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ABSTRACT OF THE DISSERTATION

Statistical Inference: Global Testing, Multiple Testing and Causal Inference in Survival
Analysis

by

Andrew Ying

Doctor of Philosophy in Mathematics

University of California San Diego, 2020

Professor Ery Arias-Castro, Chair
Professor Ronghui Xu, Co-Chair

In Chapter 1, we consider the problem of detecting a sparse mixture as studied by Ingster

(1997) and Donoho and Jin (2004). We consider a wide array of base distributions. In particular,

we study the situation when the base distribution has polynomial tails, a situation that has not

received much attention in the literature. Perhaps surprisingly, we find that in the context of

such a power-law distribution, the higher criticism does not achieve the detection boundary.

However, the scan statistic does. In Chapter 2, we derive the large-sample distribution of several

variants of the scan statistic applied to a point process on an interval, which can be applied to

xiv



detect the presence of an anomalous interval with any length. The main ingredients in the proof

are Kolmogorov’s theorem, a Poisson approximation, and recent technical results by [KW14].

In Chapter 3, we consider causal inference in survival analysis in the presence of unmeasured

confounders. Instrumental variable is an essential tool for addressing unmeasured confounding in

observational studies. Two stage predictor substitution (2SPS) estimator and two stage residual

inclusion(2SRI) are two commonly used approaches in applying instrumental variables. Recently

2SPS was studied under the additive hazards model in the presence of competing risks of

time-to-events data, where linearity was assumed for the relationship between the treatment

and the instrument variable. This assumption may not be the most appropriate when we have

binary treatments. We consider the 2SRI estimator under the additive hazards model for general

survival data and in the presence of competing risks, which allows generalized linear models

for the relation between the treatment and the instrumental variable. We derive the asymptotic

properties including a closed-form asymptotic variance estimate for the 2SRI estimator. We carry

out numerical studies in finite samples, and apply our methodology to the linked Surveillance,

Epidemiology and End Results (SEER) - Medicare database comparing radical prostatectomy

versus conservative treatment in early-stage prostate cancer patients. In Chapter 4, we investigate

the causal effects of etanercept (trade name Enbrel) on birth defects, a pharmaceutical that treats

autoimmune diseases and recently went through the US FDA revised labeling for use in pregnancy,

as the proportion of liveborn infants with major birth defects was higher for women exposed to

etanercept compared to diseased etanercept unexposed women. An outstanding problem, which

was not addressed in the data analysis leading up to the FDA relabeling, is the missing birth

defect outcomes due to spontaneous abortion since, in accepted standard practice an infant or

a fetus is assumed not to be malformed unless a defect is found. This led to likely bias (and

missing not at random) because, according to the theory of “terathanasia”, a defected fetus is

more likely to be spontaneously aborted. In addition, the previous analysis stratified on live birth

against spontaneous abortion, which was itself a post-exposure variable showing higher rate of

xv



spontaneous abortion in the unexposed women, hence did not lead to causal interpretation of the

stratified results. We aim to estimate and provide inference for the causal parameters of scientific

interest, including the principal effects, making use of the missing data mechanism informed

by terathanasia. During the process we also deal with complications in the data including left

truncation, observational nature, and rare events. We report our findings which not only provide a

more in-depth analysis than previously done on etanercept, but also shed light on how similar

studies on causal effects of medication (or vaccine, other substances etc.) during pregnancy may

be analyzed.
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Chapter 1

Detection of Sparse Mixtures: Higher

Criticism and Scan Statistic

1.1 Introduction

We consider the problem of detecting a sparse mixture. A simple variant of the problem

can be formulated as follows. Let F be a continuous distribution function on the real line, and

ε ∈ (0,1/2] and µ > 0. The problem is to test

Hn
0 : X1, . . . ,Xn

iid∼ F, (1.1)

versus

Hn
1 : X1, . . . ,Xn

iid∼ (1− ε)F(·)+ εF(·−µ). (1.2)

Mixtures models such as in (1.2) have been considered for quite some time, particularly in

the context of robust statistics, where they are known as contamination models [HR09, Eq 1.22].

Rather, our contribution is in line with the testing problems studied by [Ing97] in the

context of the normal sequence model, where F above corresponds to the standard normal

1



distribution. In that setting, Ingster considered the following parameterization

ε = εn = n−β, µ = µn =
√

2r logn, (1.3)

for some β > 0 and r > 0. The advantage of this parameterization is that, holding β and r fixed,

the situation admits a relatively simple description. Indeed, since both the null and the alternative

hypotheses are simple, by the Neyman-Pearson Lemma, the likelihood ratio test (set at level α) is

most powerful. Ingster studied the large-sample behavior of this test procedure and discovered

that, in the case where β > 1/2, when r < ρ(β), the test is powerless in the sense of achieving

power α, while when r > ρ(β), the test was fully powerful in the sense of achieving power 1,

where the function ρ is given by

ρ(β) :=


β−1/2, 1/2 < β≤ 3/4,

(1−
√

1−β)2, 3/4 < β < 1.
(1.4)

Thus the existence of a detection boundary in the (β,r) plane given by r = ρ(β). In such a

situation, we will say that a test procedure ‘achieves the detection boundary’, or is ‘first-order

optimal’ (or simply ‘optimal’), if it is fully powerful when r > ρ(β).

Such detection boundaries where derived for other models, for example, in [CW14,

CJJ11, DJ04]. We also mention that the situation where β ≤ 1/2 is also well-understood, but

quite different, and will not be considered here. Most of the literature has focused on the more

interesting setting where β > 1/2 and we do the same here.

1.1.1 Threshold tests

After determining what one can hope for, it becomes of interest to understand what one

can achieve with less information. Indeed, the likelihood ratio test requires knowledge of all

2



the quantities and objects defining the testing problem, in this case (F,ε,µ), and even in the

present stylized setting we might want to know what can be done when some of this information

is missing, in particular what defines the alternative, namely (ε,µ). (The case where F is also

unknown has attracted much less attention. We discuss it in Section 1.5.)

When F is known, the problem is that of goodness-of-fit testing, albeit with alternatives

of the form (1.2) in mind. [DJ04] opened this investigation with the analysis of various tests,

including the max test based on maxi Xi and a variant of the Anderson-Darling test [AD52].

Seeing as a problem of multiple testing based on p-values defined as Ui = 1−F(Xi), the max test

coincides with the Tippett-Šidák test combination test, while the Anderson-Darling test coincides

with a proposal by Tukey called the higher criticism (HC). More recently, [MNS16] analyzed a

goodness-of-fit (BJ) test proposed by [BJ79] in the same setting. For t ∈ R, define

Nn(t) = #{i ∈ [n] : Xi ≥ t}. (1.5)

We note that, under the null hypothesis, Nn(t) is binomial with parameters (n,1−F(t)), which

motivates the test that rejects for large values of

sup
t:F(t)≥1/2

Nn(t)−n(1−F(t))√
nF(t)(1−F(t))+1

. (1.6)

This is one of many possible variants of HC.1

Let U(1) ≤ ·· · ≤U(n) denote the ordered Ui’s. We note that, under the null hypothesis,

U(i) has the beta distribution with parameters (i,n− i+1), which motivates the definition of BJ,

rejecting for small values of

min
i∈[n]

Pi, (1.7)

1 The constraint ‘F(t) ≤ 1/2 can be replaced by F(t) ≤ γ, where γ can be taken to be smaller, say γ = 0.05.
The ‘+1’ in the denominator is roughly equivalent to adding the constraint F(t)≥ 1/n, which [DJ04] recommend
for reasons of stability. In any case, this variant performs as well (to first order) as any other variant of HC considered
in the literature, at least in all the regimes commonly considered.

3



where Pi := B(U(i); i,n− i+1) and B(·;a,b) denotes the distribution function of the beta distribu-

tion with parameters (a,b).

The verdict is the following. In the normal setting, HC and BJ achieve the detection

boundary in the full range β > 1/2, while the max test is only able to achieve the detection in the

upper half of the range β > 3/4. The same extends to other models, in particular to generalized

Gaussian models where F has density proportional to exp(−|x|a/a) for some a > 1. (The case

a ≤ 1 is qualitatively different. HC and BJ are still first-order optimal while the max test is

suboptimal everywhere.)

These tests are all threshold tests, where we define a threshold test as any test with a

rejection region of the form
⋃

t∈T {Nn(t)≥ ct}, for some subset T ⊂ R and some critical values

ct > 0. More broadly, any combination test that we know of that is discussed in the multiple-

testing literature is a threshold test. (This includes the tests proposed by Fisher, Lipták-Stouffer,

Tippett-Šidák, Simes, and more.) Thus it might be of interest to understand what can be achieved

with a threshold test. In this regard, it is useful to examine how one would optimize such an

approach if one had perfect knowledge of the model. Let φt denote the test with rejection region

{Nn(t)≥ ct}, where

ct := min
{

c≥ 0 : P0(Nn(t)≥ c)≤ α
}
. (1.8)

We define the oracle threshold test as the test φt∗, where

t∗ := argmax
t∈R

P1(Nn(t)≥ ct), (1.9)

with P0 denoting the distribution under the null (1.1) and P1 that under the alternative (1.2). (Here

and elsewhere, α denotes the desired significance level.) Note that computing ct only requires

knowledge of F , while computing t∗ requires knowledge of the entire model, namely (F,ε,µ).

Thus the construction of the test φt∗ relies on the oracle knowledge of (ε,µ).
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1.1.2 Scan tests

Detection problems arise in a variety of contexts and in very many applications. An

important example is in spatial statistics (itself a rather wide area), where the detection of ‘hot

spots’, meaning areas of unusually high concentration, has been considered for quite some time

[Kul97]. An early contribution to this literature is that of [Nau65], who considered the distribution

of the maximum number of points in an interval of given length (say `) when the points are

drawn iid from the uniform distribution on [0,1]. This would nowadays be referred to as the scan

statistic and arises when testing the null that the points are uniformly distributed in [0,1] against

the (composite) alternative that there is an sub-interval of length ` with higher intensity. Settings

where sub-interval length is unknown have been considered [ACDH05].

For s≤ t, define Nn[s, t] = #{i ∈ [n] : Xi ∈ [s, t]} and F [s, t] = F(t)−F(s). We note that,

under the null hypothesis, Nn[s, t] is binomial with parameters (n,F [s, t]), which motivates the

test that rejects for large values of

sup
(s,t):F [s,t]≤1/2

Nn[s, t]−nF [s, t]√
nF [s, t](1−F [s, t])+1

. (1.10)

Although there are many possible variants, this is the one we will be working with.

We note that, under the null hypothesis, for any pair of indices i < j, U( j)−U(i) has the

beta distribution with parameters ( j− i,n− j+ i+1) — see [GC11, Th 11.1]. This motivates the

definition of the scan test which rejects for small values of

min
0≤i< j≤n+1

Pi, j, (1.11)

where Pi, j := B(U( j)−U(i); j− i,n− j+ i+1), U(0) := 0, U(n+1) := 1, P0,n+1 := 1.
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In general, we define a scan test as any test with region rejection of the form

⋃
(s,t)∈K

{Nn[s, t]≥ cs,t}, (1.12)

where K is a subset of {(s, t) : s < t} and cs,t ≥ 0 are critical values. Let φs,t denote the test with

rejection region {Nn[s, t]≥ cs,t}, where

cs,t := min
{

c≥ 0 : P0(Nn[s, t]≥ c)≤ α
}
. (1.13)

We define the oracle scan test as the test φs•,t• , where

(s•, t•) := argmax
s<t

P1(Nn[s, t]≥ cs,t). (1.14)

Indeed, φs•,t• relies on oracle knowledge of (ε,µ).

To the best of our knowledge, this is the first time that such tests are considered in the

line of work that concerns us here with roots in the work of [Ing97] and [DJ04] — although a

similar procedure is used in [CJL07] to estimate the contamination proportion ε. The main reason

for considering these tests in the present context is that they happen to be first-order optimal,

not only in the models considered in the literature (such as generalized Gaussian), but also in

power-law models where F has fat tails (e.g., t distribution, Cauchy or Pareto), whereas threshold

tests fail are suboptimal for such models. We observe that power-law models are mostly absent

from this literature, although they are mentioned in [JSD+05] in the context of an application in

cosmology.

1.1.3 Content

For simplicity and the sake of clarity, we will focus on oracle-type, rather than likelihood

ratio, performance bounds. The former are indeed more transparent and can be obtained under
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more generality and with simpler arguments. Also our main intention here is to compare what

can be achieved with threshold tests compared to the more general scan tests, defined next, and

comparing the corresponding oracle tests seems more appropriate.

In Section 1.2, we study the oracle threshold test and the oracle scan test. We then consider

a number of models. In Section 1.3, we consider the two scan tests described above and compare

them to the oracle scan test. In Section 1.4, we present the result of some numerical experiments

that illustrate our theory. We briefly discuss the performance of the likelihood ratio test and that

of nonparametric approaches in Section 1.5.

1.2 Oracle threshold test and oracle scan test

In this section we state and prove some basic results for the oracle threshold and oracle

scan tests.

1.2.1 Power monotonicity

It is natural to guess that the testing (1.1) versus (1.2) becomes easier as the shift µ

increases. This is indeed the case, at least from the point of view of both oracle tests.

Proposition 1.2.1.1. The oracle threshold test has monotonic power in the shift.

Proof. We assume that ε > 0 is fixed and let Pµ denote the data distribution under the alternative

(1.2). Take µ1 ≤ µ2 and let tk denote the oracle threshold (1.9) for µk, so that the oracle test for

µk, meaning φtk , has rejection region {Nn(tk)≥ ctk} and power πk := Pµk(Nn(tk)≥ ctk). Thus we

need to show that π1 ≤ π2. This is so because of the fact that, for any t, Nn(t) is stochastically

non-decreasing in µ, leading to

π1 = Pµ1(Nn(t1)≥ ct1)≤ Pµ2(Nn(t1)≥ ct1)≤ Pµ2(Nn(t2)≥ ct2) = π2, (1.15)
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where the last inequality is by construction of t2 and c2.

Clearly, the oracle scan test has at least as much power as the oracle threshold test.

Interestingly, it does not have monotonic power in general, although it does under some natural

assumptions on the base distribution.

Proposition 1.2.1.2. Assume that F, as a distribution, is unimodal. Then the oracle scan test has

monotonic power in the shift.

Proof. We stay with the setting and notation introduced in the proof of Proposition 1.2.1.1. Let

d ≥ 0 be smallest such that

F [s1 +d, t1 +µ2−µ1] = F [s1, t1]. (1.16)

The fact that F , as a distribution, is unimodal implies that d ≤ µ2−µ1. Now, under the null, by

construction,

P0(Nn[s1 +d, t1 +µ2−µ1]≥ cs1,t1) = P0(Nn[s1, t1]≥ cs1,t1)≤ α. (1.17)

On the other hand, under Pµ1 , Nn[s1, t1] is binomial with parameters n and q1 := (1− ε)F [s1, t1]+

εF [s1−µ1, t1−µ1], while under Pµ2 , Nn[s1 +d, t1 +µ2−µ1] is binomial with parameters n and

q2 := (1− ε)F [s1 +d, t1 +µ2−µ1]+ εF [s1 +d−µ2, t1 +µ2−µ1−µ2]

= (1− ε)F [s1, t1]+ εF [s1 +d−µ2, t1−µ1]

≥ q1,
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using the fact that d ≤ µ2−µ1. This explains the first inequality in the following derivation

π1 = Pµ1(Nn[s1, t1]≥ cs1,t1)

≤ Pµ2(Nn[s1 +d, t1 +µ2−µ1]≥ cs1,t1)

≤ Pµ2(Nn[s2, t2]≥ cs2,t2) = π2,

and the second inequality is by definition of (s2, t2).

1.2.2 Performance bounds

We now provide necessary and sufficient conditions for the the oracle threshold test and

the oracle scan test to be fully powerful in the large-sample limit (n→ ∞). We focus on the case

where

nεn→ ∞,
√

nεn→ 0, (1.18)

where the first condition implies that, under the alternative, the sample is indeed contaminated

with probability tending to 1, while the second condition puts us in the regime corresponding to

β > 1/2 under Ingster’s parameterization (1.3).

Our analysis below is based on the following simple result, which is an immediate

consequence of Chebyshev’s inequality and the central limit theorem.

Lemma 1.2.2.1. Suppose that we are testing N ∼ Bin(n, pn) versus N ∼ Bin(n,qn) where pn ≤

1/2 and pn ≤ qn, and consider the test at level α that rejects for large values of N — which is the

most powerful test. It is asymptotically powerful if n(qn− pn)
2/qn→∞, while it is asymptotically

powerless if n(qn− pn)
2/pn→ 0.

Using Lemma 1.2.2.1, we easily obtain performance guarantees for the oracle threshold

test and the oracle scan test.
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Proposition 1.2.2.1. The oracle threshold test is powerful if there is a sequence of thresholds (tn)

such that

nεnF̄(tn−µn)→ ∞, and

nε
2
nF̄(tn−µn)

2/F̄(tn)→ ∞.

(1.19)

It is powerless if for any sequence of thresholds (tn)

nε
2
nF̄(tn−µn)

2/F̄(tn)→ 0. (1.20)

Proof. Let (tn) denote a sequence of thresholds satisfying (1.19), and define pn = F̄(tn) and

qn = (1−εn)F̄(tn)+εnF̄(tn−µn). We know that Nn(tn)∼ Bin(n, pn) under the null and Nn(tn)∼

Bin(n,qn) under the alternative, with

n(qn− pn)
2/qn =

nε2
n(F̄(tn−µn)− F̄(tn))2

(1− εn)F̄(tn)+ εnF̄(tn−µn)
.

If the second part of (1.19) holds, then necessarily F̄(tn−µn)� F̄(tn), since

nε
2
nF̄(tn−µn)

2/F̄(tn) =
[
nε

2
nF̄(tn)

][
F̄(tn−µn)/F̄(tn)

]2
≤ (nε

2
n)
[
F̄(tn−µn)/F̄(tn)

]2
,

with nε2
n = o(1) by assumption. Hence,

n(qn− pn)
2/qn ∼

nε2
nF̄(tn−µn)

2

(1− εn)F̄(tn)+ εnF̄(tn−µn)

� nεnF̄(tn−µn)
∧

nε
2
nF̄(tn−µn)

2/F̄(tn).

Therefore, by Lemma 1.2.2.1, the sequence of tests (φtn) has full power in the limit when (1.19)

holds.

Now let (tn) be any sequence of thresholds and consider the sequence of tests (φtn). By
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Lemma 1.2.2.1, it has power α in the limit since

n(qn− pn)
2/pn ≤ nε

2
nF̄(tn−µn)

2/(1− εn)F̄(tn)→ 0, (1.21)

where the convergence to 0 comes from (1.20).

Remark 1.2.2.1. Note that the first part of (1.19) may be replaced by

nF̄(tn)→ ∞. (1.22)

This is because this and nε2
nF̄(tn−µn)

2/F̄(tn)→ ∞ implies nεnF̄(tn−µn)→ ∞.

Proposition 1.2.2.2. The oracle scan test is powerful if there is a sequence of intervals ([sn, tn])

such that

nεnF [sn−µn, tn−µn]→ ∞, and

nε
2
nF [sn−µn, tn−µn]

2/F [sn, tn]→ ∞.

(1.23)

It is powerless if for any sequence of intervals ([sn, tn])

nε
2
nF [sn−µn, tn−µn]

2/F [sn, tn]→ 0. (1.24)

The proof is completely parallel to that of Proposition 1.2.2.1 and is omitted.

1.2.3 Examples: generalized Gaussian models and more

We look at a number of models and in each case derive the performance of the oracle

threshold and oracle scan tests, and compare that with the performance of the likelihood ratio test.

To place the results in line with the literature on the topic, we adopt Ingster’s parameteri-
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zation (1.3) for εn, in fact a softer version of that

ε = εn ∼ n−β, (1.25)

for some fixed β. The parameterization of µ = µn will depend on on the model.

To further simplify matters, we assume throughout that

log F̄(x)∼−ϕ(x), (1.26)

where ϕ(x) is continuous and strictly increasing for x large enough. In that case, in view of

Remark 1.2.2.1, we note that (1.19) is satisfied when

logn−ϕ(tn)→ ∞,

(1−2β) logn+ϕ(tn)−2ϕ(tn−µn)→ ∞.

(1.27)

Extended generalized Gaussian

This class of models is defined by the property that ϕ satisfies2

ϕ(ut)/ϕ(t)→ ua, t→ ∞, ∀u≥ 0. (1.28)

Here a > 0 parameterizes this class of models. This covers the generalized Gaussian models,

which are often used as benchmarks in this line of work. It also covers the case where ϕ(t)∼

ta(log t)b where b ∈ R is arbitrary.

2It is tempting to consider a more general condition where there is a function ω on R+ such that
limt→∞ ϕ(ut)/ϕ(t)→ ω(u) for all u ≥ 0. However, as long as ω is not constant (equal to zero in that case), it
can easily be shown that ω(u) = ua for some a > 0.
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For a > 1, define

ρa(β) =


(21/(a−1)−1)a−1(β−1/2), 1/2 < β < 1−2−a/(a−1),

(1− (1−β)1/a)a, 1−2−a/(a−1) ≤ β < 1.
(1.29)

For a≤ 1, define

ρa(β) = 2(β−1/2). (1.30)

In addition to (1.25), assume that

µ = µn satisfies ϕ(µn)∼ r logn, with r ≥ 0 fixed. (1.31)

Proposition 1.2.3.1. The curve r = ρa(β) in the (β,r) plane is the detection boundary that the

oracle threshold test achieves.

Proof. We focus on proving that the oracle threshold test achieves that boundary. A simple

inspection of the arguments reveal that they are tight, so that this is the precise detection boundary

that the test achieves. (See the proof of Proposition 1.2.4.2 for an example.)

We divide the proof into several cases.

Case 1: a > 1. Define b = 2−1/(a−1) and note that 0 < b < 1.

Case 1.1: 1/2 < β < 1−ba and r > ρa(β). Under these conditions, β < 1/2+ r(1/b−1)−(a−1),

and in particular there is η > 0 such that

1−2β≥−2r(1/b−1)−(a−1)+η. (1.32)
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Setting tn = (1−b)−1µn, by (1.28) and (1.31), we have the following

ϕ(tn−µn) =
(
rba/(1−b)a +o(1)

)
logn, (1.33)

ϕ(tn) =
(
r/(1−b)a +o(1)

)
logn. (1.34)

By Proposition 1.2.1.1 we may focus on r small enough that r/(1− b)a < 1. This is possible

because ρa(β)< (1−b)a when β < 1−ba, which we assume here. (This can be easily verified

using the definition of b.) Assuming that r is as such, the first part of (1.27) is satisfied. For the

second part, with (1.32), we have

(1−2β) logn−2ϕ(tn−µn)+ϕ(tn)

≥
[
−2r(1/b−1)−(a−1)+η−2rba/(1−b)a + r/(1−b)a +o(1)

]
logn

= [η+o(1)] logn→ ∞,

using the definition of b and simplifying. Thus the second part of (1.27) is also satisfied and the

oracle threshold test is powerful.

Case 1.2: 1−ba ≤ β < 1 and r > ρa(β). Under these conditions, we have 1−β > (1− r1/a)a,

and in particular there is η > 0 such that

1−β−η≥ (1− r1/a)a ≥ ((1−η)1/a− r1/a)a. (1.35)

Set tn = (1
r (1−η))1/aµn, we have the following

ϕ(tn−µn) =
(
(1−η)1/a− r1/a)a +o(1)

)
logn, (1.36)

ϕ(tn) = (1−η+o(1)) logn. (1.37)

By looking at the speed of ϕ(tn), the first part of (1.27) is satisfied immediately. For the second
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part, with (1.32), we have

(1−2β) logn−2ϕ(tn−µn)+ϕ(tn)

= (1−2β) logn−2
(
(1−η)1/a− r1/a)a +o(1)

)
logn+(1−η+o(1)) logn

= 2
[
1−β−η/2− ((1−η)1/a− r1/a)a +o(1)

]
logn→ ∞.

Thus the second part of (1.27) is also satisfied and the oracle threshold test is powerful.

Case 2: a≤ 1. By Proposition 1.2.1.1 we may restrict attention to the case where 2β−1 < r < 1.

Here we set tn = µn. Then the first part in (1.27) is clearly satisfied. For the second part, notice

that

(1−2β) logn−2ϕ(tn−µn)+ϕ(tn)

= (1−2β) logn+(r+o(1)) logn

= [1−2β+ r+o(1)] logn→ ∞.

This completes the proof.

Thus, although the conditions are much more general here, the detection boundary is the

same as in the corresponding generalized Gaussian model and, moreover, the oracle threshold

test achieves that boundary.

Remark 1.2.3.1 (max test). In this class of models, it can be shown that the max test achieves the

detection boundary over the upper range, meaning when β≥ 1−2−a/(a−1). In fact, ρmax(β) :=

(1− (1−β)1/a)a defines the detection boundary for the max test.

15



Other models

In the next few classes of models, ϕ satisfies

ϕ−1(t)−ϕ−1(vt)
λ(t)

→ ω(v), t→ ∞, ∀v ∈ (0,1]. (1.38)

for some functions λ and ω, with the latter being non-increasing, continuous, and such that

ω(1) = 0. This is actually also the case when ϕ(t) ∼ ta(log t)b with a > 0 and b ∈ R, with

λ(t) = t1/a(log t)−b/a and ω(v) = (1− v1/a)/ab/a.

Define

ρ(β) = inf
0<h<1−β

[
ω(h)−ω(2β−1+2h)

]
. (1.39)

In addition to (1.25), assume that

µ = µn ∼ rλ(logn), r ≥ 0 fixed. (1.40)

Proposition 1.2.3.2. The curve r = ρ(β) in the (β,r) plane is the detection boundary that the

oracle threshold test achieves.

Proof. We focus on proving that the oracle threshold test achieves that boundary.

Since ω(v) is continuous, we may define

h∗ = argmin
0≤h≤1−β

[
ω(h)−ω(2β−1+2h)

]
. (1.41)

We focus on the case where h∗ < 1−β. In the case where h∗ = 1−β, the max test is powerful

(Remark 1.2.3.2), and therefore so is the oracle threshold test. By Proposition 1.2.1.1 we may

focus on the case where r < ω(h∗). With these assumptions and the fact that ω(h∗)−ω(2β−1+
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2h∗) = ρ(β)< r, there is η > 0 be such that

2β−1+2h∗+2η < 1, (1.42)

and

ω(h∗)−ω(2β−1+2h∗+η)< r < ω(h∗)−ω(2β−1+2h∗+2η). (1.43)

Define tn := µn +ϕ−1(h∗ logn). Using (1.38) multiple times, for n sufficiently large, we

have the following

µn = (r+o(1))λ(logn)

≤ [ω(h∗)−ω(2β−1+2h∗+2η)]λ(logn)

= ϕ
−1(logn)−ϕ

−1(h∗ logn)−ϕ
−1(logn)+ϕ

−1((2β−1+2h∗+2η) logn)

= ϕ
−1((2β−1+2h∗+2η) logn)−ϕ

−1(h∗ logn).

Hence, eventually, tn ≤ ϕ−1((2β−1+2h∗+2η) logn), implying that

logn−ϕ(tn) = logn− (2β−1+2h∗+2η) logn

= [1− (2β−2+2h∗+2η)] logn→ ∞,

using (1.42). Thus the first part of (1.27) is satisfied.

Similarly, for n sufficiently large,

µn = (r+o(1))λ(logn)

≥ [ω(h∗)−ω(2β−1+2h∗+η)]λ(logn)

= ϕ
−1((2β−1+2h∗+η) logn)−ϕ

−1(h∗ logn),
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so that, eventually, tn ≥ ϕ−1((2β−1+2h∗+η) logn), implying that

(1−2β) logn−2ϕ(tn−µn)+ϕ(tn)

≥ (1−2β) logn−2h∗ logn+(2β−1+2h∗+η) logn

= η logn→ ∞.

Thus the second part of (1.27) is satisfied.

Remark 1.2.3.2 (max test). In the present situation, it can be shown that ρmax(β) := ω(1−β)

defines the detection boundary for the max test.

Extended generalized Gumbel

This class of models is defined by ϕ(t) = exp(ta) for some a > 0, which satisfies (1.38)

with λ(t) = 1
a(log t)1/a−1 and ω(v) = log(1/v). In this case,

µ = µn ∼
r
a
(log logn)1/a−1, (1.44)

and the detection boundary is given by r =− log(1−β). Note that, at the detection boundary,

µn→ ∞ when a > 1; that µn � 1 when a = 1; and µn→ 0 when a < 1.

Extended generalized Gumbel

This class of models is defined by ϕ(t) = exp((log t)a) for some a > 1, which satisfies

(1.38) with λ(t) = 1
a(log t)1/a−1 exp((log t)1/a) and ω(v) = log(1/v). In this case,

µ = µn ∼
r
a
(log logn)1/a−1 exp((log logn)1/a), (1.45)
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and the detection boundary is given by r =− log(1−β) as in the previous class of models (since

ω is the same).

Remark 1.2.3.3 (max test). Based on Remark 1.2.3.2, in the last two classes of models, the max

test achieves the detection boundary over the whole β range. The same is true, more generally,

when the infimum in (1.39) is at h = 1−β.

1.2.4 Examples: power-law models and more

In the next few classes of models, F satisfies

log(F(t + v)−F(t))∼−λ(t), t→ ∞, ∀v≥ 0, (1.46)

for some function λ which is increasing eventually and such that λ(t)→ ∞ as t → ∞. This

includes models where

F̄(t) ∝ t−a(log t)b(1+o(1/t)), t→ ∞, (1.47)

with a > 0 and b ∈R, in which case (1.46) holds with λ(t) = (a+1) log t. It also includes models

where F̄(t) ∝ (log t)−a(1+o(1/t log t)), with a > 0, in which case (1.46) holds with λ(t) = log t,

as well as other distribution with even slower decay.

In addition to (1.25), assume that

µ = µn satisfies λ(µn)∼ r logn, r ≥ 0 fixed. (1.48)

Proposition 1.2.4.1. The curve r = ρ(β) := 2β−1 in the (β,r) plane is the detection boundary

that the oracle scan test achieves.

Proof. We focus on proving that the oracle scan test achieves that boundary.
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Fix r such that r > 2β− 1. Consider the interval [sn, tn] with sn := µn and tn := µn + v,

where v > 0 is such that F [0,v]> 0. We need to verify that (1.23) holds. On the one hand, we

have

nεnF [sn−µn, tn−µn] = n1−βF [0,v]→ ∞, (1.49)

because β < 1 by assumption. So the first part of (1.23) holds. On the other hand,

nε
2
nF [sn−µn, tn−µn]

2/F [sn, tn] = n1−2βF [0,v]2/nr+o(1)

= nr+1−2β+o(1)→ ∞,

since r > 2β−1. So the second part of (1.23) holds.

We now show that threshold tests are suboptimal in the main class of models satisfying

(1.46), namely (1.47). (The same happens to be true in other models with fat tails satisfying

(1.46).) This is the main motivation for considering scan tests.

Proposition 1.2.4.2. In a model satisfying (1.47), and with the same parameterization (1.48), the

curve r = (1+1/a)(2β−1) in the (β,r) plane is the detection boundary that the oracle threshold

test achieves.

Proof. We first prove that the oracle threshold test achieves this detection boundary. By Propo-

sition 1.2.1.1 we may assume that r < 1+1/a. Therefore, fix r such that (1+1/a)(2β−1)<

r < 1+1/a. Set the threshold tn = µn + v, where v is such that F̄(v)> 0. We need to verify that

(1.19) holds, and we do so via Remark 1.2.2.1. Note that tn ∼ µn = nr/(a+1)+o(1). In particular,

nF̄(tn)∼ nµ−a
n (logµn)

b = n1−ar/(a+1)+o(1)→ ∞, (1.50)

and, by the same token,

nε
2
nF̄(tn−µn)

2/F̄(tn)∼ n1−2βn−ar/(a+1)+o(1) = n1−2β−ar/(a+1)+o(1)→ ∞. (1.51)
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We now turn to proving that this is the statement boundary is the best that the oracle

threshold test can hope for. For this, fix r < (1+1/a)(2β−1). We need to verify (1.20). Suppose

for contradiction that there is a sequence of thresholds, (tn), such that (1.20) does not hold. By

extracting a subsequence if needed, we may assume that

nε
2
nF̄(tn−µn)

2/F̄(tn)→ λ ∈ (0,∞]. (1.52)

First, suppose that liminf tn/µn < ∞. Extracting a subsequence if needed, we may assume that

tn = O(µn). In that case, we have

nε
2
nF̄(tn−µn)

2/F̄(tn)≤ nε
2
n/F̄(tn)

≤ n1−2β+o(1)µ−a+o(1)
n

= n1−2β−ar/(a+1)+o(1)→ 0.

Since this contradicts (1.52), we must have liminf tn/µn = ∞, meaning that tn� µn. In that case,

we have F̄(tn−µn)∼ F̄(tn), implying that

nε
2
nF̄(tn−µn)

2/F̄(tn)∼ nε
2
nF̄(tn)≤ nε

2
n→ 0. (1.53)

This also contradicts (1.52). Since there is no other option, it must be that (1.52) cannot hold. We

conclude that, indeed, (1.20) holds for any sequence of thresholds.

1.3 Scan tests

In this section, we study the scan tests (1.10) and (1.11), and show that both of them do

as well as the oracle scan test, at least to first-order in the asymptote where n→ ∞ and under the

various parameterizations used in the previous section. We refer to (1.10) as the Stouffer scan
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test, as it is constructed as Stouffer’s combination test [SSD+49]; while we refer to (1.11) as the

Tippett scan test, for similar reasons [Tip31].

1.3.1 Stouffer scan test

We study the Stouffer scan test (1.10). The main work goes into controlling this statistic

under the null hypothesis. The limiting distribution of higher criticism can be derived from

[Jae79] and the limiting distributions of some variants of the scan statistic are known under other

models [Kab11, SAC16]. We will not pursue such a fine result here, but contend ourselves with a

relatively rough upper bound.

Lemma 1.3.1.1. Given observations x1, . . . ,xn, the maximum in (1.10) is attained at some (s, t) =

(xi,x j).

Proof. Define

Rn(s, t) :=
Nn[s, t]−nF [s, t]√

nF [s, t](1−F [s, t])+1
. (1.54)

Let x(1)≤ ·· · ≤ x(n) denote the ordered observations, and set x(0) =−∞ and x(n+1) =∞. It suffices

to show that, for any 1≤ i≤ j ≤ n and any (s, t) such that x(i−1) < s≤ x(i) and x( j) ≤ t < x( j+1),

in addition to F [s, t] ≤ 1/2, we have Rn(x(i),x( j)) ≥ Rn(s, t). The crucial observation is that

Nn[s, t] = Nn[x(i),x( j)] while F [x(i),x( j)]≤ F [s, t].

It is thus enough to show that the function p 7→ (a− p)/(p(1− p)+b)1/2 is decreasing

over [0,1/2] for any a,b ≥ 0. This is so since this function has derivative −(a(1− 2p)+ 2b+

p)/(p(1− p)+b)3/2.

Theorem 1.3.1.1. With Sn defined as the statistic (1.10), we have

P0(Sn ≥ 3logn)→ 0. (1.55)

Proof. We place ourselves under the null hypothesis. Recall the definition of Rn in (1.54). By
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Lemma 1.3.1.1 and the fact that Rn(Xi,Xi) = 1 for all i, if Sn ≥ 3logn necessarily Sn = S∗n :=

maxi6= j Rn(Xi,X j). For any i 6= j, we have

Rn(Xi,X j)≤ 2+Si, j, (1.56)

with

Si, j :=
Ni, j−2− (n−2)pi, j√
(n−2)pi, j(1− pi, j)+1

,

Ni, j := Nn[Xi,X j], pi, j := F [Xi,X j].

(1.57)

The point of this reorganizing is that, given (Xi,X j), Ni, j−2∼ Bin(n−2, pi, j), and an application

of Bernstein’s inequality gives

P0(Si, j ≥ s | Xi,X j)≤ exp
(
−

s2b2
i, j/2

b2
i, j + sbi, j/3

)
≤ exp

(
− s2/2

1+ s/3

)
≤ exp(−s), ∀s≥ 6,

because bi, j :=
√

(n−2)pi, j(1− pi, j)+1≥ 1. Thus, with the union bound, as n→ ∞, we have

P0(Sn ≥ 3logn) = P0(∃i 6= j : Si, j +2≥ 3logn)

≤∑
i< j

P0(Si, j ≥ 3logn−2)≤ n2 exp(−3logn+2)→ 0,

which proves the statement.

With Theorem 1.3.1.1, one obtains the following performance bound for the Stouffer scan

test.

Corollary 1.3.1.1. The Stouffer scan test is powerful if there is a sequence of intervals ([sn, tn])
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such that

nεnF [sn−µn, tn−µn]� logn, and

nε
2
nF [sn−µn, tn−µn]

2/F [sn, tn]� (logn)2.

(1.58)

Proof. By Theorem 1.3.1.1, the Stouffer scan test at level α is at least as powerful as the

test {Sn ≥ 3logn}, eventually. Now, under the alternative, this test is powerful if we can

prove that pn := F [sn, tn] ≤ 1/2 and Rn(sn, tn) ≥ 3logn. Define p′n := F [sn− µn, tn− µn] and

qn := (1− εn)pn + εn p′n, so that (1.58) can be expressed as

nεn p′n� logn→ ∞, and nε
2
n p′n

2
/pn� (logn)2→ ∞. (1.59)

That pn ≤ 1/2 is true, eventually, comes from the fact that

∞← nε
2
n p′n

2
/pn ≤ nε

2
n/pn, (1.60)

with nε2
n→ 0 by assumption, so that necessarily pn→ 0. Note that this implies that qn→ 0 also.

Given that Nn[sn, tn] is a binomial distribution with parameters n and qn, with nqn≥ np′n→

∞ by the first part of (1.58), we have Nn[sn, tn] = nqn +OP(
√

nqn(1−qn)), and so

Rn(sn, tn) =
nεn(p′n− pn)+OP(

√
nqn(1−qn))√

npn(1− pn)+1
∼

nεn p′n +OP(
√

nqn)√
npn +1

, (1.61)

since p′n� pn, by the fact that

∞← nε
2
n p′n

2
/pn = nε

2
n pn(p′n/pn)

2 = o(p′n/pn)
2. (1.62)

In addition, the same conditions imply

nεn p′n√
nqn
�
√

nε2
n p′n

2/pn
∨

nεn p′n→ ∞, (1.63)
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so that

Rn(sn, tn)∼P nεn p′n/
√

npn +1�P

√
nε2

n p′n
2/pn

∨
nεn p′n� logn. (1.64)

We conclude that Rn(sn, tn)≥ 3logn holds with probability tending to 1.

With this performance bound, it is straightforward to verify that the Stouffer scan test

performs as well as the oracle scan test to first order, at least in the context of the parameterization

used in the models studied in Section 1.2.3 and Section 1.2.4. This comes from the fact that, in

context of these sections, the quantity appearing in (1.58) increases as a (fixed) positive power of

n under the alternative. We formalize this into the following statement, left without formal proof.

Corollary 1.3.1.2. The Stouffer scan test achieves the oracle scan detection boundary in all the

settings considered in Section 1.2.3 and Section 1.2.4.

1.3.2 Tippett scan test

We study the Tippett scan test (1.11), which we denote by Tn. We control this statistic

under the null hypothesis by a simple application of the union bound. A more refined control

seems possible in view of [MNS16], where the limiting distribution of (1.7) is obtained.

Proposition 1.3.2.1. With Tn defined as the statistic (1.11), we have

P0(Tn ≤ 1/n3)→ 0. (1.65)

Proof. Under the null, each Pi, j is uniformly distributed in [0,1]. Thus the union bound gives

P0(Tn ≤ 1/n3)≤ n2P0(Pi, j ≤ 1/n3) = n2/n3 = 1/n→ 0, (1.66)

which concludes the proof.
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Thus most of the work goes into controlling the statistic under the alternative. We do so

by bounding the Tippett scan statistic by an expression that resembles that of the Stouffer scan

statistic. We make use of the following simple concentration bound.3

Lemma 1.3.2.1. For k ∈ [n],

B(u;k,n− k+1)≤ exp
(
− (k−nu)2/2

nu(1−u)+(k−nu)/3

)
, 0≤ u≤ k/n. (1.67)

Proof. Let Uk:n denote the k-th order statistic of an iid sample of size n from the uniform

distribution on [0,1]. For u ∈ [0,1] such that nu≤ k, we have

B(u;k,n− k+1) = P(Uk:n ≤ u) = P(Bin(n,u)≥ k),

and we conclude with an application of Bernstein’s inequality.

Proposition 1.3.2.2. The Tippett scan test is powerful if there is a sequence of intervals ([sn, tn])

such that

nεnF [sn−µn, tn−µn]�
√

logn,

nε
2
nF [sn−µn, tn−µn]

2/F [sn, tn]� logn.
(1.68)

Proof. Recall that Tn = mini< j Pi, j and the expression of Pi, j. Thus applying Lemma 1.3.2.1 gives

Tn ≤ 1/n3 ⇔ max
i< j

( j− i−Vi, j)
2
+/2

nVi, j(1−Vi, j)+( j− i−Vi, j)+/3
≥ 3logn, (1.69)

where Vi, j :=U( j)−U(i), after taking a logarithm.

Moreover, Vi, j = F [X(n− j+1),X(n−i+1)] and j− i = Nn[X(n− j+1),X(n−i+1)]−1, yielding

Tn ≤ 1/n3 ⇔ max
i 6= j

(Ni, j−1−npi, j)
2
+

npi, j(1− pi, j)+(Ni, j−1−npi, j)+
≥ 6logn, (1.70)

3 Many things are known about the beta distribution and order statistics in general, but we could not immediately
find such a simple bound.
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with the notation of (1.57). The latter inequality holds when there is i 6= j such that

Ni, j−1−npi, j ≥ 12logn and
Ni, j−1−npi, j√

npi, j(1− pi, j)
≥
√

12logn, (1.71)

which is the case when

npi, j ≥
√

12logn and
Ni, j−1−npi, j√

npi, j(1− pi, j)
≥
√

12logn. (1.72)

Let (sn, tn) be as in the statement and let (i, j) be such that U(i) ≤ s <U(i+1) and U( j−1) <

t ≤U( j). By construction, pi, j ≥ F [sn, tn], so that the first part of (1.68) implies that the first part

of (1.72) holds eventually. We also have Ni, j ≥ Nn[sn, tn]−2, so that

Ni, j−1−npi, j√
npi, j(1− pi, j)

≥ Nn[sn, tn]−3−nF [sn, tn]√
nF [sn, tn](1−F [sn, tn])

, (1.73)

and the quantity on the RHS is controlled using the second part (1.68) exactly as in the proof of

Proposition 1.2.2.2.

Here too, these results make it straightforward to verify that the Tippett scan test performs

as well as the oracle scan test (to first order) in the models and regimes seen earlier, leading us to

state the following (left without a formal proof).

Corollary 1.3.2.1. The Tippett scan test achieves the oracle scan detection boundary in all the

settings considered in Section 1.2.3 and Section 1.2.4.

1.4 Numerical experiments

We performed small-scale numerical experiments to probe our theory. We generated

Student t-distributions with varying numbers of degrees of freedom, df = 0.5,1,2,5}. Recall

that the Student t-distribution with k degrees of freedom has density ∝ (1+ x/k)−(k+1)/2. We
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considered three different scenarios with varying sparsity exponents, β = 0.6,0.7,0.8. The

sample size was set to n = 30,000. We compared the higher criticism test, the Berk-Jones test,

the Stouffer scan test, and the Tippett scan test in each of these settings. We repeat each setting

200 times. See Figure 1.1, Figure 1.2, and Figure 1.3.
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Figure 1.1: Here β = 0.6, the x-axis represents r in the parameterization (1.48), y-axis the
power of the tests identified in the legend. Each subfigure corresponds to a Student t-distribution
with the specified number of degrees of freedom. The black dashed vertical line corresponds
to the oracle scan detection boundary established in Proposition 1.2.4.1, while the dotted line
corresponds to the oracle threshold detection boundary established in Proposition 1.2.4.2.
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Figure 1.2: Here β = 0.7, otherwise, see Figure 1.1 for more details.
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Figure 1.3: Here β = 0.8, otherwise, see Figure 1.1 for more details.

As the theory predicts, We can check that when the number of degrees of freedom is

smaller, implying that the base distribution has fatter tails, the scan procedures dominate the

threshold procedure. The threshold procedures become dominant as the tails become lighter. This

is so at this particular sample size as, in principle, our theory indicates that with a larger sample

size, the scan procedures would still dominate. The transition from powerless to powerful takes

place at a larger effect size than predicted by the theory, which is also explain by the limited

sample size.4

1.5 Discussion

While scan tests are commonly used in a number of detection problems, threshold tests

are almost exclusively used in multiple testing situations. The main purpose of our work here
4The scan tests have computational complexity of order O(n2), which has limited the scale of our experiments.
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was to reveal that scan tests can improve on threshold tests in somewhat standard multiple testing

settings, particularly when the null distribution (F in the paper) has heavy tails.

Likelihood ratio performance bounds

Given our main objective, it was more natural to consider oracle-type performance bounds

rather than using the likelihood ratio performance as benchmark. We can say nonetheless

that, for representative models, the oracle threshold boundaries stated in Proposition 1.2.3.1

and Proposition 1.2.3.2 match those of the likelihood ratio test — for example, this is true of

generalized Gaussian models where F has density of the form f (t) ∝ exp(−|t|a) for some a > 0.

The same is true of the oracle scan boundary stated in Proposition 1.2.4.1 — for example, this is

true of power law models where F has density of the form f (t) ∝ (1+ |t|a)−1 for some a > 0.

Nonparametric approaches

[ACCTW17] consider the situation where the null distribution, F , is symmetric about 0

but otherwise unknown. They suggest two tests for symmetry: the CUSUM sign test and the

tail-run test, which are meant to be the nonparametric equivalent of the higher criticism test and

the tail-run sign test, respectively. Back-of-the-envelope calculations seem to indicate that these

nonparametric tests achieve the same detection boundaries as their parametric counterparts in all

the settings considered here.

Multiple testing

In separate work [CYAC18], we uncover a similar phenomenon in the context of multiple

testing, where the goal is maximizing the number of rejections while controlling the false

discovery rate (FDR). Indeed, in a similar mixture model, standard in that literature at least since

the work of [GW02, GW+04], we find that with heavy tail distributions, scanning can improve

on thresholding (what the procedure of [BH95] does). This is established in the context of the

asymptotic framework of [GW02, GW+04], which is different than the one considered here in

that the mixture proportion, ε, does not converge to zero with the sample size. However, we
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expect this to extend to the present asymptotic model.5

5The present asymptotic model has been considered in the context of multiple testing, in particular in some of our
own recent work [ACC17, CAC17].

32



1.6 Acknowledgement

Chapter 1, in full, is a reprint of the material as it appears in Electronic Journal of Statistics.

Arias-Castro, Ery; Ying, Andrew. Detection of Sparse Mixtures: Higher Criticism and Scan

Statistic, 13(1): 208-230, 2019. The dissertation author was the primary investigator and author

of this paper.

33



Chapter 2

On the Asymptotic Distribution of the Scan

Statistic for Point Clouds

2.1 Introduction

The study of the scan statistic dates back1 to [Nau65], who derived the probability that an

interval of a certain length contains a certain fraction of independent and identically distributed

(iid) samples from the uniform distribution on [0,1]. Specifically, let U1, . . . ,Un be iid random

variables from Unif(0,1) with empirical distribution function denoted by Fn, and let h be the

length of the underlying interval of interest, Naus studied the distribution of

sup
0≤a≤1

Fn(a+h)−Fn(a). (2.1)

Knowing this distribution is essential to calibrating the scan statistic in the context of detecting,

in a uniform background, the presence of an interval of a certain length with an unusually high

density of points. This is considered today a quintessential detection problem, with applications

in the detection of disease clusters [BN91] and syndromic surveillance [HMD+04], among many

1Naus himself cites even earlier work in the 1940’s by [Sil45], [Ber45], and [Mac48].
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others [GNW+01, GPW09, GB12, GK18].

In practice, even in the simplest case where only a single anomalous interval may be

present, the length of that interval is almost always unknown. In that case, it is natural to consider

intervals of various lengths, but standardize the counts, leading to

sup
0≤a≤1

sup
h−≤h≤h+

√
n(Fn(a+h)−Fn(a)−h)√

h(1−h)
. (2.2)

This can be seen to approximate the likelihood ratio test [Kul97]. The parameters h− and h+ limit

the search to intervals that are neither too short and nor too large. The main goal of this paper is

to derive the asymptotic (as n→ ∞) distribution of (2.2) along with its studentized counterpart

sup
0≤a≤1

sup
h−≤Fn(a+h)−Fn(a)≤h+

√
n(Fn(a+h)−Fn(a)−h)√

(Fn(a+h)−Fn(a))(1−Fn(a+h)+Fn(a))
. (2.3)

2.1.1 Related work: point processes

In one of the most celebrated results in what is now the empirical process literature,

[Kol33] derived the limiting distribution of
√

n sup0≤a≤1(Fn(a)−a). This is the Kolmogorov-

Smirnov statistic, and it can be seen as scanning over intervals of the form [0,a], 0≤ a≤ 1.

For similar reasons that motivated the introduction of the normalized scan statistic (2.2) as

an improvement over the unnormalized one (2.1), [AD52] introduced and studied normalized vari-

ants of the Kolmogorov-Smirnov statistic, some of them of the form
√

nsupa(Fn(a)−a)
√

ψ(a),

where ψ is a given weight function. The choice ψ(a) = [a(1−a)]−1 is particularly compelling,

leading to the statistic

sup
0≤a≤1

√
n(Fn(a)−a)√

a(1−a)
. (2.4)
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[Eic79] and [Jae79] obtained the limiting distributions of this statistic, its variants of the form

Vn = sup
εn≤a≤δn

√
n(Fn(a)−a)√

a(1−a)
, (2.5)

and its Studentized counterpart

V̂n = sup
εn≤a≤δn

√
n(Fn(a)−a)√

Fn(a)(1−Fn(a))
, (2.6)

for some given 0≤ εn ≤ δn ≤ 1. We note that these statistics can be directly expressed in terms

of the order statistics, U(1) ≤ ·· · ≤U(n), which when εn = 0 and δn = 1, is as follows

max
1≤i≤n

i−nU(i)√
nU(i)(1−U(i))

, (2.7)

and

max
1≤i<n

i−nU(i)√
i(1− i

n)
, (2.8)

respectively.

[BJ79] proposed to directly look at each order statistic individually, combining the result-

ing tests using Tippett’s method, leading to

min
1≤i≤n

B(U(i); i,n− i+1), (2.9)

with B(·;a,b) denoting the distribution function of the Beta(a,b) distribution. [MNS16] and

[GF17] derived the asymptotic distribution of this statistic.

We note that the two-sided version of the above-mentioned tests have been considered

and studied.
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2.1.2 Related work: signals

Closely related to the work above is the setting where, instead of observing a point cloud,

one observes a signal. The simplest situation is that of a one-dimensional signal defined on a

regular lattice, that is, of the form X1, . . . ,Xn. The null situation is when these are iid from some

underlying distribution on the real line, for example, the standard normal distribution. When the

goal is to detect an interval where the observations are unusually large, and the length of the

(discrete) interval is unknown, it becomes of interest to study the following scan statistic

Zn = max
1≤i< j≤n

S j−Si√
j− i

, (2.10)

where Sk = ∑
k
i=1 Xi.

The study of such statistics dates back to the work of [DE56], who derived the limiting

distribution of

max
1≤ j≤n

S j√
j
, (2.11)

which can be seen as scanning intervals of the form {1, . . . , j}.

[SV95] provided the limiting distribution of the statistic (2.10) under the assumption that

the Xi’s are iid normal. This study was extended by [MR10] to the case where the underlying

distribution is heavy-tailed, and by [KW14] when the underlying distribution has finite moment

generating function in a neighborhood of the origin. [Kab11] generalized the result to the

multivariate setting where the variables are indexed by a multi-dimensional lattice; see also

[SAC16, KMW18]. [PWM18] studied more general scanning procedures motivated within the

framework of inverse problems.

There is a parallel literature for continuous processes, where one observes instead Xt , t ∈

[0,1] (in dimension 1). See, for example, [Ald13, QW73] and [CL06].
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2.1.3 Content

The rest of the paper is organized as follows. We state our main results in Section 2.2,

where we provides the asymptotic distributions of some scan statistics and their variants. The

proofs are provided in Section 2.3.

2.2 Main results

Recall that U1, . . . ,Un are iid from the uniform distribution on [0,1], and that U(1) ≤ ·· · ≤

U(n) denote the order statistics. (Whenever needed, we write U(0) ≡ 0 and U(n+1) ≡ 1.)

2.2.1 Studentized scan statistics

We derive the asymptotics for (2.3) before (2.2) for convenience of the proof. As we did

earlier, we may rewrite (2.3) directly in terms of the order statistics, in the form of

M+
n (k, l) = max

0≤i< j≤n:k≤ j−i<l
Mi, j, (2.12)

where

Mi, j =
j− i−n(U( j)−U(i))√

( j− i)(1− j−i
n )

. (2.13)

We will be particularly interested in the following special case

M+
n := M+

n (1,n), (2.14)

which is the analog of (2.8). Not surprisingly, the limiting distribution is an extreme value

distribution, specifically, a Gumbel distribution. Indeed, we have the following.
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Theorem 2.2.1.1. For any τ ∈ R,

lim
n→∞

P
{

M+
n ≤

√
2logn− 3loglogn

2
√

2logn
+

τ√
2logn

}
= exp

(
− c exp(−τ)

)
, (2.15)

where c = 8
9
√

π
.

Similarly, define the opposite one-sided statistics

M−n (k, l) =− min
0≤i< j≤n:k≤ j−i≤l

Mi, j, (2.16)

and

M−n := M−n (1,n). (2.17)

Finally, define the two-sided statistics

Mn(k, l) = max{M+
n (k, l),M

−
n (k, l)}= max

0≤i< j≤n:k≤ j−i<l
|Mi, j|, (2.18)

and

Mn := Mn(1,n) = max{M+
n ,M

−
n }. (2.19)

For these statistics too, the limiting distribution is a Gumbel distribution, but what

is surprising here is that these statistics do not behave the same way as M+
n . In particular,

M−n = (1+ oP(1)) logn, and therefore dominates M+
n in the large-sample limit, implying that

Mn = M−n with probability tending to 1. Indeed, we have the following.

Theorem 2.2.1.2. For any τ ∈ R,

lim
n→∞

P
{

M−n ≤ logn+ τ
}
= exp(−exp(1− τ)). (2.20)
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Moreover,

lim
n→∞

P
{

Mn = M−n
}
= 1. (2.21)

2.2.2 Standardized scan statistics

We also examine the large-sample behavior of standardized scan statistics (2.2). Following

the same way as rewriting (2.3) before. Define

M̃+
n (k, l) := max

0≤i< j≤n:k≤ j−i≤l
M̃i, j, (2.22)

where

M̃i, j :=
j− i−n(U( j)−U(i))√

n(U( j)−U(i))(1−U( j)+U(i))
. (2.23)

Note that

M̃+
n := M̃+

n (1,n), (2.24)

is the analog of (2.7).

The behavior of M̃+
n turns out to be very different from that of its studentized analog M+

n .

However, we recover a similar behavior if we appropriately bound the length of the scanning

interval from below.

Theorem 2.2.2.1. For any τ ∈ R,

lim
n→∞

P
{

M̃+
n ≤

√
n
τ

}
= exp(−τ). (2.25)

Moreover, for any A > 0, defining kn = dA(logn)3e,

lim
n→∞

P
{

M̃+
n (kn,n)≤

√
2logn− 3loglogn

2
√

2logn
+

τ√
2logn

}
= exp(−cA exp(−τ)), (2.26)
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where cA =
∫

∞

A Λ1(a)da with Λ1(a) = 1
2
√

πa2 exp
( √2

3
√

a

)
.

Remark 2.2.2.1. Here we choose kn ∝ (logn)3 because we want to examine the behavior of

M̃+(K,L), compared to its counterpart M+(K,L) at the most contributed part, which is reflected

in the proof of Theorem 2.2.1.1. For readers who are curious about other choices of kn, we

note that M̃i, j behaves like subgaussian, or named as ”sublogarithmic” in [KW14]. Roughly

speaking,M̃+
n (kn,n) will likely to take its maximum around the indices i, j with small length, that

is, when j− i is close to kn.

Define the standardized analog of (2.17)

M̃−n (k, l) =− min
0≤i< j≤n:k≤ j−i≤l

M̃i, j, (2.27)

with

M̃−n := M̃−n (1,n), (2.28)

as well as the analog of (2.19)

M̃n(k, l) = max{M̃+
n (k, l),M̃

−
n (k, l)}, (2.29)

with

M̃n := M̃n(1,n) = max{M̃+
n ,M̃

−
n }. (2.30)

Theorem 2.2.2.2. We have

lim
n→∞

P
(
M̃n = M̃+

n
)
= 1. (2.31)

Thus for any τ ∈ R,

lim
n→∞

P
(

M̃n ≤
√

n
τ

)
= exp(−τ). (2.32)

Remark 2.2.2.2. While the behavior of the Studentized statistic M+
n is driven by the smallest

intervals, this is not as much the case for the standardized statistic M̃+
n . Indeed, a large value of
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M+
n comes from some n(U( j)−U(i)) being large compared to j− i, however, n(U( j)−U(i)) being

in the denominator defining M̃+
n , its impact is lessened.

2.3 Proofs of Main Results

Our proof arguments are based on standard moderate and large deviation results, Kol-

mogorov’s theorem, a Poisson approximation [AGG89], as well as some technical results de-

veloped by [KW14] in their study of the limiting distribution of the scan statistic in the form of

(2.10).

2.3.1 Preliminaries

Throughout the paper, we assume that {Xk,k ∈ Z} are iid distributed with the density,

f (x) = 1(x≤ 1)exp(x−1), (2.33)

noting that −X1 +1 follows standard exponential distribution. This distribution has zero mean

and unit variance. Define the two-sided partial sums,

S+k =
k

∑
i=1

Xi, S+0 = 0, S+−k =−
k

∑
i=1

X−i, k ∈ N (2.34)

and

S−k :=−S+k . (2.35)

They will play a central role in what follows. Define the normalized increments

Z±i, j =
S±j −S±i√

j− i
, (2.36)
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Z±n (k, l) := max
1≤i< j≤n:k≤ j−i≤l

Z±i, j, Z±n := Z±n (1,n). (2.37)

Let ϕ±(t) be the cumulant generating functions of ±X1 respectively. We have

ϕ
+(t) = t− log(1+ t), if t ≥ 0. (2.38)

ϕ
−(t) =


−t− log(1− t), if 0≤ t ≤ 1,

∞, if t ≥ 1,
(2.39)

Also, define I+(s) and I−(s) as the respective Legendre-Fenchel transforms (a.k.a., rate functions).

We have

I+(s) =


−s− log(1− s), if 0≤ s≤ 1,

∞, if s≥ 1,
(2.40)

and

I−(s) = s− log(1+ s), (2.41)

with respective Taylor expansions at 0 (as s→ 0)

I+(s) = s2/2+ s3/3+o(s3),

I−(s) = s2/2− s3/3+o(s3).

We also prepare several usefull lemmas. The first two lemmas are well-known moderate

and large deviations results [Cra38, BR60].

Lemma 2.3.1.1. Let (xk) be a sequence satisfying xk→ ∞ and xk = o(
√

k) as k→ ∞. Then, as

k→ ∞,

P
(

S±k√
k
≥ xk

)
∼ 1√

2πxk
exp
{
− kI±

(
xk√

k

)}
. (2.42)
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Lemma 2.3.1.2. For every k ∈ N and x > 0, we have

P
(

S±k√
k
≥ x
)
≤ exp

{
− kI±

(
x√
k

)}
. (2.43)

Moreover, for every A≤ s∞, where s∞ = sup{s ∈ R : P(X1 ≤ s)≤ 1}, there is CA > 0 such that,

for all k ∈ N and x ∈ (0,A
√

k),

P
(

S±k√
k
≥ x
)
≤ CA

x
exp
{
− kI±

(
x√
k

)}
, (2.44)

The following result is obtained from a simple application of Theorem 2.4 in [Pet95],

which provides an upper bound of the tail distribution of max1≤k≤n S±k by that of S±n .

Lemma 2.3.1.3. We have

P
{

max
1≤k≤n

S±k ≥ x
}
≤ 2P

{
S±n ≥ x−

√
2(n−1)

}
. (2.45)

For completeness, we include Lemma 4.4 and 4.5 from [KW14] below. For integers r > 0

and x < y, define

Tr(x,y) :=
{
(i, j) ∈ I : x− r ≤ i≤ x and y≤ j ≤ y+ r

}
. (2.46)

Lemma 2.3.1.4. Fix constants B1,B2 > 0. Then for all x ∈ Z, l,r ∈ N and all u > 0 such that

B1l > u2 and r ≤ B2lu−2, we have

Q (l,r,u) := P
(

max
i, j∈Tr(x,x+l)

S+j −S+i√
l
≥ u
)
≤ C

u
exp
(
− u2

2
− cu3
√

l

)
, (2.47)

where the constants c and C depend on B1 and B2 but do not depend on x, l, r, u.

Lemma 2.3.1.5. Let ν, νn, n ∈ N, be measures on [0,∞) which are finite on compact intervals.
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Let G, Gn, n ∈ N, be measurable functions on [0,∞) which are uniformly bounded on compact

intervals. Assume that

1. νn converges to ν weakly on every interval [0, t], t ≥ 0;

2. for ν-a.e. s≥ 0, we have limn→∞ Gn(sn) = G(s), for every sequence sn→ s;

3. limT→∞

∫
∞

T |Gn|dνn = 0 uniformly when n≥ N for some N ∈ N.

Then, limn→∞

∫ T
0 Gndνn =

∫ T
0 Gdν.

We also provide an upper bound of the tail distribution maxi, j∈Tr(x,x+l)(S
−
j −S−i )/

√
l also,

which is cruder than its counterpart for S+k in Lemma 2.3.1.4 but shall suffice for our purposes.

Lemma 2.3.1.6. For all x ∈ Z, l,r ∈ N+ and all u > 40 such that l > u2r and r > 10u2, we have

Q (l,r,u) := P
(

max
i, j∈Tr(x,x+l)

S−j −S−i√
l
≥ u
)
≤C exp

(
− u2

3

)
, (2.48)

where the constant C does not depend on x, l, r, u.

Proof. Before we proceed into the proof, one fact about I−(s) is

I−(s)≥ 1.01s2

3
, 0≤ s≤ 0.5, (2.49)

which can be easily checked. Define Vl,u := u2−uS−l /
√

l, S(1)−k1
and S(2)−k2

to be two partial sums

of −Xi independent of each other and S−l . With translation invariance, we bound Q (l,r,u) as
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follows,

Q (l,r,u) = P
(

max
i, j∈Tr(0,0+l)

S−j −S−i√
l
≥ u
)

= P
(

max
0≤k1,k2≤r

S(1)−k1
+S(2)−k2√

l
+

S−l√
l
≥ u
)

= P
(

max
0≤k1,k2≤r

S(1)−k1
+S(2)−k2√

l
≥

Vl,u

u

)
≤ P

(
max

0≤k1,k2≤r

S(1)−k1
+S(2)−k2√

l
≥

Vl,u

u
,Vl,u ≤ u2

√
r
l

)
+P

(
max

0≤k1,k2≤r

S(1)−k1
+S(2)−k2√

l
≥

Vl,u

u
,Vl,u > u2

√
r
l

)
≤ P(Vl,u ≤ u2

√
r/l)+P

(
max

0≤k1,k2≤r

S(1)−k1
+S(2)−k2√

l
> u
√

r
l

)
,

where we bound these two terms individually. By the assumptions on u, l,r, we have u(1−√
r/l)/

√
l ≤ 0.5. Thus with (2.43) and (2.49), we have

P
(

Vl,u ≤ u2
√

r
l

)
= P

(
S−l√

l
≥ u−u

√
r
l

)
≤ exp

[
− lI+

{
u(1−

√
r/l)√

l

}]
≤ exp

(
− u2

3

)
.

(2.50)

Now we switch to the second item, with Lemma 2.3.1.3, (2.43) and assumption that r > 10u2,

u > 40,

P
(

max
0≤k1,k2≤r

S(1)−k1
+S(2)−k2√

l
≥ u
√

r
l

)
≤ 2P

(
max

0≤k≤r

S−k√
r
≥ u

2

)
≤ 4P

(
S−r√

r
≥ u

2
−
√

2
)

≤C exp
{
− rI−

(
u−2

√
2

2
√

r

)}
≤C exp

(
− u2

3

)
.
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Putting the two terms together, we get the stated bound.

We now adjust the Lemma 2.3.1.4 to suit for proving Theorem 2.2.2.1, in which we need

to deal with

Z̃+
i, j :=

S+j −S+i√
j− i− (S+j −S+i )

. (2.51)

Define a function

φ(x) =
x√

1− x
, x < 1, (2.52)

and thus we have
Z̃+

i, j√
j− i

= φ

( Z+
i, j√
j− i

)
. (2.53)

Since φ(x) is strictly increasing on (−∞,1) with range R, we write its inverse function as

g+(x) :=
1
2
(x
√

x2 +4− x2), x ∈ R, (2.54)

which is also strictly increasing. Therefore, Z̃+
i, j ≥ u if and only if

Z+
i, j ≥

√
j− i ·g+

(
a√
j− i

)
. (2.55)

This is an important transformation which enables us to deal with Z+
i, j instead. We compute the

Taylor expansion of I+(g+(s)) at s = 0,

I+(g+(s)) =
s2

2
− s3

6
+O(s4). (2.56)

We have

Lemma 2.3.1.7. Fix constants B1, B2 > 0. Then for all x ∈ Z, l,r ∈ N and all u > 0 such that
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B1l > u2 and r < B2lu−2, we have

Q (l,r,u) := P
(

max
(i, j)∈Tr(x,x+l)

Z̃+
i, j ≥ u

)
≤ C

u
exp
(
− u2

2
+

cu3
√

l

)
, (2.57)

where the constants c,C > 0 depend on B1 and B2 but do not depend on x, l,r,u.

Proof. By the transformation (2.55), translation invariance and the fact that g+(x)/x2 is strictly

decreasing,

Q (l,r,u) = P
(

max
(i, j)∈Tr(0,l)

Z̃+
i, j ≥ u

)
(2.58)

= P
[

max
0≤k1,k2≤r

{
S(1)+k1

+S(2)+k2
− (l + k1 + k2) ·g+

(
u√

l + k1 + k2

)}
+S+l ≥ 0

]
(2.59)

≤ P
[

max
0≤k1,k2≤r

{
S(1)+k1

+S(2)+k2

}
− l ·g+

(
u√

l

)
+S+l ≥ 0

]
, (2.60)

where S(1)+k1
, S(2)+k2

are two partial sums of Xi independent of each other and S+l . Define

Vl,u = u
(

u−
S+l√
l−S+l

)
. (2.61)

Thus
S+l√
l−S+l

=
l ·S+l /l

√
l
√

1−S+l /l
=
√

l ·φ
(

S+l
l

)
= u−

Vl,u

u
, (2.62)

which gives

S+l = l ·g+
(

u−Vl,u/u√
l

)
. (2.63)
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Therefore,

Q (l,r,u) (2.64)

≤ P
[

max
0≤k1,k2≤r

{
S(1)+k1

+S(2)+k2

}
− l ·g+

(
u√

l

)
+ l ·g+

(
u−Vl,u/u√

l

)
≥ 0,Vl,u ≤ 0

]
(2.65)

+P
[

max
0≤k1,k2≤r

{
S(1)+k1

+S(2)+k2

}
− l ·g+

(
u√

l

)
+ l ·g+

(
u−Vl,u/u√

l

)
≥ 0,Vl,u > 0

]
(2.66)

= P(Vl,u ≤ 0) (2.67)

+P
[

max
0≤k1,k2≤r

{
S(1)+k1

+S(2)+k2

}
− l ·g+

(
u√

l

)
+ l ·g+

(
u−Vl,u/u√

l

)
≥ 0,Vl,u > 0

]
(2.68)

= Fl,u(0)+
∫

∞

0
Gl,r,u(s)dFl,u(s), (2.69)

where the last equality is obtained by conditioning on Vl,u = s, which is independent of S(1)+k1
,

S(2)+k2
. Fl,u therein is the probability distribution of Vl,u and

Gl,r,u(s) :=P
[

max
0≤k1,k2≤r

{
S(1)+k1

+S(2)+k2

}
− l ·g+

(
u√

l

)
+ l ·g+

(
u− s/u√

l

)
≥ 0
]
,

which is decreasing. To obtain an upper bound for Q (l,r,u), first we bound Fl,u(s) for s ∈ [0, 3
4u2]

so that u− s/u ∈ [u/4,u]. Applying (2.44),

Fl,u(s) = P
(

S+l√
l−S+l

≥ u− s
u

)

= P
{

S+l√
l
≥
√

l ·g+
(

u− s/u√
l

)}
≤C

{√
l ·g+

(
u− s/u√

l

)}−1

exp
[
− l · I+

{
g+
(

u− s/u√
l

)}]
≤ C

u
exp
[
− l · I+

{
g+
(

u− s/u√
l

)}]
,
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where the last inequality follows from the fact that when 0 < x < 1,

xg+
(

1
x

)
>

1
2
. (2.70)

By Taylor expansion of I+(g+(s)), we have

Fl,u(s)≤
C
u

exp
{
− 1

2

(
u− s

u

)2

+
c

2
√

l

(
u− s

u

)3}
≤ Ces

u
exp
(
− u2

2
+

cu3
√

l

)
. (2.71)

It is however easy to see that this inequality continues to hold for s ≥ 3
4u2. Indeed, if c is

sufficiently small, then the assumption B1l > u2 implies that cu3/
√

l ≤ u2/8. Hence, when

s≥ 3
4u2, the above inequality becomes

Fl,u(s)≤
C
u

exp
(

3u2

8

)
. (2.72)

If C is sufficiently large, the right-hand side of previous inequality is greater than 1 and hence the

inequality trivially holds. We bound Gl,r,u(s) for s≥ 0,

Gl,r,u(s)≤ P
{

max
0≤k1,k2<r

S(1)+k1
+S(2)+k2

>
s

2u

√(
u− s

u

)2

+4l +
s2

2u2 − s
}

≤ 2P
{

max
0≤k<r

S+k >
s

4u

√(
u− s

u

)2

+4l− s
2

}
≤ 2P

{
max

0≤k<r
S+k >

s
2u

√
l− s

2

}
.
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Applying the Lemma 2.3.1.3 to the above equation we obtain

Gl,r,u(s)≤ 4P
(

S+r >
s

2u

√
l− s

2
−
√

2r
)

≤ 4P
(

S+r√
r
>

s
2u
√

r

√
l− s

2
√

r
−
√

2
)

≤ 4exp
{
− rI+

(
cs−
√

2√
r

)}
.

In the second inequality, we used the assumption r < B2lu−2. By noticing the fact that I+(s)≥

s2/2, we have

Gl,r,u(s)≤Ce−cs2
. (2.73)

Strictly speaking, this is valid only as long as cs≥
√

2, however, we can choose the constant C so

large that (2.73) continues to hold in the case cs <
√

2. To obtain (2.57), by (2.69), (2.71), (2.73),

it is clear that

Q (l,r,u)≤ Fl,u(0)+
∞

∑
k=0

Gl,r,u(k)Fl,u(k+1)

≤ C
u

(
1+

∞

∑
k=0

e−ck2
ek
)

exp
(
− u2

2
+

cu3
√

l

)
≤ C

u
exp
(
− u2

2
+

cu3
√

l

)
.

2.3.2 Proof of Theorem 2.2.1.1 and Theorem 2.2.1.2

The roadmap of our proof. We know that (U(1),U(2), . . . ,U(n)) has the same distribution

as ( Y1

∑
n+1
i=1 Yi

,
Y1 +Y2

∑
n+1
i=1 Yi

, . . . ,
∑

n
i=1Yi

∑
n+1
i=1 Yi

)
, where Y1, . . . ,Yn+1 are iid exponential. (2.74)
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In particular, Yi can be set as 1−Xi. We use this fact, together with a comparison of ∑
n+1
i=1 Yi with

its mean using a central limit theorem, to deal with the dependency among order statistics above,

effectively reducing the problem to partial sums of iid random variables. We then divide the

intervals into smaller intervals, which end up contributing the most to the maximum, and larger

intervals, whose contribution we show to be negligible. Although U(i) and Yi may be defined on

different probability spaces with different probability measure, we may switch between them

when there is no confusion. Because we only prove convergence in distribution, from now on, we

put U( j) = ∑
j
i=1Yi/∑

n+1
i=1 Yi throughout the proof.

Proof of (2.15)

We study the asymptotic behavior of the statistic based on different regions of j− i. For

b > 0, define the event

An+
i, j (b) =

{
j− i−n(U( j)−U(i))√

( j− i)(1− j−i
n )

≤ b
}

=

{
U( j)−U(i) ≥

j− i
n
− b√

n
wn

i, j

}
,

where

wn
i, j :=

√
j− i
n

(
1− j− i

n

)
. (2.75)

Under this notation, we have

{
M+

n ≤ b
}
=

⋂
0≤i< j≤n

An+
i, j (b). (2.76)

Define

un(τ) =

(
1+
−3loglogn+2τ

4logn

)√
2logn. (2.77)

Throughout the proof, we abbreviate un(τ) as un with τ fixed. With this choice, we have
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un ∼
√

2logn.

Step 1: Upper bound

For the upper bound, it suffices to focus on the optimal range so that the maximum is

achieved. This turns out to be at j− i ∝ (logn)3, as discussed below.

Define the events

Ωn =
{
|S+n+1| ≤ (log logn)

√
n
}
. (2.78)

By the central limit theorem,

P(Ωn)→ 1 as n→ ∞. (2.79)

When j− i≤ n
logn log logn ,

An+
i, j (un)

⊆Ω
c
n

⋃
{Ωn

⋂
An+

i, j (un)}

= Ω
c
n

⋃(
Ωn

⋂{ j− i−S+j +S+i
n+1−S+n+1

≥ j− i
n
− un√

n
wn

i, j

})
⊆Ω

c
n

⋃(
Ωn

⋂{
S+j −S+i ≤ ( j− i)

−1+S+n+1

n
+

un√
n
(n+1−S+n+1)w

n
i, j

})
⊆Ω

c
n

⋃{
S+j −S+i ≤ ( j− i)

log logn√
n

+
un√

n
(n+1+(log logn)

√
n)wn

i, j

}
= Ω

c
n

⋃{
Z+

i, j ≤
(log logn)√

n

√
j− i+un ·

(
1+

(log logn)
√

n+1
n

)√
1− j− i

n

}
⊆Ω

c
n

⋃{
Z+

i, j ≤

√
log logn

logn
+un ·

(
1+

(log logn)
√

n+1
n

)}
⊆Ω

c
n

⋃
{Z+

i, j ≤ un(τ+ ε)},

for any fixed ε > 0 provided that n is large enough. To deal with the standardized sums Z+
i, j, we

need Theorem 1.1 and Theorem 1.2 in [KW14]. Because X1 ≤ 1, it belongs to the superlogarithm
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family defined in [KW14]. Applying Theorem 1.1 and Theorem 1.2 in [KW14], we obtain

lim
n→∞

P{Z+
n ≤ un}= exp

{
− 8

9
√

π
e−τ

}
, (2.80)

and

lim
A→∞

liminf
n→∞

P{Z+
n = Z+

n (A−1(logn)3,A(logn)3)}= 1. (2.81)

By (2.79), (2.80) and the fact that (logn)3� n
logn(log logn) ,

limsup
n→∞

P(M+
n ≤ un)

= limsup
n→∞

P
{ ⋂

0≤i< j≤n

An+
i, j (un)

}
≤ limsup

n→∞

P
{ ⋂

0≤i< j≤n: j−i≤ n
logn log logn

An+
i, j (un(τ+ ε))

}
+ limsup

n→∞

P(Ωc
n)

≤ limsup
n→∞

P
{

Z+
n

(
1,

n
logn log logn

)
≤ un(τ+ ε)

}
+ limsup

n→∞

P(Ωc
n)

= exp
{
− 8

9
√

π
e−τ−ε

}
.

As ε > 0 is arbitrary we get

limsup
n→∞

P(M+
n ≤ un)≤ lim

ε→0
exp
{
− 8

9
√

π
e−τ−ε

}
= exp

{
− 8

9
√

π
e−τ

}
. (2.82)

Step 2: Lower bound

Define

kn =
n

logn(log logn)
, Kn =

n log logn
logn

. (2.83)
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We establish the lower bound by dividing the range of j− i into five regions:

R1 = [1,u2
n), R2 = [u2

n,kn),

R3 = [kn,Kn), R4 = [Kn,n−Kn),

R5 = [n−Kn,n).

• For R1, note that
j− i
n
− un√

n
wn

i, j ≤ 0, (2.84)

is equivalent to

j− i≤ u2
n

1+u2
n/n

. (2.85)

Since u4
n� n, i, j only take value in integers, it is further equivalent to j− i≤ u2

n when n is large

enough, which is exactly R1. Therefore, when n is large enough,

An+
i, j (un) = Ω, (2.86)

for any (i, j) satisfying j− i ∈ R1 so that

⋂
0≤i< j≤n: j−i∈R1

An+
i, j (un) = Ω. (2.87)

• For R2, following the same argument that was used to prove the upper bound, it can be shown

that

liminf
n→∞

P
{ ⋂

0≤i< j≤n: j−i∈R2

An+
i, j (un)

}
≥ exp

{
− 8

9
√

π
e−τ

}
. (2.88)

• Turning to R3, we shall show that

P
(

max
0≤i≤n−kn

S+i+kn
−S+i√
kn

≤ log logn
)
→ 1, (2.89)
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and then use this fact to prove that the maximum of M+
i, j over R3 is ignorable. First we bound

max0≤i≤n−kn(S
+
i+kn
−S+i ). Define

qn =
kn

(log logn)2 � kn, (2.90)

and introduce a positive sequence εn such that qn � εn � kn. Consider the following two-

dimensional grid with mesh size qn:

Jn = {(x,y) ∈ qnZ2 : x ∈ [−εn,n+ εn],y− x ∈ [0.9kn− εn,1.1kn + εn]}. (2.91)

By the union bound,

P
{

Z+
n (0.9kn,1.1kn)> log logn

}
≤ ∑

(x,y)∈Jn

P
{

max
(i, j)∈Tqn(x,y)

Z+
i, j ≥ log logn

}
. (2.92)

Note that the cardinality of Jn satisfies

|Jn| ∼
(1.1−0.9)nkn

(qn)2 = 0.2(log logn)5 logn. (2.93)

By the translation invariance property of Tqn(x,y) and Lemma 2.3.1.4, taking l = y−x, r = qn and

u = log logn for large enough n (and thus satisfying the conditions in Lemma 2.3.1.4) temporarily,

we have

P
{

Z+
n (0.9kn,1.1kn)≥ log logn

}
≤C|Jn|exp

{
− (log logn)2

2

}
→ 0,

where C > 0 is a constant. Since

max
0≤i≤n−kn

S+i+kn
−S+i√
kn

≤ Z+
n (0.9kn,1.1kn), (2.94)
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it follows that

limsup
n→∞

P
(

max
0≤i≤n−kn

S+i+kn
−S+i√
kn

≥ log logn
)
= 0. (2.95)

We may now prove the ignorability of maximum of M+
i, j when taking values on R3. Define

Ω1n := Ωn
⋂{

max
0≤i≤n−kn

S+i+kn
−S+i√
kn

≤ log logn
}
. (2.96)

By (2.95), P(Ω1n)→ 1 as n→ ∞. For j− i ∈ R3,

An+
i, j (un)

⊇Ω1n
⋂{

S+j −S+i ≤ ( j− i)
S+n+1−1

n
+

un√
n
(n+1−Sn+1)wn

i, j

}
= Ω1n

⋂{
S+j −S+i+kn

≤ ( j− i)
S+n+1−1

n
−S+i+kn

+S+i +
un√

n
(n+1−S+n+1)w

n
i, j

}
⊇Ω1n

⋂{
S+j −S+i+kn

≤−( j− i)
log logn√

n
−
√

kn log logn+
un√

n
(n+1− log logn

√
n)wn

i, j

}
⊇Ω1n

⋂{ S+j −S+i+kn√
j− i− kn

≤

√
j− i

j− i− kn

[
un ·
(

1− log logn√
n

)
−

√
(log logn)3

logn
− log logn

]}

⊇Ω1n
⋂{ S+j −S+i+kn√

j− i− kn
≤

√
1+

kn

Kn

[
un ·
(

1− log logn√
n

)
−

√
(log logn)3

logn
− log logn

]}
⊇Ω1n

⋂{ S+j −S+i+kn√
j− i− kn

≤ un(log logn)
}
,

where the last line follows by noting that kn/Kn = 1/(log logn)2. Thus

⋂
0≤i< j≤n: kn+1≤ j−i≤Kn

An+
i, j (un)

⊃Ω1n
⋂{

max
0≤i< j≤n: kn+1≤ j−i≤Kn

S+j −S+i+kn√
j− i− kn

≤ un(log logn)
}

⊃Ω1n
⋂{

max
0≤i< j≤n: j−i≤Kn

S+j −S+i√
j− i

≤ un(log logn)
}
,
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and recall that un(·) is a function. Since (logn)3� Kn, (2.80) and (2.81) together imply that

liminf
n→∞

P
{

M+
n (kn +1,Kn)≤ un(τ)

}
≥ liminf

n→∞
P
[

Ω1n
⋂
{Z+

n (1,Kn)≤ un(log logn)}
]

≥ liminf
n→∞

P
[

Ω1n
⋂
{Z+

n (1,Kn)≤ un(τ
′)}
]
= exp

(
− 8

9
√

π
e−τ′

)
,

for any τ,τ′. We now take τ′→ ∞, yielding

liminf
n→∞

P
{

M+
n (kn +1,Kn)≤ un(τ)

}
= liminf

τ′→∞

exp
(
− 8

9
√

π
e−τ′

)
= 1. (2.97)

• Next we apply the Kolmogorov’s Theorem to deal with R4. Define the centered order statistics

Ū(i) =U(i)−
i

n+1
. (2.98)

Note that when n is large enough,

An+
i, j (un) =

{
Ū( j)−Ū(i) ≥

j− i
n(n+1)

− un√
n

wn
i, j

}
=

{√
n(Ū( j)−Ū(i))≥

j− i√
n(n+1)

−unwn
i, j

}
⊇
{√

n(Ū( j)−Ū(i))≥−0.9unwn
i, j

}
⊇
{

0.9unwn
i, j ≥

√
n(Ū( j)−Ū(i))≥−0.9unwn

i, j

}
⊇
{

2
√

nmax{|Ū(i)|, |Ū( j)|} ≤ 0.9unwn
i, j

}
.

For (i, j) such that j− i ∈ R4, wn
i, j is minimized at either j− i = n log logn

logn or n− n log logn
logn . Conse-
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quently,

⋂
0≤i< j≤n: j−i∈R4

An
i, j(un)⊇

{√
n max

1≤i≤n
{|Ū(i)|} ≤

0.9un

2
min

0≤i< j≤n: j−i∈R4
wn

i, j

}

=

{√
n max

1≤i≤n
{|Ū(i)|} ≤

0.9un

2

√
log logn

logn

(
1− log logn

logn

)}
.

The Kolmogorov’s Theorem states that for any y≥ 0,

lim
n→∞

P
(√

n max
1≤i≤n

|Ū(i)| ≤ y
)
= K(y) := 1−2e−2y2

+2e−8y2
−·· · . (2.99)

In particular, (
√

nmax1≤i≤n |Ū(i)|) is tight. Therefore, by the fact that

0.9un

2

√
log logn

logn

(
1− log logn

logn

)
�
√

log logn→ ∞, (2.100)

we obtain

lim
n→∞

P
{ ⋂

0≤i< j≤n: j−i∈R4

An+
i, j (un)

}
= 1. (2.101)

• For R5, define j′ = n− j and U ′( j′+1) = 1−U(n+1− j′−1) = 1−U( j). A simple change of indices

gives

M+
n (n−Kn,n) = max

0≤i< j≤n
n−Kn≤ j−i<n

j− i−n(U( j)−U(i))√
( j− i)(1− j−i

n )

≤ max
i, j′≥0

i+ j′<Kn

nU ′( j′+1)− ( j′+1)+nU(i)− i√
(i+ j′)(1− i+ j′

n )

≤ 1.01 max
i, j≥0

1≤i+ j<Kn

nU ′( j)− j+nU(i)− i
√

i+ j
+1.01
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where the last inequality holds when n is large enough since Kn � n. Now, by the above

statements, to prove

limsup
n→∞

P(M+
n (n−Kn,n)≥ un) = 0, (2.102)

it suffices to prove

limsup
n→∞

P
(

max
i, j≥0

1≤i+ j<Kn

nU(i)− i+nU ′( j)− j
√

i+ j
≥
√

1.9logn
)
= 0. (2.103)

Assuming 0/0 = 0, observe that

P
(

max
i, j≥0

1≤i+ j<Kn

nU(i)− i+nU ′( j)− j
√

i+ j
≥
√

1.9logn
)

= P
{

max
i, j≥0

1≤i+ j≤Kn

(
nU(i)− i
√

i+ j
+

nU ′( j)− j
√

i+ j

)
≥
√

1.9logn
}

≤ P
{

max
i, j≥0

1≤i+ j≤Kn

(
nU(i)− i
√

i
+

nU ′( j)− j
√

j

)
≥
√

1.9logn
}

≤ P
(

max
0≤i≤n

nU(i)− i
√

i
+ max

0≤ j≤n

nU ′( j)− j
√

j
≥
√

1.9logn
)

≤ 2P
(

max
0≤i≤n

nU(i)− i
√

i
≥
√

1.9logn
2

)
≤ 2P

(
max

0≤i≤n

nU(i)− i√
i(1− i/n)

≥
√

1.9logn
2

)
.

However, [Eic79] showed that

max
0≤i≤n

nU(i)− i√
i(1− i/n)

∼
√

2loglogn, (2.104)

which finishes the proof for R5.

• Now combining all the results gives the lower bound, which, together with the upper bound,

establishes the proof of Theorem 2.2.1.1.
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Proof of (2.20)

In what follows, we let

un = un(τ) := logn+ τ, (2.105)

with τ fixed. Define

An−
i, j (un) =

{
n(U( j)−U(i))− ( j− i)√

( j− i)(1− j−i
n )

≤ un

}
=

{
U( j)−U(i) ≤

j− i
n

+
un√

n
wn

i, j

}
,

where wn
i, j is defined in (2.75), and note that

{
M−n ≤ un

}
=

⋂
0≤i< j≤n

An−
i, j (un). (2.106)

Step 1: Upper bound

For the upper bound, again, we only consider a particular order of magnitude for the

length, the one that contributes the most to the maximum. When j− i≤ n log logn
(logn)2 ,

An−
i, j (un)⊂Ω

c
n

⋃
{Ωn

⋂
An−

i, j (un)}

⊂Ω
c
n

⋃{S−j −S−i√
j− i

≤ (log logn)

√
j− i
n

+un ·
(

1+
log logn√

n

)}
⊂Ω

c
n

⋃{S−j −S−i√
j− i

≤ un(τ+ ε)

}
,

for any ε > 0, where Ωn is given in (2.78). By (2.79), it suffices to consider the second event on

the RHS. Applying Theorem 1.7 in [KW14], the limiting distribution of Z−n is the same as that of

max1≤i≤n(−Xi). By the independence of {Xi}, we obtain

lim
n→∞

P(Z−n ≤ un) = lim
n→∞

P{max
1≤i≤n

(−Xi)≤ un}= exp{−exp(1− τ)}. (2.107)
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Therefore, taking ε→ 0,

limsup
n→∞

P(M−n ≤ un) = limsup
n→∞

P
{ ⋂

0≤i< j≤n

An−
i, j (un)

}
≤ limsup

n→∞

P
{ ⋂

0≤i< j≤n: j−i≤ n log logn
(logn)2

An−
i, j (un)

}
+P(Ωc

n)

≤ limsup
ε→0

exp{−exp(1− τ− ε)}

= exp{−exp(1− τ)}.

Step 2: Lower bound

As in the proof of (2.2.1.1), we divide the range of j− i into several subintervals. Similar

to the upper bound case,

lim
n→∞

P
{

M−n

(
1,

n log logn
(logn)2

)
≤ un

}
= exp{−exp(1− τ)}. (2.108)

With the same argument that was used to prove (2.101), we obtain

lim
n→∞

P
{ ⋂

0≤i< j≤n: n log logn
(logn)2

≤ j−i≤n− n log logn
(logn)2

An−
i, j (un)

}
= 1. (2.109)

The case where j− i≥ n− n log logn
(logn)2 can be treated similarly to proving the region R5 in the proof

of Theorem 2.2.1.1, even easier since now un ∼ logn (and details are omitted).

Proof of (2.21)

This follows directly from (2.15), where we learn that M+
n �P

√
logn, and (2.20), which

states that M−n �P logn, which when combined imply that M−n �P M+
n , and therefore Mn =

max(M−n ,M
+
n ) = M−n with probability tending to 1 as n increases.
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2.3.3 Proof of Theorem 2.2.2.1

Proof of (2.25)

We first derive the asymptotic distribution of

M̃+
n (1,2) = max

0≤i≤n−1

1−n(U(i+1)−U(i))√
n(U(i+1)−U(i))(1−U(i+1)+U(i))

, (2.110)

which is exactly the same as that of (2.25) and then show that M̃+
n (2,n)�P

√
n. These together

imply (2.25). To get the asymptotic distribution of M̃+
n (1,2), note that

M̃+
n (1,2)≤ max

0≤i≤n−1

1√
n(U(i+1)−U(i))[1− (U(i+1)−U(i))]

(2.111)

and M̃+
n (1,2)≥ max

0≤i≤n−1

1−n(U(i+1)−U(i))√
n(U(i+1)−U(i))

, (2.112)

where both upper and lower bounds are functions of

T := min
0≤i≤n−1

(U(i+1)−U(i)). (2.113)

Therefore it suffices to work on T instead. It is easy to see that T ≤ 1/n. By symmetry,

P(T ≥ t) = n!P(T ≥ t,U1 ≤U2 ≤ ·· · ≤Un). (2.114)

Define the subset

At = {(u1, . . . ,un) ∈ [0,1]n : ui + t ≤ ui+1, i = 0,1, . . . ,n−1}, (2.115)
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where u0 = 0. Then,

{(U1, · · · ,Un) ∈ At}= {T ≥ t,U1 ≤U2 ≤ ·· · ≤Un}, (2.116)

and hence

P(T ≥ t,U1 ≤U2 ≤ ·· · ≤Un) = λn(At), (2.117)

where λn is the Lebesgue measure on Rn. Define a mapping

h : At −→ Q⊂ [0,1−nt]n, h(u1,u2, · · · ,un) = (u1− t,u2−2t,un−nt), (2.118)

where

Q := {(y1, . . . ,yn) : yi ≤ yi+1,∀ 1≤ i≤ n−1}∩ [0,1−nt]n. (2.119)

It is easy to verify that h is a volume-preserving bijection. Hence

P(T ≥ t,U1 ≤U2 ≤ ·· · ≤Un) = λn(At) = λn(Q) =
(1−nt)n

n!
(2.120)

Therefore, we have

P(T ≥ t) =
n!(1−nt)n

n!
= (1−nt)n, (2.121)

for 0≤ t ≤ 1/n. For any 0≤ t ≤ 1/n,

P
{

min
0≤i≤n−1

(U(i+1)−U(i))≥ t
}
= (1−nt)n, (2.122)

which implies

lim
n→∞

P
{

min
0≤i≤n−1

(U(i+1)−U(i))≥
τ

n2

}
= exp(−τ). (2.123)
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This, together with (2.111) and (2.112), implies

lim
n→∞

P
(

M̃+
n (1,1)≤

√
n
τ

)
= exp(−τ). (2.124)

It remains to show that M̃+
n (2,n)�P

√
n. We will divide the region (2,n) into

(2, (logn)2), ((logn)2, n− (logn)2) and (n− (logn)2, n). (2.125)

When 2≤ j− i≤ (logn)2, note that

1− (U( j)−U(i)) = 1− j− i
n+1

− (Ū( j)−Ū(i)) (2.126)

≥ 1− (logn)2

n+1
−2 max

1≤i≤n
|Ū(i)|

= 1+OP(1/
√

n)

≥ 0.5, (2.127)

where the last inequality holds on a sequence of events with probability tending to one, by

Kolmogorov’s Theorem mentioned in the proof of Theorem 2.2.1.1 when n is large enough.

Meanwhile,

j− i−n(U( j)−U(i))√
n(U( j)−U(i))

=
j− i− n

n+1−S+n+1
( j− i−S+j +S+i )√

n n
n+1−S+n+1

( j− i−S+j +S+i )

= (1+OP(1/
√

n))Z̃i, j +OP(1/
√

n)

≤ 1.01Z̃i, j +0.01, (2.128)
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on the sequence of events Ωn defined in (2.79). With these results, the union bound, (2.43) and

the fact that I+(s) =−s− log(1− s) on [0,1), for any ε > 0,

P(M̃+
n (2,(logn)2)≥ ε

√
n)

≤ P(Z̃+
n (2,(logn)2)≥ 0.9ε

√
n)+P(Ωc

n)

≤ ∑
0≤i< j≤n:2≤ j−i≤(logn)2

P(Z̃+
i, j ≥ 0.9ε

√
n)+P(Ωc

n)

≤ n ∑
2≤k≤(logn)2

P
(

S+k√
k−S+k

≥ 0.9ε
√

n)+P(Ωc
n)

≤ n ∑
2≤k≤(logn)2

exp
[
− kI+

{
g+
(

0.9ε
√

n√
k

}]}
+P(Ωc

n)

≤ n ∑
2≤k≤(logn)2

exp
[

kg+
(

0.9ε
√

n√
k

)
+ k log

{
1−g+

(
0.9ε
√

n√
k

)}]
+P(Ωc

n).

As a→ ∞, 0.9ε
√

n/
√

k→ ∞ and g+(a) ↑ 1. In addition,

1−g+(a) = 1− a(
√

a2 +4−a)
2

= 1− 2a√
a2 +4+a

=

√
a2 +4−a√
a2 +4+a

=
4

(
√

a2 +4+a)2
. (2.129)

Note that
0.9
a2 ≤

4
(
√

a2 +4+a)2
≤ 1

a2 , (2.130)

when a is large enough. Therefore, when n is sufficiently large,

P(M̃+
n (2,(logn)2)≥ ε

√
n)≤ n ∑

2≤k≤(logn)2

exp
{

k− k log
(

0.9εn
k

)}
≤ n ∑

2≤k≤(logn)2

exp(−0.9k logn)

≤ n ∑
2≤k≤(logn)2

exp(−1.8logn)→ 0,

where the last inequality uses that k ≥ 2.
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When (logn)2 ≤ j− i≤ n− (logn)2, by Theorem 2.2.1.1 and Theorem 2.2.1.2, we have

U( j)−U(i) ≤
j− i
n

+
1.01logn√

n
wn

i, j, (2.131)

1− (U( j)−U(i))≥ 1− j− i
n
− 1.01logn√

n
wn

i, j, (2.132)

U( j)−U(i) ≥
j− i
n
− 1.01logn√

n
wn

i, j, (2.133)

and

1− (U( j)−U(i))≤ 1− j− i
n

+
1.01logn√

n
wn

i, j, (2.134)

with probability tending to one. Together, (2.131) and (2.133) lead to

∣∣∣∣n(U( j)−U(i))

j− i

∣∣∣∣= OP(1), (2.135)

uniformly in (i, j) satisfying j− i≥ (logn)2. (2.132) and (2.134) imply

∣∣∣∣1− (U( j)−U(i))

1− ( j− i)/n

∣∣∣∣= OP(1). (2.136)

These, combined with the definitions of M+
n and M̃+

n , imply

M̃+
n {(logn)2,n− (logn)2} �P M+

n {(logn)2,n− (logn)2}. (2.137)

By Theorem 2.2.1.1, it follows that for any ε > 0,

lim
n→∞

P[M̃+
n {(logn)2,n− (logn)2} ≥ ε

√
n] = 0. (2.138)

Finally, when n− (logn)2 ≤ j− i ≤ n, define j′ = n− j and thus U ′( j′+1) = 1−U(n+1− j′−1) =
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1−U( j). A simple change of indices gives

M̃+
n (n− (logn)2,n)

= max
0≤i< j≤n

n−(logn)2≤ j−i≤n

j− i−n(U( j)−U(i))√
n(U( j)−U(i))(1− (U( j)−U(i)))

= max
i, j′≥0

i+ j′≤(logn)2

nU ′( j′+1)− ( j′+1)+nU(i)− i√
n(U(i)+U ′( j′+1))(1−U(i)−U ′( j′+1))

= max
i, j≥0

1≤i+ j≤(logn)2

nU(i)− i+nU ′( j)− j√
n(U(i)+U ′( j))(1−U(i)−U ′( j))

+OP(1).

Notice that when i, j ≥ 0 and 1≤ i+ j ≤ (logn)2,

1−U(i)−U ′( j) > 1−2 max
0≤i≤(logn)2

U(i) > 0.5, (2.139)

with probability tending to one, which can be seen by a simple application of Kolmogorov’s

Theorem. By a similar speech when proving R5 in the proof of Theorem 2.2.1.1,

P
(

max
i, j≥0

1≤i+ j≤(logn)2

nU(i)− i+nU ′( j)− j√
n(U(i)+U ′( j))(1−U(i)−U ′( j))

≥ ε
√

n
)

(2.140)

≤ P
(

max
i, j≥0

1≤i+ j≤(logn)2

nU(i)− i+nU ′( j)− j√
n(U(i)+U ′( j))

≥ 0.5ε
√

n
)

(2.141)

≤ 2P
(

max
0≤i≤(logn)2

nU(i)− i√
nU(i)

≥ 0.25ε
√

n
)

(2.142)

≤ 2P
(

max
0≤i≤(logn)2

nU(i)− i√
nU(i)(1−U(i))

≥ 0.25ε
√

n
)

(2.143)

→ 0, (2.144)

where the last line again follows from [Eic79]. These eventually establish the proof of (2.25).
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Proof of (2.26)

The roadmap of our proof.

To derive the asymptotic distribution, we first focus on the most contributed part, i.e.,

those with length j− i = ln ∼ a log3 n for a > 0. Define

un = un(τ) :=
√

2logn
(

1+
−3loglogn+2τ

4logn

)
. (2.145)

For any two constants 0 < A1 < A2 < ∞, define l−n = A1 log3 n and l+n = A2 log3 n. We prove

lim
n→∞

P{M̃+
n (l
−
n , l+n )≤ un}= exp

{
− e−τ

∫ A2

A1

Λ1(a)da
}
. (2.146)

It turns out that to prove (2.146), within that region, it suffices to focus on

Z̃+
i, j :=

S+j −S+i√
j− i− (S+j −S+i )

, (2.147)

instead, up to restricting on subset Ωn defined in (2.79). Write

Z̃+
n (k, l) = max

0≤i< j≤n:k≤ j−i≤l
Z̃+

i, j, (2.148)

and

Z̃+
n = Z̃+

n (1,n). (2.149)

We will use Lemma 2.3.1.5 to show that

Qn := P
(

max
(i, j)∈TBqn(x,x+ln)

Z̃+
i, j ≥ un

)
∼ Pn(0)

{
1+H2

(
B
a

)}
, (2.150)

where B≥ 1 is an integer and the quantities Pn(0), H(x), qn will be specified later. Next, with a
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domain Jn(z) (to be specified) larger than TBqn , we will show that

P
(

max
(i, j)∈Jn(z)

Z̃+
i, j ≥ un

)
∼ e−τ wn

n

∫ A2

A1

Λ1(a)da, (2.151)

which no longer depends on B, with Λ1(a) defined in the theorem part. This enables us to apply

Poisson limit theorem in [AGG89] to get

lim
n→∞

P{Z̃+
n (l−n , l+n )≤ un}= exp

{
− e−τ

∫ A2

A1

Λ1(a)da
}
. (2.152)

The final step will be showing that the region beyond A2(logn)3 is negligible, that is,

limsup
A2→∞

limsup
n→∞

P{M̃+
n (l

+
n ,n)≥ un}= 0. (2.153)

Therefore setting A1 = A and letting A2→ ∞ yield (2.26).

We first argue why we can focus on (2.51) instead when j− i� log3 n. Note that (2.127)

and (2.128) continue to hold when j− i� (logn)3. Hence,

M̃+
n (l
−
n , l+n ) = {1+OP(1/

√
n)}Z̃+

n (l−n , l+n )+OP(1/
√

n), (2.154)

which implies

P{Z̃+
n (l−n , l+n )≤ un(τ− ε)} ≤ P{M̃+

n (l
−
n , l+n )≤ un(τ)} ≤ P{Z̃+

n (l−n , l+n )≤ un(τ+ ε)},

for any ε > 0. If we had established (2.152), taking ε→ 0 would yield (2.146). Now we turn to

the mainstream of the proof.

PROOF OF (2.150). We will prove this following a similar strategy as in [KW14]. Necessary

adjustments are still needed since [KW14] focused on Z+
i, j while we are dealing with Z̃+

i, j. We

will present the parts that need to be adjusted and refer to their results when nothing needs to be
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changed.

First we work on Qn. For any τ ∈ R and a≥ 0, let ln = a(logn)3 and define

Pn(s) = P
( S+ln√

ln−S+ln

≥ un−
s

un

)
. (2.155)

Define

bn :=
un− s/un√

ln
, (2.156)

for ease of notation. Since u3
n ∝
√

ln and bn ∼
√

2/a/ logn→ 0, for fixed s > 0 with sufficiently

large n, with the transformation (2.55), Lemma 2.3.1.1 and Taylor’s expansion

Pn(s) = P
{ S+ln√

ln
≥
√

lng+(bn)

}
∼ 1√

2πun
exp
{
− (un− s/un)

2

2
2I+(g+(bn))

b2
n

}
=

1√
2πun

exp
{
− (un− s/un)

2

2

(
1− 1

3
bn

)
+o(1)

}
∼ 1

2
√

π
es+

√
2

3 a−1/2 e−τ logn
n

. (2.157)

Recall that Tr(x,y) is defined in (2.46). Define qn = (logn)2. By the same techniques in the proof

of Lemma 2.3.1.7 we have

Qn = P
(

max
(i, j)∈TBqn(x,x+ln)

Z̃+
i, j ≥ un

)
= P

[
max

(i, j)∈TBqn(x,x+ln)

{
S+j −S+i − ( j− i)g+

(
un

j− i

)}
≥ 0
]

= P
[

max
0≤k1,k2≤Bqn

{
S(1)+k1

+S(2)+k2
− (ln + k1 + k2)g+

(
un

ln + k1 + k2

)}
+S+ln ≥ 0

]
= Pn(0)

{
1+

∫
∞

0
Gn(s)dνn(s)

}
,

where Pn(s) defined in (2.155) is actually the probability distribution of Vln,un , defined in (2.61).
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Therein

Gn(s) :=P
[

max
0≤k1,k2≤Bqn

{
S(1)+k1

+S(2)+k2
− (ln + k1 + k2)g+

(
un√

ln + k1 + k2

)}
+ ln ·g+

(
un− s/un√

ln

)
≥ 0
]
,

and

νn(·) := Pn(·)/Pn(0). (2.158)

It is immediate that the first and second conditions in Lemma 2.3.1.5 hold by directly mimicking

the details in the proof of Lemma 4.3 in [KW14], that is, for any fixed s > 0 and any sequence

sn→ s,

lim
n→∞

Gn(sn) = P(M1 +M2 ≥ s), (2.159)

and

lim
n→∞

νn([0,s)) = lim
n→∞

Pn(s)
Pn(0)

= es. (2.160)

M1 and M2 are independent copies with the same distribution as

M = sup
t∈[0,a−1B]

{
√

2W (t)− t}, (2.161)

where W (t) is a standard Brownian motion (similar but more detailed arguments can be found

in the proof of lemma 4.3 in [Kab11]). To verify the third condition in Lemma 2.3.1.5, we need

to bound the integral
∫

∞

0 Gn(s)dνn(s) from above. This can be immediately completed by using

Lemma 2.3.1.7. Hence applying Lemma 2.3.1.5 completes the proof of (2.150), where

H(x) := E{ sup
t∈[0,x]

e
√

2W (t)−t}, x > 0, (2.162)

therein.
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PROOF OF (2.151). Define wn = (logn)3. For z ∈ Z, define

Jn(z) = {(i, j) ∈ I : z≤ i < z+wn, j− i ∈ [l−n , l+n ]}. (2.163)

To derive the rate of P(max(i, j)∈Jn(z) Z̃+
i, j ≥ un), by translation invariance we may take z = 0. Let

δn be a real sequence satisfying δn = o(wn) and qn = o(δn), e.g. δn = (logn)2.5. For B ∈ N, we

introduce the following two-dimensional discrete grids with mesh size Bqn:

Jn(B) = {(x,y) ∈ BqnZ×BqnZ : x ∈ [−δn,wn +δn],y− x ∈ [l−n −δn, l+n +δn]}, (2.164)

J ′n(B) = {(x,y) ∈ BqnZ×BqnZ : x ∈ [δn,wn−δn],y− x ∈ [l−n +δn, l+n −δn]}. (2.165)

By Bonferroni inequality,

S′n(B)−S′′n(B)≤ P
(

max
(i, j)∈Jn(0)

Z̃+
i, j ≥ un

)
≤ Sn(B), (2.166)

where

Sn(B) = ∑
(x,y)∈Jn(B)

P
(

max
(i, j)∈TBqn(x,y)

Z̃+
i, j ≥ un

)
, (2.167)

S′n(B) = ∑
(x,y)∈J ′n(B)

P
(

max
(i, j)∈TBqn(x,y)

Z̃+
i, j ≥ un

)
, (2.168)

and

S′′n(B) = ∑
(x1,y1),(x2,y2)

P
(

max
(i, j)∈TBqn(x1,y1)

Z̃+
i, j ≥ un, max

(i, j)∈TBqn(x2,y2)
Z̃+

i, j ≥ un

)
, (2.169)

where the summation is taken over (x1,y1) 6= (x2,y2) ∈ J ′n(B). As long as we can show

lim
B→∞

limsup
n→∞

nw−1
n Sn(B)≤ e−τ

∫ A2

A1

Λ1(a)da, (2.170)
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lim
B→∞

liminf
n→∞

nw−1
n S′n(B)≥ e−τ

∫ A2

A1

Λ1(a)da, (2.171)

and

lim
B→∞

limsup
n→∞

nw−1
n S′′n(B) = 0, (2.172)

(2.151) will follow immediately. The proof of (2.171) is almost identical to that of (2.170), so we

only focus on proving (2.170) based on the dominated convergence theorem. Define

Ln(B) = BqnZ∩ [l−n −δn, l+n +δn], (2.173)

such that |Ln(B)| ∼ (A2−A1)(logn)/B. Since the probability on the right-hand side of (2.167)

depends only on l := y− x, by translation invariance we have

Sn(B)≤
wn +δn

Bqn
∑

l∈Ln(B)
P
(

max
(i, j)∈TBqn(0,l)

Z̃+
i, j ≥ un

)
. (2.174)

Next we apply (2.150) to bound each probability with l fixed and replace the summation

(Bqn)
−1

∑l∈Ln(B) by an integral as n→ ∞. By (2.150) and (2.157),

λn,B(a) :=
n

logn
P
(

max
(i, j)∈TBqn(0,ln,B(a))

Z̃+
i, j ≥ un

)
→ 1

2
√

π
e
√

2
3 a−1/2−τ

{
1+H2

(
B
a

)}
, (2.175)

as n→ ∞, where

ln,B(a) = max{l ∈ BqnZ : l ≤ awn}. (2.176)

The function λn,B(a) takes constant values on sub-intervals with widths Bqn/wn = B/ logn. It

follows that

Sn(B)≤
wn +δn

B2n ∑
l∈Ln(B)

Bλn,B(a)
logn

=
wn +δn

B2n

∫ A2+
2δn
wn

A1− 2δn
wn

λn,B(a)da. (2.177)

From Lemma 2.3.1.7, we can upper bound the integrand λn,B(a) by an integrable function that is
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independent of n. Therefore, applying Fatou’s lemma on limsup gives

limsup
n→∞

nw−1
n Sn(B)≤ e−τ

∫ A2

A1

a2Λ1(a)
B2

{
1+H2

(
B
a

)}
da. (2.178)

This result holds for any B ∈ N. Note that limB→∞ H(B)/B = 1. Letting B→ ∞, we arrive at

(2.170).

To prove (2.172), we bound S′′n(B) by similar quantities of Z+
i, j, which allows us to use

results in [KW14] immediately. For any interval (x,y) define the event

En(x,y) =
{

max
(i, j)∈TBqn(x,y)

Z̃+
i, j ≥ un

}
. (2.179)

Note that
g+(x)

x
=

1
2
(
√

x2 +4− x)≥ 1− x
2
, when x→ 0. (2.180)

When y− x ∝ (logn)3, un/(y− x) ∝ 1/(logn),

En(x,y) =
{

max
0≤l1,l2≤Bqn

{
S+y+l2

−S+x−l1
− (y− x+ l1 + l2)g+

(
un√

y− x+ l1 + l2

)}
≥ 0
}

⊂
{

max
0≤l1,l2≤Bqn

S+y+l2
−S+x−l1√

y− x+ l1 + l2
≥
√

y− x+ l1 + l2g+
(

un√
y− x+ l1 + l2

)}
⊂
{

max
(i, j)∈TBqn(x,y)

Z+
i, j ≥ un(τ)

(
1− un

2
√

y− x+ l1 + l2

)}
⊂
{

max
(i, j)∈TBqn(x,y)

Z+
i, j ≥ un(τ−0.1)

}
.

Therefore,

P{En(i1, j1)∩En(i2, j2)}

≤ P
[{

max
(i, j)∈TBqn(i1, j1)

Z+
i, j ≥ un(τ−0.1)

}⋂{
max

(i, j)∈TBqn(i2, j2)
Z+

i, j ≥ un(τ−0.1)
}]

.
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This allows us to work on Z+
i, j instead. Directly applying Lemma 4.12, Lemma 4.14, Lemma 4.15

and Lemma 4.16 in [KW14] yields (2.172).

PROOF OF (2.152). We will temporarily adopt the notations in [AGG89]. Define

I = {α ∈ N : αwn ≤ n}, (2.181)

which implies |I| ≤ n/wn. For any α ∈ I, define

Xα = 1{ max
(i, j)∈Jn(αwn)

Z̃+
i, j ≥ un}, (2.182)

pα = P(Xα), (2.183)

and

Bα = {β ∈ I : |(β−α)wn| ≤ l+n +wn}. (2.184)

Hence |Bα| ≤ A2 +1. To apply Theorem 1 in [AGG89], we need to show that

b1 := ∑
α∈I

∑
β∈Bα

pα pβ, (2.185)

b2 := ∑
α∈I

∑
α6=β∈Bα

pαβ, where pαβ := E(XαXβ), (2.186)

and

b′3 := ∑
α∈I

s′α (2.187)

therein vanish as n→ ∞, where

s′α := E
∣∣∣∣E(Xα− pα

∣∣∣ ∑
β∈I−Bα

Xβ

)∣∣∣∣ (2.188)

By the definition of Bα, Xα− pα and ∑β∈I−Bα
Xβ are independent. Hence s′α = 0, so is b′3. It
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follows from (2.151) that

b1 ∼ |I||Bα|pα pβ→ 0. (2.189)

With slight modification on (2.151),

P
(

max
(i, j)∈Jn(αwn)∪Jn(βwn)

Z̃+
i, j ≥ un

)
∼ e−τ 2wn

n

∫ A2

A1

Λ1(a)da. (2.190)

This, together with (2.151), implies

pαβ = P
(

max
(i, j)∈Jn(αwn)

Z̃+
i, j ≥ un, max

(i, j)∈Jn(βwn)
Z̃+

i, j ≥ un

)
= o
(

wn

n

)
. (2.191)

Thus,

b2 ≤ |I||Bα|max
α 6=β

pαβ→ 0. (2.192)

Now, by Theorem 1 in [AGG89],

lim
n→∞

P{Z̃+
n (l−n , l+n )≤ un}= lim

n→∞
P
(

∑
α∈I

Xα = 0
)
= e−λ, (2.193)

where

λ = ∑
α∈I

pα→ e−τ

∫ A2

A1

Λ1(a)da. (2.194)

Therefore,

lim
n→∞

P{M̃+
n (l
−
n , l+n )≤ un}= exp

(
− e−τ

∫ A2

A1

Λ1(a)da
)
, (2.195)

by the statement in the beginning of our proof.

PROOF OF (2.153). Divide (l+n ,n] into

(l+n , (logn)4], ((logn)4, n− (logn)4] and (n− (logn)4, n]. (2.196)
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Within the first region, for any k ∈ N, any pair (i, j) with length

2k(logn)3 ≤ j− i≤ 2k+1(logn)3 (2.197)

can be covered by the union of at most 2−kn/ logn disjoint discrete squares of the form

T2k(logn)2(x,x+ j− i). (2.198)

By (2.132),

1− (U( j)−U(i))≥ 1−1.1(logn)4/n, (2.199)

with probability tending to one. With these facts, by the union bound and Lemma 2.3.1.7,

P{M̃+
n (l

+
n ,(logn)4)≥ un}

≤ P
{

max
k:log2 A2≤k≤log2(logn)

M̃+
n (2

k(logn)3,2k+1(logn)3)≥ un

}
≤ P

{
max

k:log2 A2≤k≤log2(logn)
Z̃+

n (2k(logn)3,2k+1(logn)3)≥ un(τ−0.1)
}

≤ ∑
k≥log2 A2

2−k n
logn

P
{

max
(i, j)∈T2k(logn)2(0,2

k+1(logn)3)
Z̃+

i, j ≥ un(τ−0.1)
}
+P(Ωc

n)

≤C ∑
k≥log2 A2

2−k +P(Ωc
n).

Taking limsupn→∞ and letting A2→ ∞ gives the desired result.

In the meantime, on ((logn)4,n− (logn)4], a finer examination of (2.131) and (2.133)

yields ∣∣∣∣n(U( j)−U(i))

j− i
−1
∣∣∣∣= Op

(
1

logn

)
. (2.200)
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(2.132) and (2.134) imply

∣∣∣∣1− (U( j)−U(i))

1− ( j− i)/n
−1
∣∣∣∣= Op

(
1

logn

)
. (2.201)

Therefore,

P{M̃+
n ((logn)4,n− (logn)4)≥ un} ≤ P{M+

n (l
+
n ,(logn)4)≥ un(τ−0.1)}→ 0,

by Theorem 2.2.1.1.

The proof of the region (n− (logn)4,n] is immediate by following the proof for (2.144),

which we omit here.

2.3.4 Proof of Theorem 2.2.2.2

Define

Z̃−i, j :=
S−j −S−i√

j− i+S−j −S−i
, (2.202)

and

g−(a) :=
1
2
(a
√

a2 +4+a2). (2.203)

I−(g−(s))≥ s2/2. (2.204)

The theorem follows immediately after showing that

limsup
n→∞

P(M̃−n ≥ ε
√

n) = 0, (2.205)

for any ε > 0. This can be proved similarly by dividing the regions, transforming the statistic M̃−i, j

into Z̃−i, j, combined with (2.204). We omit the detail here.
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Chapter 3

Two-Stage Residual Inclusion for Survival

Data and Competing Risks - An

Instrumental Variable Approach with

Application to SEER-Medicare Linked

Data

3.1 Introduction

Interpreting the causal meaning of a treatment or exposure is straightforward under the

randomized trials, because the randomization guarantees that there are no confounders for the

exposure or treatment of interest. However, randomized experiment is not always feasible in

practice. In observational studies issues such as endogeneity or potential confounding will arise.

Instrumental variable (IV) is a useful method in some of these settings [AIR96], including when

we may have unmeasured confounders. It finds increasing application in research on health
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care practices (see for example [HL04, SFW+07]) including comparative effectiveness studies,

and also in genetic studies where certain genes are used as IV for Mendelian randomization

[GTTR12, LHS+08, ZBL+15].

Figure 3.1 illustrates a typical setting where IV methods can be applied. It is called a

causal directed acyclic graph, where the nodes represent random variables, arrows represent direct

causal effect, in such a way so that the common cause of any two nodes is included in the graph.

In Figure 3.1 Xe is the exposure we are interested in testing the causal effect on the survival time

outcome T , and we use a dashed line to represent the uncertainty of causation. In addition, Xo is

the observed confounder, Xu the unobserved confounder. XI is the instrument variable which has

to satisfy the following three conditions: 1) XI is associated with Xe, 2) XI doesn’t affect T except

through its potential effect on Xe, and 3) XI and Xu do not share causes.

There are two commonly used IV approaches: two-stage predictor substitution (2SPS),

and two-stage residual inclusion (2SRI). For survival outcomes [TTWV+15] considered these

two methods under the additive hazards model, and gave conditions under which the causal

parameters of interest can be correctly estimated. We note that while the Cox proportional hazards

model has been more widely used in practice for survival data, an important appeal of additive

hazards models is that unlike proportional hazards, a hazards difference is a collapsible effect

measure.[TTWV+15, MV13] This means that when there is an unobserved (exogenous) covariate

for the survival outcome, integrating out this covariate under the additive hazards model still gives

a model satisfying the additive hazards assumption. But this has long been known not to be the

case for the proportional hazards model.[LN80, GWP84, SK86, BHC88, AF95, FNA95, XO00]

In 2SPS under the additive hazards model the exposure is substituted by its prediction given the

IV, and included in the model as a covariate, together with possibly other observed confounders.

[LFB15] investigated its large sample properties under the additive hazards model. [ZDHZ17]

considered 2SPS under competing risks.

The 2SRI is different from 2SPS in that instead of the predicted exposure, the residual
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from regressing the exposure on the IV(i.e. first stage) is included as an extra term in the additive

hazards model, in addition to the exposure and possibly other observed confounders. This was

considered more suitable for binary or discrete exposures [TBR08, TTWV+15], when generalized

linear models (GLM) for example are used in the first stage. Note that linear regression is used in

the first stage of 2SPS, and therefore it is more suitable for continuous exposures. Very recently

[JLF18] studied the 2SRI estimator with linear regression in the first stage for survival data. Our

goal in this paper is to study the 2SRI estimator with GLM in the first stage, and also to develop

the methodology for competing risks data.

This work was motivated by the desire to conduct comparative effectiveness research

in large observational databases. In the field of oncology we lack gold standard randomized

clinical trials in many clinical scenarios to optimally inform clinical decision making. With the

lack of randomized trials investigators turn to comparative effectiveness with large observational

data sets such as the linked (Surveillance, Epidemiology, and End Results) SEER-Medicare

database. These databases include information on the specifics of cancer, staging, treatment,

patient comorbidity, as well as information on long-term outcomes including toxicity and survival.

Despite this wealth of information, these databases do not contain information on unmeasured

confounding factors such as patient weight, smoking status, diet, exercise, patient compliance

with treatment, and patient performance status. These unmeasured confounders can substantially

influence outcomes (in particular survival), adding bias to comparative effectiveness research

using observational data. Recently [HYB+10] compared aggressive (radical prostatectomy)

versus conservative treatments of prostate cancer with SEER-Medicare linked data. The question

of radical prostatectomy versus conservative treatment has been addressed in randomized clinical

trials which demonstrate no clear survival advantage for either treatment approach. [BAHR+05,

HDL+16]Hadley found IV to be a useful technique as compared to for example propensity scores

in adjustment for confounding in such data. Proportional hazards model was used in their analysis

which, as pointed out by [LFB15] as well as explained above, due to the noncollapsibility is not
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suitable for the two-stage approaches. We would like to instead consider the additive hazards

model for the reasons given earlier. Since the treatment choices are binary, we would like to use

the 2SRI estimator, both for overall survival, and for cancer specific mortality. For these purposes

we need to develop the inference procedure under the model for both general survival data and

under competing risks.

The rest of the paper is organized as follows. In section 3.2 we describe the assumptions

needed for the 2SRI approach under the additive hazards model for general survival data with

right censoring, and we study the asymptotic behavior including consistency and asymptotic

normality of the 2SRI estimator. Following that, we extend the results to competing risks data in

Section 3.3 under subdistribution hazard modeling. For both settings we provide a closed-form

variance estimate of the 2SRI estimator. Section 3.4 contains finite sample simulation results, and

Section 3.5 the analysis of the SEER-Medicare data. Section 3.6 contains some further discussion.

All technical details are provided in the Appendix.

3.2 Additive hazards model for survival data

In the presence of possible right censoring, let T and C be the failure time and the censoring

time random variables, respectively. We can only observe T ∗ = min(T,C) and δ = 1{T ≤C}.

Similar to the setting in Figure 3.1, denote Xe as the exposure variable, whose causal effect is

of primary interest, XI as the IV, and Xo as the (vector of) observed confounders of dimension

p. Our observed data for each individual is {T ∗i ,δi,Xei,Xoi,XIi} (i = 1, ...,n), which we assume

are independent and identically distributed. In this section, we will assume that T and C are

independent conditional on Xe, XI and Xo. Under the additive hazards model [Aal80, Aal89, LY94,

], the hazard function of T given Xe,XI,Xo and the unobserved confounders is assumed to be in
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the form

λ(t|Xe,XI,Xo,Xu) = λ0(t)+βeXe +βo
>Xo +Xu, (3.1)

where Xu is a function of the unobserved confounders. We assume that Xu is independent of Xo

and XI . Denote

∆ = Xe−E(Xe|XI,Xo). (3.2)

Following [TTWV+15] we put a key assumption on Xu:

Xu = ρ0∆+ ε. (3.3)

where ε is an error term independent of Xe, XI and Xo. Proposition 3.7.2.1 in the Appendix shows

that integrating out Xu we have

λ(t|Xe,XI,Xo) = λ̄0(t)+βeXe +βo
>Xo +ρ0∆. (3.4)

Note that the same coefficient βe (and βo) from (3.1) is remained in (3.4).

The error term ∆ in (3.4) is not readily available from the data. Nonetheless we can

‘estimate’ ∆ and use this estimate as a substitute. For this we need to impose an assumption on

the form of E(Xe|XI,Xo), for example,

g(E(Xe|XI,Xo)) = αc +αIXI +αo
>Xo, (3.5)

where g(·) is a link function.

The two stage residual inclusion (2SRI) estimator is then defined as follows: in the first
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stage, we fit model (3.5) and obtain

∆̂ = Xe− X̂e = Xe− Ê(Xe|XI,Xo). (3.6)

Then in the second stage, we fit (3.4) with ∆ replaced by ∆̂.

Denote Zi = [Xei,X>oi, ∆̂i]
> the regressors in (3.4) with ∆ replaced by ∆̂, X̃ i = [1,XIi,Xoi

>]>

the regressors in (3.5). Let Ni(t) = 1{T ∗i ≤ t,δi = 1} be the counting process, and Yi(t) =

1{T ∗i ≥ t} the at-risk process. Define the filtration Ft = σ{Ni(u),Yi(u),XIi,Xoi,Xei,u ≤ t, i =

1, ..,n}. By the usual counting process theory, Mi(t) = Ni(t)−
∫ t

0 Yi(u)λi(u)du is a mean zero

martingale with respect to the filtration Ft . Under the additive hazards model the estimating

equation for β = (βe,β
>
o ,ρ0)

> in (3.4) is

U(β) =
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))(dNi(t)−Yi(t)β>Zidt), (3.7)

where Z̄(t) =
n

∑
l=1

ZlYl(t)/
n

∑
l=1

Yl(t). This gives our estimator

β̂ =
{ n

∑
i=1

∫ 1

0
Yi(t)(Zi− Z̄(t))⊗2dt

}−1{ n

∑
i=1

∫ 1

0
(Zi− Z̄(t))dNi(t)

}
. (3.8)

In the following we show that β̂ is consistent for the true β and therefore β̂e is consistent for the

causal parameter βe. The estimator is also asymptotically normal and we provide a closed form

expression for its asymptotic variance.

In addition to β, the cumulative baseline hazard function Λ0(t) =
∫ t

0 λ̄0(s)ds can be

estimated by

Λ̂0(t) =
n

∑
i=1

∫ t

0

1
∑

n
j=1Y j(u)

dNi(u)− β̂
>
∫ t

0
Z̄(u)du. (3.9)

Using this we can also estimate the conditional survival function given the observed variables
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x = (xe,x>o ,xI)
>, the value of the variables of a future patient whose survival we are interested in

predicting:

Ŝ(t|x) = exp(−Λ̂0(t)− β̂
>zt), (3.10)

where z = (xe,x>o ,xe− Ê(Xe|xI,xo))
>. Note that under the additive hazards model Λ̂0(t) can

be negative, or the estimated survival function Ŝ(t|x) not decreasing. Therefore we follow the

approach of [LY94] and use a modified Λ̂∗0(t) = max0≤s≤t Λ̂0(s), and Ŝ∗(t|x) = min0≤s≤t Ŝ(s|x).

Under regularity condition, the modified version is asymptotically equivalent to the original

version. Now we state our main results below.

Theorem 3.2.0.1. Under (3.1), (3.3), (3.5) and Condition 3.7.2.1, Condition 3.7.2.4, Condition

3.7.2.5 given in the Appendix, the two stage residual inclusion estimator β̂ is consistent for the

true value of β in (3.4), denoted by βT , i.e. β̂→ βT in probability as n→ ∞.

Theorem 3.2.0.2. Under (3.1), (3.3), (3.5) and Condition 3.7.2.1, Condition 3.7.2.4, Condition

3.7.2.5,
√

n(β̂−βT ) is asymptotically normally distributed with asymptotic covariance matrix

that can be consistently estimated by Ω̂
−1
(Σ̂1 + Σ̂2)Ω̂

−1
, where

Ω̂ =
1
n

n

∑
i=1

∫ 1

0
Yi(t)(Zi− Z̄(t))⊗2dt, (3.11)

Σ̂1 =
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))⊗2dNi(t), (3.12)

Σ̂2 = Ψ̂Θ̂Ψ̂
>
, (3.13)

Ψ̂ =
ρ̂0

n

n

∑
i=1

{∫ 1

0
Yi(t)(Zi− Z̄(t))dt

}
X̃>i (g

−1)′(X̃>i α̂), (3.14)

α = (αc,αI,αo
>)>, Θ̂ is the estimated covariance matrix of

√
n(α̂−αT ) from the first stage, and

(g−1)′ is the derivative of the inverse function of g.

Remark 3.2.0.1. Note that Θ̂ can typically be obtained when using software for fitting linear or
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generalized linear regression models in the first stage. For linear regression of Xe on XI and Xo

in (3.5), g(y) = y, so (g−1)′ ≡ 1. Note this special case was investigated in [JLF18]. For logistic

regression (g−1)′(y) = exp(y)/{1+ exp(y)}2.

Theorem 3.2.0.3. For a new observation x, Under (3.1), (3.3), (3.5) and Condition 3.7.2.1,

Condition 3.7.2.4, Condition 3.7.2.5, the estimated survival function in (3.10) converges to S(t|x)

uniformly and the process
√

n{Ŝ(·|x)−S(·|x)} converges weakly to a zero-mean Gaussian process

whose covariance function at (t,s), where 0≤ s≤ t, can be consistently estimated by

Ŝ(t|x)Ŝ(s|x)
{

n
n

∑
i=1

∫ s

0

1
(∑n

j=1Yj(u))2 dNi(u)+ Ĝ
>
(t)Ω̂

−1
(Σ̂1 + Σ̂2)Ω̂

−1
Ĝ(s)

+Ê>(t)Θ̂Ê(s)+ Ĝ
>
(t)Ω̂

−1
D̂(s)+ Ĝ

>
(s)Ω̂

−1
D̂(t)

}
, (3.15)

where

D̂(t) =
n

∑
i=1

∫ t

0

Zi− Z̄(u)
∑

n
j=1Yj(u)

dNi(u), (3.16)

Ê(t) = ρ̂0

n

∑
i=1

X̃ i(g−1)′(X̃>i α̂)
∫ t

0

Yi(u)
∑

n
j=1Yj(u)

du, (3.17)

Ĝ(t) =
∫ t

0
(z− Z̄(u))du. (3.18)

Remark 3.2.0.2. In forming the confidence interval (CI) for S(t|x), we can take the log-log

transformation of Ŝ(t|x) and use Delta method to obtain the confidence interval of logΛ(t|x).

This way the transformed-back confidence interval of Ŝ(t|x) is guaranteed to be within the range

of [0,1].

The asymptotic results for the cumulative baseline hazard estimator is in the appendix.
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3.3 Competing risks

We now consider competing risks data. As before let T and C be the failure time and the

censoring time, respectively. In addition let J ∈ {1, ...,K} to be the indicator for cause of failure,

and J = 1 will be our cause of interest. Denote X = (Xe,XI,Xo,Xu), F1(t|X) = P(T ≤ t,J = 1|X),

and let λ1(t|X) = −d log{1−F1(t|X)}/dt be the subdistribution hazard. In principle we may

assume that C and T are independent conditional on all the observed covariates, but for the

estimation approach below we will make use of the marginal Kaplan-Meier estimate of the

distribution of C. Therefore we will make the stronger assumption that C and T are independent;

we will discuss the relaxation of this assumption later.

Similar to Section 3.2 we assume that

λ1(t|Xe,XI,Xo,Xu) = λ10(t)+βeXe +βo
>Xo +Xu. (3.19)

This is the additive subdistribution hazards model. Keeping the same notation as in (3.2) and

assumption (3.3), we have according to Proposition 3.7.3.1 in the Appendix,

λ1(t|Xe,XI,Xo) = λ̄10(t)+βeXe + β̄o
>

Xo +ρ0∆. (3.20)

Note that although the derivation of Proposition 3.7.3.1 is similar to that of Proposition 3.7.2.1

in the Appendix, this is a new result to our best knowledge and the 2SRI approach has not been

previously considered under competing risks in the literature.

In the 2SRI approach for competing risks data here, the first stage is the same as that in Sec-

tion 3.2, and we replace ∆ by ∆̂ to fit (3.20). Our observed data are {T ∗i ,δi,δiJi,Xei,Xoi,XIi}1≤i≤n.

The following are common quantities used in the regression modeling and inference of the

subdistribution hazard function. With a slight abuse of notation in this section, define the event

time process as Ni(t) = 1{Ti ≤ t,δiJi = 1}, and the at-risk process as Yi(t) = 1−Ni(t−) (note
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that these have different meanings from Section 3.2).

Let ri(t) = 1{Ci ≥ Ti∧ t} denote an individual not yet censored, so that both ri(t)Ni(t)

and ri(t)Yi(t) are computable from the observed data at any time t. In particular,

ri(t)Ni(t) = 1{T ∗i ≤ t,δiJi = 1}, (3.21)

ri(t)Yi(t) = 1{T ∗i ≥ t}+1{T ∗i < t,δi = 1,δiJi 6= 1}. (3.22)

Define

wi(t) = ri(t)G(t)/G(T ∗i ∧ t), (3.23)

and

ŵi(t) = ri(t)Ĝ(t)/Ĝ(T ∗i ∧ t), (3.24)

where G(t) = P(C ≥ t) and Ĝ(t) is the Kaplan-Meier estimate for G(t) using {T ∗i ,1−δi}1≤i≤n.

The ŵi(t)’s are the weights that will be used in the estimating equation below.

Multiple filtrations and martingales are needed under the subdistribution hazard modeling

of competing risks. We will use M1
i (t) to denote the martingale for the i-th object with respect

to the complete-data filtration, that is, F 1(t) = σ{Ni(u),Yi(u),Xei,XIi,Xoi,u ≤ t,∀ 1 ≤ i ≤ n}.

We will also use Mc
i (t) to denote the martingale for the censoring related process of the i-th

subject, Mc
i (t) = Nc

i (t)−
∫ t

0 1{T ∗i ≥ u}dΛc(u), where Nc
i (t) = 1{T ∗i ≤ t,δi = 0} is the censoring

counting process, Λc(t) is the cumulative hazard function of the censoring distribution. The

censoring filtration is F c(t) = σ{1{T ∗i ≥ u},1{T ∗i ≤ u,δi = 0},Xei,XIi,Xoi,u≤ t,∀ 1≤ i≤ n}.
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The estimating function for β = (βe,β
>
o ,ρ0)

> can be written as [ZDHZ17, LXL17]

U(β) =
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))ŵi(t)(dNi(t)−Yi(t)β>Zidt), (3.25)

where Zi is the same as defined in Section 3.2, Z̄(t) =
∑

n
l=1 Zlŵl(t)Yl(t)

∑
n
l=1 ŵl(t)Yl(t)

. Therefore,

β̂ =
{ n

∑
i=1

∫ 1

0
ŵi(t)Yi(t)(Zi− Z̄(t))⊗2dt

}−1{ n

∑
i=1

∫ 1

0
(Zi− Z̄(t))ŵi(t)dNi(t)

}
. (3.26)

The baseline cumulative hazard function Λ10 =
∫ ·

0 λ10 is then estimated by

Λ̂10(t) =
n

∑
i=1

∫ t

0

ŵi(u)
∑

n
j=1 ŵ j(u)Yj(u)

dNi(u)− β̂
>
∫ t

0
Z̄(u)du. (3.27)

Therefore the estimated cumulative incidence function (CIF) is

F̂1(t|x) = 1− Ŝ1(t|x) = 1− exp(−Λ̂10(t)− β̂
>zt), (3.28)

where z = (xe,x>o ,xe− Ê(xe|xI,xo))
>, and (xe,xo,xI) is the value of the variables of a future

patient whose CIF we are interested in predicting. We use the same modified version Λ̂∗10(t) =

max0≤s≤t Λ̂10(s) and F̂∗1 (t|x) = max0≤s≤t F̂1(s|x) as in Section 3.2 to ensure that the estimated

hazard is non-negative. Now we state our main results below.

Theorem 3.3.0.1. Under (3.19), (3.3), (3.5) and Condition 3.7.2.1, Condition 3.7.3.1, Condition

3.7.3.2, the two stage residual inclusion estimator β̂ is consistent for the true value of β in (3.4),

denoted by βT , i.e. β̂→ βT in probability as n→ ∞.

Theorem 3.3.0.2. Under (3.19), (3.3), (3.5) and Condition 3.7.2.1, Condition 3.7.3.1, Condition

3.7.3.2,
√

n(β̂−βT ) is asymptotically normally distributed with asymptotic covariance matrix
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that can be consistently estimated by Ω̂
−1
(Σ̂1 + Σ̂2 + Σ̂3)Ω̂

−1
, where

Ω̂ =
1
n

n

∑
i=1

∫ 1

0
ŵi(t)Yi(t)(Zi− Z̄(t))⊗2dt, (3.29)

Σ̂1 =
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))⊗2ŵi(t)dNi(t), (3.30)

Σ̂2 = Ψ̂Θ̂Ψ̂
>
, (3.31)

Σ̂3 =
1
n

n

∑
i=1

∫ 1

0

( q̂(t)
π̂(t)

)⊗2
dNc

i (t), (3.32)

Ψ̂ =
ρ̂0

n

n

∑
i=1

{∫ 1

0
ŵi(t)Yi(t)(Zi− Z̄(t))dt

}
X̃>i (g

−1)′(X̃>i α̂), (3.33)

q̂(t) = −1
n

n

∑
i=1

∫ 1

0
1{T ∗i < t ≤ u}ŵi(u)

(
Zi− Z̄(u)

)
dM̂i(u), (3.34)

π̂(t) =
1
n

n

∑
i=1

1{T ∗i ≥ t}, (3.35)

M̂i(t) = Ni(t)−
∫ t

0
Yi(u)(dΛ̂10(u)+ β̂

>Zidu), (3.36)

and Θ̂ is the estimated variance-covariance matrix of
√

n(α̂−αT ) from the first stage.

Theorem 3.3.0.3. For a new observation x, under (3.19), (3.3), (3.5) and Condition 3.7.2.1,

Condition 3.7.3.1, Condition 3.7.3.2, the estimated CIF in (3.28) converges to F1(t|x) uniformly

and the process
√

n{F̂1(·|x)−F1(·|x)} converges weakly to a zero-mean Gaussian process whose

covariance function at (t,s), where 0≤ s≤ t, can be consistently estimated by

(1− F̂1(t|x))(1− F̂1(s|x))
{∫ s

0

n∑
n
i=1 ŵ2

i (u)dNi(u)
(∑n

j=1 ŵ j(u)Yj(u))2 + Ĝ
>
(t)Ω̂

−1
(Σ̂1 + Σ̂2 + Σ̂3)Ω̂

−1
Ĝ(s)

+n
n

∑
i=1

∫ 1

0

q̂t(u)q̂s(u)
π̂2(u)

dNc
i (u)+ Ê>(t)Θ̂Ê(s)+ Ĝ

>
(t)Ω̂

−1
D̂(s)+ Ĝ

>
(s)Ω̂

−1
D̂(t)

}
, (3.37)
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where

D̂(t) =
n

∑
i=1

∫ t

0

(Zi− Z̄(u))ŵi(u)
∑

n
j=1 ŵ j(u)Yj(u)

dNi(u), (3.38)

Ê(t) = ρ̂0

n

∑
i=1

X̃ i(g−1)′(X̃>i α̂)
∫ t

0

ŵi(u)Yi(u)
∑

n
j=1 ŵ j(u)Yj(u)

du, (3.39)

Ĝ(t) =
∫ t

0
(z− Z̄(u))du, (3.40)

q̂t(u) =
1
n

n

∑
i=1

∫ t

0

1{T ∗i < u≤ v}ŵi(v)
∑

n
j=1 ŵ j(v)Yj(v)

dM̂i(v). (3.41)

Remark 3.3.0.1. As in Section 2 we can take the log-log transformation of 1− F̂1(t|x), and use

Delta method to obtain the confidence interval of logΛ1(t|x). This way the transformed-back

confidence interval of 1− F̂1(t|x) is guaranteed to be within the range of [0,1].

The asymptotic results for the cumulative baseline hazard estimator is in the appendix.

3.4 Simulation

We are in the process of completing an R package for our estimators. The following

numerical results were obtained using the program which is the core of the package.

To study the performance of our estimators under both survival and competing risks

settings, we carried out simulation studies with sample size 100,200,400,800,1200, and repeated

1000 times for each sample size. We provided in the tables the bias of the estimator, the empirical

variance of the estimator from the 1000 repeats, the mean of the variance estimate, and the

coverage rate of the nominal 95% confidence intervals.

3.4.1 Regular survival model

For this part without competing risks, we considered the following three scenarios.

Scenario I: We sampled XI,Xo from independent standard normal distributions, set α =
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[1,1,0.5]>, and generated Xe = [1,XI,Xo]α
>+∆, where ∆∼ N(0,0.2) was independent of XI,Xo.

We simulated Xu according to (3.3) with independent εi ∼ N(0,0.1), and ρ0 = 1. We set β =

[1,0.5,1.5]> and the baseline hazard λ0(t)≡ 10.5 in (3.1) to generate the survival time T . There

was no censoring in this case.

Scenario II: Similar to I above, but with α = [0.25,0.3,0.2]>, β = [0.5,0.2,0.3]>, and

λ0(t)≡ 5t+5. The censoring distribution followed exponential with rate of 2 so that the censoring

rate is around 40%.

Scenario III: We generated binary exposure as follows. First we sampled XI from Bernoulli

distribution with P(XI = 1) = 0.5, and independent Xo from standard normal distribution. We

generated Xe from

Xei|XIi,Xoi ∼ Bern
( 1

1+ exp(−(α0 +αiXIi +αoXoi))

)
.

with α = [1,0.5,1]>. We then simulated

Xui = ρ0{Xei−E(Xei|XIi,Xoi)}+ εi,

with ρ0 = 1 and independent εi ∼ N(0,0.1). Finally we generate the survival time by setting

β= [1,0.5,1.5]> and the baseline hazard λ0(t)≡ 10.5. The censoring distribution was exponential

with rate of 5 so that the censoring rate is around 30%.

3.4.2 Competing risks model

For the competing risks model, let

P(J = 1|X) = 1− exp
(
−

∫ t0

0
λ10(u)du− (βe1Xe +β

>
o1Xo +βu1Xu)t0

)
, (3.42)
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and P(J = 2|X) = 1−P(J = 1|X). Here t0 is a maximum follow-up time. We then simulated the

event time data from the following subdistributions:

F(t|J = 1,X) =
1− exp(−

∫ min(t,t0)
0 λ10(u)du− (βe1Xe +β>o1Xo +βu1Xu)min(t, t0))

1− exp(−
∫ t0

0 λ10(u)du− (βe1Xe +β>o1Xo +βu1Xu)t0)
, (3.43)

F(t|J = 2,X) =
1− exp(−(λ20 +βe2Xe +β>o2Xo +βu2Xu)min(t, t0))

1− exp(−(λ20 +βe2Xe +β>o2Xo +βu2Xu)t0)
. (3.44)

Note that

F(t,J = 1|X) = 1− exp(−
∫ min(t,t0)

0
λ10(u)du− (βe1Xe +β

>
o1Xo +βu1Xu)min(t, t0)). (3.45)

Note that the maximum follow-up time t0 is necessary because under the additive hazards model

Λ1(t|Z̄) = Λ10(t)+β>Z̄t goes to infinity as t→ ∞, implying that limt→∞ F1(t|Z̄) = 1, which is

no longer a subdistribution function.

Scenario I: Similar to Scenario I under the regular survival model but with the parameters

α = [1.5,1,0.7]>, β1 = [1,0.5,0.75]> and λ10(t) ≡ 11 for cause 1, and β2 = [1.2,1,1.3]> and

λ20 = 15 for cause 2. We set t0 = 0.095. There was no censoring, and the cause 1 event rate was

around 60%.

Scenario II: similar to I above, but with α = [1,1,0.5]>, β1 = [1,0.5,0.75]> and λ10(t) =

5t +10 for cause 1, and the same as in Scenario I for cause 2. We set t0 = 0.06. The censoring

distribution was exponential with rate of 1. The cause 1 event rate was around 28% and censoring

rate around 38%.

Scenario III: Similar to Scenario III under the regular survival model, but with α =

[−1,2,1]>, β1 = [1,0.5,0.75]> and λ10(t)≡ 10 for cause 1, and the same as in Scenario I, II for

cause 2. We set t0 = 0.06. The censoring distribution was exponential with rate of 25. The cause

1 event rate was around 26% and censoring rate aroung 44%.
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3.4.3 Simulation results

The results are summarized in Table 3.1 and 3.2, respectively. From the tables we can

see that as the sample size increases the bias goes down, and the variance estimate also becomes

closer to the empirical variance. The coverage rate is quite close to nominal 95% level in all cases.

The variance of the estimator becomes larger in Scenario III both with or without competing risks,

probably because we have a binary treatment, which leads to a error term with large variance,

compared to the error terms in other scenarios. Nonetheless the variance estimate still works well.

In general our estimator behaves well under all the finite-sample settings considered.

3.5 SEER-Medicare data analysis

For this analysis we consider prostate cancer patients with localized non-metastatic disease

identified from the linked SEER-Medicare database diagnosed between 2000-2011 and followed

up through 12/31/2013. The variables included were age, race/ethnicity, marital status, tumor

stage, tumor grade, Prior Charlson comorbidity score measured during the year prior to diagnosis,

year of diagnosis, and hospital referral regions. The hospital referral region was an important

variable for us to construct the instrumental variable. Hospital referral regions represents a set of

contiguous zip codes around a major hospital. Following [HYB+10] we restricted the analysis to

early stage (T1 and T2) patients, aged 66 to 74 years, as well as eliminated patients in geographic

areas with fewer than 50 patients over the entire observation period. This led to an overall sample

size of n = 29806. Among them 493 (1.65%) patients died due to cancer, 2066 (6.93%) died due

to other causes, and the remaining 27247 (91.4%) were alive at the end of the follow-up. There

were four types of treatments: surgery, radiation, chemotherapy and hormonal therapy; 10977

people received surgery, 21357 radiation, 9577 chemotherapy, and 9527 hormonal therapy. Note

that some patients received more than one treatment. Following [HYB+10] we will label patients

who received surgery as “radical prostatectomy” and the remaining “conservative management”.
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We will then compare the effects of these two treatments on the time to death for all causes and

due to cancer, respectively. A summary of the patient characteristics is presented in Table 3.3. It

can be seen that patients who received surgery tended to be younger, married, non-black, have T2

stage, well differentiated tumor grade, comorbidity score 0, and diagnosed no later than 2005.

[HYB+10] showed that the treatment pattern varied by hospital referral regions, beyond what

was captured by the patient characteristics in Table 3.3.

For comparison purposes we first fitted the additive hazards model including the variables

in Table 3.3 and all their pairwise interactions, but without using any IV. It turned out that the

treatment had a significant effect with p-value of 0.001 for all causes of death. On the other

hand the treatment effect was not significantly different from zero for our data with p-value of

0.17 for cancer specific survival. We note that censoring in this data set was administrative only,

i.e. at the time of data export, and the only covariate that was correlated with censoring was

year of diagnosis. In fitting the subdistribution hazards model we let the weights be conditional

on this categorical variable. In [HYB+10] the treatment had a significant effect on both overall

survival and cancer specific survival; our data was a later export than those used by [HYB+10]

(diagnosed between 1995 and 2003) from the linked database. In addition, [HYB+10] used the

Cox multiplicative hazards model as opposed to our additive hazards model.

We now consider the 2SRI approach. We used the same instrumental variable as in

[HYB+10]. Specifically, we constructed the IV as follows. We first applied logistic regression

to obtain the predicted probability for conservative management given covariates including age,

race/ethnicity, marital status, tumor stage, tumor grade description, Prior Charlson comorbidity

score, year of diagnosis and all the two-way interactions. Then for each hospital referral region and

each year, we calculated the difference between the proportion of patients receiving conservative

management and the average predicted probability of conservative management. Clearly, a

larger difference indicated that the corresponding hospital referral region favored the conservative

management more than those with a smaller difference. Therefore this difference was likely
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correlated with the treatment a patient received and, on the other hand, this difference was unlikely

to directly influence the survival of an individual patient beyond the treatment assignment. For

use as an IV we lagged this difference for one year for the patients coming from the same hospital

referral region. Therefore, the data that we used to analysis survival were patients diagnosed from

2001 to 2011.

We then performed the first step of the IV analysis, using logistic regression of treatment

on the IV obtained above, together with the other observed confounders including age, race or

ethnicity, marital status, tumor stage, grade description and Prior Charlson comorbidity score,

year of diagnosis and all two-way interactions. We then subtracted the predicted probability

of treatment from the observed treatment to obtained the residuals. In the second step, we

included this residual term together with the treatment and all the confounders and their pairwise

interactions to fit the survival models. The results for overall survival are shown in Table 3.4, and

for cancer specific survival in Table 3.5.

From the tables we see that the causal effect of treatment remained significant for overall

survival, although the p-value increased from 0.001 to 0.042. The p-value for the causal effect of

treatment on cancer specific survival also increased from 0.17 to 0.83. The differences between the

IV analysis results and the initial analysis results earlier indicate that there were likely unobserved

confounders for the treatment effect on both overall and cancer specific survival, beyond those

captured in Table 3.3 (and their interactions). At the request of a reviewer, we also compared our

results with the 2SRI approach of [JLF18], where linear regression was used in the first stage.

For this data set the results were similar: for overall survival the treatment effect was estimated

to be -0.0013 with a p-value of 0.021, and for cancer specific survival the treatment effect was

4.3×10−5 with a p-value of 0.86.

Finally, Figure 3.2 illustrates the predicted overall survival as well as cancer specific

cumulative incidence function for a patient who received radical prostatectomy, was diagnosed in

2001, aged 71, white, with ‘other’ marital status, tumor stage T2, moderately differentiated tumor,
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Charlson comorbidity score 2, and instrument value 0.0.3429. In reality the patient survived for

95 months, and died of other causes.

3.6 Discussion

In this paper we have developed statistical inference procedures for the 2SRI IV estimator

under GLM in the first stage and additive hazards model in the second stage for survival data that

was conceptually described in [TTWV+15]. As mentioned earlier 2SRI was considered more

suitable for binary or discrete exposures than 2SPS, as GLM may be used in the first stage to

model the exposure. On the other hand, assumption such as (3.3) is needed for the 2SRI to work,

although when allowing for general covariates a very strong linearity condition was imposed

on certain function in the proof of [TTWV+15] Result 1 for 2SPS. We have also extended the

approach to competing risks data under the additive subdistribution hazards model. More practical

experience is needed to compare 2SRI and 2SPS for complex outcomes such as survival with

competing risks, etc. An R package is being completed that computes these estimators and their

closed-form estimated asymptotic variances, as well as prediction under these models given the

observed covariates. Our simulation results show the satisfactory performance of the procedures,

and the SEER-Medicare analysis shows the usefulness of the approaches.

The causal effect of interest βe that we have considered in this work is conditional on

the unobserved confounder Xu, although from (3.4) and (3.20) we may also understand it as

conditional on the observed variables. This seems reasonable in our comparative effectiveness

settings, where a relatively large number of observed confounders are typically considered.

[CSH11] considered the setting for compliance in randomized clinical trials with binary outcomes,

and pointed out that the 2SPS and 2SRI approaches may not estimate the causal odds ratio among

compliers under the principal stratification framework.[AIR96, FR02a] Future work may consider

similar analysis under the additive hazards model.
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Under competing risks and using subdistribution hazards modeling, weights based on

the estimated censoring distribution are needed in order to consistently estimate the regression

coefficients. Using the marginal Kaplan-Meier estimate for the weights requires independent

censoring. Alternatively one may estimate the conditional distribution of censoring given co-

variates using, in our case, Kaplan-Meier estimate give each category of year of diagnosis. For

continuous covariates semiparametric survival models have been used in the literature. Recently

[NG17] proposed to estimate this conditional distribution nonparametrically using a survival

tree approach. When any of these estimates are used, the assumption on censoring distribution

can then be relaxed to be conditionally independent of failure time (and type/cause) given the

covariates.

All our technical proofs are compatible with time-dependent covariates. However, the

causal inference problem is more complex with time-varying confounders and time-varying

treatments, especially if the later confounders are affected by the earlier treatments.[HBR01]

To our best knowledge time-varying instrument variable method has not been developed in the

literature.
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3.7 Appendix

3.7.1 Preparations

The following results are either from or easy consequences of [FH11]. The predictable

variation process 〈〉 and quadratic variation process [ ] are also defined in [FH11].

Lemma 3.7.1.1. Assume that for each t ≥ 0, given Ft−, {dN1(t), ...,dNn(t)} are independent

0,1 random variables, set M j = N j−A j, where A j is the compensator for N j. Then for any i 6= j

and t ≥ 0,

〈Mi,M j〉(t) = 0, a.s. (3.46)

Lemma 3.7.1.2. Let M(t) be a martingale with respect to the filtration F (t), H(t) be a predictable

process, then the predictable variation process of the martingale integral
∫ t

0 H(s)dM(s) is

〈
∫ t

0
H(s)dM(s)〉=

∫ t

0
H2(s)d〈M〉(s). (3.47)

Lemma 3.7.1.3. Let M1(t), M2(t) be martingales with respect to the filtration F (t), H1(t), H2(t)

be predictable processes, then the predictable covariation process of the martingale integral∫ t
0 H1(s)dM1(s) and

∫ t
0 H2(s)dM2(s) is

〈
∫ t

0
H1(s)dM1(s),

∫ t

0
H2(s)dM2(s)〉=

∫ t

0
H1(s)H2(s)d〈M1,M2〉(s). (3.48)

Lemma 3.7.1.4. For independent and identically distributed sequences of martingale {Mi} and

predictable process Hi(t), 1≤ i≤ n,

Var
(∫ t

0
H1(u)dM1(u)

)
= E

(
〈
∫ t

0
H1(u)dM1(u)〉

)
= E

(∫ t

0
H2

1 (u)d〈M1〉(u)
)
, (3.49)
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can be estimated by

1
n

n

∑
i=1

∫ t

0
H2

i (u)d[Mi](u). (3.50)

Lemma 3.7.1.5 (Lenglart’s inequality). Let W be a local square integrable martingale. Then for

all δ,η > 0,

P( sup
t∈[0,1]

|W (t)|> η)≤ δ

η2 +P(〈W,W 〉(1)> δ). (3.51)

Basically the Lenglart’s inequality tells us that the convergence in probability of the

supreme of a martingale can be infered from its endpoint.

Lemma 3.7.1.6. Let Mi(t) be independent and identically distributed martingales with respect to

the filtration F (t), i = 1, ...,n, Hi(t) also be i.i.d. predictable processes, then

1√
n

n

∑
i=1

∫ t

0
Hi(s)dMi(s)→p 0 uniformly in t ∈ [0,1], (3.52)

if each sup0≤t≤1 |Hi(t)|= op(1).

Proof. By Lemma 3.7.1.1 and 3.7.1.3,

〈 1√
n

n

∑
i=1

∫ t

0
Hi(s)dMi(s)〉 =

1
n

n

∑
i=1

n

∑
j=1

∫ t

0
Hi(s)H j(s)d〈Mi,M j〉(s)

=
1
n

n

∑
i=1

∫ t

0
H2

i (s)d〈Mi〉(s).

Therefore,

P
(

sup
t∈[0,1]

∣∣ 1√
n

n

∑
i=1

∫ t

0
Hi(s)dMi(s)

∣∣> η

)
≤ δ

η2 +P
(1

n

n

∑
i=1

∫ 1

0
H2

i (s)d〈Mi〉(s)> δ

)
.
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Since 〈Mi〉 is increasing,

1
n

n

∑
i=1

∫ 1

0
H2

i (s)d〈Mi〉(s)≤
1
n

n

∑
i=1

[ sup
0≤s≤t

H2
i (s)]〈Mi〉(t), (3.53)

if sup0≤t≤1 |Hi(t)|= op(1), so is
1
n

n

∑
i=1

[ sup
0≤s≤t

H2
i (s)]〈Mi〉(t) and

1√
n

n

∑
i=1

∫ t

0
Hi(s)dMi(s), the latter

by Lemma 3.7.1.5.

The following proposition can be easily proved by mimicking the proof of Glivenko-

Cantelli theorem.

Proposition 3.7.1.1. Assume that (X1,Y1), . . . ,(Xn,Yn) are independent and identically distributed

pairs of random variables with distribution function F(x,y). Also, X1 has finite first moment.

Define

Gn(t) =
1
n

n

∑
i=1

Xi1{[Yi,∞)}(t), (3.54)

and

G(t) = E[X11{[Y1,∞)}], (3.55)

then we have a similar result to Glivenko-Cantelli theorem, that is,

||Gn−G||∞ = sup
t∈R
|Gn(t)−G(t)| −→ 0. (3.56)

3.7.2 Additive hazards model for survival data

Proposition 3.7.2.1. Assuming (3.1) and (3.3), we have

λ̄(t|Xe,XI,Xo) = λ̄0(t)+βeXe + β̄o
>

Xo +ρ0∆, (3.57)
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where λ̄0(t) = λ0(t)− ∂

∂t log
[
E
{

exp(−εt)}
]
.

Proof. By the assumption (3.1), we have

S(t|Xe,XI,Xo,Xu) = exp
{
−

∫ t

0

[
λ0(s)+βeXe +βo

>Xo +Xu
]
ds
}
.

Therefore, integrating out Xu we have,

S(t|Xe,XI,Xo)

= E[S(t|Xe,XI,Xo,Xu)|Xe,XI,Xo]

= E
[

exp
{
−

∫ t

0
(λ0(s)+βeXe +βo

>Xo +E(Xu|Xe,XI,Xo))
}

ds|Xe,XI,Xo
]

= E
[

exp
{
−

∫ t

0
(λ0(s)+βeXe +βo

>Xo +ρ0∆+ ε)ds
}
|Xe,XI,Xo

]
= exp

{
−

∫ t

0
(λ0(s)+βeXe +βo

>Xo +ρ0∆
}
×E

[
exp{−εt}|Xe,XI,Xo

]
= exp

{
−

∫ t

0
(λ0(s)+βeXe +βo

>Xo +ρ0∆)ds
}
×E

[
exp{−εt}

]
.

Now the hazard function becomes,

λ(t|Xe,XI,Xo) = − ∂

∂t
logS(t|Xe,XI,Xo)

= λ0(t)−
∂

∂t
log
[
E
{

exp(−εt)
}]

+βeXe +βo
>Xo +ρ0∆,

where λ̄(t|Xe,XI,Xo) = λ̄0(t)+βeXe + β̄o
>

Xo +ρ0∆ is our new baseline hazard function.

In the following we give the regularity conditions and addition notation for the results of

the Theorems in section 3.2.

Condition 3.7.2.1. The covariates {Xei,XIi,Xoi} are bounded.
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Note that

∆̂−∆ = −
{
Ê(Xe|XI,Xo)−E(Xe|XI,Xo)

}
= −

{
g−1(X̃>α̂)−g−1(X̃>αT )

}
Condition 3.7.2.2. We assume that α̂ is consistent for αT , which implies that |∆̂−∆| →p 0 with

Condition 3.7.2.1. We also assume that

√
n(α̂−αT ) = I−1 · ( 1√

n

n

∑
i=1

U i)+op(1);

in other words,
√

n(α̂−αT ) can be written into a sum of i.i.d. terms with finite variance plus one

op(1) term.

Remark 3.7.2.1. This Condition is usually fulfilled by the first step estimator, such as the maximum

likelihood estimator under the GLM.

Condition 3.7.2.3.

∫ 1

0
λ̄0(t)dt < ∞. (3.58)

Define S( j)(t) = ∑
n
i=1Yi(t)Z

⊗ j
i /n for j = 0 and 1. Then by Gilvenko-Cantelli theorem

there exists a scalar and vector function s(0)(t) and s(1)(t) defined on [0,1] such that

sup
t∈[0,1]

||S( j)(t)− s( j)(t)|| P−→ 0. (3.59)

Condition 3.7.2.4 (Asymptotic regularity conditions). s(0)(t) is bounded away from zero.
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Condition 3.7.2.5. There exists a positive definite matrix Ω such that

1
n

n

∑
i=1

∫ 1

0
Yi(t)

(
Z̄0i−

s(1)(t)
s(0)(t)

)⊗2
dt a.s.−−→Ω. (3.60)

Let Z̄0i = [Xei,Xoi
>,∆i], Z̄0(t) = ∑

n
l=1 Z̄0lYl(t)/∑

n
l=1Yl(t), define

A1 =
n

∑
i=1

∫ 1

0
(Zi− Z̄0i)dMi(t), (3.61)

A2 =
n

∑
i=1

∫ 1

0
(Z̄(t)− Z̄0(t))dMi(t), (3.62)

A3 = ρ0

n

∑
i=1

{∫ 1

0
(Zi− Z̄0i)Yi(t)dt

}
(∆i− ∆̂i), (3.63)

A4 = ρ0

n

∑
i=1

{∫ 1

0
(Z̄(t)− Z̄0(t))Yi(t)dt

}
(∆i− ∆̂i). (3.64)

Lemma 3.7.2.1. A1, A2, A3, A4 are bounded in probability.

Proof. Notice that

Zi− Z̄0i = [0,0p, ∆̂i−∆i]
>,

where ∆̂i−∆i = g−1(X̃>i αT )− g−1(X̃>i α̂) = (g−1)′(X̃>i αT ) + op(1). Therefore it suffices to

check the ∆̂i−∆i components. Then the only nonzero entry of A1 is

n

∑
i=1

∫ 1

0
{∆̂i−∆i}dMi(t) =

{
− 1√

n

n

∑
i=1

∫ 1

0
X̃>i (g

−1)′(X̃>i αT )dMi(t)
}√

n(α̂−αT )+op(1),

which is bounded in probability by central limit theorem. Next, we check the nonzero entry of
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A2,

n

∑
i=1

∫ 1

0

∑
n
l=1(∆̂l−∆l)Yl(t)

∑
n
l=1Yl(t)

dMi(t)

=
{
− 1√

n

n

∑
i=1

∫ 1

0

∑
n
l=1 X̃>l (g

−1)′(X̃>l αT )Yl(t)
∑

n
l=1Yl(t)

dMi(t)
}√

n(α̂−αT )+op(1),

where
∑

n
l=1 X̃>l (g

−1)′(X̃>l αT )Yl(t)
∑

n
l=1Yl(t)

will have a sup norm limit by Proposition 3.7.1.1. Name that

limit K (t), we will get

1√
n

n

∑
i=1

∫ 1

0

∑
n
l=1 X̃>l (g

−1)′(X̃>l αT )Yl(t)
∑

n
l=1Yl(t)

dMi(t)

=
1√
n

n

∑
i=1

∫ 1

0

{
∑

n
l=1 X̃>l (g

−1)′(X̃>l αT )Yl(t)
∑

n
l=1Yl(t)

−K (t)
}

dMi(t)+
1√
n

n

∑
i=1

∫ 1

0
K (t)dMi(t).

From Lemma 3.7.1.6 and Proposition 3.7.1.1, the first term will be op(1) and second will converge

weakly. Finally, rearranging the nonzero term in A3 gives

ρ0

n

∑
i=1

(∆̂i−∆i)(
∫ 1

0
Yi(t)dt)(∆̂i−∆i)

=
√

n(α̂−αT )
>
{

ρ0

n

n

∑
i=1

(
∫ 1

0
Yi(t)dt)X̃ iX̃

>
i (g

−1)′2(X̃>i αT )
}√

n(α̂−αT )+op(1),

together with the nonzero entry in A4,

√
n(α̂−αT )

>
{

ρ0

n

n

∑
i=1

∫ 1

0

∑
n
l=1 X̃ lYl(t)
∑

n
l=1Yl(t)

Yi(t)X̃
>
i (g

−1)′2(X̃>i αT )dt
}√

n(α̂−αT )+o(1).

The boundedness of these two terms in probability follows from similar statement.
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Proof of Theorem 3.2.0.1. With simple algebra, we have

U(β) =
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))(dNi(t)−Yi(t)β>Zidt)

=
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))(dMi(t)+Yi(t)dΛ0(t)+Yi(t)β>T Z̄0idt−Yi(t)β>Zidt)

=
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))(dMi(t)+Yi(t)β>T Z̄0idt−Yi(t)β>Zidt).

Plugging in the true parameter βT , we can decompose it into

U(βT ) =
1
n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))dMi(t)+

ρ0

n

n

∑
i=1

{∫ 1

0
(Zi− Z̄(t))Yi(t)dt

}
(∆i− ∆̂i)

=
1
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
dMi(t)

+
ρ0

n

[ n

∑
i=1

{∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
Yi(t)dt

}
X̃>i (g

−1)′(X̃>i αT )
]
(α̂−αT )

+
1
n
A1 +

1
n
A2 +

1
n
A3 +

1
n
A4 +op(1).

The first term is a sample mean of n i.i.d. martingale integrals of predictable functions, thus by

Law of Large Numbers is op(1). Following from Condition 3.7.2.2 and Law of Large Numbers

again, the second term will tend to zero in probability. The remaining terms are all op(1) by

Lemma 3.7.2.1. Hence U(βT ) = op(1).

Meanwhile, we can also express

U(βT ) =U(βT )−U(β̂) =
{1

n

n

∑
i=1

∫ 1

0
(Zi− Z̄(t))Yi(t)Zidt

}
(β̂−βT ).
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Solving for β̂−βT we get,

β̂−βT =
{1

n

n

∑
i=1

∫ 1

0
Yi(t)(Zi− Z̄(t))⊗2dt

}−1
U(βT )

=
{1

n

n

∑
i=1

∫ 1

0
Yi(t)

(
Z̄0i−

s(1)(t)
s(0)(t)

)⊗2
dt +op(1)

}−1
U(βT ).

Condition 3.7.2.5 and U(βT ) = op(1) imply the consistency of β̂ from Slutsky’s theorem.

Proof of Theorem 3.2.0.2. Observe that

√
nU(βT )

=
1√
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
dMi(t)

+
ρ0

n

[ n

∑
i=1

{∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
Yi(t)dt

}
X̃>i (g

−1)′(X̃>i αT )
]√

n(α̂−αT )

+
1√
n
A1 +

1√
n
A2 +

1√
n
A3 +

1√
n
A4 +op(1)

=
1√
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
dMi(t)+Ψ

√
n(α̂−αT )+op(1),

where

Ψ = ρ0E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
Y1(t)X̃

>
1 (g

−1)′(X̃>1 αT )dt
}
. (3.65)

With Condition 3.7.2.1, 3.7.2.2 and 3.7.2.3,
√

nU(βT ) can be written into a sum of i.i.d. random

variables with mean zero and finite second moments. Thus the Multivariate Central Limit

Theorem together with the Slutsky’s Theorem proves that our estimator is asymptotically normally

distributed with mean zero.

Lastly, we can compute the covariance matrix of this asymptotic normal distribution.

109



Notice that the asymptotic covariance matrix of
√

nU(βT ) is by Condtion 3.7.2.2,

E
{(∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
dM1(t)+ΨI−1U1

)⊗2}
= E

{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
dM1(t)

}⊗2

+ΨI−1E{U⊗2
1 }(I

−1)>Ψ
>

+2E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
dM1(t)U>1

}]
(I−1)>Ψ

>

= Σ1 +Σ2 +2 lim
n→∞

E
{ n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
dMi(t)(α̂−αT )

>
}

Ψ
>

= E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)⊗2
d[M1(t),M1(t)]

}
+ΨI−1E(U⊗2

1 )(I−1)>Ψ
>

+2E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
dM1(t)U>1

}]
(I−1)>Ψ

>

= Σ1 +Σ2 +2E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
dM1(t)U>1

}]
(I−1)>Ψ

>, (3.66)

where

Σ1 = E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)2
d〈M1,M1〉(t)

}
, (3.67)

Σ2 = ΨΘΨ
>, (3.68)

and Θ is the variance-covariance matrix of the first step estimator. Note that the last term in

(3.66) is zero since it is still a martingale integral. Thus the asymptotic variance of our estimator
√

n(β̂−β) = Ω
−1(
√

nU(βT )+op(1)), where Ω is given in Condtion 3.7.2.5, is clearly Ω
−1(Σ1+

Σ2)Ω
−1. To consistently estimate the variance, we just use their corresponding empirical parts.

Specifically, Σ1 can be instead estimated in the form of (3.13) by Lemma 3.7.1.4.

Proposition 3.7.2.2. Under (3.1), (3.3), (3.5) and Conditions 3.7.2.1,3.7.2.4,3.7.2.5, the cumula-

tive baseline hazard function estimator defined in (3.9) converges in probability to the true value
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Λ0T of Λ0(·) =
∫ ·

0 λ̄0(t)dt uniformly in t ∈ [0,1], where λ̄0(t) is the baseline hazard in equation

(3.4), and the process
√

n{Λ̂0(·)−Λ0T (·)} converges weakly to a zero-mean Gaussian process

whose covariance function at (t,s), where 0≤ s≤ t, can be consistently estimated by

n
n

∑
i=1

∫ s

0

1
(∑n

j=1Yj(u))2 dNi(u)+Ĉ
>
(t)Ω̂

−1
(Σ̂1 + Σ̂2)Ω̂

−1
Ĉ(s)+ Ê>(t)Θ̂Ê(s)

−Ĉ
>
(t)Ω̂

−1
D̂(s)−Ĉ

>
(s)Ω̂

−1
D̂(t), (3.69)

where

Ĉ(t) =
∫ t

0
Z̄(u)du, (3.70)

D̂(t) =
n

∑
i=1

∫ t

0

Zi− Z̄(u)
∑

n
j=1Y j(u)

dNi(u), (3.71)

Ê(t) = ρ̂0

n

∑
i=1

X̃ i(g−1)′(X̃>i α̂)
∫ t

0

Yi(u)
∑

n
j=1Yj(u)

du. (3.72)

Proof of Proposition 3.7.2.2.

U1(Λ0(t),β, t) =
1
n

n

∑
i=1

Mi(Λ0(t),β, t) =
1
n

n

∑
i=1

∫ t

0
(dNi(u)−Yi(u)dΛ0(u)−Yi(t)β>Zidu),

note that U1(Λ̂0(t), β̂, t)≡ 0. Thus we have

U1(Λ0T (t), β̂, t) =U1(Λ0T (t), β̂, t)−U1(Λ̂0(t), β̂, t) =
1
n

∫ t

0

n

∑
i=1

Yi(u)d(Λ̂0(u)−Λ0T (u)).
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Meanwhile, observe that

U1(Λ0T (t), β̂, t)

=
1
n

n

∑
i=1

∫ t

0
(dNi(u)−Yi(u)dΛ0T (u)−Yi(t)β̂>Zidu)

=
1
n

n

∑
i=1

∫ t

0
{dMi(u)−Yi(u)(β̂>Zi−β

>
T Z̄0i)du}

=
1
n

n

∑
i=1

∫ t

0

{
dMi(u)−Yi(u)(β̂−βT )

>Z̄0idu−Yi(u)ρ̂0(∆̂i−∆i)du
}

=
1
n

n

∑
i=1

∫ t

0

{
dMi(u)−Yi(u)(β̂−βT )

>Z̄0idu

+Yi(u)ρ̂0X̃>i (g
−1)′(X̃>i αT )(α̂−αT )du

}
+op(1).

where we shall emphasize that the op(1) here is uniformly over t ∈ [0,1], which can be easily

proved with the help of Lemma 3.7.1.6. These together gives us that

Λ̂0(t)−Λ0T (t)

=
n

∑
i=1

∫ t

0

1
∑

n
j=1Yj(u)

dMi(u)−
{ n

∑
i=1

∫ t

0

Yi(u)Z>i
∑

n
j=1Yj(u)

du
}
(β̂−βT )

−
{

ρ̂0

n

∑
i=1

∫ t

0

Yi(u)X̃
>
i (g

−1)′(X̃>i αT )

∑
n
j=1Yj(u)

du
}
(α̂−αT ).

It is easy to establish the uniform convergence in time t by checking for each term. For the weak

convergence, observe that

√
n(Λ̂0(t)−Λ0T (t))

=
√

n
n

∑
i=1

∫ t

0

dMi(u)−Yi(u)(β̂−βT )
>Zidu−Yi(u)ρ̂0X̃>i (g

−1)′(X̃>i αT )(α̂−αT )du
∑

n
j=1Yj(u)

=
1√
n

n

∑
i=1

∫ t

0

1
s(0)(u)

dMi(u)−
(∫ t

0

s(1)(u)
s(0)(u)

du
)>√

n(β̂−βT )

−
(∫ t

0

γ(u)
s(0)(u)

du
)>√

n(α̂−αT )+op(1),
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where γ(u) = limn→∞
ρ̂0
n ∑

n
i=1Yi(u)X̃

>
i (g

−1)′(X̃>i αT ). With Condition 3.7.2.4, Martingale Central

Limit Theorem 5.1.1 in [FH11] can be employed to show that
√

n(Λ̂0(t)−Λ0T (t)) converges a

mean zero Gaussian process with respect to the Skorohod topology with covariance function at

0≤ s≤ t obtained with the help of pointwise Multivariate Central Limit Theorem,

E
[{∫ t

0

1
s(0)(u)

dM1(u)−
(∫ t

0

s(1)(u)
s(0)(u)

du
)>

Ω
−1

∫ 1

0

(
Z̄01−

s(1)(u)
s(0)(u)

)
dM1(u)

−
(∫ t

0

γ(u)
s(0)(u)

du
)>

ΨI−1U1

}{∫ s

0

1
s(0)(u)

dM1(u)

−
(∫ s

0

s(1)(u)
s(0)(u)

du
)>

Ω
−1

∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
dM1(t)−

(∫ s

0

γ(u)
s(0)(u)

du
)>

ΨI−1U1

}]
= E

{∫ s

0

1
(s(0)(u))2

d〈M1,M1〉(u)
}

+
(∫ t

0

s(1)(u)
s(0)(u)

du
)>

Ω
−1E

{∫ 1

0

(
Z̄01−

s(1)(u)
s(0)(u)

)⊗2
d〈M1,M1〉(u)

}
Ω
−1
(∫ s

0

s(1)(u)
s(0)(u)

du
)

+
(∫ t

0

γ(u)
s(0)(u)

du
)>

ΨE(U⊗2
1 )Ψ>

(∫ s

0

γ(u)
s(0)(u)

du
)

−E
{(∫ t

0

s(1)(u)
s(0)(u)

du
)>

Ω
−1

∫ t

0

Z̄01− s(1)(u)
s(0)(u)

s(0)(u)
d〈M1,M1〉(u)

}

−E
{(∫ s

0

s(1)(u)
s(0)(u)

du
)>

Ω
−1

∫ t

0

Z̄01− s(1)(u)
s(0)(u)

s(0)(u)
d〈M1,M1〉(u)

}
−2E

{∫ t

0

1
s(0)(u)

dM1(u)U>1
}
(I−1)>Ψ

>
∫ s

0

γ(u)
s(0)(u)

du

+2E
{(∫ t

0

s(1)(u)
s(0)(u)

du
)>

Ω
−1

∫ 1

0

(
Z̄01−

s(1)(u)
s(0)(u)

)
dM1(u)U>1

}
(I−1)>Ψ

>
∫ s

0

γ(u)
s(0)(u)

du

where the last two terms can be proved to be zero by the similar approach as in the proof of

Theorem 3.2.0.2. The remaining terms can be estimated by their empirical parts with the help of

Lemma 3.7.1.4.

Proof of Theorem 3.2.0.3. The proof is similarly to the proof of Theorem 3.3.0.3, so omitted.
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3.7.3 Competing risks

Proposition 3.7.3.1. Assuming (3.19) and (3.3), we have

λ̄10(t|Xe,XI,Xo) = λ̄10(t)+βeXe + β̄o
>

Xo +ρ0∆. (3.73)

where λ̄10(t) = λ10(t)− ∂

∂t log
[
E
{

exp
(
− εt

)}]
.

Proof. The proof is completely parallel to that of Proposition 3.7.2.1 with 1−F1 in place of

S.

In the following we give the regularity conditions and additional notation for the Theorems

in Section 3.3.

Define S( j)(t) = ∑
n
i=1Yi(t)ŵi(t)Z

⊗ j
i /n for j = 0 and 1. Then there exists a scalar and

vector function s(0)(t) and s(1)(t), respectively, defined on [0,1] such that for j = 0,1,

sup
t∈[0,1]

∣∣|S( j)(t)− s( j)(t)|
∣∣ P−→ 0. (3.74)

The above is guaranteed by Gilvenko-Cantelli theorem, Condition 3.7.2.2 and consistency of the

Kaplan-Meier estimator.

Condition 3.7.3.1 (Asymptotic regularity conditions). s(0)(t) is bounded away from zero.

Condition 3.7.3.2. There exists a positive definite matrix Ω such that

1
n

n

∑
i=1

∫ 1

0
w̃i(t)Yi(t)

(
Z̄0i−

s(1)(t)
s(0)(t)

)⊗2
dt a.s.−−→Ω. (3.75)

Although w(t) is not adaptable to F 1
t−, we still have the following result:

Lemma 3.7.3.1. For any H(T, t) adaptable to Ft−, we have

E
{∫ 1

0
H(T, t)w(t)dM1(t)

}
= 0. (3.76)
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Proof. The martingale M1(t) associated with the counting process N(t) has bounded variation.

So we can define the integral pathwisely, i.e.,

∫ 1

0
H(T, t)w(t)dM1(t) = lim

max{ti−ti−1}→0

n

∑
i=1

H(T, ti)w(ti)(M1(ti)−M1(ti−1)) (3.77)

where {0 = t0 < t1 < ... < tn−1 < tn = 1} is a partition on [0,1]. Notice that

E
{

H(T, ti)w(ti)(M1(ti)−M1(ti−1))
}
= E

{
H(T, ti)E

(
w(ti)(M1(ti)−M1(ti−1))

∣∣F 1
ti−1

)}
,

where

E
{

w(ti)(M1(ti)−M1(ti−1))
∣∣F 1

ti−1

}
= E

{
(M1(ti)−M1(ti−1))E

(
w(ti)

∣∣F 1
ti

)∣∣F 1
ti−1

}
= E

{
(M1(ti)−M1(ti−1))E

(
1{C ≥ T ∧ ti}

G(ti)
G(X ∧ ti)

∣∣Fti
)∣∣F 1

ti−1

}
= E

{
(M1(ti)−M1(ti−1))G(ti)

∣∣F 1
ti−1

}
= 0.

Thus it suffices to prove the result by dominated convergence theorem,

E
{∫ 1

0
H(T, t)w(t)dM1(t)

}
= E

{
lim

max{ti−ti−1}→0

n

∑
i=1

H(T, ti)w(ti)(M1(ti)−M1(ti−1))
}

= lim
max{ti−ti−1}→0

E
{ n

∑
i=1

H(T, ti)w(ti)(M1(ti)−M1(ti−1))
}

= 0.
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Define

A1 =
1√
n

n

∑
i=1

∫ 1

0
(Zi− Z̄0i)(ŵi(t)−wi(t))dM1

i (t)), (3.78)

A2 =
1√
n

n

∑
i=1

∫ 1

0
(Zi− Z̄0i)wi(t)dM1

i (t), (3.79)

A3 =
1√
n

n

∑
i=1

∫ 1

0
(Z̄(t)− Z̄0(t))(ŵi(t)−wi(t))dM1

i (t), (3.80)

A4 =
1√
n

n

∑
i=1

∫ 1

0
(Z̄(t)− Z̄0(t))wi(t)dM1

i (t), (3.81)

A5 =
ρ0√

n

n

∑
i=1

∫ 1

0

{(
Zi− Z̄(t)

)
−
(

Z̄0i−
s(1)(t)
s(0)(t)

)}
ŵi(t)Yi(t)(∆i− ∆̂i)dt, (3.82)

Lemma 3.7.3.2. A1, A2, A3, A4, A5 all converge to 0 in probability as n→ ∞.

Proof. For the first term A1, by the same trick as in [FG99] on the martingale expression of

Kaplan-Meier estimator we have,

1√
n

n

∑
i=1

∫ 1

0
(Zi− Z̄0i)(ŵi(t)−wi(t))dM1

i (t)

=
1√
n

n

∑
i=1

∫ 1

0
(Zi− Z̄0i)ri(t)

G(t)1{T ∗i < t}
G(Xi∧ t)

n

∑
j=1

∫ t

T ∗i

1
∑

n
k=11{T ∗k > u}

dMc
j(u)dM1

i (t)+op(1)

=
1√
n

n

∑
j=1

∫ 1

0

∑
n
i=1(Zi− Z̄0i)wi(t)dM1

i (t)1{T ∗i ≤ u≤ t}
∑

n
k=11{T ∗k > u}

dMc
j(u)+op(1),

where Mc
j(u) is a martingale with respect to the censoring filtration

F c(u) = {1{Xi ≥ t},1{Xi ≤ t,δi = 0},XIi,Xoi,Ji,Xei, t ≤ u, i = 1, ...,n}. (3.83)

Because the integrands are adaptable to this filtration after a careful analysis, the first term now

becomes a sum of martingale integrals, which by Lemma 3.7.1.6 is op(1).
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Next, the second term A2 becomes,

1√
n

n

∑
i=1

∫ 1

0
{∆̂i−∆i}ŵi(t)dM1

i (t)

=
{1

n

n

∑
i=1

∫ 1

0
X̃>i (g

−1)′(X̃>i αT )wi(t)dM1
i (t)
}√

n(α̂−αT )+op(1),

by Lemma 3.7.3.1 and law of large numbers, it is op(1).

Proofs for A3 and A4 are exactly parallel to the first two but more laborious, which we

omit here.

For A5, we have

ρ0√
n

n

∑
i=1

∫ 1

0

{(
Zi− Z̄(t)

)
ŵi(t)−

(
Z̄0i−

s(1)(t)
s(0)(t)

)
ŵi(t)

}
Yi(t)(∆i− ∆̂i)dt

=
[

ρ0

n

n

∑
i=1

∫ 1

0

{(
Zi− Z̄(t)

)
ŵi(t)−

(
Z̄0i−

s(1)(t)
s(0)(t)

)
ŵi(t)

}
Yi(t)X̃

>
i (g

−1)′(X̃>i αT )dt
]√

n(α̂−αT ),

which will tend to zero in probability by law of large numbers and Gilvenko-Cantelli theorem.

Proof of Theorem 3.3.0.1. By lemma 3.7.3.2, we can rewrite U(βT ) as

1
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
wi(t)dM1

i (t)+
1
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
(ŵi(t)−wi(t))dM1

i (t)

+
ρ0

n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
wi(t)Yi(t)(∆i− ∆̂i)dt +op(1).

Notice that the first term is not a martingale integral since wi(t) is not adapted to the complete
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data filtration F 1(t). So partition it into

1
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
wi(t)dM1

i (t)

=
1
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
1{Ci ≥ t}dM1

i (t)

+
1
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)(
wi(t)−1{Ci ≥ u}

)
dM1

i (t).

The first term tends to zero from the conclusion in censoring complete situation. For the second

term, by Fubini-Toneli Theorem and the property of conditional expectation, we have

E
{∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)(
wi(t)−1{Ci ≥ t}

)
dM1

i (t)
}

= E
[
E
{∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)(
wi(t)−1{Ci ≥ t}

)
dM1

i (t)|Zi

}]
= E

[∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
E
{(

wi(t)−1{Ci ≥ t}
)
dM1

i (t)|Zi

}]
,

where

E
{

w1(t)dM1
1(t)|Z̄1

}
= E

{
1{C1 ≥ T1∧ t}G(t)/G(T ∗1 ∧ t)dM1

1(t)|Z̄1
}

= E
{

G(t)dM1
1(t)E

[
1{C1 ≥ T1∧ t}/G(T ∗1 ∧ t)|Z̄0‘,T‘,Ji

]
|Z̄1
}

= E
{

G(t)dM1
1(t)|Z̄1

}
= E

{
E
[
1{C1 ≥ t}|Z̄01,T1,J1

]
dM1

1(t)|Z̄1
}

= E
{
1{C1 ≥ t}dM1

1(t)|Z̄01
}
.

Hence the second term also has zero expectation. This established the consistency of the first

term by Strong Law of Large Numbers. The remaining two terms can be handled by a similar

way as we do in the Lemma 3.7.3.2.
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Proof of Theorem 3.3.0.2. Observe that

√
nU(βT ) =

1√
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
wi(t)dM1

i (t)

+
{

ρ0

n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
wi(t)Yi(t)X̃

>
i (g

−1)′(X̃>i αT )dt
}√

n(α̂−αT )

+
1√
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
(ŵi(t)−wi(t))dM1

i (t)+op(1)

=
1√
n

n

∑
i=1

∫ 1

0

(
Z̄0i−

s(1)(t)
s(0)(t)

)
wi(t)dM1

i (t)−Ψ
√

n(α̂−αT )

+
1√
n

n

∑
i=1

∫ 1

0

q(t)
π(t)

dMc
i (t)+op(1),

where

Ψ = ρ0E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
w1(t)Y1(t)X̃

>
1 (g

−1)′(X̃>1 αT )dt
}
,

q(t) = −E
{∫ 1

0
1{T ∗1 < t ≤ u}w1(u)

(
Z̄01−

s(1)(u)
s(0)(u)

)
dM1

1(u)
}
,

π(t) = P(T ∗1 ≥ t).

Therefore now
√

nU(βT ) has been written into a sum of i.i.d. random variables with mean zero

and finite second moments. By the Multivariate Central Limit Theorem and Slutsky’s theorem, our

estimator is asymptotically normal with mean zero and covariance matrix Ω
−1(Σ1+Σ2+Σ3)Ω

−1,

where the cross terms are zero by similar arguments as in the proof of Theorem 3.2.0.2; here the

cross terms are between the event martingale and the censoring martingale. Note that since we

assume that the event distribution and the censoring distribution are marginally independent, then

E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
w1(t)dM1

1(t)
∫ 1

0

q(t)
π(t)

dMc
1(t)
}

= E
{∫ 1

0

(
Z̄01−

s(1)(t)
s(0)(t)

)
w1(t)dM1

1(t)
}
E
{∫ 1

0

q(t)
π(t)

dMc
1(t)
}
= 0.
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Proposition 3.7.3.2. Under (3.19), (3.3), (3.5) on the subdistribution hazard function and assump-

tions 3.7.2.1,3.7.3.1,3.7.3.2, the baseline hazard function estimator defined in (3.27) converges

to the baseline hazard function uniformly after introducing the residual term and the process
√

n{Λ̂10(·)−Λ10T (·)} converges weakly to a zero-mean Gaussian process whose covariance

function at (t,s), where 0≤ s≤ t, can be consistently estimated by

∫ s

0

n∑
n
i=1 ŵi(u)dNi(u)

(∑n
j=1 ŵ j(u)Yj(u))2 +Ĉ

>
(t)Ω̂

−1
(Σ̂1 + Σ̂2 + Σ̂3)Ω̂

−1
Ĉ(s)+ Ê>(t)Θ̂Ê(s)

+n
n

∑
i=1

∫ 1

0

q̂t(u)q̂s(u)
π̂2(u)

dNc
i (u)−Ĉ

>
(t)Ω̂

−1
D̂(s)−Ĉ

>
(s)Ω̂

−1
D̂(t), (3.84)

where

Ĉ(t) =
∫ t

0
Z̄(u)du. (3.85)

Proof of Proposition 3.7.3.2. Similarly in the proof of Proposition 3.7.2.2 in the appendix, we

will turn to another score function,

U1(Λ0(t),β, t) =
1
n

n

∑
i=1

∫ t

0
ŵi(u){dNi(u)−Yi(u)dΛ0(u)−Yi(t)β>Zidu},

note that U1(Λ̂0(t), β̂, t)≡ 0. Thus we have

U1(Λ0T (t), β̂, t) = U1(Λ0T (t), β̂, t)−U1(Λ̂0(t), β̂, t) (3.86)

=
1
n

∫ t

0

n

∑
i=1

ŵi(u)Yi(u)d(Λ̂0(u)−Λ0T (u)). (3.87)
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In the meantime, observe that

U1(Λ0T (t), β̂, t)

=
1
n

n

∑
i=1

∫ t

0
ŵi(u){dNi(u)−Yi(u)dΛ0T (u)−Yi(t)β̂>Zidu}

=
1
n

n

∑
i=1

∫ t

0
ŵi(u){dMi(u)−Yi(u)(β̂>Zi−β

>
T Z̄0i)du}

=
1
n

n

∑
i=1

∫ t

0
ŵi(u){dMi(u)−Yi(u)(β̂−βT )

>Zidu−Yi(u)ρ̂0(∆̂i−∆i)du}

=
1
n

n

∑
i=1

∫ t

0
ŵi(u){dMi(u)−Yi(u)(β̂−βT )

>Z̄0idu−Yi(u)ρ̂0X̃>i (g
−1)′(X̃>i αT )(α̂−αT )du}.

These together gives us that

Λ̂0(t)−Λ0T (t)

=
n

∑
i=1

∫ t

0

ŵi(u)
∑

n
j=1 ŵ j(u)Y j(u)

dM1
i (u)−

{ n

∑
i=1

∫ t

0

ŵi(u)Yi(u)Z̄
>
0i

∑
n
j=1 ŵ j(u)Yj(u)

du
}
(β̂−βT )

−
{

ρ̂0

n

∑
i=1

∫ t

0

ŵi(u)Yi(u)X̃
>
i (g

−1)′(X̃>i αT )

∑
n
j=1 ŵ j(u)Yj(u)

du
}
(α̂−αT ).

Hence the uniform convergence can be established by an application of Gilvenko-Cantelli theorem.

For the weak convergence, we just need to check the variance-covariance function of
√

n(Λ̂0(t)−
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Λ0T (t)). First note that

√
n(Λ̂0(t)−Λ0T (t))

=
√

n
n

∑
i=1

∫ t

0

wi(u)
∑

n
j=1 ŵ j(u)Yj(u)

dM1
i (u)+

√
n

n

∑
i=1

∫ t

0

ŵi(u)−wi(u)
∑

n
j=1 ŵ j(u)Yj(u)

dM1
i (u)

−
√

n
n

∑
i=1

∫ t

0

ŵi(u)Yi(u)(β̂−βT )
>Z̄0i

∑
n
j=1 ŵ j(u)Yj(u)

du

−
√

n
n

∑
i=1

∫ t

0

ŵi(u)Yi(u)ρ̂0X̃>i (g
−1)′(X̃>i αT )(α̂−αT )

∑
n
j=1 ŵ j(u)Yj(u)

du

=
1√
n

n

∑
i=1

∫ t

0

wi(u)
s(0)(u)

dM1
i (u)−

1√
n

n

∑
i=1

∫ t

0

wi(u)∑
n
j=1

∫ u
T ∗i

1
∑

n
k=11{T ∗k >v}dMc

j(v)

s(0)(u)
dM1

i (u)

−
√

n
(∫ t

0

s(1)(u)
s(0)(u)

du
)>

(β̂−βT )−
√

n
(∫ t

0

γ(u)
s(0)(u)

du
)>

(α̂−αT )+op(1)

=
1√
n

n

∑
i=1

∫ t

0

wi(u)
s(0)(u)

dM1
i (u)

+
1√
n

n

∑
j=1

∫ 1

0

1
∑

n
k=11{T ∗k > v}

∫ t

0

∑
n
i=1 wi(u)dM1

i (u)1{T ∗i < v≤ u}
s(0)(u)

dMc
j(v)

−
(∫ t

0

s(1)(u)
s(0)(u)

du
)>√

n(β̂−βT )−
(∫ t

0

γ(u)
s(0)(u)

du
)>√

n(α̂−αT )+op(1),

where

γ(t) = ρ0E
{

ŵ1(t)Yi(t)X̃1(g−1)′(X̃>1 αT )
}

(3.88)

in the above. With Condition 3.7.3.1, Martingale Central Limit Theorem 5.1.1 in [FH11] can

again be employed to show that
√

n(Λ̂0(t)−Λ0T (t)) converges in the sense of Skorohod topology

to a mean zero Gaussian process with covariance function to be computed by similar way as used

in Theorem 3.2.0.2 and Proposition 3.7.2.2.

Proof of Theorem 3.3.0.3. The consistency simply follows from the results of Theorem 3.3.0.1,

Proposition 3.7.3.2 in the appendix and that exp(−x) is continuously differentiable. For the

122



asymptotic process, we just resort to delta method and Donsker theorem.
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Figure 3.1: A causal directed acyclic graph (DAG) describing the causal relation between
variables

Table 3.1: Simulation results for general survival data without competing risks.

Scenario Sample size Bias Emp. Var Est. Var Coverage
I 100 -0.15 6.10 6.80 95.8%
I 200 0.03 2.70 2.80 94.9%
I 400 -0.04 0.95 0.92 96.1%
I 800 -0.01 0.43 0.43 94.7%
I 1200 0.00 0.28 0.28 95.3%
II 100 0.06 2.10 2.00 94.6%
II 200 -0.05 0.93 0.89 94.4%
II 400 -0.05 0.45 0.42 96.0%
II 800 0.01 0.21 0.20 95.2%
II 1200 0.00 0.14 0.13 94.4%
III 100 0.12 62.50 64.44 95.7%
III 200 0.07 27.50 26.85 96.0%
III 400 0.07 13.74 12.53 94.9%
III 800 0.08 6.04 6.02 95.5%
III 1200 -0.04 4.09 3.96 95.5%
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Table 3.2: Simulation results under the competing risks model.

Scenario Sample size Bias Emp. Var Est. Var Coverage
I 100 0.07 3.60 3.40 94.8%
I 200 0.04 1.60 1.50 94.5%
I 400 0.04 0.77 0.74 94.0%
I 800 0.02 0.36 0.36 95.0%
I 1200 0.01 0.24 0.24 94.5%
II 100 0.13 4.10 4.30 95.3%
II 200 0.04 2.00 2.00 94.6%
II 400 -0.04 0.85 0.95 95.7%
II 800 0.01 0.43 0.46 95.8%
II 1200 -0.01 0.31 0.31 95.2%
III 100 0.23 134.80 128.90 95.7%
III 200 -0.16 53.38 58.34 95.0%
III 400 -0.12 26.17 27.14 95.9%
III 800 0.10 13.56 13.87 94.5%
III 1200 0.05 8.85 8.12 95.5%
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Table 3.3: Patient characteristics of the SEER-Medicare data set.

Radical prostatectomy Conservative management
n = 10977 n = 18829

Age
66-69 4852 (45.3%) 6925 (37.2%)
70-74 5859 (54.7%) 11694 (62.8%)
Marital Status
Married 7815 (73.0%) 12889 (69.2%)
Divorced 536 (5.0%) 1068 (5.7%)
Single 786 (7.3%) 1450 (7.9%)
Other 1574 (14.7%) 3212 (17.3%)
Race or Ethnity
Asian 206 (1.9%) 302 (1.6%)
Black 1022 (9.5%) 2495 (13.4%)
Hispanic 184 (1.7%) 222 (1.2%)
White 8973 (83.8%) 15047 (80.8%)
Other 326 (3.0%) 553 (3.0%)
Tumor Stage
T1 4132 (38.6%) 12059 (64.8%)
T2 6579 (61.4%) 6560 (35.2%)
Tumor Grade
Well differentiated 168 (1.6%) 140 (0.8%)
Moderately differentiated 5537 (51.7%) 9070 (48.7%)
Poorly differentiated 4793 (44.7%) 9153 (49.2%)
Undifferentiated 17 (0.2%) 26 (0.1%)
Cell type not determined 196 (1.8%) 230 (1.2%)
Prior Charlson comorbidity score
0 7217 (67.4%) 11868 (63.7%)
1 2301 (21.5%) 4260 (22.9%)
≥ 2 1193 (11.1%) 2491 (13.4%)
Diagnosis year
2001 345 (3.2%) 241 (1.3%)
2002 311 (2.9%) 268 (1.4%)
2003 277 (2.6%) 207 (1.1%)
2004 1284 (12.0%) 1908 (10.2%)
2005 1217 (11.4%) 1838 (9.9%)
2006 1334 (12.5%) 2252 (12.1%)
2007 1351 (12.6%) 2486 (13.4%)
2008 1291 (12.1%) 2372 (12.7%)
2009 1215 (11.3%) 2381 (12.8%)
2010 1020 (9.5%) 2263 (12.2%)
2011 1066 (10.0%) 2403 (12.9%)
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Table 3.4: Results of two stage residual inclusion IV analysis on overall survival with all
two-way interactions.

Variable Label Hazard difference Standard Errors
Two sided

P-value
Radical prostatectomy vs
Conservative management -0.0012 0.00057 0.042

Residual term 0.0010 0.0006 0.083
Age 70-74 vs 66-69 0.0006 0.0005 0.24
Stage T2 vs T1 0.0005 0.0005 0.31
Married vs Other -0.0008 0.0007 0.23
Divorced vs Other 0.0011 0.0016 0.51
Single vs Other -0.0006 0.001 0.53
Asian vs Other -0.0004 0.0019 0.85
Black vs Other -0.0004 0.0013 0.75
Hispanic vs Other 0.0026 0.0022 0.24
White vs Other -0.0004 0.0011 0.7
Grade moderately differentiated vs
Well differentiated 0.0007 0.0004 0.052

Grade poorly differentiated vs
Well differentiated 0.0019 0.0006 0.0009

Grade undifferentiated vs
Well differentiated 0.0023 0.001 0.021

Grade cell type not determined vs
Well differentiated 0.0035 0.0011 0.0014

Prior Charlson comorbidity score
0 vs ≥ 2 -0.004 0.0010 < 0.0001

Prior Charlson comorbidity score
1 vs ≥ 2 -0.0026 0.0005 < 0.0001

2002 vs 2001 -0.00058 0.0003 0.022
2003 vs 2001 -0.00033 0.0003 0.33
2004 vs 2001 -0.0008 0.0004 0.032
2005 vs 2001 -0.001 0.0005 0.022
2006 vs 2001 -0.0013 0.0005 0.016
2007 vs 2001 -0.0013 0.0006 0.043
2008 vs 2001 -0.0014 0.0007 0.041
2009 vs 2001 -0.0017 0.0008 0.036
2010 vs 2001 -0.0018 0.0009 0.039
2011 vs 2001 -0.0018 0.0010 0.061
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Table 3.5: Results of two stage residual inclusion IV analysis on cancer specific survival with
all two-way interactions.

Variable Label Hazard difference Standard Errors
Two sided

P-value
Radical prostatectomy vs
Conservative management 4.8 ×10−5 0.0002 0.83

Residual term -8.1×10−5 0.0002 0.72
Age 70-74 vs 66-69 0.0005 0.0002 0.03
Stage T2 vs T1 0.0002 0.0002 0.32
Married vs Other -0.0008 0.0004 0.026
Divorced vs Other 0.0004 0.0009 0.67
Single vs Other -0.0002 0.0006 0.76
Asian vs Other -0.0011 0.0011 0.32
Black vs Other 0.0002 0.0007 0.83
Hispanic vs Other -0.0003 0.0009 0.69
White vs Other -0.0003 0.0006 0.67
Grade moderately differentiated vs
Well differentiated 0.0008 0.0002 0.0003

Grade poorly differentiated vs
Well differentiated 0.0018 0.0004 < 0.0001

Grade undifferentiated vs
Well differentiated 0.0031 0.0008 0.0001

Grade cell type not determined vs
Well differentiated 0.0033 0.0007 < 0.0001

Prior Charlson comorbidity score
0 vs ≥ 2 0.0009 0.0003 0.0031

Prior Charlson comorbidity score
1 vs ≥ 2 0.0004 0.0002 0.0093

2002 vs 2001 -6.1×10−5 0.0001 0.6
2003 vs 2001 -0.0002 0.0002 0.16
2004 vs 2001 -0.0005 0.0002 0.0076
2005 vs 2001 -0.0006 0.0002 0.0046
2006 vs 2001 -0.0007 0.0003 0.0082
2007 vs 2001 -0.0008 0.0003 0.011
2008 vs 2001 -0.0009 0.0004 0.009
2009 vs 2001 -0.001 0.0004 0.0086
2010 vs 2001 -0.0012 0.0005 0.0062
2011 vs 2001 -0.0012 0.0005 0.0082
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Figure 3.2: Predicted overall survival (left) and cancer specific cumulative incidence (right)
function for a patient with pointwise 95% confidence intervals.
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Chapter 4

Causal Effects on Birth Defects with

Missing by Terathanasia

4.1 Introduction

Our work was motivated by a recent observational study carried out by the North American

Organization of Teratology Information Specialists (OTIS), on the use of etanercept (trade name

Enbrel) during pregnancy. Etanercept is a tumor necrosis factor-alpha (TNFα) inhibitor that

treats autoimmune diseases such as rheumatoid arthritis and psoriasis. The study found that the

proportion of liveborn infants with major birth defects was higher for women exposed to etanercept

compared to diseased etanercept unexposed women (US Food & Drug Administration Prescribing

Information, revised 9/2017).1 The elevated birth defect rate was also independently replicated

in a Scandinavian study; see the same Food & Drug Administration (FDA) document above.

The biological mechanism, if any, behind these elevated birth defect rates was not understood,

due to the lack of pattern of major birth defects as traditionally seen in other teratogens such as

thalidomide. This led to the FDA statement that “available studies with use of etanercept during

1https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103795s5556lbl.pdf
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pregnancy do not reliably support an association between etanercept and major birth defects”.

Table 4.1 shows the five types of pregnancy outcomes for a total 494 pregnant women in

the OTIS data set for the Etanercept study: live birth, spontaneous abortion (SAB), therapeutic

abortion (TAB), stillbirth, and loss to follow up (LTFU). The distinction between SAB and

stillbirth is a technical one, if the loss of pregnancy occurs before week 20 of gestation it is

SAB, otherwise it is stillbirth. Of these, 336 women were exposed to etanercept during their first

trimester, which was the exposure window of interest for major birth defects, and the rest 158

women were unexposed any time during their pregnancy. From Table 4.1 we see that there was a

total of 40 observed major birth defects. In addition, there were 27 missing birth defect outcomes,

with 25 of these came from SAB. In fact, of the 26 total SAB pregnancy outcomes, only one

was observed to have a major birth defect, the rest 25 were missing major birth defect outcomes.

As mentioned earlier, SAB is known to be associated with a higher risk of major birth defects,

therefore the fact that most SAB’s are missing this outcome falls under the mechanism of missing

not at random (MNAR).

In the following we study the causal effect of etanercept on major birth defects, making

use of the established terathanasia mechanism in dysmorphology to handle the missing data due

to SAB. We adopt the potential outcomes framework to define the causal effects, also referred to

as the Rubin Causal Model [Ney23, Rub74, Hol86, RCM] In addition, careful analysis of SAB,

which was subject to left truncation since most women enrolled in the study after recognition

of their pregnancies, showed that the rate was almost twice as high in the unexposed as in the

exposed women. This is not surprising since SAB as a type of pregnancy outcome, is clearly a

post-exposure variable. It has been recognized in the literature [FR02b] that stratification based

on the observed values of such a variable invalidates any causal interpretation. In this case,

the analysis of major birth defects within the liveborn stratum did not take into consideration

that the pregnancy outcome of live birth versus SAB, for example, might be affected by the

exposure to etanercept. Instead, the concept of principal stratification was proposed to address
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such post-exposure effects within the potential outcomes framework [FR02b].

The rest of the paper proceeds as follows. Due to the multiple pregnancy outcomes and

complexity of the data structure, we devote the next section to describe the multiple challenges,

detailed notation, as well as the general assumptions. Section 4.3 presents the approach we use to

estimate the average treatment effect on major birth defect. Section 4.4 presents the definition of

the principal strata as defined by the potential pregnancy outcomes, the causal estimands that we

are interested in, together with the estimation and inference approach. Section 4.5 provides the

detailed data analysis using the approaches developed in this paper. Section 4.6 contains further

discussion. The technical details are provided in the online supplement.

4.2 Challenges, Notation and Assumptions

4.2.1 Main challenges

In the following we provide a roadmap of the main challenges in analyzing the birth

defects data for causal inference, and outline our solutions to them.

Missing not at random

As shown in Table 4.1, the major birth defect outcome is missing for most SAB cases.

Meanwhile the established terathanasia theory in dysmorphology tells us that the SAB cases are at

higher risk of having major birth defects than the pregnancies that end in live births. This results in

missing not at random [LR19, MNAR]. Fortunately, the terathanasia theory also informs us how

to model such a missing data mechanism, i.e. using the so-called ‘selection model’, which models

the marginal distribution of the complete data and the conditional distribution of missingness

given the complete data. Here the complete data corresponds to assuming that all major birth

defect outcomes are observed, and the missing data mechanism can be modeled as the conditional

distribution of SAB/stillbirth given the major birth defect outcomes.
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Left Truncation and Right Censoring

As mentioned earlier, left truncation has been known to exist for our SAB data, because

women typically enroll in pregnancy studies at OTIS after clinical recognition of their pregnancies

[XC11]. This leads to selection bias as women who have early SAB events tend not to be captured

in our studies. In addition, loss to follow-up, for example, leads to right censoring. Finally,

unlike death, SAB or stillbirth does not happen to all pregnancies; when a pregnancy ends in live

birth, we consider it censored for SAB/stillbirth at that time (i.e. gestational age). An alternative

consideration is that the pregnancy is ‘cured’ from SAB/stillbirth if it ends in live birth; we will

further discuss this later.

Survival analysis methods have been well studied for left truncated and right-censored

(LTRC) time-to-event data. In particular for length-biased data [QNLS11] further developed an

early framework of [Var89], by augmenting “ghost copies” for each observed individual in the

data set, i.e. through recovery of those similar individuals who have been left truncated out of

the observed data set. These approaches lead to an EM algorithm, which was further adopted in

[HCX18] for data with an observed cured portion and applied to SAB data analysis. The “ghost

copies” approach will also be used in this paper, as it integrates nicely with the missing data

above so that EM type algorithms may be applied.

Observational nature and moderate sample size

The prospective cohort studies in pregnancy carried out by OTIS are observational in

nature. As such, the presence of confounders is inevitably an important issue to address. Many

approaches exist in the literature; for pregnancy studies with birth defect outcomes in particular,

various ways to select confounders and use propensity scores were discussed in [XHSC19].

Given the numbers of events in Table 4.1, we will consider parsimonious modeling approaches

in the next sections, together with inverse probability weighting (IPW) using propensity scores

[RR83, DJ98, WMLC12, WFW14] that were identified in the original analysis that was submitted
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to the FDA. This results in the minimal number of parameters that need to be estimated.

Principal effects and rare events

Principal stratification is a widely used framework for addressing post-randomization

complications. The principal effects [FR02b] provide finer causal effects within principal strata,

with exact definitions provided in Section 4.4, at the expense of more unknown parameters. More

specifically, we divide the whole population into three sub-populations by monotonicity, with one

of them being the main target and the rest two being nuisance. The two nuisance subpopulations

have more than 90 percent missing outcomes for at least one arm (treatment or control). Writing

down the likelihood for the target subpopulation inevitably introduces nuisance due to the nature

of principal stratification, that is, hidden membership. The extremely high missing rates prevent

the usage of common strategies like EM algorithm for missing outcomes adopted in Section 4.3

or multiple imputation [Rub96, Rub04]. To draw valid information for the target subpopulation,

we offset the parameters introduced by the nuisance and conduct sensitivity analysis. More details

can be found in Section 4.5.2.

4.2.2 Outcomes and notation

Among the five types of pregnancy outcomes listed in Table 4.1, we combine SAB and

Stillbirth into one outcome SAB/Stillbirth for the purposes of this paper; the early versus late

timing during gestation of pregnancy loss is further considered later. As mentioned earlier,

left truncation exists in our data for this variable, therefore time to SAB/Stillbirth event will

be considered and survival analysis methods will be applied in order to properly handle this

selection bias [XC11, HCX18]. In addition, TAB in pregnancy studies should be considered as a

competing risk of SAB [MS08], but due to the extremely low number of events in our data, it

will be treated as non-informative right censoring. LTFU is the usual right censoring. Finally,

live birth informs us that the pregnancy is no longer at risk of SAB, and it will be treated as right
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censoring for SAB/Stillbirth and further discussion can be found later. For all of these survival

random variables, the time scale is gestational age in weeks, and time zero is the start of gestation

which is defined as the the first day of the last menstrual period of a pregnant woman.

The data for subjects i = 1, ...,n are treated as independent and identically distributed.

Define

• Di = 1 if subject i is treated or exposed, 0 otherwise;

• Yi = 1 if subject i has a major birth defect, 0 otherwise; note that some Yi’s are missing;

• Oi = 1 if Yi is observed, 0 otherwise;

• Qi the gestational age (in weeks) of subject i at study enrollment;

• Ti the time to SAB/Stillbirth, in gestational weeks;

• Ci the right censoring time;

• Xi = min(Ti,Ci);

• ∆i = I(Ti ≤Ci);

• Mi = 1 if subject i has an event of of SAB/Stillbirth, 0 otherwise; note that Mi is missing if

subject i is right censored;

• Vi the vector of covariates;

• t1 < t2 < · · ·< tK the K distinct observed SAB/Stillbirth event times.

In addition, we define the following potential outcomes:

• (Yi(1),Yi(0)) the potential major birth defect outcome under exposure or not, respectively;

• (Mi(1),Mi(0)) the potential SAB/Stillbirth outcome under exposure or not, respectively;

• (Ti(1),Ti(0)) the potential time to SAB/Stillbirth under exposure or not, respectively.
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4.2.3 Causal framework and assumptions

The causal relationship of the variables defined above can be depicted in a graphical

display as in Figure 4.1 and Figure 4.2. They give a causal causal directed acyclic graph (DAG)

with its single world intervention graph (SWIG), which illustrates the possible causal relationship

of all the variables in this study. The dashed lines between D and Y , (M,T ) are the causal relations

that we want to identify. The covariates V are confounders of (D,Y,T,M). The arrow from Y to

(M,T ) illustrates the effect of “terathanisia”. One can read Assumption 4.3 from the DAG due to

the absence of direct arrows between (D,Y,V ) and O. One can read Assumption 4.2.3.3 from the

SWIG by d-separation rule.

In order to proceed, we assume the following throughout the paper. The first four

assumptions are commonly used in causal inference.

Assumption 4.2.3.1 (Stable unit treatment value assumption). The potential outcomes for one

subject are unaffected by the treatment assignments of other subjects, and for each subject there

are no hidden versions of treatment or control being considered.

Assumption 4.2.3.2 (Consistency). We observe one of the potential outcomes at a time, that is,

Y = D ·Y (1)+(1−D)Y (0), M = D ·M(1)+(1−D)M(0) and T = D ·T (1)+(1−D)T (0).

Assumption 4.2.3.3 (Conditionall ignorability). The treatment assignment is randomized, once

given the covariates; that is,

(Y (d),M(d),T (d))⊥ D | V, (4.1)

where ‘⊥’ denotes statistically independent.

Assumption 4.2.3.4 (Positivity). The propensity scores are bounded away from 0 or 1 given any

covariates; that is, there exists ε > 0 such that

ε≤ P(D = 1|V = v)≤ 1− ε, for any v. (4.2)
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The next two assumptions are commonly used for survival data, commonly known as

non-informative censoring and truncation; see for example [QNLS11, KPJ+17, HCX18]. Note

that in the selection model to be specified in the next section, the birth defect outcome Y is a

predictor of the SAB outcome T .

Assumption 4.2.3.5 (Conditional independent censoring). C is independent of (T,Q) given

(Y,D,V ). There exists a finite number τ > 0 such that P(C > τ) = 0 and P(T > τ)> 0.

Assumption 4.2.3.6 (Conditional quasi-independent truncation). The truncation time Q and the

event time T are independent given (Y,D,V ) on the nontruncated region. There exists XI ∈ (0,τ)

such that P(Q > XI) = 0.

Finally, the following assumption is needed for the selection model; it states that once the

information on SAB is included in the data, the major birth defect outcome is missing at random.

Assumption 4.2.3.7 (Missing at random given SAB).

P(O = 1|D,Y,V,T,M) = P(O = 1|T,M). (4.3)

4.3 Average Treatment Effect

4.3.1 Models and weighted likelihood

In this section we focus on the average treatment effect (ATE) of etanercept on major

birth defects. We consider the following models for the potential outcomes:

P(Y (d) = 1) =
exp(αc +αD ·d)

1+ exp(αc +αD ·d)
, (4.4)

and

P(T (d)> t|Y (d) = y) = exp{−Λ(t)exp(βD ·d +βY · y)}, (4.5)
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where Λ(t) is the cumulative baseline hazard function for the conditional distribution of T (d)

given Y (d). Then exp(αD) is the ATE, which is the causal odds ratio

P(Y (1) = 1)/P(Y (1) = 0)
P(Y (0) = 1)/P(Y (0) = 0)

. (4.6)

The parameters βD and βY represent the effect of the treatment and birth defect on SAB/Stillbirth.

In particular, βY plays the role of quantifying “terathanasia”. Higher βY implies a stronger effect

of “terathanasia”, leading to earlier occurrence of SAB/Stillbirth, thus not censored by “livebirth”

and so forth.

Remark 4.3.1.1. Note that model (4.4) is in fact saturated. While we might attempt to include the

interaction term between d and y in model (4.5), it turns out that the estimation algorithm failed

to converge due to too few (7) observed birth defects (Y = 1) in the control group (D = 0), as

seen from Table 4.1.

The counterfactual outcome, by definition, is not observed. In order to estimate the

parameters in models (4.4) and (4.5), we use the inverse probability (IP) weights to create a

pseudo-randomized sample. This enables us to write down a weighted likelihood based on the

observed variables in order to estimate the parameters in these two models, as discussed in

[BW07, Page 4]. Specifically, define the stabilized IP weights as

wIP
i =

P̂(Di = 1)Di

P̂(Di = 1|Vi)
+

P̂(Di = 0)(1−Di)

P̂(Di = 0|Vi)
, (4.7)

where P̂(Di = d|Vi) is the estimated propensity score using, for example, the package ‘twang’

[RMM+17] in R; more discussion will be given later.

Before we write down the weighted likelihood based on the complete data, here we

introduce additional notation for the “ghost copies” of subject i in order to properly account from

left truncation. The idea of “ghost copies” is that for an observed subject i, there are Ai “ghost

copies” with the same value of (Yi,Di,Vi) that have been truncated out and not observed in the
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data. It can be seen that Ai follows a geometric distribution with probability P(Ti > Qi|Yi,Di,Qi)

in the pseudo randomized population. Under the the nonparametric likelihood framework for

semiparametric models, the “ghost copy” event times Ti j < Qi ( j = 1, ...,Ai) are discrete random

variables taking values among t1, · · · , tK with probabilities P(Ti j = tk|Ti j < Qi,Qi). The fact that

the Ti j’s are assumed to be discrete is closely related the fact that in a nonparametric likelihood,

the baseline hazard is understood as discretized to point masses λ1, ...,λK at the observed event

times t1, ..., tK [Joh93, Mur94, Mur95]. See [HCX18] for more details and discussion on this.

Write α = (αc,αD)
>, β = (βD,βY )

>, and θ = (α>,β>,λ1, ...,λK)
>. The weighted likeli-

hood based on the complete data, including the augmented Yi’s if they are missing, can then be

written:

Lc
w(θ) =

n

∏
i=1

[
π

Yi
i (1−πi)

1−Yiλi(Xi)
∆iSi(Xi)

Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i
,

where πi = exp(αc +αDDi)/(1+ exp(αc +αDDi)), λi(t) = λ0(t)exp(βDDi +βYYi) with λ0(·)

equal to the corresponding λk, and Si(t) = exp{−Λ(t)exp(βDDi +βYYi)} with Λ(·) equal to the

corresponding cumulative sum of the λk’s. This yields a weighted complete data log-likelihood:

lc
w(θ) = logLc

w(θ)

=
n

∑
i=1

wIP
i

[
Yi logπi +(1−Yi) log(1−πi)+∆i logλi(Xi)+ logSi(Xi)

+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
. (4.8)

We note that (4.8) is a weighted nonparametric likelihood for semiparametric models

discussed in [BW07].
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4.3.2 ES algorithm

We use the ES algorithm to compute the estimates. The ES algorithm computationally

can be achieved by an equivalent weighted EM algorithm, which we present here.

INITIALIZATION

We use “twang” package [RMM+17] in R to compute wIP
i in (4.7) for 1 ≤ i ≤ n. By

treating all missing outcomes Y as 0 and ignoring left truncation, we run “glm” and “coxph” (in

“survival” package [TG00]) functions weighted by wIP
i to initialize. Write the parameter as θ(0).

E-STEP

By setting Q(θ|θ(t)) = E
θ(t)[l

c
w(θ)|O], where we use O to represent all the observed

variables, we obtain

Q(θ|θ(t)) =
n

∑
i=1

[
wπ

1,i logπi +wπ
0,i log(1−πi)

+
K

∑
k=1

w f
i,k,1 log fi(tk|Yi = 1)+

K

∑
k=1

w f
i,k,0 log fi(tk|Yi = 0)

+wS
i,1 logSi(Xi|Yi = 1)+wS

i,0 logSi(Xi|Yi = 0)
]
, (4.9)

where

wπ
1,i = wIP

i {OiYi +(1−Oi)P
(t)
i (Y mis

i = 1)}, (4.10)

wπ
0,i = wIP

i {Oi(1−Yi)+(1−Oi)P
(t)
i (Y mis

i = 0)}, (4.11)

w f
i,k,1 = wIP

i (OiYi +(1−Oi)P
(t)
i (Y mis

i = 1))

·[∆i1(Xi = tk)+E(t)
i (Ai|Yi = 1)P(t)

i (Ti1 = tk|Yi = 1)], (4.12)
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w f
i,k,0 = wIP

i (Oi(1−Yi)+(1−Oi)P
(t)
i (Y mis

i = 0))

·[∆i1(Xi = tk)+E(t)
i (Ai|Yi = 0)P(t)

i (Ti1 = tk|Yi = 0)], (4.13)

wS
i,1 = wIP

i (1−∆i)[OiYi +(1−Oi)P
(t)
i (Y mis

i = 1)]. (4.14)

wS
i,0 = wIP

i (1−∆i)[Oi(1−Yi)+(1−Oi)P
(t)
i (Y mis

i = 0)]. (4.15)

The forms of the E-functions appeared in the equations above including P(t)
i (Y mis

i = y),

E(t)
i (Ai|Yi = y) and P(t)

i (Ti1 = tk|Yi = y) are given in the online supplement.

S-STEP

The S-step is achieved by finding the maximizer of Q(θ|θ(t)). It is easy to see that the Q

function Q(θ|θ(t)) is a sum of two parts with parameters separated. Indeed,

Q(θ|θ(t)) = lglm(α)+ lcox(β,λ1, · · · ,λK), (4.16)

where

lglm(α) =
n

∑
i=1

[
wπ

1,i logπi +wπ
0,i log(1−πi)

]
, (4.17)

and

lcox(β,λ1, · · · ,λK) =
n

∑
i=1

{ K

∑
k=1

[
w f

i,k,1 log fi(tk|Yi = 1)+
K

∑
k=1

w f
i,k,0 log fi(tk|Yi = 0)

]
+wS

i,1 logSi(Xi|Yi = 1)+wS
i,0 logSi(Xi|Yi = 0)

}
, (4.18)

Consequently, we can solve two weighted regressions separately, which can be done by plugging
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the corresponding weights into the “weights” arguments in “glm” and “coxph” (in “survival”

package [TG00]) functions.

The E-step and S-step are alternately repeated until the overall change of parameters (e.g.

L2 norm) is below a prespecified threshold (0.00001 in our paper). The ES algorithm returns its

convergence point, The expectations of the weighted first derivatives and the weighted second

derivatives that appeared in the variance estimate are estimated using a Monte Carlo simulation.

The details are given in the online supplement A.

4.3.3 Asymptotic properites

At the convergence of the ES algorithm, the solution θ̂ satisfies

Theorem 4.3.3.1. Under assumptions given in the online supplement A, (α̂, β̂, Λ̂) is consistent

for (α0,β0,Λ0), that is,

α̂−α0→ 0, β̂−β0→ 0, sup
t∈[0,τ]

|Λ̂(t)−Λ0(t)| → 0 a.s.. (4.19)

Theorem 4.3.3.2. Under assumptions given in the online supplement A, the standardized term
√

n{(α̂, β̂, Λ̂)− (α0,β0,Λ0)} converges weakly to a Gaussian process in θ̃, more specifically,

√
n{(α̂, β̂, Λ̂)− (α0,β0,Λ0)}→d −Ψ̇

−1(α0,β0,Λ0)G(ψα0,β0,Λ0), (4.20)

where Ψ̇(·) and ψ· are given in the online supplement A, G is a Brownian Bridge.

The proofs of Theorem 4.3.3.1 and 4.3.3.2 are given in the online supplement A. In

particular, we have

√
n(θ̂−θ0)−→d N (0,Ω−1

ΣΩ
−1), (4.21)
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where we write the estimate θ̂ = (α̂, β̂, λ̂1, · · · λ̂K), the true value θ0 = (α0,β0,λ01, · · ·λ0K), the

estimated jumps λ̂k = Λ̂(tk)− Λ̂(tk−1) and the true differences λ0k = Λ0(tk)−Λ0(tk−1). Denote

Si(θ) and Hi(θ) as the score and negative Hessian of the complete data log likelihood contributed

by subject i, with respect to θ. By writing

Ui(θ) = wIP
i Eθ

(∂lc
wi
(θ)

∂θ

∣∣∣O), (4.22)

we can estimate Σ and Ω by

1
n

n

∑
i=1

Ui(θ)Ui(θ)
>
∣∣∣
θ=θ̂

=
1
n

n

∑
i=1

(ŵIP
i )2Êθ[Si(θ)|O]Êθ[Si(θ)|O]>

∣∣∣
θ=θ̂

, (4.23)

and

1
n

n

∑
i=1

∂Ui(θ)

∂θ

∣∣∣∣
θ=θ̂

(4.24)

=
1
n

n

∑
i=1

ŵIP
i

{
Êθ[Hi(θ)|O]− Êθ[Si(θ)Si(θ)

>|O]+ Êθ[Si(θ)|O]Êθ[Si(θ)|O]>
}∣∣∣∣

θ=θ̂

.(4.25)

We put Ê here in the variance estimates because we use the Monte Carlo simulation to

estimate the asymptotic variance.

We provide the results including the estimates, the confidence intervals, and P-values in

Section 4.5.1. Due to the insufficient number of events, we conduct a sensitivity analysis by

varying βY in model (4.5). This allows us to gradually see the shift of conclusions of ATE based

on the strength of terathanasia effect, changing with βY .

4.4 Principal Effects

As mentioned earlier SAB is a post exposure variable, therefore as we defined in the

notation section for subject i it can take on two potential values Mi(0) and Mi(1). As explained in
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[FR02b] a stratified comparison of the Yi’s based on the observed values of the Mi’s, is equivalent

to comparing P(Yi(1) = 1|Mi(1) = m) versus P(Yi(0) = 1|Mi(0) = m). Such a comparison is

problematic because the set of subjects {i : Mi(1) = m} is not the same set of subjects {i :

Mi(0) = m}, as long as the exposure has non-zero effect on SAB. Unfortunately this is the case

for etanercept, leading to so-called posttreatment selection bias in the estimated exposure effect

[Ros84, RG92, FR02b].

In this section we consider principal stratification which is the stratification with respect

to the joint potential values of M, and use (M(0),M(1)) to stratify the whole population. The

whole population is then divided into:

1. SS: always-survivors, (M(0),M(1)) = (0,0), are those who will not experience SAB no

matter whether treated or not;

2. NS: treatment-survivors, (M(0),M(1)) = (1,0), are those who will experience SAB only

when not treated;

3. SN: control-survivors, (M(0),M(1)) = (0,1), are those who will experience SAB only

when treated;

4. NN: never-survivors, (M(0),M(1)) = (1,1), are those who will experience SAB no matter

treated or not.

Table 4.2 shows the division of the whole population into the above four principal strata.

Due to the very limited number of events in our data, in the following we further make a

monotonicity assumption that eliminates the ‘control-survivor’ stratum, in order to reduce the

number of parameters that need to be estimated later. This is the supported by the fact that the

estimated βD under model (4.5) is negative (see Section 4.5); that is, etanercept reduces the risk

of SAB. We assume

Assumption 4.4.0.1 (Monotonicity). M(1)≤M(0) with probability one.
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It is unknown which principal stratum a subject belongs to. However, certain relationship

can be derived between the latent principal strata and the observed group of subjects defined

according to (D,Mobs), where Mobs = M if observed, and Mobs = ? otherwise. Table 4.5

summarizes the correspondence between the observed groups and the latent strata. For example,

those with (Di,Mobs
i ) = (0,0) i.e. no SAB events under no treatment, can only belong to the

always-survivor stratum SS due to the monotonicity assumption. On the other had, those with

(Di,Mobs
i ) = (0,1) i.e. having had SAB events under no treatment, can belong to either NS

(treatment-survivors) or NN (never-survivors). Missing Mi leads to possibilities of all three strata,

etc. Table 4.5 also gives the number of subjects (group size) and the number of birth defects in

each observed group for the OTIS etanercept data.

Following [FMPR12] we define G as the latent indicator for the principal strata, which

takes values in {SS,NS,NN}. We assume a multinomial distribution for the principal strata

membership:

P(G = g) =
exp(γg)

∑g′ exp(γg′)
, (4.26)

where g ∈ {SS,NS,NN}, and we treat the group SS as reference, i.e. γSS = 0. Parallel to model

(4.4) for the ATE in Section 4.3, the causal estimands are now the principal effects αD,g in each

stratum:

P(Y (d) = 1|G = g) =
exp(α0,g +αD,g ·d)

1+ exp(α0,g +αD,g ·d)
. (4.27)

Though as parsimonious as we intend to be, we allow (4.27) here to be saturated for each stratum

since treatment effect for birth defect is of main interest. The parameter αD,SS in (4.27) is of

scientific interest whereas (α0,NS,αD,NS,α0,NN,αD,NN) are treated as nuisance. The reason is

twofold. Firstly, we are only interested in the treatment effect of etanercept for the always-

survivors since only these individuals’ fetus can “survive” through both treatment and control,
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compared to treatment-survivors and never-survivors. Women and practitioners will be less

interested in the treatment effect on malformation if not using etanercept leads to SAB/Stillbirth.

Low incidence rate of birth defects implies always-survivors as the main constitution in the whole

population. Secondly, the data also supports this setup. By examining Table 4.5, most subjects

within always-survivors (SS) are in O(0,0) and O(1,0), who are both complete. Main information

about treatment-survivors (NS) is stored in the observed subgroup O(0,1) and O(1,1), where the

control arm (O(0,1)) is almost all missing. On the other hand, the subgroups O(0,1) and O(1,1)

that contain information for never-survivors (NN) are both closely all missing. O(0,?) and O(1,?)

are mixtures of three strata and basically do not provide any useful information. These high

missing rates prevent us from valid inference for treatment-survivors (NN) and never-survivors

(NN). In fact, (4.27) has its outcomes and predictors almost missing among those subjects from

O(0,1) and O(1,1), which intuitively cannot converge in practice. To put in another way, we

expect that any parameters (α0,NS,αD,NS,α0,NN,αD,NN) shall fit into this data. What we can

hope is isolate the influence from the strata treatment-survivors and never-survivors to gain valid

information for always-surviros. This isolation is advantageous to the ATE in that we roughly

separate observed part and missing part, in the modeling process.

Finally by definition of the principal strata, the potential time to SAB/Stillbirth T (d) is

infinity in SS and NS if d = 1. That is,

P(T (1)> t|Y (1) = y,G = NS) = P(T (0)> t|Y (0) = y,G = NN)

= P(T (1)> t|Y (1) = y,G = NN) = 1,

for any t > 0. On the other hand, T (d) is finite in NN and NS if d = 0. For these latter cases

where T (d)< ∞ we assume:
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P(T (d)> t|Y (d) = y,G = g)

= exp
{
−Λ(t)exp(β0,NS · (1−d) ·1(g = NS)+βD,NN ·d ·1(g = NN)+βY · y)

}
.(4.28)

Note that only three cases have finite time to SAB: (d = 0,G = NS), (d = 0,G = NN), (d =

1,G = NN). The intercept of G = NN is in the baseline cumulative hazards Λ(t) and thus we

only need β0,NS and βD,NN. That is,

P(T (0)> t|Y (0) = y,G = NS) = exp
{
−Λ(t)exp(β0,NS +βY · y)

}
, (4.29)

P(T (0)> t|Y (0) = y,G = NN) = exp{−Λ(t)exp(βY · y)} , (4.30)

P(T (1)> t|Y (1) = y,G = NN) = exp{−Λ(t)exp(βD,NN +βY · y)} . (4.31)

Note that the effect of treatment on the occurrence of SAB is now reflected in the definition

of the principal strata and (4.26), and no longer modeled in (4.28). This is also part of the attempt

to be parsimonious again due to the limited number of events in the data. The parameters involved

in (4.28) only influence the time to SAB/Stillbirth not whether it will happen or not. In particular,

βY does not quantify “terathanasia” as its counterpart in 4.3 does. The model (4.28) is mainly

needed to deal with left truncation.

Remark 4.4.0.1. The model for T (d) given Y (d) and G is similar to a cure model [Far82, Far86,

KC92, ST00, LY04, HCX18]. The cure indicator now is 1(g = SS)+1(g = NS) · (1−d), hence

the potential time to SAB/Stillbirth is a mixture.

Remark 4.4.0.2. We would like to discuss the closeness and difference between our model to
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topic known as “truncation by death”. The primary outcome cannot be measured and is not well

defined once the subject dies, hence being truncated by death. In our case, whether an embryo is

malformed is well defined before birth but can only be measured after birth (“death” here means

SAB/Stillbirth). Though it is easily missing when baby is aborted, the probability of observation

is not completely zero.

Denote pg =
exp(γg)

∑g′ exp(γg′)
, πi =

exp(α0,Gi+αD,GiDi)

1+exp(α0,Gi+αD,GiDi)
,

λi(t) = λ(t)exp(β0,NS(1−Di)1(Gi = NS)+βD,NNDi1(Gi = NN)+βYYi), and Si(t) =

exp(−Λ(t)exp(β0,NS(1−Di)1(Gi = NS)+βD,NNDi1(Gi = NN)+βYYi)).

Note that pSS + pNS + pNN = 1. Treating Gi, (1−Oi)Yi and ghost copies as observed, the
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weighted complete data likelihood is

Lc
w(θ)

= ∏
i∈O(0,0)

[
pSSπ

Yi
i (1−πi)

1−Yi
]wIP

i 1(Gi=SS)

∏
i∈O(0,1)

[
pNSπ

Yi
i (1−πi)

1−Yiλi(Xi)Si(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NS)

∏
i∈O(0,1)

[
pNNπ

Yi
i (1−πi)

1−Yiλi(Xi)Si(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NN)

∏
i∈O(0,?)

[
pSSπ

Yi
i (1−πi)

1−Yi
]wIP

i 1(Gi=SS)

∏
i∈O(0,?)

[
pNSπ

Yi
i (1−πi)

1−YiSi(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NS)

∏
i∈O(0,?)

[
pNNπ

Yi
i (1−πi)

1−YiSi(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NN)

∏
i∈O(1,0)

[
pSSπ

Yi
i (1−πi)

1−Yi
]wIP

i 1(Gi=SS)

∏
i∈O(1,0)

[
pNSπ

Yi
i (1−πi)

1−Yi
]wIP

i 1(Gi=NS)

∏
i∈O(1,1)

[
piπ

Yi
i (1−πi)

1−Yiλi(Xi)Si(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NN)

∏
i∈O(1,?)

[
pSSπ

Yi
i (1−πi)

1−Yi
]wIP

i 1(Gi=SS)

∏
i∈O(1,?)

[
pNSπ

Yi
i (1−πi)

1−YiSi(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NS)

∏
i∈O(1,?)

[
pNNπ

Yi
i (1−πi)

1−YiSi(Xi)
Ai

∏
j=1

{
λi(Ti j)Si(Ti j)

}]wIP
i 1(Gi=NN)

,
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which yields the weighted complete data log-likelihood

lc
w(θ) = logLc

w(θ)

= ∑
i∈O(0,0)

wIP
i 1(Gi = SS)

[
log pSS +Yi logπi +(1−Yi) log(1−πi)

]
+ ∑

i∈O(0,1)
wIP

i 1(Gi = NS)
[

log pNS +Yi logπi +(1−Yi) log(1−πi)+ logλi(Xi)

+ logSi(Xi)+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
+ ∑

i∈O(0,1)
wIP

i 1(Gi = NN)
[

log pNN +Yi logπi +(1−Yi) log(1−πi)+ logλi(Xi)

+ logSi(Xi)+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
+ ∑

i∈O(0,?)
wIP

i 1(Gi = SS)
[

log pSS +Yi logπi +(1−Yi) log(1−πi)
]

+ ∑
i∈O(0,?)

wIP
i 1(Gi = NS)

[
log pNS +Yi logπi +(1−Yi) log(1−πi)+ logSi(Xi)

+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
+ ∑

i∈O(0,?)
wIP

i 1(Gi = NN)
[

log pNN +Yi logπi +(1−Yi) log(1−πi)+ logSi(Xi)

+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
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+ ∑
i∈O(1,0)

wIP
i 1(Gi = SS)

[
log pSS +Yi logπi +(1−Yi) log(1−πi)

]
+ ∑

i∈O(1,0)
wIP

i 1(Gi = NS)
[

log pNS +Yi logπi +(1−Yi) log(1−πi)
]

+ ∑
i∈O(1,1)

wIP
i 1(Gi = NN)

[
log pNN +Yi logπi +(1−Yi) log(1−πi)+ logλi(Xi)

+ logSi(Xi)+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
+ ∑

i∈O(1,?)
wIP

i 1(Gi = SS)
[

log pSS +Yi logπi +(1−Yi) log(1−πi)
]

+ ∑
i∈O(1,?)

wIP
i 1(Gi = NS)

[
log pNS +Yi logπi +(1−Yi) log(1−πi)+ logSi(Xi)

+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
+ ∑

i∈O(1,?)
wIP

i 1(Gi = NN)
[

log pNN +Yi logπi +(1−Yi) log(1−πi)+ logSi(Xi)

+
Ai

∑
j=1

{
logλi(Ti j)+ logSi(Ti j)

}]
.

Therefore we obtain the Q-function

Q(θ|θ(t))

=
N

∑
i=1

∑
g

[
wp

g,i log pg
i +wπ

1,g,i logπi(Gi = g)+wπ
0,g,i log(1−πi(Gi = g))

+
K

∑
k=1

w f
g,1,i,k log fi(tk|Gi = g,Yi = 1)+

K

∑
k=1

w f
g,0,i,k log fi(tk|Gi = g,Yi = 0)

+wS
g,i,1 logSi(Xi|Gi = g,Yi = 1)+wS

g,0,i logSi(Xi|Gi = g,Yi = 0)
]
, (4.32)

where

wp
g,i = wIP

i P(t)
i (Gi = g), (4.33)
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wπ
1,g,i = wIP

i P(t)
i (Gi = g){OiYi +(1−Oi)P

(t)
i (Yi = 1|Gi = g)}, (4.34)

wπ
0,g,i = wIP

i P(t)
i (Gi = g){Oi(1−Yi)+(1−Oi)P

(t)
i (Yi = 0|Gi = g)}, (4.35)

w f
g,1,i,k = wIP

i P(t)
i (Gi = g)[OiYi +(1−Oi)P

(t)
i (Yi = 1|Gi = g)][∆i1(Xi = tk)

+E(t)
i (Ai|Gi = g,Yi = 1)P(t)

i (Ti1 = tk|Gi = g,Yi = 1)], (4.36)

w f
g,0,i,k = wIP

i P(t)
i (Gi = g)[Oi(1−Yi)+(1−Oi)P

(t)
i (Yi = 0|Gi = g)][∆i1(Xi = tk)

+E(t)
i (Ai|Gi = g,Yi = 0)P(t)

i (Ti1 = tk|Gi = g,Yi = 0)], (4.37)

wS
g,1,i = wIP

i 1(Mi = “?′′)P(t)
i (Gi = g)[OiYi +(1−Oi)P

(t)
i (Yi = 1|Gi = g)]. (4.38)

wS
g,0,i = wIP

i 1(Mi = “?′′)P(t)
i (Gi = g)[Oi(1−Yi)+(1−Oi)P

(t)
i (Yi = 0|Gi = g)]. (4.39)

S-STEP

The S-step is achieved by finding the maximizer of Q(θ|θ(t)). It is easy to check that the

Q function Q(θ|θ(t)) is a sum of three parts with parameterseparated. Indeed,

Q(θ|θ(t)) = lmulti(γ)+ lglm(α)+ lcox(β,λ1, · · · ,λK), (4.40)
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where

lmulti(γ) =
n

∑
i=1

∑
g

wp
g,i log pg

i , (4.41)

lglm(α) =
n

∑
i=1

∑
g

[
wπ

1,g,i logπi(Gi = g)+wπ
0,g,i log(1−πi(Gi = g))

]
, (4.42)

and

lcox(β,λ1, · · · ,λK) (4.43)

=
n

∑
i=1

∑
g

[ K

∑
k=1

w f
g,1,i,k log fi(tk|Gi = g,Yi = 1)

+
K

∑
k=1

w f
g,0,i,k log fi(tk|Gi = g,Yi = 0)

+wS
g,i,1 logSi(Xi|Gi = g,Yi = 1)+wS

g,0,i logSi(Xi|Gi = g,Yi = 0)
]
. (4.44)

Therefore, the S-step can be achieved by solving three weighted regression problems, which can

be easily done with the existing software.

The E-step and S-step are alternately repeated until the overall change of parameters (e.g.

L2 norm) is below a prespecified threshold 0.0001. We use the final result as our estimator.

Analogous to Section 4.3.3, we have

Theorem 4.4.0.1. Under assumptions given in the online supplement A, (γ̂, α̂, β̂, Λ̂(t)) is consis-

tent for (γ0,α0,β0,Λ0(t)) uniformly, that is,

γ̂− γ0→ 0, α̂−α0→ 0, β̂−β0→ 0, sup
t∈[0,τ]

|Λ̂(t)−Λ0(t)| → 0 a.s.. (4.45)

Theorem 4.4.0.2. Under assumptions given in the online supplement A, the standardized term
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√
n(θ̂−θ0) converges weakly to a Gaussian process in Θ̃, more specifically,

√
n(θ̂−θ0)→d −Ψ̇

−1(θ0)G(ψθ0), (4.46)

where Ψ̇ and ψθ0 are given in the online supplement A, G is a Brownian Bridge.

The proofs of Theorem 4.4.0.1 and 4.4.0.2 are given in the online supplement A. By

writing θ̂ = (γ̂, α̂, β̂, λ̂1, · · · λ̂K), the true value θ0 = (γ0,α0,β0,λ01, · · ·λ0K), where the estimated

jumps λ̂k = Λ̂(tk)− Λ̂(tk−1) and the true differences λ0k = Λ0(tk)−Λ0(tk−1), we have

√
n(θ̂−θ0)−→d N (0,Ω−1

ΣΩ
−1). (4.47)

The variance estimates are the same as (4.23) and (4.24) except changes in the score Si(θ) and

negative Hessian Hi(θ), which are given in the online supplement A.

4.5 Birth Defect Data Analysis

In this analysis, we consider the confounders identified in the original analysis that was

submitted the US FDA, which included asthma (yes/no), maternal height and referral source. A

key step in identifying the confounders was to examine whether or not the relationship between the

exposure and the outcome was altered by including or excluding the covariate in question; more

investigation on confounder selection for birth defect studies was carried out in [XHC18] The

purpose of the first part of the analysis here is to investigate the robustness of the original analysis

results with respect to the handling of missing major birth defect outcomes. The distribution of

the covariates are summarized in Table 4.3.

Figure 4.3 shows the distribution of Q, i.e. gestational age at enrollment for women in

the etanercept study, as well as the Kaplan-Meier (KM) estimate of the time to SAB/stillbirth

distribution accounting for left truncation.
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4.5.1 Average treatment effect

We used the R package “twang” [RMM+17] to estimate the propensity score P̂(Di = 1|Vi)

with the above identified confounders, which was then used to form the stabilized weights as in

(4.7). The convergence of the ES algorithm was achieved when the overall change (in L2 norm)

of the parameters values between two consecutive steps was less than 0.00001. The estimates

and their standard errors etc. are presented in Table 4.4.

From the table we see that the estimated βY > 0 is consistent with the known “terathanasia”

theory mentioned before. However, it has a very wide 95% confidence interval (CI), which is

perhaps not surprising as we only had two observed major birth defect outcome Yi’s among the

27 SAB/stillbirth events. The results otherwise show that etanercept has a significant effect in

increasing major birth defects, with an causal odds ratio close to 3 which is consistent with

the original analysis. In addition, etanercept has a negative albeit not significant effect on

SAB/Stillbirth, reducing the hazard to less than half of the unexposed.

Due to the little confidence we have in the estimated βY as reflected in its wide CI, we

further conduct a sensitivity analysis to examine the robustness of our conclusion about the ATE

αD with respect to the value of βY , which affects the probability of major birth defects among

those with missing values. Following the theory of terathanasia, we restrict βY to be non-negative,

and vary it on the interval [0,5]; note that 5 would be considered an extremely large log hazard

ratio. Figure 4.4 shows the posterior probabilities of the 27 subjects (ordered by their SAB event

times) with missing major birth defect, which increase as βY becomes larger.

Figure 4.5 shows the sensitivity analysis results. Note that as βY increases past 1.4,

αD becomes non-significantly different from zero at 0.05 level two-sided. This makes sense

because as more missing major birth defect outcomes become ‘yes’, the rates of major birth

defect between the exposed and unexposed groups become less differentiated. Meanwhile, βD

becomes significantly less than zero, implying that exposure to etanercept reduces the risk of

spontaneous abortion. Such a mechanism allows more malformed fetus in the exposed group,
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which would have had a high chance of being spontaneously aborted had the women not been

exposed to etanercept, to develop into live born infants.

4.5.2 Principal effects

Under the principal strata models (4.26) - (4.28), more parameters need to be estimated

than that when estimating the ATE. The ES algorithm failed to converge with so few events and

the missing major birth defects.

As we state in Section 4.4, most missing subjects come from subgroups O(0,1) and

O(1,1), which consist of (NS, NN) and NN, respectively. Consequently, both outcomes and

predictors (Y and G) are almost missing within those subgroups. Regressing on NS and NN is im-

possible. Owing to the fact that the missing outcomes in O(0,1) and O(1,1) are mainly controlled

by (α0,NS,α0,NN,αD,NN, it seems natural to offset them and investigate how α̂D,SS reacts. To this

end, we allow α0,NS, α0,NN, αD,NN) to range in {−2,−1,0}, {−2,−1,0}, {−2,−1,0,1,2}, and

examine how α̂D,SS changes accordingly. The non-positive ranges of (α0,NS,α0,NN) are chosen

to respect the birth defect rate around 10% in the whole population. The sensitivity here does not

only serve for the purpose of offsetting some unknown parameters for us to estimate parameters of

interest, but also plays a similar role as in the sensitivity analysis in Section 4.5.1. Indeed, though

directly tuning the effect of “terathanasia” in Section 4.5.1, this eventually leads to our belief in

the constitution of real birth defects among those missing subjects, see Figure 4.4. Under principal

stratification, we cannot directly tune “terathanasia”, as explained in Section 4.4. Nonetheless,

we are able to vary probabilities of birth defects among missing subjects, which is achieved

by varying (α0,NS,α0,NN,αD,NN) also. By varying those parameters, we mainly target the birth

defects probabilities of all missing subjects in O(0,1), O(1,1) and O(1,?). More discussion on

tuning “terathanasia” in the context of principal stratification can be found in Section 4.6.

The resulted α̂D,SS and corresponding P-values with respect to different offset values are

given in Figure 4.6.
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From Figure 4.6, it is seen that the principal effect of etanercept on major birth defect

among the always-survivors remains significant with an estimated OR over 3. This implies that if

a pregnant diseased woman will not experience SAB regardless of the exposure status, etanercept

exposure increases her risk of major birth defects.

As a secondary interest, we estimate the treatment effect of etanercept on SAB/Stillbirth.

In particular, we report the estimated log of odds ratio

log
{
P̂(M(1) = 1)/P̂(M(1) = 0)
P̂(M(0) = 1)/P̂(M(0) = 0)

}
. (4.48)

Since P(M(1) = 1,M(0) = 0) = 0 by monotonicity assumption, the odds ratio in (4.48) can be

rewritten as,

P̂(M(1) = 1)/P̂(M(1) = 0)
P̂(M(0) = 1)/P̂(M(0) = 0)

(4.49)

=
P̂(M(1) = 1,M(0) = 1)

/
[P̂(M(1) = 0,M(0) = 1)+ P̂(M(1) = 0,M(0) = 0)]

[P̂(M(1) = 1,M(0) = 1)+ P̂(M(1) = 0,M(0) = 1)]
/
P̂(M(1) = 0,M(0) = 0)

=
exp(γ̂NN)

[exp(γ̂NS)+ exp(γ̂NN)][1+ exp(γ̂NS)]
. (4.50)

We apply the delta method to get a variance estimate of (4.48). This enables us to draw inference

without refitting another model. The result is presented in 4.7.

As one can tell, in most cases, etanercept has a non-significant negative treatment effect on

SAB/Stillbirth. Especially, the significance is explained away as α0,NN becomes smaller, αD,NN

becomes larger and α0,NS becomes larger. This can be explained by Figure 4.8 given below. One

can see as α0,NN becomes smaller, αD,NN becomes larger and α0,NS becomes larger, P̂(G = NS)

decreases and P̂(G = NN) increases, resulting in an increase of the treatment effect seen by (4.50).

One explanation is, the amount of belief in the proportion of birth defect in O(0,1) is explained

more by α0,NS but stays invariant in the sensitivity analysis, therefore pushing the stratum NS to

shrink.
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We are also curious about the estimated principal strata membership for those subjects in

O(0,1) (above) and O(0,1), as in Table 4.5. We choose two extreme cases and one middle case

((α0,NS,α0,NN,αD,NN) are equal to (−2,−2,−2), (−1,−1,0) and (0,0,2)) to present. It suffices

to just give P̂(Gi = NS|O) in 4.9 in O(0,1) (above) and O(0,1) since they are just mixtures of

two strata. The rest 6 subjects in O(0,?) and O(1,?) is presented in the online supplement A, for

simplicity.

As the figures reflect, the pattern of P̂(Gi = NS|O) stays unchanged with respect to the

sensitivity parameters. We basically believe the O(0,1) is equally divided into NS and NN, with

5% of O(1,0) originating from NS.

Finally, we also present P̂(Y = 1|O) in Figure 4.10, compared with Figure 4.4. We

also show the result based on two extreme cases and one middle case ((α0,NS,α0,NN,αD,NN)

are equal to (−2,−2,−2), (−1,−1,0) and (0,0,2)). The pattern looks clearly different but

is due to difference in modeling assumptions. P̂(Y = 1|O) goes higher for each subject as

(α0,NS,α0,NN,αD,NN) increases. The average P̂(Y = 1|O) for the control arm is around 10%

as we compute, to respect the population birth defect rate, which validates the choice of the

sensitivity range. As we expected, the posterior probability increase as three parameters all

increase. We see that subjects within the treatment arm has a higher probability in blue lines,

since αD,NN = 2.

Note that there is a difference between the sensitivity analysis here and that in Section

4.5.1. We both examine how the treatment effect of etanercept changes with the change in the

sensitivity parameter. However, in Section 4.5.1, because of the high variability of β̂Y (βY in

(4.5)), we offset βY , which also reflects the effect of terathanasia in theory. Here, we simply offset

the other parameters because of data shortage. More discussion on how to adjust the effect of

terathanasia under principal stratification can be found in Section 4.6. One simple reason here is,

otherwise, we have to offset too many parameters.
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4.6 Discussion

In this paper we have considered prospective pregnancy cohort studies where spontaneous

abortion often results in unknown major birth defect outcomes. By convention of coding in

the database a pregnancy is recorded as no birth defects unless one is found. In the meanwhile

established terathanasia theory tells us that a malformed fetus have an increased chance of being

aborted early(?). By modeling the missing major birth defect mechanism after the terathanasia

theory, we are able to turn the MNAR problem of major birth defect into an MAR setting by

including information on the spontaneous abort outcome.

Missing outcome is the leading problem in this study. Other possible techniques exist

for handling other than EM algorithm that we adopt for ATE [LR19], for instance, multiple

imputation [Rub96, Rub04], which also enables a complete data analysis. However, we note

that this still fails in the case of estimating principal effects. A frequentist multiple imputation

[WR98, RW00] requires an initial estimate based on the observed data with a variance estimate,

which we do not have. Apart from the real data issue, multiple imputation shall only be used with

missing rate lower than 40% (90% for some PS in our case), otherwise leading to a severe bias,

as pointed out in [WR98, RW00].

Another feature of these prospective pregnancy cohort studies is left truncation, which

leads to selection bias as early aborted pregnancies tend not to be captures in the study. In the

etanercept data set, the earliest gestational age at study enrollment is 3.9 weeks, therefore all

conclusions only apply to the population of pregnancies that have lasted at least 3.9 weeks. Given

this condition, survival analysis method is able to properly handle any remaining bias that might

otherwise result from the differential gestational ages at enrollment. This applies to both major

birth defects as well as time to spontaneous abortion as both outcomes are analyzed together.

Left truncation, however, does reduce the number of observed SAB events in the data.

Major birth defects, on the other hand, is known to be a rare outcome in the population.2 Both

2https://www.cdc.gov/ncbddd/birthdefects/macdp.html
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lead to very limited number of events, given the moderate sample sizes of this type of prospective

pregnancy cohort studies. In alleviating the problem we have carried out sensitivity analysis

with respect to the missing data model parameter βY , which can also be seen as a special case of

Bayesian analysis.

A second objective of this paper is to properly handle the post exposure variable live birth

versus SAB. We found principal strata to be a useful framework for this.

We notice that there are two ways of principally stratifying the population: one adopted

by us in Section 4.4 and the other by further introducing (M(d,y),T (d,y), where we will have

M(d) = Y (d)M(d,1)+ (1−Y (d))M(d,0), T (d) = Y (d)T (d,1)+ (1−Y (d))T (d,0). Then we

can investigate the principal effects within the 16 subpopulations stratified by M(d,y). Intro-

ducing more strata enables us to explore more quantities of scientific interest at the expense of

exponentially increased number of parameters. Note that stratifying by M(d,y) enables us to

directly tune the effect of “terathanasia” under principal stratification, for instance, by tuning

the relative size of the stratum (M(1,1),M(1,0),M(0,1),M(0,0)) = (1,0,1,0) compared to the

stratum (M(1,1),M(1,0),M(0,1),M(0,0)) = (0,0,0,0). We choose our framework for the sake

of parsimony.

Although we do not explore on this it in this project, one should note that our procedure

is ready for it. If we put assumptions on the regression model, we could get an estimate for the

heterogeneous treatment effect conditional on any level v (or a subset L of V ).

To handle observational nature, we adopt a propensity score-based method. As discussed

about heterogeneous treatment effect, the regression-based method can serve as an alternative, so

are doubly robust estimators for causal odds ratio [Che07, TTRR09, ZVVS19], taking account

into the missingness and left truncation.

The principal effects can be seen as lying between ATE and CATE (strictly speaking,

this holds if we include G into V ). The effect of the treatment D on (M,T ) can be decomposed

into a direct effect and an indirect effect through Y , see Figure 4.1 and Figure 4.2. As noted
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by [Pea01], the controlled direct and the controlled indirect effect are particularly relevant for

the policy-making whereas the natural direct and the natural indirect effect are more useful for

understanding the underlying mechanism by which the exposure operates. We write“natural

principal effect” or “controlled principal effect” here when the population is stratified by M(d) or

M(d,y), respectively. People can instead estimate the principal effects when the population is

stratified by M(d,y) = 0 for d,y = 0,1. One can have a better interpretation of the mechanism of

both d and y on M. However, we should note that the number of strata increases exponentially

with the number of distinct complications.

In our case, SAB and TAB can act as competing risks. Removing the selection bias

induced by the left truncation requires knowledge on the overall survival function. This, however,

requires a good estimate of the competing event distribution. Our data is inadequate to deal with

this since we only observe 4 TAB in total. To fix this problem, we assume TAB is non-informative,

which can be treated as independent censoring.
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Table 4.1: Missing major birth defects by pregnancy outcomes

Exposed (n = 336) Unexposed (n = 158)
Birth Defect Yes No Missing Yes No Missing
Live Birth 30 287 5 139
SAB 13 1 12
Stillbirth 1
TAB 3 1
LTFU 2

D Y M,T O

V

Figure 4.1: The causal directed acyclic graph

D d Y (d) M(d),T (d) O(d)

V

Figure 4.2: The single world intervention graph

Table 4.2: Division of the whole population into four principal strata

M(1)
0 1

M(0)
0 Always-survivors (SS) Control-survivors (SN)
1 Treatment-survivors (NS) Never-survivors (NN)
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Table 4.4: Estimated parameters including the ATE from the etanercept data

Estimate Standard Error exp(Estimate) 95% CI of OR/HR P-value
αc -3.336 0.443 0.035 (0.014, 0.084) <0.001
αD 1.093 0.489 2.983 (1.144, 7.779) 0.025
βD -0.801 0.498 0.448 (0.169, 1.191) 0.107
βY 0.485 1.935 1.624 (0.036, 72.067) 0.802

Table 4.3: Distribution of the identified confounders in etanercept study: mean (SD) or n (%).

Confounders Exposed (n = 336) Unexposed (n = 158)
Asthma 45 (13.4%) 32 (20.3%)
Maternal Height (cm) 165 (6.98) 167 (7.01)
Referral Source:∗

Type I 26 (7.7%) 65 (41.1%)
Type II 199 (59.2%) 52 (32.9%)
Type III 111 (33.1%) 41 (26.0%)

∗I: TIS; II: Pharmaceutical Company/Sponsor, Healthcare Professional; III: Patient Support Group, Internet, or
Other.
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Figure 4.3: Distribution of gestational age at study enrollment (left) and KM estimate for time
to SAB/stillbirth (right)
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missing major birth defect outcomes, ordered by censored event time; red line is when βY is set
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Table 4.5: Correspondence between the observed O(D,Mobs) groups and the latent principal
strata

O(D,Mobs) Size Birth Defects Missing Defects Principal Strata
O(0,0) 144 5 0 SS
O(0,1) 13 1 12 NS, NN
O(0,?) 1 1 0 SS, NS, NN
O(1,0) 317 30 0 SS, NS
O(1,1) 14 0 13 SS
O(1,?) 5 3 2 SS, NS, NN
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Figure 4.6: Levelplots of estimated α̂D,SS (above) and P-values (below), with the corresponding
offset α0,NS on the subtitles. The offset parameters α0,NN and αD,NN range in {−2,−1,0},
{−2,−1,0,1,2}. The treatment effect within always-survivors stays significantly positive at
significance level 0.05.
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P-values (below), with the corresponding offset α0,NS on the subtitles. The offset parameters
α0,NN and αD,NN range in {−2,−1,0}, {−2,−1,0,1,2}.
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4.7 Appendix

4.7.1 Proofs of Main Results and the Weighted EM Steps in Section 4.3

Denote the parameter set Θ = {ϑ} as a subset of

R2×R2×{cumulative hazards on [0,τ]},

equipped with the norm

|| · ||∞ + || · ||∞ + || · ||TV , (4.51)

where || · ||∞ is the sup norm and || · ||BV is the total variation norm. Define H0 as the unit ball in

the space of functions on [0,τ] with bounded variations, equipped with the total variation norm.

Define

H = [−1,1]2× [−1,1]2×H0.

Note that H is uniformly bounded with an envelope, that is, an upper bound (1,1,1[0,τ]) ∈H .

We use l∞(H ) to represent the set of all the uniformly bounded, real-valued functions on H , that

is, all functions z : H −→ R such that

||z||l∞(H ) = sup
h∈H
|z(h)|< ∞.

Write the score operator induced by the complete data as Ac
ϑ

: Hϑ −→ L2(Pϑ), where ϑ ∈ Θ.

When Ac
ϑ

acts on h = (h1,h2,h3) ∈ [−1,1]2× [−1,1]2×H0, the score takes the form,

Ac
ϑ(h) = h>1

∂lc(ϑ)

∂α
+h>2

∂lc(ϑ)

∂β
+Bϑ(h3), (4.52)
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where, by setting z1 = (1,d)> and z2 = (d,y)>, we have

∂lc(ϑ)

∂α
= z1

(
y− eα>z1

1+ eα>z1

)
, (4.53)

∂lc(ϑ)

∂β
= z2

[
δ+a−

(
Λ0(x)+

a

∑
j=1

Λ0(t· j)
)

exp(β>z2)
]
, (4.54)

Bϑ(h3) = δh3(x)+
a

∑
j=1

h3(t· j)− exp(β>z2)
∫ [

1(0,x)+
a

∑
j=1

1(0, t· j)
]
h3dΛ. (4.55)

Define another score operator ψϑ as

ψϑ(h) = wIPEϑ(Ac
ϑ(h)|O). (4.56)

Note that ϑ enters into both Ac
ϑ

and the conditional expectation.

Write the empirical measure as Pn and the underlying probability measure as Pϑ0 . Define

a random map Ψn : Θ−→ l∞(H ) by

Ψn(ϑ)(h) = Pn(ψϑh)−Pϑ(ψϑh). (4.57)

Define a deterministic map Ψ : Θ−→ l∞(H ) as

Ψ(ϑ)(h) = Pϑ0(ψϑ(h))−Pϑ(ψϑ(h)). (4.58)

The estimator ϑ̂ and the true parameter ϑ0 are the solutions to Ψn(ϑ) = 0 and Ψ(ϑ) = 0.

We prepare a remark that will be useful for the proof of Theorem 4.3.3.2.

Remark 4.7.1.1. By definition, Ac
ϑ

is the score operator induced by the complete data density. We
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can repeat the same procedure and obtain the score operator Ao
ϑ

for the observed data density. By

inserting all one dimensional submodels through ϑ0 and computing their scores, we find that

Ao
ϑ(h) = Eϑ(Ac

ϑ(h)|O). (4.59)

Hence ψϑ can be seen as the score operator of the weighted observed data density. That is,

ψϑ = wIPAo
ϑ(h). (4.60)

Our proofs mainly rely on the Z-estimation theory developed in [VDVW96, Chapter 3.3],

[VdV00, Chapter 25.12], and [Kos08, Chapter 13]. The proofs are quite straightforward based on

our assumptions. More thoughts about relaxing the assumptions can be considered but are beyond

our scope. More information about Fréchet derivatives can be found in [BKB+93, Appendix

A.5].

In addition to assumptions in the main paper, we assume the followings for both Theorem

4.3.3.1 and Theorem 4.3.3.2.

Assumption 4.7.1.1. The true parameter (α0,β0,Λ0) is within the interior of a compact set

{(α,β,Λ) : ||α||∞∨||β||∞∨||Λ||TV ≤ D} for some constant D.

Assumption 4.7.1.2. The map Ψ is one-to-one.

Proof of Theorem 4.3.3.1

We apply Theorem 2.10 in [Kos08]. Accordingly, it suffices to verify:

1. ||Ψn(ϑ̂)||l∞(H )→P 0;

2. {ψϑ(h) : ||ϑ−ϑ0||< δ,h ∈H } is Pϑ0-Gilvenko-Cantelli;

3. ||Ψ(ϑn)||l∞(H )→P 0 implies ϑn→ ϑ0 for any sequence {ϑn} ∈Θ.
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Condition 1 is immediate by the definition of ϑ̂.

The index set {ψϑ(h) : ||ϑ−ϑ0|| < δ,h ∈ H } will be shown to be Pϑ0-Donsker in the

proof of Theorem 4.3.3.2, hence being Pϑ0-Gilvenko-Cantelli.

To verify Condition 3, it suffices to prove [Kos08, Section 13.1] that Ψ(ϑ0) = 0, which is

automatic, and that Ψ : Θ−→ l∞(H ) is one-to-one, assumed by Assumption 4.7.1.2.

The consistency of ϑ̂ for ϑ0 thus follows.

We further assume the following for Theorem 4.3.3.2.

Assumption 4.7.1.3. The Fréchet derivative Ψ̇(ϑ0) : Θ −→ l∞(H ) of Ψ at ϑ0 is continuously

invertible.

Proof of Theorem 4.3.3.2

To prove asymptotic Gaussianity, we adopt Theorem 3.3.1, together with Lemma 3.3.5, in

[VDVW96] (or similarly, as pointed out in the Section 3 in [BW07] for weighted complete data

likelihood). The theorem states that when the following conditions (referred later as condition

1-4) are satisfied,

1. The set {ψϑ(h) : ||ϑ−ϑ0||< δ,h ∈H } for some δ > 0 is Pϑ0-Donsker;

2. suph∈H Pϑ0 [(ψϑh−ψϑ0h)2]→ 0 whenever ϑ→ ϑ0;

3. The map Ψ has a Fréchet derivative Ψ̇ at ϑ0 that is continuously invertible on its range;

4. ϑ̂ is consistent for ϑ0 and satisfies Ψn(ϑ̂) = 0;

we have

√
n(ϑ̂−ϑ0) =−Ψ̇

−1(ϑ0)Gn(ψϑ0)+oP(1)→d −Ψ̇
−1(ϑ0)G(ψϑ0), (4.61)
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where Gn is the empirical process
√

n(Pn−Pϑ0) and G is the Pϑ0-Brownian bridge.

To prove condition 1, we recall some basic properties of Donsker classes:

• All functions that are of variation bounded by one form a Donsker class [VdV00, Example

19.11].

• The sum of two Donsker classes with an integrable envelope function is Donsker [VDVW96,

Example 2.10.7].

• A Donsker class multiplied by a uniformly bounded, measurable function remains Donsker

[VDVW96, Example 2.10.10].

• Closures and convex hulls of Donsker classes remain Donsker [VDVW96, Theorem 2.10.2,

Theorem 2.10.3]. Therefore, the conditional expectation, which can be seen as the L2 limit

of a sequence of convex combinations by its definition, preserves Donsker property.

We separate the complete data scores (4.53), (4.54) and (4.57) into two parts A1,ϑ and

A2,ϑ: the one without and the other one involving the ghost copies.

∂lc,1(ϑ)

∂α
= z1

(
y− eα>z1

1+ eα>z1

)
, (4.62)

∂lc,1(ϑ)

∂β
= z2

[
δ−Λ0(x)exp(β>z2)

]
, (4.63)

Bc
1,ϑ(h3) = δh3(x)− exp(β>z2)

∫
1(0,x)(u)h3(u)dΛ(u), (4.64)

and

∂lc,2(ϑ)

∂α
= 0, (4.65)
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∂lc,2(ϑ)

∂β
= z2

[
a−

a

∑
j=1

Λ0(t· j)exp(β>z2)
]
, (4.66)

Bc
2,ϑ(h3) =

a

∑
j=1

h3(t· j)− exp(β>z2)
∫ a

∑
j=1

1(0,t· j)(u)h3(u)dΛ(u). (4.67)

We show that, after conditional expectation and multiplication with IP weights, both of them are

Donsker, so is their sum.

The variables y, δ, z1 and z2 that enter into the complete data scores (4.62), (4.63) and

(4.64) are bounded since they are binary. Parameters α, β and Λ are bounded by Assumption

4.7.1.1. The index set H is Donsker by its definition. Therefore, (4.62), (4.63) and (4.64) are

Donsker, so are them after conditional expectation. IP weights, by Assumption 4.2.3.4, are

uniformly bounded, measurable functions. We conclude that {wIPE(A1,ϑ|O) : ||ϑ−ϑ0||< δ,h ∈

H } is Donsker.

After taking conditional expectation on A2,ϑ, (4.65), (4.66) and (4.67) become

Eϑ

[
∂lc,2(ϑ)

∂α

∣∣∣∣O]= 0, (4.68)

Eϑ

[
∂lc,2(ϑ)

∂β

∣∣∣∣O]= z2Eϑ(A|z2)
[
1−Eϑ(Λ0(T·1)exp(β>z2)|A,z2

]
, (4.69)

and

Eϑ[Bc
2,ϑ(h3)|O] (4.70)

= Eϑ(A|z2)

[
E(h3(T·1|A,z2)− exp(β>z2)E

(∫
1(0,T·1)(u)h3(u)dΛ(u)

∣∣∣∣A,z2

)]
. (4.71)

The term E(A|z2) = 1/P(T > Q|z2)− 1 is bounded by Assumption 4.2.3.6. Other parts go
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through similar to those in the first part, by which we reach to the conclusion that {wIPE(A2,ϑ|O) :

||ϑ−ϑ0||< δ,h ∈H } is Donsker. Condition 1 is verified.

We obtained an envelope function for {ψϑ(h) : ϑ ∈Θ,h ∈H } when proving condition 1.

By Dominated Convergence Theorem, condition 2 simplifies to showing pointwise convergence

of ψϑ(h) to ψϑ0(h), uniformly in h ∈ H . This follows from the facts that Ac
ϑ
(h) converges to

Ac
ϑ0
(h) pointwisely, uniformly in h ∈H whenever ϑ→ ϑ0, and that the conditional expectation

is a continuous operator.

For condition 3, heuristically, Fubini’s Theorem implies Fréchet differentiability of Ψ

at ϑ0. By computing the Gâteaux derivative, we find that the Fréchet derivative Ψ̇ (the Fréchet

derivative coincides with the Gâteaux derivative when an operator is Fréchet differentiable) at

ϑ0 is −Pϑ0(w
IPAo∗

ϑ
Ao

ϑ
), where Ao∗

ϑ
is the adjoint operator of Ao

ϑ
, see [VdV00, Equation (25.91)].

The continuous invertibility of Ψ̇(ϑ0) in Condition 3 is assumed in Assumption 4.7.1.3.

Condition 4 is immediate by Theorem 4.3.3.1.

These finish the proof.

Variance Estimation

The ES algorithm presented in the main text is a specific case of [ER04] by taking

U (1)(Y obs,S(Y c),ϑ) = S(Y c) and S(Y c), following their notation, as the derivatives ∂lc
w(ϑ)
∂ϑ

of the

weighted complete data likelihood lc
w(ϑ) in (4.8) with respect to (α,β,λ1, · · · ,λK).

The Louis’ formula in [ER04, Page 5] proved to provide a valid variance estimate for

estimator derived from a finite number of estimating equations. We show this formula is still

valid in our case with an infinite number of estimating equations.

We first depict the formula. Within our context, an estimate of the asymptotic variance of

θ̂ = (α̂, β̂, λ̂1, · · · , λ̂K) is given by

(
1
n

n

∑
i=1

∂

∂θ
Ui(θ)

)−1(1
n

n

∑
i=1

Ui(θ)Ui(θ)
>
)(

1
n

n

∑
i=1

∂

∂θ
Ui(θ)

>
)−1∣∣∣∣

θ=θ̂

, (4.72)
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where

Ui(θ) = wIP
i Eθ

(∂lc
w,i(θ)

∂θ

∣∣∣O), (4.73)

and lc
w,i(θ) is the contribution from the i-th subject in (4.8). This in turn, can provide a variance

estimate of ϑ̂ as an element in Θ. To prove so, it suffices to show that this variance estimate is

valid for any finite choices of h1, · · · ,hL.

An initial variance estimate might be, informally writing, based on approximating the

variance of −Ψ̇−1
n (ϑ̂)G(ψϑ0). However, Ψ̇n(ϑ̂) may not be invertible as an operator on Θ.

Nonetheless, since we are interested in providing a variance estimate for a finite dimen-

sional estimator, we may project
√

n(ϑ̂−ϑ0) into the finite dimensional set Θ1, where Θ1 ⊂Θ is

defined as subset of

R2×R2×{cumulative hazards on [0,τ] with nonnegative jumps only at t1 < · · ·< tK},

which can be identified as a subset of R2+2+K equipped with the sup norm. It is easy to show that

Ψ̇n(ϑ̂) stay invariant under this projection, which by (4.61) yields

√
n(ϑ̂−ϑ0)→ N(0,(Ψ̇n(ϑ̂)+oP(1))−1E(ψϑ0ψ

>
ϑ0
)(Ψ̇n(ϑ̂)+oP(1))−1)>. (4.74)

Within this set, the operator Ψ̇n(ϑ̂) is indeed invertible, thus giving us a variance estimate as

Ψ̇
−1
n (ϑ̂)En(ψϑ̂

ψ
>
ϑ̂
)(Ψ̇−1

n (ϑ̂))> (4.75)

Implementation of the weighted EM Algorithm

In this section, we present E-functions, the scores and the negative Hessians.

E-FUNCTIONS
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We use θ(t) and superscript (t) to represent t-th iteration ES parameter and conditioning

on θ(t). At the (t +1)-th iteration (t = 0,1, · · ·), we have

P(t)(Y mis
i = 1|Di,Ti > Xi,Qi) =

π
(t)
i S(t)i (Xi|Yi = 1)

π
(t)
i S(t)i (Xi|Yi = 1)+(1−π

(t)
i )S(t)i (Xi|Yi = 0)

, (4.76)

P(t)(Y mis
i = 1|Di,Ti = Xi,Qi) =

π
(t)
i f (t)i (Xi|Yi = 1)

π
(t)
i f (t)i (Xi|Yi = 1)+(1−π

(t)
i ) f (t)i (Xi|Yi = 0)

, (4.77)

E(t)(Ai|Di,Yi = 1,Qi) =
1−S(t)i (Qi|Yi = 1)

S(t)i (Qi|Yi = 1)
, (4.78)

E(t)(Ai|Di,Yi = 0,Qi) =
1−S(t)i (Qi|Yi = 0)

S(t)i (Qi|Yi = 0)
, (4.79)

P(t)(Ti1 = tk|Di,Yi = 1,Qi) =
1(tk < Qi) f (t)i (tk|Yi = 1)

1−S(t)i (Qi|Yi = 1)
, (4.80)

P(t)(Ti1 = tk|Di,Yi = 0,Qi) =
1(tk < Qi) f (t)i (tk|Yi = 0)

1−S(t)i (Qi|Yi = 0)
, (4.81)

E(t)
[
Yi

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Di,Ti > Xi,Qi

]
= P(t)(Yi = 1|Di,Ti > Xi,Qi)E(t)(Ai|Di,Yi = 1,Qi)

·P(t)(Ti1 = tk|Di,Yi = 1,Qi), (4.82)
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E(t)
[
(1−Yi)

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Di,Ti > Xi,Qi

]
= (1−P(t)(Yi = 1|Di,Ti > Xi,Qi))E(t)(Ai|Di,Yi = 0,Qi)

·P(t)(Ti1 = tk|Di,Yi = 0,Qi), (4.83)

E(t)
[
Yi

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Di,Ti = Xi,Qi

]
= P(t)(Yi = 1|Di,Ti = Xi,Qi)E(t)(Ai|Di,Yi = 1,Qi)

·P(t)(Ti1 = tk|Di,Yi = 1,Qi), (4.84)

E(t)
[
(1−Yi)

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Di,Ti = Xi,Qi

]
= (1−P(t)(Yi = 1|Di,Ti = Xi,Qi))E(t)(Ai|Di,Yi = 0,Qi)

·P(t)(Ti1 = tk|Di,Yi = 0,Qi), (4.85)

where the first two E-functions serve for missing outcomes and the remaining for left truncation.

Remark 4.7.1.2. Since Ti j, Ai are conditionally independent of Ti, we have

E(t)(Ai|Di,Yi,Ti = Xi,Qi) = E(t)(Ai|Di,Yi,Ti > Xi,Qi) = E(t)(Ai|Di,Yi,Qi), (4.86)

P(t)(Ti1 = tk|Ai,Di,Yi,Ti = Xi,Qi) = P(t)(Ti1 = tk|Di,Yi,Qi), (4.87)

and

E(t)
[ Ai

∑
j=1

1(Ti j = tk)
∣∣∣Di,Yi,Qi

]
= E(t)(Ai|Di,Yi,Qi)P(t)(Ti1 = tk|Di,Yi,Qi), (4.88)
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hence the last four E-functions.

Thus the Q function, that is, the expectation of the complete data log-likelihood given the

observed variables at the (l +1)-iteration, becomes

Q(θ|θ(t))

= ∑
∆i=0,Oi=1

wIP
i

{
Yi logπi +(1−Yi) log(1−πi)+ logSi(Xi)

}
+ ∑

∆i=0,Oi=0
wIP

i

{
P(t)

i (Y mis
i = 1) logπi +P(t)

i (Y mis
i = 0) log(1−πi)

+P(t)
i (Y mis

i = 1) logSi(Xi|Yi = 1)+P(t)
i (Y mis

i = 0) logSi(Xi|Yi = 0)
}

+ ∑
δi=1,Oi=1

wIP
i

{
Yi logπi +(1−Yi) log(1−πi)+ log fi(Xi)

}
+ ∑

∆i=1,Oi=0
wIP

i

{
P(t)

i (Y mis
i = 1) logπi +P(t)

i (Y mis
i = 0) log(1−πi)

+P(t)
i (Y mis

i = 1) log fi(Xi|Yi = 1)+P(t)
i (Y mis

i = 0) log fi(Xi|Yi = 0)
}

+
n

∑
i=1

wIP
i

{
E(t)

i

[
Yi

Ai

∑
j=1

log fi(Ti j|Yi = 1)+(1−Yi)
Ai

∑
j=1

log fi(Ti j|Yi = 0))
]}

.

Inference

To conduct inference, by setting Z1,i = (1,Di)
> and Z2,i = (Di,Yi)

>, we compute the

complete data scores and negative Hessians Hi(θ) for each subject i,

∂lc
i (θ)

∂α
= Z1,i

(
Yi−

eα>Z1,i

1+ eα>Z1,i

)
, (4.89)

∂lc
i (θ)

∂β
= Z2,i

[
∆i +Ai−

(
Λ0(Xi)+

Ai

∑
j=1

Λ0(Ti j)
)

exp(β>Z2,i)
]
, (4.90)
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∂lc
i (θ)

∂λk
=

∆i1(Xi = tk)+∑
Ai
j=11(Ti j = tk)

λk
(4.91)

−exp(β>Z2,i)
[
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
]
, (4.92)

− ∂2

∂2α
lc
i (θ) = Z⊗2

1,i
eα>Zi

(1+ eα>Zi)2
= Z⊗2

1,i P(Yi = 1|Z1,i)P(Yi = 0|Z1,i), (4.93)

− ∂2

∂2β
lc
i (θ) = Z⊗2

2,i

[
Λ0i(Xi)+

Ai

∑
j=1

Λ(Ti j)
]

exp(β>Z2,i), (4.94)

− ∂2

∂2λk
lc
i (θ) =

∆i1(Xi = tk)+∑
Ai
j=11(Ti j = tk)

λ2
k

, (4.95)

− ∂2

∂β∂λk
lc
i (θ) = Z2,i exp(β>Z2,i)

[
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
]
. (4.96)

All the other off-diagonal terms are zero. With the observed data, we can simulate the complete

data at θ̂, compute the complete data score Si and negative Hessians Hi, repeat 2000 times for

example, and average to get the variance estimate.

Sensitivity Analysis

When conducting the sensitivity analysis in Section 4.5.1, we offset βY at some prechosen

value βY,0. The dimension of parameters decreases by one. To obtain θ̂, it suffices to set

β
(t)
Y = βY,0 for any non-negative integer t in the ES algorithm. Here we adjust the scores and
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negative Hessians appeared in the variance estimate,

∂lc
i (θ)

∂α
= Z1,i

(
Yi−

eα>Z1,i

1+ eα>Z1,i

)
, (4.97)

∂lc
i (θ)

∂βD
= Di

[
∆i +Ai−

(
Λ0(Xi)+

Ai

∑
j=1

Λ0(Ti j)
)

exp(βDDi +βY,0Yi)
]
, (4.98)

∂lc
i (θ)

∂λk
=

∆i1(Xi = tk)+∑
Ai
j=11(Ti j = tk)

λk
(4.99)

−exp(βDDi +βY,0Yi)
[
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
]
, (4.100)

− ∂2

∂2α
lc
i (θ) = Z⊗2

1,i
eα>Zi

(1+ eα>Zi)2
= Z⊗2

1,i P(Yi = 1|Z1,i)P(Yi = 0|Z1,i), (4.101)

− ∂2

∂2βD
lc
i (θ) = D2

i

[
Λ0i(Xi)+

Ai

∑
j=1

Λ(Ti j)
]

exp(βDDi +βY,0Yi), (4.102)

− ∂2

∂2λk
lc
i (θ) =

∆i1(Xi = tk)+∑
Ai
j=11(Ti j = tk)

λ2
k

, (4.103)

− ∂2

∂βD∂λk
lc
i (θ) = Di exp(βDDi +βY,0Yi)

[
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
]
. (4.104)
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4.7.2 Proofs of the Main Results and ES steps in Section 4.4

Proofs of Theorem 4.4.0.1 and Theorem 4.4.0.2

The proofs are similar to those of of Theorem 4.3.3.1 and Theorem 4.3.3.2, thus we omit.

ES Steps for the Principal Effects

We still provide the E-functions of missing outcomes for completeness although we use

multiple imputation in the study.

E-STEP

We use θ(t) and superscript (t) to represent t-th iteration ES parameter and conditioning

on θ(t). At the (t+1)-th iteration (t = 0,1, · · ·), we present E-functions corresponding to different

observed groups, see Table 4.5,

• for i ∈ O(0, 0),

P(t)(Gi = g|Di = 0,Mi = 0,Ti > Xi,Qi) = 1, (4.105)

P(t)(Gi = g|Di = 0,Mi = 0,Yi = y,Ti > Xi,Qi) = 1, (4.106)

when g = SS,

P(t)(Gi = g|Di = 0,Ti > Xi,Qi) = P(t)(Gi = g|Di = 0,Yi = y,Ti > Xi,Qi) = 0, (4.107)

when g = NS,NN,

P(t)(Yi = 1|Gi = g,Di = 1,Ti > Xi,Qi) = π
(t)
i (Gi = g), (4.108)
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E(t)(Ai|Gi = g,Di = 0,Mi = 0,Yi,Qi) = 0, (4.109)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) = 0, (4.110)

for all g.

• for i ∈ O(0, 1),

P(t)(Gi = g|Di = 0,Ti = Xi,Qi) = P(t)(Gi = g|Di = 0,Yi = y,Ti = Xi,Qi) = 0, (4.111)

P(t)(Yi = 1|Gi = g,Di = 0,Mi = 1,Ti = Xi,Qi) = 0, (4.112)

E(t)(Ai|Gi = g,Di = 1,Mi = 0,Yi,Qi) = 0, (4.113)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) = 0, (4.114)

when g = SS,

P(t)(Gi = g|Di = 0,Ti = Xi,Qi)

=
∑y p(t)i (g)π(t)

i (Gi = g) f (t)i (Xi|Gi = g,Yi = y)

∑g=NS,NN ∑y p(t)i (g)P(t)(Yi = y|Gi = g) f (t)i (Xi|Gi = g,Yi = y)
, (4.115)

P(t)(Gi = g|Di = 0,Yi = y,Ti = Xi,Qi)

=
p(t)i (g)P(t)(Yi = y|Gi = g) f (t)i (Xi|Gi = g,Yi = y)

∑g=NS,NN p(t)i (g)P(t)(Yi = y|Gi = g) f (t)i (Xi|Gi = g,Yi = y)
, (4.116)
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P(t)(Yi = 1|Gi = g,Di = 0,Mi = 0,Ti = Xi,Qi)

=
π
(t)
i (Gi = g) f (t)i (Xi|Gi = g,Yi = 1)

∑y π
(t)
i (Gi = g) f (t)i (Xi|Gi = g,Yi = y)

, (4.117)

E(t)(Ai|Gi = g,Di,Yi = 1,Qi) =
1−S(t)i (Qi|Gi = g,Yi = 1)

S(t)i (Qi|Gi = g,Yi = 1)
, (4.118)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) =
1(tk < Qi) f (t)i (tk|Gi = g,Yi = 1)

∑h:th<Qi f (t)i (th|Gi = g,Yi = 1)
, (4.119)

when g = NS,NN.

• for i ∈ O(0, ?),

P(t)(Gi = g|Di = 0,Ti > Xi,Qi)

=
∑y p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)

∑g ∑y p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)
, (4.120)

P(t)(Gi = g|Di = 0,Yi = y,Ti > Xi,Qi)

=
p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)

∑g p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)
, (4.121)

when g = SS,NS,NN,

P(t)(Yi = 1|Gi = g,Di = 1,Mi =?,Ti > Xi,Qi) = 0, (4.122)

E(t)(Ai|Gi = g,Di = 0,Mi =?,Yi,Qi) = 0, (4.123)
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P(t)(Ti1 = tk|Gi = g,Di,Mi =?,Yi = 1,Qi) = 0, (4.124)

when g = SS,

P(t)(Yi = 1|Gi = g,Di = 1,Mi =?,Ti > Xi,Qi)

=
π
(t)
i (Gi = g)S(t)i (Xi|Gi = g,Yi = 1)

∑y π
(t)
i (Gi = g)S(t)i (Xi|Gi = g,Yi = y)

, (4.125)

E(t)(Ai|Gi = g,Di,Yi = 1,Qi) =
1−S(t)i (Qi|Gi = g,Yi = 1)

S(t)i (Qi|Gi = g,Yi = 1)
, (4.126)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) =
1(tk < Qi) f (t)i (tk|Gi = g,Yi = 1)

∑h:th<Qi f (t)i (th|Gi = g,Yi = 1)
, (4.127)

when g = NS,NN.

• for i ∈ O(1, 0),

P(t)(Gi = g|Di = 1,Ti > Xi,Qi) =
∑y p(t)i (g)

∑g=SS,NS p(t)i (g)
, (4.128)

P(t)(Gi = g|Di = 1,Yi = y,Ti > Xi,Qi)

=
p(t)i (g)P(t)(Yi = y|Gi = g)

∑g=SS,NS p(t)i (g)P(t)(Yi = y|Gi = g)
, (4.129)

P(t)(Yi = 1|Gi = g,Di = 1,Ti > Xi,Qi) = π
(t)
i (Gi = g) (4.130)
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when g = SS,NS,

P(t)(Gi = g|Di = 1,Ti > Xi,Qi) = P(t)(Gi = g|Di = 1,Yi = y,Ti > Xi,Qi) = 0, (4.131)

P(t)(Yi = 1|Gi = g,Di = 1,Ti > Xi,Qi) = 0, (4.132)

when g = SS,

E(t)(Ai|Gi = g,Di = 1,Mi = 0,Yi,Qi) = 0, (4.133)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) = 0, (4.134)

for all g.

• for i ∈ O(1, 1),

P(t)(Gi = g|Di = 1,Ti = Xi,Qi) = P(t)(Gi = g|Di = 1,Yi = y,Ti = Xi,Qi) = 0, (4.135)

P(t)(Yi = 1|Gi = g,Di = 1,Mi = 1,Ti = Xi,Qi) = 0, (4.136)

P(t)(Yi = 1|Gi = g,Di = 1,Ti > Xi,Qi) = 0, (4.137)

E(t)(Ai|Gi = g,Di = 1,Mi = 0,Yi,Qi) = 0, (4.138)
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P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) = 0, (4.139)

when g = SS,NS,

P(t)(Gi = g|Di = 1,Ti = Xi,Qi) = 1, (4.140)

P(t)(Gi = g|Di = 1,Yi = y,Ti = Xi,Qi) = 1, (4.141)

P(t)(Yi = 1|Gi = g,Di = 1,Mi = 1,Ti = Xi,Qi)

=
π
(t)
i (Gi = g) f (t)i (Xi|Gi = g,Yi = 1)

∑y π
(t)
i (Gi = g) f (t)i (Xi|Gi = g,Yi = y)

, (4.142)

E(t)(Ai|Gi = g,Di,Yi = 1,Qi) =
1−S(t)i (Qi|Gi = g,Yi = 1)

S(t)i (Qi|Gi = g,Yi = 1)
, (4.143)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) =
1(tk < Qi) f (t)i (tk|Gi = g,Yi = 1)

∑h:th<Qi f (t)i (th|Gi = g,Yi = 1)
, (4.144)

when g = NN.

• for i ∈ O(1, ?),

P(t)(Gi = g|Di = 1,Ti > Xi,Qi)

=
∑y p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)

∑g ∑y p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)
, (4.145)
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P(t)(Gi = g|Di = 1,Yi = y,Ti > Xi,Qi)

=
p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)

∑g p(t)i (g)P(t)(Yi = y|Gi = g)S(t)i (Xi|Gi = g,Yi = y)
, (4.146)

for any g,

P(t)(Yi = 1|Gi = g,Di = 1,Ti > Xi,Qi) = 0, (4.147)

E(t)(Ai|Gi = g,Di = 1,Mi = 0,Yi,Qi) = 0, (4.148)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) = 0, (4.149)

when g = SS,NS,

P(t)(Yi = 1|Gi = g,Di = 1,Ti > Xi,Qi)

=
π
(t)
i (Gi = g)S(t)i (Xi|Gi = g,Yi = 1)

∑y π
(t)
i (Gi = g)S(t)i (Xi|Gi = g,Yi = y)

, (4.150)

E(t)(Ai|Gi = g,Di,Yi = 1,Qi) =
1−S(t)i (Qi|Gi = g,Yi = 1)

S(t)i (Qi|Gi = g,Yi = 1)
, (4.151)

P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi) =
1(tk < Qi) f (t)i (tk|Gi = g,Yi = 1)

∑h:th<Qi f (t)i (th|Gi = g,Yi = 1)
, (4.152)

when g = NN.
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E(t)
[
Yi

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Gi = g,Di,Ti = Xi,Qi

]
= P(t)(Yi = 1|Gi = g,Di,Ti = Xi,Qi)E(t)(Ai|Gi = g,Di,Yi = 1,Qi)

·P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi), (4.153)

E(t)
[
(1−Yi)

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Gi = g,Di,Ti = Xi,Qi

]
= (1−P(t)(Yi = 1|Gi = g,Di,Ti = Xi,Qi))E(t)(Ai|Gi = g,Di,Yi = 0,Qi)

·P(t)(Ti1 = tk|Gi = g,Di,Yi = 0,Qi). (4.154)

E(t)
[
Yi

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Gi = g,Di,Ti > Xi,Qi

]
= P(t)(Yi = 1|Gi = g,Di,Ti > Xi,Qi)E(t)(Ai|Gi = g,Di,Yi = 1,Qi)

·P(t)(Ti1 = tk|Gi = g,Di,Yi = 1,Qi), (4.155)

E(t)
[
(1−Yi)

Ai

∑
j=1

1(Ti j = tk)
∣∣∣Gi = g,Di,Ti > Xi,Qi

]
= (1−P(t)(Yi = 1|Gi = g,Di,Ti > Xi,Qi))E(t)(Ai|Gi = g,Di,Yi = 0,Qi)

·P(t)(Ti1 = tk|Gi = g,Di,Yi = 0,Qi). (4.156)
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The Q function becomes

Q(θ|θ(t))

= ∑
Mi=0,Oi=1

wIP
i ∑

g

{
P(t)

i (Gi = g) log pg
i +P(t)

i (Gi = g)Yi logπi(Gi = g)

+P(t)
i (Gi = g)(1−Yi) log(1−πi(Gi = g))

}
+ ∑

Mi=0,Oi=0
wIP

i ∑
g

{
P(t)

i (Gi = g) log pg
i +P(t)

i (Gi = g,Yi = 1) logπi(Gi = g)

+P(t)
i (Gi = g,Yi = 0) log(1−πi(Gi = g))

}
+ ∑

Mi=1,Oi=1
wIP

i ∑
g

{
P(t)

i (Gi = g) log pg
i +P(t)

i (Gi = g)Yi logπ
(t)
i (Gi = g)

+P(t)
i (Gi = g)(1−Yi) log(1−πi(Gi = g))+P(t)

i (Gi = g) log fi(Xi|Gi = g)
}

+ ∑
Mi=1,Oi=0

wIP
i ∑

g

{
P(t)

i (Gi = g) log pg
i +P(t)

i (Gi = g,Yi = 1) logπi(Gi = g)

+P(t)
i (Gi = g,Yi = 0) log(1−πi(Gi = g))

+P(t)
i (Gi = g,Yi = 1) log fi(Xi|Yi = 1,Gi = g)

+P(t)
i (Gi = g,Yi = 0) log fi(Xi|Yi = 0,Gi = g)

}
+ ∑

Mi=?,Oi=1
wIP

i ∑
g

{
P(t)

i (Gi = g) log pg
i +P(t)

i (Gi = g)Yi logπi(Gi = g)

+P(t)
i (Gi = g)(1−Yi) log(1−πi(Gi = g))+P(t)

i (Gi = g) logSi(Xi|Gi = g)
}

+ ∑
Mi=?,Oi=0

wIP
i ∑

g

{
P(t)

i (Gi = g) log pg
i +P(t)

i (Gi = g,Yi = 1) logπi(Gi = g)

+P(t)
i (Gi = g,Yi = 0) log(1−πi(Gi = g))

+P(t)
i (Gi = g,Yi = 1) logSi(Xi|Yi = 1,Gi = g)

+P(t)
i (Gi = g,Yi = 0) logSi(Xi|Yi = 0,Gi = g)

}
+

n

∑
i=1

wIP
i

{
∑
g
E(t)

i

[ Ai

∑
j=1

Yi1(G∗i = g,Ti, j = tk)
]

log fi(tk|Y = y,Gi = g)

+∑
g
E(t)

i

[ Ai

∑
j=1

(1−Yi)1(G∗i = g,Ti, j = tk)
]

log fi(tk|Y = y,Gi = g)
}
.
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Inference

To conduct inference, we resort to Louis’ formula. We compute the complete data scores

and complete data negative hessians.

∂

∂γNS
fi = 1(Gi = NS)− eγNS

1+ eγNS + eγNN
= 1(Gi = NS)−P(Gi = NS), (4.157)

∂

∂γNN
fi = 1(Gi = NN)− eγNN

1+ eγNS + eγNN
= 1(Gi = NS)−P(Gi = NN), (4.158)

5α fi = ∑
g
1(Gi = g)

[
Zg

i

(
Yi−

eα>Zg
i

1+ eα>Zg
i

)]
(4.159)

= ∑
g
1(Gi = g)

[
Zg

i

(
Yi−P(Yi = 1|Zg

i )
)]

, (4.160)

5β fi (4.161)

= 1(Gi = NS)
{
(1−Di)Z10

i

[
∆i +Ai−

(
Λ0i(Xi)+

Ai

∑
j=1

Λ(Ti j)
)

exp(β>Z10
i )
]}

(4.162)

+1(Gi = NN)
{

Z11
i

[
∆i +Ai−

(
Λ0i(Xi)+

Ai

∑
j=1

Λ(Ti j)
)

exp(β>Z11
i )
]}

, (4.163)

∂

∂λk
fi = 1(Gi = NS)(1−Di)

{∆i1(Xi = tk)+∑
Ai
j=11(Ti j = tk)

λk

− exp(β>Z10
i )
(
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
)]}

(4.164)

+1(Gi = NN)
{∆i1(Xi = tk)+∑

Ai
j=11(Ti j = tk)

λk

− exp(β>Z11
i )
(
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
)]}

, (4.165)
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∂2

∂2γNS
fi =−

eγNS(1+ eγNN)

(1+ eγNS + eγNN)2 =−P(Gi = NS)(1−P(Gi = NS)), (4.166)

∂2

∂2γNN
fi =−

eγNN(1+ eγNS)

(1+ eγNS + eγNN)2 =−P(Gi = NN)(1−P(Gi = NN)), (4.167)

∂2

∂γNS∂γNN
fi =

eγNS+γNN

(1+ eγNS + eγNN)2 = P(Gi = NS)P(Gi = NN), (4.168)

52
α fi = −∑

g
1(Gi = g)

[
Zg⊗2

i
eα>Zg

i

(1+ eα>Zg
i )2

]
(4.169)

= −∑
g
1(Gi = g)

[
Zg⊗2

i P(Yi = 1|Zg
i )P(Yi = 0|Zg

i )
]
, (4.170)

52
β

fi =−1(Gi = NS)
{
(1−Di)Z10⊗2

i

[(
Λ0i(Xi)+

Ai

∑
j=1

Λ(Ti j)
)

exp(β>Z10
i )
]}

(4.171)

−1(Gi = NN)
{

Z11⊗2
i

[(
Λ0i(Xi)+

Ai

∑
j=1

Λ(Ti j)
)

exp(β>Z11
i )
]}

, (4.172)

∂2

∂2λk
fi = −1(Gi = NS)(1−Di)

{∆i1(Xi = tk)+∑
Ai
j=11(Ti j = tk)

λ2
k

}
(4.173)

−1(Gi = NN)
{∆i1(Xi = tk)+∑

Ai
j=11(Ti j = tk)

λ2
k

}
, (4.174)
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∂2

∂β∂λk
fi (4.175)

= −1(Gi = NS)(1−Di)
{

Z10
i exp(β>Z10

i )
(
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
)]}

(4.176)

−1(Gi = NN)
{

Z11
i exp(β>Z11

i )
(
1(Xi ≥ tk)+

Ai

∑
j=1

1(Ti j ≥ tk)
)]}

. (4.177)

All the other off-diagonal terms are zero.

196



4.8 Acknowledgement

Chapter 4, in full, has been submitted for publication of the material as it may appear

in Journal of the American Statistical Association. Ying, Andrew; Xu, Ronghui; Chambers,

Christina; Jones, Kenneth. Causal Effects on Birth Defects with Missing by Terathanasia. The

dissertation author was the primary investigator and author of this paper.

197



Bibliography

[Aal80] Odd Aalen. A model for nonparametric regression analysis of counting processes.
In Mathematical statistics and probability theory, pages 1–25. Springer, 1980.

[Aal89] Odd O Aalen. A linear regression model for the analysis of life times. Statistics in
medicine, 8(8):907–925, 1989.

[ACC17] Ery Arias-Castro and Shiyun Chen. Distribution-free multiple testing. Electronic
Journal of Statistics, 11(1):1983–2001, 2017.

[ACCTW17] Ery Arias-Castro, Rui M Castro, Ervin Tánczos, and Meng Wang. Distribution-free
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agricoles: Essai des principes. Roczniki Nauk Rolniczych, 10:1–51, 1923.

204



[NG17] V Q Nguyen and D L Gillen. Censoring-robust estimation in observational survival
studies: Assessing the relative effectiveness of vascular access type on patency
among end-stage renal disease patients. Statistics in Biosciences, 9:406–430, 2017.

[Pea01] Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 411–420. Morgan Kaufmann
Publishers Inc., 2001.

[Pet95] Valentin V Petrov. Limit theorems of probability theory: sequences of independent
random variables. Technical report, Oxford, New York, 1995.

[PWM18] Katharina Proksch, Frank Werner, and Axel Munk. Multiscale scanning in inverse
problems. The Annals of Statistics, 46(6B):3569–3602, 2018.

[QNLS11] J. Qin, J Ning, H Liu, and Y Shen. Maximum likelihood estimations and EM
algorithms with length-biased data. Journal of the American Statistical Association,
106:1434–1449, 2011.

[QW73] Clifford Qualls and Hisao Watanabe. Asymptotic properties of gaussian random
fields. Transactions of the American Mathematical Society, 177:155–171, 1973.

[RG92] James M Robins and Sander Greenland. Identifiability and exchangeability for
direct and indirect effects. Epidemiology, 3(2):143–155, 1992.

[RMM+17] Greg Ridgeway, Dan McCaffrey, Andrew Morral, Beth Ann Griffin, and Lane
Burgette. twang: Toolkit for Weighting and Analysis of Nonequivalent Groups,
2017. R package version 1.5.

[Ros84] Paul R Rosenbaum. The consequences of adjustment for a concomitant variable
that has been affected by the treatment. Journal of the Royal Statistical Society:
Series A (General), 147(5):656–666, 1984.

[RR83] Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score
in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.

[Rub74] Donald B Rubin. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66(5):688–701, 1974.

[Rub96] Donald B Rubin. Multiple imputation after 18+ years. Journal of the American
statistical Association, 91(434):473–489, 1996.

[Rub04] Donald B Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley &
Sons, 2004.

[RW00] James M Robins and Naisyin Wang. Inference for imputation estimators.
Biometrika, 87(1):113–124, 2000.

205



[SAC16] James Sharpnack and Ery Arias-Castro. Exact asymptotics for the scan statistic
and fast alternatives. Electronic Journal of Statistics, 10(2):2641–2684, 2016.
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