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Abstract
For	tropical	marine	species,	hotspots	of	endemism	occur	in	peripheral	areas	furthest	
from	the	center	of	diversity,	but	the	evolutionary	processes	that	lead	to	their	origin	
remain	 elusive.	We	 test	 several	 hypotheses	 related	 to	 the	 evolution	of	 peripheral	
endemics	by	sequencing	ultraconserved	element	 (UCE)	 loci	to	produce	a	genome-
scale	phylogeny	of	47	butterflyfish	species	(family	Chaetodontidae)	that	includes	all	
shallow	water	butterflyfish	from	the	coastal	waters	of	the	Arabian	Peninsula	(i.e.,	Red	
Sea	to	Arabian	Gulf)	and	their	close	relatives.	Bayesian	tree	building	methods	pro-
duced	a	well-resolved	phylogeny	that	elucidated	the	origins	of	butterflyfishes	in	this	
hotspots	of	endemism.	We	show	that	UCEs,	often	used	to	resolve	deep	evolutionary	
relationships,	represent	an	important	tool	to	assess	the	mechanisms	underlying	re-
cently	diverged	taxa.	Our	analyses	indicate	that	unique	environmental	conditions	in	
the	coastal	waters	of	the	Arabian	Peninsula	probably	contributed	to	the	formation	of	
endemic	butterflyfishes.	Older	endemic	species	are	also	associated	with	narrow	ver-
sus	 broad	 depth	 ranges,	 suggesting	 that	 adaptation	 to	 deeper	 coral	 reefs	 in	 this	
region	occurred	only	recently	(<1.75	Ma).	Even	though	deep	reef	environments	were	
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1  | INTRODUC TION

Explaining	 the	 underlying	 factors	 responsible	 for	 the	 diversity	 of	
species	 accumulated	 at	 hotspots	 of	 endemism	 remains	 a	 difficult	
problem	in	the	field	of	biogeography.	Recent	research	has	identified	
the	importance	of	peripheral	regions	from	tropical	oceans	in	gener-
ating	and	exporting	biological	diversity,	thus	intermittently	seeding	
adjacent	 seas	 (Bowen,	Rocha,	 Toonen,	&	Karl,	 2013;	DiBattista	 et	
al.,	2013;	DiBattista,	Wilcox,	Craig,	Rocha,	&	Bowen,	2010;	Eble	et	
al.,	2011;	Gaither	et	al.,	2011;	Gaither,	Toonen,	Robertson,	Planes,	&	
Bowen,	2010;	Malay	&	Paulay,	2010;	Skillings,	Bird,	&	Toonen,	2010);	
however,	direct	tests	of	this	assumption	are	rare.	Renewed	interest	
in	 the	Red	Sea	 to	Arabian	Gulf	 (or	Persian	Gulf)	 region	provides	a	
new	 opportunity	 to	 explore	 hypotheses	 associated	 with	 how	 en-
demics	are	formed	in	peripheral	areas,	and	its	potential	contribution	
to	the	species	richness	of	marine	biodiversity	hotspots.	The	Red	Sea	
is	a	semi-enclosed	basin	located	at	the	north-western	corner	of	the	
Indian	Ocean	and	harbors	one	of	the	highest	levels	of	endemism	for	
marine	organisms	(12.9%	for	fishes,	12.6%	for	polychaetes,	8.1%	for	
echinoderms,	 16.5%	 for	 ascidians,	 and	 5.8%	 for	 scleractinian	 cor-
als;	DiBattista,	Roberts,	et	al.,	2016).	The	level	of	endemism	among	
well-characterized	groups	in	the	Red	Sea,	such	as	the	shore	fishes,	
exceeds	those	of	all	other	peripheral	endemic	hotspots	identified	for	
the	Indian	Ocean	(DiBattista,	Roberts,	et	al.,	2016).	Although	many	
of	these	Red	Sea	endemics	extend	their	distribution	 into	the	adja-
cent	Gulf	of	Aden	and	Arabian	Sea	(DiBattista,	Choat,	et	al.,	2016;	
DiBattista,	Roberts,	et	al.,	2016;	Kemp,	1998),	it	is	not	clear	whether	
they	are	paleo-endemics	(old	lineages	restricted	due	to	range	con-
traction),	 neo-endemics	 (young	 lineages	 at	 the	 site	 of	 origin),	 or	
“ecological”	endemics	(old	or	young	lineages	with	a	restricted	range	
due	to	species	ecology;	see	Cowman,	Parravicini,	Kulbicki,	&	Floeter,	
2017)	and	where,	when,	and	how	this	diversification	occurred.

The	Red	Sea	has	a	unique	geological	and	paleoclimatic	history	that	
may	have	played	a	role	in	its	high	levels	of	endemism	(see	DiBattista,	
Choat,	et	al.,	2016	for	review).	In	brief,	the	Red	Sea	basin	was	formed	
by	episodes	of	sea	floor	spreading	41–34	Ma	(Girdler	&	Styles,	1974),	
followed	by	 intermittent	connections	 to	 the	Mediterranean	Sea	 in	
the	 north	 (~14–5	Ma;	Hubert-Ferrari	 et	 al.,	 2003),	 and	 a	more	 re-
cent	connection	to	the	Gulf	of	Aden	in	the	south	through	the	Strait	
of	Bab	al	Mandab	 (~5	Ma	 to	present;	Bailey,	2010).	The	Strait	 is	a	
narrow	channel	 (29	km)	with	a	shallow	sill	 (137	m)	that	constitutes	
the	 only	 connection	 between	 the	 Red	 Sea	 and	 the	 Indian	 Ocean	

(Bailey,	2010).	Water	exchange	 is	 regulated	by	 Indian	Ocean	mon-
soon	patterns	(Raitsos,	Pradhan,	Brewin,	Stenchikov,	&	Hoteit,	2013;	
Smeed,	1997)	but	was	historically	minimal	or	absent	during	reduced	
sea	levels	caused	by	glacial	periods	of	the	Pleistocene	(Rohling	et	al.,	
2009),	including	the	most	recent	glacial	maximum	(20–15	ka;	Ludt	&	
Rocha,	2015;	Siddall	et	al.,	2003).	Restricted	water	flow	resulted	in	
increased	salinity	within	the	Red	Sea	(Biton,	Gildor,	&	Peltier,	2008),	
leading	some	to	suggest	that	there	was	complete	extirpation	of	Red	
Sea	fauna	during	these	periods	(Klausewitz,	1989).	The	“Pleistocene	
extirpation”	hypothesis,	wherein	all	Red	Sea	fauna	were	eliminated	
during	the	 last	glacial	maximum	(~18	ka)	and	subsequently	re-pop-
ulated	 via	 more	 recent	 colonization	 events,	 remains	 controversial	
and	 untested	 with	 modern	 comparative	 approaches	 (DiBattista,	
Choat,	et	al.,	2016),	although	similar	geological	events	may	have	oc-
curred	in	the	Mediterranean	Sea	(Bianchi	et	al.,	2012).	Thus,	despite	
some	agreement	on	the	broad	strokes	of	 its	geologic	history,	 little	
consensus	has	emerged	on	the	processes	that	shaped	the	Arabian	
Peninsula’s	present	day	marine	biodiversity,	their	influence	on	biodi-
versity	in	adjacent	regions,	and	the	role	of	historical	closures	of	the	
Strait	of	Bab	al	Mandab.

Butterflyfishes	and	bannerfishes,	brightly	colored	reef	fishes	in	
the	family	Chaetodontidae,	are	a	potential	model	system	for	eluci-
dating	the	origins,	maintenance,	and	evolutionary	history	of	Red	Sea	
endemics	and	their	influence	on	species	richness	in	adjacent	marine	
regions.	The	family	 is	diverse	 (17	species	 in	the	Red	Sea	and	>130	
species	 in	 the	 greater	 Indo-West	 Pacific;	 Allen,	 Steene,	 &	 Allen,	
1998)	and	phylogenetically	well	resolved	compared	to	other	reef	fish	
families	(Cowman,	2014).	A	high	proportion	of	the	Chaetodontidae	
species	 found	 in	 the	 coastal	 waters	 of	 the	 Arabian	 Peninsula	 are	
endemic	 (32%;	 DiBattista,	 Roberts,	 et	 al.,	 2016).	 Although	 recent	
molecular	phylogenies	of	chaetodontids	have	helped	to	clarify	many	
aspects	of	their	evolutionary	history	(Bellwood	et	al.,	2010;	Cowman	
&	 Bellwood,	 2011,	 2013;	 Fessler	 &	 Westneat,	 2007;	 Hodge,	
Herwerden,	&	Bellwood,	2014;	Hsu,	Chen,	&	Shao,	2007),	a	lack	of	
sampling	of	Arabian	Peninsula	species	has	impeded	our	understand-
ing	of	the	diversification	in	this	region.

The	evolution	of	endemic	species	has	been	linked	to	ecological	
traits,	 such	 as	 reductions	 in	dispersal	 ability	 and	 changes	 in	body	
size	(i.e.,	the	island	rule;	reviewed	by	Lomolino,	2005;	Whittaker	and	
Fernández-Palacios,	2007).	For	reef	fishes,	certain	traits	associated	
with	 dispersal	 ability	 are	 linked	 to	 geographic	 range	 size.	 For	 ex-
ample,	large,	gregarious,	and	nocturnal	species	tend	to	have	larger	

drastically	reduced	during	the	extreme	low	sea	level	stands	of	glacial	ages,	shallow	
reefs	persisted,	and	as	such	there	was	no	evidence	supporting	mass	extirpation	of	
fauna	in	this	region.

K E Y W O R D S

biogeographic	barriers,	Chaetodon,	coral	reef,	glaciation	events,	Pleistocene,	ultraconserved	
elements
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range	sizes	than	small,	solitary,	and	strictly	diurnal	species	(Luiz	et	
al.,	2013,	2012).	Moreover,	dispersal	ability	can	potentially	influence	
clade	diversification:	to	successfully	colonize	and	establish	popula-
tions	in	peripheral	areas,	tropical	fish	species	must	be	good	dispers-
ers	(Hobbs,	Jones,	Munday,	Connolly,	&	Srinivasan,	2012).	Following	
diversification	 in	 peripheral	 areas,	 newly	 formed	 lineages	 may	
evolve	traits	less	conducive	to	dispersal,	thus	becoming	endemic	to	
the	area	where	it	originated,	as	often	occurs	in	the	evolution	of	insu-
lar	terrestrial	endemics	(Whittaker	and	Fernández-Palacios,	2007).	
We	 therefore	predict	 that	butterflyfishes	endemic	 to	 the	Arabian	
Peninsula	region	will	have	smaller	body	sizes,	higher	sociability,	and	
reduced	dispersal	ability	compared	to	their	widespread	congeners.	
Broadly	 speaking,	 endemic	 species	 tend	 to	 be	 ecological	 special-
ists	and	thus	adapted	to	the	environmental	condition	in	which	they	
arose	 (McKinney,	 1997).	 We	 therefore	 additionally	 predict	 that	
these	endemics	will	have	a	higher	level	of	ecological	specialization	
than	widespread	 species.	 For	 reef	 fishes,	 habitat	 specialization	 is	
often	defined	by	the	depth	range	where	they	occur	and	the	number	
of	different	habitats	that	they	exploit	(e.g.,	coral	reefs,	rocky	reefs,	
seagrass	beds,	mangroves;	Luiz	et	al.,	2012).	Dietary	specialization	
is	often	defined	by	the	proportion	of	different	food	categories	tar-
geted	 (Pratchett,	 2014).	We	 predict	 that	 butterflyfishes	 endemic	
to	the	Arabian	Peninsula	region	will	have	higher	dietary	specializa-
tion	and	reliance	on	corals	 for	food	given	recent	origins	alongside	
their	coral	rich	habitat	(Renema	et	al.	2016).	We	choose	to	focus	on	
adult	versus	larval	ecological	traits	because	more	information	about	
the	former	is	available,	and	has	been	shown	to	correlate	with	past	
(Ottimofiore	et	al.,	2017)	and	present	(Luiz	et	al.,	2013)	geographic	
range	size.

The	aims	of	this	study	are	threefold.	First,	we	aim	to	reconstruct	
the	 phylogeny	 and	 evolutionary	 timescale	 for	 Red	 Sea	 to	Arabian	
Gulf	butterflyfishes	in	order	to	test	whether	these	peripheral	areas	
intermittently	seed	the	broader	Indo-West	Pacific	with	biodiversity	
(“evolutionary	 incubator”	 hypothesis).	Outcomes	 that	would	 allow	
rejection	 of	 this	 hypothesis	 include	 a	 lack	 of	 evidence	 supporting	
Arabian	Peninsular	 endemic	 fish	 lineages	 giving	 rise	 to	 Indo-West	
Pacific	 fish	 lineages	as	well	 as	 restricted	ancestral	 ranges	expand-
ing	 into	this	broader	region.	Second,	we	 look	to	test	the	extent	to	
which	 butterflyfish	maintained	 a	 continuous	 presence	 in	 the	 Red	
Sea	during	the	major	environmental	fluctuations	of	the	Pleistocene	
(“Pleistocene	extirpation”	hypothesis).	Outcomes	 that	would	 allow	
rejection	 of	 this	 hypothesis	 include	 a	 lack	 of	 evidence	 supporting	
Arabian	Peninsular	endemic	fish	originating	after	the	glacial	cycles	
of	the	Pleistocene,	as	well	as	colonization	events	dated	only	before	
or	after	this	epoch.	Third,	we	aim	to	test	whether	species	endemic	
to	the	coastal	waters	of	the	Arabian	Peninsula	non-randomly	asso-
ciate	with	particular	ecological	traits	(“ecological	trait”	hypothesis),	
which	may	be	important	in	explaining	patterns	of	diversification	in	
this	 region.	The	expectation	here	 is	 that	 endemic	 fishes	 are	more	
specialized	 and	 thus	 better	 adapted	 to	 local	 conditions	 than	 their	
widespread	congeners.	Outcomes	that	would	allow	rejection	of	this	
hypothesis	include	a	lack	of	association	between	endemism	and	any	
of	the	ecological	traits	considered	here.

2  | MATERIAL S AND METHODS

2.1 | Materials

Site	 location,	 sampling	 date,	 and	 museum	 voucher	 information	
(where	 available)	 for	 each	 specimen	 are	 outlined	 in	 Supporting	
Information	Table	S1.	All	butterflyfish	species	included	in	this	study	
and	their	geographic	distribution	are	listed	in	Table	1.

As	our	primary	objective	is	to	reconstruct	the	evolutionary	his-
tory	of	butterflyfishes	known	to	occur	in	the	Red	Sea	and	adjacent	
gulfs	or	seas,	we	concentrated	our	sampling	efforts	on	those	spe-
cies	and	their	closest	relatives.	Although	five	major	Chaetodontidae	
lineages	 were	 sampled,	 Chaetodon	 Clade	 CH1	 (Chaetodon robus‐
tus and	C. hoefleri,	 restricted	to	the	Atlantic;	Cowman	&	Bellwood,	
2013),	 and	multiple	 bannerfish	 genera	 (Amphichaetodon, Chelmon, 
Chelmonops, Coradion, Hemitaurichthys,	 and	 Johnrandallia)	 without	
species	represented	in	the	Red	Sea	were	not	sampled	in	this	study.	
Two	species	of	 the	Prognathodes	 genus	were	 included	 to	 facilitate	
fossil	calibration,	but	were	not	included	in	the	biogeographic	analy-
ses	due	to	their	Atlantic	distributions	(see	below).

In	total,	we	sampled	47	chaetodontid	species	(35%	of	the	entire	
family),	which	includes	all	regional	endemics	and	wide-ranging	spe-
cies	found	in	the	Arabian	Peninsula	region	save	Roa jayakari,	a	rare	
deepwater	species	distributed	from	the	Red	Sea	to	coastal	India;	we	
were	unable	 to	 secure	 a	 tissue	 sample	 as	part	of	 this	 study.	Eight	
of	these	species	have	not	previously	been	sampled	in	phylogenetic	
studies	of	 the	 family	 (Bellwood	et	al.,	2010;	Cowman	&	Bellwood,	
2011;	Fessler	&	Westneat,	2007;	Hodge	et	al.,	2014).	Tissues	were	
preserved	in	a	saturated	salt-DMSO	solution	or	95%	ethanol	prior	to	
processing.	This	research	was	carried	out	under	the	general	auspices	
of	King	Abdullah	University	of	Science	and	Technology’s	 (KAUST)	
arrangements	 for	 marine	 research	 with	 the	 Saudi	 Arabian	 Coast	
Guard	 and	 the	 Presidency	 of	Meteorology	 and	 Environment.	 The	
animal	use	protocol	was	approved	by	KAUST’s	Biosafety	and	Ethics	
Committee	(KAUST	does	not	provide	specific	approval	number).

2.2 | Phylogenomics approach

We	 employ	 the	 sequence	 capture	 method	 of	 ultraconserved	 ele-
ments	(UCEs)	to	produce	millions	of	reads	in	parallel	from	multiple	
butterflyfish	specimens	collected	from	the	Gulf	of	Aqaba	in	the	west	
(Red	 Sea)	 to	 the	Hawaiian	Archipelago	 in	 the	 east	 (Pacific	Ocean,	
PO).	 UCEs	 are	 a	 class	 of	 highly	 conserved	 and	 abundant	 nuclear	
markers	 distributed	 throughout	 the	 genomes	 of	 most	 organisms	
(Bejerano,	Haussler,	&	Blanchette,	2004;	Siepel	et	al.,	2005;	Reneker	
et	al.,	2012).	These	markers	do	not	intersect	paralogous	genes	(Derti,	
Roth,	Church,	&	Wu,	 2006),	 do	 not	 have	 retro-element	 insertions	
(Simons,	Pheasant,	Makunin,	&	Mattick,	2006),	have	a	range	of	vari-
ant	sites	(i.e.,	evolving	on	different	time	scales;	Faircloth	et	al.,	2012),	
and	have	been	used	to	reconstruct	phylogenies	across	vertebrates	
(Bejerano	 et	 al.,	 2004;	 Faircloth	 et	 al.,	 2012;	 Faircloth,	 Sorenson,	
Santini,	&	Alfaro,	2013;	McCormack	et	al.,	2013;	Smith	et	al.,	2014;	
Sun	et	al.,	2014),	including	fishes	at	both	shallow	(Mcgee	et	al.,	2016)	
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and	deep	(Alfaro	et	al.,	2018;	Faircloth	et	al.,	2013;	Harrington	et	al.,	
2016)	phylogenetic	scales.

2.3 | DNA library preparation and next‐
generation sequencing

DNA	 was	 extracted	 with	 DNeasy	 Blood	 and	 Tissue	 kits	 (Qiagen,	
Valencia,	CA),	which	included	an	RNAse	A	treatment	step.	Each	ex-
tracted	sample	was	visualized	by	gel	electrophoresis	to	assess	DNA	
quality.	Total	DNA	from	each	extracted	aliquot	was	quantified	using	
a	Qubit	dsDNA	HS	Assay	Kit	(Invitrogen,	Carlsbad,	CA),	and	1.2	µg	
of	DNA	per	individual	sample	was	fragmented	by	sonication	to	500	
base	pairs	 (bp)	using	a	Covaris	S2	 sonicator	 (Covaris	 Inc,	Woburn,	
MA)	and	used	for	UCE	library	preparation.	In	brief,	we	end-repaired,	
adenylated,	 and	 ligated	 fragmented	DNA	 to	 Illumina	 TruSeq-style	
adapters,	 which	 included	 custom	 sequence	 tags	 to	 barcode	 each	
individual	sample	 (Faircloth	&	Glenn,	2012).	Following	an	18-cycle	
PCR	to	amplify	 indexed	 libraries	 for	enrichment,	we	created	pools	
by	combining	62.5	ng	of	eight	individual	libraries.	Each	pool	was	con-
centrated	to	147	ng/μl	using	a	vacuum	centrifuge.	We	then	followed	
an	established	workflow	for	target	enrichment	(Gnirke	et	al.	2009)	
with	modifications	specified	in	Faircloth	et	al.	(2012).	Specifically,	we	
enriched	each	pool,	targeting	UCE	loci	and	their	flanking	sequence,	
using	synthetic	RNA	capture	probes	(MyBaits,	Mycroarray,	Inc.,	Ann	
Arbor,	MI).	We	 combined	 the	 enriched,	 indexed	 pools	 at	 equimo-
lar	 ratios	 prior	 to	 sequencing.	 The	 two	 final	 pooled	 libraries	were	
each	 run	paired-end	 (150	bp	sequencing)	on	 independent	 lanes	of	
an	Illumina	HiSeq2000	(v3	reagents)	at	the	KAUST	Bioscience	Core	
Lab.	Detailed	methods	of	library	enrichment,	post-enrichment	PCR,	
and	validation	using	relative	qPCR	may	be	found	at	https://ultracon-
served.org/#protocols.

2.4 | Sequence read quality control, assembly, and 
UCE identification

We	removed	adapter	contamination	and	 low	quality	bases	with	 il-
lumiprocessor	 (Faircloth,	2013),	a	parallel	wrapper	to	Trimmomatic	
(Bolger,	Lohse,	&	Usadel,	2014).	To	assemble	the	trimmed	dataset,	
we	used	the	PHYLUCE	pipeline	 (version	8ca5884;	Faircloth,	2016)	
with	 the	 phyluce_assembly_assemblo_trinity.py	wrapper	 script	 for	
Trinity	(version	1.5.0;	Grabherr	et	al.,	2011).	We	matched	assembled	
contigs	to	enriched	UCE	loci	by	aligning	contigs	from	each	species	
to	 our	 UCE	 probes	 using	 the	 phyluce_assembly_match_contigs_
to_probes.py	 script	with	 the	 LASTZ	 assembler	 (Harris,	 2007).	We	
stored	these	match	results	into	a	SQLite	relational	database	after	ex-
cluding	contigs	that	matched	multiple	UCE	loci	and	UCE	loci	whose	
probes	matched	multiple	contigs.

We	used	phyluce_align_seqcap.py	to	align	UCE	loci	with	MAFFT	
(Katoh	&	 Standley,	 2013;	Katoh,	Misawa,	Kuma,	&	Miyata,	 2002).	
Following	 alignment,	 we	 end-	 and	 internally-trimmed	 alignments	
with	GBLOCKS	 (Castresana,	 2000)	 to	 improve	phylogenetic	 infer-
ence	by	removing	poorly	aligned	or	highly	divergent	sites	(Talavera	
&	Castresana,	2007).	We	selected	loci	that	were	present	in	at	least	

75%	 of	 our	 specimens	 and	 concatenated	 the	 alignments	 into	 a	
PHYLIP-formatted	 matrix	 for	 phylogenetic	 analysis.	 We	 included	
previously	published	UCE	data	for	three	species	in	our	alignment	to	
represent	Acanthomorpha	 outgroup	 lineages	 and	more	 accurately	
calibrate	the	phylogeny	(see	below).

2.5 | Phylogenetic analysis of concatenated UCE 
data: evaluation of the “evolutionary incubator” and 
“Pleistocene extirpation” hypotheses

We	fully	partitioned	our	concatenated	alignment	by	UCE	locus	and	
performed	Bayesian	analyses	of	the	dataset	with	ExaBayes	(Aberer,	
Kobert,	 &	 Stamatakis,	 2014)	 and	 two	 independent	 runs,	 sampling	
every	500	generations.	We	used	the	autostopping	convergence	cri-
teria	of	 an	average	 standard	deviation	of	 split	 frequencies	of	<5%	
and	 visualized	 the	 log-likelihood	 of	 each	 chain	 to	 ensure	 conver-
gence	in	Tracer	version	1.6	(Rambaut	et	al.,	2014).

We	estimated	divergence	times	using	MCMCTREE	in	the	PAML	
package	 on	 the	 Bayesian	 consensus	 topology.	We	 used	 the	 likeli-
hood	 approximation	 approach	 following	 the	 two-step	 procedure	
described	by	Dos	Reis	 and	Yang	 (2011)	 by	 first	 estimating	 a	mean	
substitution	rate	for	the	entire	alignment	with	BASEML	under	a	strict	
molecular	clock	and	then	using	this	estimate	to	set	the	rgene_prior	
in	MCMCTREE.	We	used	a	single,	unpartitioned	alignment	for	com-
putational	tractability,	with	an	HKY85	model,	five	categories	for	the	
gamma	distribution	of	rate	heterogeneity,	an	rgene_gamma	prior	for	
the	 gamma	 distribution	 describing	 gene	 rate	 heterogeneity	 of	 (2,	
371.0575,	1)	and	a	sigma2_gamma	prior	of	 (2,	5,	1).	We	adopted	a	
calibration	strategy	that	builds	on	Harrington	et	al.	(2016)	by	includ-
ing	more	proximal	acanthomorph	outgroups	to	Chaetodontidae	and	
their	immediate	relatives.	We	constrained	six	nodes	on	the	basis	of	
fossil	information	using	hard	lower	and	soft	upper	bounds	outlined	in	
Supporting	Information	Figure	S1.	We	assigned	a	minimum	amount	
of	prior	weight	for	ages	below	the	lower	bound	(1e-200)	and	5%	prior	
weight	for	ages	higher	than	the	upper	bound.	Briefly,	we	link	a	series	of	
carangimorph,	syngnathiform,	holocentroid,	and	lampridiform	fossils	
to	the	sequences	of	acanthomorph	outgroup	fossils	as	per	Harrington	
et	 al.	 (2016).	 This	 resulted	 in	 the	 following	 outgroup	 node	 calibra-
tions:	 acanthuroids	 versus	 all	 other	 taxa	 (lower	 bound:	 54.17	Ma;	
upper	bound:	70.84	Ma);	acanthurids	versus	zanclids	 (lower	bound:	
49.0	Ma;	 upper	 bound:	 62.7	Ma),	 Naso versus	 Acanthurus	 (lower	
bound:	 49.0	Ma;	 upper	 bound:	 57.22	Ma),	 Chaetodontidae	 versus	
Pomacanthidae	 (lower	 bound:	 29.62	Ma;	 upper	 bound:	 59.26	Ma),	
and	 the	 total-group	 Chaetodon versus	 Prognathodes	 (lower	 bound:	
7	Ma;	upper	bound:	47.5	Ma).	Further	justification	for	calibrations	is	
available	as	Supporting	Information	(Appendix	S1).

2.6 | Ancestral biogeographic range estimation: 
evaluation of the “evolutionary incubator” and 
“Pleistocene extirpation” hypotheses

We	estimated	ancestral	distribution	patterns	 for	chaetodontid	 lin-
eages	 using	 the	 pruned	 time-calibrated	 phylogeny	 analyzed	 with	

https://ultraconserved.org/#protocols
https://ultraconserved.org/#protocols
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the	R	package	BioGeoBEARS	(Matzke,	2013),	which	allows	several	
models	 of	 biogeographic	 evolution	 to	 be	 compared	 via	 likelihood	
inference,	 and	 the	 ability	 to	 incorporate	 a	 parameter	 allowing	 for	
founder-event	speciation.	For	these	analyses,	we	coded	each	taxon	
based	on	presence/absence	in	nine	discrete	geographical	areas:	Gulf	
of	Aqaba,	rest	of	the	Red	Sea,	Djibouti	and	Gulf	of	Aden,	Socotra,	
South	Oman,	Arabian	Gulf,	Gulf	of	Oman	and	Pakistan,	rest	of	Indian	
Ocean,	and	PO.	The	discrete	coding	of	geographic	areas	adjacent	to	
the	Arabian	Peninsula	enables	a	fine-scale	investigation	of	the	ances-
tral	biogeography	of	that	region	for	our	taxa	of	interest.	Presence/
absence	and	geographical	range	data	for	each	taxon	were	obtained	
from	a	combination	of	DiBattista,	Roberts,	et	al.	(2016)	and	FishBase	
(Froese	&	Pauly,	2011).	Prognathodes	spp.	(a	Chaetodontidae	genus)	
were	not	considered	in	this	part	of	the	analysis	given	that	these	two	
taxa	are	restricted	to	tropical	Atlantic	waters.

We	constrained	our	biogeographic	analyses	to	prohibit	coloniza-
tion	events	between	the	Red	Sea	and	Indian/PO	regions	before	5	Ma	
reflecting	the	time	when	a	more	permanent	connection	was	formed	
via	 the	Strait	of	Bab	al	Mandab	 (Bailey,	2010).	Our	BioGeoBEARS	
analysis	 evaluated	 the	 DEC,	 DIVALIKE,	 and	 BAYAREALIKE	 mod-
els	with	and	without	the	jump	(J)	parameter	(Matzke,	2013).	These	
models	 describe	 biogeographic	 scenarios	 where	 dispersal,	 extinc-
tion,	cladogenesis,	vicariance,	and	founder	events	are	differentially	
invoked	to	explain	present	day	distributional	patterns.	 In	our	case,	
we	were	interested	in	whether	the	range-restricted	endemics	from	
the	coastal	waters	of	the	Arabian	Peninsula	represent	ancient	relicts,	
new	 colonization	 events,	 and/or	 a	 source	of	 biodiversity	 (at	 some	
point	in	the	past)	for	the	broader	Indo-West	Pacific.

2.7 | Comparative trait analysis: evaluation of the 
“ecological trait” hypothesis

In	 order	 to	 determine	 whether	 particular	 species-level	 traits	
were	 associated	with	 the	 evolution	of	 endemism	 in	 this	 subset	 of	
Chaetodontidae	species,	we	fitted	a	phylogenetic	generalized	linear	
model	(function	“phyloglm”	in	R	package	“phylolm”	[Ho	et	al.,	2016])	
that	assumed	“regional	endemism”	(i.e.,	endemic	to	the	coastal	wa-
ters	of	the	Arabian	Peninsula;	DiBattista,	Roberts,	et	al.,	2016)	as	the	
binomial	response	variable	and	a	suite	of	ecological	traits	as	the	pre-
dictive	fixed	factors.	For	model	selection,	we	performed	a	backward	
stepwise	procedure	for	PGLM’s	(function	“phylostep”	in	R	package	
“phylolm”	[Ho	et	al.,	2016]),	which	entailed	sequential	optimization	
by	removing	non-influential	fixed-effect	terms	from	the	full	model	
based	on	Akaike	information	criteria	(AIC).	Full	details	on	the	meth-
ods	and	data	sources	are	provided	in	Supporting	Information	Table	
S2.	We	also	explore	 interactions	among	the	predictive	traits	using	
a	 regression	 tree	 approach	 (De’ath	 and	 Fabricius,	 2000;	 function	
“rpart”	in	R	package	“rpart”	[Therneau	et	al.,	2015]).

Among	the	predictive	variables	considered	were:	maximum	body	
size	(total	length	=	TL;	Allen	et	al.,	1998;	Kuiter,	2002),	depth	range	
inhabited	 (Allen	et	 al.,	1998),	 social	 structure	 (three	categories	or-
dered	from	low	to	high	sociability:	solitary,	pair	formation,	and	group	
formation;	 Allen	 et	 al.,	 1998;	 Kuiter,	 2002;	 Yabuta	 and	 Berumen,	

2013),	 habitat	 breadth	 (estimated	 as	 the	 sum	 value	 of	 all	 habitat	
types	 inhabited:	 C	=	coral,	 R	=	rocky,	 D	=	deep	 reef,	 S	=	sediment,	
R	=	rubble,	CO	=	coastal,	CA	=	algal	beds;	Allen	et	al.,	1998;	Kuiter,	
2002),	and	dietary	reliance	on	coral	 reefs	 (four	categories	ordered	
from	low	to	high	reliance:	planktivore,	benthic	invertivore,	faculta-
tive	corallivore,	and	obligate	corallivore;	Cole	and	Pratchett,	2014).	
We	also	included	the	phylogenetic	age	of	species	(Myr)	as	an	addi-
tional	 fixed	factor	 to	test	whether	species	 traits	are	 influenced	by	
time	of	divergence	from	sister	taxa.	For	phylogenetic	age,	we	eval-
uate	 for	 each	 species	 (regional	 endemic	 and	widespread)	whether	
we	 sampled	 its	 closest	 sister	 species	by	 comparing	our	phylogeny	
with	 those	 published	 previously	 (Cowman	&	Bellwood,	 2011)	 and	
other	published	accounts	(Kuiter,	2002).	The	ecological	traits	were	
selected	 because	 they	 are	 associated	 with	 specialization,	 fitness,	
and	range	expansion	in	butterflyfishes,	and	thus	may	help	to	explain	
patterns	of	evolution	in	fish	endemic	to	the	coral	reefs	of	the	Arabian	
Peninsula.	We	do	note	this	may	be	an	oversimplification	given	that	
our	categories	are	coarse	and	biased	toward	adult	versus	larval	traits,	
which	are	 themselves	data	deficient.	Previous	work,	however,	has	
demonstrated	that	traits	associated	with	the	successful	recruitment	
of	reef	fish	are	more	important	than	traits	associated	with	dispersal	
in	determining	differentiation	between	habitats	(Gaither	et	al.,	2015;	
Keith,	Woolsey,	Madin,	Byrne,	&	Baird,	2015).

3  | RESULTS

3.1 | UCE sequences

Reads,	contigs,	and	UCE	loci	per	individual	are	outlined	in	Supporting	
Information	Table	S3.	In	summary,	we	sequenced	a	total	of	153.31	
million	reads,	with	a	mean	of	1.55	million	reads	per	sample	from	47	
focal	taxa	(excluding	outgroups;	also	see	Table	1).	Overall,	we	assem-
bled	a	mean	of	12,969	contigs	(95	CI,	min	=	10,593,	max	=	15,345)	
and	901	UCE	loci	per	sample	(95	CI,	min	=	871,	max	=	932).

3.2 | Phylogenetic reconstruction and 
timing of divergence: evaluation of the “evolutionary 
incubator” and “Pleistocene extirpation” hypotheses

Following	assembly,	alignment,	trimming,	and	filtering	out	loci	that	
were	present	in	fewer	than	75	specimens	(for	a	75%	complete	data-
set),	we	 retained	971	 alignments	with	 a	mean	 length	 of	 515.6	bp.	
The	 concatenated	 supermatrix	 contained	500,642	bp	with	52,680	
informative	sites	and	was	83.3%	complete	based	on	the	proportion	
of	non-gap	sequences.	The	following	samples	were	excluded	from	
further	analysis	due	to	the	low	number	of	loci	recovered:	Chaetodon_
interruptus1a,	 Chaetodon_lineolatus1a,	 Chaetodon_lunula1a,	 and	
Chaetodon ulietensis1a	 (for	 full	 details	 see	 Supporting	 Information	
Table	S1);	 however,	 tissue	 replicates	were	 retained	 for	 two	of	 the	
four	species	listed	here	(Chaetodon lineolatus	and	Chaetodon lunula).

Our	 Bayesian	 and	 maximum	 likelihood	 analyses	 produced	 a	
fully	 resolved	topology	that	shared	key	points	of	congruence	with	
prior	multi-locus	 studies	 of	 butterflyfishes	 (Bellwood	 et	 al.,	 2010;	
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Cowman	&	Bellwood,	 2011;	 Fessler	&	Westneat,	 2007;	Hodge	 et	
al.,	2014	;	Hsu	et	al.,	2007;	see	Supporting	Information	Figure	S2).	
Although	 direct	 comparisons	 to	 previous	 phylogenies	 are	 difficult	
because	 these	 are	 missing	 many	 of	 the	 regional	 endemics	 (e.g.,	
Chaetodon dialeucos,	 C. gardineri,	 C. leucopleura,	 C. nigropunctatus,	
C. pictus,	C. triangulum,	Heniochus intermedius),	and	contain	 less	se-
quence	data	and	data	overlap	(e.g.,	six	loci	and	73%	complete	matrix;	
Hodge	et	 al.,	 2014),	where	 there	was	overlap	 in	 the	data	 sets	 the	
tips	of	the	tree	displayed	similar	topologies	(Supporting	Information	

Figure	S3).	In	our	case,	however,	almost	every	node	in	the	tree	was	
strongly	supported	(posterior	probabilities	of	1.0;	Figures	1	and	2).

By	only	considering	a	single	 representative	sample	per	species	
on	 our	 chronogram	 (Figure	 2),	we	 found	 that	 the	majority	 of	 Red	
Sea	 to	Arabian	Gulf	butterflyfish	diverged	 from	 their	 closest	 rela-
tives	 in	 the	 last	 five	million	 years	 (4.17–1.16	Ma),	with	 an	 average	
lineage	age	of	2.39	Ma.	 In	comparison	to	previous	fossil	calibrated	
studies	 of	Chaetodontidae	 (Cowman	&	Bellwood,	 2011;	Hodge	 et	
al.,	2014),	the	mean	ages	and	95%	highest	posterior	density	(HPD)	

F I G U R E  1   Inferred	phylogeny	of	Red	Sea	to	Arabian	Gulf	butterflyfish	species,	including	some	of	closest	their	congeners,	based	on	
ExaBayes	analysis	of	ultraconserved	element	data.	Yellow	dots	on	node	labels	indicate	a	posterior	probability	of	1,	whereas	gray	dots	
indicate	a	posterior	probability	of	<1	but	>0.6.	Clades	based	on	Bellwood	et	al.	(2010)	and	Cowman	and	Bellwood	(2011)	are	indicated.	
Records	for	each	species	are	mapped	onto	the	topology	as	follows:	red	=	Red	Sea	to	Arabian	Gulf,	green	=	rest	of	Indian	Ocean,	and	
blue	=	Pacific	Ocean
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estimates	 are	more	 restricted,	 but	 for	 the	most	 part	 overlap	with	
previous	estimates	 (Supporting	 Information	Figure	S3).	 In	terms	of	
the	 topology,	 although	 our	 phylogenetic	 sampling	 is	 restricted,	 it	
still	captures	crown	nodes	and	age	estimates	of	major	chaetodontid	
lineages	 (with	 the	 exception	 of	 the	 bannerfish	 lineage),	 as	well	 as	
subclades	containing	Red	Sea	to	Arabian	Gulf	species	and	their	most	

recent	common	ancestors	(Supporting	Information	Figure	S2).	Most	
of	the	clades	included	species	pairs	diverging	with	non-overlapping	
distributions	dating	back	2–1	Ma.	This	divergence	does	not	appear	
to	coincide	with	the	timing	of	the	emergence	of	apparent	geographic	
(and	geological)	barriers	such	as	the	Strait	of	Bab	al	Mandab	(Figures	
2	and	3).	Regional	endemics	appear	to	have	diverged	earliest	from	

F I G U R E  2  A	fossil	calibrated	chronogram	for	select	Chaetodontidae	species	based	on	analysis	of	ultraconserved	element	data.	The	time	
scale	is	calibrated	in	millions	of	years	before	present.	Node	ages	are	presented	as	median	node	heights	with	95%	highest	posterior	density	
intervals	represented	by	bars.	Significant	geological	events	in	the	coastal	waters	of	the	Arabian	Peninsula	are	temporally	indicated	by	red	
dashed	lines
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F I G U R E  3  Distributions,	range	overlap,	and	ages	of	divergence	in	eight	clades	of	butterflyfish	from	the	Chaetodon	genus	that	contain	
species	inhabiting	the	Red	Sea	to	Arabian	Gulf	region.	Clade	structure	and	node	ages	(median	node	heights	with	95%	highest	posterior	
density	intervals	represented	by	bars)	were	extracted	from	Figure 2
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ancestors	that	gave	rise	to	the	clades	 including	Chaetodon larvatus 
and	Chaetodon semilarvatus.	At	least	one	entire	subclade	of	CH4	was	
comprised	of	regional	endemics	(C. dialeucos,	C. nigropunctatus,	and	

C. mesoleucos).	 The	 split	 between	 the	 butterflyfishes	 (Chaetodon,	
Prognathodes)	 and	 bannerfishes	 (Heniochus,	 Forcipiger)	 was	 much	
older,	with	a	mean	of	28.7	Ma	(95%	HPD:	40.0–18.26;	Figure	2	and	
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Supporting	 Information	 Figure	 S1),	 indicating	 an	 ancient	 split	 be-
tween	these	highly	divergent	body	forms.

3.3 | Ancestral range reconstruction: 
evaluation of the “evolutionary incubator” and 
“Pleistocene extirpation” hypotheses

Model	 comparison	 revealed	 the	 DEC+J	 model	 as	 the	 most	 likely	
(LnL	=	−250.79,	AIC	weight	=	0.76)	and	the	DIVALIKE+J	model	as	the	
second	most	 likely	 (LnL	=	−252.76,	AIC	weight	=	0.11;	 Table	 2	 and	
Figure	4).	The	 importance	of	 the	 J	 parameter,	which	models	 long-
distance	or	“jump”	dispersal,	is	that	ancestral	ranges	often	comprise	
one	area	rather	than	several	areas.	The	addition	of	the	J	parameter	
resulted	 in	 a	 significantly	 better	 model	 fit	 for	 DEC	models	 when	
compared	via	a	likelihood	ratio	test	(LRT:	D = 8.67,	p = 0.0032).

Under	 the	DEC+J	model,	Chaetodontidae	had	 their	 crown	ori-
gins	in	the	Indo-West	Pacific,	with	subsequent	dispersal	to	include	
the	Arabian	Peninsula	and	lineages	leading	to	the	base	of	Chaetodon 
and	the	bannerfish	clade	(Forcipiger/Heniochus;	Figure	4).	Within	the	
CH2	clade,	diversification	was	restricted	to	the	PO	with	subsequent	
dispersal	to	the	Indian	Ocean	(Chaetodon madagaskariensis, C. punc‐
tatofasciaticus, and C. unimaculatus),	 and	 three	 of	 the	 species	 have	
dispersed	 as	 far	 as	 Socotra	 (Chaetodon guttatissimus, C. kleinii, and 
C. trifasciatus).	Only	one	species	within	CH2	diverged	in	the	Gulf	of	
Aden	and	subsequently	colonized	the	Red	Sea	(Chaetodon paucifas‐
ciatus).	The	age	of	C. paucifasciatus	is	relatively	young	(1.5	Ma,	HPD:	
0.8–2.3	Ma),	suggesting	a	similar	 timeline	for	 its	occupation	of	the	
Red	Sea	from	the	Gulf	of	Aden.

In	the	CH3	clade,	three	species	were	present	in	the	Red	Sea	that	
were	also	restricted	to	the	Arabian	Peninsula	(Chaetodon austriacus, 
C. melapterus, and C. larvatus).	In	the	case	of	sister	pair	C. austriacus 
and	C. melapterus,	 the	 reconstruction	 suggests	 that	 speciation	 oc-
curred	by	vicariance	within	the	Red	Sea.	Although	posterior	prob-
abilities	 make	 the	 details	 of	 this	 split	 equivocal,	 the	 most	 likely	
scenario	 is	 a	 split	 between	 the	 Gulf	 of	 Aqaba	 and	 the	 Red	 Sea,	
where	C. austriacus	subsequently	recolonized	the	entire	Red	Sea	but	
C. melapterus	 expanded	out	 to	 the	Gulf	of	Aden,	Arabian	Sea,	and	

Arabian	Gulf,	but	no	further.	The	extended	history	of	the	clade,	al-
though	not	completely	sampled	(see	Supporting	Information	Figure	
S2),	 suggests	 that	 a	 widespread	 ancestor	 expanded	 into	 the	 Red	
Sea	with	subsequent	vicariance	between	the	PO,	Indian	Ocean,	and	
Arabian	Peninsula	 sites.	 Indeed,	C. larvatus appears	 to	originate	 in	
Djibouti	 and	 the	Gulf	 of	 Aden	 followed	 by	 dispersal	 into	 the	 Red	
Sea	and	South	Oman.	Chaetodon trifascialis,	on	the	other	hand,	main-
tained	 connections	 across	 the	 Indo-West	 Pacific	with	 subsequent	
range	expansion	into	the	Red	Sea.

The	CH4	clade	has	been	the	most	successful	in	terms	of	butter-
flyfish	colonizing	 the	Red	Sea.	Eight	extant	 species	 from	CH4	are	
distributed	in	at	least	some	parts	of	the	Red	Sea	(Chaetodon auriga,	
C. fasciatus,	 C. leucopleura,	 C. lineolatus,	 C. melannotus, C. mesoleu‐
cos, C. pictus, and C. semilarvatus),	four	of	which	are	restricted	to	the	
Arabian	Peninsula	(C. fasciatus, C. mesoleucos, C. pictus, and C. semi‐
larvatus).	 Moreover,	 the	 reconstruction	 identified	 a	 mix	 of	 origin	
states	for	CH4	species	found	in	the	Red	Sea.	Both	C. fasciatus and	
C. leucopleura	have	their	origins	within	the	Red	Sea,	whereas	C. lin‐
eolatus	and	C. mesoleucos	have	their	origins	at	Socotra.	The	origins	
of	C. semilarvatus	are	placed	in	South	Oman,	whereas	the	origins	of	
C. pictus	are	placed	in	the	Gulf	of	Oman.	With	the	exception	of	C. lin‐
eolatus,	 a	widespread	 Indo-West	 Pacific	 species,	 all	 CH4	 lineages	
have	origins	in	the	Arabian	Peninsula	region	and	Indian	Ocean,	and	
subsequent	 dispersal	was	 limited	 from	 these	 sites.	Chaetodon lin‐
eolatus appears	 to	 be	 the	 only	 species	 in	CH4	 to	 originate	 in	 the	
Arabian	Peninsula	and	then	disperse	across	the	broader	Indo-West	
Pacific.	However,	unsampled	taxa	from	this	clade	are	more	widely	
distributed	 across	 the	 Indian	 and	 POs	 (Supporting	 Information	
Figure	S2).

Three	taxa	of	 the	bannerfish	clade	are	also	present	 in	 the	Red	
Sea	 (Heniochus diphreutes, H. intermedius, Forcipiger flavissimus),	
with	H. intermedius	considered	a	Red	Sea	to	Gulf	of	Aden	endemic.	
Despite	these	taxa	only	being	representative	of	a	small	proportion	
of	the	entire	bannerfish	clade,	the	reconstruction	suggests	a	wide-
spread	ancestor	that	diverged	in	the	Arabian	Peninsula	region	(H. in‐
termedius)	with	subsequent	(successful)	colonization	of	the	broader	
Indo-West	Pacific	(H. diphreutes	and	F. flavissimus).

TA B L E  2  Akaike	information	criterion	(AIC)	model	testing	based	on	distribution	patterns	for	butterflyfish	lineages	using	the	time-
calibrated	phylogeny	analyzed	with	the	R	module	BioGeoBEARS,	where	d	represents	the	dispersal	parameter,	e	represents	the	extinction	
parameter,	and	j	represents	founder-event	speciation

Ln likelihood
Number of 
parameters d e j AIC AIC weight

DEC −255.13 2 0.06 0 0 514.25 0.03

DEC+J −250.79 3 0.05 0 0.04 507.58 0.76

DIVALIKE −253.88 2 0.07 0.04 0 511.76 0.09

DIVALIKE+J −252.76 3 0.06 0.02 0.03 511.52 0.11

BAYAREALIKE −259.86 2 0.05 0.18 0 523.71 0

BAYAREALIKE+J −255.48 3 0.04 0.08 0.06 516.96 0.01

For	these	models,	we	coded	each	taxon	based	on	presence/absence	in	nine	discrete	geographical	areas:	 (A)	Gulf	of	Aqaba,	 (B)	rest	of	Red	Sea,	 (C)	
Djibouti	and	Gulf	of	Aden,	(D)	Socotra,	(E)	South	Oman,	(F)	Arabian	Gulf,	(G)	Gulf	of	Oman	and	Pakistan,	(H)	rest	of	Indian	Ocean,	and	(I)	Pacific	Ocean.	
Bold	indicates	the	favored	model	based	on	AIC	scores.
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3.4 | Correlational trait analysis: evaluation of the 
“ecological trait” hypothesis

Based	 on	 the	 best-fit	 PGLM,	 depth	 range	 and	 phylogenetic	 age	
were	negatively	correlated	with	endemism,	with	depth	range	being	
a	stronger	predictor	than	phylogenetic	age	(Table	3,	Figures	5	and	
6).	 Exploring	 these	 relationships	 using	 a	 regression	 tree	 approach	
reveals	 that	 the	effect	of	phylogenetic	age	 is	dependent	on	depth	
range.	Endemic	species	from	the	Arabian	Peninsula	region	are	there-
fore	more	 likely	to	be	younger	than	widespread	ones,	but	only	for	
those	 species	 with	 depth	 ranges	 extending	 to	 mesophotic	 reefs	

(depth	range	>27	m;	Figures	5	and	6).	Endemism	was	not	correlated	
with	any	of	the	other	factors	in	the	analysis	for	the	butterflyfishes	
considered	here	(Supporting	Information	Tables	S2	and	S4).

4  | DISCUSSION

This	study	used	901	 loci	 to	successfully	generate	a	genome-scale	
phylogeny	 of	 bannerfishes	 and	 butterflyfishes	 endemic	 to	 the	
coastal	 reefs	 of	 the	 Arabian	 Peninsula.	 This	 is	 the	 first	 time	 this	
genomic	 method	 has	 been	 applied	 to	 species-level	 phylogenetic	

F I G U R E  4  Ancestral	range	estimations	inferred	using	the	DEC+J	model	based	on	a	time-calibrated	Bayesian	phylogeny	of	
Chaetodontidae	species.	States	at	branch	tips	indicate	the	current	geographical	distributions	of	taxa,	whereas	states	at	nodes	indicate	the	
inferred	ancestral	distributions	before	speciation	(middle)	and	after	(corner).	The	regions	considered	in	this	analysis	include	the	following:	
Gulf	of	Aqaba,	rest	of	Red	Sea,	Djibouti	and	Gulf	of	Aden,	Socotra,	South	Oman,	Arabian	Gulf,	Gulf	of	Oman	and	Pakistan,	rest	of	Indian	
Ocean,	and	Pacific	Ocean.	Abbreviations:	Plio.	=	Pliocene;	Ple.	=	Pleistocene.	Significant	vicariance	in	the	Red	Sea	to	Arabian	Gulf	region	is	
indicated	by	red	dashed	lines

B
annerfishes

C
lade C

H
2 

C
lade C

H
3 

C
lade C

H
4

Gulf of Aqaba

Red Sea

Dijibouti & Gulf of Aden

Socotra

South Oman

Arabian Gulf

Gulf of Oman & Pakistan

Indian Ocean

Pacific Ocean

Oligocene Miocene Plio. Ple.

30 25 20 15 10 5 0

A B C D E F G H I

Forcipiger longirostris

Forcipiger flavissimus

Heniochus intermedius

Heniochus diphreutes

Heniochus acuminatus

Chaetodon unimaculatus

Chaetodon kleinii

Chaetodon trichrous

Chaetodon madagaskariensis

Chaetodon mertensii

Chaetodon xanthurus

Chaetodon paucifasciatus

Chaetodon pelewensis

Chaetodon punctatofasciatus

Chaetodon guttatissimus

Chaetodon trifasciatus

Chaetodon lunulatus

Chaetodon austriacus

Chaetodon melapterus

Chaetodon larvatus

Chaetodon baronessa

Chaetodon triangulum

Chaetodon plebeius

Chaetodon speculum

Chaetodon zanzibarensis

Chaetodon bennetti

Chaetodon trifascialis

Chaetodon gardineri

Chaetodon leucopleura

Chaetodon melannotus

Chaetodon auripes

Chaetodon fasciatus

Chaetodon lunula

Chaetodon collare

Chaetodon oxycephalus

Chaetodon falcula

Chaetodon lineolatus

Chaetodon semilarvatus

Chaetodon mesoleucos

Chaetodon nigropunctatus

Chaetodon dialeucos

Chaetodon pictus

Chaetodon decussatus

Chaetodon vagabundus

Chaetodon auriga

Infilling of Arabian Gulf (~14 Ka)

Last Glacial Maximum (~18 Ka)

 Closure of Red Sea connection to Mediterranean Sea

Formation of Strait of Bab al Mandab

Ma

A
B
C
D
E
F
G
H
I



11002  |     DIBATTISTA eT Al.

analyses	of	a	reef	fish	group.	Our	phylogeny,	which	includes	all	shal-
low	water	 chaetodontid	 species	 found	 in	 the	Red	Sea	 to	Arabian	
Gulf	 and	 their	 close	 relatives	 distributed	 throughout	 the	 Indo-
West	 Pacific,	 provides	 divergence	 times	 with	 narrow	 confidence	
intervals	 and	 biogeographic	 insight	 into	 this	 endemism	 hotspot.	

Reconstructing	the	evolutionary	history	of	these	fishes	with	their	
widespread	 relatives	 does	 not	 appear	 to	 support	 the	 evolution-
ary	 incubator	 hypothesis.	 That	 is,	 despite	 generating	 significant	
biodiversity	in	the	form	of	endemic	species,	these	peripheral	areas	
of	 the	Arabian	Peninsula	 do	not	 appear	 to	 have	 exported	 signifi-
cant	biodiversity	 to	 the	central	 Indo-West	Pacific.	 In	 fact,	poten-
tially	only	three	species	with	reconstructed	origins	 in	the	Arabian	
Peninsula	 (C. lineolatus,	H. diphreutes,	 and	 F. flavissimus)	 appear	 to	
subsequently	disperse	to	the	Indo-West	Pacific.	Our	phylogenetic	
analyses	also	revealed	that	most	endemic	species	originated	prior	
to	and	persisted	 through	 the	major	environmental	 fluctuations	of	
the	Pleistocene,	which	does	not	 support	 the	Pleistocene	extirpa-
tion	hypothesis.	The	ecological	 trait-based	analyses	 revealed	 that	
the	evolution	of	Red	Sea	to	Arabian	Gulf	endemic	butterflyfishes	
was	associated	with	specialization	to	shallow	reef	habitat	and,	to	a	
lesser	extent,	species’	phylogenetic	age.

4.1 | Evaluation of the “evolutionary 
incubator” hypothesis

The	Red	Sea,	Gulf	of	Aden,	Arabian	Sea,	and	Arabian	Gulf	are	all	pe-
ripheral	to	the	broader	Indo-West	Pacific	biogeographic	region	and	
potentially	produce/contribute	new	reef	 fish	species	 to	 the	center	
(see	Bowen	 et	 al.,	 2013;	Hodge	 et	 al.,	 2014).	 Temporally,	 the	Red	
Sea	 to	 Arabian	Gulf	 butterflyfish	 assemblage	 (17	 species	 in	 total)	
is	 made	 up	 of	 recently	 diverged	 lineages,	 with	 ages	 ranging	 from	
4.17	Ma	(F. flavissimus)	to	1.16	Ma	(C. austriacus/C. melapterus	split).	
In	a	few	cases,	the	Red	Sea	to	Gulf	of	Aden	endemics	appear	to	have	
diverged	 as	 the	 earliest	 lineage	 of	 that	 clade	 (e.g.,	C. larvatus and	
C. semilarvatus;	Figures	2	and	3).	Indeed,	the	“oldest”	endemic	but-
terflyfish	lineage	in	our	study,	C. larvatus (2.86	Ma,	4.3–1.6	Ma	95%	
HPD),	appeared	in	the	late	Pliocene,	and	diverged	from	an	Indo-West	
Pacific	lineage	that	later	gave	rise	to	species	allopatric	between	the	
two	ocean	basins	 (C. triangulum in	 the	 Indian	Ocean	 and	C. baron‐
essa	in	the	PO).	The	ancestral	range	reconstruction	of	these	Arabian	
Peninsula	endemics	demonstrates	consistent	colonization	routes	to	
the	 Red	 Sea	 and	Arabian	 Sea	 via	 the	 Indian	Ocean	 from	 the	 east	
(Figure	4),	but	with	few	examples	of	reciprocal	expansion	from	the	

F I G U R E  6  The	classification	of	
species-level	traits	associated	with	
endemism	among	the	Red	Sea	to	Arabian	
Gulf	butterflyfishes	(a).	Data	on	the	
leaves	(represented	by	squares)	provide	
the	probability	of	endemism	(top)	and	
the	percentage	of	all	observations	in	the	
node	(bottom).	The	right	panel	shows	the	
prediction	surface	(b)
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TA B L E  3  Summary	of	the	final	(best)	phylogenetic,	linear	
multi-regression	model,	based	on	estimated	probability	of	
endemism	as	a	response	variable,	selected	after	the	backward	
stepwise	phylostep	procedure

Estimate SE z value p value

(Intercept) 6.170 2.506 2.461 0.013

Depth	range −1.423 0.543 −2.620 0.008

Phylogenetic	age −1.209 0.694 −1.742 0.061

Coefficients	in	bold	indicate	significance	(p < 0.05).

F I G U R E  5  Estimated	probability	of	endemism	among	Red	
Sea	to	Arabian	Gulf	butterflyfish	species,	including	some	of	their	
closest	congeners,	as	a	function	of	depth	range.	Different	line	
types	represent	variability	in	estimated	species	phylogenetic	age	
extracted	from	Figure 2	(see	legend)
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Arabian	Peninsula	back	to	the	 Indian	Ocean	and	PO.	For	example,	
both	C. larvatus and	C. semilarvatus	 appear	 to	 have	 historically	 di-
verged	in	Djibouti/Gulf	of	Aden	and	South	Oman,	respectively,	suc-
cessfully	colonized	the	Red	Sea,	but	not	established	further	south	
and	east	based	on	present	day	distributions.	Similar	reconstruction	
results	were	obtained	for	the	regional	endemic	C. pictus	(Red	Sea	to	
Gulf	of	Oman),	which	showed	apparent	historical	divergence	in	the	
Gulf	of	Oman	and	only	recent	colonization	of	the	southern	limits	of	
the	Red	Sea.

Other	endemics	appear	to	have	historically	diverged	within	the	
Red	Sea	(C. fasciatus)	or	adjacent	Djibouti	and	Gulf	of	Aden	(C. pauci‐
fasciatus)	but	not	colonized	any	further	to	the	southeast.	Although	
equivocal	based	on	the	probabilistic	uncertainty	of	nodes	in	the	an-
cestral	range	reconstruction	of	the	most	likely	model	(DEC+J),	there	
are	a	number	of	competing	explanations	 for	how	C. austriacus	and	
C. melapterus	 diverged	 from	 each	 other	 within	 the	 coastal	 waters	
of	the	Arabian	Peninsula	(also	see	Waldrop	et	al.	2016),	particularly	
since	 C. melapterus	 is	 the	 only	 species	 in	 this	 complex	 present	 in	
the	Arabian	Gulf.	 The	most	 likely	 explanation	 is	 based	on	present	
day	 distributions	 (Figure	 3c):	 C. austriacus	 is	 largely	 restricted	 to	
the	northern	and	central	Red	Sea	(with	rare	records	in	the	southern	
Red	Sea	and	outside	of	the	Red	Sea),	whereas	C. melapterus	is	most	
abundant	within	or	adjacent	to	the	Arabian	Gulf	(with	rare	records	
in	 the	 southern	 Red	 Sea)—these	 bodies	 of	 water	 show	 opposite	
trends	in	terms	of	productivity,	sea	surface	temperature,	and	tem-
poral	patterns	of	environmental	variation	 (Pous,	Lazure,	&	Carton,	
2015;	Raitsos	et	al.,	2013).	These	environmental	conditions	are	ad-
ditionally	significantly	different	from	the	rest	of	the	 Indian	Ocean,	
and	thus,	the	unique	conditions	in	the	Red	Sea	and	Arabian	Gulf	may	
help	 explain	how	endemics	 evolved,	 or	 at	 least,	 concentrated	 and	
persisted	in	these	peripheral	locations.

Despite	 a	 lack	 of	 supporting	 evidence	 for	 the	 evolutionary	
incubator	 hypothesis,	 a	 clear	 pattern	 emerges	 that	 the	 unique	
environmental	conditions	in	these	peripheral	seas	may	have	con-
tributed	 to	 the	 formation	of	 endemic	 species	 as	outlined	 above.	
For	 example,	 some	 butterflyfish	 subclades	 are	 comprised	 en-
tirely	 of	 regional	 endemics	 (e.g.,	 C. dialeucos, C. mesoleucos,	 and	
C. nigropunctatus),	 which	 provides	 further	 evidence	 that	 coral	
reef	 habitat	 surrounding	 the	 Arabian	 Peninsula	 may	 have	 gen-
erated	 a	 number	 of	 new	 taxa.	Moreover,	C. dialeucos,	 an	Omani	
species,	 shows	geographical	 divergence	with	 the	 remaining	 taxa	
in	its	group	(Figure	3),	which	all	went	on	to	colonize	the	Red	Sea	
and	the	Arabian	Gulf	and	must	have	therefore	encountered	con-
trasting	 environments	 at	 the	 western	 and	 eastern	 margins	 of	
their	 range.	The	shallow	Arabian	Gulf	 started	 to	 fill	with	seawa-
ter	approximately	14,000	years	ago	after	being	dry	prior	 to	 that	
during	the	last	glacial	maximum	(Lambeck,	1996),	suggesting	that	
it	 was	 seeded	 by	 successive	waves	 of	 colonization	 from	 coastal	
Oman.	The	same	process	would	have	been	ongoing	at	 the	west-
ern	margin	 of	 the	C. dialeucos	 range,	 except	 that	 the	 conditions	
encountered	in	the	Red	Sea	would	have	contrasted	to	those	in	the	
Arabian	 Gulf	 (DiBattista,	 Choat,	 et	 al.,	 2016).	 So,	 while	 there	 is	
some	evidence	 to	 suggest	vicariance	at	 the	 scale	of	 the	Arabian	

Peninsula	 (i.e.,	 diversification	 of	most	 taxa	 occurred	 in	 the	 Plio-
Pleistocene),	a	stronger	scenario	is	that	natural	selection	driven	by	
the	major	differences	in	environment	and	habitat	within	the	area	
probably	 played	 an	 important	 role	 in	 the	 formation	 of	 endemic	
species	assemblages	(e.g.,	Gaither	et	al.,	2015).	Thus,	even	though	
the	distribution	of	some	of	 the	butterflyfishes	considered	 in	 the	
present	study	does	stop	abruptly	at	the	entrance	of	the	Strait	of	
Hormuz	 (Chaetodon collare,	C. pictus,	and	C. gardneri),	 it	does	not	
support	the	argument	for	geographically	driven	allopatry.	Indeed,	
all	of	 these	species	have	a	different	distributional	 response	near	
the	other	end	of	their	distribution	at	the	Strait	of	Bab	al	Mandab,	
which	 includes	stopping	before	 the	Straits	or	extending	 through	
the	Straits	into	the	southern	Red	Sea	(Figure	3).	The	alternative	is	
that	the	incumbent	widespread	butterflyfish	may	have	restricted	
the	Red	Sea	to	Arabian	Gulf	endemics	from	expanding	further	via	
competitive	exclusion.

The	current	environment	of	the	Red	Sea	is	spatially	structured	with	
major	contrasts	in	the	cool	oligotrophic	waters	of	the	northern	region	
compared	 to	 the	much	higher	 temperatures	 and	productivity	 of	 the	
southern	 region	 (i.e.,	Farasan	 Islands	 in	Saudi	Arabia	 to	 the	east	and	
Dhalak	Archipelago	in	Eritrea	to	the	west)	(Racault	et	al.,	2015;	Raitsos	
et	 al.,	 2013).	 This	 shift	 in	 environmental	 conditions	 is	 most	 clearly	
demonstrated	 in	 the	differences	 in	 life	history	 traits	associated	with	
reef	fish	species	that	occur	in	both	areas,	but	is	also	seen	in	abundance	
estimates	 across	 these	 gradients	 (DiBattista,	 Roberts,	 et	 al.,	 2016;	
Roberts	et	al.,	2016).	Such	putative	selection	gradients	are	most	evi-
dent	in	corals,	which	show	signatures	of	local	adaptation	to	divergent	
environmental	conditions	(D’Angelo	et	al.,	2015).

4.2 | Evaluation of the “Pleistocene 
extirpation” hypothesis

The	second	hypothesis	that	we	tested	in	this	study	was	the	Pleistocene	
extirpation	 hypothesis,	which	 predicts	 that	 all	 Red	 Sea	 fauna	were	
eliminated	 during	 the	 last	 glacial	 maxima	 (~18	ka)	 and	 were	 only	
re-populated	via	 recent	colonization	events	 (see	Biton	et	al.,	2008).	
The	 number	 of	 species	 diverging	 at	 early	 stages	 in	 the	 Pleistocene	
disputes	the	argument	that	Red	Sea	fauna	did	not	survive	complete	
closure	 or	 restriction	 of	water	 flow	 at	 the	 Strait	 of	 Bab	 al	Mandab	
(Figure	2).	Although	it	clearly	does	not	coincide	with	a	single	vicari-
ance	event	given	the	variability	in	the	splitting	dates	between	closely	
related	 species	 (Figure	 3;	 see	 Michonneau,	 2015	 for	 invertebrate	
examples)	and	ancestral	range	reconstruction	favoring	+J	parameter	
models	(i.e.,	founder	events	between	non-adjacent	ocean	regions;	see	
Table	2),	glaciations	likely	played	a	role	in	their	separation.	Moreover,	
even	though	almost	all	 sister	species	have	small	areas	of	overlap	at	
their	 range	edge,	which	 is	usually	 associated	with	allopatric	 specia-
tion,	in	our	case	these	do	not	coincide	with	geographical	boundaries	
(i.e.,	vicariant	chokepoints)	such	as	the	Strait	of	Bab	al	Mandab	(see	
Figure	3;	Lambeck,	1996;	DiBattista,	Choat,	et	al.,	2016).	In	fact,	the	
non-congruent	age	and	distribution	of	the	endemic	species	indicate	a	
series	of	variable	events,	which	may	reflect	localized	patterns	of	habi-
tat	and	environmental	change	as	outlined	in	the	previous	Discussion	
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section.	 The	 best	 example	 is	 the	 relatively	 young	 clade	 of	Arabian	
Peninsula	endemics:	C. dialeucos,	C. nigropunctatus,	and	C. mesoleucos 
(crown	node	age	2.0	Ma;	2.9–1.2	Ma	95%	HPD).	This	group	appears	
to	have	been	influenced	by	boundaries	presented	by	the	Omani	coast-
line	 across	 areas	where	 there	 are	 known	 changes	 in	 the	 upwelling	
regime	(McIlwain,	Claereboudt,	Al-Oufi,	Zaki,	&	Goddard,	2005;	Shi,	
Morrison,	Bohm,	&	Manghnani,	2000).	This	is	in	sharp	contrast	to	the	
Indo-West	 Pacific	 parrotfishes,	where	 present	 day	 species	 bounda-
ries	 support	 the	 notion	 of	 allopatric	 divergence	 (Choat,	 Klanten,	
Herwerden,	Robertson,	&	Clements,	2012),	and	endemics	appear	to	
have	diverged	 into	one	or	more	subsequent	endemics	 (i.e.,	 second-
ary	endemism;	Rotondo,	Springer,	Scott,	&	Schlanger,	1981)	based	on	
sympatrically	distributed	sister-species	pairs	(highlighted	in	Choat	et	
al.,	2012).	Moreover,	Red	Sea	endemics	from	most	other	families	of	
reef	fish	appear	to	have	equal	proportions	of	allopatrically	and	sympa-
trically	distributed	sister	species	(Hodge	et	al.,	2014),	which	is	not	the	
case	for	the	butterflyfishes.

The	diversification	of	these	butterflyfishes	occurred	at	a	time	
when	 the	 coral	 assemblages	 of	 the	 world’s	 reefs	 underwent	 a	
major	change	 in	coral	composition	and	growth	forms.	The	global	
proportion	 of	 staghorn	 coral	 occurrences	 in	 coral	 assemblages	
persisted	throughout	most	of	the	Cenozoic	but	increased	substan-
tially	during	the	Pliocene	and	especially	the	Quaternary	(Renema	
et	al.	2016).	Indeed,	the	rapidly	growing	branching	acroporid	cor-
als	offered	different	structural	components	in	terms	of	shelter	and	
feeding/foraging	modes	when	compared	to	massive	corals	such	as	
poritids	that	dominated	Miocene	reefs	more	than	5	Ma.	Thus,	the	
chaetodontids	of	the	Arabian	Peninsula	(particularly	the	corallivo-
rous	species)	were	exposed	to	a	much	more	dynamic	environment	
than	the	widespread	Indo-West	Pacific	species	(Coles,	2003)	be-
cause	 of	 their	 close	 association	with	 sensitive	 coral	 genera	 that	
proliferated	in	the	region.

4.3 | Evaluation of the “ecological trait” hypothesis

The	third	hypothesis	that	we	test	here	 is	whether	ecological	traits	
are	 linked	 to	 the	 evolution	 of	 endemism	 among	 butterflyfishes	 in	
the	Red	Sea	 to	Arabian	Gulf.	We	 found	 a	 negative,	 significant	 re-
lationship	between	endemism	and	depth	range	and,	to	a	lesser	ex-
tent,	 phylogenetic	 age	 for	 these	 butterflyfishes	 (Figures	 5	 and	 6).	
The	 relationship	between	a	narrow	versus	broad	depth	 range	and	
endemism	supports	the	view	that	endemic	species	tend	to	be	more	
specialized	 to	 local	 resources	 than	 widespread	 species	 (Hawkins,	
Roberts,	&	Clark,	2000).	The	majority	of	 regional	endemics	 in	 this	
study	 had	 depth	 ranges	 that	 did	 not	 extend	 deeper	 than	 25	m	
(Figure	6),	 despite	 the	 availability	 of	 light	 dependent	 coral	 habitat	
extending	beyond	that	(Kahng	et	al.,	2010).	The	broad	range	of	ages	
represented	by	these	shallow	water	specialists	suggests	that	adap-
tation	 to	 shallow	 reefs	 occurred	multiple	 times	 across	 a	 relatively	
wide	 time	 frame	 (i.e.,	1.3–3.3	Myr).	On	 the	other	hand,	 speciation	
of	endemics	with	a	preference	for	deep	reefs	seems	to	be	a	recent	
phenomenon,	as	deeper	depth	ranges	were	strongly	associated	with	
young	age	(<1.75	Myr;	Figure	6).

4.4 | Comments on incomplete sampling and 
biogeographic biases

The	goal	of	this	study	was	to	reconstruct	the	evolutionary	history	
of	Red	Sea	to	Arabian	Gulf	butterflyfishes.	As	is	the	case	with	all	
phylogenetic	and	biogeographic	reconstructions,	our	results	have	
to	 be	 interpreted	 in	 light	 of	 the	 taxa	 that	 are	 not	 sampled,	 both	
extant	 and	 extinct.	 Indeed,	 the	 inclusion	 of	missing	 taxa	 has	 the	
potential	 to	 alter	 lineage	 relationships	 and	 their	 age	 estimates,	
whereas	 their	 geographic	 distribution	 may	 alter	 the	 most	 likely	
biogeographic	scenarios	reconstructed	across	the	tree	(see	discus-
sion	 in	Cowman	&	Bellwood,	 2013).	Here,	we	were	 able	 to	 sam-
ple	all	Red	Sea	 to	Arabian	Gulf	butterflyfishes	 (save	one	species,	
R. jayakari),	and	their	close	relatives	from	the	Indian	Ocean	and	PO,	
across	 four	major	 chaetodontid	 lineages	 (Supporting	 Information	
Figure	 S2).	 From	 a	 temporal	 perspective,	 the	 topology	 and	 ages	
estimated	 for	 the	genomic	 scale	UCE	data	overlap	with	previous	
studies	(Supporting	Information	Figures	S2	and	S3).	Moreover,	our	
sampling	of	eight	 species	 that	have	not	previously	been	 included	
in	phylogenetic	 studies	of	 the	Chaetodontidae	 family	means	 that	
for	 13	 out	 of	 the	 17	 Arabian	 Peninsular	 species,	 we	 are	 confi-
dent	 that	we	have	sampled	their	direct	sister	 lineage.	Two	of	 the	
outstanding	 three	 species	 (C. melannotus, C. trifascialis)	 are	wide-
ranging	Indo-West	Pacific	taxa	that	are	reconstructed	to	have	dis-
persed	 to	 the	Arabian	Peninsula	 (Figure	4).	The	most	 likely	 sister	
species	 of	C. melannotus	 is	C. ocellicaudus (Kuiter,	 2002;	 also	 see	
Supporting	Information	Figure	S2),	a	west	Pacific	species	not	sam-
pled	in	our	dataset.	 In	the	case	of	C. trifascialis,	 it	 is	placed	as	the	
sister	lineage	for	a	subclade	of	CH3	containing	10	species	distrib-
uted	across	 the	 Indian	Ocean	and	PO,	of	which	we	sampled	 four	
species	 (Supporting	 Information	Figure	S2;	Cowman	&	Bellwood,	
2011).	The	final	outstanding	species,	C. leucopleura,	 is	placed	as	a	
sister	species	to	C. gardineri.	Both	species	have	not	previously	been	
sampled	 in	phylogenetic	studies,	but	are	recognized	to	be	closely	
related	to	a	third	species,	Chaetodon selene (widespread	in	the	west	
Pacific,	Kuiter,	2002),	which	was	not	sampled	in	our	UCE	dataset.	
In	each	of	these	three	cases,	and	more	broadly	across	the	family,	
the	 inclusion	 of	 unsampled	 species	would	 increase	 the	 influence	
of	the	Indian	Ocean	and	PO	in	the	ancestral	estimation	of	biogeo-
graphic	ranges.	As	such,	it	would	act	to	strengthen	our	conclusion	
that	 even	 though	 the	 Red	 Sea	 and	 adjacent	 gulfs	 and	 seas	 have	
been	 important	for	the	generation	of	endemic	species,	they	have	
had	little	contribution	to	the	wider	Indo-West	Pacific	diversity	of	
butterflyfishes.

5  | CONCLUSION

It	appears	that	the	unique	environmental	conditions	 in	the	coastal	
waters	of	the	Arabian	Peninsula	may	have	contributed	to	the	forma-
tion	of	endemic	butterflyfishes;	however,	there	is	a	lack	of	evidence	
for	 endemics	 contributing	 significant	 species	 richness	 to	 adjacent	
seas	 (i.e.,	evolutionary	 incubator	hypothesis).	Moreover,	even	with	
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catastrophic	environmental	 instability	experienced	by	the	Red	Sea	
and	coastal	environments	of	the	Arabian	Peninsula	due	to	sea	level	
changes	associated	with	glacial	cycles	(Ludt	&	Rocha,	2015),	there	is	
no	evidence	for	a	massive	extirpation	of	butterflyfish	fauna	 in	the	
region	(i.e.,	Pleistocene	extirpation	hypothesis;	also	see	DiBattista,	
Choat,	et	al.,	2016).	The	broad	range	of	phylogenetic	ages	among	en-
demic,	shallow	water	butterflyfishes	supports	the	view	that	species	
may	have	survived	in	isolated	refugia	within	the	Red	Sea	(DiBattista,	
Choat,	 et	 al.,	 2016).	 None	 of	 the	 dispersal-related	 traits	were	 as-
sociated	with	endemism,	 suggesting	 that	 factors	other	 than	 those	
related	to	species	intrinsic	dispersal	potential	may	be	limiting	disper-
sal	into	the	greater	Indian	Ocean	(e.g.,	coastline	geography,	oceano-
graphic	barriers).
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