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Abstract 
 

Essays on Consumer Neuroscience: Decoding The Mind of The Consumer 
 

by 
 

Yu-Ping Chen 
 

Doctor of Philosophy in Business Administration 
 

University of California, Berkeley 
 

Professor Ming Hsu, Chair 
 

 
Marketing theory and practice have become increasingly customer-centered in recent 
decades. To that end, marketers, consumer researchers, and the lay public alike have 
begun to take special interest in how understanding the human brain can help them better 
understand consumers. Despite advances in knowledge of how the brain represents 
simple goods such as those involving primary rewards, however, there is great difficulty 
in extending this understanding to more complex goods typical of modern human society, 
and in particular how the brain represents the set of intangible characteristics resulting 
from social and cultural influences, for example, the intangible characteristics captured 
by a good’s brand. Here we combine newly available machine learning techniques with 
functional neuroimaging data to characterize the set of processes that give rise to the 
intangible associations people have with brands. Our findings represent an important 
advance in the application of neuroscientific methods to consumer research, moving from 
work focused on cataloguing brain regions associated with marketing stimuli to testing 
and refining mental constructs central to theories of consumer behavior. 
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Introduction 
 
 
Marketing theory and practice have become increasingly customer-centered in recent 
decades (for example, Keller 1993; Rust, Zeithaml, and Lemon 2004; Lee et al. 2015). 
Emerging techniques in neuroscience, therefore, have been widely viewed as potentially 
allowing consumer researchers to better understand consumers by directly accessing their 
mental contents (Ariely and Berns 2010; Plassmann, Ramsøy, and Milosavljevic 2012; 
Yoon et al. 2012). Excitingly, by capturing the entire decision-making process, modern 
functional neuroimaging techniques have the promise to elucidate the multitude of 
processes engaged during consumer choice, such that the effects of marketing actions on 
such processes could be traced, compared, and valued. Although still preliminary and 
incomplete, existing studies using functional neuroimaging techniques have already made 
important inroads in addressing some of these core questions (McClure et al. 2004; 
Plassmann et al. 2008; Hedgcock and Rao 2009; Ariely and Berns 2010; Brownell 2013; 
Smidts et al. 2014). Despite these advances, there remain important conceptual and 
methodological hurdles that arise from fundamental differences between the typical goals 
and questions in neuroscience and marketing. Specifically, whereas neuroscience has 
generally been able to deliver “where” answers, marketing continues to ask “what” 
questions. Marketers want to know “what is going through consumers’ minds when 
looking at a Coca-Cola advertisement?”, but neuroscience has traditionally delivered “the 
value of Coca-Cola can be detected in regions such as the ventromedial prefrontal cortex”. 
 
Here we take an important step toward enabling consumer researchers to address both 
“what” and “where”-types of questions using brain imaging data (Kriegeskorte, Goebel, 
and Bandettini 2006; Kay et al. 2008; Mitchell et al. 2008). Specifically, by applying 
newly available machine learning tools to functional neuroimaging data, we sought to 
decode the mind of consumers. The central insight of this approach is to use cross-
validation techniques to consider whether a distributed set or “pattern” of brain activity, 
possibly distributed across many regions, contains some set of information predicted by 
cognitive and behavioral theories (Kriegeskorte et al. 2006; Poldrack 2011). 
 
Answering such “where”-type questions have been invaluable in understanding how the 
brain organizes basic cognitive processes and how they relate to more complex constructs 
and representations. More specifically, the number of concepts and theoretical processes 
that have been hypothesized has grown enormously in recent years, but this increased 
sophistication in dealing with cognitive processes has remained at the conceptual level 
(Lynch and Srull 1982). It has generally not been accompanied by methodologies that are 
capable of diagnosing such processes. By identifying distinct neural components of a 
decision process, we sought to provide a way to test these concepts and theoretical 
processes, so that existing theory can be refined and improved. 
 
Just like knowledge in neuroscience can potentially enrich research on consumer 
behavior, integrating consumer research with neuroscience offers tremendous potential to 
fully characterize the decision-making processes. Research during the past decade has 
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greatly expanded our knowledge of the neural basis of human decision-making (Glimcher 
and Rustichini 2004; Sugrue, Corrado, and Newsome 2005; Montague, King-Casas, and 
Cohen 2006; Rangel, Camerer, and Montague 2008). An integral part of this effort has 
been the application of functional neuroimaging data to a simple yet powerful framework 
where people make decisions by evaluating and maximizing subjective value associated 
with competing alternatives (Sugrue et al. 2005; Camerer 2008; Plassmann et al. 2008). 
However, a particularly challenging aspect of characterizing decision-making processes 
beyond stylized laboratory settings is the sheer variety of objects that people place value 
upon in modern human societies, many of which have no intrinsic value nor parallel 
among other species (McClure et al. 2004; Plassmann et al. 2008; Palmer, Schloss, and 
Sammartino 2013). 
 
For example, people routinely place value on one brand over another, even in cases 
where the underlying goods are identical or nearly identical. Using Coca-Cola and Pepsi 
as a particularly salient case, previous studies have shown that knowledge of the brand 
robustly influences choice behavior (Woolfolk, Castellan, and Brooks 1983), and, at the 
neural level, modulates value representation in reward regions (McClure et al. 2004; 
Koenigs and Tranel 2008). Largely missing from these studies, however, is how the brain 
represents the rich set of thoughts, feelings, and images that people associate with brands 
like Coke and Pepsi. That is, it remains unclear how the set of intangible characteristics 
associated with goods are represented at the neural level, the representational space 
underlying these characteristics, and how they ultimately translate to downstream effects 
on reward representation and choice behavior (Camerer 2008; Rangel et al. 2008). Here 
we sought to take a first step toward addressing these issues by characterizing neural 
representation of an important class of intangible characteristics captured by a good’s 
brand. 
 
In the dissertation, we combine newly available machine learning techniques with 
functional neuroimaging data to characterize the set of processes that give rise to the 
intangible associations people have with brands. In the first chapter, we bring the 
question from "where" to "what". Instead of localizing the brain areas correlates with 
brands’ characteristics, we propose to use decoding methods to read out the contents 
about a brand containing in the brain (Haynes and Rees 2006). In the second chapter, we 
show that a brand's person-like characteristics can be captured by the weighted activity 
across a widely distributed set of brain regions previously implicated in reasoning, 
imagery, and affective processing. In the third chapter, we utilize the method of decoding 
to compare different models of mental representation of brands using brain activities. We 
find that patterns of brain activities similar to semantic knowledge are associated with 
brands' person-like characteristics, while brain activities similar to episodic memory are 
associated with consumer experience about a brand. 
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Chapter 1 
 

From “Where” to “What”: Decoding Approach 
 
 
Marketers have long appreciated the role of brand positioning, the location that a brand 
occupies in consumers’ minds relative to competing offerings, in guiding managerial 
decision making (Gardner and Levy 1955; Keller 1993; Aaker 2009). An understanding 
of how consumers feel and think about brands, for example, provides valuable guidance 
to developing marketing strategy in areas including advertising, pricing, and channel 
strategies. Moreover, as branding has grown to more and more focus on abstract and 
intangible considerations, marketers have increasingly sought to understand aspects of 
brand knowledge not related to the actual physical product or service specifications per se 
(Keller 2003; Aaker 2012).  
 
In response, there has been a considerable effort by consumer researchers to decompose 
consumer response to brands into their component parts, e.g., feelings, imagery, likability 
(Bettman 1970; Alba and Hutchinson 1987; Coulter and Zaltman 1995; Keller 2003). 
This has resulted in a set of sophisticated typologies that provides rigorous scientific 
characterization to these complex perceptions. One canonical typology, for example, 
involves the characterization of the widely held notion that consumers endow brands with 
a set of human-like characteristics akin to personality (Levy 1959; Aaker 1997). The 
resulting brand personality framework, as proposed in the seminal work by Aaker (1997), 
uncovered five basic dimensions that together provide a highly robust and general 
account of the perceptual space underlying brands. 
 
Despite these successes, research in consumer psychology has been largely silent on the 
specific processes by which intangible characteristics such as brand personality are 
generated and organized (Keller and Lehmann 2003; Johar, Sengupta, and Aaker 2005). 
More broadly, because mental constructs such as brand personality have traditionally 
only been measured by self-report methods, it remains challenging for researchers to 
probe such knowledge in cases where consumers are unable or unwilling to fully 
articulate their thoughts and preferences (Haire 1950; Coulter and Zaltman 1995; Ariely 
and Berns 2010). Such insights are central to efforts by marketers to understand and 
predict the extent to which marketing actions can successfully create or affect these 
thoughts and feelings, which in turn influence consumer response to marketing activities 
(Batra, Lenk, and Wedel 2010; van der Lans, Van den Bergh, and Dieleman 2014). 
 
Emerging techniques in neuroscience, therefore, have been widely viewed as having the 
potential to overcoming limitations of self-report measures by directly accessing mental 
contents on part of the consumers (Ariely and Berns 2010; Plassmann et al. 2012; Yoon 
et al. 2012). Perhaps most excitingly, by capturing the entire decision-making process, 
modern functional neuroimaging techniques have the promise to elucidate the multitude 
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of processes engaged during consumer choice, such that the effects of marketing actions 
on such processes could be traced, compared, and valued.  
 
In the context of branding, an important open question concerns the extent to which there 
exists a stable “mental map” of brand knowledge from which brand personality 
associations emerge (Zaltman 1997; Keller 2003). This is important for two reasons. First, 
the assumption of a stable store of knowledge underlies all existing research efforts using 
self-report measures to probe the intangible characteristics consumers associate with 
brands. Substantial research exist, however, suggesting that recall is often not equivalent 
to retrieval of information in memory but may be the construction of a plausible response 
(Johar, Maheswaran, and Peracchio 2006). In the extreme case, participant responses may 
be constructed to suit the explicit questions of consumer researchers, and that these 
explicit measures have little to do with actual thoughts that participants have about the 
brands. That is, it is unclear whether intangible characteristics such as brand personality 
traits exist “a priori” in the minds of the consumers, or whether they are a product of 
reflective process, such that they are influenced by experimenter elicitation. Second, the 
existence of such a map opens the door for neuroscientific methods to address a number 
of additional important questions, such as how consumers’ mental representations of 
brand personality are affected by marketing actions, and what are the different cognitive 
processes that act on these representations.  
 
Although of course still preliminary and incomplete, existing studies using functional 
neuroimaging techniques have already made important inroads in addressing some of 
these processes. For example, it has provided evidence for inferences about the role of 
emotional processing in decoy effects on the basis of amygdala activation (Hedgcock and 
Rao 2009), where the introduction of a third normatively irrelevant alternative was 
associated with significantly lower activation in areas of the brain associated with 
negative emotion.  
 
Despite these advances, there remain important conceptual and methodological hurdles 
that arise from fundamental differences between the typical goals and questions in 
neuroscience and marketing. In particular, localization approaches in cognitive 
neuroscience by their nature are focused on “where”-type questions (Churchland and 
Sejnowski 1988; Gazzaniga 2004). For example, where in the brain does overall 
activation between animate and inanimate objects differ (Kriegeskorte et al. 2008)? Does 
the hippocampus engage more vigorously during episodic memory retrieval versus 
encoding (Schacter and Wagner 1999)?  
 
Answering such “where”-type questions have been invaluable in understanding how the 
brain organizes basic cognitive processes and how they relate to more complex constructs 
and representations. The fact that altruistic punishment engages brain regions known to 
respond to basic rewards provided early evidence that altruistic punishment may also be 
rewarding at a basic neurobiological level (de Quervain et al. 2004). In the context of 
brand personality, the pioneering study of Yoon et al. (2006) found important differences 
in processes at the neural level that are associated with trait judgments about brands and 
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people. Specifically, compared to judgment of human traits, judgment of brand traits 
elicited greater engagement of inferior prefrontal cortex, an area known to be involved in 
object processing, thereby challenging a strictly anthropomorphic view of brand 
personality. 
 
For many if not most consumer researchers, however, these “where”-type questions are 
secondary to understanding the contents and processes that reside within the brain. That 
is, consumer researchers, in contrast to neuroscientists, are typically interested in “what”-
type questions. For example, what are the set of associations that goes through the mind 
of consumers when they are presented with a particular brand?  How are these 
associations affected by marketing actions?  
 
Despite the intuitive nature of such question, it has not been one that previous 
neuroimaging studies have been equipped to address. Specifically, whereas neuroscience 
has generally been able to deliver “where” answers, marketing continues to ask “what” 
questions. Marketers want to know “what is going through consumers’ minds when 
looking at a Coca-Cola advertisement?”, but neuroscience has traditionally delivered “the 
value of Coca-Cola can be detected in regions such as the ventromedial prefrontal cortex”.  
In particular, localization approaches may fail to capture representations and processes 
that are not contained in any single set of brain regions, but rather emerge from the 
correlated activity across a network of brain areas (Kriegeskorte et al. 2006; Mitchell et al. 
2008). That complex constructs such as conceptual knowledge emerge out of a 
distributed system has a long and distinguished history dating back at least to Lashley’s 
search for engrams (Lashley 1950) and connectionist models of learning systems (Hinton, 
McClelland, and Rumelhart 1988; McClelland and Rogers 2003). 
  
At the extreme, an inability to address “what”-type questions leaves open the possibility 
that brain regions thought to underlie a specific process is actually involved in some 
completely unrelated process. For example, amygdala activation in the decoy effects may 
instead be related to some other aspect of the task that has nothing to do with decoy 
effects (Huettel et al. 2009; Poldrack 2011). This is particularly salient in the case of 
consumer neuroscience given the complexity of marketing stimuli. One way to address 
this concern is to show that the information content in question is actually contained 
within the set of identified brain regions. 
 
Here we take an important step toward bridging this gap, and begin to provide a 
neuroscientific framework to address these questions. More specifically, using a decoding 
approach in conjunction with factor analytic techniques, we formally test our ability of 
infer mental representations of brands using a set of intermediate psychological features 
to model the underlying representational space (Haynes and Rees 2006; Norman et al. 
2006; Mitchell et al. 2008). In comparison to “where”-type questions that are the focus of 
traditional localization approaches, we sought to address the “what”-type questions in 
consumer neuroscience. 
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Chapter 2 
 

Decoding the Neural Representation of Brand Personality 
 
2.1 INTRODUCTION 
 
Considerable attention has been given to the notion that there exists a set of human-like 
characteristics associated with brands, referred to as brand personality. To characterize 
the set of processes that give rise to these associations, here we take an important step 
toward enabling consumer researchers to address both “what” and “where”-types of 
questions using brain imaging data (Kriegeskorte et al. 2006; Kay et al. 2008; Mitchell et 
al. 2008). In more basic cognitive processes such as vision and memory, these methods 
have revolutionized the abilities of researchers to ask questions about how information is 
encoded, maintained, or retrieved at various stages of processing in ways that test and 
inform psychological theories of memory and perception (Kay et al. 2008; Rissman and 
Wagner 2012). The central insight of this approach is to use cross-validation techniques 
to consider whether a distributed set or “pattern” of brain activity contains some set of 
information predicted by cognitive and behavioral theories (Kriegeskorte et al. 2006; 
Poldrack 2011).  
 
First, to address the “what” question, we attempt to recover the set of thoughts and 
feelings that consumers associate with brands in a passive viewing task. Importantly, the 
participant in our experiment is not prompted to make any specific judgment, but rather is 
asked to freely think about the brand. If brand personality traits associated with brands 
exist in the mind of the consumer a priori, we should in principle be able to “read out” 
these contents based on brain activity alone. On the other hand, this would not be 
possible if traits were solely the consequence of ratings prompted on the part of the 
researcher. 
 
This approach is based on two key assumptions. First, we assume that mental 
representation to brand personality is contained in the responses of a stable and possibly 
distributed network of regions (Kriegeskorte et al. 2006; Mitchell et al. 2008). That is, 
there exists a stable mapping between brain and mind such that mental representation of 
brand personality is reflected in the activity levels of a network of brain regions. Second, 
we assume that the psychological architecture provides a reasonable first-order 
approximation of the mental representation (Mitchell et al. 2008; Poldrack 2011). In the 
case of brand personality, this is equivalent to assuming that each brand is located within 
a 5-dimensional representation space (captured by Sincerity, Competence, etc.), where 
the specific location is given as a 5-tuple within the space.  
 
Assumption 1: There exists a neural representation, consisting of possible a widely 
distributed network, of mental representation of brand personality.  
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Assumption 2: The brand personality framework captures mental representations of a set 
of intangible brand characteristics. 
 
Importantly, our second assumption makes clear the distinction between our approach 
and those of previous studies aimed at predicting consumer choice (Deppe et al. 2005; 
Tusche, Bode, and Haynes 2010; Murawski et al. 2012; van der Laan et al. 2012). In this 
latter set of studies, decoding was conducted based on observable choice behavior, and 
no attempt was made to test the plausibility of models of the underlying psychological 
processes. In the same way that early decoding studies of visual systems (e.g., Haxby et 
al. 2001; Haynes and Rees 2005) were conducted with no reference to the intermediate 
psychological features underlying observable inputs (for example, faces, houses), these 
studies make no references to intermediate psychological processes underlying 
observable outputs. In contrast, our approach is referred to as model-based decoding, 
which distinguishes from those that do not assume some underlying model of the 
representational space (for details, see Haynes and Rees 2006; Poldrack 2011). 
 
More specifically, by identifying the particular brand a person is thinking about based the 
evoked brain responses, our study requires brand personality framework to offer greater 
predictive power compared to null models that do not capture these characteristics. That 
is, based on how a person’s brain differentially responds to Coca-Cola and Pepsi, we ask 
whether it is possible to learn about the representational space of brand personality in the 
brain, and use this relationship to infer whether that person is thinking about Apple or 
Microsoft.  
 
H1: Brand personality traits associated with brands exist in the mind of the consumer a 
priori, and can be recovered from brain activity during a passive viewing task. 
 
Next, to connect “what” to “where”, we will characterize the set of brain regions that 
contain brand personality information. This enables us to address the extent to which 
brand personality contents are distributed in the brain. In previous decoding studies, 
contents related to more basic perceptual processes have been found to be contained in 
relatively circumscribed regions of the occipital and temporal lobes (Kriegeskorte et al. 
2008; Naselaris et al. 2009).  This is the case even for relatively abstract constructs such 
as objects and faces, which are largely restricted to regions within the inferior temporal 
cortex, or biological motion in the superior temporal sulcus (Haynes and Rees 2005; 
Kriegeskorte et al. 2008). In contrast, higher-order constructs such as conceptual 
knowledge have been shown to have a much more distributed neural basis, drawing upon 
a wide set of brain regions, including those involved in sensory processing as well as 
higher-order cognitive regions (Tyler and Moss 2001; Mitchell et al. 2008).  
 
More importantly, the resulting map of predictive regions will allow us to make 
inferences about the processes by which brand personality emerges. Previous 
neuroimaging studies have implicated a diverse array of brain regions in brand processing, 
including regions involved in autobiographical memory and person judgment (MPFC, 
Deppe et al. 2005; Schaefer et al. 2006; Schaefer and Rotte 2010), semantic memory 
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retrieval (LPFC, McClure et al. 2004; Yoon et al. 2006; Klucharev, Smidts, and 
Fernández 2008), affective processing and interoception (insula, Bruce et al. 2013), 
episodic and spatial memory (hippocampus, McClure et al. 2004; Esch et al. 2012), 
among others. Although these findings are typically discussed in isolation, it is possible 
that they all reflect a shared set of cognitive and affective processes from which brand 
personality representation emerges. 
 
H2: Consistent with connectionist models of learning and memory, brand personality 
contents are distributed widely across the brain.  
 
2.2 METHODS 
 
Participants. A total of 17 participants (6 females, mean age 34.2, S.D. 6.5) from the San 
Francisco Bay Area were recruited from Craigslist to participate in the functional 
magnetic resonance imaging (fMRI) study. Although this is on the lower end of standard 
functional neuroimaging studies based on univariate approaches, it is on par with or 
exceeds those of comparable multivariate decoding studies (Formisano et al. 2008; 
Mitchell et al. 2008). The total time for the whole experiment was approximately 3 hours, 
including the instruction, the scanning session, and the post-experiment questionnaires. 
Each participant was paid $70 in cash upon completion of the experiment. A further 25 
undergraduate students were recruited for a behavioral-only study in exchange for course 
credits. These participants completed an online questionnaire on the same set of brands 
and traits of the brand association scale. All informed consent was obtained as approved 
by the Internal Review Board at University of California, Berkeley. 
 
Procedure. Participants in the fMRI study underwent scanning in a passive viewing task 
involving logos of 44 well-known brands (Figure 1A). The set of brands were selected from 
the list of 100 Best Global Brands (Interbrand, available at: www.interbrand.com) to ensure 
diversity in brand associations and represented industries. Each of the 44 stimulus items was 
presented four times in a pseudo-random sequence on the gray background (Figure 1B), and 
each presentation lasted for 4-8s. Participants were instructed prior to the scanning session to 
think about the characteristics or traits associated with the brand, but that they were free to 
think about any characteristic or trait such that no attempt was made to obtain consistency of 
the associations neither across participants nor across repetition times. Following scanning, 
participants completed a survey including the 42-item brand association scale (Aaker 1997), 
familiarity, and preference for each of the 44 brands. The brand association scale involved 
judgment of the descriptiveness of 42 traits to each brand (Table S1, see Appendix), with a 
five-point scale from not at all descriptive (rating=1) to extremely descriptive (rating=5). 
 
fMRI Data Acquisition. Functional images were acquired on a Siemens 3T TIM/Trio 
scanner at Henry H. Wheeler Jr. Brain Imaging Center at University of California, 
Berkeley. An EPI sequence was used to acquire the functional data: repetition time (TR) 
= 2,000ms; echo time (TE) = 30ms; voxel resolution = 3mm × 3mm × 3mm; FOV read = 
192mm; FOV phase = 100%; interleaved series order. The scan sequences were axial 
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slices approximately flipped 30 degrees to the AC-PC axis. High-resolution structural T1-
weighted scans (1mm × 1mm × 1mm) were acquired by using an MPRage sequence. 
 
Behavioral Data Analysis. To characterize personality features associated with our 
brands using participant ratings on the set of traits outlined in the Aaker framework 
(Figure 1C), we used a factor analytic approach to summarize variation in trait ratings 
and reduce collinearity issues (Aaker 1997). Mean trait ratings were factor-analyzed 
using principal components analysis and varimax rotation. Factors were selected if the 
associated eigenvalue were greater than one and explained a significant portion of 
variance (Table S2, see Appendix). Each brand was re-expressed in terms of its 
personality vector, defined as the strength of association between the brand and the 
personality factors, such as Excitement and Competence. 
 
fMRI Data Preprocessing. Image data were preprocessed in the following order using 
SPM8 (Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging): 
correction for slice time artifacts, realignment, coregistration to the subject’s T1 image, 
normalization to Montreal Neurological Institute coordinates. Finally, consistent with 
previous MVPA studies, data were left unsmoothed to preserve local voxel information 
(Haynes and Rees 2006; Clithero, Carter, and Huettel 2009).  
 
fMRI Data Analysis. An illustration of our analytical approach is presented in Figure 2. 
Below we summarize briefly the main analytical process before describing the steps in more 
detail.  Following extraction of a representative fMRI image for each brand, we will hold-out 
two brands out of the set of 44 total brands, e.g., Disney and Gucci (Figure 2A).  These brain 
responses, together with the brand personality factors for the 42 remaining in-sample brands 
(Figure 2B), are used to obtain an fMRI map for each of the five brand personality factors 
(Figure 2C).  This enables us to calculate predicted fMRI maps for each of the two hold-out 
fMRI image for Disney and Gucci by combining the brand personality factor scores of the 
hold-out brands with the brand personality fMRI maps (Figure 2D). Finally, we ask whether 
we are able to correctly predict whether each hold-out brand is Disney or Gucci by 
comparing the similarity between the predicted and actual neural maps. Once completed, this 
procedure is then iterated over all possible pairwise combination of brands, and significance 
testing is performed using a permutation procedure by shuffling over the fMRI image and 
brand personality pairings. Below we provide more detailed description of the procedures:  
 
i. Extracting neural responses to brands: To identify the representative fMRI image of a 
brand, we used the procedure outlined in Mumford et al. (2012) to account for the fact that in 
rapid event-related designs the evoked BOLD signal for adjacent trials will overlap in time. 
We first used a general linear model in SPM8 to estimate a single fMRI image for each of the 
176 brand presentations using method LS-S in Mumford et al. (2012), where each event was 
modeled as an impulse function convolved with a double gamma hemodynamic function. 
The beta values estimated for the first regressor of the brand of interest were used as the brain 
activation patterns associated with a brand at a particular repetition time (see Appendix for 
robustness checks using alternative methods of estimating representative fMRI images).  
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Using brain images for each brand at each repetition time, we standardized the activation 
levels for each voxel by z-scoring over the 176 files. Then, for each brand, we averaged 
the four brain images of the four repetition times to obtain the averaged fMRI image 
associated with thinking about the brand. Finally, we applied the individual grey matter 
mask to include voxels within the grey matter. 
 
ii. In-sample model training: To infer the engagement of specific mental representations 
from pattern of neural responses, we took a model-based approach in which the decoding 
of brain activation patterns is guided by quantitative models capturing psychological 
features underlying specific mental representations (Mitchell et al. 2008; Naselaris et al. 
2011; Poldrack 2011). The underlying hypothesis of our approach is that neural 
representation of consumer brands is related to the strength of association of an 
individual brand to its personality features. That is, we assume that neural response y!! in 
voxel v to brand j is given by: 
 

y!! = c!!f!,! + c!!f!,!+. . .+c!!f!,!         (Equation 1), 
 
where fn,j is the value of the nth personality feature for brand j , and c!! is a scalar 
parameter that specifies the degree to which the nth feature activates voxel v. More 
specifically, c!! defines the relationship between the brain activation level and the brand 
personality features. 
 
Model-based decoding was performed using a cross validation approach in which the 
model was repeatedly trained using 42 of the 44 available stimulus brands, then tested 
using the two hold out stimulus brands. We denote the neural response y!! in voxel v to 
brand j as y!! = c!!f!,! + c!!f!,! +⋯+ c!!f!,! (Equation 1). We trained the model on each 
iteration using the set of observed fMRI images associated with 42 known brands, to 
obtain c!!  values via maximum likelihood. More specifically, we reconstruct the 
relationship between the brain activation level (as dependent variables) and the brand 
personality features (as independent variables) with the multiple regression approach, 
using only 42 of the 44 available stimulus brands. We then test the model performance on 
the two hold-out brands, which are not in the training set. 
 
iii. Model prediction using hold-out sample: Once trained, the model was tested by 
presenting the fMRI images (i1 and i2) associated with two hold out brands (b1 and b2). 
This consisted of comparing (i1 and i2) with the two predicted fMRI images (p1 and p2) 
associated with two hold out brands, where (p1 and p2) were computed using weights c!! 
and the set of personality features {f1,k … fn,k} for the two hold out brands. For example, 
in an iteration where Disney and Gucci were excluded from the training, we 
reconstructed the relationship between the brain activation level and the brand personality 
features using other 42 brands with Equation 1. Then, using Disney’s personality factor 
scores, we can calculate the predicted activation level for each voxel using Equation 1 
and the learned c!! values, with those we can create the predicted brain image for Disney. 
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We call the model-predicted brain images p1 and p2, and the observed brain images i1 and 
i2, for the two hold-out brands.  
 
To evaluate the performance of the model, the model is required to correctly match (i1 
and i2) to (b1 and b2) using (p1 and p2), as assessed by which match had a higher 
correlation value. More specifically, let sel(i) be the vector of values of the selected 
subset of voxels for image i. The similarity score between a predicted image, p, and 
observed image, i, was calculated as the Pearson correlation coefficient of the vectors 
sel(p) and sel(i) . It then decided which was a better match: (p1=i1 and p2=i2) or (p1=i2 and 
p2=i1), by choosing the image pairing with the larger sum of similarity scores. The 
expected accuracy in matching the two left-out brands to their left-out fMRI images is 
0.50 if the matching is performed at chance levels. 
 
As described above, similarity between two images was calculated using only a subset of 
the image voxels, following methods proposed in Mitchell et al. (2008). Voxels were 
selected automatically during training, using only the 42 training brands on each of the 
leave-two-out cross validation folds. To select voxels, all voxels were first assigned a 
stability score using the data from the 4 presentations of each of the 42 training stimuli. 
Given these 4*42 = 168 presentations (168 fMRI images), each voxel was assigned a 
4×42 matrix, where the entry at row i, column j, is the value of this voxel during the ith 
presentation of the jth brand. The stability score for this voxel was then computed as the 
average pairwise correlation over all pairs of rows in this matrix. In essence, this assigns 
highest scores to voxels that exhibit a consistent (across different presentations) variation 
in activity across the 42 training stimuli (see Appendix for details). 
 
iv. Significance testing: To calculate statistical significance, we used a permutation 
procedure to empirically estimate the null distribution (Mitchell et al. 2008). Specifically, 
a null model was estimated on each iteration by shuffling the fMRI image and brand 
personality pairing.  For example, on a particular iteration, as opposed to using the true 
brand personality score, we may use Google’s personality features to describe Gucci, or 
IBM to describe Campbell’s. Under the null hypothesis that the brand personality 
framework provides no information about the underlying neural representation, these 
shuffled brain-brand pairings should yield prediction rates similar to the actual pairings. 
The null distribution is then calculated using the pooled 600 permuted models from each 
of the 17 participants, for 10,200 models in total.  
 
2.3 BEHAVIORAL RESULTS 
 
Brand Personality Factor Structure. First, we sought to characterize the set of 
personality feature fn,j associated with our brands using participant ratings of brands on 
the set of traits outlined in the Aaker framework (Figure 1C, Table S1 in Appendix). 
Specifically, we used a factor analytic approach to summarize variation in trait ratings 
and reduce collinearity issues. Consistent with previous results, we found that a 
substantial proportion (86%) of the variance was captured by 5 factors (Table S2 in 
Appendix). Further inspection of the factor loadings showed that our results largely 
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replicated those of previous studies (Figure S2 in Appendix) (Aaker 1997). For example, 
the first factor loaded highly on the traits “trendy”, “unique”, and “cool”—commonly 
referred to as the Excitement factor. The third factor, referred as Sincerity, loaded highly 
on traits such as “friendly”, “family-oriented”, and “down-to-earth”. Using this factor 
analytic framework, therefore, it is possible to characterize each brand, for example, 
Apple, as a vector of personality features consisting of these five factors that summarizes 
the set of characteristics participants associate with these brands (Figure 1D, S3; Table S3 
in Appendix).  
 
Importantly, this association architecture allows us to account for some of the salient 
similarities and differences between brands apart from their product categories. For 
example, although Apple and Microsoft reside in the same industry, they elicit highly 
distinctive associations and are distinguishable in this association architecture (Figure 
1D). In contrast, Disney and Ikea are similar in this framework despite differences in 
objective features (Figure 1D). Although this framework by no means captures all 
characteristics consumers associate with brands, it has been invaluable to researchers by 
capturing and organizing our knowledge in a parsimonious and tractable manner (Aaker 
1997). 
 
Robustness of Association Architecture. Furthermore, to investigate the robustness of 
our framework, as well as the degree to which these trait associations could be 
generalized to samples from different populations, we surveyed an additional sample of 
25 undergraduate students on the same set of traits and brands. We found that the average 
responses of the trait scores were highly correlated among our neuroimaging subjects and 
the follow-up undergraduate participants (Pearson r=0.86, p<10-10, Figure 1E), such that 
there was considerable agreement between the two samples regarding these brands 
despite different demographic and socioeconomic characteristics. These results show that 
this brand personality architecture enjoys considerable robustness across samples from 
different populations, suggesting its utility in organizing the underlying psychological 
associations. 
 
2.4 NEUROIMAGING RESULTS 
 
Brand Personality Traits Can Be Recovered From Brain Activity. Using results from 
the Aaker model, we next sought to relate personality factor scores with observed fMRI 
data associated with viewing brands using a cross-validation approach, and test the ability 
of our framework to discriminate between the previously unseen brands. For each 
iteration, two brands were held out of the training set, e.g., Disney and Gucci, and the 
model was trained using the remaining 42 brands (Figure 2A). Specifically, training 
involved regressing activation level of each voxel on the set of personality features of the 
training brands obtained from the factor analysis (Figure 2B). The derived maximum 
likelihood estimates were used as c!!  terms, which were then combined with the 
personality factor scores of each hold-out brand to form its a predicted fMRI image. This 
leave-two-out train-test procedure was iterated 946 times, leaving out each of the possible 
brand pairs. (Figure 2C).  
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Following training, the computational model was evaluated by comparing these predicted 
fMRI images to the observed fMRI data of the two hold-out brands, evaluated over the 
500 image voxels with the most stable responses across training presentations (Figure 
2D). Specifically, given the two hold-out brands b1 and b2, we calculated their respective 
predicted images p1 and p2 using the set of personality feature fn,j associated with the 
hold-out brands and the set of weights c!! obtained from the training set. Next, using the 
actual fMRI images i1 and i2 associated with the two holdout brands, we asked whether 
the model was able to correctly match i1 to p1 and i2 to p2 by choosing the image pairing 
(i1 v. p1 and i2 v. p2) that is more highly correlated (Figure 2, for details see Appendix). 
 
Under the null hypothesis of no association, the predicted fMRI image for a brand will be 
equally predictive of the matched brand as with the unmatched brand. In contrast, we 
found that the overall hit rate for iterating over all of the possible combination of holdout 
data was 58%, and highly significant as assessed using permutation test obtained by 
independently training 10,200 single-participant models with randomly shuffled 
personality features of brands (p < 10!! , see Appendix). These results are thus 
consistent with our hypothesis that brand personality exists in the mind of the consumer a 
priori (H1).  
 
Furthermore, we found that the predictive power was strongly modulated by the 
psychological similarity of brands as measured by correlation of trait ratings. Separating 
the brand pairs based on psychological similarity into quartiles, we found that 
performance in classification substantially better when brands are dissimilar, where the 
averaged hit rate is 63% ( p < 10!! ). In contrast, predictive accuracy was not 
significantly different from chance when brands are highly similar (Figure 3A). This 
modulation of prediction rate by psychological similarity thus argues against the 
likelihood that our results were driven by some unrelated factors.  Moreover, the fact that 
we were unable to distinguish neural responses to brands when their personality features 
are sufficiently similar can be interpreted as a boundary condition where the brain data no 
longer contains sufficient resolution to distinguish between brand personality 
representations.   
 
Finally, these results were robust to a number of variations in specific analytical process, 
including method of extracting representative fMRI response to the brands (Figure S7), 
similarity metric (Figure S8), voxel selection (Figure S9-S10), excluding visual cortex 
voxels via masking (Figure S11), and controlling for physical properties of brand logos 
(Figure S12, see Appendix for details). 
 
Neural Similarity Of Brands Is Modulated By Psychological Similarity. To more 
systematically examine the relationship between the psychological organization of brands 
and the discriminability of the associated brain images, we compared, for each brand pair, 
the correlation between predicted and observed brain images, evaluated over the 500 
image voxels with the most stable responses across training presentations, against 
psychological similarity in brand meaning as measured by correlation of trait ratings 
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(Figure 3B). We found that strength of neural correlation is robustly modulated by the 
similarity of brands’ psychological properties (Pearson r = 0.56,p < 10!!), such that 
brands that are more similar at the psychological level were also more highly correlated 
at the neural level (Figure 3B). For example, H&M and MTV are highly similar in their 
psychological associations as measured using a correlation index (Pearson r=0.78), 
whereas those for Disney and Gucci are highly distinct (Pearson r=0.17) (Figure S3, 
Table S3). Consistent with this pattern, neural signatures associated with H&M are more 
similar to those associated with MTV than Disney with Gucci (Pearson r=0.36 versus r=-
0.27, respectively). Similar results were obtained using Euclidean distance as a measure 
of similarity (Figure S7, see Appendix). These results underscore the notion that the 
brand personality framework provides a reasonable first-order approximation of the 
mental representation, consistent with our Assumption 2.  
 
Brand Personality Contents Are Distributed Widely Across The Brain. Having 
assessed the predictive validity of our decoding framework, we sought to characterize the 
set of brain regions where predicted neural response for held-out brands best correlated 
with the observed responses. To do so, we calculated the correlation coefficient of the 
predicted and observed fMRI response at each voxel location, and selected the set of 
regions where brain activity was significantly correlated with model predictions (see 
Appendix).  Consistent with connectionist models of distributed representation (H2), we 
found that the set of predictive voxels were distributed throughout the brain (Figure 4, S6, 
S13-S17; Table 1). In contrast, these regions are not visible using a standard univariate 
GLM approach that ignores information contained in the spatially distributed set of brain 
regions (Figure S18). 
 
To understand the cognitive functions in which these regions were most involved, we 
conducted an exploratory reverse inference analysis using NeuroSynth (Yarkoni et al. 
2011), correlating our activation map with the neural activation maps for each term in the 
NeuroSynth database (Figure 4). We found that our activations were distributed across a 
number of types of cognitive functions, but in particular those implicated in previous 
studies of semantic knowledge (inferior frontal gyrus), imagery (premotor and visual 
cortex), and emotional processing (anterior and posterior cingulate gyrus), consistent with 
the notion that brand knowledge consists of a complex mix of thoughts, images, and 
feelings that consumers associate with brands. 
 
2.5 DISCUSSION 
 
The application of neuroscientific methods to marketing has a history that is brief in 
existence but long on controversy (Ariely and Berns 2010; Plassmann et al. 2012). In a 
particularly high-profile incident, the New York Times published an op-ed titled “You 
Love Your iPhone, Literally”, by the brand consultant Martin Lindstrom (Lindstrom 
2011), which prompted a group of 44 neuroscientists to co-sign a response letter 
condemning the article. Whatever the scientific merits of the claims, and indeed the data 
have never appeared in a peer-reviewed format, at the heart of the study lies a set of 
questions of great interest to marketers, consumer researchers, and the lay public alike.  
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Namely, what are the set of thoughts and feelings that occur when people think or interact 
with the products that they own or are considering purchasing?  
 
Here we take an important step toward bridging this gap, and begin to provide a 
neuroscientific framework to address these questions. More specifically, using a decoding 
approach in conjunction with factor analytic techniques, we formally test our ability of 
infer mental representations of brands using a set of intermediate psychological features 
to model the underlying representational space (Haynes and Rees 2006; Norman et al. 
2006; Mitchell et al. 2008). In comparison to “where”-type questions that are the focus of 
traditional localization approaches, these “what”-type questions have only become 
addressable in recent years (Haynes and Rees 2006; Norman et al. 2006; Mitchell et al. 
2008), and to our knowledge has not been attempted in consumer neuroscience.  
 
First, consistent with our hypothesis that brand personality traits exist a priori inside the 
mind of the consumer (H1), we found that we were able to predict what brand consumers 
were thinking about solely based on the relationship between brand personality and brain 
activity. In particular, because participants in our study were not prompted on traits such 
as “daring”, “reliable”, and “wholesome” until after the scanning session, our likelihood 
of predicting what brands participants are thinking of should be at chance if such 
associations did not come across the consumers’ thoughts. In contrast, past studies have 
typically elicited subjective ratings online during scanning (Schaefer et al. 2006; Yoon et 
al. 2006; Schaefer and Rotte 2010), thereby leaving open the possibility that brand-
related processing was at least in part induced by the specific stimuli used during the 
experiment.  
 
Moreover, although the reported predictive accuracy was lower than rates observed in 
more basic perceptual domains (Haxby et al. 2001; Kay et al. 2008), they are comparable 
to those observed in previous studies of higher level cognitive processes, including those 
involving consumer choice (Knutson et al. 2007; van der Laan et al. 2012). Some of this 
may be attributable to our decision to not include fixation screen after every brand logo 
presentation. This was chosen based on reports from pilot participants that they found the 
number of fixation screens between brands to interfere with their ability to process brand 
traits, but this may have resulted in reduced efficiency in extraction of the representative 
brand fMRI image. Future studies would be needed to address the extent to which 
predictive accuracy can be improved. 
 
Second, we found that neural responses to consumer brands can be decomposed into a 
basis set of neural activation patterns associated with intangible characteristics of these 
objects, and that these results were robust to a number of variations in the specific 
analytical process (see Supplementary Results and Figures S7-S12 in Appendix). 
Moreover, our findings are consistent with connectionist models of conceptual 
knowledge where brand personality associations emerges from weighted activity across a 
distributed set of units (H2) (Tyler and Moss 2001; Binder et al. 2009), and that such 
knowledge is organized by brand personality traits as opposed to brands. That is, with 
regards to the contentful associations that distinguish one brand from another, the 
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underlying neural representations appear to be akin to previous distributed accounts of 
conceptual knowledge (Tyler and Moss 2001; Binder et al. 2009) reflecting the complex 
array of cognitive processes which are engaged.  
 
Interestingly, within this distributed set of brain regions, we found brand personality 
contents present in both MPFC and LPFC regions (Figure 4). On the surface, the fact that 
we found brand personality contents in MPFC regions may appear at odds with previous 
findings in Yoon et al. (2006) that MPFC activity is lower during brand processing than 
person processing. Both sets of findings, however, are consistent with the notion that 
MPFC exhibits a gradation of activation levels in person judgment tasks. That is, as 
opposed to all or none activation, MPFC has been previously shown to exhibit lower 
activity in judgment of out-group individuals relative to in-group individuals (Volz, 
Kessler, and von Cramon 2009), and to judgments of more dissimilar individuals relative 
to more similar individuals (Mitchell, Macrae, and Banaji 2006). Under this interpretation, 
reduced MPFC activation reflects the fact that brand judgment only weakly draws upon 
anthropomorphic features and processes. An alternative possible explanation is that these 
two studies engage fundamentally different aspects of MPFC functioning.  For example, 
whereas locally distributed response patterns in the MPFC reflect brand personality, 
mean response differences in the MPFC may instead reflect some other process that is 
known to engage MPFC, for example valuation processes widely observed in 
neuroeconomic studies (Plassmann et al. 2008; Rangel et al. 2008). Indeed, this is a 
general limitation in exploratory reverse inferences, including those using probabilistic 
meta-analytic techniques such as Neurosynth (Yarkoni et al. 2011). Future studies 
combining the approach outlined in the current study and those of Yoon et al. (2006) 
would be needed to address these issues. 
 
More generally, the methods outlined here enable consumer researchers to consider a set 
of research questions not previously testable, and are centered around the idea that 
spatially distributed fMRI activity patterns may represent a viable signature of 
hypothesized psychological constructs (Haynes and Rees 2006; Naselaris et al. 2011). 
This includes, for example, cases where self-reported perceptions or preferences may be 
compromised due to factors such as social desirability bias. Existing efforts to control for 
such biases have largely consisted of randomized response (RR) protocols (Warner 1965; 
de Jong, Pieters, and Fox 2010). These protocols reduce privacy concerns by using a 
randomization mechanism to “shroud” the participant’s response, and rely on the 
credibility of the randomization device and feelings of privacy, which have been 
challenged in recent years (Chaudhuri and Christofides 2013). In contrast, by eliciting 
neural responses without any overt behavior, passive viewing experiments such as in the 
current study may be able to overcome some of these challenges.    
 
With respect to branding, capturing the mental map of brand personality opens the door 
for studies seeking to address a number of additional questions of interest to consumer 
researchers and marketers. In particular, by capturing and validating brand personality 
representations in the brain, a natural next step is to characterize how these 
representations are affected by marketing actions, and what are the different cognitive 
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processes that act on these representations. This parallels the trajectory of findings in 
more basic psychological processes such as working memory, where discovering the 
existence of visual working memory contents in extrastriate regions allowed researchers 
to ask a number of questions regarding how these representations were affected under 
different task demands (Chadwick et al. 2010; Lee, Kravitz, and Baker 2013). For 
example, it was found that information about object identity was contained in different 
brain regions depending on whether participants were asked to attend to visual or 
nonvisual properties of the object (Lee et al. 2013).   
 
One set of questions along these lines involves comparison of different dimensions of 
brand knowledge, such as brand experience and brand relationships, as well as how these 
representations differ across consumer segments. Intuitively, whereas brand personality 
captures traits that consumers project onto brands (Aaker 1997), brand experience 
captures responses that brands evoke on part of consumers (Brakus, Schmitt, and 
Zarantonello 2009), and brand relationships capture feelings and episodes that consumers 
have actually experienced with the brands (Fournier 1998). Moreover, these associations 
have been shown to differ in important ways across segments such as cultural 
background (Aaker, Benet-Martinez, and Garolera 2001). It may well be therefore that 
these constructs are subserved by different mental processes and differ across segments, 
which have implications for brand managers in designing marketing activity can create or 
affect these dimensions of brand knowledge.  
 
Finally, future studies extending our approach can begin to quantify extent to which 
consumers’ mental representations of brand personality are affected by marketing actions, 
a question of clear interest to brand managers. In our current study, we have explicitly 
assumed that activation patterns elicited by brands remain constant across different 
repetitions. Although this is likely to be a safe assumption given our stimuli contained 
some of the most iconic brands in the world, it limited our ability to make inferences on 
how brand associations and values are acquired and how they evolve over time 
(van Osselaer and Janiszewski 2001; Johar et al. 2006). Future studies combining our 
approach with dynamic models of inference updating can therefore begin to trace out the 
processes by which marketing actions affect multiple dimensions of brand knowledge 
and preference. 
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Chapter 3 
 

Comparing Brand Personality and Brand Experience by 
Decoding their Neural Representation 

 
 

3.1 INTRODUCTION 
 
Memory plays a major role in consumer choice (Alba, Hutchinson, and Jr. 1991; Schacter 
1999). What people buy is heavily dependent upon what information is in memory and 
how this information is organized (Bettman 1979). Researchers have been studying the 
influence of memory on consumer decision making, especially the way information is 
retrieved from memory (Lynch and Srull 1982). Despite these successes, research in 
consumer psychology has been largely silent on the specific processes by which 
consumer memory are generated and organized (Keller and Lehmann 2003; Johar et al. 
2005).  
 
For example, brands, which can be viewed as a collection of information people 
associated with goods or companies. Brand memory plays an important role on consumer 
behavior (for example, Nedungadi 1990; Morrin 1999). A significant challenge in 
studying brand memory lies in their complexity and the fact that they depend on the way 
people access their memory associated with brands. When people retrieve a brand from 
their memory, they may think about the generic knowledge descriptive of the brand 
(Baumgartner, Sujan, and Bettman 1992), and/or a recollection of episodes from their 
past experiences with it (Tulving 2002). For example, when thinking the brand, Disney, 
people may think about the features “family-oriented, friendly, and cheerful”, and/or they 
may remember “I feel like a child; I feel warm and safe; I want to discover things; I feel 
part of the magic” (Brakus et al. 2009). These two different information-processing 
systems retain different aspects of information about brands (Tulving 1972). However, it 
remains unclear how these two different sets of information associated with brands are 
represented at the neural level and the representational space underlying these 
information (Camerer 2008; Rangel et al. 2008). Here we sought to take a first step 
toward addressing these issues by using brain imaging techniques to test our ability to 
infer consumer memory of brands using two different sets of psychological features to 
model the underlying representational space, in order to characterize the set of processes 
that give rise to these two different classes of brand memory. 
 
First, we sought to quantitatively characterize the two information-processing systems 
using typologies that provide rigorous scientific characterization to these complex 
perceptions from consumer researchers (Bettman 1970; Alba and Hutchinson 1987; 
Coulter and Zaltman 1995; Keller 2003). There are two constructs that fit well to 
conceptualize the two information-processing systems. The first one is a canonical 
typology involving the characterization of the widely held notion that consumers endow 
brands with a set of human-like characteristics akin to personality (Levy 1959; Aaker 
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1997). The construct of brand personality can be viewed as generalized representations of 
brands formed from numerous prior experiences. On the other hand, the recollection of 
episodes from people past experiences associated with brands can be conceptualized with 
brand experience, which is conceptualized as sensations, feelings, cognitions, and 
behavioral responses evoked by brand-related stimuli that are part of a brand’s design and 
identity, packaging, communications, and environments (Brakus et al. 2009). Whereas 
brand personality captures traits that consumers project onto brands (Aaker 1997), brand 
experience captures responses that brands evoke on part of consumers (Brakus et al. 
2009).   
 
Second, we sought to relate the two information-processing systems, brand personality 
and brand experience, to brain imaging data. More specifically, we sought to locate brain 
regions where the activity patterns contain information about brand personality or brand 
experience. Instead of using classical localization approaches that focus on “where”-type 
questions, we focus on “what-”type of question using model-based decoding approach to 
show that the information content is actually contained within the set of identified brain 
regions (Kriegeskorte and Bandettini 2007). Distinguished from those that do not assume 
some underlying model of the representational space (for details, see Haynes and Rees 
2006; Poldrack 2011), we identify the particular brand a person is thinking about based 
the evoked brain responses, by requiring brand personality or brand experience 
framework to offer greater predictive power compared to null models that do not capture 
these characteristics. That is, based on how a person’s brain differentially responds to 
Coca-Cola and Pepsi, we ask whether it is possible to learn about the representational 
space of brand personality in the brain, and use this relationship to infer whether that 
person is thinking about Apple or Microsoft. Similarly, based on how a person’s brain 
differentially responds to Coca-Cola and Pepsi, we ask whether it is possible to learn 
about the representational space of brand experience in the brain, and use this relationship 
to infer whether that person is thinking about Apple or Microsoft. Moreover, we ask 
whether the brain regions that contain information about brand personality are different 
from the brain regions that contain information about brand experience. 
 
Specifically, we use a model-based searchlight decoding approach to determine the 
locations in the brain where there is a statistical dependency between the experimental 
conditions (the overall psychological features of brands, either personality or experience) 
and the regional spatiotemporal activity patterns (Kriegeskorte and Bandettini 2007). A 
continuous information-based mapping is performed with a multivariate searchlight, in 
order to discover regions carrying information about brand personality or brand 
experience (Kriegeskorte and Bandettini 2007). These multivariate methods can help us 
to characterize cognitive processes of the two different types of mental representation of 
brands. 
 
3.2 METHODS 
 
fMRI Experiment. A total of 17 participants (6 females, mean age 34.2, S.D. 6.5) from 
the San Francisco Bay Area were recruited from Craigslist to participate in the functional 
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magnetic resonance imaging (fMRI) study. Participants underwent scanning in a passive 
viewing task involving logos of 44 well-known brands (Figure 1A). The set of brands 
were selected from the list of 100 Best Global Brands (Interbrand, available at: 
www.interbrand.com). Each of the 44 stimulus items was presented four times in a 
pseudo-random sequence on the gray background (Figure 1B), and each presentation 
lasted for 4-8s. Participants were instructed prior to the scanning session to think about 
the characteristics or traits associated with the brand, but that they were free to think 
about any characteristic or trait such that no attempt was made to obtain consistency of 
the associations neither across participants nor across repetition times. Each participant 
was paid $70 in cash upon completion of the experiment. All informed consent was 
obtained as approved by the Internal Review Board at University of California, Berkeley. 
 
The fMRI data set is the same as which in Chapter 2. However, we recruited an 
independent set of subjects to judge the characteristics of the brands, for both personality 
features and experience features. 
 
Behavioral Experiment. We recruited undergraduate students for a behavioral-only 
study in exchange for course credits. These participants either completed an online 
questionnaire of the brand personality scale or the brand experience scale with the same 
set of the 44 brands used in the fMRI study. 94 students completed the personality survey, 
and each of them judged the descriptiveness of the 42 traits toward randomly selected 22 
brands (Aaker 1997), with a five-point scale from not at all descriptive (rating=1) to 
extremely descriptive (rating=5) (Figure 5A). The other 165 students completed the 
experience survey, and each of them judged the descriptiveness of the 12 brand 
experience items toward randomly selected 11 brands. The 12-item brand experience 
scale (Brakus et al. 2009) involved judgment of the descriptiveness of 12 items to each 
brand (Figure 5B), with a seven-point scale from not at all descriptive (rating=1) to 
extremely descriptive (rating=7). 
 
Behavioral Data Analysis. To characterize personality/experience features associated 
with our brands using participant ratings, we used a factor analytic approach to 
summarize variation in trait ratings and reduce collinearity issues. For personality 
(experience) survey, mean ratings of personality traits (experience items) were factor-
analyzed using principal components analysis and varimax rotation. Factors were 
selected if the associated eigenvalue were greater than one and explained a significant 
portion of variance. Each brand was re-expressed in terms of its personality/experience 
vector. 
 
fMRI Data Preprocessing. Image data were preprocessed using SPM8 (Statistical 
Parametric Mapping, Wellcome Trust Centre for Neuroimaging): correction for slice time 
artifacts, realignment, coregistration to the subject’s T1 image, normalization to Montreal 
Neurological Institute coordinates. Data were left unsmoothed to preserve local voxel 
information.  
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To identify the representative fMRI image of a brand, we used the procedure outlined in 
Mumford et al. (2012) using a general linear model in SPM8 to estimate a single fMRI image 
for each of the 176 brand presentations using method LS-S in Mumford et al. (2012). Using 
brain images for each brand at each repetition time, we standardized the activation levels for 
each voxel by z-scoring over the 176 files. Then, for each brand, we averaged the four brain 
images of the four repetition times to obtain the averaged fMRI image associated with 
thinking about the brand. Finally, we applied the individual grey matter mask to include 
voxels within the grey matter. 
 
fMRI Data Analysis. To localize the brain regions that contain information of thinking 
about brands’ personality features or experience features, a whole-brain MVPA searchlight 
analysis was performed to test the classifier’s ability to discriminate the two previously 
unseen brands using different sets of independent variables (personality or experience) 
(Kriegeskorte et al. 2006). For each voxel vi, we defined a sphere of 10 mm radius centered 
on vi. The fMRI data from this cluster were then used for training and testing the model, 
iterating over all possible pairwise combination of the 44 brands. This procedure was 
repeated for every voxel in the brain, and results were mapped back to yield a whole brain 
accuracy map for each subject. 
 
For each voxel vi, we defined a sphere of 10 mm radius centered on vi. The following 
procedure was repeated for every voxel in the brain. For each iteration, two brands were held 
out of the training set, and the model was trained using the remaining 42 brands. Specifically, 
training involved regressing activation level of each voxel on the set of personality or 
experience features of the training brands obtained from the factor analysis. The derived 
maximum likelihood estimates were used as 𝑐!! terms, which were then combined with the 
personality or experience factor scores of each hold-out brand to form its a predicted fMRI 
pattern. This leave-two-out train-test procedure was iterated 946 times, leaving out each of 
the possible brand pairs. Following training, the computational model was evaluated by 
comparing these predicted fMRI pattern to the observed fMRI pattern of the two hold-out 
brands, evaluated over the image voxels within each of the searchlight. Finally, the average 
performance within the searchlight was mapped back to yield a whole brain accuracy map for 
each subject. 
 
The procedure was similar to which in Chapter 2. The only difference is that the model is 
trained and tested with voxels within the sphere centered on each voxel in the brain, instead 
of selecting the most stable voxels. 
 
3.3 RESULTS 
 
Brand Personality Factor Structure. First, we sought to characterize the set of 
personality feature fn,j associated with our brands using participant ratings of brands on 
the set of traits outlined in the Aaker framework. Specifically, we used a factor analytic 
approach to summarize variation in trait ratings and reduce collinearity issues. Consistent 
with previous results, we found that a substantial proportion (86.4%) of the variance was 
captured by 5 factors. Further inspection of the factor loadings showed that our results 
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largely replicated those of previous studies (Figure 5A). For example, the first factor 
loaded highly on the traits “trendy”, “cool”, and “good looking”—commonly referred to 
as the Excitement factor. The second factor, referred as Sincerity, loaded highly on traits 
such as “wholesome”, “sincere”, and “down-to-earth”. Using this factor analytic 
framework, therefore, it is possible to characterize each brand, for example, Apple, as a 
vector of personality features consisting of these five factors that summarizes the set of 
personality characteristics participants associate with these brands. 
 
Brand Experience Factor Structure. Second, we characterized the set of experience 
feature fn,j associated with our brands using participant ratings on the set of items outlined 
in the Brakus framework. Similarly, we used a factor analytic approach to summarize 
variation in ratings and reduce collinearity issues. We found that a substantial proportion 
(85.7%) of the variance was captured by 3 factors (Figure 5B). The first factor loaded 
highly on the items “this brand makes a strong impression on my visual sense or other 
senses” and “this brand is an emotional brand”. We referred this factor to the 
sensory/affective factor. Disney has the highest sensory/affective factor score, while 
Cisco has the lowest one. The second factor, referred as cognitive factor, loaded highly 
on items such as “this brand stimulates my curiosity and problem solving”. Google has 
the highest cognitive factor score, while Nestlé has the lowest one. We referred the third 
factor to the behavioral factor, and Nike has the highest behavioral factor score. Using 
this factor analytic framework, we characterize each brand as a vector of experience 
features consisting of these three factors that summarizes the set of experience 
participants associate with these brands. 
 
Personality and Experience Contents are Distributed Differently in the Brain. Using 
results from the factor-analytic model, we next sought to relate personality/experience 
factor scores with observed fMRI data associated with viewing brands using a cross-
validation approach, and test the ability of our framework to discriminate between the 
previously unseen brands. We used a whole-brain searchlight approach to locate brain 
regions that contain information about brand personality or brand experience. 
 
To compare brand personality and brand experience, we sought to characterize the set of 
brain regions where the prediction accuracy is significantly different using the two sets of 
variables. To do so, we performed a paired T tests at each voxel location of the 17 
individual accuracy maps for personality and the other 17 individual accuracy maps for 
experience. We found that the set of predictive voxels for personality and for experience 
were distributed differently throughout the brain (Figure 6, Table 2-3). To better 
understand the brain regions that contain more information about personality or 
experience, we threshold the T statistics map with p<0.01. We find that activation 
patterns within DLPFC, DMPFC, TPJ and anterior insula can distinguish the previous 
unseen brands using personality features significantly better than using experience 
features (Figure 7; Table 2). On the contrary, activation patterns within posterior insula, 
hippocampus, and ACC perform better using experience features than using personality 
features (Figure 8; Table 3). 
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To understand the cognitive functions in which these regions were most involved, we 
conducted an exploratory reverse inference analysis using NeuroSynth (Yarkoni et al. 
2011), correlating our activation map with the neural activation maps for each term in the 
NeuroSynth database (Figure 7-8). We found that the brain regions containing 
information about personality distributed across a number of types of cognitive functions, 
but in particular those implicated in previous studies of semantic knowledge (DLPFC, 
DMPFC, TPJ and anterior insula) (Figure 7; Table 2) (Binder et al. 2009). On the other 
hand, the brain regions containing information about experience distributed across a 
number of brain regions cognitive functions, which implicated in previous studies of 
episodic knowledge (posterior insula, hippocampus, and ACC) (Figure 8; Table 3) 
(Tulving 2002).   
 
3.4 DISCUSSION 
 
The application of neuroscientific methods to marketing has a history that is brief in 
existence but long on controversy (Ariely and Berns 2010; Plassmann, Ramsøy, and 
Milosavljevic 2012). Here we take an important step toward bridging this gap, and begin 
to provide a neuroscientific framework to address the question of the set of thoughts and 
feelings that occur when people think or interact with the brands. More specifically, using 
a decoding approach in conjunction with factor analytic techniques, we formally test our 
ability of infer mental representations of brands using a set of intermediate psychological 
features to model the underlying representational space (Haynes and Rees 2006; Mitchell 
et al. 2008; Norman et al. 2006). In comparison to “where”-type questions that are the 
focus of traditional localization approaches, these “what”-type questions have only 
become addressable in recent years (Haynes and Rees 2006; Mitchell et al. 2008; Norman 
et al. 2006). 
 
First, brand personality and brand experience exist a priori inside the mind of the 
consumer. We found that we were able to predict what brand consumers were thinking 
about solely based on the relationship between brand personality/experience and brain 
activity. In particular, because participants in our study were not prompted on thinking 
about traits such as “daring”, “reliable”, and “wholesome”, nor thinking BOUT their 
experience associate with brands, our likelihood of predicting what brands participants 
are thinking of should be at chance if such associations did not come across the 
consumers’ thoughts. 
 
Second, we found that neural responses to consumer brands can be decomposed into a 
basis set of neural activation patterns associated with intangible characteristics of these 
objects. Moreover, we found that the activations associated with brand personality were 
distributed across a number of types of cognitive functions, but in particular those 
implicated in previous studies of semantic knowledge (Binder et al. 2009). On the other 
hand, the activations associated with brand experience were distributed in the brain, in 
particular those implicated in previous studies of episodic memory (Tulving 2002; 
Hassabis et al. 2007). 
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The two distinguishable brain activity patterns coincide with the two information-
processing systems that retain different aspects of information (Tulving 1972), semantic 
memory and episodic memory. Semantic memory associated with brands can be viewed 
as abstract or generic knowledge descriptive of brands (Baumgartner et al. 1992), and the 
brand personality construct can be viewed as an approximate of the semantic memory of 
brands. On the other hand, episodic memory associated with brands can be viewed as a 
recollection of episodes from one’s past experience with brands (Tulving 2002), and the 
brand experience scale can conceptualize the episodic memory people have with brands. 
 
More generally, the methods outlined here enable consumer researchers to consider a set 
of research questions not previously testable, and are centered around the idea that 
spatially distributed fMRI activity patterns may represent a viable signature of 
hypothesized psychological constructs (Haynes and Rees 2006; Naselaris et al. 2011). 
The whole-brain searchlight MVPA can help us identify brain regions that contain 
information of different models of the mental representation of brands, instead of simply 
comparing brain activities when people perform different recall tasks. 
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Conclusion 
 
 
In my dissertation, we employ brain imaging and machine learning techniques to 
decode the mind of consumers. Specifically, we are able to read out the information 
about brands containing in the brain. We find that brand personality traits can be 
captured by the weighted activity across a widely distributed set of brain regions 
previously implicated in reasoning, imagery, and affective processing. Furthermore, 
we show that there are two different systems of brand memory, one as episodic 
memory captured by the brand experience construct, and the other as semantic 
memory captured by the brand personality construct. 
 
These findings represent an important advance in the application of neuroscientific 
methods to consumer research, moving from work focused on cataloguing brain 
regions associated with marketing stimuli to testing and refining mental constructs 
central to theories of consumer behavior. 
 
 
 
 
*This dissertation contains co-authored materials with Professor Ming Hsu and 
Professor Leif Nelson. 
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Figures 
 
 
FIGURE 1. Experimental Paradigm And Behavioral Results 
 
(A) A total of 44 brands and their associated logos were used in the experiment, chosen 
from Interbrand’s list of top global brands. (B) Subjects engaged in a passive viewing 
task, and were instructed to think about the characteristics or traits associated with each 
brand. For each trial, a brand logo was presented for 4-8 seconds on a gray background. 
(C) Quantitative description of brand association was derived using the Aaker brand 
association framework. For each brand, participant rated a set of 42 traits (e.g., down-to-
earth), yielding a set of five latent features via factor analysis. Examples of the extreme 
brands are presented at bottom to illustrate how brand associations were captured in this 
framework. (D) Radar chart of example brands that reside in the same industry but 
possess distinct associations (Apple and Microsoft), and those in different industries but 
possess similar associations (Disney and Ikea). Each vertex indicates a brand personality 
factor (Ex: Excitement, Com: Competence, Sin: Sincerity, Rug: Ruggedness, So: 
Sophistication).  Vertex the factor score of brand on each dimension. Shaded (unshaded) 
regions indicate negative (positive) factor scores. (E) Mean trait rating of neuroimaging 
experiment participants were highly correlated with those from an independent pool of 
undergraduate students (Pearson 𝑟 = 0.86,𝑝 < 10!!"). 
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FIGURE 2. Empirical Approach 
 
(A) For each iteration, two brands were held out of the training set, e.g., Disney and 
Gucci, and model calibration was done using the remaining 42 brands in the training set. 
(B) Neural signatures of brand association were estimated using brands’ personality 
features derived from participants’ ratings. (C) Learned 𝑐!!  coefficients for the five 
personality features are depicted in single axial slice with color representing image 
intensity. (D) Cross-validation is completed by using trained neural signatures to predict 
observed neural responses to hold-out brands. The predicted image for the holdout brand 
is calculated as a linear combination of the personality features of the holdout brands, 
weighted by the estimated 𝑐!! coefficients associated with each feature. This schematic 
shows predicted and observed fMRI images for Disney and Gucci using axial slice of a 
single participant. 
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FIGURE 3. Brand Personality Traits Can Be Recovered From Brain Activity 
 
(A) The overall hit rate for holdout classification was 58% (Permutation test 𝑝 < 10!!). 
Separating the brands based on subjective similarity into quartiles as assessed based on 
correlation of trait ratings, we find a significant relationship between hit rate and 
subjective similarity. That is, performance in classification is improved when brands are 
more dissimilar. When brands are highly similar (mean Pearson 𝑟 = 0.75), classification 
rate is at chance. Errorbars indicate SEM. (B) To formally compare similarity between 
neural and psychological measures of brand associations, we plotted, for each brand pair, 
the correlation between predicted and observed brain images evaluated over the 500 
image voxels with the most stable responses across training presentations (y-axis) against 
similarity in brands’ psychological properties as measured using correlation of trait 
ratings (x-axis). We found that strength of neural correlation is robustly modulated by the 
similarity of brands’ psychological properties (Pearson 𝑟 = 0.56,𝑝 < 10!!). That is, 
brands that are more similar in trait ratings were also more highly correlated at the neural 
level. 
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FIGURE 4. Brand Personality Contents Are Distributed Widely Across The Brain 
 
We show the slice view of the most accurately predicted voxels, i.e., voxels with highest 
correlation between out-of-sample prediction rates and actual activations for the average 
participant. Each panel shows clusters containing at least 10 contiguous voxels where 
predicted-actual correlation is significantly greater than zero, with 𝑝 < 0.05 from the 
permutation test (Table 1). To make inferences about cognitive processes subserved by 
these regions, we used the meta-analytic tool Neurosynth (Yarkoni et al. 2011) to 
generate the probability that a specific cognitive process is engaged given activation in a 
particular brain region. For example, given specific voxel location of the observed 
activation in the dorsomedial prefrontal cortex (cluster c), there is a 0.85 probability that 
the term “personality traits” was used in a study given the presence of reported activation. 
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FIGURE 5. Behavioral Responses of Brand Personality and Brand Experience 
 
We use subjects’ ratings of the descriptiveness of personality traits and experience items 
to characterize the psychological features of brands. (A) (Top) Personality traits used in 
the survey. (Bottom) The factor analysis and the criteria yielded five factors, labeled as 
excitement, sincerity, competence, ruggedness, and sophistication. Further inspection of 
the factor loadings showed that our results largely replicated those of previous studies (B) 
(Top) Experience items used in the survey. (Bottom) The factor analysis and the criteria 
yielded three factors, labeled as sensory/affective, intellectual, and behavioral. 
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FIGURE 6. T Statistics Map for Comparison between Personality and Experience 
 
For each voxel centered on the 10mm sphere searchlight, the resulting map shows how 
well the multivariate signal in the local spherical neighborhood differentiates the previous 
unseen brands, comparing using brand personality to model the psychological features of 
brands to using brand experience to model the psychological features of brands. Paired T 
tests were performed at each voxel location of the individual accuracy maps for 
personality and the individual accuracy maps for experience from whole-brain decoding 
using an MVPA searchlight approach. Colors indicate t values from a voxelwise paired t 
test comparing decoding accuracy of the two models. Warm colors show the brain 
regions where the personality model performs better than the experience model. Cold 
colors show the brain regions where the experience model performs better than the 
personality model. 
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FIGURE 7. Brain Regions Where Personality Significantly Performs Better 
 
We threshold the whole-brain t-statistics map in Figure 6 to get the brain regions where 
using the personality model significantly performs better than using the experience model 
(results were considered statistically significant at p < 0.01).  We find that compared to 
brand experience, information about personality contains in dorsolateral prefrontal cortex 
(DLPFC), dorsomedial prefrontal cortex (DMPFC), temporoparietal junction (TPJ), and 
anterior insula. These brain regions are usually associated with semantic memory. 
 

 
  

x = 30! x = -3!

z = -2!x = -42!

Region/Feature! Prob.!
a DLPFC!

better understanding! 0.86!
memory encoding! 0.84!

b TPJ!
empathic! 0.84!
mental states! 0.80!

Region/Feature! Prob.!
c DMPFC!

beliefs! 0.88!
person! 0.86!

d anterior insula!
memory formation! 0.87!
semantics! 0.81!



	   33 

FIGURE 8. Brain Regions Where Experience Significantly Performs Better 
 
We threshold the whole-brain t-statistics map in Figure 6 to get the brain regions where 
using the experience model significantly performs better than using the personality model 
(results were considered statistically significant at p < 0.01).  We find that compared to 
brand personality, information about experience contains in posterior insula, 
hippocampus, and anterior cingulate cortex (ACC). These brain regions are usually 
associated with episodic memory. 
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Tables 
 
 
TABLE 1 
 
Voxel locations of brain regions where predicted neural response for held-out brands 
were significantly correlated with the observed neural responses. 
 

Cluster  Voxel3   
Size1 Corr2  X Y Z  L/R4 Region 
184 0.65  18 -94 -5  R Lingual Gyrus 
11 0.63  -12 38 55  L Superior Frontal Gyrus 
15 0.6  51 11 -8  R Superior Temporal Gyrus 
23 0.57  6 -52 16  R Posterior Cingulate 
145 0.55  -12 -97 -8  L Lingual Gyrus 
36 0.54  6 35 16  R Anterior Cingulate 
17 0.53  3 47 40  R Medial Frontal Gyrus 
15 0.5  -18 26 43  L Superior Frontal Gyrus 
10 0.49  36 -34 -2  R Sub-Gyral 
14 0.48  -21 11 58  L Middle Frontal Gyrus 
14 0.47  -45 2 1  L Insula 
16 0.47  -3 -7 43  L Cingulate Gyrus 
23 0.46  51 2 -2  R Superior Temporal Gyrus 
14 0.46  -36 29 -8  L Inferior Frontal Gyrus 
12 0.46  -9 26 28  L Cingulate Gyrus 
11 0.45  21 -37 -5  R Parahippocampal Gyrus 
26 0.44  9 47 1  R Medial Frontal Gyrus 
25 0.43  3 -79 4  R Lingual Gyrus 
32 0.42  -3 -79 22  L Cuneus 
13 0.42  -33 53 13  L Superior Frontal Gyrus 
14 0.4  27 41 31  R Superior Frontal Gyrus 
28 0.39  -12 26 -5  L Caudate 
10 0.37  3 -64 28  R Precuneus 
1Cluster size (voxels). 
2Correlation coefficient between the predicted and the observed brain images. 
3Voxel location (X, Y, Z) in MNI coordinate (mm). 
4Laterality of activation (L = left hemisphere, R = right hemisphere). 
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TABLE 2 
 
Voxel locations of brain regions shown in Figure 7 where the model performance using 
personality factors was significantly better than using experience factors. 
 

Cluster  Voxel3   
Size1 T2  X Y Z  L/R4 Region 
220 4.77  -6 23 55  L Superior Frontal Gyrus 
72 4.34  -42 -55 28  L Superior Temporal Gyrus 
20 4.32  42 -67 34  R Precuneus 
73 4.3  -30 29 7  L Inferior Frontal Gyrus 
32 4.29  -63 -37 40  L Inferior Parietal Lobule 
38 4.04  24 -76 19  R Cuneus 
42 3.86  27 56 22  R Superior Frontal Gyrus 
15 3.85  60 -46 4  R Middle Temporal Gyrus 
23 3.73  -57 -1 31  L Precentral Gyrus 
44 3.62  45 -31 55  R Postcentral Gyrus 
34 3.55  -39 -40 58  L Postcentral Gyrus 
46 3.46  -21 -4 61  L Middle Frontal Gyrus 
13 3.43  18 8 -2  R Lentiform Nucleus 
11 3.4  9 -4 58  R Medial Frontal Gyrus 
12 3.25  -24 -4 -11  L Parahippocampal Gyrus 
26 3.13  -15 -49 34  L Precuneus 

 
1. Cluster size (voxels). 
2. T values from a voxelwise paired t test comparing decoding accuracy 

of using personality to experience. 
3. Voxel location (X, Y, Z) in MNI coordinate (mm). 
4. Laterality of activation (L = left hemisphere, R = right hemisphere). 
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TABLE 3 
 
Voxel locations of brain regions shown in Figure 8 where the model performance using 
experience factors was significantly better than using personality factors. 
 

Cluster  Voxel3   
Size1 T2  X Y Z  L/R4 Region 
37 4.03  30 -43 10  R Caudate 
26 3.87  -42 -10 -5  L Insula 
7 3.48  -57 -25 -17  L Inferior Temporal Gyrus 
17 3.34  -30 -55 10  L Parahippocampal Gyrus 
8 3.16  9 32 22  R Anterior Cingulate 

 
1. Cluster size (voxels). 
2. T values from a voxelwise paired t test comparing decoding accuracy 

of using experience to personality. 
3. Voxel location (X, Y, Z) in MNI coordinate (mm). 
4. Laterality of activation (L = left hemisphere, R = right hemisphere). 
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1. Methods 
 
1.1 General Methods 
 
1.1.1 Subjects 
 
Seventeen adults (6 females) from the San Francisco Bay Area were recruited from Craigslist 
to participate in the functional magnetic resonance imaging (fMRI) study. Their ages ranged 
from 26 to 45, with an average of 34 and the standard deviation of 6.5. Informed consent was 
obtained using a consent form approved by the Internal Review Board at University of 
California, Berkeley. The total time for the whole experiment was approximately 3 hours, 
including the instruction, the scanning session, and the post-experiment questionnaires.  Each 
participant was paid $70 in cash upon completion of the experiment. 
 
1.1.2 Experimental Protocol 
 
We imaged participants’ brains with functional magnetic resonance imaging (fMRI) while 
they underwent a passive viewing task involving 44 well-known brands. The stimuli were 44 
brand logos selected from Best Global Brands by Interbrand (Figure 1A), with significant 
diversity in brand meaning and industry. Each of the 44 stimulus items was presented four 
times in a pseudo-random sequence on the gray background (Figure 1B), and each 
presentation lasted for 4-8s. There were twelve rest periods distributed across the session 
lasting for 4-8 seconds, during which participants were instructed to fixate on a cross at the 
center of the screen. In addition, there were six self-paced catch questions, in which 
participants had to press a particular button using an MRI-compatible button box to continue 
to the next trial (Figure S1). 
 
When a brand logo was presented, the participants’ task was to think about the characteristics 
or traits associated with the brand. Each participant was free to think about any characteristic 
or trait they associated with the brands, and there was no attempt to obtain consistency of the 
associations neither across participants nor across repetition times. 
 
After the scanning session, participants were asked to complete a survey about the brands 
they saw in the scanner. The survey included the 42-item brand personality scale (Aaker 
1997) (Table S1), familiarity, and preference for each brand. The brand personality scale 
involved judgment of the descriptiveness of 42 traits to each brand, with a five-point scale 
from not at all descriptive (rating=1) to extremely descriptive (rating=5). Participants 
reported their familiarity and preference toward the brands from a four-point scale, ranging 
from dislike/unfamiliar (rating=1), somewhat dislike/unfamiliar (rating=2), somewhat 
like/familiar (rating=3) to like/familiar (rating=4). We obtained 1,936 ratings in total per 
participant in the survey.  
 
1.1.3 fMRI Data Acquisitions 
 
Functional images were acquired on a Siemens 3T TIM/Trio scanner at Henry H. Wheeler Jr. 
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Brain Imaging Center at University of California, Berkeley. An EPI sequence was used to 
acquire the functional data (repetition time (TR) = 2,000 ms; echo time (TE) = 30 ms; voxel 
resolution = 3mm×3mm×3mm; FOV read = 192 mm; FOV phase = 100%; interleaved series 
order). The scan sequences were axial slices approximately flipped 30 degrees to the AC-PC 
axis. High-resolution structural T1-weighted scans (1mm×1mm×1mm) were acquired by 
using an MPRage sequence. 
 
1.1.4 Survey of an Additional Sample   
 
An additional sample of 25 undergraduate students completed the survey online on the same 
set of brands and traits of the brand personality scale for course credits. The average 
responses of the trait scores were highly correlated among our neuroimaging subjects and the 
follow-up participants (Figure 1E). 
 
1.2 Behavioral Data analysis 
 
To conceptualize the brands, we first characterized the set of psychological features 
associated with the brands using participant responses in the survey outlined in Aaker’s 
framework (Aaker 1997). Specifically, we used a factor analytic approach to summarize 
variation in trait ratings and reduce collinearity issues. First, we averaged responses from all 
of the participants to calculate the average descriptiveness of each trait to each brand. Then, 
the average scores were factor-analyzed with SPSS (“IBM SPSS Statistics for Windows, 
Version 20.0” 2011) using principal components analysis and a varimax rotation. We 
selected the factors with eigenvalues greater than one, and the solution explained a high level 
of variance. Finally, each brand can be re-expressed in terms of its feature vector, defined 
as the strength of association between the brand and the factors (the personality features). 
 
1.3 fMRI Data Preprocessing 
 
Prior to analysis, the images were corrected for slice time artifacts, realigned, coregistered to 
the subject’s T1 image, and normalized to Montreal Neurological Institute coordinates, using 
SPM8 (Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging). 
Consistent with previous decoding studies, we did not smooth the images. 
 
To identify the representative fMRI image of a brand for the analysis, we followed the 
methods proposed by Mumford et al. (2012) for event-related designs (Mumford et al. 2012). 
We first used a general linear model in SPM8 to estimate a single fMRI image for each of the 
176 brand presentations, specifically method LS-S in Mumford et al. (2012). The model 
included the brand of interest as an individual regressor and another regressor consisting of 
all the other brands and the catch questions. The duration of all of the events was set to be 
zero. The beta values estimated for the first regressor of the brand of interest was used as the 
brain activation patterns associated with a brand at a particular repetition time. Alternative 
procedures to estimate the representative fMRI images were used (section 2.5), but consistent 
with Mumford et al. (2012), the LS-S method with each event modeled as an impulse 
function yields the best performance. 
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Using brain images for each brand at each repetition time, we standardized the activation 
levels for each voxel by z-scoring over the 176 files. Then, for each brand, we averaged the 
four brain images of the four repetition times to obtain the averaged fMRI image associated 
with thinking about the brand. The fMRI images were then exported to Matlab using 
Princeton MVPA toolbox. Finally, we applied the individual grey matter mask to include 
voxels within the grey matter. For each participant, the grey matter mask was created by 
segmenting the individual’s normalized average EPI image using SPM8. 
 
1.4 Decoding Analysis 
 
1.4.1 Overview 
 
We used model-based decoding analysis to predict the fMRI image of a brand j for each of 
the participant using his/her neural responses to other brands and the personality features of 
this brand j, following the methods proposed by Mitchell et al. (2008). We assumed that for 
each participant, the neural response 𝑦!! in voxel v to brand j is given by 𝑦!! = 𝑐!!𝑓!,! +
𝑐!!𝑓!,! +⋯+ 𝑐!!𝑓!,!, where 𝑓!,! is the value of the nth personality feature for brand j, n is the 
number of personality features, and 𝑐!! is a scalar parameter that specifies the degree to which 
the nth personality feature activates voxel v. Notice that the model was estimated 
independently for each of the participants. 
 
1.4.2 Training the Model 
 
The personality features associated with a brands 𝑓!,! were specified with the factors (section 
1.2) that quantitatively capture the characteristics or traits associated with the brands. Then, 
the parameters 𝑐!! that define the neural signature contributed by the nth personality feature 
to the vth voxel were estimated. This is accomplished by training the model using a set of 
observed fMRI images associated with known stimulus brands. Each training stimulus, 
brand j, was first re-expressed in terms of its personality feature vector < 𝑓!,! …   𝑓!,! >, 
and multiple regression is then used to obtain maximum likelihood estimates of the 𝑐!! 
values; that is, the set of 𝑐!!  values that minimize the sum of squared errors in 
reconstructing the training fMRI images. Since the number of personality features is less 
than the number of training examples in our model, this multiple regression problem is 
well posed and a unique solution is obtained. 
 
Once trained, the resulting computational model can be used to predict the full fMRI 
activation image for any other brand. Given an arbitrary new brand k, we first expressed 
the brand with the personality features < 𝑓!,! …   𝑓!,! > in Aaker’s framework. Then, we 
applied the above formula using the previously estimated values for the parameters 𝑐!!. 
The computational model and corresponding theory can be directly evaluated by 
comparing their predictions for brands outside the training set to observed fMRI images 
associated with those brands. 
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1.4.3 Training and Evaluating the Model 
 
The computational model was trained and evaluated using a cross validation approach, in 
which the model was repeatedly trained using only 42 of the 44 available stimulus items, then 
tested using the two stimulus items that had been left out. On each iteration, the trained 
model was tested by giving it the two stimulus brands it had not yet seen (b1 and b2), plus 
their observed fMRI images (i1 and i2). We used two ways to evaluate the performance of the 
model. First, we compared the similarity between the predicted and the observed brain 
images (section 1.4.4). Second, we required the model to predict which of the two brain 
images was associated with which of the two brands using a matching procedure described in 
section 1.4.5. This leave-two-out train-test procedure was iterated 946 times, leaving out each 
of the possible brand pairs.  
 
1.4.4 Similarity between Predicted and Actual Images 
 
Given a trained computational model, two new brands (b1 and b2) and two new images (i1 
and i2), the trained model was first used to create predicted image p1 for brand b1 and 
predicted image p2 for brand b2. The model was evaluated by comparing these predicted 
fMRI images to the observed fMRI data. We first compared two possibilities: matched 
pairs (p1=i1 and p2=i2, dark arrows in Figure 2D) and mismatched pairs (p1=i2 and p2=i1, 
light arrows in Figure 2D). Under the null hypothesis of no association, the predicted fMRI 
image for a brand will be equally predictive of the matched brand as with the mismatched 
brand. 
 
Because we do not expect every voxel in the brain to be involved in representing the 
personality features of the brands, only a subset of voxels was used for assessing the 
similarity between images. This subset of voxels was selected automatically during 
training, using only the data for the 42 training brands, and excluding the data from the two 
testing brands. The voxel selection method is described in section 1.4.6. 
 
Let sel(i) be the vector of values of the selected subset of voxels for image i.  The similarity 
score between a predicted image, p, and observed image, i, was calculated as the Pearson 
correlation coefficient of the vectors sel(p) and sel(i). In Figure S5, we compared the 
average similarity score of matched pairs (p1=i1 and p2=i2) to the average similarity score 
of mismatched pairs (p1=i2 and p2=i1). In Figure 3B, we compared, for each brand pair, the 
similarity score of predicted and observed brand images (pA and iB) against psychological 
similarity of brands as measured using Pearson correlation coefficient of trait ratings of the 
two brands. 
 
1.4.5 Matching Predicted to Actual Images 
 
Given the two testing brands (b1 and b2) and two observed images (i1 and i2), we then 
required the model to predict which of the two brain images was associated with which of 
the two brands. The trained model was first used to create predicted image p1 for brand b1 
and predicted image p2 for brand b2. It then decided which was a better match: (p1=i1 and 
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p2=i2) or (p1=i2 and p2=i1), by choosing the image pairing with the larger sum of 
similarity scores. Similarly, we selected a subset of voxels sel(i) of image i to calculate 
the similarity score. More specifically, the match of the pair of brands is calculated by: 

 
Match (p1=i2 and p2=i1) = Correlation (sel(p1), sel(i2)) + Correlation (sel(p2), sel(i1)). 

 
The expected accuracy in matching the two left-out brands to their left-out fMRI images is 
0.50 if the matching is performed at chance levels. 
 
Pearson correlation coefficient was the first similarity measure we considered, but we 
subsequently also considered the Euclidean distance of the two vectors and found that the 
two yielded similar results (Figure S8). All results reported in the current paper use Pearson 
correlation coefficient. 
 
1.4.6 Voxel Selection 
 
As described above, similarity between two images was calculated using only a subset of 
the image voxels, following methods proposed in Mitchell et al. (2008). Voxels were 
selected automatically during training, using only the 42 training brands on each of the 
leave-two-out cross validation folds. To select voxels, all voxels were first assigned a 
"stability score" using the data from the 4 presentations of each of the 42 training stimuli. 
Given these 4*42 = 168 presentations (168 fMRI images), each voxel was assigned a 4×42 
matrix, where the entry at row i, column j, is the value of this voxel during the ith 
presentation of the jth brand.  The stability score for this voxel was then computed as the 
average pairwise correlation over all pairs of rows in this matrix. In essence, this assigns 
highest scores to voxels that exhibit a consistent (across different presentations) variation in 
activity across the 42 training stimuli. The 500 voxels ranked highest by this stability score 
were used in the similarity test in Figure 3. However, our result is robust when including 
more voxels in the analysis (section 2.7, Figure S9 & S10) or excluding voxels in the 
occipital cortex (section 2.8, Figure S11). 
 
Selecting voxels based on the similarity score was the first voxel selection method we 
considered, but we subsequently also considered selecting voxels based on the significance 
in the multiple regression equation when training the model. The result is robust for 
different ways of voxel selection methods. All results reported in the current paper use the 
voxels selected by the stability scores. 
 
1.4.7 Empirical Distribution to Determine Statistical Significance 
 
The expected chance accuracy of an uninformed model correctly matching two stimuli 
outside the training set to their two fMRI images is 0.5. The observed accuracies of our 
trained models, based on 946 iterations of a leave-two-out cross validation train/test regime, 
are higher than 0.5. Here we used a permutation test to determine the p value based on 
observed accuracies, in order to reject the null hypothesis that the trained model has true 
accuracy of 0.5. Given our leave-two-out train/test regime, no closed-form formula is 
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available to assign such a p value. Therefore, we computed the p value based on an empirical 
distribution of observed accuracies obtained from 10,200 independently trained single-
participant models that we expect will have true accuracy very close to 0.5. The empirical 
distribution of accuracies for these null models was 0.50, with standard deviation 0.06, 
indicating that observed average accuracy above 0.55 for 17 participants is statistically 
significant at p<0.0001. Below we describe our approach in more detail. 
 
We created this empirical distribution of accuracies by training multiple models using the 
observed fMRI images for the 44 stimulus brands, but using different brand labels. More 
specifically, it is a form of permutation test, permuting the 44 stimulus labels. For example, 
in one model, we used Google’s personality features to describe Gucci, IBM’s features to 
describe Campbell’s, and so on. In another model, we used an independent scrambled set of 
the feature scores to describe the brands. Models were trained and tested using the leave-two-
out test regime, exactly as elsewhere in this paper, with one minor exception: in these models 
the 500 most stable voxels were selected using data from all 44 brands, whereas elsewhere 
this selection of stable voxels was based only on the 42 training brands. This exception was 
made because it dramatically improves the computational speed. 
 
For each of the 17 participants, we trained and tested 600 such randomly generated models, 
resulting in 10,200 models in total. The mean accuracy over these models was 0.50, with 
standard deviation 0.06. 
 
1.4.8 Accuracy Map  
 
The accuracy map in Figure 4 of the main text shows voxel clusters with the highest 
correlation between predicted and actual voxel values for an average subject. To obtain the 
accuracy map, we first averaged the fMRI patterns for each brand at each repetition time 
across 17 subjects. More specifically, we performed the second-level analysis for the subjects’ 
estimated beta files (section 1.3) associated with each brand at each repetition time in SPM8. 
Using the 176 average brain images, we standardized the activation levels for each voxel by 
z-scoring over the 176 files. Then, for each brand, we averaged the four brain images of the 
four repetition times to obtain the averaged fMRI image associated with thinking about the 
brand. Finally, we calculated 44 predicted images for the 44 brands, by training a model on 
the other 43 brands to predict the remaining brand.  For each voxel, this produced a set of 44 
predicted values. The accuracy score of each voxel was calculated as the Pearson correlation 
coefficient between this vector of its predicted values and the corresponding vector of its 
observed values. An image map containing these voxel scores was created. 
 
To determine the significance of the correlation between the predicted vector and the 
observed vector for a voxel, we took a permutation approach. We computed p values based 
on an empirical distribution of correlation coefficients obtained from 100,000 independently 
permuted values. For each voxel, we calculated the Pearson correlation coefficient of the 
permuted vector and the observed vector. The permuted vectors were created by scrambling 
the 44 predicted values.  
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The clusters shown in Figure 4 were then produced using SPM8, to identify clusters 
containing at least 10 contiguous voxels whose score was greater than the permuted threshold 
value p<0.05. 
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2. Supplementary Results 
 
2.1 Factor Analysis Results 
 
Using the fMRI subjects’ average responses of the descriptiveness of the traits to the 
brands, our factor analysis and the criteria yielded five factors. We found that a 
substantial proportion of the variance (86%) was captured by these 5 factors (Table S2), 
and they were labeled as excitement, competence, sincerity, ruggedness, and 
sophistication as shown in the factor loadings of traits (Figure S2). Further inspection of 
the factor loadings showed that our results largely replicated those of previous studies. 
Using this factor analytic framework, we characterized each brand as a vector of 
personality features consisting of these five factor scores that summarizes the set of 
characteristics participants associate with these brands. Each brand thus was re-expressed 
in terms of its feature vector (Figure S3; Table S3). 
 
2.2 Familiarity and Preference 
 
Our subjects were highly familiar with the brands used in the experiment. The average 
familiarity score was 3.58 out of 4 across all participants and all brands. Behaviorally, 
different people had different preference toward the brands. On average, Google (average 
preference=3.83) and Amazon.com (average preference=3.72) were the most preferred 
brands, while Goldman Sachs (average preference=1.89) and Marlboro (average 
preference=1.83) were the least preferred ones. Neurally, we found that activation in 
striatum was positively correlated with the subject’s reported brand preference. Striatum 
is a region of the brain known to respond to primary and secondary rewards (Fliessbach 
et al. 2007; Izuma, Saito, and Sadato 2008), and is consistent with the idea that our brains 
respond to preferences of abstract objects such as brands. 
 
2.3 Individual Results 
 
Given the two testing brands (b1 and b2) and two observed images (i1 and i2), we required 
the computational model to predict which of the two brain images was associated with 
which of the two brands. The average performance of the model for iterating over all of the 
possible combination of hold-out data across 17 subjects is 58%, compared with 50% if the 
model performs at chance. For individual subjects, the average hit rate across all of the 
possible combinations of brand pairs is plotted in Figure S4. Subjects were sorted by the 
average hit rate. 
 
2.4 Accuracy Map 
 
The accuracy map (Figure 4) shows voxel clusters with the highest correlation between 
predicted and actual voxel values for an average subject. The clusters contained at least 
10 contiguous voxels whose correlation value was greater than the permuted threshold 
value p<0.05. The correlation values, locations, and regions of these voxels are listed in 
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Table 1. The surface rendering and the glass brain of locations of the most accurately 
predicted voxels are shown in Figure S6. 
 
2.5 Robustness to Extracting Representative fMRI Response to the Brands 
 
To identify the representative fMRI image of a brand, we used the procedure outlined in 
Mumford et al. (2012) to account for the fact that in rapid event-related designs the 
evoked BOLD signal for adjacent trials will overlap in time. We first used a general 
linear model in SPM8 to estimate a single fMRI image for each of the 176 brand 
presentations using method LS-S in Mumford et al. 2012. More specifically, for each 
subject, 176 general linear models were estimated, with each model estimating 2 
regressors: one regressor for the event of interest (corresponding to a presentation of one 
particular brand) and one regressor for all other events that are combined into a single 
nuisance regressor, where each event was modeled as an impulse function (the duration 
of each event is set to be zero) convolved with a double gamma hemodynamic function.  
 
We run further robustness checks using alternative methods of estimating representative 
fMRI images. First, we estimate the fMRI images using the LS-S model with the full 
duration of the events instead of setting the duration to be zero. Second, we estimate the 
fMRI images using the “standard” general models, where all events of interest are 
modeled in one general linear model per subject. Consistent with Mumford et al. 2012, 
the prediction rates are somewhat worse than using the duration 0 LS-S model, but 
remain quite significant (p<0.005, Figure S7A). Other features, such as modulation by 
psychological similarity, remain qualitatively unchanged (Figure S7B). 
 
2.6 Robustness to the Measure of Psychological Similarity of Brands 
 
We examined the relationship between the psychological organization of brands and the 
discriminability of the associated brain images in Figure 3, where the psychological 
similarity of brands were measured by the Pearson correlation coefficient of the averaged 
trait ratings of the 42 items in the survey. It is not the only way to measure the similarity 
of brands’ psychological features. For example, instead of correlations of traits, we 
calculated the similarity as the Euclidean distance between brands’ feature vectors of the 
five factor scores. Our results are robust when using the Euclidean distance between 
brands in association space (Figure S8). More specifically, the difference in correlation 
between the matched brain images and the mismatched brain images is larger when there 
is a larger Euclidean distance between the two brands’ feature vectors (Figure S8A). Also, 
the strength of neural correlation between predicted and observed brain images is 
robustly modulated by the similarity of brands’ psychological features (Figure S8B). 
Finally, separating the brands based on subjective similarity into quartiles as assessed 
based on Euclidean distance of factor scores, we find a significant relationship between 
hit rate and subjective similarity (Figure S8C). 
 
2.7 Robustness to Varying Number of Voxels Used in Decoding 
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The main result comes from comparing the predicted and observed brain images using 
500 most stable voxels (section 1.4.6) selecting from 40,000-50,000 voxels in the whole 
brain. As a robustness check, we ran the analysis including different numbers of voxels. 
More specifically, we compared our results of discriminative accuracies and the 
relationship between the psychological organization of brands and the correlation 
between predicted and observed brain images, using 500, 1000, 5000, and 25,000 voxels 
with the highest stability scores. Our result is robust when more voxels were included. 
First, the overall hit rate for hold-out classification did not drop significantly when more 
voxels were included in the comparison between the predicted and the observed brain 
images (Figure S9). Second, the significant relationship between hit rate and subjective 
similarity of brands was also robust when different numbers of voxels were included 
(Figure S9). Finally, we found that strength of neural correlation is robustly modulated by 
the similarity of brands’ psychological features when different voxels were included 
(Figure S10). 
 
2.8 Robustness to Excluding Visual Cortex Voxels 
 
The most predictive voxels were distributed in the cortex, including occipital lobes 
(Figure 4 and Figure S6). As a robustness check, we ran the analysis excluding voxels in 
the occipital cortex using an ROI mask (Figure S11A), which was estimated in a general 
linear model with a regressor including all of the brand-viewing tasks. The mask was 
created using the group-average beta values across 17 subjects with the criteria of 
p<0.002 and at least 1000 contiguous voxels. We then ran the computational model for 
each participant excluding voxels within the mask. Specifically, we performed the same 
analysis but selected the 500 most stable voxels outside the mask. Our result is robust to 
masking for the overall hit rate and the significant relationship between hit rate and 
subjective similarity (Figure S11B), for the strength of neural correlation modulated by 
the similarity of brands’ psychological features (Figure S11C), and for the significant 
relationship between the subjective similarity and the difference between the correlation 
of the predicted brain images and the actual brain images for correctly matched pair and 
the incorrectly matched pair (Figure S11D). 
 
2.9 Robustness to Controlling for Physical Properties of Brand Logos 
 
As a robustness check, we account for brain activities associated with the visual activation 
when viewing the brand logos, by comparing the result in three models with different sets of 
explaining variables. The first model is our main result, using the five factors of 
psychological features. In the second one, we used the other five variables obtained from the 
ratings of an independent population regarding to the physical properties of the brand logos, 
such as whether the logo is red, blue, round, whether it has hard edges, and whether it 
contains words (Figure S12A). In the third model, we included both sets of variables: five 
psychological features and five physical properties. We found that although the model of 
physical properties yielded a higher prediction rate compared with the psychological-feature 
model (68% versus 58%), the combination of psychological features and physical properties 
does the best (73%) (Figure S12B). Also, the hit rate is modulated by the similarity in traits 
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only in the psychological-feature model (Figure S12C).   
 
2.10 Regression Coefficients 
 
To visualize the regression coefficients (𝑐!!) of the five dimensions of psychological 
features, we regress the activation levels on the five dimensions for each voxel of the 
average subject. Notice that we did not hold out any data. The average regression 
coefficients within each of the clusters shown in Figure 4 are plotted in Figure S13-S17. 
The brain regions were ordered by anterior/posterior axis in clockwise fashion.  
 
2.11 Univariate Analyses of Brand Personality Factors 
 
We use a univariate approach to identify the brain regions significantly correlated with 
each of the five dimensions of brand personality, with parametric modulations in a 
general linear model using SPM8. The brain regions associated with each of the five 
factors are shown in Figure S18. Univariate analyses are typically less sensitive than 
multivariate analyses because the former does not consider information that is distributed 
among activity patterns between voxels. Consistent with this, we find only a few patches 
of the visual cortex that respond to brand personality factors at the p<0.001 level (Figure 
S18). 
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3. Figures 
 
Figure S1: Experimental Protocol 
 
Subjects engaged in a passive viewing task, and were instructed to think about the 
characteristics or traits associated with each brand. For each trial, a brand logo was presented 
for 4-8 seconds on a gray background. In addition, there were twelve fixations lasting for 4-8 
seconds and six self-paced catch questions. 
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Figure S2: Factor Loadings of Traits 
 
The factor analysis and the criteria yielded five factors, labeled as excitement, competence, 
sincerity, ruggedness, and sophistication. The factor loadings of traits showed that our results 
largely replicated those of previous studies. For example, the first factor loaded highly on the 
traits “trendy”, “unique”, and “original”—commonly referred to as the Excitement factor. 
The third factor, referred as Sincerity, loaded highly on traits such as “friendly”, “family-
oriented”, and “wholesome”. 
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Figure S3: Radar Charts of the Factor Scores of Brands 
 
Each brand was re-expressed in terms of its feature vector, defined as the strength of 
association between the brand and the personality factors. These factor scores for each brand 
are shown in the radar charts (Ex: excitement, Com: competence, Sin: sincerity, Rug: 
ruggedness, and So: sophistication). Green (Red) regions indicate positive (negative) factor 
scores. 
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Figure S4: Model Performance on the Individual Level 
 
Average hit rate over all of the possible combination of hold-out data for each subject. Error 
bars represent 95% confidence intervals. Subjects were sorted by the performance of the 
model. 
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Figure S5: Correlation between Neural Similarity and Psychological Similarity. 
 
Separating the brands based on subjective similarity into quartiles, we find a significant 
relationship between the subjective similarity and the difference between the correlation of 
the predicted brain images and the actual brain images for correctly matched pair (dark arrow 
in Figure 2D) and the incorrectly matched pair (light arrow in Figure 2D). That is, the 
difference in correlation between the matched brain images and the mismatched brain images 
is larger when brands are more dissimilar. When brands are highly similar (mean Pearson 
r=0.75), there is no significant difference between the correlation of matched images and the 
correlation of mismatched images. Errorbars indicate SEM. 
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Figure S6: Accuracy Map 
 
Surface rendering (top) and the glass brain (bottom) of locations of the most accurately 
predicted voxels, i.e., voxels with highest correlation between predicted and actual 
activations for the average participant. Each panel shows clusters containing at least 10 
contiguous voxels where predicted-actual correlation is significantly greater than zero, with 
p<0.05 from the permutation test. These voxel clusters are distributed throughout the cortex 
and located in the left and right occipital and frontal lobes (Table 1). Note that decoding 
results were robust to exclusion of visual cortices. 
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Figure S7: Robustness to Extracting Representative fMRI Response to the Brands 
 
Our result is robust to different ways of extracting the representative of neural responses to 
brands. We are able to predict significantly better than chance which brand the participant 
was thinking about using the brain activities estimated (1) with impulse function in the LS-S 
model, (2) with the full duration in the LS-S model, and (3) with the standard one GLM 
model. (A) Consistent with Mumford et al. 2012, the prediction rates of the alternative 
models are somewhat worse than using the duration 0 LS-S model, but remain quite 
significant (p<0.005, Figure S7A). (B) The prediction rates modulated by psychological 
similarity remain qualitatively unchanged (Figure S7B). 
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Figure S8: Robustness to the Measure of Psychological Similarity of Brands 
 
(A) The difference in correlation between the matched brain images and the mismatched 
brain images is larger when brands are more dissimilar, measured as the larger Euclidean 
distance between the two brands’ feature vectors. (B) We plotted, for each brand pair, the 
correlation between predicted and observed brand image (y-axis) against similarity in brand 
meaning as measured using Euclidean distance of factor scores (x-axis). We found that 
strength of neural correlation is robustly modulated by the similarity of brands’ latent 
properties (𝑟 = −0.56,𝑝 < 10!!). (C) Separating the brands based on subjective similarity 
into quartiles as assessed based on Euclidean distance of factor scores, we find a significant 
relationship between hit rate and subjective similarity. 
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Figure S9: Robustness to Number of Voxels (Hit Rate) 
 
The overall hit rate for hold-out classification was 58% when comparing the predicted and 
observed brain images using the 500 most stable voxels. When more voxels were included in 
the comparison, our result was still robust. Separating the brands based on subjective 
similarity into quartiles as assessed based on correlation of trait ratings, we find a significant 
relationship between hit rate and subjective similarity when different number of voxels were 
included. 
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Figure S10: Robustness to Number of Voxels (Correlation) 
 
To compare similarity between neural and psychological measures of brand associations, we 
plotted, for each brand pair, the correlation between predicted and observed brain images (y-
axis) against similarity in brand meaning as measured using correlation of trait ratings (x-
axis). The correlation between the predicted and the observed brain images was calculated 
using (A) 500 (B) 1000 (C) 5000, and (D) 25000 most stable voxels. We found that strength 
of neural correlation is robustly modulated by the similarity of brands’ latent properties when 
different voxels were included. 
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Figure S11: Robustness to Excluding Visual Cortex Voxels 
 
We ran the analysis excluding voxels in the occipital cortex as a robustness check of the 
result. (A) The ROI mask used to exclude voxels within occipital lobes. (B) The overall 
hit rate was significantly better than chance, and the significant relationship between hit 
rate and subjective similarity was robust to masking. (C) The strength of neural 
correlation modulated by the similarity of brands’ personality properties was robust to 
masking. (D) The significant relationship between the subjective similarity and the 
difference between the correlation of the predicted brain images and the actual brain 
images for correctly matched pair and the incorrectly matched pair was robust to masking. 
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Figure S12: Robustness to Controlling for Physical Properties of Brand Logos 
 
We compared the result in three models with different sets of explaining variables to 
account for brain activities associated with the visual activation. (A) Variables used in the 
models. (B) Although the model of physical properties yields a higher prediction rate 
compared with the psychological association model, the combination of factors and 
physical properties does the best. (C) The hit rate is modulated by the similarity in traits 
only in the psychological association model. 
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Figure S13: Average Regression Coefficients of Excitement 
 
The average regression coefficients of excitement within each cluster in Figure 4 are shown 
in the figure, with the coordinate of the peak voxel in the parentheses. 
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Figure S14: Average Regression Coefficients of Competence 
 
The average regression coefficients of competence within each cluster in Figure 4 are shown 
in the figure, with the coordinate of the peak voxel in the parentheses. 
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Figure S15: Average Regression Coefficients of Sincerity 
 
The average regression coefficients of sincerity within each cluster in Figure 4 are shown in 
the figure, with the coordinate of the peak voxel in the parentheses. 
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Figure S16: Average Regression Coefficients of Ruggedness 
 
The average regression coefficients of ruggedness within each cluster in Figure 4 are shown 
in the figure, with the coordinate of the peak voxel in the parentheses. 
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Figure S17: Average Regression Coefficients of Sophistication 
 
The average regression coefficients of sophistication within each cluster in Figure 4 are 
shown in the figure, with the coordinate of the peak voxel in the parentheses. 
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Figure S18: Univariate Analyses of Brand Personality Factors 
 
Unlike our decoding analysis, univariate analyses are typically less sensitive than 
multivariate analyses because the former does not consider information that is distributed 
among activity patterns between voxels. Consistent with this, we find only a few patches of 
the visual cortex that respond to brand personality factors at the p<0.001 level. 
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4. Tables 
 
Table S1: Traits Used in the Survey 
 
After the scanning session, participants were asked to complete a survey about the brands the 
saw in the scanner. For each brand, participant rated the descriptiveness of 42 traits, with a 
five-point scale from not at all descriptive to extremely descriptive. 
 
Dimension Sincerity Excitement Competence Sophistication Ruggedness 

Traits 

Down-to-earth 
Family oriented 
Small-town 
Honest 
Sincere 
Real 
Wholesome 
Original 
Cheerful 
Sentimental 
Friendly 

Daring 
Trendy 
Exciting 
Spirited 
Cool 
Young 
Imaginative 
Unique 
Up-to-date 
Independent 
Contemporary 

Reliable 
Hard-working 
Secure 
Intelligent 
Technical 
Corporate 
Successful 
Leader 
Confident 

Upper-class 
Glamorous 
Good-looking 
Charming 
Feminine 
Smooth 

Outdoorsy 
Masculine 
Western 
Tough 
Rugged 
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Table S2: Dimensions of Brand Characteristics 
 
Summary of the five factors obtained from the factor analysis. 
 

Name Dimension Variance 
Explained Eigenvalue Traits with highest item-to-total correlations 

Excitement 1 35.0% 14.69 Exciting, Original, Unique, Trendy, Young. 

Competence 2 19.1% 8.03 Intelligent, Technical, Corporate, Successful, Secure. 

Sincerity 3 14.8% 6.22 Wholesome, Friendly, Family-oriented, 
Down-to-earth, Sincere. 

Ruggedness 4 12.3% 5.19 Tough, Rugged, Masculine. 

Sophistication 5 4.7% 1.96 Glamorous, Good-looking, Charming. 
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Table S3: Factor Scores of the Brands Used in the Experiment 
 

Brand Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
Amazon.com 0.924 1.282 0.638 0.083 0.101 
American Express -1.177 0.452 -0.898 -0.480 0.444 
Apple 1.695 1.208 0.126 0.073 0.435 
BMW 0.257 0.937 -0.696 0.683 1.467 
Budweiser -0.597 -1.998 -0.382 0.907 -1.168 
Campbell’s -1.175 -1.082 2.061 -0.139 0.011 
Canon 0.195 1.082 0.532 0.050 -0.121 
Cisco -0.787 0.975 -0.397 -0.050 -0.780 
Coca-Cola 0.339 -0.719 0.757 -0.265 0.170 
Dell -0.880 0.902 0.072 -0.140 -0.458 
Disney 1.427 -0.277 1.634 -1.060 -0.330 
Ford -0.370 -0.739 0.432 1.678 -0.441 
GE -1.315 0.919 0.494 0.123 -0.200 
Gillette -0.849 0.033 0.131 1.377 0.887 
Goldman Sachs -1.343 0.025 -2.272 -0.247 -0.172 
Google 1.980 1.505 0.339 0.141 -0.604 
Gucci 0.662 -0.465 -1.383 -0.953 2.175 
H&M 0.732 -1.124 -0.377 -1.069 0.329 
Harley-Davidson 1.529 -0.835 -0.878 2.703 -0.455 
HP -0.564 0.678 -0.328 -0.715 -0.884 
Honda -0.104 0.384 0.918 0.434 0.467 
IBM -0.526 1.761 -0.515 -0.038 -1.089 
IKEA 0.740 -0.112 1.114 -0.741 0.048 
Intel -0.356 1.699 -0.201 -0.143 -0.829 
J.P. Morgan -1.775 0.436 -1.609 -0.186 0.137 
Jack Daniel’s -0.077 -1.363 -0.533 1.604 0.194 
Kellogg's -0.914 -0.701 1.954 -0.574 0.170 
L’Oréal 0.199 -0.718 -0.388 -1.229 1.455 
Lancôme -0.565 -1.090 -0.363 -1.534 2.325 
Levi's -0.150 -0.967 1.544 2.064 0.876 
Louis Vuitton 0.646 -0.099 -1.517 -0.815 1.681 
Marlboro -0.587 -1.749 -1.655 1.350 -1.509 
McDonald's -0.576 -1.414 -0.837 -1.526 -2.114 
Mercedes-Benz -0.496 0.881 -0.339 0.585 2.072 
Microsoft -0.474 1.070 -0.263 -0.429 -1.169 
MTV 2.534 -1.146 -1.187 -0.638 -0.879 
Nestlé -0.724 -1.217 1.757 -1.428 0.193 
Nike 1.554 0.268 0.139 1.772 0.635 
Nintendo 1.347 0.023 0.104 -1.207 -1.629 
Pepsi 0.277 -0.781 0.395 -0.298 -0.292 
Sony 0.517 1.160 -0.330 0.164 -0.136 
Toyota -0.527 0.288 0.884 -0.024 0.282 
UPS -1.233 0.769 1.126 0.851 -0.271 
Yahoo! 0.586 -0.142 0.195 -0.715 -1.026 
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