UC San Diego UC San Diego Previously Published Works

Title

DNA sequencing of fish eggs and larvae reveals high species diversity and seasonal changes in spawning activity in the southeastern Gulf of California

Permalink https://escholarship.org/uc/item/9bd9h8t9

Authors

Ahern, ALM Gómez-Gutiérrez, J Aburto-Oropeza, O <u>et al.</u>

Publication Date

2018-03-29

DOI

10.3354/meps12446

Peer reviewed

1	Using molecular identification of ichthyoplankton to monitor
2	spawning activity in a subtropical no-take Marine Reserve
3	
4	
5	
6	Ana Luisa M. Ahern ^{1,*} , Ronald S. Burton ¹ , Ricardo J. Saldierna-Martínez ² , Andrew F. Johnson ¹ ,
7	Alice E. Harada ¹ , Brad Erisman ^{1,4} , Octavio Aburto-Oropeza ¹ , David I. Castro Arvizú ³ , Arturo R.
8	Sánchez-Uvera ² , Jaime Gómez-Gutiérrez ²
9	
10	
11	
12	¹ Marine Biology Research Division, Scripps Institution of Oceanography, University of California
13	San Diego, La Jolla, California, USA
14	² Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas,
15	Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico
16	³ Cabo Pulmo National Park, Baja California Sur, Mexico
17	⁴ The University of Texas at Austin, Marine Science Institute, College of Natural Sciences,
18	Port Aransas, Texas, USA
19	
20	
21	
22	
23	
24	
25	*Corresponding author: ana.ahern@gmail.com

26	ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness
27	and spawning activity of fishes, complementing estimations done using trawls and diver surveys.
28	Zooplankton samples were collected weekly between January and December 2014 in Cabo
29	Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are
30	difficult to identify morphologically, therefore the DNA barcoding method was employed to
31	identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding
32	to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus,
33	Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon
34	flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded.
35	Noteworthy species identified include rare mesopelagic species such as the giant oarfish
36	(Regalecus glesne) and highly migratory and commercially important species such as black
37	skipjack (Euthynnus lineatus) and yellowfin tuna (Thunnus albacares). Spawning activities
38	showed distinct seasonal patterns with the highest abundance of ichthyoplankton recorded during
39	spring, highest species richness during summer (90 OTUs) and lowest species richness during
40	winter (28 OTUs). A total of seven OTUs were recorded throughout the year (4%), 11 OTUs
41	during three seasons (7%), 36 OTUs in two seasons (23%) and 106 OTUs were recorded in only
42	one season (66%). The study found eggs and/or larvae of 47 species that were not previously
43	reported in Cabo Pulmo National Park. Results allow resource managers to compare shifting
44	populations and spawning patterns of species that may be affected by both conservation efforts
45	and broader oceanographic changes associated with climate change.
46	
47	

48 KEY WORDS: Marine protected area · DNA barcoding · molecular ecology · marine
49 conservation · Cabo Pulmo National Park · Gulf of California · Mexico

50

INTRODUCTION

51

Cabo Pulmo National Park is a subtropical no-take marine reserve located on the 52 53 southeast coast of Baja California Sur, Mexico in the Gulf of California (Fig. 1A, B). This 54 national park is a unique example of a successfully managed marine protected area (Aburto-55 Oropeza et al. 2011). Established as a Mexican national marine park in 1995, Cabo Pulmo National Park is recognized as a UNESCO World Heritage Site. Since 1995, the community of 56 57 Cabo Pulmo voluntarily chose to expand the no-take zone from an initial 35% to nearly 100% of 58 the 27-square mile park (Aburto-Oropeza et al. 2011) (Fig. 1B). Although the community of Cabo Pulmo already supported a small tourism industry, it was bolstered as the biomass, 59 60 abundance and diversity of charismatic and commercially important fish species as well as 61 marine mammals increased. A ten-year study showed a 463% increase in total fish biomass and 62 a 1070% increase in biomass of top predators since 1995, the largest ever measured in a marine 63 reserve worldwide (Aburto-Oropeza et al. 2011, 2015). 64 While the biota of the rocky and coral reefs of Cabo Pulmo National Park are thriving, they are still vulnerable to a multitude of threats including coastal development (Arizpe & 65 66 Covarrubias 2010), overfishing (Johnson et al. 2017), and climate change (Verutes et al. 2014, 67 Robinson et al. 2013, 2016). As the area has garnered more public and academic attention, large 68 international developers have proposed development projects in neighboring communities that 69 could have negative effects for Cabo Pulmo National Park's coastline and marine biota (Arizpe & Covarrubias 2010). As a consequence of global climate change, it is predicted the oceans will 70 71 experience a significant increase in sea surface temperature in the next 100 years (Levitus et al. 72 2009), which could result in more frequent and intense El Niño Southern Oscillation (ENSO)

73	events, many of which have had significant effects on the region in the past and recent years
74	(Timmermann et al. 1999, Robinson et al. 2013, 2016). Since 2010 the Gulf of California has
75	experienced an increase in sea surface temperature and decrease of wind speed, resulting in
76	lower sea surface chlorophyll-a concentration than previous years (Robinson et al. 2016). The
77	waters of Cabo Pulmo National Park will likely face increased fluctuations in temperature,
78	dissolved oxygen concentrations, pH, nutrient content, and circulation that could negatively
79	impact this delicate rocky and coral reef ecosystem (Doney et al. 2012).
80	Careful monitoring of vulnerable coastal marine ecosystems is needed to track biotic
81	changes that may occur as a result of a changing climate and to inform marine resource
82	management decisions (Harada et al. 2015). The abundance and species composition of
83	ichthyoplankton collected from the water column provides valuable information concerning the
84	broadcast spawning activities of fishes and plays a significant role in the assessment and
85	management of marine ecosystems (Gleason & Burton 2012). Ichthyoplankton surveys can be
86	used as a fisheries independent indicator of ecosystem health, estimating species-specific
87	spawning biomass, reproductive periods, overall reproductive strategies and population
88	dynamics as a function of environmental variability (Lo 2001, Aceves-Medina et al. 2003, 2004).
89	They can also help identify the location of critical spawning habitat that should be protected in
90	order to ensure the present and long-term sustainability of vulnerable fish populations (Sala et al.
91	2003).
92	Historically, scientists and fisheries managers have relied on morphological identification
93	of ichthyoplankton (mostly larvae, occasionally eggs) to determine which species spawn in a
94	particular area (Ahlstrom & Moser 1980, Aceves-Medina et al. 2003, 2004, Miller & Kendall

95 2009, Harada et al. 2015). A considerable drawback to this morphological method is the

96	difficulty of telling species apart at early life stages; in fact, many species have virtually
97	indistinguishable eggs and successful identification of fish eggs and preflexion fish larvae using
98	morphological characteristics alone requires years of study (Ahlstrom and Moser 1980, Hyde et
99	al. 2005). Even then, morphological experts can experience high uncertainty in fish egg
100	identification (Ahlstrom & Moser 1980, Moser et al. 1974, 1993), which can prove costly when
101	these data are used to determine population abundance and make management decisions for
102	targeted species. Where traditional morphological analysis may have difficulty distinguishing
103	species with similar morphological characteristics, molecular genetic analysis can provide
104	accurate species identification to infer spawning strategies and determine the magnitude of
105	reproductive efforts of fish assemblages (Burton 2009, Harada et al. 2015).
106	Molecular analysis of ichthyoplankton provides valuable information about temporal and
107	geographic spawning activity and can be used for the purposes of stock assessments and
108	monitoring ecosystem health (Perez et al. 2005, Harada et al. 2015). The use of molecular
109	genetic tools to assist in conservation efforts is becoming increasingly affordable (NHGRI
110	Genome Sequencing Program, http://www.genome.gov/sequencingcosts/). Other methods of
111	monitoring fish populations include diver-conducted monitoring surveys, which until now have
112	been the primary source of information about the abundance and diversity of fish species found
113	in Cabo Pulmo National Park's waters (Alvarez-Filip et al. 2006, Aburto-Oropeza et al. 2011,
114	2015). Many species reproduce at night when divers are unable to observe fish spawning events
115	(Claro & Lindeman 2003, Erisman et al. 2014). Trawling is not only invasive to vulnerable fish
116	populations and sensitive marine environments, but are often size and species selective.
117	Additionally, trawling surveys are not allowed in most marine protected areas, making this
118	method generally unsuitable. Video assessments can also be biased depending on the locations

119 of camera traps and often suffer from the same daytime bias as diver surveys. Fish larvae with 120 certain swimming capabilities and schooling behavior that are collected using nighttime light 121 traps can be less diverse than daytime collections made with a plankton net over reefs in the Gulf 122 of California, showing relevant differences in community structure (Brogan 1994). 123 Ichthyoplankton surveys, especially those involving the analysis of eggs, provide better evidence 124 of nearby spawning activity due to the short embryo development time in tropical and 125 subtropical ecosystems (Pauly & Pullin 1988). Sampling zooplankton has a negligible impact on 126 local biota and plankton nets sample any available pelagic eggs in the water column, reducing 127 biases based on species size and juvenile and adult behavior or the habitat where mating and 128 spawning events occur. Of course, it is important to note that just as visual species richness and 129 abundance assessments have limitations, ichthyoplankton surveys under sample live-bearing 130 species, as well as those with demersal eggs.

131 We monitored broadcast spawning activity of fish in Cabo Pulmo National Park through 132 molecular identification of ichthyoplankton collected weekly within the marine protected area. 133 This survey establishes a baseline for species richness and abundance that can be used to 134 compare with data from annual diver-conducted monitoring surveys (Alvarez-Filip et al. 2006, 135 Aburto-Oropeza et al. 2011, 2015, Harada et al. 2015). The goals of the present study were to 136 use morphological and molecular identification of ichthyoplankton collected weekly within Cabo 137 Pulmo National Park from January to December 2014 to: 1) estimate the spawning activity and 138 species richness of fishes in Cabo Pulmo National Park, 2) identify which commercially and/or 139 recreationally important species spawn in Cabo Pulmo National Park, and 3) uncover seasonal 140 changes in broadcast spawning activity over the course of a single year.

141

142	MATERIALS AND METHODS
143	
144	Sea surface temperature and chlorophyll-a concentration
145	
146	Monthly mean night sea surface temperature (SST, °C) and concentration of chlorophyll-
147	a (mg m ⁻³) data from 1999 to 2015 for the Cabo Pulmo region was obtained from NASA
148	(http://podaac.jpl.nasa.gov and http://oceandata.sci.gsfc.nasa.gov/SeaWiFS) to infer seasonal
149	environmental variability of sea surface temperature and chlorophyll-a concentration associated
150	with fish spawning activity. The monthly dataset had a 4 km resolution from the composite
151	Advanced Very High Resolution Radiometer (AVHRR) and a monthly, spatial resolution of 9
152	km from the composite Sea-viewing Wide Field-of-view Sensor (SeaWIFS). Monthly means and
153	anomalies were calculated with the same method as satellite SST and Chl-a concentration time
154	series were reported for the central and northern region of the Gulf of California (Robinson et al.
155	2013, 2016).
156	Zooplankton collection
150	Zooplankton concetion
157	Forty-eight weekly zooplankton samples were collected within Cabo Pulmo National
158	Park, Baja California Sur, Mexico (23°27' N, 109°25'W) from January to December 2014 using
159	a conical zooplankton net (60 cm in diameter with a 330 μ m mesh size) towed near the surface
160	(<5 m depth) for ten minutes (Smith & Richardson 1977) (Fig. 1A, B). Zooplankton samples
161	were collected during daytime hours (8:30–18:14 hr, 79% of which were collected before noon).
162	The zooplankton net was equipped with a calibrated General Oceanics digital flowmeter (model
163	2030R6, Miami, USA) to estimate filtered seawater volume and estimate standardized
164	abundance of fish eggs and larvae (ind. 1000 m ⁻³) (Smith & Richardson 1977). The zooplankton

165	samples were sieved to remove seawater with a 200- μ m sieve and preserved in 96% ethanol with
166	an entire change of ethanol at the laboratory when biomass was measured using displacement
167	volume method. Eggs and larvae were separated from the entire zooplankton sample (no
168	aliquot), preliminary morphological identifications were made where possible and the number of
169	eggs and larvae, identified to the most precise taxonomic level possible, were recorded following
170	standard fish eggs and larvae identification keys (Chaudhuri 1977, Ahlstrom & Moser 1980,
171	Nishikawa & Rimmer 1987, Moser 1996, Watson 1998, Saldierna-Martinez et al. 2005, Richards
172	2006a, b, Jiménez-Rosenberg et al. 2006, Kawakami et al. 2010 and González-Navarro et al.
173	2013). Digital photographs were taken of each specimen for a taxonomic record.
174	Ichthyoplankton specimens were stored at 4°C in 96% ethanol until ready for genetic
175	processing. Eggs and larvae were isolated and individually transferred to 0.2-mL PCR tubes.
176	Any remaining ethanol was removed from the tubes and 15 μ L of deionized H ₂ O was placed in
177	each tube and then removed to rinse the specimens. Fifteen microliters (μ L) of a mixture of two-
178	thirds Qiagen AE Buffer and one-third water was added to the tube and a clean pipette tip was
179	used to crush the specimen and release the DNA. No further extraction of DNA or purification
180	was needed. Samples were stored at -20°C prior to Polymerase Chain Reaction (PCR).
181	
182	Molecular analysis of ichthyoplankton
183	
184	Molecular analyses of the collected eggs and larvae were carried out using universal fish
185	primers to amplify a 710 bp fragment of the mitochondrial gene, cytochrome oxidase c subunit 1
186	(COI) using COI VF1 forward primer (5'-TTCTCAACCAACCACAAAGACATTGG-3') and
187	COI VR1 reverse (5'-TAGACTTCTGGGTGGCCAAAGAATCA-3') (deWaard et al. 2007). If

188	COI did not amplify, a 570 bp fragment of the mitochondrial 16S ribosomal rRNA gene was
189	amplified using forward primer 16Sar (5'-CGCCTGTTATCAAAAACAT-3') and reverse
190	primer 16Sbr (5'-CCGGTCTGAACTCAGATCACGT-3') (Palumbi 1996). One μ L of the
191	extracted DNA solution was utilized for each PCR with 12.5 μ L of Promega GoTaq Green
192	Master Mix, 0.5 μ L each of forward and reverse primers, and 10.5 μ L of dH ₂ O. The thermal
193	cycler profile for the PCR reaction was 95°C for two min, 35 cycles of 95°C for 30 s, 50°C for 45
194	s, and 72°C for one min, followed by 72°C for five min. The PCR products were run on 1.5%
195	agarose gels, stained with GelRed (Biotium, Inc., Fremont, CA) and visualized under UV light to
196	verify successful amplification. Successfully amplified samples were then purified using G-50
197	Fine Sephadex (GE Healthcare) spin columns and sent offsite for sequencing (Retrogen, Inc.,
198	San Diego, CA) (Harada et al. 2015).

199 A DNA barcoding approach was used to identify the eggs and larvae. Once sequences 200 were obtained, the software Geneious (http://www.geneious.com) and Sequencher 201 (http://www.genecodes.com) were used to edit the sequenced fragment. COI sequences were 202 then compared to sequences published in the Barcode of Life Data System (BOLD). We used 203 the Barcode of Life Data System database first because sequences come from well-vouchered 204 specimens and usually rely on multiple sequences. The Barcode of Life Data System is 205 comprised of COI sequences only, therefore we could not compare our 16S sequences to this 206 database. In the cases where no identification was obtained using the Barcode of Life Data 207 System database or the gene sequenced was 16S, we used the Basic Local Alignment Search 208 Tool (BLAST) in GenBank (National Center for Biotechnology Information) utilizing default 209 parameters. For both COI and 16S sequences, we used a threshold of \geq 97% to tentatively assign 210 the sequence to a species. We then compared these molecular identifications with previous

211	records from annual diver-conducted monitoring surveys (1995–2016) (Aburto-Oropeza et al.
212	2011, 2015) and lists of fish species reported from Cabo Pulmo National Park (Villarreal-
213	Cavazos et al. 1999, Aburto-Oropeza et al. 2001, Alvarez-Filip et al. 2006, Reyes-Bonilla et al.
214	1999) and throughout the Gulf of California (Mascareñas-Osorio et al. 2011, Erisman et al. 2011,
215	Cruz-Agüero et al. 1994, Del Moral-Flores et al. 2013, Villegas-Sánchez et al. 2009, Castro-
216	Aguirre et al. 2002). Sequences that produced $a \ge 97\%$ match to species that are not known to
217	occur in the Gulf of California were considered "unidentified Operational Taxonomic Units
218	(OTUs)." Additionally, sequences that failed to produce $a \ge 97\%$ match were also considered
219	unidentified OTUs.
220	
221	Fish egg subsampling
222	
223	Due to the large number of fish eggs ($n=19,960$) and larvae ($n=1,184$) collected between
224	January and December 2014, it was cost and time-prohibitive to process all of them using
225	molecular methods. For this reason, we employed a fixed-count sub-sampling method to
226	determine the species richness within each ichthyoplankton sample collection date. If the
227	collection included < 96 specimens (the number of wells in a standard PCR plate), we attempted
228	to sequence all of the individuals from the ichthyoplankton sample. If a collection contained $>$
229	96 individuals, a minimum number of 96 specimens were randomly selected and sequencing was
230	attempted. For collections with high numbers of individuals, rarefaction curves were created
231	using PRIMER 6 (PRIMER-E Ltd) (Fig. S1, Supplemental material). If the curve reached an
232	asymptote, indicating that additional analysis will likely not reveal additional species (or OTUs),
233	analysis for that particular sampling date was halted (Gotelli & Colwell 2011). If an asymptote

234	was not reached, a second round of subsampling was conducted with another set of 96 specimens
235	randomly selected and analyzed genetically. This process was repeated until an asymptote was
236	reached. In some zooplankton collections, amplification was minimally successful as a result of
237	DNA degradation. In these cases, after two unsuccessful attempts at analyzing 96 specimens
238	(amplification of <15%), further analysis was abandoned. This occurred in five ichthyoplankton
239	samples, leaving 43 samples that produced successful results.
240	We determined the likely habitat of the adult fishes using data acquired from FishBase
241	(http://www.fishbase.org). These data provided us with information about the possible origins of
242	spawning events and we were able to indirectly infer which species are likely to inhabit and
243	reproduce in Cabo Pulmo National Park (reef associated, demersal, pelagic neritic or bentho-
244	pelagic species) or likely come from outside Cabo Pulmo National Park (pelagic oceanic,
245	mesopelagic, bathypelagic, or bathy-demersal species).
246	
247	RESULTS
248	
249	Sea surface temperature and chlorophyll-a concentration
250	
251	Monthly mean sea surface temperature in Cabo Pulmo National Park varied from 22.5°
252	(Jan) to 30.4° C (Aug) during 2014. The Cabo Pulmo region has on average (2000–2015) a
253	typical SST range between 21 and 29.6° C. Therefore, 2014 was an anomalously warm year, but
254	showed the typical seasonality of a relatively cold period between December-May, a warm
255	period between July-November, and two brief transition periods in May and November (Fig. 2A,
256	B). Sea surface concentration of Chlorophyll- <i>a</i> recorded during 2014 was well below 2000-2015

257	monthly means with values between 0.17 and 0.24 mg/m^3 in the cold season (January-May),
258	0.11-0.15 mg/m ³ between July and September and between 0.19 and 0.49 mg/m ³ between
259	October and December 2014 (Fig. 2C, D). Positive anomalies of SST and negative anomalies of
260	Chl-a concentrations have been longer and more frequent in Cabo Pulmo National Park during
261	2010-2015 than during 2000-2009 (Fig. 2A-D).
262	
263	Species composition
264	
265	A total of 21,144 fish eggs and larvae were collected in Cabo Pulmo National Park
266	between January 11 th and December 25 th , 2014 during 48 zooplankton collections. Sequencing
267	>250 specimens per ichthyoplankton sample did not yield additional OTUs in any of the seasons
268	(Fig. S1, Supplemental material). The maximum number of OTUs identified (40) in summer
269	required analysis of <230 specimens while in fall 15 OTUs were observed from analyzing <150
270	specimens (Fig. S1, Supplemental material). Five ichthyoplankton samples produced no results
271	due to poor sample preservation, leaving a total of 43 usable samples. After subsampling as
272	described above, the target gene, either COI or 16S, was successfully amplified and sequenced
273	for 2,589 specimens. A total of 6,883 eggs (n=6,422) and larvae (n=472) were analyzed using
274	PCR. A total of 3,327 eggs (n=3,017) and larvae (n=310) successfully amplified the target gene,
275	either COI or 16S (sequence data available from the Dryad Digital Repository:
276	https://doi.org/10.5061/dryad.86fr4). The total PCR amplification success rate was 48%, with
277	47% of eggs and 65.7% of larvae successfully amplifying the target gene. 49.6% (n=2976) of
278	COI and 39% (n=351) of 16S reactions resulted in successful amplification. The total sequencing
279	success rate was 77.8%, with 2,354 (78%) eggs and 235 (77%) larvae successfully sequenced.

Due to their distinctive shape (see Fig. S3, Supplemental material), an additional 1,799 *Scarus*sp. eggs were identified morphologically to the genus level, bringing the total number of
specimens analyzed to 4,388. Fifty *Scarus* sp. eggs were analyzed using DNA barcoding
revealing three species: *S. ghobban* (26), *S. compressus* (23), and *S. rubroviolaceus* (1), all
known to occur in Cabo Pulmo National Park. Figure 3A-C shows a time series of the number
of ichthyoplankton specimens (eggs, larvae and total standardized abundance) collected during
2014.

A total of 4,388 fish eggs (4,153) and larvae (235) were identified consisting of 157 operational taxonomic units (103 identified to genus or species plus 54 unidentified OTUs). Of these, 105 and 31 OTUs were only detected in egg and larvae specimens, respectively, and the remaining 23 OTUs were detected in both stages. The majority of the specimens identified belong to species with pelagic broadcast spawning behavior. However, we also identified six species that are benthic broadcast spawners or open water/substratum egg scatterers (Tables 1 and 3, species indicated with the \odot symbol).

294 The ten most frequently identified fishes in order of relative abundance were: Scarus sp., 295 Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, Ammodytoides gilli, Synodus 296 lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon flaviguttatum, and Vinciguerria 297 *lucetia*. Species identified both morphologically and genetically in order of relative abundance 298 and the number of collections in which the eggs and larvae were present is shown in Table 1. 299 This table was compared with species previously observed during diver-conducted monitoring 300 surveys (1995-2016) and checklists of species reported in the Gulf of California (Aburto-301 Oropeza et al. 2011, 2015, Alvarez-Filip et al. 2006, Villareal-Cavazos et al. 2000) (Table 1). 302 The total number of fish species reported from Cabo Pulmo National Park in previous studies is

303	270. This study revealed 47 species that were not previously reported in Cabo Pulmo National
304	Park, increasing the known species diversity to 317 species (Table 1, indicated with a D).
305	
306	Unidentified Operational Taxonomic Units (OTUs)
307	
308	The sequences obtained were classified into 157 OTUs. Of the 157 unique sequences
309	present in the study, 103 sequences produced a database match of \geq 97%, enabling species level
310	identification in 101 cases and genus level identification in two cases (Table 1). 43 sequences
311	had hits that were below the 97% threshold, suggesting that they represent species that have not
312	yet been entered into the COI or 16S online databases (updated November 2017). An additional
313	11 sequences produced a match of $\geq 97\%$ to species that have not previously been known to
314	occur in the GoC (Caranx crysos, Hyporthodus niveatus, Kathetostoma laeve, Epinephelus
315	clippertonensis, Assurger anzac, Syacium maculiferum, Hyporthodus niphobles, Genypterus
316	maculatus, Kyphosus cinerascens, Paraconger ophichthys and Trachinotus goodei). These
317	sequences most likely belong to closely related species that do occur in the region, but have not
318	yet been added to the online database or, less likely, they represent an occurrence of the matched
319	species outside of its known distribution range. Table 2 shows the unidentified OTUs that did
320	not produce a match of \geq 97% in the online databases or are not known to occur in the Gulf of
321	California (indicated with a *).
322	
323	Species richness

325 A diverse fish species assemblage from 16 orders, 46 families and 84 genera was 326 identified from eggs and larvae collected monthly from the zooplankton samples. Using habitat 327 data of adults of each fish species inferred from FishBase.org, 63.9% of individual specimens 328 identified were reef associated, 13.4% pelagic, 10.4% demersal, 7.5% unknown, 2.4% bentho-329 pelagic, 2.3% mesopelagic, 0.09% bathypelagic, and 0.05% bathy-demersal. The relative 330 proportions of habitat of all of the specimens identified with molecular methods and the 331 proportion of species from each habitat distribution identified throughout the year are shown in 332 Fig. 4A, B. Reef associated, demersal, pelagic neritic and bentho-pelagic species dominated fish 333 spawning events throughout the year with high abundance dominance during cold months (Jan-334 Mar and Nov-Dec). Pelagic oceanic species seem to spawn and enter Cabo Pulmo National Park 335 from March to November but with relatively higher proportion during summer months (Jun-Sep) 336 (Fig. 4B). Mesopelagic, bathypelagic and bathy-demersal species were observed mostly as 337 larvae with low frequency and low abundance (albeit with sporadically large proportions in 338 certain sampling weeks) primarily during the first six months of 2014 (Fig. 4B). Eggs from these 339 species, including the giant oarfish *Regalecus glesne*, were only collected on rare occasions. To 340 our knowledge this is the first record of *R. glesne* eggs in the Gulf of California. Due to the rarity 341 of this deep-water species we compared the sequence we obtained against tissue from an adult R. 342 glesne voucher specimen in the Scripps Institution of Oceanography Marine Vertebrates 343 Collection (GenBank accession number HQ127659.1). The sequence provided a 99% match, 344 confirming the identification of this egg as *R. glesne*.

- 345
- 346

Seasonal spawning structure

347

348	Weekly zooplankton samples revealed seasonal spawning patterns among the species
349	(Table 3). Seven OTUs were recorded in all four seasons (4%), 11 OTUs in three seasons (7%),
350	36 OTUs in two seasons (23%), and the majority, 106 OTUs, in only one season (66%) (Table
351	3). Synodus lacertinus (lizardfish), Halichoeres dispilus (wrasse), Vinciguerria lucetia
352	(lightfish) and Ammodytoides gilli (lance) specimens were found spawning throughout most of
353	the year indicating a strategy of continuous reproduction, whereas Etrumeus acuminatus
354	(herring) only appeared in six collections with 95% of the specimens appearing during the month
355	of March, indicating a seasonally biased reproductive period. This low frequency spawning may
356	illustrate a temporally delimited spawning season for E. acuminatus, or it may suggest that this
357	species rarely spawns inside or in the vicinity of Cabo Pulmo National Park. Additionally, 96%
358	of Auxis rochei specimens were found in winter and summer, 98% of Euthynnus lineatus
359	specimens, 76% of Lutjanidae spp. specimens (5 species) and 78% of Decapterus macarellus
360	specimens were found during the summer.

361 The highest abundance of ichthyoplankton was collected in the spring (8,824 specimens, 362 73 OTUs). The highest species richness (90 OTUs) with relatively low abundance (5,420 363 specimens) was found during the summer and the lowest species richness (28 OTUs) and lowest abundance (2,584 specimens) during autumn (Table 3, Fig. 3A-C). The highest number of OTUs 364 on a single collection date occurred on September 10th (38 OTUs). On two occasions, peaks in 365 abundance corresponded to spawning of a particular species: on February 16th, 99% of the 366 367 specimens were *Scarus* spp. (parrotfish) and the collection with the lowest number of species (1), as well as the highest abundance (5,334), occurred on May 24th during a recent spawning event 368 369 of Chanos chanos (milkfish). Peaks in spawning activity were observed in each month with the

exception of November and December. Figure 3A-C illustrates the number of OTUs found ineach sampling collection.

Sequencing using 16S rRNA primers

- 372
- 373
- 374

375 Initial sequencing was done using COI universal fish primers. If the reaction failed to 376 amplify COI, then 16S rRNA primers were used. Sequences obtained from COI can identify 377 closely related species as well as higher taxa in many animal phyla, whereas 16S has more 378 difficulty discriminating between closely related species (Kochzius et al. 2010). We used COI 379 primers on 5,996 samples and 16S primers on 887 samples. Of these, 49.6% (n=2976) of COI 380 and 39% (n=351) of 16S reactions resulted in successful amplification. 16S reactions likely 381 resulted in lower amplification success rates due to poor sample quality, since these attempts 382 followed failure of COI amplification. Temperatures in Cabo Pulmo National Park can be quite 383 high, especially in the summer months on sunny days, and DNA from many of the early 384 zooplankton collections likely degraded due to poor sample preservation methods (e.g., leaving 385 the sample in the sun before preserving in ethanol) that were subsequently corrected later in the 386 study. Additionally, COI was preferred because the Barcode of Life Data System contains a 387 large number of high quality COI sequences (Species Level Barcode Records: 2,929,775 388 Sequences/181,204 Species/69,400 Interim Species as of October 2017) with a minimum 389 sequence length of 500bp. However, to date there has not been a concerted effort to barcode the 390 fish of the Gulf of California, so our identifications relied on the available databases. Although 391 the 16S gene database for fish is not as complete as that for COI, a GenBank search of the top 20 392 species in Table 1 found that 80% were represented by one or more 16S sequences, while 95%

393	were represented by COI sequences. Hence, one species in that top group (Scarus compressus)
394	could only be identified by 16S sequencing. Further inspection of the list revealed that two other
395	species (Fistularia corneta and Pronotogrammus multifasciatus) were not in the COI database
396	but were identified by 16S sequencing.
397	
398	DISCUSSION
399	
400	In this study, ichthyoplankton collected from within Cabo Pulmo National Park over one
401	year of weekly sampling were identified using DNA barcoding methods. This time series
402	provides insight into fish spawning activity in and near Cabo Pulmo National Park including the
403	presence of commercially and recreationally important species, seasonal changes in species
404	composition, and evidence of high species richness. The study revealed information concerning
405	local spawning of ecologically and economically valuable species that indicate the effectiveness
406	of the marine protected area for preserving spawning habitat and conserving marine biodiversity,
407	as well as contributing to health of the surrounding fisheries by acting as a potential source of
408	population replenishment through spawning activity. The study enhances existing knowledge of
409	fish assemblages in the park by finding 47 species not previously reported in systematic dive
410	monitoring surveys from Cabo Pulmo National Park (Alvarez-Filip et al. 2006, Aburto-Oropeza
411	et al. 2011, 201). The use of DNA barcoding to identify ichthyoplankton revealed three times
412	more species richness than traditional morphological identification of ichthyoplankton. The
413	results from the present study, in combination with data from standard diver-conducted
414	monitoring surveys (Alvarez-Filip et al. 2006, Aburto-Oropeza et al. 2001, 2011, 2015, Ramirez-
415	Valdez et al. 2014) and other data collection methods, can be used as a baseline to compare

416	shifting populations and spawning patterns of species that may be affected by both the MPAs
417	protection and broader oceanographic changes associated with El Niño and recent warming in
418	the Gulf of California (Robinson et al. 2013, 2016).
419	

- 420
- 421

Fish reproduction and oceanic conditions

422 At temperatures ranging between 19 and 30°C through the year (Fig. 2), typical hatching 423 time is between one and three days for fish eggs from most of the commercial and recreational 424 species identified in this study (Harada et al. 2015, Pauly & Pullin 1988). Although planktonic 425 eggs and larvae drift with marine currents, since most tropical and subtropical eggs hatch within 426 1-3 days of spawning, many of the collected eggs likely result from local spawning events in or 427 around Cabo Pulmo National Park (Harada et al. 2015, Pauly & Pullin 1988). In contrast, larvae 428 may have been adrift for several weeks and therefore only provide more regional and seasonal 429 information. Explicit synoptic coastal current information is limited to 2010-2012 for Cabo 430 Pulmo National Park (Tasviña-Castro et al. 2012), but a recent 3D numerical current model of 431 particle (plankton) connectivity in the Gulf of California predicts that high dispersion occurs 432 from the mainland coastal areas in the central and southern part of the Gulf of California to the 433 rest of the gulf due to strong seasonal currents, implying that Cabo Pulmo National Park is in a 434 region with relatively high connectivity (Marinone 2012). Peguero-Icaza et al. (2011) reported 435 seasonal changes in connectivity routes among larval fish assemblages through particle tracking 436 with a 3D baroclinic numerical model in the northern Gulf of California with seasonal circulation 437 phases, cyclonic in summer with relatively larger particle retention than dispersion and 438 anticyclonic in winter with relatively larger particle dispersion.

439 Trasviña-Castro et al. (2012) reported current information from Cabo Pulmo National 440 Park using Acoustic Doppler Profiler (ADP), Acoustic Doppler Current Profiler (ADCP) and 441 Global Positioning System (GPS) buoy observations from October 2010 to February 2012. 442 Currents in Cabo Pulmo National Park are forced by tides, winds and the influence of mesoscale 443 structures associated with circulation from the mouth of the Gulf of California. During winter 444 and fall (and sometimes summer) the net flow is mostly toward the south associated with the predominance of intense and sustained northwest winds that cause current speeds up to 2 m s⁻¹ 445 on the surface and 0.5 m s⁻¹ on the seafloor. During summer, weak southeast winds prevail with 446 447 sporadic northward fluxes (observed in October 2011 when a southward-to-northward shift of current direction occurs). These weak wind conditions influence only near surface currents; 448 449 thus, tides force most of the water column current circulation pattern (Trasviña-Castro et al. 450 2012).

451 We infer that a large proportion of ichtyoplankton from fish species that spawn in Cabo 452 Pulmo National Park likely drift southward during fall and early winter with episodic, less 453 intense northward fluxes during summer. Oceanic, mesopelagic, bathy-demersal and 454 bathypelagic species (that as adults do not inhabit the shallow continental shelf of Cabo Pulmo 455 National Park), observed primarily during the first six months of the year, most likely come from 456 the northern regions of the park. Apango-Figueroa et al. (2015) studied fish larvae assemblages 457 in mushroom shaped dipole eddies (eddies one cyclonic 50 km diameter and one anticyclonic 80 km diameter) that originate from the coast with a <0.25 m s⁻¹ onshore-offshore central jet 458 separating fish larvae assemblages in ocean waters from the mouth of the Gulf of California 459 460 (southeast of the Baja California peninsula). Although these mesoscale features are sporadic,

461 during their relatively brief existence they can promote large offshore transport of zooplankton in462 the southeast region of the Gulf of California.

463 Conditions in Cabo Pulmo National Park during 2014-2015 were atypically warm with 464 low Chl-a concentrations (Fig. 1) associated with an anomalous warm region in the north Pacific 465 (known as "the blob") and the beginning of the 2015 El Niño that caused longer and more 466 frequent warming events (known as El Niño 2015-2016). The anomalously warm 2014 467 conditions likely promoted two relevant ecological processes: fast embryonic and larval 468 development rates and the presence of ichthyoplankton from a relatively large proportion of 469 tropical and subtropical coral reef species (Figs. 2, 3). Because our sampling took place during 470 an anomalously warm year (2014), all observed patterns of seasonal reproduction per species 471 might change during anomalously cold conditions as would be expected during a strong La Niña 472 event. Given these oceanographic limitations, this study provides a baseline for community 473 structure of fishes from Cabo Pulmo National Park and how ichthyoplankton community 474 structure varies over the course of an annual cycle during an anomalously warm year (Alvarez-475 Filip et al. 2006, Aburto-Oropeza & Balart 2001, Aburto-Oropeza et al. 2011, 2015). 476 Additionally, the present study provides a more complete and integrated perspective about the 477 state of fish species richness in this subtropical coastal marine ecosystem than would dive 478 surveys alone.

The presence of fish eggs and larvae inside Cabo Pulmo National Park indicates that it is a potentially relevant source and/or spawning ground for the species identified in this survey. The long-term protection of spawning habitat for vulnerable, overfished species within marine protected areas can lead to spillover, or biomass export, to surrounding non-protected areas, with the potential of enhancing local fisheries (Gell & Roberts 2003) and improving ecosystem health

484	indexes (Aburto-Oropeza et al. 2015). The presence of fish eggs and larvae in an area is a good
485	indicator of the presence (or absence) of a species, and further monitoring of fish spawning
486	behavior may lead to observations of changes in spawning behavior (Harada et al. 2015).
487	Comparing future data with baseline studies such as this one may prove highly valuable and
488	could suggest that the establishment of a no-take marine reserve or similar management actions
489	can impact the health of important fish populations. We may also see an effect from increasing
490	sea surface temperatures as more southerly species may begin to migrate northward as a result of
491	global climate change.
492	
493	Spawning activity of fishes in Cabo Pulmo National Park
494	
495	We demonstrated the presence of nearby spawning activity for many species that are vital
496	to both the commercial and recreational fisheries of the region such as Nematistius pectoralis
497	(roosterfish), , Coryphaena hippurus (mahi-mahi) and Euthynnus lineatus (skipjack), providing
498	evidence that suggests that Cabo Pulmo National Park may currently be an important spawning
499	location for nearby commercially and recreationally valuable fish populations in the Los Cabos
500	region to the south. Other commercially fished species of the region that appeared in the Cabo
501	Pulmo National Park time series include Euthynnus lineatus, Auxis rochei, Thunnus albacares,
502	Auxis thazard, Katsuwonus pelamis, Micropogonias ectenes and Etrumeus acuminatus
503	(Ramírez-Rodriguez, 2013). These species form part of a Mexican fishery that has a relevant
504	regional socio-economic impact, and understanding the reproductive biology of these key species
505	is crucial in order to inform sound fisheries management regulations such as total allowable
506	catch, seasonal closures and the establishment of marine protected areas (Sala et al. 2003). The

507 local spawning of highly migratory species is valuable information for fisheries management to508 ensure the sustainable harvest of vulnerable populations.

509 Networks of marine protected areas that allow for the preservation of biodiversity and 510 complement fisheries management should include areas for fish spawning to occur and should 511 consider the location of spawning aggregations and connectivity among populations through 512 larval dispersal to ensure biologically optimal performance (Sala et al. 2003). The results from 513 this study, including the presence of a diverse assemblage of many commercially and 514 ecologically important species, provides potential evidence of the success of the marine 515 protected area in its ability to act as a refuge for fish spawning activity and can aid in persuading 516 the public and policy makers of the value of setting aside critical spawning habitat for 517 conservation, including its potential to contribute to increased commercial fishery catch sizes 518 (Nemeth 2005).

519 Although ichthyoplankton studies are generally restricted to species with zooplanktonic 520 eggs or larvae, this study detected higher species richness (16 Orders, 49 families, 94 genera, 159 521 species) than standard diver-conducted monitoring surveys of the same location (13 Orders, 38 522 families, 118 species) (Aburto-Oropeza et al. 2011, 2015, Ramirez-Valdez et al. 2014). The 523 present study identified the early larval stages of five mesopelagic species, indicating that some 524 of the ichthyoplankton species were advected into the park from outside its boundaries (likely 525 drifting from the north with a predominant southward current pattern occurring in winter). Cabo 526 Pulmo National Park has a narrow continental shelf, a deep canyon located in the south end of 527 the park, and an abrupt continental slope that descends from 100 to 700 meters depth (Fig. 1B). 528 The finding of mesopelagic species and benthic species that inhabit caves and crevices (and 529 would be missed in diver monitoring surveys or other standard collection methods) point to

530 connectivity between the reefs of Cabo Pulmo National Park and nearby regions, including deep 531 submarine canyons. Notably, only larvae of three mesopelagic species (i.e., no eggs) were 532 recovered in the Cabo Pulmo National Park samples. This observation suggests that transport of 533 these mesopelagic species into Cabo Pulmo National Park waters likely took longer than the 534 embryonic development time of the eggs or that the species spawns at a depth (well below the 535 depth of our plankton tows) where egg transport time exceeds embryonic development time. 536 The remaining mesopelagic species include the eggs and larvae of Panama lightfish, 537 Vinciguerria lucetia (which is abundant and broadly distributed in the gulf) (Aceves-Medina et 538 al. 2003, 2004), and eggs of the relatively rare giant oarfish Regalecus glesne. Oarfish eggs are 539 larger than most planktonic fish eggs (> 2.0 mm diameter) (Kawakami et al. 2010); their 540 embryonic developmental time is currently unknown but may well be longer and consistent with 541 the apparently more extended transport time of other mesopelagic species. Adult R. glesne have 542 been found stranded on the beach in the Gulf of California and a close relative, *Regalecus* 543 russelii, has been recorded in Bahía de La Paz (Chávez et al. 1985) and Colima (Carrasco-Águila 544 et al. 2014), Mexico. Eggs from R. glesne were reported from the southeast Yucatan Peninsula 545 (Leyva-Cruz et al. 2016) and the Mariana Islands in the North Pacific (Kawakami et al. 2009), 546 and an early larval stage was reported from the Adriatic Sea (Dragičević et al. 2011). This is the 547 first record of *R. glesne* eggs in Cabo Pulmo National Park and indicates that the species likely 548 occurs in oceanic waters of the Gulf of California or the submarine canyon located south of Cabo 549 Pulmo National Park and that the species spawns in or near the Gulf of California.

A total of 22 fish species were identified with vertical distribution ranges to 200 m or deeper (mesopelagic or bathypelagic according to FishBase.org). Mesopelagic species such as *Vinciguerria lucetia* and others found in this study are strong vertical diel migrators and may

553 provide a significant food source for deep-water fishery populations (Dransfeld et al. 2009). 554 Larvae of V. lucetia are among the most frequent and abundant fish larvae in the Gulf of California (Moser et al. 1974, Aceves-Medina et al. 2003, 2004). In fact Moser et al. (1974) was 555 556 a pioneering study reporting eggs identified to species level using exclusively morphological 557 criteria (Scomber japonicus and Sardinops sagax) in the Gulf of California. The present study 558 represents the first report of V. lucetia eggs in the GoC, confirming that it spawns throughout 559 most of the year.

560 The extent to which our study was biased due to the near-surface net tow method is 561 unknown. For example, the most abundant, conspicuous reef species inside the park, like 562 leopard groupers and snappers, were either sampled in very low numbers or not at all. Brogan 563 (1984) found significant differences in species richness of fish larvae collected with night light 564 traps (less diverse community) and daytime near-surface zooplankton nets (more diverse 565 community) in the Gulf of California. Our sampling times (79% of samples were collected 566 between 8:00-12:00 h) may have over represented mid-day spawners but likely under 567 represented dusk and night spawners. While the majority of the species identified in our samples 568 exhibit pelagic broadcast spawning behavior, one of the most common reproduction methods in 569 the ocean, six of the species identified exhibit alternative reproductive strategies including 570 benthic broadcast spawning, open water/substratum egg scattering, brood hiding, and 571 guarding/nesting (Tables 1 and 3, species indicated with the \odot symbol). As a result of these 572 strategies, the species in question were only identified from larval stages, as their eggs are not 573 usually found in the upper water column where our plankton tows were conducted during 2014. 574

- 575

Comparing molecular and morphological identification methods

576

577 After sorting out the fish eggs and larvae from the rest of the zooplankton samples, fish 578 eggs and larvae were identified to the most precise taxonomic level possible following the 579 diagnostic morphological characteristics established in several specialized publications 580 (Chaudhuri 1977, Ahlstrom & Moser 1980, Nishikawa & Rimmer 1987, Moser 1996, Watson 581 1998, Saldierna–Martinez et al. 2005, Richards 2006a, b, Jiménez-Rosenberg et al. 2006, 582 Kawakami et al. 2010, and González-Navarro et al. 2013). An interesting result that emerged 583 from the present study is that these initial identifications of fish eggs were generally inaccurate 584 and underestimated the number of species present. Species level identification can be accurate 585 for several species with distinctive morphology (Ahlstrom & Moser 1980, Kawakami et al. 2010, 586 Moser et al. 1974, Hammann et al. 1998), but for most species, distinctive egg morphology is 587 lacking because spherical shape is a generalized adaptive feature for pelagic fishes (Elgar 1990). 588 For example, in one instance, molecular analysis of 81 eggs with similar egg size diameter and 589 morphologically identified as Pacific red snapper Lutjanus peru, revealed eggs from eight 590 separate species (Fig. S2). Among the eggs identified were species from two orders and seven 591 families with adults ranging in size from 24 cm to 92 cm total length (Fig. S2). In other cases, 592 specimens morphologically identified as belonging to a single species were found (by molecular 593 analysis) to include eggs from up to 14 separate species. Overall, only 15.5% of the 594 morphological identifications agreed with the results from molecular analysis (COI and 16S). 595 It is relevant to note that in this study, the difficulty of morphological identification was 596 further compounded by the fact that the samples were preserved in ethanol (largely dehydrated) 597 rather than formalin 5%, which better preserves the shape, transparency, pigments and 598 morphology of the fish embryos. Preservation in ethanol shrinks fish egg size and obscures

599 many of the characters traditionally used for morphological identification (Kawakami et al. 2010, 600 Lewis et al. 2016). In a temperate ecosystem with relatively low species richness (21 species), 601 Markle & Frost (1985) identified 12 species using chorion structure and egg diameter versus oil 602 globule diameter scatter grams to completely or partially diagnose species identities. In tropical 603 and subtropical ecosystems with diverse fish community structure this task is more complex. 604 Spherical fish eggs are a successful and broadly observed feature in marine and fresh water 605 fishes as an adaptive strategy to inhabit the relatively short transit of the pelagic life phase (Elgar 606 1990). There are some exceptions, such as parrotfish (genus *Scarus*) and anchovy (genus 607 Engraulidae), which have oval, football shaped eggs and are easily identified at least to the 608 genus level using morphological characters alone. Overall, our molecular identifications revealed 609 three times as many species as the morphological identifications, including rare and unexpected 610 species such as the giant oarfish *R. glesne*. The reliance on morphological identification alone 611 could cause significant biases of species richness when used for making fisheries management 612 decisions and these findings underscore the value of using molecular techniques to aid in marine 613 ecological and conservation studies (Arinashi 2006, Teletchea 2009, Harada et al. 2015). 614 615 Conclusion 616 617 Future studies should take into account embryonic development time (dependent on 618 seawater temperature) as well as synoptic ocean current patterns (speed and direction) to

determine the approximate location of the spawning activity. High-resolution predictive current
modeling or more extensive observational studies of regional currents at Cabo Pulmo National

621 Park should help determine if eggs collected originated inside the park boundaries are retained,

622 or spillover to areas outside of Cabo Pulmo National Park as predicted in the Gulf of California 623 (Peguero-Icaza et al. 2008, 2011) or California coastal ecosystems (Harada et al. 2015). Future 624 surveys that sample zooplankton just above the reef (perhaps with a net trawled by a diver with a 625 scooter) might capture more reef-associated species increasing gamma species diversity. 626 Similarly, additional sampling at night might increase fish egg and larvae species richness. 627 Based on DNA sequences obtained from the Cabo Pulmo National Park fish egg samples, 628 we found 59 OTUs (~32%) that did not match sequences available for species known to inhabit 629 the Gulf of California (Table 2). Successful DNA barcoding requires complete and reliable 630 online sequence databases, so a primary limitation of DNA barcoding is that the sequence 631 databases are still incomplete worldwide and particularly for species in the Gulf of California. 632 Future research should sequence specimens from Cabo Pulmo National Park that have not yet 633 been analyzed and compare them to sequences from eggs that did not find a sufficient match in 634 the existing molecular database.

635 Evidence of spawning activity in the vicinity of Cabo Pulmo National Park during 2014 636 suggests that the reserve is currently functioning to protect spawning habitat for many 637 commercially and ecologically important species and that continued monitoring may detect 638 changes in spawning activity in future years as the environment changes in response to natural 639 and anthropogenic activities (Robinson et al. 2013, 2016). Although Cabo Pulmo National Park 640 is among the best-protected and healthiest MPAs in the Gulf of California (Aburto-Oropeza et al. 641 2001, 2011, 2015), it is still vulnerable in the face of increasing tourism, coastal development, 642 overfishing, and climate change. Zooplankton monitoring surveys like this one, including 643 molecular identification of ichthyoplankton, help us acquire a more complete understanding of

644 the state of the ecosystem and can be used as a baseline to compare data with future ecological645 and taxonomic studies.

647	Acknowledgements. The authors thank the Castro family for their unconditional and invaluable
648	help to collect weekly zooplankton samples at Cabo Pulmo National Park (since Jan 2014 to
649	2017). We thank Carlos J. Robinson (ICMyL-UNAM) for his satellite SST and Chlorophyll-a
650	analysis from data set available at NASA SeaWiFS. We thank CONANP, particularly Carlos
651	Ramón Godínez Reyes, for the permissions given for this research project and members of the
652	Gulf of California Marine Program for their help with this project, especially Juan José Cota
653	Nieto, Arturo Ramírez-Valdez and Jose Alfredo Girón Nava. We also thank Phil Hastings and
654	HJ Walker for advice, suggestions, and access to the SIO Marine Vertebrate Collection.
655	Photographs of adult fish (Fig. S2) were taken by John Snow. Andrew F. Johnson was supported
656	by NSF grant DEB-1632648 (2016). Other support included CICIMAR-IPN (Coordinación
657	General de Posgrado e Investigación grants in 2013–2016), SEP-CONACYT grant CB-2012-
658	178615-01 to J.GG. The coauthors J.GG. and R.J.SM are fellows of COFAA-IPN, EDI-IPN
659	and SNI. Additional funding was provided by the Walton Family Foundation, Helmsley
660	Charitable Trust, International Community Foundation, and David and Lucile Packard
661	Foundation.

664 665	LITERATURE CITED
666	Aburto-Oropeza O, Balart EF (2001) Community structure of reef fish in several habitats of a
667	rocky reef in the Gulf of California. Mar Ecol 22(4):283-305
668	Aburto-Oropeza O, Erisman B, Galland GR, Mascareñas-Osorio I, Sala E, Ezcurra E (2011)
669	Large Recovery of fish biomass in a no-take marine reserve. PLoSOne 6(8):e23601
670	Aburto-Oropeza O, Ezcurra E, Moxley J, Sánchez-Rodríguez A, Mascarenas-Osorio I, Sánchez-
671	Ortiz C, Erisman B, Ricketts T (2015) A framework to assess the health of rocky reefs linking
672	geomorphology, community assemblage, and fish biomass. Ecol Ind 52:353-361
673	Aceves-Medina G, Jiménez-Rosenberg SPA, Hinojosa-Medina A, Funes-Rodríguez R, Saldierna
674	RJ, Lluch-Belda D, Smith PE, Watson W (2003) Fish larvae from the Gulf of California. Sci
675	Mar 67(1):1–11
676	Aceves-Medina G, Jiménez-Rosenberg SPA, Hinojosa-Medina A, Funes-Rodríguez R,
677	Saldierna-Martínez RJ, Smith PE (2004) Fish larvae assemblages in the Gulf of California. J
678	Fish Biol 65(3):832–847
679	Ahlstrom EH, Moser HG (1980) Characters useful in identification of pelagic marine fish eggs.
680	Calif Coop Oceanic Fish Invest Rep 21:121-131
681	Alvarez-Filip L, Reyes-Bonilla H, Calderon-Aguilera LE (2006) Community structure of fishes
682	in Cabo Pulmo reef, Gulf of California. Mar Ecol 27(3):253-262
683	Aranishi F (2006) Single fish egg DNA extraction for PCR amplification. Conserv Genetics
684	7(1):153-156
685	Apango-Figueroa E, Sánchez-Velasco L, Lavín MF, Godínez VM, Barton ED (2015) Larval fish
686	habitats in a mesoscale dipole eddy in the gulf of California. Deep Sea Res Part I 103:1–12.

- 687 Arizpe O, Covarrubias M (2010) Sustainable tourism planning for the only coral reef in the Gulf
- 688 of California: Cabo Pulmo national park. 4th International Conference on Sustainable
- 689 Tourism, Ashurst, New Forest, England, 5-7 July 2010. WIT Press
- Brogan MW (1994) Two methods of sampling fish larvae over reefs: a comparison from the Gulf
- 691 of California. Mar Biol 118(1):33–44
- Burton RS (2009) Molecular markers, natural history, and conservation of marine animals,
- 693 BioScience 59(10):831–840
- 694 Carrasco-Águila MÁ, Miranda-Carrillo O, Salas-Maldonado M (2014) El rey de los arenques
- 695 *Regalecus russelii*, segundo ejemplar registrado en Manzanillo, Colima. Cienc Pesq
- 696 22(2):85-88
- 697 Castro-Aguirre JL, Balart EF (2002) The ichthyofauna of the Islas Revillagigedo and their
- 598 zoogeographical relationships with comments about its origin and evolution. In: Lozano-
- Vilano ML. (Ed.) Libro Jubilar en Honor al Dr. Salvador Contreras Balderas. UANL, Mexico,
 153–170
- 701 Chaudhuri H, Juario J, Primavera J, Mateo R, Samson R, Cruz E, Jarabejo E, Canto Jr J (1977)
- 702 Artificial fertilization of eggs and early development of the milkfish *Chanos chanos*
- 703 (Forskal). Tech Rep No. 3 Aquacult Dep SEAFDEC 21–38
- 704 Chávez H, Galván-Magaña F, Torres-Villegas JR (1985) Primer registro de Regalecus russellii
- (Shaw) (Pisces: Regalecidae) de aguas mexicanas. Invest Mar CICIMAR 2(2):105–112
- 706 Claro R, Lindeman KC (2003) Spawning aggregation sites of snapper and grouper species
- 707 (Lutjanidae and Serranidae) on the insular shelf of Cuba. Gulf Caribb Res 14(2):91–106

708	Cruz-Agüero, J. de la, F. Galván-Magaña, L.A. Abitia-Cárdenas, J. Rodriguez-Romero & F.J.
709	Gutiérrez-Sánchez. (1994) Systematic list of marine fishes from Bahía Magdalena, Baja
710	California Sur (Mexico). Cien. Mar. 20: 17-31.
711	Del Moral-Flores LF, González-Acosta AF, Espinosa-Pérez H, Ruiz-Campos G, Castro-Aguirre
712	JL. (2013) Annotated checklist of the ichthyofauna from the islands of the Gulf of California,
713	with comments on its zoogeographic affinities. Revista Mexicana de Biodiversidad 84: 184-
714	214.
715	deWaard JR, Ivanova NV, Hajibabei M, Hebert PDN (2007) Assembling DNA Barcodes.
716	Methods in Molecular Biology. Environmental Genomic 410:275–294
717	Doney SC, Ruckelshaus M, Emmett DJ, Barry JP, Chan F, English CA, Galindo HM, Grebmeier
718	JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012)
719	Climate change impacts on marine ecosystems. Annual Rev Mar Sci 4:11-37
720	Dragičević B, Pallaoro A, Grgičević R, Lipej L, Dulčić J (2011) On the occurrence of early life
721	stage of the king of herrings, Regalecus glesne (Actinopterygii: Lampriformes: Regalecidae),
722	in the Adriatic Sea. Acta Ichthy et Pisca 41(3):251–253
723	Dransfeld L, Dwane O, Zuur AF (2009) Distribution patterns of ichthyoplankton communities in
724	different ecosystems of the Northeast Atlantic. Fish Oceanogr 18(6):470-475
725	Elgar MA (1990) Evolutionary compromise between a few large and many small eggs:
726	comparative evidence in teleost fish. Oikos 59(2):283-287
727	Erisman BE, Apel AM, MacCall AD, Román MJ, Fujita R (2014) The influence of gear
728	selectivity and spawning behavior on a data-poor assessment of a spawning aggregation
729	fishery. Fish Res 159:75–87

- 730 Erisman B, Galland GR, Mascareñas I, Moxley J, Walker HJ, Aburto-Oropeza O, Hastings PA,
- 731 Ezcurra E. (2011) List of coastal fishes of Islas Marías archipelago, Mexico, with comments
- on taxonomic composition, biogeography, and abundance. Zootaxa 2985: 26–40.
- 733 Gell FR, Roberts CM (2003) Benefits beyond boundaries: the fishery effects of marine reserves.
- 734 Trends Ecol Evol 18(9):448–455
- 735 Gleason LU, Burton RS (2012) High-throughput molecular identification of fish eggs using
- multiplex suspension bead arrays. Mol Ecol Res 12:57–66
- 737 González-Navarro EA, Saldierna-Martínez RJ, Aceves-Medina G, Jiménez-Rosenberg SPA
- 738 (2013) Atlas de identificación de larvas de peces de la subdivisión Elopomorpha del Pacífico
- 739 mexicano. CICIMAR Oceánides 28(2):7–40
- Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Biological diversity: frontiers in
 measurement and assessment 12:39–54
- Hammann MG, Nevárez-Martínez MO, Green-Ruíz Y (1998) Spawning habitat of the Pacific
- sardine (*Sardinops sagax*) in the Gulf of California: Egg and larval distribution 1956-1957
- and 1971-1991. Calif Coop Oceanic Fish Invest Rep 39:169-179
- 745 Harada AE, Lindgren EA, Hermsmeier MC, Rogowski PA, Terrill E, Burton BS (2015)
- 746 Monitoring spawning activity in a southern California marine protected area using molecular
- identification of fish eggs. PLoS ONE 10(8): e0134647. doi: 10.1371/journal.pone.0134647
- 748 Hyde JR, Lynn E, Humphreys JrR, Musyl M, West AP, Vetter R (2005) Shipboard identification
- of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin,
- shortbill spearfish, and wahoo. Mar Ecol Progr Ser 286:269–277
- 751 Jiménez-Rosenberg SPA, González Navarro E, Saldierna RJ (2006) Larval, prejuvenile and
- juvenile development of *Eucinostomus currani*. J Fish Biol 69:28–37

- 753 Johnson AF, Moreno-Báez M, Giron-Nava A, Corominas J, Erisman B, Ezcurra E, Aburto-
- 754 Oropeza O (2017) A spatial method to calculate small-scale fisheries effort in data poor

755 scenarios. PLoS ONE 12(4):e0174064

- 756 Kawakami T, Aoyama J, Tsukamoto K (2010) Morphology of pelagic fish eggs identified using
- 757 mitochondrial DNA and their distribution in waters west of the Mariana Islands. Environ Biol

758 Fish 87(3):221–235

759 Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean

heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res

- 761 Lett 36:L07608
- 762 Lewis LA, Richardson D, Zakharov E, Hanner R (2016) Integrating DNA barcoding of fish eggs
 763 into ichthyoplankton monitoring programs. Fish Bull 114(2):53–166
- 764 Leyva-Cruz E, Vásquez-Yeomans L, Carrillo L, Valdez-Moreno M (2016) Identifying pelagic
- fish eggs in southeast Yucatan Peninsula using DNA barcodes. Genome 59(12):1117–1129
- Lo NCH, Hunter JR, Charter R (2001) Use of a continuous egg sampler for ichthyoplankton
- surveys: application to the estimation of daily egg production of Pacific sardine (Sardinops
- *sagax*) off California. Fish Bull 99(4):554–572
- Marinone SG (2012) Seasonal surface connectivity in the Gulf of California. Estuar Coast Shelf
 Sci 100:133–141
- 771 Markle DF, Frost LA (1985) Comparative morphology, seasonality, and a key to planktonic fish
- eggs from the Nova Scotian shelf. Canadian J Zool 63(2):246–257
- 773 Mascareñas-Osorio I, Erisman B, Moxley J, Balart EF, Aburto-Oropeza O. (2011) Checklist of
- conspicuous reef fishes of the Bahía de los Ángeles región, Baja California Norte, México,
- with comments on abundance and ecological biogeography. Zootaxa 2922:60–68.

- 776 Miller B, Kendall AW (2009) Early life history of marine fishes. University of California Press
- 777 Moser HG (1996) (ed). The early stages of fishes in the California Current region. Calif Coop
- 778 Oceanic Fish Atlas 33:1–1505
- 779 Moser HG, Ahlstrom EH, Kramer DA, Stevens EG (1974) Distribution and abundance of fish
- eggs and larvae in the Gulf of California. Calif Coop Oceanic Fish Rep 17:112–128
- 781 Moser HG, Charter RL, Smith PE, Ambrose DA, Charter SR, Meyer CA, Sandknop EM, Watson
- 782 W (1993) Distributional atlas of fish larvae and eggs in the California Current region: taxa
- with 1000 or more total larvae, 1951 through 1984. Calif Coop Oceanic Fish Atlas 31:1–233
- 784 Nemeth RS (2005) Population characteristics of a recovering US Virgin Islands red hind
- spawning aggregation following protection. Mar Eco Prog Ser 286:81-97.
- 786 NHGRI Genome Sequencing Program (GSP), DNA Sequencing Costs,

787 <u>http://www.genome.gov/sequencingcosts/</u>

- 788 Nishikawa Y, Rimmer DW (1987) Identification of larval tunas, billfishes and other scombroid
- fishes (suborder Scombroidei): an illustrated guide. CSIRO Mar Lab Rep 186
- 790 Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C,
- Mable BK, editors. Molecular Systematics. Sinauer & Associates Inc, Sunderland, MA,
 USA. pp. 205–47
- Pauly D, Pullin RSV (1988) Hatching time in spherical, pelagic, marine fish eggs in response to
- temperature and egg size. Environ Biol Fish 22(4):261–271
- 795 Peguero-Icaza M, Sanchez-Velasco L, Lavín MF, Marinone SG (2008) Larval fish assemblages,
- environment and circulation in a semi enclosed sea (Gulf of California, Mexico). Estuar Coast
- 797 Shelf Sci 79(2):277–288

798	Peguero-Icaza M	, Sánchez-Vela	asco L, Lavín M	F, Marinone SG	, Beier E (2	2011) Seasor
				,	2 (

changes in connectivity routes among larval fish assemblages in a semi-enclosed sea (Gulf of

800 California). J Plankt Res 33(3):517–533

801 Perez J, Alvarez P, Martinez JL, Garcia-Vazquez E (2005) Genetic identification of hake and

megrim eggs in formaldehyde-fixed plankton samples. ICES J Mar Sci 62(5):908–914

803 Ramírez-Rodríguez, M (2013) Especies de interés pesquero en el Pacífico Mexicano: nombres y

804 claves para su registro. CICIMAR, IPN: http://catalogo.cicimar.ipn.mx

805 Ramirez-Valdez A, Johnson A, Aburto-Oropeza O, Giron-Nava A (2014) Mexico's reefs and

underwater data. DataMares. InteractiveResource. http://dx.doi.org/10.13022/M33W21

807 Reyes-Bonilla H, Calderon-Aguilera L (1999) Population density, distribution and consumption

rates of three corallivores at Cabo Pulmo reef, Gulf of California, Mexico. Mar Ecol (20)3-

809 4:347-357

810 Richards WJ (2006a) Early stages of Atlantic fishes. An identification guide for the Western

811 Central North Atlantic. Volume I, CRC Press Taylor and Francis Group 1–1335

812 Richards WJ (2006b) Early Stages of Atlantic Fishes. An identification guide for the Western

813 Central North Atlantic. Volume II, CRC Press Taylor and Francis Group 1337–2640

814 Robinson CJ, Gómez-Gutiérrez J, Salas De León DA (2013) Jumbo squid (Dosidicus gigas)

815 landings in the Gulf of California related to remotely sensed sea surface temperature and

816 concentration of chlorophyll a (1998–2012). Fish Res 137:97–103

817 Robinson CJ, Gómez-Gutiérrez J, Markaida U, Gilly WF (2016) Prolonged decline of jumbo

- squid (*Dosidicus gigas*) landings in the Gulf of California is associated with chronically low
- 819 wind stress and decreased chlorophyll *a* after El Niño 2009-2010. Fish Res 173(2):128–138

820	Sala E, Aburto-Oro	peza O, Paredes G	, Thompson G (2003) Spawning age	regations and
	, , , , , , , , , , , , , , , , , , , ,		,	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

- reproductive behavior of reef fishes in the Gulf of California. Bull Mar Sci 72(1):103–121
- 822 Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera JC, Dayton PK (2002) A general model
- for designing networks of marine reserves. Science 298(5600):1991–1993
- 824 Saldierna–Martinez RJ, Gonzalez–Navarro E, Aceves–Medina G (2005) Larval development of
- 825 *Symphurus atramentatus* (Cynoglossidae: Pleuronectiformes) from the Gulf of California.
- 826 Zootaxa 1016:15–19
- 827 Smith PE, Richardson SL (1977) Standard techniques for pelagic fish egg and larva surveys.
- **828** FAO Fish Tech Paper 175:1–100
- Teletchea F (2009) Molecular identification methods of fish species: reassessment and possible
 applications. Rev Fish Biol Fish 19(3):265–293
- Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño

frequency in a climate model forced by future greenhouse warming. Nature

833 398(6729):694-697

- 834 Trasviña-Castro AT, Aburto-Oropeza O, Ezcurra E, Zaytsev O (2012) Observaciones de
- 835 corrientes en el Parque Nacional de Cabo Pulmo, Baja California Sur: mediciones Eulerianas
- en verano, otoño e inicios del invierno. GEOS 32(2):323–341 [in Spanish]
- 837 Verutes GM, Huang C, Estrella RR, Loyd K (2014) Exploring scenarios of light pollution from
- coastal development reaching sea turtle nesting beaches near Cabo Pulmo, Mexico. Global
- 839 Ecol Conserv 2:170–180
- 840 Villareal-Cavazos A, Reyes-Bonilla H, Bermúdez-Almada B, Arizpe-Covarrubias O (2000) Los
- 841 peces del arrecife de Cabo Pulmo, Golfo de California, México: Lista sistemática y aspectos
- de abundancia y biogeografía. Rev Biol Trop 48:413-424 [in Spanish]

- 843 Villegas-Sánchez CA, Abitia-Cárdenas Gutiérrez-Sánchez FJ, Galván-Magaña F (2009) Rocky-
- reef fish assemblages at San José Island, Mexico. Rev Mex Bio 80:169-179
- 845 Watson W (1998) Early life history stages of the whitetip flyingfish, *Cheilopogon xenopterus*
- 846 (Gilbert, 1890) (Pisces: Exocoetidae). Fish Bull 97 (4):1031–1042

848 List of Figures

Fig. 1. Area of study. Location of Cabo Pulmo National Park in the southeast region of Baja 849 850 California peninsula (A) and bathymetry of the national park measured with 120 and 200 kHz 851 echosounder showing the location of the weekly zooplankton time series (Jan–Dec 2014) (**B**) 852 853 Fig. 2. Satellite monthly anomaly and mean sea surface temperature (A, B) and satellite monthly 854 anomaly and mean of surface chlorophyll-a concentration (C, D) recorded between 2000 and 855 2015 from the region of Cabo Pulmo National Park 856 Fig. 3. Total standardized abundance (ind/1000 m³) (bars) and species richness (lines) of 857

858 Operational Taxonomic Units (OTUs) identified with molecular methods for A) fish eggs and B)

larvae and C) total (eggs and larvae) collected in the Cabo Pulmo National Park between Jan andDec 2014

861

Fig. 4. A) Number of fish species (eggs and larvae) identified with molecular methods from
ichthyoplankton collected in 2014 in the Cabo Pulmo National Park inferred per adult habitat

distribution, B) relative abundance (%) and C) number of specimens analyzed of fish eggs and

larvae classified by adult habitat distribution. Note: 24th of June collection was taken after a

866 known *Chanos chanos* (milkfish) spawning event

867

868 Supplemental Material

869

Fig. S1. Rarefaction curves of number of fish egg and larvae OTUs identified as a function ofspecimens analyzed per season.

872

Fig. S2. Example of morphological vs molecular fish egg identification: 81 eggs

874 morphologically identified as *Lutjanus peru* (Pacific red snapper) revealed to be eggs from eight

875 separate species. Scale bar represents 200 microns. The first two rows (capitalized letters) show

the eggs that were identified molecularly as belonging to the species in the second two rows

877 (non-capitalized letters).

- **Fig. S3.** Composite photograph of multiple species of fish eggs found in the ichthyoplankton
- 880 monitoring survey of Cabo Pulmo National Park in 2014 (not shown to scale). A.
- 881 Morphologically distinct football shaped eggs belonging to *Scarus* spp. **B.** Egg of the giant
- 882 oarfish, Regalecus glesne. Eggs of: C. Synodus lucioceps D. Ammodytoides gilli E. Prionurus
- 883 laticlavius F. Oxyporhamphus micropterus G. Pronotogrammus multifasciatus H. Vinciguerria
- 884 lucetia
- 885
- **Table S1.** List of 157 Operational Taxonomic Units (OTU) found from fish eggs and larvae
- collections taken in 2014 from Cabo Pulmo National Park. The results from NCBI's GenBank
- and the Barcode of Life Database are shown as well as the number of identical sites for each
- sequence.
- 890

891

Fig. 1. Area of study. Location of Cabo Pulmo National Park in the southeast region of Baja
California peninsula (A) and bathymetry of the national park measured with 120 and 200 kHz
echosounder showing the location of the weekly zooplankton time series (Jan–Dec 2014) (B)

Fig. 2. Satellite monthly anomaly and mean sea surface temperature (A, B) and satellite monthly
anomaly and mean of surface chlorophyll-*a* concentration (C, D) recorded between 2000 and
2015 from the region of Cabo Pulmo National Park

Fig. 3. Total standardized abundance (ind/1000 m³) (bars) and species richness (lines)

905 Operational Taxonomic Units (OTUs) identified with molecular methods for A) fish eggs and B)

906 larvae and C) total (eggs and larvae) collected in Cabo Pulmo National Park between January

910 Fig. 4. A) Number of fish species (eggs and larvae) identified with molecular methods from

- 911 ichthyoplankton collected in 2014 in the Cabo Pulmo National Park inferred per adult habitat
- 912 distribution, **B**) relative abundance (%) and **C**) number of specimens analyzed of fish eggs and
- 913 larvae classified by adult habitat distribution.
- 914 Note: 24th of June collection was taken after a known *Chanos chanos* (milkfish) spawning event

- 915 **Table 1.** List of all fish species in order of abundance (number of specimens identified) and
- 916 number of specimens identified from eggs and larvae using molecular methods that produced a
- 917 \geq 97% match to sequences in GenBank and Barcode of Life Data System, number of zooplankton
- samples. Habitat of adults obtained from specialized literature is also shown.
- 919 I indicates species that have not been previously reported from Cabo Pulmo National Park
- 920 indicates species with demersal eggs that attach to substrate or a parent's body; the rest of the
- 921 species have planktonic eggs

Species	Common name	Number of specimens identified	Number of collections	Number of larvae	Number of eggs	Gene used	Habitat
Scarus sp. (morphological ID)	Parrotfish	1799	7	0	1799	NA	Reef associated
Halichoeres dispilus	Chameleon wrasse	290	23	3	287	COI	Reef associated
Xyrichtys mundiceps ★	Cape razorfish	242	9	0	242	COI	Reef associated
Euthynnus lineatus	Black skipjack	213	8	3	210	COI	Pelagic/oceanic
Ammodytoides gilli ★	Gill's sand lance	123	13	0	123	COI	Demersal
Synodus lacertinus	Sauro lizardfish	118	26	0	118	COI	Demersal
Etrumeus acuminatus ★	Round herring	109	6	1	108	COI	Pelagic/neritic
Chanos chanos	Milkfish	96	3	1	95	COI	Benthopelagic
Haemulon flaviguttatum	Yellowspotted grunt	92	10	1	91	COI	Demersal
Vinciguerria lucetia ★	Panama lightfish	90	14	30	60	COI	Mesopelagic
Auxis rochei ★	Frigate tuna	71	8	14	57	COI	Pelagic/neritic
Haemulon sexfasciatum	Greybar grunt	67	10	1	66	COI	Reef associated
Caranx caninus 🖈	Pacific crevalle jack	61	8	9	52	COI	Pelagic/oceanic
Thalassoma lucasanum	Cortez rainbow wrasse	58	6	0	58	COI	Reef associated
Eucinostomus currani ★	Pacific flagfin mojarra	48	3	5	43	COI	Demersal
Decapterus macarellus	Mackerel Scad	40	10	8	32	COI	Pelagic/oceanic
Fistularia commersonii	Bluespotted cornetfish	33	7	0	33	COI	Reef associated
Sarda orientalis ★	Striped bonito	30	3	30	0	COI	Pelagic/neritic
Scarus ghobban	Bluebarred parrotfish	26	3	0	26	16S	Reef associated
Scarus compressus	Azure parrotfish	23	2	0	23	16S	Reef associated
Lutjanus guttatus	Spotted rose snapper	20	5	0	20	COI	Reef associated
Lutjanus argentiventris	Yellow snapper	17	7	5	12	COI	Reef associated
Umbrina xanti	Polla drum	16	4	0	16	COI	Reef associated
Cyclopsetta panamensis ★	God's flounder	15	8	0	15	COI	Demersal
Bothus leopardinus ★	Pacific leopard flounder	14	3	0	14	COI	Demersal
Paranthias colonus	Pacific creole-fish	14	7	0	14	COI	Reef associated
Sphyraena ensis ★	Mexican barracuda	14	3	8	6	COI	Pelagic/neritic
Pristigenys serrula ★	Popeye catalufa	13	2	0	13	COI	Reef associated
Cephalopholis panamensis	Pacific graysby	12	1	0	12	COI	Reef associated
Lutjanus novemfasciatus	Pacific dog snapper	12	4	7	5	COI	Reef associated
Rypticus bicolor	Mottled soapfish	12	3	0	12	COI	Reef associated
Acanthurus xanthopterus	Yellowfin surgeonfish	11	5	0	11	COI	Reef associated
Haemulon maculicauda	Spottail grunt	11	4	0	11	COI	Reef associated
Synodus evermanni ★	Inotted lizardfish	11	5	0	11	COI	Demersal
Hoplopagrus guentherii	Mexican barred snapper	10	4	0	10	COI	Reef associated
Myripristis leiognathus	Panamic soldierfish	10	4	0	10	COI	Reef associated

Paralabrax maculatofasciatus 🖈	Spotted sand bass	10	2	6	4	COI	Reef associated
Seriola rivoliana	Longfin yellowtail	10	2	0	10	COI	Pelagic/oceanic
Halichoeres melanotis	Golden wrasse	9	3	0	8	16S & COI	Reef associated
Lutjanus peru	Pacific red snapper	9	3	0	9	COI	Reef associated
Synodus scituliceps ★	Shorthead lizardfish	9	1	0	9	COI	Demersal
Calamus brachysomus	Pacific porgy	8	2	0	8	COI	Reef associated
Diodon holocanthus	Longspined porcupinefish	8	4	0	8	COI	Reef associated
Decapterus muroadsi	Amberstripe scad	7	2	6	1	COI	Pelagic/oceanic
Heteropriacanthus cruentatus	Glasseye	7	2	0	7	COI	Reef associated
Mulloidichthys dentatus	Mexican goatfish	7	4	0	7	COI	Reef associated
Prionurus punctatus	Yellowtail surgeonfish	7	2	0	7	COI	Reef associated
Selar crumenophthalmus	Bigeye scad	7	2	7	0	COI	Reef associated
Syacium ovale ★	Oval flounder	7	1	7	0	COI	Demersal
Trachinotus rhodopus	Gafftopsail pompano	7	2	0	7	COI	Pelagic/oceanic
Carangoides otrynter ★	Threadfin jack	6	3	0	6	COI	Benthopelagic
Coryphaena equiselis ★	Pompano dolphinfish	6	3	2	4	COI	Pelagic/oceanic
Coryphaena hippurus	Common dolphinfish	5	3	1	4	COI	Pelagic/neritic
Oxyporhamphus micropterus 🖈	Bigwing halfbeak	5	2	0	5	16S & COI	Pelagic/oceanic
Benthosema panamense ★	Panama lanternfish	4	4	4	0	COI	Mesopelagic
Cirrhitichthys oxycephalus	Coral hawkfish	4	3	0	4	COI	Reef associated
Nematistius pectoralis 🖈	Roosterfish	4	3	1	3	COI	Demersal
Plagiotremus azaleus •	Sabertooth blenny	4	3	4	0	COI	Reef associated
Selene peruviana ★	Peruvian moonfish	4	1	0	4	COI	Benthopelagic
Balistes polylepis •	Finescale triggerfish	3	1	3	0	COI	Reef associated
Bodianus diplotaenia	Mexican hogfish	3	1	0	3	COI	Reef associated
Regalecus glesne ★	Giant oarfish	3	1	0	3	16S	Mesopelagic
Alphestes immaculatus 🖈	Pacific mutton hamlet	2	1	0	2	COI	Demersal
Anisotremus taeniatus	Panama porkfish	2	1	0	2	COI	Demersal
Axoclinus storeyae \bigstar •	Carmine triplefin	2	1	2	0	COI	Reef associated
Cheilopogon dorsomacula 🖈	Backspot flyingfish	2	2	0	2	COI	Pelagic/neritic
Diogenichthys laternatus ★	Diogenes lanternfish	2	2	2	0	COI	Mesopelagic
Fistularia corneta ★	Pacific cornetfish	2	2	0	2	165	Pelagic/neritic
Gerres simillimus 🖈	Yellow fin mojarra	2	2	0	2	COI	Reef associated
Hygophum atratum ★	Thickhead lanternfish	2	1	2	0	COI	Bathypelagic
Labrisomus xanti •	Largemouth blenny	2	2	2	0	COI	Reef associated
Liopropoma fasciatum 🖈	Wrasse ass bass	2	1	0	2	COI	Reef associated
Pontinus furcirhinus 🖈	Red scorpionfish	2	2	2	0	COI	Bathydemersal
Prionotus stephanophrys ★	Lumptail searobin	2	1	0	2	COI	Demersal
Acanthemblemaria macrospilus •	Barnacle blenny	1	1	1	0	COI	Reef associated
Acanthurus triostegus	Convict surgeonfish	1	1	0	1	COI	Reef associated
Aulopus sp. ★	Flagfin	1	1	0	1	COI	Demersal
Bellator gymnostethus	Naked-belly searobin	1	1	0	1	COI	Demersal
Carangoides orthogrammus	Island trevally	1	1	0	1	COI	Reef associated
Caranx sexfasciatus	Bigeve trevally	1	1	1	0	COI	Reef associated
Carapus dubius	Pacific pearlfish	1	1	1	0	COI	Demersal
Cubiceps pauciradiatus 🖈	Bigeve cigarfish	1	1	1	0	COI	Bathypelagic
Engraulidae sp. ★	Anchovy	1	1	0	1	165	Pelagic/neritic
Eucinostomus entomelas ★	Dark-spot mojarra	1	1	0	1	COL	Demersal
Gymnothorax castaneus	Panamic green moray	1	1	0	1	COL	Reef associated
Hemanthias signifer ±	Damsel bass	1	1	1	0	COL	Demersal
Katsuwonus nelamis	Skinjack tuna	1	1	0	1	COL	Pelagic/oceanic
Lampanyctus parvicauda 🛨	Slimtail lampfish	1	1	0	1	COI	Bathypelaoic
Lutianus colorado	Colorado snapper	1	1	0	1	COL	Reef associated
Microlenidotus inornatus	Wavyline grunt	1	1	0	1	COI	Reef associated
Micropogonias ectenes 🛨	Slender croaker	1	1	0	1	COL	Demersal
Mugil curema	White mullet	1	1	1	0	COI	Reef associated

Mycteroperca xenarcha	Broomtail grouper	1	1	0	1	COI	Demersal
Myrichthys tigrinus ★	Spotted snake eel	1	1	0	1	COI	Reef associated
Orthopristis reddingi ★	Bronze-striped grunt	1	1	1	0	COI	Demersal
Perissias taeniopterus ★	Striped-fin founder	1	1	0	1	COI	Demersal
Polydactylus approximans ★	Blue bobo	1	1	1	0	COI	Demersal
Polylepion cruentum 🖈	Bleeding wrasse	1	1	0	1	COI	Reef associated
Prognichthys sealei	Sailor flyingfish	1	1	0	1	COI	Pelagic/oceanic
Pronotogrammus multifasciatus ★	Threadfin bass	1	1	0	1	16S	Reef associated
Scarus rubroviolaceus	Ember parrotfish	1	1	0	1	16S	Reef associated
Stegastes rectifraenum \odot	Cortez damselfish	1	1	1	0	COI	Reef associated
Thunnus albacares	Yellowfin tuna	1	1	1	0	COI	Pelagic/oceanic
Triphoturus mexicanus 🖈	Mexican lampfish	1	1	1	0	COI	Mesopelagic

924 Table 2. List of 54 unidentified Operational Taxonomic Units (OTUs) (in order of abundance),

total number of individuals collected, number of sampling collections (n = 48) in which

926 individuals were found from eggs and larvae collected in Cabo Pulmo National Park in 2014

showing the closest match found in online databases and percentage sequence identity.

928 Species with an asterisk (*) represent specimens that provided a match of \geq 97% to a species that

929 is not known to occur in the Gulf of California. They may represent a closely related species

930 with sequences that are not present in GenBank or BOLD or, less likely, an occurrence of this

931 species outside of its known distribution range.

OTUs	Number of specimens analyzed	Number of sampling collections	Gene used	Closest genus and species match	Identity (%)
OTU # 14	76	7	16S	Ammodytes americanus	94
OTU # 04	71	11	COI	Bleekeria mitsukurii	96
OTU # 54	26	5	COI	Epinephelus clippertonensis*	99
OTU # 07	14	2	COI	Syacium maculiferum	85
OTU # 23	13	1	16S	Xyrichths novacula	96
OTU # 26	12	5	COI	Abudefduf saxatilis	96
OTU # 03	10	2	COI	Cephalopholis cruentata	95
OTU # 09	10	3	COI	Diaphus watasei	91
OTU # 53	8	1	16S	Assurger anzac*	98
OTU # 58	8	4	COI	Syacium maculiferum*	99
OTU # 11	7	2	COI	Mycteroperca microlepis	95
OTU # 08	6	2	COI	Bothus robinsi	90
OTU # 06	4	2	COI	Synodus poeyi	91
OTU # 15	4	2	COI	Actinopterygii environmental sample	90
OTU # 38	4	2	COI	Caranx latus	90
OTU # 02	3	2	COI	Assurger anzac	92
OTU # 12	3	3	COI	Symphurus ginsburgi	84
OTU # 40	3	2	COI	Trachinotus goodei*	98
OTU # 48	3	1	COI	Hyporthodus niveatus*	98
OTU # 50	3	3	16S	Synodus lucioceps	87
OTU # 01	2	2	COI	Lampanyctus hubbsi	94
OTU # 10	2	1	COI	Uropterygius macularius	90
OTU # 21	2	1	COI	Synodus foetens	88
OTU # 29	2	1	COI	Opisthonema libertate	94
OTU # 32	2	2	COI	Bleekeria mitskurii	91
OTU # 52	2	1	COI	Genypterus maculatus*	99
OTU # 55	2	1	COI	Hyporthodus niphobles*	100

OTU # 56	2	2	COI	Kyphosus cinerascens*	99
OTU # 05	1	1	COI	Tetragonorus cuvieri	94
OTU # 13	1	1	COI	Gillellus jacksoni	84
OTU # 16	1	1	COI	Gillellus jacksoni	85
OTU # 17	1	1	COI	Callechelys muraena	93
OTU # 18	1	1	COI	Caranx crysos*	99
OTU # 20	1	1	COI	Synodus foetens	86
OTU # 22	1	1	COI	Siganus corallinus	82
OTU # 24	1	1	COI	Symphurus atricaudus	83
OTU # 25	1	1	COI	Polylepion russelli	90
OTU # 27	1	1	COI	Neoconger mucronatus	93
OTU # 28	1	1	16S	Prionotus scitulus	95
OTU # 31	1	1	COI	Kyphosus vaigiensis	94
OTU # 33	1	1	COI	Microdesmus carri	86
OTU # 34	1	1	COI	Ophichthus gomesii	88
OTU # 35	1	1	COI	Cypselurus poecilopterus	82
OTU # 36	1	1	COI	Trachipterus trachipterus	82
OTU # 37	1	1	COI	Anchoa hepsetus	90
OTU # 39	1	1	COI	Gymnothorax vicinus	90
OTU # 41	1	1	COI	Evoxymetopon taeniatus	93
OTU # 42	1	1	COI	Synodus poeyi	91
OTU # 43	1	1	16S	Kathetostoma laeve*	97
OTU # 44	1	1	COI	Macruronus magellanicus	81
OTU # 46	1	1	16S	Ichthyapus ophioneus	93
OTU # 47	1	1	COI	Paralichthys lethostigma	86
OTU # 51	1	1	16S	Synodus lucioceps	87
OTU # 57	1	1	COI	Paraconger ophichthys*	99

- 934 Table 3. Seasonal number of specimens of fish egg and larvae species and Operational
- 935 Taxonomic Units (OTUs) (pooled) observed in Cabo Pulmo National Park weekly time series
- 936 (Jan-Dec 2014).
- 937 indicates species with demersal eggs attached to substrate or parent's body; the rest of the
- 938 species have planktonic eggs

Species	Winter	Spring	Summer	Autumn	# Seasons present
Acanthemblemaria macrospilus ${oldsymbol O}$	0	1	0	0	1
Acanthurus triostegus	0	0	1	0	1
Acanthurus xanthopterus	0	0	11	0	1
Alphestes multiguttatus	0	0	2	0	1
Ammodytoides gilli	11	10	4	98	4
Anisotremus taeniatus	0	0	2	0	1
Aulopus sp.	1	0	0	0	1
Auxis rochei	48	2	20	1	4
Axoclinus storeyae 📀	0	0	0	2	1
Balistes polylepis •	0	0	3	0	1
Bellator gymnostethus	0	0	0	1	1
Benthosema panamense	2	1	1	0	3
Bodianus diplotaenia	0	3	0	0	1
Bothus leopardinus	0	0	10	4	2
Calamus brachysomus	3	5	0	0	2
Carangoides orthogrammus	0	0	0	1	1
Carangoides otrynter	0	3	3	0	2
Caranx caninus	0	0	1	0	1
Caranx sexfasciatus	1	54	5	1	4
Carapus dubius	0	0	1	0	1
Cephalopholis panamensis	0	0	12	0	1
Chanos chanos	3	92	1	0	3
Cheilopogon furcatus	0	2	0	0	1
Cirrhitichthys oxycephalus	0	2	1	1	3
Coryphaena equiselis	4	2	0	0	2
Coryphaena hippurus	5	0	0	0	1
Cubiceps pauciradiatus	0	1	0	0	1
Cyclopsetta panamensis	0	11	3	1	3
Decapterus macarellus	2	3	31	4	4
Decapterus muroadsi	0	6	1	0	2
Diodon holocanthus	0	0	5	3	2
Diogenichthys laternatus	1	1	0	0	2
Engraulidae sp.	1	0	0	0	1
Etrumeus acuminatus	71	38	0	0	2

Eucinostomus currani	0	1	47	0	2
Eucinostomus entomelas	0	0	1	0	1
Euthynnus lineatus	0	3	208	2	3
Fistularia commersonii	21	4	2	6	4
Fistularia corneta	2	0	0	0	1
Gerres simillimus	0	1	1	0	2
Gymnothorax castaneus	0	0	1	0	1
Haemulon flaviguttatum	0	68	24	0	2
Haemulon maculicauda	0	6	5	0	2
Haemulon sexfasciatum	0	3	64	0	2
Halichoeres dispilus	146	35	7	102	4
Halichoeres melanotis	2	0	0	7	2
Hemanthias signifer	1	0	0	0	1
Heteropriacanthus cruentatus	3	4	0	0	2
Hoplopagrus guentherii	0	0	10	0	1
Hygophum atratum	2	0	0	0	1
Katsuwonus pelamis	0	0	1	0	1
Labrisomus xanti 📀	1	1	0	0	2
Lampanyctus parvicauda	0	1	0	0	1
Liopropoma fasciatum	0	0	2	0	1
Lutjanus argentiventris	0	5	12	0	2
Lutjanus colorado	0	1	0	0	1
Lutjanus guttatus	0	0	20	0	1
Lutjanus novemfasciatus	0	0	12	0	1
Lutjanus peru	0	8	1	0	2
Microlepidotus inornatus	0	1	0	0	1
Micropogonias megalops	0	1	0	0	1
Mugil curema	0	0	1	0	1
Mulloidichthys dentatus	0	2	5	0	2
Mycteroperca xenarcha	0	0	1	0	1
Myrichthys tigrinus	0	0	1	0	1
Myripristis leiognathus	7	0	3	0	2
Nematistius pectoralis	0	1	3	0	2
Orthopristis reddingi	0	1	0	0	1
OTU # 01	0	1	1	0	2
OTU # 02	0	1	0	2	2
OTU # 03	0	0	10	0	1
OTU # 04	19	5	0	47	3
OTU # 05	0	1	0	0	1
OTU # 06	0	4	0	0	1
OTU # 07	0	0	14	0	1

OTU # 08	0	0	6	0	1
OTU # 09	0	5	5	0	2
OTU # 10	0	0	2	0	1
OTU # 11	0	7	0	0	1
OTU # 12	0	0	3	0	1
OTU # 13	0	1	0	0	1
OTU # 14	74	0	0	2	2
OTU # 15	0	3	0	1	2
OTU # 16	0	1	0	0	1
OTU # 17	0	0	0	1	1
OTU # 18	0	0	1	0	1
OTU # 20	0	1	0	0	1
OTU # 21	0	2	0	0	1
OTU # 22	1	0	0	0	1
OTU # 23	13	0	0	0	1
OTU # 24	0	0	1	0	1
OTU # 25	0	0	1	0	1
OTU # 26	1	1	10	0	3
OTU # 27	0	0	1	0	1
OTU # 28	1	0	0	0	1
OTU # 29	0	2	0	0	1
OTU # 31	0	0	1	0	1
OTU # 32	0	0	0	2	1
OTU # 33	0	0	1	0	1
OTU # 34	0	1	0	0	1
OTU # 35	0	1	0	0	1
OTU # 36	1	0	0	0	1
OTU # 37	0	0	1	0	1
OTU # 38	0	4	0	0	1
OTU # 39	0	0	1	0	1
OTU # 40	0	0	3	0	1
OTU # 41	0	0	0	1	1
OTU # 42	0	0	1	0	1
OTU # 43	1	0	0	0	1
OTU # 44	0	1	0	0	1
OTU # 46	1	0	0	0	1
OTU # 47	0	1	0	0	1
OTU # 48	0	0	3	0	1
OTU # 50	3	0	0	0	1
OTU # 51	1	0	0	0	1
OTU # 52	0	0	2	0	1

OTU #53	8	0	0	0	1
OTU #54	0	1	25	0	2
OTU #55	0	0	2	0	1
OTU #56	0	0	2	0	1
OTU #57	0	0	1	0	1
OTU #58	0	4	2	2	3
Oxyporhamphus micropterus	3	2	0	0	2
Paralabrax maculatofasciatus	0	10	0	0	1
Paranthias colonus	0	6	7	1	3
Perissias taeniopterus	0	0	1	0	1
Plagiotremus azaleus 📀	0	2	2	0	2
Polydactylus approximans	0	0	1	0	1
Polylepion cruentum	0	0	1	0	1
Pontinus furcirhinus	2	0	0	0	1
Prionotus stephanophrys	0	2	0	0	1
Prionurus punctatus	0	0	7	0	1
Pristigenys serrula	0	0	13	0	1
Prognichthys sealei	0	0	0	1	1
Pronotogrammus multifasciatus	1	0	0	0	1
Regalecus glesne	3	0	0	0	1
Rypticus bicolor	0	0	12	0	1
Sarda orientalis	0	1	29	0	2
Scarus compressus	23	0	0	0	1
Scarus ghobban	24	0	2	0	2
Scarus rubroviolaceus	0	0	1	0	1
Scarus sp. (morphological ID)	1737	0	19	43	3
Selar crumenophthalmus	0	0	7	0	1
Selene peruviana	0	4	0	0	1
Seriola rivoliana	0	0	10	0	1
Sphyraena ensis	0	1	13	0	2
Stegastes rectifraenum •	0	0	1	0	1
Syacium ovale	0	0	7	0	1
Synodus evermanni	2	9	0	0	2
Synodus lacertinus	24	32	23	39	4
Synodus scituliceps	0	9	0	0	1
Thalassoma lucasanum	31	27	0	0	2
Thunnus albacares	0	0	1	0	1
Trachinotus rhodopus	0	0	7	0	1
Triphoturus mexicanus	0	1	0	0	1
Umbrina xanti	0	10	6	0	2
Vinciguerria lucetia	24	32	34	0	3
	- 1		<i>.</i> .	~	~

Xyrichtys mundiceps	1	0	0	241	2
TOTAL Identified	2337	580	854	617	4388
Total Species	46	73	90	28	104 species + 54 OTUs
Total Collected	4315	8824	5420	2584	21143

- 941 **Table S1.** List of 157 Operational Taxonomic Units (OTU) found from ichthyoplankton
- 942 collections taken in 2014 from Cabo Pulmo National Park. The results from NCBI's GenBank
- and the Barcode of Life Database are shown as well as the number of identical sites for each
- 944 sequence.
- 945

OTU	NCBI Result	Accession #	% Identical Sites	Barcode of Life result	Sample ID	% Identical Si
Acanthemblemaria macrospilus	Acanthemblemaria macrospilus	FJ884556	100.0	NO MATCH		
Acanthurus triostegus	Acanthurus triostegus	HM034207	99.8	Acanthurus triostegus		100.0
Acanthurus xanthopterus	Acanthurus xanthopterus	KY570710	99.8	Acanthurus xanthopterus		100.0
Alphestes immaculatus	Alphestes afer	JQ840759	90.6	Alphestes immaculatus	gal90410a280	99.8
Ammodytoides gilli	Bleekeria mitskurii	KU944777	95.5	Ammodytoides gilli		100.0
Anisotremus taeniatus	Anisotremus taeniatus	EU697527	99.5	NO MATCH		
Aulopus sp.	Aulopus sp.	EU366559	97.0	NO MATCH		
Auxis rochei	Auxis rochei	KT074084	99.1	Auxis rochei	ADC08-L III A11.4	99.8
Auxis thazard	Auxis thazard	KP259551	99.8	NO MATCH		
Axoclinus storeyae	Axoclinus storeyae	KP636887	97.9	Axoclinus storeyae	mwb11e10	99.1
Balistes polylepis	Balistes polylepis	KF929641	100.0	NO MATCH		
Bellator gymnostethus	Bellator gymnostethus	KX810993	99.2	NO MATCH		
Benthosema panamense	Benthosema panamense	KJ555326	98.8	Benthosema panamense		99.7
Bodianus diplotaenia	Bodianus diplotaenia	KC684983	99.8	NO MATCH		
Bothus leopardinus	Bothus robinsi	KF929672	89.4	Bothus leopardinus	gv85310bo230	99.7
Calamus brachysomus	Calamus brachysomus	KJ012304	100.0	NO MATCH		
Carangoides orthogrammus	Carangoides orthogrammus	KU943780	99.0	NO MATCH		
Carangoides otrynter	Caranx latus	JQ841100	90.3	Carangoides otrynter	Co-29-IMARPE	100.0
Caranx caninus	Caranx caninus	EU752066	99.8	NO MATCH		
Caranx sexfasciatus	Caranx sexfasciatus	KU199209	100.0	NO MATCH		
Carapus dubius	Halichoeres pictus	JQ839789	82.2	Carapus dubius		100.0
Cephalopholis panamensis	Cephalopholis cruentata	GU225173	94.8	Cephalopholis panamensis		99.8
Chanos chanos	Chanos chanos	LT669927	100.0	NO MATCH		
Cheilopogon dorsomacula	Cheilopogon furcatus	KF489537	99.0	Cheilopogon dorsomacula		99.7
Cirrhitichthys oxycephalus	Cirrhitichthys oxycephalus	KR023554	98.4	Cirrhitichthys oxycephalus		99.4
Coryphaena equiselis	Coryphaena equiselis	KP266762	99.2	NO MATCH		
Coryphaena hippurus	Coryphaena hippurus	KY176439	98.5	NO MATCH		
Cubiceps pauciradiatus	Cubiceps pauciradiatus	KJ968014	99.0	Cubiceps pauciradiatus	DSLAR394- 08.COI-5P	99.7
Cyclopsetta panamensis	Cyclopsetta panamensis	JX887475	100.0	NO MATCH		
Decapterus macarellus	Decapterus macarellus	KM986880	97.2	Decapterus macarellus	NOOR025-17.COI- 5P	99.7

1						
Decapterus muroadsi	Decapterus macrosoma	KC970467	99.6	Decapterus muroadsi	HQ010055	100.0
Diodon holocanthus	Diodon holocanthus	GU440304	100.0	NO MATCH		
Diogenichthys laternatus	Diogenichthys laternatus	HQ127668	99.8	Diogenichthys laternatus	gv12dl260	100.0
Engraulidae sp.	Engraulidae sp.	KC208625	98.8	NO MATCH		
Etrumeus acuminatus	Etrumeus acuminatus	KM116435	100.0	Etrumeus sadina	MFC231	99.1
Eucinostomus currani	Eucinostomus currani	KT067787	99.5	NO MATCH		
Eucinostomus entomelas	Eucinostomus entomelas	KJ622154	100.0	Eucinostomus entomelas	KJ622154	100.0
Euthynnus lineatus	Euthynnus lineatus	GU440322	99.8	NO MATCH		
Fistularia commersonii	Fistularia commersonii	KR861527	99.6	Fistularia commersonii	KP053209	100.0
Fistularia corneta	Fistularia corneta	HQ010105	99.6	NO MATCH		
Gerres simillimus	Gerres simillimus	KT005473	99.0	NO MATCH		
Gymnothorax castaneus	Gymnothorax vicinus	GU225293	89.8	Gymnothorax castaneus		99.7
Haemulon flaviguttatum	Haemulon flaviguttatum	GQ891092	98.6	Haemulon flaviguttatum	JQ741199	99.8
Haemulon maculicauda	Haemulon maculicauda	EU697537	99.4	NO MATCH		
Haemulon sexfasciatum	Haemulon sexfasciatum	JQ741255	100.0	NO MATCH		
Halichoeres dispilus	Halichoeres dispilus	JQ839467	99.0	Halichoeres dispilus		99.3
Halichoeres melanotis	Halichoeres melanotis	JQ839488	100.0	Halichoeres melanotis	pp96701hm160	100.0
Halichoeres melanotis (16S)	Halichoeres melanotis	KY815408	99.0	NO MATCH		
Hemanthias signifer	Hemanthias signifer	GU440335	99.6	Hemanthias signifer	MFC189	100.0
Heteropriacanthus cruentatus	Heteropriacanthus cruentatus	KT248793	100.0	Heteropriacanthus cruentatus		100.0
Hoplopagrus guentherii	Hoplopagrus guentherii	KJ557446	99.3	Hoplopagrus guentherii	KJ557446	99.7
Hygophum atratum	Hygophum atratum	GU440346	99.3	Hygophum atratum	MFC346	100.0
Katsuwonus pelamis	Katsuwonus pelamis	AB101290	99.5	NO MATCH		
Labrisomus xanti	Labrisomus xanti	HQ168599	99.6	NO MATCH		
Lampanyctus parvicauda	Lampanyctus hubbsi	KJ555411	93.6	Lampanyctus parvicauda		98.5
Liopropoma fasciatum	Liopropoma fasciatum	JX093903	99.4	NO MATCH		
Lutjanus argentiventris	Lutjanus argentiventris	KJ557432	100.0	Lutjanus argentiventris	MFC095	100.0
Lutjanus colorado	Lutjanus colorado	KJ557438	100.0	NO MATCH		
Lutjanus guttatus	Lutjanus guttatus	KT724723	100.0	NO MATCH		
Lutjanus novemfasciatus	Lutjanus novemfasciatus	KJ557444	100.0	NO MATCH		
Lutjanus peru	Lutjanus peru	KX119467	99.0	Lutjanus peru	HQ162412	99.8
Microlepidotus inornatus	Microlepidotus inornatus	JQ741282	99.8	NO MATCH		
Micropogonias ectenes	Micropogonias ectenes	KX401604	97.0	NO MATCH		
Mugil curema	Mugil curema	GU440409	100.0	NO MATCH		
Mulloidichthys dentatus	Mulloidichthys dentatus	JX390743	99.4	Mulloidichthys dentatus	gal490md850	99.7
Mycteroperca xenarcha	Mycteroperca microlepis	KF836490	93.1	Mycteroperca xenarcha		100.0
Myrichthys tigrinus	Myrichthys ocellatus	MF041112	92.9	Myrichthys tigrinus	gv125zop	100.0
Myripristis leiognathus	Myripristis leiognathus	JX390743	99.4	Myripristis leiognathus		100.0
Nematistius pectoralis	Nematistius pectoralis	DQ027998	99.8	NO MATCH		

1	1	1	1	1	I	I
Orthopristis reddingi	Orthopristis reddingi	JQ741300	99.8	NO MATCH		
OTU # 01	Lampanyctus hubbsi	KJ555411	94.5	NO MATCH		
OTU # 02	Assurger anzac	AP012508	91.7	NO MATCH		
OTU # 03	Cephalopholis cruentata	JQ841494	93.4	NO MATCH		
OTU # 04	Bleekeria mitsukurii	KU944777	96.0	NO MATCH		
OTU # 05	Tetragonorus cuvieri	KF489780	94.2	NO MATCH		
OTU # 06	Synodus poeyi	JX519399	91.4	NO MATCH		
OTU # 07	Syacium maculiferum	JX887478	85.6	NO MATCH		
OTU # 08	Bothus robinsi	KF929672	90.1	NO MATCH		
OTU # 09	Diaphus watasei	KP267585	91.3	NO MATCH		
OTU # 10	Uropterygius macularius	MF041358	0.9	NO MATCH		
OTU # 11	Mycteroperca microlepis	JQ842598	95.1	NO MATCH		
OTU # 12	Symphurus ginsburgi	JX124904	83.7	NO MATCH		
OTU # 13	Gillellus jacksoni	GU224859	84.3	NO MATCH		
OTU # 14	Ammodytes americanus	KT723027	93.5	NO MATCH		
OTU # 15	Actinopterygii environmental sample	KP111790	89.5	NO MATCH		
OTU # 16	Gillellus jacksoni	GU224859	86.0	NO MATCH		
OTU # 17	Callechelys muraena	MF041245	92.5	NO MATCH		
OTU # 18	Caranx crysos	MF041098	99.4	NO MATCH		
OTU # 20	Actinopterygii environmental sample	KY936605	88.5	NO MATCH		
OTU # 21	Synodus foetens	KF930488	88.1	NO MATCH		
OTU # 22	Myripristis leiognathus	JX390743	91.8	NO MATCH		
OTU # 23	Xyrichthys novacula	KY815468	96.9	NO MATCH		
OTU # 24	Symphurus atricaudus	GU440541	82.7	NO MATCH		
OTU # 25	Polylepion russelli	JF435093	90.2	NO MATCH		
OTU # 26	Abudefduf saxatilis	JQ839920	95.8	NO MATCH		
OTU # 27	Neoconger mucronatus	GU224984	92.9	NO MATCH		
OTU # 28	Prionotus scitulus	EU239810	94.6	NO MATCH		
OTU # 29	Opisthonema libertate	HQ010071	94.4	NO MATCH		
OTU # 31	Kyphosus vaigiensis	KP116935	93.8	NO MATCH		
OTU # 32	Bleekeria mitskurii	KU944777	91.1	NO MATCH		
OTU # 33	Microdesmus carri	JQ841721	86.0	NO MATCH		
OTU # 34	Ophichthus gomesii	KF461209	88.1	NO MATCH		
OTU # 35	Cypselurus poecilopterus	KU943243	82.0	NO MATCH		
OTU # 36	Trachipterus trachipterus	AP002925	81.8	NO MATCH		
OTU # 37	Anchoa hepsetus	JQ842003	90.0	NO MATCH		
OTU # 38	Caranx latus	JQ841100	90.5	NO MATCH		
OTU # 39	Gymnothorax vicinus	GU225293	89.5	NO MATCH		

OTU # 40	Trachinotus goodei	JQ841419	97.8	NO MATCH		
OTU # 41	Evoxymetopon taeniatus	KU945019	92.6	NO MATCH		
OTU # 42	Synodus poeyi	JX519399	90.6	NO MATCH		
OTU # 43	Kathetostoma laeve	KR153507	97.4	NO MATCH		
OTU # 44	Macruronus magellanicus	EU074458	81.1	NO MATCH		
OTU # 46	Ichthyapus ophioneus	AF455772	92.5	NO MATCH		
OTU # 47	Paralichthys lethostigma	KT896534	86.3	NO MATCH		
OTU # 48	Hyporthodus niveatus	KU739517	98.6	NO MATCH		
OTU # 50	Synodus lucioceps	KJ010667	87.3	NO MATCH		
OTU # 51	Synodus lucioceps	KJ010667	87.7	NO MATCH		
OTU # 52	Brotula barbata	KF461141	88.9	Genypterus maculatus		99.5
OTU # 53	Assurger anzac	AP012508	98.1	NO MATCH		
OTU # 54	Epinephelus clippertonensis	JX093914	99.5	NO MATCH		
OTU # 55	Hyporthodus niveatus	KF836483	96.8	Hyporthodus niphobles		100.0
OTU # 56	Kyphosus cinerascens	JQ350079	99.7	NO MATCH		
OTU # 57	Paraconger caudilimbatus	MF041623	91.6	Paraconger ophichthys	gv123po1888	99.5
OTU # 58	Syacium maculiferum	JX887478	99.6	Syacium maculiferum	gv85310sm60	99.6
Oxyporhamphus micropterus (16S)	Oxyporhamphus micropterus	AY693459	99.8	NO MATCH		
Ommonth ann hua mionontomus	Oxyporhamphus	VV760054	00.6	Oxyporhamphus		00.8
Paralabrax maculatofasciatus	Paralabrax maculatofasciatus	GU440446	99.8	NO MATCH		99.8
Paranthias colonus	Paranthias colonus	GU440449	99.0	NO MATCH		
Perissias taeniopterus	Scleronema angustirostre	KY857962	81.9	Perissias taenionterus	gy85310es100	100.0
Plagiotremus azaleus	Plagiotremus azaleus	HO168581	99.6	NO MATCH		
Polydactylus approximans	Polydactylus approximans	GU440471	99.6	NOMATCH		
Polylenion cruentum	Polylenion russelli	10432026	89.8	Polylenion cruentum		99.8
Pontinus furcirhinus	Pontinus kuhlii	10774695	95.9	Pontinus furcirhinus		99.7
Prionotus staphanophrys	Prionotus stankanonkrys	GU440478	00.3			<i>)).</i> (
Prionurus punctatus	Prionurus punctatus	KD280400	100.0	Prionurus punctatus	KP280405	100.0
Priotice energy commute	Priotio anno acameta	IO741220	00.6		Kr 280493	100.0
Promistiwa analai	Prosmiehthus sealai	JQ741559	99.0	NO MATCH		
Pronotogrammus	Pronotogrammus	KA/09030	97.0	NOMATCH		
multifasciatus	multifasciatus	FJ548774	100.0	NO MATCH		
Regalecus glesne	Regalecus glesne	DQ532951	99.8	NO MATCH		
Rypticus bicolor	Rypticus saponaceus	JN828108	97.4	Rypticus bicolor	gal98609r181	100.0
Scarus compressus	Scarus compressus	JX026478	100.0	NO MATCH		
Scarus ghobban	Scarus ghobban	JX026489	100.0	NO MATCH		
Scarus rubroviolaceus	Scarus rubroviolaceus	JX026509	99.5	NO MATCH		
Selar crumenophthalmus	Selar crumenophthalmus	KJ502071	99.8	NO MATCH		
Selene peruviana	Selene peruviana	EU752202	99.4	NO MATCH		

Seriola rivoliana	Seriola rivoliana	KP733847	98.8	NO MATCH		
Sphyraena ensis	Sphyraena ensis	GU440526	100.0	NO MATCH		
Stegastes rectifraenum	Stegastes rectifraenum	JQ729312	99.8	NO MATCH		
Syacium ovale	Scarus psittacus	KU944718	82.9	Syacium ovale	sio10018so	99.5
Synodus evermanni	Synodus poeyi	JX519399	91.4	Synodus evermanni		100.0
Synodus lacertinus	Synodus lacertinus	GU440545	99.4	NO MATCH		
Synodus scituliceps	Synodus foetens	KF930488	87.3	Synodus scituliceps		100.0
Thalassoma lucasanum	Thalassoma lucasanum	KY815460	100.0	NO MATCH		
Thalassoma lucasanum	Thalassoma lucasanum	JO839621	100.0	NO MATCH		
Thunnus albacares	Thunnus albacares	LN908910	100.0	NO MATCH		
Trachinotus rhodopus	Trachinodus goodei	JO843094	97.9	Trachinodus rhodopus		99.8
Triphoturus mexicanus	Triphoturus mexicanus	KJ555475	99.8	NO MATCH		
Umbrina xanti	Umbrina xanti	KP722787	98.6	NO MATCH		
Vinciguerria lucetia	Vinciguerria lucetia	HO010067	100.0	Vinciguerria lucetia	HO010067	100.0
Xyrichtys mundiceps	Xyrichtys mundiceps	JQ839662	99.8	NO MATCH		

947 948

949 Fig. S1. Rarefaction curves of number of fish egg and larvae Operational Taxonomic Units

950 (OTUs) identified as a function of specimens analyzed per season.

951

Fig. S2. Example of morphological vs molecular fish egg identification: 8 eggs morphologically
identified as *Lutjanus peru* (Pacific red snapper) revealed to be eggs from eight separate species.
Scale bar represents 200 microns. The first two rows (capitalized letters) show the eggs that were
identified molecularly as belonging to the species in the second two rows (non-capitalized
letters).

962

963 **Fig. S3.** Composite photograph of multiple species of fish eggs found in the ichthyoplankton

964 monitoring survey of Cabo Pulmo National Park in 2014. Scale bar represents 200 microns. Eggs

965 identified as: A. Ammodytoides gilli B. Oxyporhamphus micropterus C. Prionurus laticlavius D.

- 966 *Pronotogrammus multifasciatus* E. *Regalecus glesne* F. *Scarus* spp. G. *Synodus lucioceps* H.
- 967 Vinciguerria lucetia.