(px) ∀k ∈ {1, . . . ,K} and the d-gap rows between
px and {py | y 6= x}, the combined messages are constructed
as follows: There are dK/dxye possible messages to py each
of which is identified by mid. For each py ∈ SendSetk(px)
the rows in Hxy

β are assigned to a combined message Mxy
mid

(lines 3 and 4). Then, py is added to the new send set of the
sub-epoch at which message mid is sent (lines 5-9).

Algorithm 1 can be modified to accommodate the H&C
strategy as follows: After constructing the P2P communica-
tion (line 4), Algorithm 3 is used to combine the messages.
Then, lines 8-13 can be replaced with the sending/receiving
of combined messages; for each py in cSendSetk(px) a
combined message is identified using mid = dk/dxye and
sent to py , and similarly so for receiving from each pz in
cRecvSetk(px).

It is important to make sure that the K lgK messages
sent per epoch are uniformly distributed over K sub-epochs.
Otherwise, some sub-epochs will constitute a performance
bottleneck due to high number of messages. We show that
utilizing Algorithm 3 for combining the messages has the
nice property of limiting the expected number of messages
sent by each processor at each sub-epoch to O(lgK).
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Theorem 1. Using the H&C strategy, the expected number of
messages sent by each processor at each sub-epoch is O(lgK).

Proof. Consider a set zxy that consists of all sub-epochs
wherein a message is sent from px to py . For each sub-epoch
k, the function

σ(k, px, py) =

{
1 k ∈ zxy

0 otherwise

defines if there is a message to be sent from px to py in k.
We can prove that O(lgK) messages are sent by each

processor at each sub-epoch as follows. The number of
messages sent by px per sub-epoch is equal to the number of
occurrences of that sub-epoch in

⊎
y∈[K]∧y 6=xz

xy. For each
processor py with distance dxy , the probability that k is one
of the sub-epochs in which a message is sent to py is equal to
1/dxy . In other words, given K sub-epochs, the probability
that sub-epoch k will be used to send one of the dK/dxye
messages is 1/dxy . Then, the expected number of messages
from px to py at sub-epoch k is

E[σ(k, px, py)] = Pr(σ(k, px, py) = 1)× 1+

Pr(σ(k, px, py) = 0)× 0 =
1

dxy
.

Using linearity of expectation, the expected total number of
messages sent by px at sub-epoch k is

E[
∑
py 6=px

σ(k, px, py)] =
K∑
i=1

1

i
≈ lnK + 1 ≤ lgK + 1. (13)

5 HP MODEL FOR REDUCING BANDWIDTH COST

There exists two hypergraph models for 1D partitioning
of sparse matrices for SpMV-like kernels; namely the
column-net model for rowwise partitioning and the row-
net model for columnwise partitioning [9]. In these models,
the “connectivity−1” metric [9] is utilized for partitioning ob-
jective of reducing the communication volume in SpMV-like
kernels, whereas the partitioning constraint is maintaining
computational balance among processors. As mentioned ear-
lier, rating matrices usually have larger number of rows than
columns, hence we mainly focus on rowwise partitioning
of rating matrix R. The hypergraph model discussed here
is topologically similar to the column-net model, however
the cutsize metric utilized in the partitioning objective is
different.

In the hypergraph model HR = (V,N ), there exists a
vertex vi ∈ V for each row ri of R and a net (hyperedge)
nj ∈ N for each column cj of R. Each net nj connects the
vertices corresponding to the R-matrix rows that contain
nonzeros in column cj . That is, Pins(nj) = {vi ∈ V | rij 6=
0}. Each vertex vi is associated with a weight equals to the
number of nonzeros in row ri. Each net is associated with a
cost F .

A K-way partition Π(HR) = {V1,V2, . . . ,VK} is de-
coded as a K-way rowwise partition of R, where the rows
corresponding to the vertices in part Vα constitute the row
block Rα, for α=1, 2, . . . ,K . Without loss of generality, row
block Rα is assigned to processor pα for α = 1, 2, . . . ,K.

The W-matrix rows are partitioned conformably with the
R-matrix row partition. That is, W-matrix rows in Wα

correspond to the R-matrix rows in Rα.
In partition Π(HR), the weight of each part is equal to

the sum of the weights of the vertices in that part. Hence,
the partitioning constraint of maintaining balance on the
part weights encodes maintaining balance on the nonzero
counts of the R-matrix row blocks. This in turn corresponds
to maintaining balance on the computational loads of the
processors.

In partition Π(HR), a net nj is said to connect a part Vα if
it connects at least one vertex in part Vα, that is, Pins(nj) ∩
Vα 6= ∅. The connectivity set Λ(nj) of a net nj is defined
as the set of the parts that net nj connects, whereas the
connectivity λ(nj) denotes the number of parts connected
by net nj , that is λ(nj) = |Λ(nj)|. A net nj is said to be cut
if λ(nj) > 1 and uncut otherwise. The partitioning objective
is to minimize the cutsize which is defined over the cut nets.

In this model, Λ(nj) also represents the set of R-matrix
row blocks that has at least one nonzero in column cj of
R. Hence, the connectivity set of net nj denotes the set of
processors that update the H-matrix row hj . Consider the
H-matrix row hj corresponding to a cut net nj in the P2P
communication scheme. Also consider hj update sequence
defined using the connectivity set and strata. For each epoch,
each processor except the last processor in the sequence
should send its updated hj value once to the next processor
in the sequence. The last processor sends its updated hj
value to the first processor for the next iteration. Hence, each
cut net nj incurs a communication volume of Fλ(nj). On the
other hand, uncut nets incurs no communication. Therefore,
cutsize which encapsulates the total communication volume
during an SSGD epoch can be computed as∑

nj3λ(nj)>1

Fλ(nj). (14)

Among the various cutsize metrics in the literature, cut-
size (14) is called as the sum of external degrees (SOED) [10].

There exists several successful hypergraph partitioning
tools that utilize multilevel recursive bipartitioning (RB)
algorithms. Among these partitioning tools, to our knowl-
edge, only hMETIS [10] supports the SOED metric via direct
multi-way partitioning [11]. In fact Karypis and Kumar [11]
clearly indicates that RB framework does not allow directly
optimizing the SOED metric. Here, we propose an RB
framework that encodes the minimization of the SOED metric
correctly.

In the RB framework, a given hypergraphH is recursively
bipartitioned until K parts are obtained, assuming K is a
power of two without loss of generality. At each RB step,
a bipartition Π2 = {VL,VR} on the current hypergraph
forms two vertex-induced subhypergraphs HL = (VL,NL)
and HR = (VR,NR). Here, VL and VR are respectively
used to refer to the left and right parts of the bipartition.
The net sets NL and NR are constructed through cut net
splitting method [9] as follows: Internal nets of VL and VR
are respectively included in NL and NR. A cut net nj in
Π2 is split into two subnets n′j and n′′j , where Pins(n′j) =
Pins(nj) ∩ VL and Pins(n′′j ) = Pins(nj) ∩ VR.

In order to encode the SOED metric (14), we propose the
following strategy during the RB framework. We assign a
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cost of 2F to each net of the initial hypergraph. Then, after
each RB step, internal nets inherit their cost, whereas splitted
nets are assigned a cost of F . That is, a net holds its cost
of 2F until it becomes cut for the first time, then a cost of
F is assigned to each of split subnets and they inherit their
cost of F through the further RB steps until the end of the
partitioning. Hence, when a net becomes cut for the first time
it incurs 2F to the cutsize, then whenever its subnets become
cut they incur F to the cutsize. In this way, the sum of all
cut net costs encountered during the overall RB algorithm
becomes equal to the SOED metric (14).

6 EXPERIMENTAL EVALUATIONS

6.1 Experimental framework
We evaluate the contributions proposed in this work through
comparing three methods implementing parallel SSGD using
six real-world rating matrices. The first method, DSGD, is the
algorithm proposed in the original work of Gemulla et al. [3].
DSGD performs block-wise communication of H-matrix row
blocks in each sub-epoch. The second method, P2P, uses P2P
messages as in Algorithm 1. The third, H&C, uses combined
P2P messages (Algorithm 3) for communication.

In all three methods, column-to-stratum assignments
are done randomly in such a way that the number of
columns per stratum differs by at most one. Row-to-processor
assignments are obtained either randomly in a way similar
to that of column-to-stratum assignments, or using the HP
method discussed in Section 5. Whenever the former is used,
the method will be prefixed by RAND, whereas if the latter
is used the method will be prefixed by HP. The HP method
is implemented according to the RB framework described in
Section 5 to encapsulate the SOED metric. In order to obtain
two-way partitions on the (sub)hypergraphs at each RB level,
we use the HP tool PaToH [9] with default parameters in
SPEED mode.

We implemented the parallel SSGD code that includes
DSGD, P2P and H&C in C and used MPI for inter-process
communications. We perform our experiments on an HPC
system with AMD EPYC 7742 processors and a high-speed
HDR InfiniBand network with 200Gb/s bandwidth.

We compare the three methods in terms of commu-
nication cost metrics as well as SGD iteration time. The
communication cost metrics consist of bandwidth-oriented
metrics: sum-max vol and tot vol, and latency-oriented metrics:
sum-max msgs and tot msgs. sum-max msgs is calculated as
follows: at each sub-epoch, the number of messages sent by
the bottleneck processor (the processor that sends highest
number of messages) is obtained. Then, the summation is
taken over all K sub-epochs. That is,

sum-max msgs =
K∑
k=1

max
x∈[K]

(|SendSetk(px)|).

In a similar way, sum-max vol is computed as

sum-max vol =
K∑
k=1

max
x∈[K]

(SendV olk(px)).

tot msgs and tot vol are respectively computed as

tot msgs =
K∑
k=1

∑
x∈[K]

(|SendSetk(px)|),

tot vol =
K∑
k=1

∑
x∈[K]

(SendV olk(px)).

Here, SendV olk(px) = |HSk−1(px)| if DSGD is used, and
SendV olk(px) =

∑
py
|Hxy
Sk−1(px)| if P2P or H&C are used.

Whenever the values for the volume of communication are
presented, these values are normalized with respect to F .
This uncoupling of F from the volume values helps evaluate
the proposed methods and model for any F value.

TABLE 1: Properties of matrices in the dataset

Matrix #rows #cols #nnz density

Amz Items 21.177M 9.874M 82.677M 3.95E-07
Amz Books 8.026M 2.330M 22.50M 1.20E-06
Amz Clothing & Jewelry 3.117M 1.136M 5.75M 1.62E-06
Goodreads Reviews 0.465M 2.080M 15.740M 1.63E-05
Google Reviews 5.055M 3.117M 11.454M 7.27E-07
Twitch 15.524M 6.162M 474.677M 4.96E-06

Table 1 shows the real-world matrices used to evaluate
the proposed methods and their properties. Amz Items
contains product reviews from Amazon between May
1996 - July 2014 [12] with aggressive duplicate removal.
The other two amazon datasets, Books and Clothing, are
category-based subsets of the original comprehensive re-
views. Goodread Reviews contains user ratings of books
from the Goodreads website [13]. Google Reviews con-
tains user ratings/reviews of local businesses from the
Google Maps website [14], [15]. Twitch contains ratings
relative to how much time a user spent on a stream in
the Twitch streaming website [16]. The original data does
not contain any explicit ratings. We modified the dataset
to represent (user, stream, rating) such that the rating value
is proportional to the amount of time the user spent in the
specific stream.

6.2 Evaluations with Communication Cost Metrics
Figs. 5a, 5b and 5c compare DSGD, P2P and H&C in
terms of communication cost metrics tot vol, sum-max vol
and tot msgs on K = 1024 processors. In the figures, the
red bars denote RAND-based methods whereas light blue
bars denote HP-based methods. HP does not affect DSGD’s
communication which is why HP is not applicable for DSGD
and hence DSGD has only red bars. Comparison in terms of
sum-max msgs will be discussed in Fig. 6.

6.2.1 Bandwidth-oriented Communication Cost Metrics
As seen in Fig. 5a, both P2P and H&C incur the essential
amount of communication volume as defined in (10), without
any forwarding overhead. Compared to DSGD, both RAND-
and HP-based P2P and H&C methods incur significantly
reduced amount of communication volume per epoch (more
than 10x). Compared to RAND, the HP-based P2P and H&C
methods incur significantly reduced volume (between 1.4x
and 5x).

Fig. 5b shows that in all matrix instances P2P and
H&C have a significantly reduced sum-max vol compared to
DSGD (more than 10x). H&C has slightly higher sum-max vol
compared to P2P. This is because combining the messages dis-
turbs the random volume balancing of P2P. As expected, HP-
based P2P incurs less sum-max vol compared to RAND-based
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Fig. 5: Comparing RAND- and HP-based P2P and H&C methods against RAND-based DSGD using communication cost
metrics (a to c) and SGD iteration time (d and e) using all dataset matrices on K = 1024 processors.
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P2P. HP-based H&C shows a decrease in sum-max vol on two
matrices (Amz Books and Amz Clothing & Jewelry),
and an increase in other four matrices. This is because the HP
method, when used for H&C, does not encapsulate reducing
the sum-max vol metric.

6.2.2 Latency-oriented Communication Cost Metrics
Fig. 5c shows that the H&C method significantly reduces
tot msgs on all dataset matrices. DSGD always incurs a
constant number of messages for each K value, thus tot msgs
is always equal to K2 = (1024)2 = 1048576. tot msgs of P2P
can go up to K2 × (K−1). On the other hand, H&C keeps
tot msgs limited to O(K2 lgK). Depending on the sparsity
pattern of the matrix, tot msgs of P2P can be very high (e.g.,
Amz Books, Amz Items and Twitch) or relatively close
to the lower bound (e.g., Amz Clothing & Jewelry). The
H&C method successfully controls the fluctuation in the
number of messages thanks to the lgK factor. The significant
reduction in tot vol of HP-based P2P and H&C methods
compared to those of RAND-based is expected to reflect on
the total number of messages, which is the case as shown in
the figure.

Fig. 6 showcases the H&C method’s regularization of
messages sent per epoch over K sub-epochs. In order to
experimentally verify theO(lgK) bound given in Theorem 1,
we introduce the max-max msgs metric as the maximum
number of messages sent per sub-epoch among all sub-
epochs. That is,

max-max msgs = max{max
x∈[K]

(|SendSetk(px)|) | k ∈ [K]}.

As seen in Fig. 6a, using H&C, max-max msgs is empirically
found to be ≈ 3× lgK, which is very close to the expected
lgK bound on the number of messages per sub-epoch given
in (13). The figure shows that P2P incurs high max-max msgs
on K = 256, and then the max-max msgs values start to
decrease as K increases. We believe this is attributed to
the ability of random partitioning to balance P2P message
counts and volume. In Fig. 6b, the sum-max msgs metric is
shown for all matrices in the dataset using P2P and H&C on
K = 64, . . . , 1024 processors. The figure shows the success
of H&C in keeping the number of messages under the
K lgK theoretical bound. Since P2P’s sum-max msgs do not
decrease as K increases, this means maximum number of
messages per sub-epoch are almost equal among all sub-
epochs, especially when K ≥ 512. On the other hand,
although the H&C’s max-max msgs come very close to those
of P2P on some instances such as Goodreads Reviews
and Google Reviews, sum-max msgs stay significantly less
than those of P2P. This means that although the maximum
number of messages sent per sub-epoch can reach 3 lgK
in very few sub-epochs, it is still equal to or less than the
expected lgK messages.

6.3 Evaluations with SGD Iteration Time
Figs. 5d and 5e compare the methods in terms of SGD
iteration time on K = 1024 processors respectively using
F = 16 and F = 64 values. The figure shows that the P2P
improvement over DSGD is significant (more than 4x on all
matrices, except for Twitch which is 1.4x) when F = 16.
The improvement grows further as F increases to 64. It

TABLE 2: Normalized cost metrics of P2P-HP with respect to
P2P-RAND on K = 1024 processors. A value v < 1 means
P2P-HP outperforms P2P-RAND by (1− v)× 100%.

Matrix total
messages

total
volume

SGD time

F=16 F=64

Amz Items 0.67 0.59 0.85 0.70
Amz Books 0.60 0.47 0.75 0.71
Amz Clothing & Jewelry 0.49 0.34 0.99 0.91
Goodreads Reviews 0.71 0.75 0.82 0.76
Google Reviews 0.23 0.24 0.30 0.26
Twitch streams 0.45 0.37 1.41 1.37

Avg. (Geometric mean) 0.50 0.43 0.78 0.71

becomes more than 15x on all matrices except Twitch, and
on Twitch the improvement becomes at least 4.7x.

Using RAND, the H&C improvement over P2P is also sig-
nificant. When F = 16, H&C improves the iteration runtime
over P2P by 2x, 1.2x, 2x, 1.5x, 2.15x, and 1.25x respectively
on Amz Books, Amz Clothing & Jewelry, Amz Items,
Goodreads Reviews, Google Reviews and Twitch.
When F = 64, the respective values become 1.7x, 1.2x, 2x,
1.4x, 1.74x, and 1.22x.

Using HP improves the P2P runtime by 1.3x, 1.17x,
1.22x and 3.35x on Amz Books, Amz Items, Goodreads
Reviews and Google Reviews , respectively, when F =
16. On Amz Clothing & Jewelry there is no significant
improvement and on Twitch there is deterioration by 1.4x.
When F = 64, HP improves the P2P runtime by 1.4x,
1.42x, 1.3x and 3.9x respectively on Amz Books, Amz Items,
Goodreads Reviews and Google Reviews. Table 2 also
shows the normalized P2P-HP cost metrics with respect to
those of P2P-RAND. On average, HP improves (reduces)
the SGD iteration time by 22% when F = 16 and 29%
when F = 64. The increase in the gap between HP and
RAND in terms of P2P runtime when F grows from 16 to
64 is expected since the HP method aims at reducing the
total volume, effect of which is seen more with higher F
values. We observed that the HP method improves the H&C
runtime compared to RAND only on Goodreads Reviews
and Google Reviews.

Fig. 7 shows the strong scaling curves of RAND-based
DSGD, P2P and H&C using two different F values on K =
{64, 128, 256, 512, 1024} processors. As seen in the figure,
P2P and H&C show superior scaling compared to DSGD.
Furthermore, H&C performs significantly better than P2P,
especially with smaller F values.

Increasing the F value is expected to render the SGD
communication as bandwidth-bound. Therefore, the effect
of the methods that reduce the bandwidth (volume of
communication) becomes conspicuous. This is observed
in two different cases when moving from F = 16 in
Fig. 7a to F = 64 in Fig. 7b: (i) the performance gap
between P2P/H&C and DSGD increases as F becomes
larger as a result of the huge reduction in communication
volume when using P2P/H&C, and (ii) the difference in
performance between P2P and H&C slightly reduces due to
the communication overhead leaning towards bandwidth.
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Fig. 6: Showcasing the upper bound of the max-max messages and sum-max messages sent per sub-epoch using the H&C
method compared to P2P on K = {64, . . . , 1024} processors.
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Fig. 7: Strong scaling curves of DSGD, P2P and H&C on K = {64, 128, 256, 512, 1024} processors using all dataset matrices
with two F values.

6.4 Evaluations with Loss Values

Since all the methods discussed in this work follow the
stratified SGD algorithm, their loss values per iteration is
expected to be very similar regardless of the communication
strategy used or number of processors. We demonstrate

this using Fig. 8a. The figure shows the loss value (y-axis)
following each SGD iteration (x-axis) of Amz Books and
Goodreads Reviews using the RAND-based DSGD, P2P,
H&C methods on K = {64, 256, 1024} processors. The loss
values are very close as expected thus the curves appear to
be on top of each other.
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Fig. 8: Loss curves.

Fig. 8b shows the amount of time (x-axis) required
to reach a certain loss value (y-axis) of Amz Items and
Google Reviews using the RAND-based DSGD, P2P, H&C
methods on 1024 processors. The figure shows that DSGD
requires significantly more time to reach a certain loss value
compared to P2P and H&C.

Fig. 8c shows the scaling behavior of the RAND-
based H&C method with Amz Clothes & Jewelry and
Twitch in terms of loss value as the time increases.

7 RELATED WORK

There exist several works in the literature that adopt the
SSGD for parallel matrix completion for shared-memory
systems [17], [18], [19] and distributed-memory systems [3],
[4], [5]. Here, we focus on the works that involve distributed-
memory implementations. The work of Gemulla et at. [3]
proposed the SSGD approach as well as the parallel DSGD
algorithm discussed in Sections 2.2 and 3.2. Teflioudi et
al. [4] proposed DSGD++, an improved DSGD framework
for better performance. They use computation and commu-
nication overlaying through dividing the input matrix into

K × 2K blocks, and in each of the K sub-epochs DSGD++
performs computation on K blocks while simultaneously
communicating the other K blocks. They report up to 2.3x
improvement over DSGD in terms of runtime. Yun et al. [5]
extend the idea of DSGD++ in their framework, NOMAD,
and divide the input matrix into K ×M blocks. Each of the
K processors dedicates ` threads to update `H-matrix rows,
and M − ` other threads for communication. Once processor
px updates an H-matrix row, or a set of rows, it sends
it/them to another processor py that has idle computation
threads. DSGD, DSGD++ and NOMAD have the same total
communication volume during an SGD epoch which is
equals to F×M×K as discussed in Section 3.2. The number of
messages sent per processor during an epoch of DSGD and
DSGD++ has an upper bound of O(K), whereas NOMAD
may send up to O(M) messages. Guo et al. [6] proposed
a novel framework, BaPa, for improving the nonzero load
balance of DSGD through a novel algorithm for balancing
per-processor and per-epoch ratings. Their BaPa-based DSGD
shows a significant runtime improvement on small number
of processors (< 16). However, their results show that both
the original DSGD as well as the BaPa-based DSGD stop
scaling after 256 processors.

There are several asynchronous-SGD-based parallel ma-
trix completion algorithms in the literature. ASGD [4] (shown
in the upper part of Fig. 1) is the simplest example of
such algorithm. During ASGD, it is possible that several
processors update the same H-matrix row hj at the same
time (i.e., stale updates). This results in each processor
having a different copy of hj . These copies are coordinated
by sending them to a processor responsible for hj . This
processor takes their average and then sends the up-to-date
version of hj back to the same set of processors. This type of
coordination is done once or more during an SGD epoch [4],
[20]. GASGD [20] extends ASGD by utilizing intelligent
partitioning for balancing computational loads, reducing
communication between processors, and reducing staleness.
The authors utilize a bipartite graph model and propose a
partitioning method based on the balanced K-way vertex-cut
problem [21] to achieve the partitioning goals. Luo et al. [22]
proposed a different strategy to facilitate asynchronously
computing SGD in parallel which is called alternating SGD.
In alternating SGD, each epoch is divided into two sub-
epochs where in each sub-epochs one factor matrix is fixed
and the other is updated. This approach enables limiting the
feature vector updates that use stale data to one of the two
factor matrices during a sub-epoch. Recently, Shi et al. [23]
proposed a distributed algorithm based on alternating SGD
with data-aware partitioning.

8 CONCLUSIONS

We proposed a framework for scaling stratified SGD through
significantly reducing the communication overhead. The
framework targets at reducing the bandwidth overhead by
efficiently finding the required communication during an
SGD epoch, using P2P messages to perform it, and an HP-
based method to further reduce the P2P communication
volume. The framework targets at reducing the increase
in latency overhead through the novel H&C strategy to
limit the number of messages sent by a processor per epoch
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to O(K lgK). Our proposed framework achieves scalable
distributed SGD, on up to K = 1024 processors, without
any compromise on convergence rate or any update on stale
factors. The proposed framework achieves up to 15x runtime
improvement over the state of the art DSGD method, on 1024
processors, using six real-world rating matrices.
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