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The life table entropy provides useful information for understanding improvements in mortality and
survival in a population. In this paper we take a closer look at the life table entropy and use advanced
mathematical methods to provide additional insights for understanding how it relates to changes in
mortality and survival. By studying the entropy (H) as a functional, we show that changes in the entropy

KeYWOT,d&' depend on both the relative change in life expectancy lost due to death (e') and in life expectancy at
?/ilgggg birth (eo). We also show that changes in the entropy can be further linked to improvements in premature
Entropy and older deaths.‘We 111ustrfate our methgds wlth emp}rlcal data frgm Latlp AmerlFan 'countrles, whlch
Survival suggests that at high mortality levels declines in H (which are associated with survival increases) linked

with larger improvements in ey, whereas at low mortality levels e’ made larger contributions to H. We
additionally show that among countries with low mortality level, contributions of e to changes in the life
table entropy resulted from averting early deaths. These findings indicate that future increases in overall

survival in low mortality countries will likely result from improvements in ef.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The life table is perhaps the most useful tool in mortality anal-
yses, as it summarizes the mortality experience of a population
at a given point in time into a set of simple indicators (Preston
et al., 2000). For example, life expectancy, a by-product of the life
table, has been used extensively and widely as a measure of
population health in national and international contexts (United
Nations, 2012). Other life table measures such as the life table
entropy, however, have received much less attention, although the
entropy could also be considered an equally useful indicator for un-
derstanding improvements in mortality and survival in a popula-
tion (Wilmoth and Horiuchi, 1999).

In this paper we take a closer look at the life table entropy
and provide additional insights for understanding how it relates
to changes in mortality and survival. Unlike previous work that re-
lied on univariate calculus (e.g., Demetrius, 1974, 1975, 1976, 1978,
1979; Goldman and Lord, 1986; Keyfitz, 1977), we provide a more
rigorous development and a further description of the life table
entropy using the calculus of variations. This approach has previ-
ously been used in demographic research (Arthur, 1984; Beltran-
Sanchez and Soneji, 2011; Preston, 1982), and as we show, it

* Corresponding author.
E-mail addresses: ofernand@wellesley.edu (O.E. Fernandez), beltrans@ucla.edu
(H. Beltran-Sanchez).

http://dx.doi.org/10.1016/j.tpb.2015.07.001
0040-5809/© 2015 Elsevier Inc. All rights reserved.

provides us with additional tools to deepen our understanding of
the population entropy and overall population survival. We focus,
in particular, on a widely used measure of mortality improvement
- life expectancy at birth (which represents the average length of
life in the survival curve of a population) - and an additional mea-
sure called e that has recently been proposed as a marker of lifes-
pan inequality (Zhang and Vaupel, 2009). For example, averting
deaths at younger ages (premature deaths) is associated with re-
ductions in lifespan inequality (Zhang and Vaupel, 2008). Recent
evidence from 40 countries shows a negative correlation between
life expectancy (eg) and lifespan disparity (ef) from 1840 to 2009,
with most of the increase in life expectancy resulting from im-
provements in premature deaths (Vaupel et al., 2011). The authors
conclude that improvements in life expectancy at birth can also be
accompanied by reductions in lifespan disparity (ef). In this paper
we provide a mathematical foundation for these empirical find-
ings by linking changes in the life table entropy, life expectancy
at birth, and lifespan disparity. We demonstrate, mathematically
and empirically, that changes in the entropy depend on both the
relative change in life expectancy lost due to death (ef) and in life
expectancy at birth (ep). We also show that changes in the entropy
can be further linked to averting premature and older deaths. These
results provide important implications for understanding current
and future changes in the overall survival of a population. For in-
stance, using data from Latin American countries for 1950-2005,
we show that at low mortality levels changes in e' contributed the
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most to overall survival, indexed by the entropy, which resulted
from improvements in premature deaths. This implies that in these
countries future increases in overall survival will likely come from
changes in ef and that these improvements are likely to reduce
lifespan inequality as a result of averting early deaths (Zhang and
Vaupel, 2008, 2009).

The paper is organized as follows. We begin in Section 2 with
a brief overview of the mathematical definitions of the mortality
and survival functions, and the life expectancy and entropy (for the
interested reader, Appendix A.1 contains a brief literature review of
the entropy). We then review how the entropy is used to measure
relative changes in life expectancy in Section 2.1, and discuss the
functional nature of the entropy in Section 2.2. We present our
main results in Sections 2.3-2.4, where we use the calculus of
variations (reviewed in Appendix B) to show that changes in the
entropy depend on both the relative change in life expectancy
lost due to death (ef) and in life expectancy at birth (eg) - c.f.
(2.5) - and also provide a new way to describe the effect of
changes in the mortality function on the population entropy (c.f.
Proposition 2). In Section 3 we further link changes in the entropy
with improvements in premature and older deaths in relation to
eo and ef. Section 4 applies our results to mortality data from
18 Latin American countries from about 1950 to 2008. Therein
we discuss our finding that at high mortality levels declines in H
(which are associated with survival increases) linked with larger
improvements in ey, whereas at low mortality levels e made larger
contributions to H. We end with concluding remarks in Section 5.

2. The entropy

The life table entropy is commonly used throughout demog-
raphy to study the relative changes in life expectancy associated
with changes in age-specific mortality rates. In this section we re-
view the construction of the entropy due to Keyfitz (1977) (see Ap-
pendix A.1 for a brief history), and then present our main analytical
results.

2.1. The demographic motivation for introducing the entropy

Let u(x) be the force of mortality at age x. The probability of
surviving from birth to age x is then

S(x) = e~ Jor@ds, (2.1)

so that life expectancy at age x is given by

e(x) :/ e Jon®ds gq.

In many of the situations of interest to us in this paper, x is fixed
and w(s) may vary. For instance, we may be interested in studying
changes in life expectancy at birth (which implies that x = 0). We
therefore introduce the following notation to reflect these cases:

Slpu(s)] = e o rOS e [u(s)] = / el OB e (22)

Consider now a relative increase ¢ > 0 in u - that is, a
proportional increase in w at all ages - similar to that proposed
by Keyfitz (1977). Then the new mortality function is (1 + €)u(s)
(note that A = €, so that Au/u = €), the new probability of
surviving from birth to age x is

SA(1+ Ou) = ¢ HOromes — (= fros)™

Sulps)D'e,

and the new life expectancy at age x is

o0
ex[(1+eu(s) = / S(a)'*< da.
X
Without loss of generality, let us specialize to the most studied case
of life expectancy—life expectancy at birth:

o0
eo[(1+e)u(s)] = / S(a)'*< da.
0
We expect the relative increase in mortality to cause a relative
decrease in life expectancy. To measure this decrease, Keyfitz and
Caswell (2005, sec. 4.3.1) calculate deg/de|.—o and then consider €
to be finite but small to arrive at the approximation

Aeo fooos(x) In (S(x)) dx
€0 h fooos(x)dx €

Since 0 < S(x) < 1 (this follows from (2.1)), the ratio in the
parentheses is negative, confirming our expectation that a rela-
tive increase in mortality should result in a relative decrease in life
expectancy. Accordingly, the negative of the expression in paren-
theses is known as the entropy of the life table, and is customarily
denoted by H. More formally, we make the following definition.

(2.3)

Definition 1. Given a survival function S(x), the quantity defined
by

157 S@) In(S(x)) dx
Jo7 S(x) dx
is called the entropy of the population.

HIS®)] = —

(2.4)

We will explain the bracket notation in the next section, but
for now let us note that the approximation in (2.3) suggests the
following interpretation for H (Goldman and Lord, 1986): a small
proportional increase € in the death rate at all ages results in a pro-
portional decrease in life expectancy of approximately H times €.
For example, for H = 1 “when the death rates at all ages increase
by 1 percent, the expectation of life diminishes by 1 percent Key-
fitz and Caswell (2005, Sec. 4.3.1)”. Thus, H measures how rela-
tive changes in the mortality function affect the relative change
in life expectancy of a population. In other contexts H has other
interpretations (see Appendix A.2), but it is commonly known to
be “in general highly sensitive to variations in age-specific mor-
tality” Demetrius (1979) (Appendix A.3 contains a more thorough
discussion of this point), which makes it a useful tool for charac-
terizing a population’s survivorship.

2.2. Understanding the life table entropy (H) as a functional of the
survival function (S) and the force of mortality (11)

The preceding analysis described the effect on H of a specific
change in the mortality function wu(x) (and consequently, by (2.2),
in S(x)). This suggests that we view H as a functional—a quantity
whose input is a function and whose output is a real number.
Indeed, as (2.4) makes clear, H is a functional of S(x), since it takes
as input a survival function S(x) and outputs a real number (this is
why we have used the H[S(x)] notation). Similarly, H can also be
seen as a functional of . (x), in which case we write H[u(x)].

Functionals are similar to functions, except that the “indepen-
dent variable” is now a function. To better see this important dis-
tinction (and also the functional nature of H), consider the so-called
hyperbolic mortality example, where

a x\°
Sx) = (1——) ,
So — X So

) = ——r,
H[u(x)] = HIS®)] = a%
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Fig. 1. Plots of (a) u(x) = a/(1 — x) fora = 0.2,0.5, 1, 3, 10 (the a-values decrease as one moves from upper-left to lower-right), (b) S(x) = (1 —x)“ for

a=0.2,0.5, 1, 3, 10, and (c) the entropy H[;x(x)] = H[S(x)] = a/(a + 1).

For simplicity, set s = 1 so that we can uniquely identify a curve
in the family of mortality and survival curves, u(x) = a/(1 — x)
and S(x) = (1 —x)“ by the parameter a. Since H = a/(a + 1),
it follows that H assigns to each function u(x) = a/(1 — x) (or,
equivalently, S(x) = (1 — x)*) one number a/(a + 1), clearly
illustrating the functional nature of H. A plot of 1 (x) and S(x) for
various a-values is shown in Fig. 1 panels (a) and (b), respectively,
and the corresponding plot of the entropy H is shown in Fig. 1(c).

A closer look at panels (b) and (c) reveals two more
characteristics of H as a functional of S(x). Firstly, it detects the
degree of concavity (also called convexity) in an S(x) function.
Secondly, decreasing H values signal changes in the survival curve
toward greater survivorship. (Appendix A.3 contains a discussion
of these two general features of H.) By the same token, panels (a)
and (c) also indicate similar characteristics of H as a functional
of p(x) but in this case decreasing H values signal changes in
the force of mortality curve toward lower mortality. Because the
survival function is bounded, 0 < S(x) < 1, changes in S(x) have
“less room” to operate and this leads to different dynamics when
studying changes in H as a functional of S(x) versus when H is
a functional of wu(x)—which, at least theoretically, is unbounded.
Thus, the entropy H would express differential effects in response
to changes in the survival function (S(x)) or to changes in the
force of mortality (£(x)), and calculus of variations offers a unique
opportunity to study these changes. We study these two cases in
Sections 2.3 and 2.4, respectively.

2.3. A theorem concerning the entropy as a functional of the survival
function

Changes in functions are described by calculus, while changes in
functionals are described by the calculus of variations. (Appendix B
contains a brief review of the subject, as well as the notation
we will use throughout the remainder of the paper.) Importantly,

calculus of variations allow us to look at variations in the entire
survival function S(x) and their link with changes in H (as in Fig. 1),
as opposed to univariate calculus in which changes are localized at
a given point in the survival function. In this section we focus our
attention on 8H and §?H - the analogues of the first and second
derivatives of a single-variable function, respectively - and what
they can tell us about changes in the survival function. To begin,
let us note that the denominator of (2.4) is just eg[S(x)] (recall
(2.2)). Moreover, Goldman and Lord (1986) and Vaupel (1986) have
shown that the numerator of (2.4) - which includes the minus sign
- can be re-expressed as

/ N n@)Sxe(x) dx,
0

which has been traditionally denoted by ef (Vaupel, 1986).
Therefore,

el [s(] = — / " S0 In(s(0) dix,
0

so that the entropy (2.4) then becomes

e [Sx)]
eo[Sx)1

Now, denote by S(x; €) a family of smooth “varied curves”: curves
that are small perturbations of S(x) but have the same endpoint
values as S(x) (i.e., for all €, S(0; ¢) = S(0) and S(x;¢) — 0 as
x — 00).! The difference S(x; €) — S(x) is called the variation of
S(x) and is traditionally denoted by §S (c.f. Appendix B). We can
now prove the following theorem.

H[SX)] =

1 For example, p(x; €) = (14 €)u(x), the perturbation to the mortality function
discussed in Section 2.1, is a family of smooth varied curves for p(x).



O.E. Fernandez, H. Beltrdn-Sdnchez / Theoretical Population Biology 104 (2015) 26-45 29

Proposition 1. Let &S be a variation of the survival function S(x).
Then:

1. The relative change in H[S(X)] is
SHIS(x)] _ 8e'[S(x)] = —deolS()]
HIS)]  el[S®)] eo[S(x)]
where the first variations of et[S(x)] and ey[S(x)] are given by

(2.5)

8ef[S(x)] = —8eo[S(x)] — /OO In(S(x)) v(x) dx, (2.6)
0

o0
Sep[S(X)] = / v(x) dx, (2.7)
0
and where §S(x) has been expanded to first-order in €: 8S(x) =
ev(x), with v(x) a smooth function that vanishes at zero and as
X — oQ.
2. The second variation §*H[S (x)] is

, [T @)
PHISW] = — [fo S0 dx

+2 {(Seo&H + (/OO w(x) dx) H+1)
0

+ /*oo w(x) In(S(x)) dx” ,
0

where 6S(x) has been expanded to second-order in €: §S(x) =
ev(x) + €2w(x), where v(x) and w(x) are smooth functions that
vanish at zero and as x — Q.

(2.8)

The proof of Proposition 1 can be found in Appendix C.

Eq. (2.5) decomposes the relative change in H into the sum
of the relative changes in ef and ey. Therefore, this equation
shows that changes in overall survival, indexed by H, depend on
improvements in both et and in ey. In addition, Eq. (2.6) shows that
eo and ef change in opposite directions in response to a variation
in the survival function, since for small variations in S(x), where
v(x) — 0, the first variations of ey and e’ would be the exact
opposites of each other.

We end this section by noting that when ¢ is finite but small we
can use the first and second variation to approximate H[S + §S] to
second order in € (see also (B.8)):

2
HIS(x) + 8S(x)] ~ H[S(X)] + €SH[S(®)] + %(SZH[S(X)]. (2.9)

2.4. The entropy as a functional of the mortality function

Let us now return to the problem of studying the effect on
H of varying w(x). The following theorem is the analogue of
Proposition 1.

Proposition 2. Let S be a variation of the mortality function wu(s).
Then the relative change in H[ . (s)] is given by

SHIn®T _ seflu(s)]  —8eolu(s)]
H[u(s)] et[u(s)] el (s)]

where the first variations of e[ (x)] and eg[ i1 (x)] are given by
e [u(s)] = —8eo[n(s)]

(2.10)

- f Skl ()1 (Sx[1e()]) In(Sx[v(s)]) dx, (2.11)
0

BEO[M(S)]=/ Skl (s)] In(Sx[v($)]) dx, (2.12)
0

with Sy[v(s)] = e~ /0 v© 4 and where §4(s) has been expanded to
first-order in €: Su(s) = ev(s), with v(s) a smooth function that
vanishes at zero and as s — 0.

The proof of Proposition 2 can be found in Appendix C.

Although (2.10) is a direct analogue of (2.5), note that the
equations identifying the first variations of ef[S(x)] and e[S (x)]
((2.6)and (2.7)) are very different from those shown above in (2.11)
and (2.12). The extra terms shown in the latter case come from the
non-linear link between the force of mortality and average years of
life (et and Sep). These equations highlight the differential effect
on the entropy H resulting from changes in the survival function
(S(x)) versus changes in the force of mortality (w1 (x)).

Similar to Eq. (2.6), Eq. (2.11) shows that there is a negative
association between the first variation of ef[u(x)] and that of
eo[m(x)]—when one increases the other one decreases. Moreover,
for very small variations (§u(s) close to zero) the second term
in (2.11) becomes negligible (because Sy[v(s)]|ys~0 — 1 and
In(S¢[v(s)]) — 0), and the two variations become negatives of
each other.

2.5. Reproducing the Keyfitz result with Propositions 1 and 2

As a quick application of Propositions 1 and 2, let us show that
the calculation performed by Keyfitz and Caswell (2005, Sec. 4.3.1)
and reviewed in Section 2.1 is indeed an investigation of the change
in the functional H under the variation § © = € (s) of the mortality
function (Beltran-Sanchez and Soneji, 2011).

To begin, note that the new mortality function (1 + €)u(s) in
that calculation can be written

A+ u(s) = pu(s) + €u(s) = pu(s) +8u(s).

In the language of Proposition 2, this means that v(s) = wu(s), so
that (2.12) immediately gives

Seo  fo S In(S()) dx
e  [CSwdx
If we now consider € to be finite but small, applying (B.7) yields
Aeg Seo 157 S®) In(S(x)) dx
— R E— = €,
€o €o Jo7 Sx) dx

which verifies the entropy result of Keyfitz and Caswell (2005, sec.
4.3.1) (Eq. (2.3)).

We can also derive (2.13) (and therefore again reproduce (2.3))
using Proposition 1 as follows. The variation in the mortality
function causes a variation in the survival function S(x) of

85(x) = S —S(x) = SE)(SX) — 1) = S() (e — 1)
2
) (e in(s0) + e W ) .

(2.13)

(The terms in parentheses in the last equation come from Taylor-
expanding e€ "¢®) _ 1) Therefore, to first-order in €, the variation
in the mortality function results in a variation §S = €S(x) In(S(x))
in the survival function. Then, using (B.6) to compute the first
variation of ey[S(x)] we arrive at

ad
eo[S(X)] = [866’0 {S®) + €S(x) lﬂ(S(X))}]

e=0
= /OO S(x) In(S(x)) dx.
0

Dividing this equation by e, then yields (2.13).

Analytical expressions for the entropy are also known for other
special scenarios. In Appendix D we consider a few of these special
cases and apply Propositions 1 and 2 to again verify the results
found in the literature.
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3. Early deaths from late deaths

Propositions 1 and 2 allow us to study changes in the life ta-
ble entropy (H) associated with improvements in the survival and
mortality functions across all ages. These propositions can also be
used to provide additional insights to link premature and older
deaths with life table entropy, and to inform about changes in lifes-
pan disparity. For instance, an important property of et as a mea-
sure of life disparity is that there is a unique threshold age, a', that
separates early from late deaths (Zhang and Vaupel, 2009). The im-
portance of this age for overall survival is that improvements in
reducing early (premature) deaths reduces variation in lifespans
(overall survival), while improvements in late (older) deaths in-
creases variation in lifespans (Vaupel et al., 2011). An age a' sepa-
rates early from late deaths if 0 = ef(a')—ey(a*)[1—A(a')], where

A(ah) = anT w(s)ds is the cumulative hazard function (Zhang and
Vaupel, 2009).

Proposition 1 can be re-expressed to incorporate a given
threshold age at. The result is (Appendix E):

SHIS(X)] {b‘eT[S(x|x <ah]  —=8eo[S(x|x < ah)] }

H[S(x)] ef[S()] eo[S(x)]
{Se*[S(XIX >a")]  —Seo[S(x|x > a')] } (3.1)
ef[S(x)] eo[S(x)] T

where the first conditional variations of ef[S(x)] and eo[S(x)] are

given by

ot

Se[S(x|x < a)] = —8eg[S(x|x < a")] — / In(S(x)) v(x) dx, (3.2)
0

Se[S(x|x > a")] = —8eg[S(x|x > a®)] — /oo In(S(x)) v(x) dx, (3.3)
aT
ot

Seg[S(x|x < a")] = / v(x) dx, (3.4)

0
Seg[S(x|x > ah)] = / v(x) dx, (3.5)
ot

where v(x) is a smooth function that vanishes at zero and as
X — 00.

Eq. (3.1) shows that relative changes in the entropy can be
decomposed as the sum of relative changes in ef[S(x)] and
eo[S(x)] associated with early and late deaths. In addition, Eqgs.
(3.2)-(3.5) highlight the interplay between ef[S(x)] and eg[S(x)]
in determining overall survival when early and/or late deaths are
averted. Proposition 2 can also be written in analogous form to
(3.1) with its respective conditional variations in ef[u(s)] and
eol(s)] (Appendix E).

Note that the above equations are general in the sense that they
work with any threshold age. For instance, one may be interested
in investigating changes in the entropy associated with mortality
improvements below and above the mean, median, mode? or any
other moment of the survival probability function or the force of
mortality (Appendix E).

4. Application to Latin American mortality data

In this section we describe the results of applying Proposition 1
to assess changes in the entropy, H, and their corresponding link
with changes in ey and ef.

2 One may need to bound the estimate of the mode, e.g. for ages > 10, to avoid a
bi-modal distribution due to high number of deaths in childhood. In doing so one
would also need to bound the entropy accordingly.

Table 1
Latin American countries with available period mortality data by age and sex.
Source: Latin American Mortality Database (LAMBdA).

Country Years

Argentina 1953, 1965, 1975, 1985, 1996, 2005
Brazil 1985, 1995, 2005

Chile 1956, 1965, 1976, 1987, 1997, 2006
Colombia 1957, 1968, 1979, 1989, 1999, 2008
Costa Rica 1956, 1968, 1978, 1992, 2005

Cuba 1961, 1975, 1991, 2006

Dominican Republic 1955, 1965, 1975, 1987, 1997, 2006
Ecuador 1956, 1968, 1978, 1986, 1995, 2005
El Salvador 1955, 1966, 1981, 1999, 2008
Guatemala 1957, 1968, 1977, 1987, 1998, 2005
Honduras 1955, 1967, 1981, 1989

Mexico 1955, 1965, 1975, 1985, 1995, 2005
Nicaragua 1956, 1967, 1983, 2000, 2007
Panama 1955, 1965, 1975, 1985, 1995
Paraguay 1956, 1967, 1977, 1987, 1997, 2006
Peru 1966, 1976, 1987, 2000, 2008
Uruguay 1969, 1980, 1990, 2000, 2007
Venezuela 1955, 1966, 1976, 1985, 1995, 2006

4.1. Data and methods

We use period mortality data from 18 countries in Latin
America from about 1950 to 2008 from the Latin American
Mortality Database (Palloni et al., 2014) (Table 1). This data covers
the period when major improvements in mortality took place in
the region, with particularly fast declines in infant mortality and
sizeable increases in life expectancy at birth (Palloni and Wyrick,
1981; Palloni and Pinto, 2011).

We focus here on age 0, that is, life expectancy at birth (eq) with
its corresponding life expectancy lost due to death (ef) and life
table entropy (H). To highlight the usefulness of Proposition 1 for
studying changes in overall survival, we also provide an application
decomposing changes in H associated with improvements in early
vs. late deaths. Because population data typically comes in discrete
form, we use standard techniques to estimate e(0), ef(0), and H
at time t (life table notation) - see Appendix F.1 - and also use
the discrete versions of the first variations in Proposition 1 - see
Appendix F.2.

4.2. Results

As afirst application of Proposition 1, for each country in Table 1
we compare the observed change in H between two consecutive
time periods t; and t; (H[S(x, t;)] — H[S(x, t1)]) to the predicted
change in H (8H[S(x, t1)]).> Using advanced numerical integration
techniques (Appendix F.2), we find that in each country the average
percentage error in the estimation across all periods is <0.16%.*

Next, Fig. 2 shows estimates of the life table entropy, H, for
all countries included in the analyses for males and females (see
Appendix Table 2 for specific values). Results indicate a decline
in H over time suggesting improvements in overall survival in all
these countries since the 1950’s. Interestingly, there is a different
pattern in H between countries that had an early demographic
transition and those with a late transition. For instance, countries
with an early demographic transition (e.g., Argentina, Costa Rica,
Cuba, and Uruguay) start at lower levels in H in the 1950’s and

3 This and all subsequent analyses were performed using the R software
package (R Core Team, 2014).

4 The discrete approximations (F.1) and (F.2) lead to percentage errors in H
as large as 4.5% in some cases (Ecuador between 1986 and 1995). We therefore
employed the aforementioned advanced numerical methods for all subsequent
analyses.
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Fig. 2. Life table entropy by country, year and gender.
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Fig. 3. Contribution of e (blue) and e, (pink) to changes in Male Life Table Entropy by Country and Period. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

show slower pace of decline over time; the opposite is true for
countries with a late demographic transition (e.g., El Salvador,
Guatemala, Honduras and Nicaragua). This result reflects the fact
that countries with an early demographic transition had already
attained relatively low mortality levels in the 1950’s (Palloni and
Pinto, 2011); thus, their corresponding life table entropy early on is
lower than that of countries with a late demographic transition. In
addition, improvements in overall survival tend to be larger when
starting at high mortality levels, suggesting that H would show
faster declines for countries with a late demographic transition.

As a second application of Proposition 1 - and (2.5) specifically
- we now decompose changes in H over time to assess whether
increases in overall survival in Latin America in the second part of
the 20th century are due to larger improvements in e' vs. e.

The percentage contribution of ef and ey to the change in
H between two consecutive periods for each country for males
and females is shown in Figs. 3 and 4, respectively (Appendix
Table 3). Results clearly indicate a differential contribution of eg
and et to changes in H over time. Improvements in eq show larger
contributions to increasing overall survival at high mortality levels
(e.g., before 1990), but improvements in ef contributed the most as
the mortality level declines. For instance, for males in El Salvador,
Guatemala, Honduras and Nicaragua, increases in ey contributed
about 60% of the change in H before 1980, but after 2000, a similar
percentage contribution is due to improvements in ef. On the
other hand, increases in survival for males in countries with low
mortality levels (e.g., Argentina, Cuba and Uruguay) were mostly
due to improvements in ef. There is a similar pattern for females,
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legend, the reader is referred to the web version of this article.)

but in this case, e’ made larger contributions to overall survival
because females tend to experience lower mortality rates than
males.

Importantly, there was a different age pattern of mortality
decline in Latin America since the 1950’s between countries
with early and late demographic transitions (Palloni and Wyrick,
1981). For the latter countries, declines in infant and childhood
mortality are likely responsible for the bulk of overall survival,
but for the former countries, declines in adult and older adult
mortality are the most likely contributors (Palloni and Pinto, 2011).
Thus, as a third application of Proposition 1, we estimate the age
separating early (premature) from late (older) deaths (af, Appendix
Table 2) and further decompose changes in H over time associated
with averting premature and older deaths using Eqgs. (3.1)-(3.5)
(Appendix Table 4).

Due to space limitations we only show results for males (Fig. 5);
results for females are shown in the Appendix Fig. 6. Results for the
age separating premature from older deaths show that in countries
with a late demographic transition, a starts at lower values and
increases at a faster pace over time relative to countries with a late
demographic transition (Appendix Table 4, Appendix Fig. 7). This
time trend corresponds to a faster mortality reduction over time
among the former countries.

Fig. 5 shows results decomposing changes in the male entropy
due to improvements in premature and older deaths. In countries
with a late demographic transition (e.g., El Salvador, Guatemala,
and Honduras), increases in overall survival are mainly due to
increases in ey resulting from improvements in older deaths (light
pink). As the mortality level declines in these countries there is
a larger contribution to overall survival from premature deaths
(pink). On the contrary, in countries with an early demographic
transition (e.g., Argentina, Cuba, and Uruguay), increases in overall
survival are due to improvements in e resulting from averting
premature deaths (dark blue). In some of these countries, for
example in Argentina, Cuba and Uruguay, males at older ages
experienced worsening rather than improving average years of
life lost due to death—hence the negative contribution to overall

survival in the figure. Nonetheless, premature deaths made large
enough contributions to overall survival that they offset the
mortality deterioration at older ages.

5. Concluding remarks

In this paper we provide a demographic interpretation of
changes in the life table entropy by studying this concept from
the functional viewpoint. This approach allow us to provide
additional insights for understanding changes in overall survival
in a population. In particular, we find that changes in the entropy
depend on the relative changes in both life expectancy lost due
to death (e') and in life expectancy at birth (eg), with the exact
relationship given by (2.5). Our results also provide a new way
to describe the effect of changes in the mortality function on
the population entropy (c.f. Proposition 2). These are well-studied
demographic concepts that now have a natural and consistent link
to a population’s entropy and changes in its mortality and survival
functions.

When we apply our methods to period mortality data in Latin
American countries since the 1950’s, we obtain an especially useful
description of the interplay between ey and e in determining
changes in overall survival of a population. We show that, in these
countries, declines in H — which are associated with increases
in overall survival - are driven by faster improvements in e in
high mortality regimes, and by e’ in low mortality regimes. This
insight reinforces the interpretation of e as an indicator of life
disparity (Vaupel et al.,, 2011; Shkolnikov et al., 2011). Thus, in
countries experiencing a low-mortality regime, improvements in
overall survival will increasingly depend on reducing disparities in
length of life in adulthood.

Moreover, we show that changes in the survival function
produce changes in opposite direction between ef and e, (see
Eq. (2.11)). In fact, for very small changes in the survival function,
e.g. those currently experienced in low-mortality countries, et and
eg are direct opposites. Thus, our equation helps elucidate previous
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research that shows a negative correlation between ef and e
among low-mortality countries, why this correlation is higher in
recent times, and why countries with low life disparity (ef) tend
to have higher values in life expectancy at birth (eg) (Vaupel et al.,
2011).

For Latin American countries, our decomposition of changes in
the entropy due to averting premature and older deaths shows
that improvements in overall survival (i.e., declines in H) are
associated with averting premature deaths. The implication of this
result is that countries in Latin America are likely reducing lifespan
inequality, which is a consequence of averting early deaths (Zhang
and Vaupel, 2009, 2008).

Our methods and the substantive results have immediate
applications for envisioning future changes in overall survival in
other countries. For instance, it is likely that most increases in
survival in high-income countries will result from improvements
in ef, while in low- and middle-income countries ey is likely to
still play an important role in determining overall survival of
the population. Our methods also provide additional insights for
linking changes in the life table entropy with improvements in
premature and older deaths. Our formulas are general in the sense
that they work with any threshold age. For instance, one may be
interested in investigating changes in the entropy associated with
mortality improvements below and above the mean, median, and
mode.

The results we have achieved have been made possible by
casting the problems we have studied within the domain of the
calculus of variations. The examples considered in Appendix D
further showcase how demographic questions, like the change
in a population’s life expectancy given a relative change in their
overall mortality, can be answered with variational calculus. These
tools have already proven useful in the field (see e.g., Arthur,

1984; Beltran-Sanchez and Soneji, 2011; Preston, 1982; Engelman
et al.,, 2014), and we would like to further advocate their use,
especially given the potential insights - such as those contained
in Proposition 1 and the applications of it we have discussed - that
may surface as a result of their usage.
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Appendix A. Origin and interpretations of the entropy

A.1. A brief history of the origin of the life table entropy

The concept of entropy was initially proposed in the physical
sciences as a measure of the level of disorder in a system. A
similar concept in population studies — population entropy or life
table entropy - was independently developed by Demetrius and
Keyfitz in the 1970’s using different principles. The first approach,
developed by Demetrius (1974, 1975, 1976, 1978), is a direct
analogue of the entropy of physical systems. Demetrius considers
a population to be a system of n interacting age classes that can be
represented by a lattice system. This system has a phase space with
an associated set of (invariant) probability measures. Thus, given a
finite partition of the lattice system there is a Kolmogorov entropy
which, in an equilibrium state (i.e., a state that maximizes the
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Table 2

Estimates of life expectancy at birth (ey), life expectancy lost due to death (e'),
entropy of the life table (H), and the age separating early from late deaths (a') for
males and females for 18 countries in Latin America.

Source: Authors’ calculations using data from LAMBdA (Palloni et al., 2014).

Year Males Females

o et af H o et af H

Argentina

1953 59.6 16.1 53.0 0.27 64.7 15.1 61.0 0.23
1965 61.8 15.1 55.0 0.24 68.0 134 65.0 0.20
1975 63.2 145 56.0 0.23 69.9 12.6 66.0 0.18
1985 66.1 13.1 59.0 0.20 72.4 10.9 69.0 0.15
1996 67.6 12.6 61.0 0.19 74.3 10.2 71.0 0.14
2005 69.5 117 63.0 0.17 75.6 9.5 73.0 0.13
Brazil

1985 60.6 16.6 53.0 0.27 66.5 14.2 62.0 0.21
1995 64.4 15.2 57.0 0.24 70.9 124 67.0 0.17
2005 67.7 13.7 61.0 0.20 739 10.8 71.0 0.15
Chile

1956 51.6 20.6 39.0 0.40 56.3 20.0 47.0 0.36
1965 55.3 18.8 45.0 0.34 61.0 17.7 55.0 0.29
1976 61.9 15.7 54.0 0.25 67.7 13.6 63.0 0.20
1987 67.0 13.1 60.0 0.20 729 10.6 69.0 0.15
1997 70.3 115 65.0 0.16 75.8 9.1 72.0 0.12
2006 724 10.5 68.0 0.14 77.6 8.2 75.0 0.11
Colombia

1957 50.9 214 36.0 0.42 54.0 20.8 42.0 0.39
1968 56.1 18.7 47.0 0.33 60.0 18.1 53.0 0.30
1979 61.9 16.2 55.0 0.26 66.4 14.4 61.0 0.22
1989 63.4 15.6 56.0 0.25 69.9 123 65.0 0.18
1999 66.0 14.7 60.0 0.22 72.9 11.0 69.0 0.15
2008 69.1 12.9 65.0 0.19 75.2 9.8 73.0 0.13
Costa Rica

1956 58.6 19.0 52.0 0.33 60.8 18.2 55.0 0.30
1968 62.8 16.6 58.0 0.26 65.8 15.3 62.0 0.23
1978 68.5 135 64.0 0.20 724 115 69.0 0.16
1992 71.6 115 67.0 0.16 75.7 9.4 72.0 0.12
2005 73.1 10.9 69.0 0.15 77.6 8.6 75.0 0.11
Cuba

1961 64.6 15.1 59.0 0.23 67.3 14.3 63.0 0.21
1975 69.4 12.7 65.0 0.18 722 115 69.0 0.16
1991 71.0 11.2 66.0 0.16 74.3 9.8 70.0 0.13
2006 733 10.3 68.0 0.14 76.8 8.7 73.0 0.11
Dominican Republic

1955 49.0 22.8 31.0 0.47 50.9 22.7 34.0 0.44
1965 54.8 20.8 44.0 0.38 57.4 20.3 48.0 0.35
1975 58.3 18.7 50.0 0.32 615 18.1 55.0 0.29
1987 62.7 16.6 56.0 0.26 67.6 14.9 63.0 0.22
1997 66.1 15.4 60.0 0.23 715 13.0 68.0 0.18
2006 67.8 14.0 62.0 0.21 72.9 117 69.0 0.16
Ecuador

1956 46.9 239 24.0 0.51 49.7 23.7 30.0 0.48
1968 54.3 213 43.0 0.39 56.7 20.7 47.0 0.36
1978 58.8 19.2 50.0 0.33 62.6 17.9 58.0 0.29
1986 63.2 16.7 57.0 0.26 67.5 14.8 64.0 0.22
1995 66.0 15.3 60.0 0.23 71.2 12.9 68.0 0.18
2005 69.5 135 65.0 0.19 74.7 10.8 72.0 0.15
El Salvador

1955 44.0 239 19.0 0.54 47.2 23.7 26.0 0.50
1966 50.7 219 36.0 0.43 54.9 209 45.0 0.38
1981 534 20.6 38.0 0.39 62.3 17.7 57.0 0.28
1999 61.2 16.9 50.0 0.28 70.8 12.5 67.0 0.18
2008 62.9 15.9 52.0 0.25 725 113 68.0 0.16

(continued on next page)

entropy for a fixed mean energy), corresponds to “the variability
of the contribution of the different age classes to the stationary age
distribution (Demetrius, 1974)".

Contrary to Demetrius, Keyfitz (1977) uses demographic
principles to derive an analogous formula of population entropy.
Keyfitz develops his concept while searching for an alternative
indicator to assess changes in life expectancy associated with
fractional declines in age-specific mortality rates. Both approaches
lead to similar entropy formulations, although their focus is
rather different as Demetrius (1979) emphasizes the net maternity

Table 2 (continued)

Year Males Females
ey ef at H eg ef at H
Guatemala

1957 424 244 13.0 0.58 42.6 24.0 15.0 0.56
1968 46.5 229 26.0 0.49 48.4 225 30.0 0.47
1977 50.9 216 35.0 0.43 54.4 20.8 43.0 0.38
1987 55.9 194 44.0 0.35 60.7 17.8 54.0 0.29
1998 61.3 174 51.0 0.28 67.1 14.6 62.0 0.22
2005 64.2 15.8 57.0 0.25 69.4 13.1 65.0 0.19
Honduras

1955 39.6 24.8 9.0 0.63 40.7 243 12.0 0.60
1967 48.5 22.6 30.0 0.47 514 22.0 37.0 043
1981 60.6 18.8 53.0 0.31 64.5 17.0 60.0 0.26
1989 65.4 16.7 60.0 0.26 69.6 14.6 67.0 0.21
Mexico

1955 48.5 22.8 30.0 0.47 51.7 221 37.0 043
1965 54.2 20.5 42.0 0.38 59.3 19.1 52.0 0.32
1975 59.3 189 50.0 0.32 64.3 16.9 59.0 0.26
1985 63.4 16.3 56.0 0.26 69.1 13.6 65.0 0.20
1995 66.8 14.4 61.0 0.22 72.1 11.8 68.0 0.16
2005 69.8 12.6 64.0 0.18 74.3 10.3 70.0 0.14
Nicaragua

1956 425 24.0 17.0 0.56 47.0 24.0 25.0 051
1967 49.0 22.7 31.0 0.46 529 220 40.0 0.42
1983 57.7 19.4 47.0 0.34 63.8 16.8 58.0 0.26
2000 64.7 15.3 57.0 0.24 69.5 13.1 64.0 0.19
2007 65.8 14.2 58.0 0.22 70.8 12.0 65.0 0.17
Panama

1955 57.4 18.8 49.0 0.33 58.6 19.0 49.0 0.32
1965 61.7 16.7 56.0 0.27 63.7 16.3 58.0 0.26
1975 65.7 14.8 60.0 0.23 67.9 14.1 63.0 0.21
1985 70.0 13.1 66.0 0.19 72.9 11.6 70.0 0.16
1995 714 12.3 67.0 0.17 74.9 10.6 72.0 0.14
Paraguay

1956 58.6 18.2 51.0 0.31 60.5 18.2 53.0 0.30
1967 61.2 16.8 55.0 0.27 63.4 16.3 58.0 0.26
1977 62.6 16.2 56.0 0.26 65.3 15.4 60.0 0.24
1987 65.0 14.6 59.0 0.23 68.1 135 64.0 0.20
1997 65.2 14.5 59.0 0.22 69.1 12.9 64.0 0.19
2006 68.1 13.0 63.0 0.19 71.9 11.2 68.0 0.16
Peru

1966 48.1 229 30.0 0.48 50.9 229 34.0 0.45
1976 55.6 20.4 46.0 0.37 58.5 19.7 51.0 0.34
1987 61.0 17.6 54.0 0.29 64.4 16.5 60.0 0.26
2000 66.3 14.5 61.0 0.22 70.4 12.8 67.0 0.18
2008 69.2 12.7 64.0 0.18 73.0 11.0 69.0 0.15
Uruguay

1969 63.0 145 56.0 0.23 68.8 12.8 65.0 0.19
1980 65.4 135 59.0 0.21 71.6 115 68.0 0.16
1990 67.5 125 61.0 0.19 73.9 10.3 71.0 0.14
2000 68.8 121 62.0 0.18 75.3 9.6 72.0 0.13
2007 70.2 11.5 64.0 0.16 76.3 9.1 73.0 0.12
Venezuela

1955 55.6 19.5 46.0 0.35 58.5 19.1 50.0 0.33
1966 60.8 16.8 53.0 0.28 64.5 15.6 58.0 0.24
1976 62.1 15.7 55.0 0.25 67.6 13.9 62.0 0.21
1985 65.1 14.4 58.0 0.22 70.5 12.2 65.0 0.17
1995 66.5 14.0 60.0 0.21 72.3 113 68.0 0.16
2006 67.3 13.9 61.0 0.21 74.2 10.4 70.0 0.14

function while Keyfitz (1977) focuses on changes in the mortality
schedule.

A.2. Other interpretations of the entropy

While the entropy of a physical system has the same mean-
ing regardless of the context — the higher the entropy the higher
the disorder in the system - the many applications in human
and non-human populations of the population entropy have re-
sulted in a variety of context-specific interpretations. For exam-
ple, population entropy has been associated with the fitness of an
age-structured population (Demetrius, 1974), the life-history of a
population (e.g., populations that only reproduce once have zero
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35

Contribution to changes in the life table entropy (H) due to changes in life expectancy at birth (e,) and in life expectancy lost due to death (e') for males and females for 18
countries in Latin America.

Source: Authors’ calculations using data from LAMBAA (Palloni et al., 2014) and formulas from Proposition 1.

Period Males Females
Change in H Overall cont % cont Change in H Overall cont % cont
Observed Predicted® @ ) % de Observed Predicted® % 20 @ e
e €o el €o e €o e €o
Argentina
1953-1965 —0.026 —0.028 —0.018 —0.010 65.2 34.8 —0.036 —0.035 —0.023 —0.012 65.5 34.5
1965-1975 —0.015 —0.016 —0.010 —0.006 63.6 36.4 —0.018 —0.017 —0.012 —0.005 69.1 309
1975-1985 —0.032 —0.033 —0.022 —0.010 68.2 318 —0.029 —0.029 —0.023 —0.006 77.9 22.1
1985-1996 —0.012 —0.011 —0.007 —0.005 59.9 40.1 —0.014 —0.014 —0.010 —0.004 723 27.7
1996-2005 —0.018 —-0.017 —0.012 —0.005 70.3 29.7 —-0.011 —0.011 —0.009 —0.002 77.7 22.3
Brazil
1985-1995 —0.038 —0.035 —0.018 —0.017 519 48.1 —0.039 —0.034 —0.019 —-0.014 57.5 425
1995-2005 —0.033 —0.032 —0.020 —0.012 62.9 37.1 —0.028 —0.028 —0.020 —0.007 73.6 26.4
Chile
1956-1965 —0.058 —0.062 —0.033 —0.029 53.4 46.6 —0.066 —0.069 —0.039 —0.030 57.0 43.0
1965-1976 —0.087 —0.090 —0.049 —0.041 54.6 454 —0.088 —0.090 —0.058 —0.032 64.4 35.6
1976-1987 —0.058 —0.058 —0.037 —0.021 64.0 36.0 —0.056 —0.055 —0.039 —0.015 717 28.3
1987-1997 —0.031 —0.029 —0.019 —0.010 66.4 33.6 —0.025 —0.023 —0.017 —0.006 75.1 249
1997-2006 —-0.019 —0.019 —0.014 —0.005 74.3 25.7 —0.015 —0.014 —0.011 —0.003 80.5 19.5
Colombia
1957-1968 —0.087 —0.090 —0.047 —0.043 51.9 48.1 —0.084 —0.087 —0.044 —0.043 50.6 49.4
1968-1979 —0.072 —0.075 —0.040 —0.035 53.6 46.4 —0.084 —0.085 —0.053 —0.032 62.2 37.8
1979-1989 —0.016 —0.016 —-0.010 —0.006 61.4 38.6 —0.041 —0.041 —0.030 —0.011 72.4 27.6
1989-1999 —0.024 —0.022 —0.011 —0.010 52.7 47.3 —0.025 —0.022 —0.015 —0.008 66.5 335
1999-2008 —0.036 —0.035 —0.025 —0.010 70.4 29.6 —0.021 —0.021 —0.016 —0.005 76.6 234
Costa Rica
1956-1968 —0.060 —0.061 —0.038 —0.024 614 38.6 —0.067 —0.067 —0.043 —0.025 63.5 36.5
1968-1978 —0.068 —0.068 —0.044 —0.024 64.5 355 —0.073 —0.072 —0.049 —0.023 67.7 323
1978-1992 —0.037 —0.037 —0.028 —0.009 76.2 23.8 —0.035 —0.035 —0.028 —0.007 79.2 20.8
1992-2005 —0.011 —0.010 —0.006 —0.003 65.0 35.0 —0.013 —0.013 —0.010 —0.003 74.7 25.3
Cuba
1961-1975 —0.050 —0.048 —0.031 —0.017 64.2 35.8 —0.054 —0.051 —0.036 —0.016 69.6 30.4
1975-1991 —0.025 —0.025 —0.021 —0.004 82.6 17.4 —0.027 —0.028 —0.023 —0.004 83.7 16.3
1991-2006 —0.017 —-0.018 —0.013 —0.005 716 28.4 —0.018 —0.016 —0.011 —0.005 714 28.6
Dominican Republic
1955-1965 —0.086 —0.089 —0.033 —0.056 374 62.6 —0.091 —0.093 —0.036 —0.057 39.0 61.0
1965-1975 —0.058 —0.058 —0.034 —0.024 58.8 41.2 —0.060 —0.061 —0.036 —0.025 58.9 41.1
1975-1987 —0.057 —0.057 —0.033 —0.024 57.7 423 —0.074 —0.073 —0.043 —0.029 59.4 40.6
1987-1997 —0.032 —0.030 —0.016 —0.014 534 46.6 —0.038 —0.036 —0.024 —0.013 65.6 344
1997-2006 —0.026 —0.027 —0.021 —0.006 775 22.5 —0.021 —0.021 —0.018 —0.004 82.8 17.2
Ecuador
1956-1968 —-0.117 —0.121 —0.040 —0.081 329 67.1 —0.113 —0.116 —0.048 —0.067 419 58.1
1968-1978 —0.065 —0.066 —0.034 —0.032 51.3 48.7 —0.078 —0.079 —0.041 —0.038 52.5 475
1978-1986 —0.064 —0.065 —0.041 —0.025 62.3 37.7 —0.067 —0.068 —0.046 —0.022 67.1 329
1986-1995 —0.032 —0.031 —0.019 —0.012 61.9 38.1 —0.039 —0.039 —0.027 —0.012 68.9 31.1
1995-2005 —0.037 —0.036 —0.024 —0.012 66.4 336 —0.035 —0.035 —0.026 —0.009 74.8 25.2
El Salvador
1955-1966 —-0.113 —-0.117 —0.033 —0.084 28.4 71.6 —0.120 —0.123 —0.042 —0.082 338 66.2
1966-1981 —0.046 —0.047 —0.024 —0.023 51.2 48.8 —0.098 —0.097 —0.046 —0.051 47.0 53.0
1981-1999 —-0.111 -0.113 —0.057 —0.056 50.5 495 —0.106 —0.109 —0.071 —0.038 64.8 35.2
1999-2008 —0.023 —0.023 —0.016 —0.007 68.1 319 —0.022 —0.022 —0.017 —0.004 79.9 20.1
Guatemala
1957-1968 —0.083 —0.086 —0.030 —0.056 35.2 64.8 —0.098 —0.099 —0.022 —0.077 22.3 77.7
1968-1977 —0.067 —0.069 —0.022 —0.047 324 67.6 —0.084 —0.085 —0.027 —0.057 324 67.6
1977-1987 —0.077 —0.081 —0.039 —0.042 48.5 51.5 —0.089 —0.092 —0.048 —0.044 51.8 48.2
1987-1998 —0.065 —0.063 —0.029 —0.034 46.2 53.8 —0.076 —0.074 —0.043 —0.031 58.6 41.4
1998-2005 —0.037 —0.037 —0.024 —0.013 63.9 36.1 —0.029 —0.029 —0.021 —0.008 74.0 26.0
Honduras
1955-1967 —0.160 —0.163 —0.021 —0.142 129 87.1 —0.169 —0.163 —0.006 —0.157 3.6 96.4
1967-1981 —0.155 —0.150 —0.034 —0.116 22.6 77.4 —0.164 —0.156 —0.047 —0.108 30.3 69.7
1981-1989 —0.055 —0.053 —0.029 —0.024 54.2 458 —0.055 —0.053 —0.032 —0.021 60.0 40.0
Mexico
1955-1965 —0.091 —0.096 —0.041 —0.055 427 57.3 —0.105 —0.104 —0.041 —0.063 39.5 60.5
1965-1975 —0.059 —0.058 —0.022 —0.035 38.9 61.1 —0.061 —0.060 —0.033 —0.027 55.1 449
1975-1985 —0.063 —0.063 —0.041 —0.022 64.6 354 —0.065 —0.066 —0.046 —0.020 70.1 29.9
1985-1995 —0.040 —0.040 —0.027 —0.014 66.0 34.0 —0.033 —0.034 —0.025 —0.009 74.2 25.8
1995-2005 —0.035 —0.035 —0.026 —0.010 72.4 27.6 —0.026 —0.026 —0.021 —0.005 80.6 19.4
Nicaragua
1956-1967 —0.102 —0.107 —0.021 —0.086 19.8 80.2 —0.094 —0.099 —0.035 —0.064 35.2 64.8
1967-1983 —0.127 —0.130 —0.048 —0.082 37.0 63.0 —0.152 —0.153 —0.067 —0.086 439 56.1

(continued on next page)



36 O.E. Fernandez, H. Beltrdn-Sdnchez / Theoretical Population Biology 104 (2015) 26-45

Table 3 (continued)
Period Males Females
Change in H Overall cont % cont Change in H Overall cont % cont
Observed Predicted® @ ) sel s Observed Predicted® sel 3 sel e
e ey ef ey ef eo el eo
1983-2000 —0.099 —0.102 —0.061 —0.041 59.7 40.3 —0.074 —0.076 —0.052 —0.023 69.1 309
2000-2007 —0.021 —0.021 —-0.017 —0.004 80.2 19.8 —0.020 —0.020 —0.017 —0.004 82.5 17.5
Panama
1955-1965 —0.057 —0.057 —0.032 —0.025 56.8 432 —0.067 —0.067 —0.039 —0.028 58.3 417
1965-1975 —0.045 —0.044 —0.027 —0.017 60.7 39.3 —0.049 —0.049 —0.032 —0.017 65.1 349
1975-1985 —0.039 —0.036 —0.021 —0.015 58.2 418 —0.047 —0.044 —0.029 —0.015 65.5 345
1985-1995 —0.014 —0.014 —0.010 —0.004 73.0 27.0 —0.019 —0.018 —-0.014 —0.004 76.5 235
Paraguay
1956-1967 —0.035 —0.036 —0.023 —-0.014 62.0 38.0 —0.043 —0.043 —0.029 —0.014 67.0 33.0
1967-1977 —0.017 —0.018 —0.012 —0.006 64.8 35.2 —0.022 —0.022 —-0.014 —0.008 64.1 359
1977-1987 —0.033 —0.033 —0.023 —0.010 711 28.9 —0.037 —0.038 —0.028 —0.010 73.5 26.5
1987-1997 —0.003 —0.004 —0.003 —0.001 78.2 218 —0.012 —0.012 —0.009 —0.003 75.5 24.5
1997-2006 —0.032 —0.030 —0.021 —0.010 67.8 322 —0.030 —0.030 —0.022 —0.008 74.6 25.4
Peru
1966-1976 —0.108 —0.110 —0.035 —0.075 319 68.1 —0.113 —0.114 —0.046 —0.068 40.7 59.3
1976-1987 —0.078 —0.079 —0.044 —0.035 55.3 447 —0.081 —0.082 —0.049 —0.034 58.9 41.1
1987-2000 —0.070 —0.071 —0.046 —0.025 64.9 35.1 —0.074 —0.075 —0.051 —0.024 68.3 317
2000-2008 —0.036 —0.036 —0.026 —0.010 72.9 271 —0.031 —0.031 —0.025 —0.007 78.7 213
Uruguay
1969-1980 —0.023 —0.024 —0.015 —0.009 63.6 36.4 —0.026 —0.025 —0.017 —0.007 70.2 29.8
1980-1990 —0.022 —0.022 —0.016 —0.006 70.7 29.3 —0.021 —0.020 —0.015 —0.005 74.6 25.4
1990-2000 —0.010 —0.010 —0.006 —0.004 60.7 39.3 —0.011 —0.010 —0.008 —0.003 74.1 259
2000-2007 —0.012 —0.011 —0.008 —0.004 68.1 319 —0.008 —0.008 —0.007 —0.002 79.3 20.7
Venezuela
1955-1966 —0.076 —0.079 —0.046 —0.033 58.2 418 —0.084 —0.086 —0.053 —0.033 61.3 38.7
1966-1976 —0.023 —0.023 —0.017 —0.006 74.6 254 —0.038 —0.037 —0.026 —0.012 68.4 31.6
1976-1985 —0.030 —0.031 —0.019 —0.012 615 38.5 —0.031 —0.031 —0.023 —0.009 72.5 27.5
1985-1995 —0.011 —-0.010 —0.005 —0.005 493 50.7 —0.017 —0.016 —-0.012 —0.004 72.4 27.6
1995-2006 —0.005 —0.004 —0.002 —0.002 438 56.2 —0.016 —0.016 —0.012 —0.004 73.4 26.6

@ Predicted values are estimated as: SH[S(x, t{)] ~ H[S(x, t1)] (% - %W) (see Appendix F.2); ‘cont’, contribution.
i} v
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Fig. 6. Contribution of changes in premature (blue for et and pink for e;) and older (light blue for et and light pink for ey) deaths to changes in female life table entropy
by country and period. Negative values in older ef (light blue) indicate that there was an increase over the period in average years of life lost due to death at older ages.
Source: Authors’ calculations using data from LAMBdA (Palloni et al., 2014) and Egs. (3.1)-(3.5). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Table 4

Contribution to changes in the life table entropy (H) due to changes in early (premature) and late (older) deaths in life expectancy at birth (ey) and in life expectancy lost
due to death (e') for males and females for 18 countries in Latin America.

Source: Authors’ calculations using data from LAMBdA (Palloni et al., 2014) and Eqs. (3.1)-(3.5).

Period Males Females

Overall contribution % contribution Overall contribution % contribution
Pred et /et —8eg/eo et /ef Seo/eo Pred et Jef —8eg/eg et Jef Seo/eo
AinH*  Early Late Early Late Early Late Early Late AinH®  Early Late Early Late Early Late  Early Late

Argentina

1953-1965 —0.028 —0.018 0.000 —0.006 —0.004 64.4 09 205 143 —-0.035 —0.023 0.001 —0.006 —0.005 67.5 —2.0 187 1538
1965-1975 —0.016 —0.012 0.002 —0.003 —0.002 789 —153 220 144 -0017 —-0.014 0.002 —0.003 —0.002 831 —14.0 18.7 122
1975-1985 —0.033  —0.021 —0.002 —0.005 —0.005 62.8 54 165 153 —-0.029 —0.021 —0.002 —0.004 —0.002 70.1 7.8 14.3 7.8
1985-1996 —0.011 —0.008 0.001 —0.002 —0.003 699 —10.0 155 245 —-0.014 —0.011 0.001 —0.002 —0.002 76.2 —4.0 13.0 1438
1996-2005 —0.017 —0.011 —0.001 —0.002 —0.003 63.7 6.6 134 16.3 —-0.011 —0.009 0.001 —0.001 —0.001 82.8 —5.0 12.6 9.7

Brazil
1985-1995 —0.035 —0.023 0.005 —0.007 —0.010 65.7 —139 21.1 27.0 —0.034 —0.027 0.008 —0.007 —0.008 79.7 —22.2 19.7 22.7
1995-2005 —0.032 —0.020 0.000 —0.006 —0.006 63.4 —04 173 198 —-0.028 —0.021 0.000 —0.004 —-0.003 74.7 —-1.2 147 117
Chile

1956-1965 —0.062  —0.027 —0.006 —0.014 —-0.015 444 9.0 227 239 -0069 —0.032 -0.007 —-0.014 —-0.015 46.2 10.8 208 222
1965-1976 —0.090 —0.044 —0.005 —0.018 —0.022 49.6 50 206 248 —-0.090 —0.050 —0.007 —0.018 —0.014 56.1 83 196 16.0
1976-1987 —0.058  —0.034 —0.003 —0.010 —0.011 58.2 58 17.1 189 -0.055 —0.036 —0.003 -0.008 —0.007 65.9 58 152 13.0
1987-1997 —0.029  —0.018 —0.002 —0.004 —0.006 61.1 52 136 20.1 -0.023 —-0.017 0.000 -0.003 —-0.003 75.3 —-02 123 126
1997-2006 —0.019 —0.012 —0.002 —0.002 —0.003 63.0 11.3 11.8 139 -0.014 —-0.010 —0.001 —0.001 —-0.001 72.5 80 99 9.6

Colombia
1957-1968 —0.090 —0.030 —0.017 —0.016 —0.027 33.1 189 182 299 -0.087 —0.034 —0.010 —0.017 —0.026 38.7 11.9 192 302
1968-1979 —0.075  —0.039 —0.001 —0.016 —0.019 52.2 14 215 249 -0085 —0.046 —0.007 —0.017 —0.015 53.9 83 19.7 18.0

1979-1989 —0.016 —0.013 0.003 —0.004 —0.003 76.7 —153 222 164 —-0.041 —0.028 —0.002 —0.007 —0.005 66.9 55 16.6 11.0
1989-1999 —0.022 —0.011 0.000 —0.003 —0.007 52.3 03 152 32.1 -0.022 —-0.014 —-0.001 —0.003 —0.005 63.8 2.7 129 206
1999-2008 —0.035 —0.019 —0.005 —0.005 —0.005 55.0 154 148 148 —0.021 —0.013 —0.003 —0.002 —0.003 62.6 140 109 125
Costa Rica

1956-1968 —0.061 —0.031 —0.007 —0.013 —0.011 50.6 10.8 204 182 -0.067 —0.035 —0.008 —0.013 —0.012 52.0 115 191 174
1968-1978 —0.068  —0.043 —0.001 —0.013 —0.010 63.7 0.8 200 155 —0.072 —0.047 —0.002 —0.013 —0.011 65.0 27 17.7 146
1978-1992 —0.037 —0.025 —0.003 —0.006 —0.003 67.2 8.9 15.0 8.8 —0.035 —0.025 —0.002 —0.005 —-0.003 72.7 6.5 13.0 7.9
1992-2005 —0.010 —0.008 0.001 —0.001 —0.002 80.0 —15.0 143 20.7 —-0.013 —-0.010 0.001 —0.001 —0.002 80.1 —54 111 142
Cuba

1961-1975 —0.048  —0.030 —0.001 —0.008 —0.009 62.5 16 169 19.0 -0.051 —0.032 —0.004 —0.008 —0.008 61.7 79 152 152
1975-1991 —0.025  —0.017 —0.004 —0.003 —0.001 66.7 159 134 40 —-0.028 —0.020 —0.003 —0.004 —0.001 72.5 11.2 127 3.6
1991-2006 —0.018 —0.015 0.002 —0.003 —0.002 855 —139 15.1 133 —-0.016 —0.015 0.004 —0.002 —0.002 97.0 —25.6 142 144
Dominican Republic

1955-1965 —0.089  —0.022 —0.011 —0.014 —-0.042 25.1 123 156 47.0 —-0.093 —0.025 —-0.011 —0.015 —-0.042 27.2 11.8 16.0 45.0
1965-1975 —0.058 —0.025 —0.009 —0.012 —0.012 433 156 21.0 20.2 —-0.061 —0.028 —0.008 —0.013 —0.013 45.8 13.1 205 206
1975-1987 —0.057 —0.031 —0.002 —0.012 —0.012 53.9 37 211 212 -0073 —0.038 —-0.005 —0.014 —0.016 52.2 72 187 219
1987-1997 —0.030 —0.020 0.003 —0.006 —0.008 64.8 —114 20.1 26,5 —-0.036 —0.024 0.000 —0.006 —0.006 66.7 -1.1 171 173
1997-2006 —0.027 —0.017 —0.004 —0.004 —0.002 62.0 155 16.7 5.8 —0.021 —0.016 —0.002 —0.003 0.000 73.1 96 150 22
Ecuador

1956-1968 —0.121 —0.022 —0.018 —0.015 —0.066 18.1 148 12.7 544 -0.116 —0.026 —0.022 —0.017 —0.050 22.7 19.2 148 433
1968-1978 —0.066  —0.030 —0.004 —0.015 —0.017 45.0 6.3 230 257 —-0.079 —0.034 —0.007 —0.016 —0.021 435 9.0 205 27.0
1978-1986 —0.065 —0.033 —0.008 —0.013 —0.011 50.7 11.6 205 172 —-0.068 —0.039 —0.007 —0.014 —0.009 57.4 9.7 202 128
1986-1995 —0.031 —0.021 0.002 —0.007 —0.005 68.0 —6.1 209 172 —-0.039 —0.027 0.000 —0.007 —0.005 69.7 —-0.7 17.8 133
1995-2005 —0.036  —0.022 —0.002 —0.006 —0.006 60.5 59 164 172 -0.035 —0.025 —0.002 —0.005 —0.004 70.5 43 146 106
El Salvador

1955-1966 —0.117 —0.018 —0.016 —0.013 —0.071 15.0 135 113 603 —-0.123 —-0.024 —-0.018 —0.017 —0.065 19.5 143 134 528
1966-1981 —0.047 —0.028 0.004 —0.015 —0.008 58.7 —7.6 328 16.0 —0.097 —0.041 —0.004 —0.020 —0.031 423 46 209 321
1981-1999 —0.113  —0.049 —0.008 —0.023 —0.033 43.0 75 203 292 —-0.109 —0.064 —0.007 —0.022 —0.016 584 6.4 20.0 152
1999-2008 —0.023  —0.013 —0.003 —0.004 —0.003 54.2 139 171 148 -0.022 —0.015 —-0.002 —0.003 —0.001 70.9 89 14.1 6.1
Guatemala

1957-1968 —0.086 —0.010 —0.021 —0.008 —0.048 11.2 240 9.0 558 -0.099 —0.011 —-0.011 —0.009 —0.068 11.5 108 88 688
1968-1977 —0.069  —0.019 —0.003 —0.013 —0.034 27.4 50 182 494 —-0.085 —0.023 —0.005 —0.014 —0.043 26.5 58 16.6 51.0
1977-1987 —0.081 —0.031 —0.008 —0.017 —0.025 38.6 99 212 303 —-0.092 —-0.039 —-0.009 —0.019 —0.025 42.1 9.7 20.7 275
1987-1998 —0.063 —0.032 0.003 —0.014 —0.020 514 —53 217 321 —-0.074 —0.042 —-0.002 —-0.015 —0.016 56.4 22 201 213
1998-2005 —0.037 —0.016 —0.008 —0.005 —0.008 43.2 20.7 147 214 —-0.029 —0.017 —0.004 —0.004 —0.003 60.3 13.7 153 108

Honduras

1955-1967 —0.163  —0.009 —0.012 —0.008 —0.134 5.4 75 46 824 —-0.163 —0.012 0006 —0.010 —0.147 7.3 —37 59 905
1967-1981 —0.150 —0.045 0.011 —0.028 —0.0883 30.1 —7.5 188 586 —0.156 —0.054 0.007 —0.031 —0.078 3438 —45 198 499
1981-1989 —0.053 —0.029 0.000 —0.011 —0.013 54.1 0.1 206 252 —-0.053 —0.032 0000 —0.010 —0.011 60.8 —-0.8 193 207
Mexico

1955-1965 —0.096 —0.027 —0.013 —0.017 —0.038 28.6 140 179 394 -0.104 —0.035 —0.006 —0.020 —0.043 33.7 5.8 19.2 413
1965-1975 —0.058 —0.026  0.004 —0.012 —0.023 45.2 —6.4 216 396 —0060 —0.031 —0.002 —0.013 —0.014 52.2 29 21.1 238
1975-1985 —0.063 —0.031 —0.010 —0.012 —0.010 48.9 157 189 16,5 —-0.066 —0.038 —0.009 —0.012 —0.008 57.2 129 180 119
1985-1995 —0.040 —0.024 —0.003 —0.007 —0.007 58.6 75 177 162 —-0.034 —0.023 —0.001 —0.005 —0.003 69.9 43 15.8 10.0
1995-2005 —0.035 —0.023 —0.003 —0.006 —0.004 64.3 8.1 160 116 —-0.026 —0.019 —0.002 —0.003 —0.002 73.6 7.0 134 6.0
Nicaragua

1956-1967 —0.107 —0.016 —0.005 —0.012 —0.074 14.8 49 116 686 —0.099 —0.021 —0.014 —0.015 —0.049 214 13.8 149 499
1967-1983 —0.130  —0.041 —0.007 —0.025 —0.057 31.6 54 19.1 439 -0.153 —-0.054 —-0.013 —0.029 —0.056 35.5 84 19.2 36.8
1983-2000 —0.102 —0.049 —0.012 —0.020 —0.021 47.8 119 197 206 —-0.076 —0.045 —0.007 —0.014 —0.009 59.7 94 186 124
2000-2007 —0.021 —0.013 —0.004 —0.003 —0.001 62.5 17.7 167 3.1 -0.020 —-0.015 —0.002 —0.003 0.000 71.9 105 15.2 24

(continued on next page)
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Table 4 (continued)
Period Males Females
Overall contribution % contribution Overall contribution % contribution
Pred et /ef —8eg/eg et /ef Seg/eo Pred et /et —8eg/eo et Jef Seo/eo
AinH*  Early Late Early Late Early Late Early Late AinH®  Early Late Early Late Early Late  Early Late
Panama
1955-1965 —0.057 —0.027 —0.006 —0.011 —0.014 47.0 98 19.1 24.1 —-0.067 —0.029 —0.010 —0.012 —0.016 43.2 15.0 17.3 244
1965-1975 —0.044  —0.027 0.000 —0.009 —0.009 61.1 —04 197 196 —-0.049 —0.030 —0.002 —0.009 —0.008 60.5 46 185 165
1975-1985 —0.036  —0.024 0.003 —0.006 —0.009 67.4 —93 17.7 241 -0.044 —0.028 —0.001 —0.007 —0.008 64.2 1.3 154 19.0
1985-1995 —0.014 —0.010 0.000 —0.002 —0.002 70.5 25 152 118 —-0.018 —0.014 0.000 —0.003 —0.002 76.9 —-04 141 9.5
Paraguay
1956-1967 —0.036  —0.019 —0.004 —0.007 —0.007 51.7 103 19.7 183 —-0.043 —0.020 —0.008 —0.007 —0.007 47.6 194 175 156
1967-1977 —0.018 —0.013 0.001 —0.004 —0.002 69.6 —4.8 228 124 —-0.022 —0.014 0.000 —0.004 —0.004 64.5 —04 199 16.0
1977-1987 —0.033  —0.019 —0.004 —0.006 —0.004 58.7 124 178 112 —-0.038 —0.022 —0.005 —0.006 —0.004 59.2 143 16.4 10.1
1987-1997 —0.004 —0.004 0.001 —0.001 0.000 92,5 -—142 217 0.0 -0.012 —-0.010 0.001 —0.002 —0.001 80.9 —54 180 65
1997-2006 —0.030 —0.017 —0.004 —0.004 —0.005 56.2 11.7 144 17.7 —0.030 —0.018 —0.004 —0.004 —0.004 61.4 132 131 123
Peru
1966-1976 —0.110 —0.029 —0.006 —0.019 —0.056 26.6 54 17.1 51.0 —-0.114 —-0.032 —-0.014 —0.019 —0.048 28.2 125 17.0 423
1976-1987 —0.079  —0.035 —0.008 —0.016 —0.019 44.7 106 209 238 —0.082 —0.040 —0.009 —0.017 —0.017 48.3 10.6 20.6 205
1987-2000 —0.071  —0.041 —0.006 —0.014 —0.011 57.0 79 198 152 —-0.075 —0.046 —0.005 —0.014 —0.010 619 64 189 127
2000-2008 —0.036  —0.023 —0.003 —0.006 —0.004 63.6 93 161 11.0 —0.031 —-0.022 —0.003 —0.005 —0.002 70.5 82 146 6.7
Uruguay
1969-1980 —0.024 —0.016 0.001 —0.004 —0.005 67.3 —37 176 188 —-0.025 —0.017 0.000 —0.004 —0.004 70.3 —02 149 149
1980-1990 —0.022  —0.015 —0.001 —0.003 —0.003 66.1 46 154 139 —-0.020 —0.016 0.000 —0.003 —0.002 75.9 -13 13.7 117
1990-2000 —0.010 —0.008 0.002 —0.002 —0.002 824 -217 169 224 -0.010 —0.009 0.001 —0.001 —0.001 87.1 —13.0 135 124
2000-2007 —0.011 —0.007 —0.001 —0.001 —0.002 58.1 100 11.5 204 -—-0.008 —0.006 0.000 —0.001 —0.001 73.3 6.0 106 10.1
Venezuela
1955-1966 —0.079  —0.039 —0.008 —0.017 —0.016 48.7 95 213 205 —0.08  —0.043 —0.010 —0.017 —0.016 50.1 11.2 202 185
1966-1976 —0.023 —0.014 —0.004 —0.004 —0.002 58.4 16.2 186 6.7 —0.037 —0.022 —0.004 —0.006 —0.006 58.2 10.1 165 15.1
1976-1985 —0.031 —0.020 0.001 —0.006 —0.006 63.6 —2.1 185 20.0 —0.031 —0.020 —0.002 —0.005 —0.004 65.0 75 151 123
1985-1995 —0.010 —0.006 0.001 —0.002 —0.003 63.2 —139 156 350 —-0.016 —0.011 —0.001 —0.002 —0.002 66.2 6.2 129 147
1995-2006 —0.004 —0.001 0.000 0.000 —0.002 34.7 91 7.0 492 -0.016 —0.011 —0.001 —0.002 —0.002 68.1 53 122 144
) ) ] ) . R N sef[s(xlx<a®)] | —deglS(xlx<al)l sel[s(xx=aT)] | —deglS(xlx=al)] : .
2 Predicted change in H (Pred A in H) is estimated as: SH[S(x, t;)] ~ H[S(x, tl)]{[ 5] ”eo[s(m ]+[ FSeo1 + ”eo[s(x)] ]}(seeAppende.Z),

A, change. The age that separates premature from older deaths, af, is shown in the Appendix Table 2.
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Fig.7. Threshold age, a, separating premature and older deaths for males and females by country and period.
Source: Authors’ calculations using data from LAMBdAA (Palloni et al., 2014) and formula 0 = ef(a®) — eq(a")[1 — A(a')], where A(a’) =

+
foﬂ ((s)ds is the cumulative hazard function (Zhang and Vaupel, 2009).

entropy—semelparous populations) (Demetrius, 1975), the rate of
convergence of a population to its stable equivalent age distribu-
tion (Tuljapurkar, 1982, 1993), the general shape of the survival
function (e.g., entropy = 0 if all mortality concentrates at one age
or entropy = 1 if mortality is the same at all ages) (Demetrius,
1978; Keyfitz and Caswell, 2005), and the “degree” of concav-
ity of the survival function, such that increasing concentration of
deaths at some age corresponds to lower entropy values (e.g., low
entropy in high-income countries as deaths concentrate at older
ages) (Wilmoth and Horiuchi, 1999; Nagnur, 1986).

In demography, most of the studies about population entropy
follow Keyfitz's principle by studying the relative change in
life expectancy associated with changes in age-specific mortality
rates. These studies have elucidated important properties of the
entropy. For instance, Goldman and Lord (1986), Mitra (1979,
1978) and Vaupel (1986) re-expressed the entropy using life table
notation as the weighted average of life expectancies at age x,
which can be further described as the average years of future life
that are lost by the observed deaths (Goldman and Lord, 1986), the
proportional increase in life expectancy at birth if everyone’s first
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death were averted (Mitra, 1979; Vaupel, 1986), or alternatively,
life expectancy lost due to death among those surviving to a
given age (Vaupel and Canudas Romo, 2003; Zhang and Vaupel,
2009). This last definition, called e-dagger (e'), was first coined
by Vaupel (1986). This indicator has been further developed
elsewhere (Vaupel and Canudas Romo, 2003; Zhang and Vaupel,
2009) and shown to be a useful indicator of life disparity (Vaupel
et al., 2011; Shkolnikov et al., 2011).

A.3. The effect of changes in age-specific mortality on H

A population’s entropy also detects changes in age-specific
mortality. To see this, consider first the case of constant mortality,
where p1(s) = pu is constant® and taken positive, for the moment.
Then S(x) = e, and after inserting this into the formula for H
(the negative of the parenthetical term in (2.3)) a straightforward
calculation yields H = 1. The case when u(s) = 0 - the zero
mortality case® - leads to S(x) = 1,InS(x) = 0, and thus H = 0.7
Thus, we conclude that if the mortality function is constant across
age, H = 0, 1. The contrapositive of this statement is that if H #
0, 1 then the mortality function is non-constant across age. One
more example further illustrates this point. Let us refer to this as
the almost-constant mortality case, wherein

,U«(S): {I"le SERZO_[G’ b]v

W2, S € la,bl, (A.1)

where 0 < a < band pu1, up # 0. We envision b — a to be small,
so that the force of mortality is the constant 1, for most of the ages
s, and only different (yet still constant) for a small subset of ages.
The corresponding survival function is

S(x) = b= (1—2)—p1x
and the corresponding entropy is

H=1-(0b—-a(ur — pn2)-

In the limit of b — aq, the force of mortality becomes constant
and H — 1, which verifies our earlier results of the constant
mortality case. But when b # a, the change across age in the
force of mortality in (A.1) is detected by H. To summarize, for a
given population, values of H # 0, 1 immediately tell us that the
population’s mortality function varies across age. Moreover, the
almost-constant mortality case also highlights the sensitivity of H:
no matter how small the difference b — a is, H detects the change
in mortality, suggesting that H is “in general highly sensitive to
variations in age-specific mortality” Demetrius (1979).

Because mortality is related to the survival function via (2.1),
these results suggest that a population’s entropy may be a useful
tool in characterizing its survivorship (in the cases when mortality
is not constant across age). Indeed, in the literature H is often
referred to as the “simple parameter” that can “characterize the
shape of [survival] curves” Demetrius (1979). Often the “shape”
refers to the degree of concavity (also convexity) of the survival
curve, and we find several references agreeing that “H is a

5 The corresponding survivorship curves are referred to as Type II
curves (Demetrius, 1978), and describe a population in which no age group is
favored at death (i.e. mortality is independent of age).

6 The corresponding survivorship curves are referred to as Type I
curves (Demetrius, 1978), and describe a population in which all individuals
reach the maximum possible lifespan of the species.

7 We note that 0 and 1 are in general the extrema of H, since 0 < S(x) < 1implies
that H > 0, and - assuming the mean age of the stationary population is less than
the value of the life expectancy - H < 1 was shown true in (Demetrius, 1979). (If
this assumption is not the case and the mean is u, then H < 14In(u/ep) (Goldman
and Lord, 1986, footnote 1).)

convenient summary of the degree of concavity in an [(x) column”
Keyfitz and Caswell (2005, Sec. 4.3.2). We see clearly that as the
concavity of the survival curves in Fig. 1(a) changes, the entropy
H in Fig. 1(b) changes as well. Moreover, we note that decreasing
H values - given by decreasing a-values - leads to increased
survivorship.

Appendix B. Introduction to the calculus of variations

Consider the following calculus problem. Given a real-valued
function y(x) of a real variable x that is differentiable on a given
interval (a, b), approximate the change in y due in a small change
€ in x from an initial point xo € (a, b).

This problem can be solved easily by using differentials as
follows. The assumed differentiability of y guarantees the existence
of y' (xo), defined by

V(%) = lim Y(xo + €) — y(xo) . (B.1)

0 €

The infinitesimal change dy in y due to an infinitesimal change dx
in x is then defined by

dy =y () dx.

If we now suppose that the change in x is finite but small, we may
drop the equality in (B.1) and use the approximation

y(xo + €) — y(xo)

¥ (x9) ~ —————="""  orequivalently, Ay ~ y'(xo)e,
€
(B.2)
where Ay = y(xo + €) — y(xp). The last approximation in
(B.2) has a simple interpretation: the change in input Ax = ¢

produces an approximate change in the function’s values given by
the derivative y’(xo) multiplied by Ax = ¢. Moreover, from (B.2)
we also see that the relative change in y, given by dy/y, is ¥'(xo)
multiplied by the relative change dx/x:

d—y = y’(xo)%, or, for a finite but small change Ax = ¢,
y X (B.3)

Ay , €
— Xy (x)-.
y bY
The related problem of approximating the change in a
differentiable multivariable function y(x) in the direction of a

vector v can be treated similarly. The analogue of y'(xg) is the
directional derivative y' (Xo) defined by

Y(Xo + €V) — y(Xo)
€

(B.4)

¥ (Xo) = lim
e—>0

The approximate change in y in the direction v is then given by
(B.2), with y’'(xo) replaced by y'(X).

Now, if the object of interest is not a function but instead a
functional, the derivative (B.4) has an analogue. To describe it
let us consider the simplest example of a functional: the familiar
Riemann integral

b
Iy(x)] = / y(x) dx. (B.5)
a

Given a function y(x) that is Riemann integrable over the interval
[a, b], the functional I[y(x)] produces a number—the net signed
area between a and b under the graph of y(x). We can now ask the
same question as before: what is the approximate change in I[y(x)]
due to a change in y(x)?

The answer to this question is an exercise in the calculus of
variations. Following Sagan (1992) one first defines a variation of
y(x) - denoted by §y(x) - by ev(x), where v(a) = v(b) = 0.
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(Intuitively, the curve y(x) 438y (x) in general closely resembles y(x)
but is not equal to it.) Then, the first variation of a functional

b
Jy®)] = / F(x, y(x)) dx,

a
where F is a smooth function defined as follows.

Definition 2. Let v(x) and y(x) be two functions differentiable on
a domain A, with v satisfying v(a) = v(b) = 0. Then the first
variation §J[y(x)] is defined by

S —
SIy(0] = lim]l'_y(x) +3y(®)] —Jlyx)]

e—0 €

0]
[a][y(x) + Sy(x)]}
€

e=0

a
= |:8]D’(X) + Ev(X)]:| (B.6)
€

e=0
whenever the limit exists.

As in (B.4), this can be thought of as the derivative of J[y(x)] “in the
direction of v(x)”.

In practice, the process of calculating §/ begins in one of
two ways. In the first, one is given a family of varied curves
parameterized by some parameter e. In this case (B.6) is calculated
by Taylor expanding these varied curves in powers of €. For
example, for the functional (B.5) let us consider the effect of the
variations e'*9* of the function e* on I[e*]. Here y(x) + 8y(x) =
e(1+9% and to calculate (B.6) we Taylor expand the varied curves:

2
X
eITON — ge — ¢ (1+ex+62§+~-->-

Then (B.6) gives

9 b
81[e’] = [g / el1+ox dx]
a e=0

9 b X2 b
= —/ Fl1+ex+e?=+--- ) dx :/ xe* dx.
de Jg 2! =0 a

To interpret this last result, we note that as in (B.2) we may
write (Theorem 1.5 Sagan, 1992)

Ally®] =]y +8y(0] —Jly®)] = €d][y(x)] (B.7)

when € is small. For example, if we choose a = 0 and b = 1 in the
¢* example and consider the variation to be y(x) + 8y (x) = e(1-0D%
then

1
Alle¥] = 1[e0P%] — [[e¥] =~ (0.01) f xe*dx = 0.01.
0

This compares well with the actual increment I[e!-9D%] — [[e¥] =
0.01004.

In the second approach to calculating the first variation §J one
is given the variation §y. For example, for the functional (B.5) we
have §y = ev(x)

im [Y®) + Y] — Iyl

SIy()] = lim -
b _ b b
= iim lo® + E”(")j dx = Jo ¥ dx =/ V() dx.

Using (B.7), we then have

b
Ally(x)] ~ e[ v(x) dx,

which tells us that for small enough ¢, changing the integrand y(x)
to y(x) + ev(x) changes the net signed area by approximately ¢

multiplied by the net signed area of v(x), a conclusion made even
more clear by drawing a few example graphs.

The preceding development has focused on the analogue of the
first derivative in the calculus of variations. But as in the case with
functions, where higher-order derivatives can be defined, we can
also define higher-order variations of functionals.

Definition 3. Let y(x; €) be a family of smooth varied curves for
the function y(x) such that for all € we have y(a; €) = y(a) and
y(b; €) = y(b). Define §y(x) = y(x; €) — y(x) and let

8y(x) = ev(®) + w1 (X) + -+ + € W1 (X) + -

be the Taylor expansion in powers of € of §y(x). Then the
nth variation §"J[y(x)] is defined by

n

a
Sy = [

Sl V00 + ay(x)]}
€

e=0

whenever the derivative exists.

We note that in the case of n = 1 this definition reduces to
definition (B.6).

For instance, continuing with the e* example, we have

811" [32 /be" <1+ X+ 2% + ) dxi|
= _ € € — N
9e? J, 2! o

b
= / x%e* dx.
a

We can then extend (B.7) to second order in € (Theorem
1.8.1 Sagan, 1992):

62

Jly@) + 8y ] —Jly()] = €8] [y(x)] + 752][V(X)] (B.8)
when ¢ is small. For example, choosing a = 0 and b = 1 in the €*
example and again considering the variation to be y(x) + §y(x) =
e1:0Dx then

! 0.01)? !
1[e1OV%] — [[e*] ~ (0.01)/ xe* dx + ( > ) / x%e* dx
0 0
= 0.0100359,

which is an even better approximation to the actual increment
I[eOD*] — [e¥] = 0.01004.
Finally, motivated by (B.3), we make the following definition.

Definition 4. The relative change of a functional J[y(x)] is defined
by

§Jlyx)]
Jy®]

everywhere where J[y(x)] is nonzero.

Appendix C. Proofs of propositions

Proof of Proposition 1. Let §S(x) = €ev(x) be a variation of S(x),
i.e. v(x) is a smooth function that vanishes at zero and as x — oo.

1. To show: 81 — & _ %0
° ° H - ET eo'

Proof. We begin with the observation that H[S + §S] = e[S +
3S51/eolS + 6S] can be written as

0 = H[S + 8S]eo[S + 8S] — e[S + 8S]
= H[S + ev]eo[S + ev] — e'[S + ev].
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Now, taking the derivative with respect to € yields

oH 3@0
8—[5 + ev]eg[S + ev] + H[S + ev]a—[S + ev]
€ €

def
——[S+ev]=0. (C1)
de
Setting ¢ = 0 now gives
8H[S]eo[S] + H[S18e0[S] — 8ef[S] = 0. (C2)
Solving for §H[S] yields

sef — Héeg SH eg (Sef et Seg

SH= ——  — — — — — [ — - =
o H et

set  Seg

et ey

We now show that e and Se, are given by (2.6). By (B.6) we
have

det
—[S®) + €v(x)]
de

= _83 [/M(S(x) + ev(x)) In(S(x) + ev(x)) dxj|
0

€
= — [oo v(X)[In(S(x) + ev(x)) + 1] dx.
0

Evaluating this expression at € = 0 yields

Sef[S(%)] —/OO v(@)[In(S(x)) + 1] dx
0

— /OO v(x) dx — /ooln(S(x))v(x) dx,
0 0

which is the first equation in (2.6). Lastly,

9 [fm(S(x) +ev(x))dx]
de 0

/oo v(x) dx.
0

deo[SX)] = /OO v(x) dx,
0

36’0
—[SG&) + ev(®)]
d€

Thus,

reproducing the second equation in (2.6). O

. To show: The second variation

§2H = 1 [2 {53051-1 4 (/OO w(x) dx) (H-1)
€ 0

*© * (v(x))? ]
- In(S(x)) dx} — dx| .
/0 w(x) In(S(x)) x} fo 50 X

Proof. For ease of writing, let S(x) + §5(x) = S(x;¢€) be a
family of varied curves, where S(x; 0) = S(x), S(0; ¢) = 0, and
S(x; €) > 0asx — oo.Expand S(x; €) in an € series:

S(x) +385(x) = S(X) + ev(®) + WX + - - - .
Now, differentiate (C.1) with respect to € twice to arrive at

H"[S(x; €)]eo[S(x; €)] + 2H'[S(x; €)]eg[S(x; €)]
+H[S(x; €)1eg[S(x; €)1 — (eN)"[S(x; €)] = 0,

where the primes denote derivatives with respect to €. Setting
€ = 0 then yields

H"[S(x; 0)]eo[S(x; 0)] + 2H'[S(x; 0)]ey[S (x; 0)]
+ H[S(x; €)]e;[S(x; 0)] — (e")"[S(x; 0)] = 0. (C3)

To calculate the quantities in this equation, we begin with
eo[S(x; €)1 = [y S(x: €) dx. Then

e)[5(x; 0)] = fo " 000 dx = SealS (01,
el[S(x; 0)] =2 /Ooo w(x) dx.
Similarly,
elSx; )] = — /OOOS(X; €) In(S(x; €)) dx
= (e")[S(x; 0)] = — /OOOS’(X; 0)[In(S(x; 0)) + 11dx

= (")'[S(x; 0)] = — / (S”(x; 0)(In(S(x; 0)) + 1)
0

/(e 2
(§'(x; 0)) )dx

+ S(x; 0)

Therefore,

(€)"[Sx; 0] = —Zfoo wX)(In(S(x)) + 1) dx
0

_ / T (C5)
0 S(x)

Finally, substituting (C.4)-(C.5) into (C.3) gives

(8%H)eg + 2(8H) (8ep) + (2H) < / ” w(x) dx)
0

* (v(®)?
S(x)

dx = 0.

+2f w®)(In(Sx)) + 1)dx+/
0 0

Solving for §2H reproduces (2.8). O

Proof of Proposition 2.

Proof. Let §14(s) = €v(s) be a variation of the mortality function
14(s), and suppose that v(0) = 0 and v(s) — 0ass — oo. Then

o0
eoli + 6l = / e~ Jolu@revinds gy
0

)
- / e~ J&nes) dsp—e S vis)ds dx
0

/Oo e~ Jonds <1 —€ (/x v(s) ds) + h.p.e.) dx

0 0

eolu] — € |:/ S[(s)] (/ v(s) ds) dx] + h.p.e,,
0 0

where the abbreviation h.p.e. stands for “higher powers in
epsilon”. Therefore,

i eol + ] — eo[u]
m

e—0 €

— /OOS[M(S)] (/x v(s) ds) dx. (C.6)
0 0

Seo[(s)]
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Now, since S[v(s)] = e~/ *® 4 then In(S[v(s)]) = —fox v(s) ds.
Therefore, (C.6) can be written as in (2.12). Similarly, we have that

o0 X
_ / e~ Jo (w(s)+e€v(s)) ds
0

X [— /X(u(s) + €v(s)) ds] dx

0
/Oo o~ Jo u(s)ds (1 —€ (/X v(s) ds) + h.p.e>
0 0
X (/ 1(s) ds—i—e/ v(s) ds) dx

0 0
eflu] — e [/ S[u(s)] (/ v(s) dS)
0 0

X <</X u(s) ds) - 1) dx} + h.p.e.

0

It follows that
efu + 5#] —ef[u]

e[+ dul

sef[u] = li

o) ([ o))

S(®)] (= In(S[v(s)]) (= In(S[u(s)]) — 1) dx

S[u(®)] InS[ve)]) AnS[u(s)]) + 1) dx

o0

S[r(s)1In(S[v(s)]) dx

[/L(S)] In(S[v(s)]) In(S[r(s)]) dx

o\,o\,o\,o\a

= —5€o[M(S)]—/ S[n®)11n(S[e(s)]) In(S[w(s)]) dx,
0

which reproduces (2.11). O

Appendix D. More applications of Propositions 1 and 2

In Appendix D.1 we reproduce the results of constant mortality
case of Appendix A.3 as a basic illustration and check of
Proposition 1. In Appendix D.2 we illustrate a particular case
assuming a Gompertz force of mortality, i.e. u(x) = ae™ and

S(x) = e¥be~@he”™ and evaluate the change in H when there
is a proportional change in S(x) at all ages (similar to that shown
by Keyfitz (1977)).

D.1. Reproducing the constant mortality case results

Let u be a positive real number and S(x) = e™**, and consider
a variation 8S that produces the new survival curve S + S =
e~w+9X where € > 0. To illustrate the results of Proposition 1,
we first Taylor expand S + 8S in powers of €:

2
S 485 = e WHOX — pmiXpmex _ omix (1 —ex+ (EZX') + .- )

2
S+e™ ™ (—ex—i— (ezx‘) +>

From the last equation we see that

8S = e(—xe™™) + €2 (xPe M )2) - -

Thus, comparing with the expansion 85(x) = ev(x) + €2w(x)
we see that v(x) = —xe™** and w(x) = x*e~**/2. From (2.6) we
then have

°° _ 1
sel[S)] = —/ [1— ux](—xe ") dx = -,
0 u

o _ 1
Sep[S(X)] = / (—xe ") dx = -
0 “w

Now, since

o0 1
efle™] = — f (—pux)e ™ dx = —,
0 M

o 1
eole ] = / e Mdx = —,
0 1

we see that Sef /e = —1/u = Segy/ey. Therefore, according to (2.5)
we have that H = 0. This suggests that, for example, the survival
functions S;(x) = e~%* and S,(x) = e~2°™* both have the same H
value. This is confirmed by the fact that H = 1 for the constant
mortality case (c.f. Appendix A.3).

To illustrate (2.8) we make use of the following facts:

e 2 © 6
f e M dx = = / Xoe M (—px) dx = ——.
0 wl 0 w

Using these, along with the fact that H[S(x)] = 1, Eq. (2.8) gives
2 2 2 6
H[SX)] = —un E—i_ 0+E(]+1)_E =0.
Therefore, to second order in € we have, according to (2.9),
H[S+6S]~1+0-€e+0-€*=1.

These calculations are again in accordance with our results from
the constant mortality example of Appendix A.3.

To illustrate Proposition 2, note that the mortality function here
is w(s) = w, and that the variation §iu(s) = €. Thus, v(s) = 1 and
(2.12) gives®

Seo[i(s)] = /Ooe_‘“‘ In (e‘ fglds) dx = f
0

matching (D.1). Similarly, (2.11) gives

/ (—xe ") dx—/ e M (—ux) (—x) dx,

(—xe ") dx,

seffu(s)] =

again matching (D.1). Since ef, eg, Set, Seg all have the same values
as before, (2.10) leads to the same §H = 0 conclusion.

D.2. Proportional changes in S and their effect on H

Suppose that we consider a small proportional increase in S(x)
to kS(x), where k > 1 is close to one. We can then write
kSX) =1 +k—1)S(x) =Sx) + (k— 1)S(x) = S(x) + §S(x),

where §5(x) = €S(x), withe = k — 1 > 0 but close to zero. Note
that v(x) = S(x) and w(x) = 0. From (2.6) we then have

sef[Sx)] = — /oo[l + In(S(x))]1S (%) dx,
0

(o]
Sep[S(X)] = f S(x) dx.
0
8 We note that although v(s) = 1 does not vanish at zero and as s — 0o, one can

easily replace it by a continuous function that does without affecting the results of
the calculations.
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Notice that the relative change in life expectancy dep/ep = 1,
whereas the relative change in the average years of future life that
are lost by observed deaths is

St JyI1+In(S(x))IS(x) dx

el[S®] ~ [S®) In(S(x)) dx
_ Jo S@dx+ [7S@InSE)dx e
N J7°S(®) In(S(x)) dx T oet T
so that (2.5) gives
SHIS®)] _ /e L, _®
HS®] <_eT +1) 1= et

1
= _H[S(X)] = SH[S(X)] = —1.

Thus, we conclude that since §H[S(x)] < 0 the survival curves S(x)
must be changing shape toward increased survivorship, which is
true since we have assumed that k > 1.

For the second variation, using (D.2) and (D.3) in (2.8) yields

o] 2
—[1/ @) dt+2{(1)(—1)+0+0}}
€0 Jo Sx)

1
=_[eo_z]=1.
€o

From (2.9) it follows that

(D.3)

S2H[S(%)]

2
HIKS(0)] ~ HIS(X)] + €SHIS(0)] + %SZH[S(X)]

(k=172
2
(k=1

= H[S®)] + (k— D(—=1) +

eY)

= H[S()]+ (1 —k) + (D.4)

We note that analogous calculations can be carried out for the
k < 1 case.

Let us now compare these approximations to the exact results
one obtains in the Gompertz case. Let 1 (x) be the force of mortality
at age x and assume it follows a Gompertz curve, i.e. u(x) = ae®™.

It follows that the corresponding survival function at age x is given
by S(x) = Ce~@D¢™ where C = e%/?, and that

st — & f e byt b gy
[ (x)] - B fooo e—(a/b)eb" dX

To calculate H[kS (x)] we first note that kS (x) = kCe~@/b¢™ so that

we can simply replace C by kC in (D.5). Therefore,

af e b)e™ gbx iy

b [° e-(@/be gy
af, e b)e™ gbx iy

b Jo7 e @me dx

= H[S()] — In(k). (D6)

Since we have assumed that k > 1 but close to one, writing
Ink = In(1 4 (k — 1)) we can then Taylor expand In(1 + (k — 1))
to express (D.6) as

— In(C). (D.5)

H[kS(x)] — In(kC)

— In(k) — In(C)

(k — 1)?
H[kS(x)] = H[S(x)] — <(k— N - +)

= H[S(1+ (1 — k) + — (D.7)

(k—1)?
2

From this we see that the second-order approximation (D.4)
matches the actual result (D.7) exactly (to second order).

Appendix E. Early and late deaths
E.1. Reworking of Proposition 1

Given a threshold age af, we can break up the first variations of
eo[S(x)] and ef[S(x)] as follows:

aT o0
Seg[S(x)] = f v(x)dx+/ v(x) dx
0 at
=: Seo[S(x|x < a’)] + Seo[S(x|x > a)], (E.1)
se'[S®)] = — (SeolS(x|x < a®)] + Seo[S(x|x > a)])

af

In(S(x)) v(x) dx + /oc In(S(x)) v(x) dx)
aT

(/
= {—(Seo[S(xlx <ah] - /
0

+ {—Seo[S(X|x >ah)] - [oo In(S(x)) v(x) dx}

at
=: Se'[S(x|x < a")] + sel[S(x|x > ah)], (E2)
where v(x) is a smooth function that vanishes at zero and as x —
Q.
Thus, Proposition 1 can be written as:

SH[S(X)] {86*[5(x|x <a")]  —8e[SKx|x < ah)] }

at

In(S(x)) v(x) dx}

HS®)] ef[S(x)] eo[S(x)]
{5€T[5(X|X >ah)]  —8e[S(x|x > a)] }
. (E3)
ef[S(x)] eo[S(x)]

E.2. Reworking of Proposition 2

Similarly, given a threshold age af, we can break up the first
variations of ef[1.(s)] and eg[ e (s)] as follows:
at

Seolit(s)] = / S ] In(S:[v(s)]) dx
0

+ /T Sxli ()] In(Sx[v(s)]) dx
: Seolu(slx < ah)] + Seg[p(slx > ah], (E4)
se'[u(s)] = — (Seolp(slx < a")] + Seo[pu(s|x = a')])
at
-

SLETINGLED IS v(s)]) dx
- / SO IS ) dy

(—Seo[u(SIx <ah]

/aT
0

+ (—Seo[u(SIx > a")]

Sl (]IS [ ()] In(Si[v(s)]) dX)

- f ) Selin ()1 In(Sx[1e(s)]) In(Sx[v($)]) dX>
= Se[u(s|x < a")] + sef[u(s|x > ah], (E5)

where S,[v(s)] = e~ /o v©)ds,
Thus, Proposition 2 can be written as:

SH[ju(s)] {SeT[M(SIX <ah)] = —Beg[u(slx < a')] l

H[u(s)] ef[u(s)] eo[u(s)]
{SeT[M(SIX >ah)]  —8eo[u(slx > ah)] }
. (E6)
ef[u(s)] eo[1(s)]
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Appendix F. Discrete approximations

F.1. Life table notation

One can use the following approximation formulas to estimate
e(0), et (0), and H at time ¢ (life table notation):

e(0, t):/wS(a, t)yda~ —— 1(0 B Z L(x, (F.1)
0

ef(0,t) = —/OOS(a, ) In(S(a, t)) da
0

N e(y, t)+e(y+1 t)
T . t)z w )[ } (72

ef (0, t)
e(0,t)
wherel(0, t),L(x, t),d(x, t),and e(x, t) correspond to the following

life table values at age x, time t: radix at age 0, person-years lived,
deaths, and life expectancy.

H(t) =

F.2. Discrete version of Proposition 1

One can use the following approximation formulas to estimate
the first variations shown in Proposition 1:

[

1
SealS ()] ~ 1o > ILx ) — Lx. 1)]
x=0

3e'[S(x)] = [e(0, t;) — e(0, )] — [e7(0, t1) — e"*(0, 1) ]

where the approximation formulas for e(0, t) and ef(0,t) are
shown in Egs. (F.1) and (F.2), respectively. The estimation of
e™*(0, t,) can be carried out using Eq. (F.2) with d(y) replaced by
d*(y); the latter corresponds to counterfactual life table deaths at
age y estimated with mortality at time t; and life table survivors at
time t,.

To derive the two formulas above, let S(x) = S(x, t;) —S(x, t1)
be a variation of the survival function between times t; and t,.
Thus, v(x) = S(x, t;) — S(x, t1). The first variation of eq is then
given by:

Seo[SX)] = /wv(x)dx
0
2/ [S(x, t2) — S(x, t1)] dx
0

/OOS(X, ) — /OOS(X, t1) dx
0 0

e(O tz) — 6(0 t])

SeolS(x)] ~ Z [Lx. &) — Lx, t)],

@
where (0, t;) = I(O, t;) = 1(0).

The first variation of ef is given by:

sef[Sx] = — [/Oo v(x)dx + /oo In(S(x, t1)) v(X) dx}
0 0
= — [(Seo[S(x)] + fooln(S(x, t1)) S(x, t;) dx
0
- / In(S(x, t1)) S(x, tﬂdx]
0
= — [8eo[S(x)] — e"*(0, 1) + €7 (0, t1)]
se'[S(x)] = [e(0, t;) — e(0, )] — [e7(0, t1) —e"*(0,1)]  (F.3)

where

el*(0,t,) = —/ooln(S(a t1)) S(a, t;) da

/ / u(x, t1) S(a, ty) dxda

= / w(x, t1)/ S(a, t;) dadx

0

= /OO wix, t) l(x, ty) e(x, tp) dx
0

ef*(0, ) = /oo d*(x) e(x, t;) dx
0

d*(x) represents counterfactual life table deaths at age x estimated
with mortality at time t; and life table survivors at time t,. From
Eq. (F.2), the discrete approximation of the above equation is given
by:

e"*(0, t,) ~

w—1
1 |:€0” t2)+e(y+1,t2):|’ (F4)

— d*(y
1(0) = 2
where (0, t;) = [(0, t;) = 1(0). Thus, a discrete approximation
of 8ef[S(x)] (Eq. (F.3)) uses formulas (F.1), (F.2) and (F.4)
corresponding to e(0, t), ef (0, t) and ef*(0, t), respectively.
The preceding discretizations imply that (2.5) can be discretized
as

N Se"[S(x)]  deolS(x)]
(SH[S(X, t])] ~ H[S(X, t])] ( ET(O, t]) - 6(0, f]) )
A H[S(x, t1)] (em, e tZ)e:((()eTti()), e

_ (e(0, ) —e(O, tl)))

e(oa tl)
= HIS(x, 1)] e(0,t1) — e(0,t;) +e*(0,t;)  e(0,t)
= X, 4 et (0, t;) e(0, 1)

_ (e*(o, m) (e(o, t) —e(0,t) +e"*(0, ) (0, m) (F.5)
~ e, 1y) et (0, t) Ce0,t))

Discretization of equations relating H with early and late
deaths. We use a similar discretization of Egs. (3.1)-(3.5) as shown
above, except that now we have intervals for age (i.e., [0, af] or
[af, 00)).

Using these discretizations in practice requires numerical
integration for some calculations (e.g., (2.4)). To reduce the
calculation errors we use more advanced techniques from the
theory of numerical integration. In particular, we fitted a third
degree monotone cubic spline using Hyman filtering (Hyman,
1983) to the quinquennial S(x) column of the life table to produce
single-year survival probabilities. We then estimated the area
under this curve using trapezoids, which simplifies the numerical
integration because the length of the intervals is one unit long.
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