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Abstract The digital era has witnessed an exponential
growth in bone imaging as new modalities and analytic
techniques improve the potential for noninvasive study of
bone anatomy, physiology, and pathophysiology. Bone
imaging very much lends itself to input across medical
and engineering disciplines. It is in part a reflection of
this multidisciplinary input that developments in the field
of bone imaging over the past 30 years have in some
respects outshone those in many other fields of medicine.
These developments have resulted in much deeper
knowledge of bone macrostructure and microstructure in
osteoporosis and a much better understanding of the
subtle changes that occur with age, concurrent disease,
and treatment. This new knowledge is already being
translated into improved day-to day clinical care with
better recognition, treatment, and monitoring of the
osteoporotic process. As “the more you know, the more
you know you don’t know” certainly holds true with
osteoporosis and bone disease, there is little doubt that
further advances in bone imaging and analytical techni-
ques will continue to hold center stage in osteoporosis
and related research.
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Introduction

Within a few months of Rector Wilhelm Conrad Roentgen
announcing to the Physico-Medical Society of Würzburg,
Germany, on December 28, 1895, that a new type of rays
(“x-rays”) could penetrate skin and visualize the skeleton,
physicians around the world were using this modality to
diagnose broken bones and locate bullets within human
flesh. Since this enlightened inception, imaging in its many
forms has been central to the investigation of bone disease.
Particularly during the past three decades, advances in
technology have enabled noninvasive bone imaging to
evolve dramatically from examination of bone macrostruc-
ture and pathology to include the study of bone micro-
structure, physiology, and pathophysiology [1•].

The aim of osteoporosis screening and treatment is to
prevent bone fracture. A fracture occurs when the external
force to a bone exceeds its strength. The ability of any bone
to resist fracture depends on the amount and distribution of
bone as well as its intrinsic properties [2]. The ultimate
aims of bone imaging in osteoporosis are to minimize
fracture occurrence by identifying the osteoporotic process
at an early stage, before significant bone loss occurs;
differentiate distinctive patterns of bone loss; accurately
predict individual fracture risk; and precisely monitor
treatment response. This review introduces some of the
new imaging modalities and analytical techniques for bone
that have emerged, been enhanced, or been adapted to a
new clinical application during the past 3 to 4 years. To put

J. F. Griffith
Department of Diagnostic Radiology and Organ Imaging,
Chinese University of Hong Kong,
Hong Kong, Hong Kong

H. K. Genant (*)
Departments of Radiology and Medicine,
University of California, San Francisco,
San Francisco, CA 94143, USA
e-mail: harry.genant@ucsf.edu

Curr Rheumatol Rep (2011) 13:241–250
DOI 10.1007/s11926-011-0174-x



these new advances in perspective, we first briefly discuss
the background to each imaging modality and the existing
clinical application.

Bone Mineral Density Measurement

Dual X-ray Absorptiometry

Bone mineral density (BMD) measurement by dual x-ray
absorptiometry (DXA) has been available for clinical use
since 1987 and is currently the most readily available
surrogate marker of bone strength and fracture risk, with
fracture risk increasing approximately 1.6-fold for every
SD decrement in BMD measurement irrespective of
gender [3–5]. DXA is limited in that it assesses only areal
BMD (BMDa, in g/cm2) such that, for example, in the
spine, vertebral depth is not taken into account. DXA is
also limited in that it is a composite measure of both
cortical and trabecular bone and prone to overestimation
of BMD from degenerative-type hyperostosis.

Recommendations from the International Society for
Clinical Densitometry regarding DXA examination for all
ages and both genders have been updated [6]. Although
DXA is predictive of fracture risk in cohort studies, such
epidemiologic evidence cannot be readily applied on an
individual patient basis in clinical practice. To address this
limitation, individual fracture risk has been standardized
using the World Health Organization Fracture Risk
Assessment tool (FRAX), which was released in 2009 [7,
8]. FRAX combines BMD from DXA with other risk
factors (eg, age, sex, height, previous fracture) to provide
a 10-year risk of hip and other major insufficiency
fractures [7, 8]. FRAX is mainly applicable to osteopenic
(low bone mass) patients, as the results do not influence
the clinical management of patients with normal BMD or
osteoporosis [8]. Although it is not an ideal system, FRAX
represents an important initiative in allowing clinicians to
individualize fracture risk based on DXA examination and
other factors [8].

As well as assessing bone density, improvements in fan
beam DXA technology have enabled DXA systems to
acquire moderately high-resolution images of the thoracic
and lumbar spine [9]. These lateral vertebral DXA images
are useful for detecting moderate or severe vertebral
fractures (>90% sensitivity and specificity) but limited in
the assessment of mild vertebral fractures [8]. This vertebral
fracture assessment provides clear added benefit to the
overall assessment by DXA and is recommended in settings
in which the result will alter clinical management [6]. In a
study of more than 5,000 unselected community-based
women 75 years of age or older, lateral vertebral DXA
images were sufficient to gauge fracture status in 92% of

vertebrae from T8 to L3, and of these women, nearly 15%
had a vertebral fracture. Over a median follow-up period of
4 years, those with prevalent vertebral fracture had a 2.01
relative risk compared with those without vertebral fracture
of developing any further osteoporotic fracture, and a 2.29
relative risk for hip fracture. These risks were even greater
in patients with more than two prevalent vertebral fractures,
increasing to 2.54 and 3.94, respectively [10].

Quantitative CT

The value of quantitative CT (QCT) in allowing volumetric
densitometry (measured in mg/cm3) of the trabecular and
cortical bony components was recognized in the late-1970s
[11–13]. QCT can specifically detect changes in the more
metabolically active trabecular bone, making it a more
sensitive discriminator of BMD changes than DXA [14].
For example, during a 1-year follow-up of postmenopausal
women, a twofold to threefold greater increase in trabecular
BMD was shown by QCT in response to parathyroid
hormone compared with integral BMD by DXA [15]. The
main limitations of QCT regarding BMD measurements are
that a clinical CT scanner is required and a larger radiation
dose than that with DXA is incurred.

Worldwide, many tens of thousands of thoracic and
abdominal CT examinations are performed daily on clinical
patients [16]. Several recent studies have shown how it is
possible to obtain meaningful QCT BMD data from
patients undergoing thoracoabdominal CT examinations
for other clinical reasons without the use of a calibration
phantom. Such “phantom-less” BMD data have a high
correlation (R2=0.95) with BMD data obtained from QCT
over a wide range of densities [17•]. An internal reference
such as subcutaneous fat or paravertebral lean muscle [17•],
or a correction factor [18] is used to counteract the lack of
an external reference phantom. Phantom-less CT has been
studied in patients undergoing noncontrasted CT studies for
coronary artery calcium scoring [18], CT colonoscopy, or
standard QCT [17•]. Even for contrasted CT examinations,
a correction factor adjusting for contrast enhancement can
be applied [19]. Phantom-less CT can be applied reasonably
to cross-sectional clinical studies, though it should not be
used in longitudinal studies, as the precision for phantom-less
CT is less than that on standard QCT [17•], especially if
contrast has been administered.

These studies demonstrate that it is technically feasible
to obtain reasonably accurate QCT BMD spine data in
patients undergoing thoracic or abdominal CT examina-
tions for other reasons. Although it may seem appropriate
to provide such (unrequested) data as a routine adden-
dum to clinical CT reports, several important practical
and clinical questions should be addressed before
proceeding down this path [20]. For example, would such
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additional BMD information, which is time consuming and
costly to acquire, be of long-term clinical benefit? Would
this BMD information be properly managed by the
referring clinician (or patient), or would it merely
encourage the additional inappropriate use of substantial
health resources in terms of clinical management,
treatment, and follow-up [20]?

Bone Quality Assessment

As BMD accounts for only part of the variation seen in
bone strength and only some of the observed reduction in
fracture risk that occurs with treatment, recent develop-
ments have focused more on measuring bone structure and
quality of both trabecular and cortical bone rather than bone
mass alone. This is done with the knowledge that a measure
encompassing bone quality and structure along with bone
mass will provide a better prediction of fracture risk than
bone mass alone.

Radiography

Radiography is a low-cost, readily available technique
with high spatial resolution capable of providing fine
bone detail, especially of distal appendicular skeleton
such as the distal forearm and phalanges. Although it is
ideally suited for use in large population studies, the
limitation of radiography is that as a projectional imaging
technique, it cannot consistently visualize individual
trabeculae and depends heavily on the depth of tissues
under investigation. With increasing sophistication of
structural analysis techniques and an improving ability to
acquire high-resolution radiographic detail, interest
remains in developing radiography to more precisely
evaluate trabecular bone detail [21]. A new radiographic
device capable of delivering digitized high-resolution
radiographs de novo is an advance on previous devices,
which required digitization of high-resolution radiographs
prior to structural analysis. The number of steps in data
analysis is thus reduced, with less potential for introducing
error. A new bone texture analysis method known as
Laws’ masks was applied to these high-resolution digitized
radiographs to study trabecular bone architecture in the
calcaneus in more than 300 postmenopausal women and
was able to distinguish those with fracture from those
without fracture independent of BMD and with reasonable
reproducibility [21].

Multidetector CT and Volumetric Quantitative CT

In the 1990s, analytical techniques were applied to high-
resolution CT data in a quest to find structural

parameters predictive of bone strength. This research
gained impetus in the new millennium with the arrival
of multidetector CT (MDCT) systems that allowed
higher spatial resolution, improved delineation of bone
architecture, and faster acquisition of volumetric QCT
(vQCT) datasets. Since its inception, the number of
detector rows on clinical CT units has increased from 4
to the current clinical standard of 64 rows, although
320-row MDCT systems are also commercially avail-
able. Comparing 64-row (in-plane pixel size, 234 μm;
slice increment, 300 μm) and 320-row MDCT (in-plane
pixel size, 234 μm; slice increment, 250 μm) in
assessing distal radial trabecular pattern, 320-row
MDCT conferred little practical advantage over 64-row
MDCT. Both systems yielded different absolute measures,
although they still correlated highly (r=0.92–0.96; P<
0.0001) with a reference standard for bone volume fraction
and trabecular spacing. However, as expected, they fared less
well with trabecular thickness and number because the
spatial resolution of all MDCT systems (250–300 μm)
remains larger than the trabecular thickness of 50 to
200 μm [22]. Nevertheless, structural parameters by MDCT
provide a better discriminator of change than DXA. For
example, in 65 postmenopausal women, teriparatide in-
creased apparent bone volume fraction by 30.6%±4.4%
(mean±SE), and apparent trabecular number by 19.0%±
3.2%, compared with a 6.4%±0.7% increase in DXA-
derived BMDa [23].

Medical Image Analysis Framework

High-precision software known as medical image analysis
framework (MIAF) has been developed to facilitate analysis
of vQCT datasets [24, 25]. MIAF enables the automatic
determination of anatomic coordinates to yield predeter-
mined volume of interests for analysis (Fig. 1). This
automated anatomic coordinate system facilitates longitu-
dinal study as well as study of the relative contributions of
density, geometry, and trabecular and cortical bone to
mechanical failure. Using this advanced image analysis
system to study proximal femoral failure load, cortical
variables were found to predict as much (59%) failure load
as trabecular variables (52%), which was in agreement with
previous studies showing that trabecular bone contributes
more to subcapital bone strength, while cortical bone
contributes more to intertrochanteric bone strength [26].
MIAF can also enable recognition of bone areas most
influenced by treatment. For example, ibandronate treat-
ment for 1 year increased volumetric density in the
subcortical and extended trabecular areas of the proximal
femur, as well as in the extended cortical and superior/
inferior trabecular regions of the vertebral body, all of
which are mechanically significant areas [27••].
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Finite Element Analysis Modeling

Finite element analysis (FEA) modeling is being increas-
ingly incorporated into noninvasive bone imaging and can
be used to improve QCT estimation of bone strength and
stiffness in vivo. High-resolution CT (or MRI) imaging data
are converted into “voxel” finite element models following
segmentation of cortical and trabecular bone to yield
measures of bone strength (Fig. 2). High correlation is
present between predicted strength and actual strength for
the vertebral body, proximal femur, or distal radius [28–30].
FEA improves insight into the pathophysiology and
treatment of vertebral fractures. For example, FEA analysis
of vQCT vertebral body data in young and older men and
women revealed, as expected, that vertebral body strength
decreased with age twice as much in women as in men
[31••]. This difference was primarily due to a greater
reduction in cortical bone strength in women, with
trabecular compartment strength declining to a comparable
degree in both sexes [31••]. In other words, differential
vertebral body cortical bone loss between men and women
probably accounts in part for the higher vertebral fracture
rate seen in women [31••]. Vertebral volumetric BMD,
vertebral apparent cortical thickness, overall vertebral
compressive strength by FEA, and load-to-strength ratio
were found to be less in females with mild vertebral
fractures than in nonfractured controls and least in women
with moderate to severe vertebral fractures, emphasizing
how fracture severity and the presence of a fracture are
indicators of relative vertebral strength [32•].

Regarding treatment, FEA analysis of vQCT datasets
from female rheumatoid arthritis patients showed that
alendronate prevented the median 10% loss in vertebral
strength observed in nontreated controls and that this
alendronate effect was primarily due to a positive effect
on cortical rather than trabecular bone [33]. In comparing

the antiresorptive agent (alendronate) with a bone-forming
agent (teriparatide) over an 18-month period, both treat-
ments improved vertebral body strength, but the effect was
more pronounced with teriparatide, which preferentially
improved volumetric density and strength of the trabecular
component [34]. This enhanced effect of teriparatide was
evident only on finite element modeling and not on DXA or
QCT total integral density data [34]. Finite element
modeling revealed how treatment with teriparatide over
2 years improved vertebral body strength by as much as

Fig. 2 Volumetric quantitative CT provides a basis for finite element
analysis of the proximal femur. Note how stress distribution as related
to color code is highest along the inferomedial aspect of the femoral
neck and proximal shaft. (Image courtesy of Klaus Engelke)

Fig. 1 Volumetric quantitative CT of the lumbar spine with automated
anatomic coordinates outlining the periosteal, endosteal, and juxta-
endosteal (“peeled”) contours of the vertebral body. Several different
volume of interests (VOIs) can be evaluated, such as the total,

trabecular, peeled, elliptical, and Pacman VOIs in the axial plane, as
well as the superior, mid-vertebral, and inferior VOIs in the sagittal
plane. (Image courtesy of Klaus Engelke)
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30% during simulated compression and bending [35•]. This
was a much better improvement in bone strength than
predicted by density change alone [35•].

Similarly, for the proximal femur, FEA analysis of
vQCT data can be used clinically to study longitudinal
changes in bone strength and relate these to concurrent
structural changes. Comparing aged-related changes in
femoral strength with femoral neck BMDa, decreases in
femoral strength with aging (55% decrease in women,
39% decrease in men) were greater than for femoral neck
BMDa (26% decrease in women, 21% decrease in men).
Femoral strength declined notably for women during
their mid-40s and for men during their mid-50s [36••].
Also, the prevalence of “low femoral strength” (<3,000 N)
was much higher than that of BMD-based “osteoporosis”
[36••]. This is notable because femoral strength assess-
ment by FEA has been shown to be more predictive of
proximal femoral fracture than BMDa [37••]. FEA also
has been applied to assess treatment effects in the
proximal femur. Treatment of severely osteoporotic post-
menopausal women with teriparatide for 24 months
resulted in a significantly improved femoral buckling
ratio, not at 12 months, but at 24 months, while bending
strength parameters (ie, section modulus) also improved
compared with baseline [38•]. These bone strength indices
were associated with an increase (4.3%) in proximal
femoral cortical cross-sectional area due to endosteal
rather than periosteal bone apposition [38•]. Future studies
will help confirm whether this improved treatment
evaluation afforded by FEA also translates into improved
fracture prediction.

Peripheral Quantitative CT

Dedicated peripheral QCT (pQCT) systems with a
resolution comparable to that of MDCT (500 μm) have
been available—though not widely used—since 1990 to
examine the peripheral skeleton. These systems confer a
smaller effective radiation dose and are particularly
useful for studying cortical bone changes in metabolic
bone disorders because the distal radius contains more
cortical bone than the vertebral body. A pQCT study has
shown how cortical bone loss begins during middle age
for women, though much later in men (after
age~75 years), whereas trabecular bone loss begins in
early adulthood for both sexes [39]. By age 50 years,
approximately 40% of total lifetime trabecular loss has
occurred, although only 15% of cortical bone loss has
occurred by that point [39]. As pQCT units use low-power
x-ray tubes, these examinations are slow, with a tendency
toward motion artefact. With this limitation in mind, the
feasibility of using clinical CT scanners with a dedicated
forearm phantom as an alternative to pQCT has been

investigated [40•]. BMD data (from both cortical and
trabecular bone) as well as geometric data (cortical
thickness, cortical BMD, and density-weighted polar
moment of inertia [a measure of bone strength]) are obtainable
from the diaphysis to ultradistal radius with good accuracy
and very good precision in less than 30 s, compared with
about 4 min for dedicated pQCT systems [40•]. Applying a
clinical CT scanner to study the effect of denosumab, a
human monoclonal antibody that inhibits RANKL (receptor
activator of nuclear factor-κB ligand), on the distal radius
of osteopenic postmenopausal women revealed a positive
effect on both the cortical and trabecular bone compart-
ments, as well as bone strength—estimated by density-
weighted polar moment of inertia—compared with
placebo [41]. This indicates how a clinical CT system
can be used as a good alternative to pQCT systems to

Fig. 3 High-resolution peripheral quantitative CT (XtremeCT; Scanco
Medical, Brüttisellen, Switzerland) of the distal radius. a, Systemic
lupus erythematosus (SLE) patient on steroids without vertebral
fracture. b, SLE patient on steroids with vertebral fracture. Note the
relative deterioration in trabecular architecture and thinning with
increased porosity of cortex in the patient with vertebral fracture
compared with the patient without vertebral fracture. (Image courtesy
of Edmund Li)
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assess the distal forearm. This also applies to the
experimental study of small animals [42•].

High-Resolution Peripheral Quantitative CT

Bridging the clinical need for an imaging modality with
lower radiation dose, yet with better spatial resolution is the
high-resolution pQCT scanner (HR-pQCT) (XtremeCT,
Scanco Medical, Brüttisellen, Switzerland). This can
evaluate bone architecture in the distal radius and tibia
wi th an i so t rop ic voxe l of 82 μm3 (spa t i a l
resolution~120 μm), though with an effective radiation
dose about 0.1 of that for MDCT of the more central
skeleton. Even at this much improved resolution, individual
trabeculae (50–150 μm thick) still fill only one to two
voxels, leading to considerable partial volume averaging.
The result is that trabecular spacing (400–800 μm wide)
can be accurately assessed, but modest limitations still exist
in measuring trabecular number and thickness (50–
150 μm), although these difficulties are considerably less
than with MDCT. In 2005, the first published clinical study
assessing HR-pQCT found that postmenopausal women
had lower BMD, trabecular number, and cortical thickness
compared with premenopausal women at the distal radius
and tibia, although spine and hip BMDa were similar [43].
Compared with healthy controls, HR-pQCT revealed
increased cortical porosity in postmenopausal osteopenic/
osteoporotic women [44] and also in diabetics, especially
those with osteoporotic fracture [45]. Comparing systemic
lupus erythematosus patients on steroids with and without
vertebral fracture, no BMDa differences were apparent on
spine DXA examination, although several key cortical and
trabecular structural parameter differences were apparent on
HR-pQCT examination of the distal radius (Fig. 3) [46•].
HR-pQCT is clearly a useful modality for assessing
changes in cortical and trabecular bone structural parame-
ters, with a precision of about 2% to 5% [43]. The main

limitations of HR-pQCT are that it requires a dedicated
scanner, is confined to examination of the distal forearm
and leg, has some difficultly with registration in the Z plane
(longitudinal plane), and should take into consideration the
expected difference among individuals of short or long
radial or tibial bone length.

MRI

Although the spatial resolution of MRI is less than that of
other techniques, such as MDCT, it does possess several
other advantages that will ensure its increasing deployment
to bone research for the foreseeable future. In addition to
not using ionizing radiation, it can directly acquire images
in any plane de novo and has the potential to derive
functional information from bone and bone marrow not
readily available with other imaging techniques. Since its
first clinical bone applications in 1977 [1•, 47], improve-
ments in coil technology, pulse sequencing, analytical
techniques, and gantry hardware have advanced the
usefulness of MRI in all aspects of bone imaging, including
osteoporosis research (Fig. 4). For example, medullary
canal signal-to-noise ratio is up to 16 times better with 3.0-T
magnetic resonance (MR) than with 1.5-T MR [48], which
contributes to in vitro trabecular bone architecture being
better delineated at 3.0 T than 1.5 T using micro-CT as a
reference standard [49].

Most MR-based analyses of bone architecture have
been performed on the distal radius, the distal tibia, and
the calcaneus because these sites contain more trabecular
bone and are more easily evaluated with MR surface
coils. As the in vivo, in-plane resolution achievable with
MRI is 200 to 300 μm, it is not possible to delineate
individual trabeculae. Nevertheless, apparent trabecular
structural parameters derived from MRI correlate quite
favorably with those derived from higher-resolution
techniques such as histology or micro-CT [50, 51].

Fig. 4 High-resolution in vivo
MRI of the distal radius and
ulna. The circle in the
midportion of the distal
radius represents an area
selected for virtual core biopsy
as shown. (Image courtesy
of Felix Wehrli)
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However, absolute structural parameters from HR-pQCT
and high-resolution MRI were not found to be comparable
(P<0.0001), with trabecular bone fraction and trabecular
thickness being three to four times larger with MRI than
with HR-pQCT [52].

MRI has the potential to examine physiologic
parameters within bone and bone marrow beyond the
mineralized component [1•]. Applying sequences with
ultra-short echo times allows detection of molecules with
ultra-short T2 relaxation times, such as water, within
highly ordered tissues such as cortical bone or tendon.
Quantification of the emitted signal provides an index of
cortical bone water content as a potential parameter of
bone strength. Using a technique validated in sheep and
human tibial specimens, water content of the tibial
diaphysis was higher in postmenopausal women than
premenopausal women and much higher in women with
chronic renal failure on hemodialysis, even though no
difference in tibial volumetric BMD was found among the
three groups [53].

At the moment, there is no noninvasive imaging
modality capable of imaging bone matrix (ie, the
collagenous lattice onto which the mineralized compo-
nent [mainly calcium phosphate] of bone is deposited).
This collagen component and the degree of collagen
cross-linking are important for bone strength. Using a
specifically designed reference phantom (simulating bone
matrix composition of collagen) and a specifically
designed MR pulse sequence known as WASPI (water-
and fat-suppressed proton projection MRI), porcine
cortical and trabecular bone samples were evaluated
[54]. A very high correlation (r2=0.98 and 0.95) between
WASPI intensity values and gravimetric and amino acid
analyses, respectively, was observed, indicating that
WASPI sequences appear capable of measuring the bone
matrix mass density in g/cm3 [54].

By quantifying the phosphorus component of bone
mineral, phosphorus spectroscopy (31PMRS) can be used
to measure BMD. The ratio of BMD/bone matrix density
therefore provides a measure of the degree of “bone matrix
mineralization” [54]. Applying these techniques, clear
differences in the bone matrix density and degree of bone
matrix mineralization were found comparing ovarectomized
rats, partially nephrectomized rats, and control rats [55••].
For the bone cortex, no significant differences were
observed between controls and ovarectomized rats. How-
ever, for nephrectomized rats, MR study revealed a clear
reduction in cortical BMD (decreased by 22%), bone matrix
density (decreased by 10%), and extent of bone matrix
mineralization (decreased by 12%). For trabecular bone,
BMD was seen to be reduced in ovarectomized rats
(decreased by 40%) and nephrectomized rats (decreased
by 27%), although only the ovarectomized rats showed a

reduction in bone matrix density (decreased by 38%), while
instead the nephrectomized rats showed a reduction in
extent of bone matrix mineralization (decreased by 26%)
compared with controls [55••]. It is also technically feasible
to undertake WASPI imaging in humans, offering exciting
prospects for clinical research [56].

Vertebral Fracture Recognition

The quest for ever-finer determination of bone structure and
quality should not override the day-to-day recognition of
another much more tangible and immediately clinically
relevant parameter of bone quality. The presence of an
insufficiency fracture, of which vertebral fracture is by
far the most frequent, provides indisputable evidence of
reduced bone strength irrespective of BMD or other
measurement. However, in clinical practice, vertebral and
other insufficiency fractures frequently go unnoticed or
unreported [57, 58]. The incentive of the “vertebral
fracture initiative” is to promote recognition among
clinical radiologists and clinicians of the importance of
vertebral fracture and to ensure that such fractures, whether
they be on chest radiography, abdominal radiography, or
thoracoabdominal CT studies, are reported in a standardized,
unambiguous fashion [59–61].

Conclusions

The past 3 to 4 years have seen the exponential growth of
bone imaging across several complementary modalities
continue from its infancy more than 30 years ago. These
recent advances in bone imaging—both experimental and
practical—have provided significant inroads into the
understanding of the prevalence, disease progression,
and pathophysiology of metabolic bone disease, particu-
larly osteoporosis. This newfound knowledge has already
begun to translate into everyday clinical practice. This
trend will continue such that in the not-too-distant future,
modifications of new imaging modalities will become
more widely available and thus will allow for greatly
improved recognition, treatment, and monitoring of the
osteoporotic process.
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