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Numerical Solution of Stochastic Differential Equations
Chien—-Cheng Chang
Abstract

We pi'esent numerical methods of high order accuracy for solving sto-
chastic differential equations with constant diffusion coefficients. Our
analysis is performed in the Lz norm, which has the advantage of exhibiting

the non-anticipating property of stochastic differential equations.

~ For the scalar case, a second order method of Runge-Kutta type is
derived, and in the case of a system, a similar method of order 1}{ is‘
presented. By a method of Runge-Kutta type, we mean a one-step method
where one needsonly to evaluate the function involved at several different

points.

For the case of a system, we also present a method of Taylor series type,
in which vthe derivatives of the function involved appear explicitly. ‘The
analysis of this method in turn leads us to conjecture that the method of
order 1% mentioned above and another simpler method of Runge-Kutta type

have a second order accuracy in a weak sense.

Finally, variance reduction techniques for evaluating the expectations of
functionals of the solution are discussed, and numerical examples are

presented.
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Introduction

In this thesis, we consider the following d-dimensional stochastic
differential equation

de = f(tz)dt +vdw, , 0st<T _ (0-1)

where v =0 is a constant, £ (¢.z) is a sufficiently smooth function satisfying a
Lipshitz condition with respect to £, and w,(t =0) is a Wiener process
(Brownian motion). This equation can be interpreted either in Ito's sense or

in Stratonovich's sense (see chapter 1).

Equation (0-1) occurs in the study of several physical phenomena, e.g.,
the motion of a particle in the collision theory of chemical reactions (Benson
[2]). in blood clotting (Fogelson [11]), in stellar dynamies (Chandrasekhar
[4]), signal modeling in communication systerﬁs (Jazwinski [15]). and the sto-

chastic behavior of fluid particles in turbulence theory (Chorin [7]).

By introducing ¢ as a first component of z, we can simplify equation (0-1)
as the d +1-dimensional equation |

dy =g(y)dt +dy,, 0<t<T
withy = (¢, 2). 2 =(0, w)and g = (1, £(z)). Hence it suffices to consider
de = f(z)dt +vduy, 0<t<T. | (0-2)
We develop and analyze high order accurate methods of constructing sample
solutions of equation (0-2) and we further consider variance reduction tech-

niques for evaluating accurately expectations of functionals of these sample

solutions.

Most of the methods derived in this thesis are of Runge-Kutta type, i.e.,

one-step method where one need only, at each time step, to evaluate the
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function f, at several points without involving its derivatives. For the sake of

brevity, if a scheme is of Runge-Kutta type, we call it a Runge-Kutta method.

Consider the partition of the interval [0, T']:
H = ( 0!“'lt1l+l = t‘n+h!“'|tl = T ) . (0‘3)
Let £ denote the expectation and |-| denote the 2-norm in R? space.

We say that a numerical scheme is of order ~? in the L, sense, if there exists

a constant C such that, for sufficiently smail h,

1
Bl ~z(t)I? [T = C a2 (o)
where X, is the numerical solution and z(¢,) is the exact solution of the
differential equation (0-2) at £,. Futhermore, a stochastic quantity 2z is said

to be of order A? in the L, sense, if

L
[E’Lz_l']' is of order hP . : (0-5)
The difficulty in solving equation (0—-2) arises from the nondifferentiability of
the Wiener process w;. To take a close look at this difficulty, we define the

variable:
y(t)=z(t)-vuy, 0<st<sT
Equation (0-2) reduces then to an infinite set of ordinary differential equé-

tions:

%—:L(u+uy,). 0<t<T (0-6)
one for each sample path of the Wieﬁer process . The theory of ordinary
differential equations assures the existence of the solutions y(¢) of these

equations, which are only once differentiable as functions of ¢.

Since the error estimates of high order accurate methods involve high

order derivatives of y(t). it is not clear how one is able to obtain high order

Lo
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accurate methods for solving equations (0=8), or equation (0-2).

In fact, the fundamental question that must be answered before one

_proceeds to analyze numerical methods for solving stochastic differential

equation is: how does one measure the accuracy of numerical methods, i.e., in

which norm should one deal with convergence?

We are dealing with stochastic schemes, and it is natural to consider the

. accuracy of numerical methods only in a probabilistic senses. How»e{'er.

different definitions of convergence lead to different error estimates. Error
estimates in the L; norm lead to what are apparantly the sinii:lest estimates,
and indeed, L; analysis is a very useful tool when one is dealing with the local
truncation error of numerical methods (see section 2.1 and 3.1). However,
L, analysis fails to exhibit one very important effect: the nonanticipating pro-

perty of the solution of the stochastic differential equation.

It will turn out that the analysis in the L; norm does exibit the effect of
the nonanticipating property. L, convergence implies L, convergence by
Liapunov’s inequality. For an example of the contrast Eetween the L, and
the L, analysis and an explanation why the latter is superior to the former, we

refer to section 2.2.

Let us start considering numerical methods for solving the stochastic

differential equation (0-2). The most popular methods are splitting schemes

(see Chorin [8,9], Franklin [12]). For these schemes, at each time step, one

approximates, for each sample path of the Wiener process, the differential

equation
dz = f£(t.z)dt (0-7)

by a method for solving ordinary differential equations, then one adds to the

approximate solution an independent increment of the Wiener process v ;.
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The simplest example of a splitting scheme is Euler's method which is given
by

a1 =Xn +RE(XR) + v Oqw (0-8)
where A, = Aw, | — A_'zp_gn'; One more example of a splitting scheme, based

on mid-point rule, is
1
Ao =X +RL( X + L)) +viyw . (0-9)
This type of splitting schemes is only first order accurate in the Ly sense no

matter how accurately one solves the nonrandom part (0-7) (see section 2.2).

To obtain more accurate numerical schemes, McShane [17,18] has
extended the idea of Runge-Kutta methods to stochastic differential equation.
For equation {0-2), he proposed

Gn = ko + hL(Xn) +ViAqw | (0-10)
i =Xa + vl + Th LK) + £(&) ]

However, this scheme has the same accuracy as the splitting scheme men-

tioned above (see also section 2.2).

The major difference between McShane’s approach and that of splitting
schemes is that the former interlaces the function £ and the Wiener process
while the latter does not. By interlacing, we mean that the function £ and

the Wiener process w; interact with each other at each time step.

The main purpose of this thesis is to present more accurate numerical
methods for solving the stochastic differential equation (0-2). For the scalar
case, we derive a second order (in the L; sense) Runge-Kuttg method. How-
ever, this method does not give a second order accuracy when extended to a

system. For the case of a system, we derive a Runge-Kutta method of order

£
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- h13 in the L, sense. We also develop a Runge-Kutta method which computer

experiments show to have second order accuracy, but in a different sense

(defined below).

All our analyses are based on a Taylor expansion of the solution, followed
by the derivation of an approximation formula whose Taylor expansion coin-
cides to some order with the expansion of the solution. This device is similar

to the method used by Chorin [5] in the approximation of Wiener integrals.

We start by considering the scalar case of the splitting scheme (0:9) and
find the following Runge-Kutta method (in (2-55)):

R AT (0-11)
@ =X + S () +vVEE

Yo =X +VByw + Zh[ (G + VEP, ) + (G = VEP,) ]
where the random variables # and ¥ are integrals of increments of the Wiener
proceés w; (see (2-44)). We prove that scheme (0-11) has second order accu-
racy in the L; sense. However, the scheme (0-11) fails to maintain its accu-

racy when extended to a system of stochastic differential equations.

For the case of a system, we prove that the following numerical scheme

is of order A3 in the L3 sense (see (2-83) and (3—64)):
REPAE ST AN (0-12)
Q= o+ AL + v VEL

Lo =Ko +viaw + Sh [ £(Q) +2L(&) ]

where § = {87} is a set of independent Gaussian random variables and each

of them has mean 0 and variance é— Scheme (0—-10) is a particular case of

the one-parameter'f_ar'nily of numerical schemes with the same accuracy:



Q:&-{-%h_t(&.)i-k vVEg © (0-13)
@ =X+ ZhL(XK) +LvVEG

Xan = Xa +viw + AL af (@) + 51 (&) ]

where the parameters satisfies the conditions:

1]

a+b=1,ak+bl=1, ak?+bi®=

l\)lm

Scheme (0-12) corresponds to tﬁe parameter values,

—1_ —2— = =§-=-
m-a.b 3.1:’ 0.1 5

For the case of a system of stochastic differential equations, we also

| develop the the following scheme of Runge-Kutta type (see (3-59)):
Q=X+ FhL(X) (0-14)
Q=X+ AL + v VEE

1 .
oo =Xa +vVEE+ Sh [ £( )+ 2(&)]
where £ = {¢] is a set of Gaussian variables and each of them has mean 0 and
variance 1. The computer experiments (in chapter 5) show that scheme (0-

14) is a second order method, but in a slightly weaker sense, i.e., there exists

"~ . aconstant C such that, for sufficiently small k,

|E(z(tn)) — Ee(Xn)| < C h? (0-15)

where ¢ is a sufficiently smooth functional satisfying a Lipshitz condition. 1 i -

have been not able to provide a proof that scheme (0-14) has second order

i

accuracy in the sense of (0-15). For a heuristic discussion of the accuracy -
~ and the principle underlying scheme (0—14), see section 3.4. One may notice
that in schemes (0-11), (0—12) and (0-14), the function £, and the Wiener pro-

cess w; are interlaced.



All the schemes discussed above lend themselves to Monte-Carlo sam-
pling with effective variance reduction. The main purpose of variance reduc-
tion is to substantially increase the accuracy of computed expectations of

functionals of sample solutions with only a small increase in computational

effort. We discuss, in chapter 4, several variance reduction techniques which

are suitable for stochastic differential equations. We introduce the concept
of partial variance reduction and show how to implement the technique based
on Hermite pt.:lynomial expansions, as suggested by Chorin [6]. Finally, we
present some computational results and compare them with analytical solu-

tions.

This thesis is organized as follows. In Chapter 1, v(re give the needed pro-
bability background. In Chapter 2, we derive Runge-Kutta methods for scalar
stochastic differential equations. In Chapter 3, we derive Runge-Kutta
methods for a system of stochastic differential equations. Chapter 4 is
devoted to the study of techni‘ques of variance reduction. Finally, in Chapte;

5, we present computational results.



Chapter 1
Preliminary Probability Background
In this chapter we develop the probabilistic tools needed for our work in
later chapters and we follow closely the notations in Arnold [1]. We start by

giving various definitions of convergences used most often in probability

theory. Let z = {z!,-. z%] be an R%-valued vector and ]-| denote the two

1
norm in the R? space, |z| = [z’: (z7)?)3.

Convergence Concepts

Letz and z,, n = 1 be R%-valued random variables defined on a probabil-
ity space (Q. M, P). Four basic convergence concepts are defined in the fol-
lowing:

(i) If there exists exists a set N € M of measure 0, such that, for & € N°, the
sequence of the z,(w) € R? converges to z(w) € R?, then {z,] is said to con-

verge certainly or with probability 1 to z. We write

=11 =z. -
u.cu‘.tm;,, x (1 1)

Gi) If, for every & > 0, P[o] 1z, (o) =2(0)] > £] == 0, as n —= e, then §z,}

is said to converge si:ochastically or in probability toz. We writ,é

stn-im In =Z. (1-2)

(iii) Ifz, and z lie in Ly, i.e., £]z[P s = and Elz, — z|? ~= 0, then {Zn] is

said to converge in p** meantoz. We write

n--=

pm-=limz, =+ z . (1-3)

Yoo
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(iv) Let F, and F denote the distribution of z, and z. If

lim f g(z) dFp(z) = f g(z) dF(z) . (1-4)

for every real-valued contmuous bounded functlon g defined on R%. Then the

sequence §Zn) is said to converge in distribution to z.

These convergence concepts are related to each other in the.following

fashion:

convergence in q'® mean

Y

convergence in p** mean (p <gq)

U

a.c. convergence => s.t. convergence => convergence in dist. ;

Conditional expectations. Let z € L, be a R%-valued random variable, and
N C M be a sub-sigma-algebra of M. There exists an N-measurable y such

that

{ydP:{gdP. (1-5)
which is assured by the Radon-Nikodynm theorem. We call ¥ the conditional

expectation of £ under the condition N and writey = £( z|N).

Canditional Probabilities = The conditional probability P{ 4/N) of an event
A € M under the condition N € M is deflned by ,

P(AIN) = E([4IN) - (1-6)

where /4 is the indicator of the set'A. Being a conditional expectation, a con-
ditional probability is a N-measurable function on (.

Stochastic processes |

Definition. Let / = [£g, 7] nonempty index set and let (Q, M, P) be a proba-

bility space. Then, a family of ( z; ¢ € [£q, T]) of R3-valued random variables
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is called a stochastic process (random process, random function) vith param-
eter set (index set) I and state space R¢.

If (z. te[te, T]) is a stochastic process, then z(+) is, for every fixed
t €[te, T], a R%-valued random variable and, for every fixed we QQ, z.(w) is a
R4-valued function defined on /. It is called a saraple function (realization,

trajectory, path) of the stochastic process.

One interesting question is how we can tell whether a process has con-

tinuous sample functions or not. A very simple criterion is given as follows: is

Komolgorov's criterion. Let (z; t€[tq, T]) be a stochastic process: if

there exist three positive numbers p, ¢ and 7 such that, for each t and s in
[te. T]. ‘

Elzg~z, )P sr|t-s|1*7 . (1-7)
Then, z; possesses with probability 1 continuous sample functions.
Martingales.  Let () M, P) be a probability space, and ( z;; ¢ €[tq, T]) be
a real-valued stochastic process on ((, M, P). Let ( M; ) denote an increasing
family of sub-sigma-algebra of M, i.e., ‘

M, cM, for tg<ss<st<T
If z; is M;-measurable and integrable then the pair ( z,, M; ) is called a mar-
tingale if |

E(z| M,) =z, almost certainly (1-8)

for all s and t in [£g, 7], where s < ¢. Martingales are an abstract presenta-
tion of the concept of fair game. As we shall see, Ito's stochastic integrals

have the advantage of being martingales.

In the following discussion, we shall assume that the state space R? is

endowed with the sigma-algebra B? of all Borel (measurable) sets.

.
o
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Markov processes Let (0, M, P) be a probability space, a stochastic process
(2, t<[to T]) defined on it with state space R is called a Markov process if

it satisﬁes.t.vhe following Markaov property:

P(z; < B|N[tg, 8]) = P(z € B| z, ) almost certainly "(1-9)

for tg<s<ts<T and Be M, where N([te, s]) is the smallest sub-sigma-
algebra of M with respect to which all the random variables z;, o<t < s are

measurable. -

The Markov property states that: if the state of a system is known at a partic-
ular time, then the past information has no eflect on our knowledge of the
later development of the system.‘ Some useful conditions equivalent to the

Markov property are (see Arnold [1] pp. 29)
(i) Forto<s <t < Tand A <N([tg T)).

PLA|N([te.s]) ] = P(Alzs ). - (1-10)

(ii) fortg=s <t <Tandy N[t; T]-measurable and integrable,

E[y|N([to. sD1=E(ulz). (1-11)
(iii) forto<s<t<u=<T,AcN(tos]) and B € N([u. T]),

P(AnB|z:)=P(A|lz }P(Blz ). (1-12)
(iv) forn=1,ty<t,<--st,<t<TandB B,

P(zs€Blz, & )=P(z:€B|z). (1-13)
Transition probabilities. Le}: Z;, for 0st<T, be a Markov process and

P(s, z,, t, B) be the conditional distribution corresponding to the conditicnal

probability P(z; € B| z,). Then P(s, z, t, B) has the following properties:

(i) Forfixeds <t and B € B?, the equality

P(s.z,. t, B) = P(z: € B| z,)
holds with probability 1.
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(ii) P(s.z, t,")is a probability for fixeds < ¢ and B € B .

(iii) P(s, -, t. B) is B measurable for fixeds <¢ and B € B .

(iv) the Chapman-Komolgorov equation holds:

P(s,z.t,B)= [P(u,y,t, B)P(s z u, dy) (1-14)
Rd . .

(1-14)
We call the function P(s, z, t, B) the transition probability of the Markov pro-
cess z;. In fact, any function P satisfying the properties (ii)-(iv) is called a

transition probability function.

Diffusion processes A R%-valued Markov process z;, {g< ¢t < T with almost
certainly continuous sample functions is called a diffusion process if the tran-

sition probability P(s,z, t, B) satisfles the following conditions: for
s €[ty T),z €R%, and e >0, (i)

im [ P(s.z t. dy)=0, ' (1-15)

bis |y =z>e

(ii) there exists a R3-valued function L(s, z) such that

im [ (y-z)P(s.z.t.dy)=f(s.z), (1-16)

bis 1y Zise

(iii) there exists a dxd matrix-valued function Z(s. z) such that

Lim (u-z)(y-z)" P(s. 2, t.dy) = B(s, z) (1-

im w_.[m . (1-17)
where the superscript T denote the transpose. The function £ and B are
called, respectively, the drift vector and diffusion matrix of the diffusion pro-

cess ;.

Wiener processes. Next we will discuss a remarkable Markov process, the
Wiener process (or Brownian motion), which plays a fundamental role in in

stochastic integrals and stochastic differential equations.
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A Ri%-valued Wiener process or a Brownian motion is a stochastic process
2w, = w(t), ¢t =0 satisfying
() w(0)=o0,
(i) for0=t¢, s tas - - s-tn
w(ty). w(ta)-w(t). w(ta) = w(t 1) are independent;
(iii) for s= t;y(t)-y(s) has the normal distribution (0, (t—é)!d)

where /3 is the dxd identity matrix, 1.e,, it has the probability density:

g2 |

2= |- (1-18)

fen(t-)]" F exp [
The property (ii) states that a Wiener process has independent‘increme'nts.'
and by (iii), the increme.nts are stationary since the distribution of
w(t)—-w(s) depends only on t—s. We have
Lemma1.1. (i) A Wiener process w; is a Gaussian stochastic process with
mean E(ux) = 0.and covariance E[w, ;7] = [min (s, ¢t)]/4
(ii) If w; is a Wiener process, the processes —a_gg,‘c"ycz‘(c # 0), and

Wy 4s = W, (3 is fixed) are also Wiener processes.

Now let B; = B(w,, 0 <s <t), i.e.,, the smallest sub-sigma-algebra of M
with respect to which a.u the random variables w;, 0 < s < ¢ are measurable.
Then, for s < ¢, E(w;|B, ) = £(w |w, ) = w,, therefore, (2, B ) is a mar-
tingale.

Since E(Juy— ws]%)= (d%+ 2d)(¢ — s)? it follows from Komolgorov's criterion
that there exists a version of a Wiener process with continuous sample func-

- tions. We will use this version throughout this thesis.

Even though almost all sample functions of a Wiener process are continu-

ous, they are nowhere differentiable.
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Lemma 1.2. Let w; be a Wiener process; we have

-l - 24
qg:_fgmkgﬂw. wy =t -=

where gm means quadratic mean, {£,{ is a partition of the interval s, ¢] and

A, = max (tx — £, ,) (see Arnold [1] pp. 49)
By this lemma, we deduce from the following inequality
g fags, = 225, 1% < max ﬂy:,,—yz,_,l-g g, = 22, |
that
Dlaw, ~ 2, |-~ = a5 b= =
with probability 1. This is equivalent to saying that almost every sample

function of a Wiener process is of unbounded variation in a finite interval of

time.
Stochastic integrals

Now we start to deflne the stochastic integral

¢ ) .
L&) = [ G(s) duw, (1-19)

where w; is a m-dimensional Wiener process and G is a dXm-matrix valued

¢
function. Since w; is nowhere differentiable, the integral f G(s) dw, cannot
to

be defined in the uSual Lebesque Stieltjes sense. If G = G(t) is absolutely
continuous, we may define
. ‘ |
aG
L) = G(t)w(t) - f f‘_glg(S) ds . (1-20)
‘o

However, if G is only a continuous or an integrable function, this definition

does not make any sense.
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The general deﬁrﬁt‘ion of stochastic integral is through the use of step
funcfions. For this purpose, we will introduce the concept of nonanticipating
functions..

Let._‘u_a =aw(t), t =0 be a Wiener process on a prébability space (Q, M, P),

( M; ) be an increasing family of sub-sigma-algebras of M such that _ .

@) B(w,, Ossst) cM,,
(ii) w(t) ~w(s) is independent of M,

for ¢t =s, then M is said to be nonanticipating with respect to the m-
dimensional Wiener process w;. One may well just take the class: M; = B; =

B(u(s), 0= s <t) (defined in the text following lemma 1).

We let M$™¢o, t] = My[tg ] denote the set of all nonanticipating func-
tions G defined on [¢g, T]XQ for which the functions G(', w) are with probabil-
ity 1in L¥¢,, t].

A function G € Mp[tg, t] is called a étep f-u.nction. if there exists a parti-
tion [0 =£g t,,-, £t = t] such that G(s) = G(¢,) for all s €[t ¢). The
stochastic integral of a step function is defined as follows:

¢

H
{_G dw = [Q(S) dw, = ;Q(ti-l) (e, = we ) - (1-21)

To define the stochastic integral for arbitrary function in Mg[b, t], we need
the following lemma. Note that a dxm-matrix valued function can be under-

stood as a R%*™-valued function.

Lemma 1.3. For every function G € M[tq t]. there exists a series of step

' t
function G, € Mg[£, t] such that ac —tim [ | G,(s) — G(s)}? ds = 0.
n—-+m ‘0

Lemma 1.4 Let G € Mp[tq t] and that G, € My[¢g ¢t] be a sequence of step

functions for which
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¢
st-tim [ |G(s) = G(s)Pds =~ 0.

then

t
st -lim [ Gu(s) du, = I(G) (1-22)
where /(@) is a random variable that does not depend on the specific choice

of the sequence of step functions G, (see Arnold [1] pp. 69).

Deﬂnitioh For every dxm-matrix valued function G € My[tq, t], th,e- sto-
chastic (Ito’s) integral of G with respect to the m dimensional Wiener pfocess
w; over the interval is defined by /(G) in (1~18), which is almost certainly
determined uniquely. The integrals so defined are martingales. '
Stochastic Differential Equations
In terms of Ito's stochastic integrals, we can define a stochastic
differential equation:
dz; = f(tz)dt + G(tz)dw, , 0St<T <=, (1-23)

z(tg) =z, =c

by its integral form:

[ [
zi(w) = z(to) + _[ f(s.w)ds + [ G(s.w) dw, (o) (1-24)
0 0

where w; is a m-dimensional Wiener process, £ is a #%-valued function and G

is a dxm matrix-valued function.

Suppose that £ (R%-valued) and G (dxm-matrix valued) are defined on
[to. T]XR? and satisfy the following conditions: there exists a constant L > 0

such that

(i)  (Restriction on growth) for all ¢t € [tg, T]and z € R,
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LLCt, )2 + |G(e, 2)P < L2 (1 + 22,
(ii) (l.ipshitz condition) for all ¢ € [ty T]and z, y € R4,

et z) - L0 Wi Gt 2) -Gt u)l < Lz -yl
These conditions assure the existence and uniqueness of the solution of the

stochastic differential equation (1-24). We have

Theorem 1.1.  Under the assumptions (i) and (ii‘) in the above, then equat_.iori
(1-24) has on [£g, T] a unique R%-valued solution z(¢) which is continuous with

probability 1 and satisfies the initial condition z;, = ¢ (see Arnold [1] pp. 105).

Theorem 1.2. Suppose equation (1-20) satisfies the same conditions of
theorem 1, then the solution of the equation for arbitrary initial condition is a
Markov process on the interval [¢4, T] with the transition probability

P(s,z,t,B)=Plzy €B|z =2z]=Plz(s.z) € B]
(see Arnold [1] pp. 146). '

Theorem 1.3. In addition to the assumptions in theorem 1, suppose that the
functions £ and G are continuous with respect to £, then the solution of equa-
tion (1-20) is a d dimensional diffusion process on [0, T] with drift vector
L(t, z) and diffusion matrix B(¢. z) =Q(t._£)_G,T(t._2;) (see Arnold [1] pp.
152). |

In tf;is thesis, we consider the stochastic differential equation with con-

stant diffusion matrix B(¢, z) = v/4 where /4 is the d x d identity matrix.

Wiener integrals. The expectations of Brownain motion’s functionals are

called Wiener integrals which can be evaluated in the function space C[0, 1] of

" all continuous R%-valued functions definedon 0<¢ < 1.
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Actually, every solution of equation (1—24) is a functional of Brownain motion.
The variance reduction techniques in chapter 4 are devoted to accurate

evaluation of Wiener integrals of functionals of the solution of equation (1-24).

For some classes of Wiener integrals that play a role in physics (see
Feynman/Hibbs [10] and Jaffe/Glimm [14]), accurate interpolation formulae

have been derived (see Cameron [3] and Chorin [5]).

Remark. There is one another useful definition of stochastic integral which
is in the sense of Stratonovich (see Arnold [1] pp. 168). Diflerent senses of

definitions of stochastic integrals lead to different definitions of equation

(1-23). However, for the case (constantv diffusion) that we consider in this
thesis, there is no difference in explaining equation (1-23) in Ito's or in

Stratonovich’s sense.
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Chapter 2

Runge—Kutta Methods in One Dimension

In thiélchapter we will derive a second order (in the L; sense) Runge-
Kutta method and a class of Runge-Kutta methods of order 1-217 (in the Zj

sense) for solving the scalar stochastic differential equation:

dz = f(z)dt +vduwy, 0<t<T - (=)
wherev=0isaconstantand f = f (z) is a sufficiently smooth function satis-

fying a Lipshitz condition. The main results are stated in Theorem 2.1 (in

~ section 2.3) and Theorem 2.2 (in section 2.5).

We start in section 2.1 by analyzing the local truncation error of the
splitting scheme based on the mid-point rule. Then, in section 2.2, we
demonstrate that this splitting scheme is not a second order method in any

L, sense (p =2) and explain why L analysis is preferred to the L, analysis.

In section 2.3, we construct a Runge-Kutta method by interlacing the’
function f and the Wiener process w;. For technical reasons, a Taylor series
method is developed as an intermediate step. In section 2.4 we prove that
the Runge-Kutta method derived in section 2.3 has second order accuracy in

the L, sense. However, this result does not generalize to the system case.
Finally, in section 2.5, we derive a class of Runge-Kutta methods of order
1%- (in the L, sense), which are easy to implement and will maintain their

accuracy for the case of a system (discussed in section 3.5).

2.1 Analysis of a Splitting Scheme Based on the Mid—Point Rule



Consider a partition of the interval [ 0, T]

M=[0, oy = ta+h, -, =T] (2-2)
and the splitting scheme based on mid-point rule

Xori = Xa + 1 (X 4 ZH (X)) + v byw (29)
where Aqw = wy  —w, . From the theory of ordinary differential equations
we see that, if the random effect disappears (i.e. v = 0), then the scheme (2-3)
is a second order method for the equation (2-1) with v = 0. However, in this
section, we show that if v # 0, scheme (2-3) is not a second order method in

any L, sense (p = 2) for the stochastic differential equation (2-1).

Without loss of generality, we assume that v = 1 in the following discus-

sion. That is, we consider the stochastic differential equation:

dr = f(z)dt + dwy,, 05t <T (2-4)
and the splitting scheme for it:

1
Xos1 = Xo + Buw + RS (Yo + SHSF (%)) . (2-5)
In analogy with the analysis of numerical methods for ordinary differential

equations, we analyze the local truncation error D, of (2-5), which is defined

by the equation:

Z(tarr) = 2(ta) + baw +Af (2(ta) + Shf (2(t))) =D (26)
To facilitate our discussion, for each specified subinterval, say, [¢n, tn+1).

we define the variable:

y(t)=z(t) —dw, , t, <t <t,, =t +h (2-7)
where Awy = wy —wy, . From this definition, it follows immediately that

y(ta) = z(tn) (2-8)
for the specified interval. Substituting the definitions in (2-7) into (2—4) and

(2-6), we obtain, respectively
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%-=f(y+Aw:). th <t <tnyy =thth (2-9)
and '
=Dp = y(tas1) —y(ta) =hf( z(tn)»+ %‘hf(z(tn)) ). | (2—19)

For convenience of analysis, we will rewrite D, in an integral form. Integrat-
ing equation (2-9) from &, to ¢, +h, we obtain |
ty+h ,
Y(taer) —y(ta) = { 1 (y(s)+bw,) ds (211
and since z(¢,) is a random variable for fixed time ¢,, we have
L1 e 1
hf (z(tn) + FhS(2(ta))) = [ S (z(ta)+ Zhf (z(ta))) s . (2-12)
n .
Substituting the results in (2—11) and (2-12) into D, of (2—10), we obtain
tath 1
~Dp = { [7(y(s) + bwy) = f(z(ta)+ Sh (z(ta)) ) 1ds . (2-13)
With D, in this form, further analysis can be made because of the

differentiability of the function f.

In the following discussion, we will analyze D, in the L, sense, which is
apparently the simplest way of estimation. And as we shall see, many conclu-
sions in the L, sense can be drawn from the results derived in the L, sense.
Qur next task is to show that D, is of order h._"5 in the L, sense, i.e.,
E|Dy| = co'nst; ‘A3, From .now on, the notation O(A?) will be employed to
denote a stochastic quantity whose order is A? in the L, sense or in the L;

sense.

We expand each term in the integrand of D, of (2-10) in a Taylor series in

Az, = y(s)~y(ta)+ Aw, around z(¢,) = y(¢,). We find:

F@(s) + dug) = £ (2(ta) + [y(s)= ylta)+ buy]) (2-19)



= £ (2(t) + £a(2(ta))020 + S (@ ()2 + (2 (t))02

1 1 .
+ E{Bﬂ(z(tﬂ))Azad' + W:ﬂs(z (ta))Az,®
where the last term is the Cauchy expression of remainder of the Taylor

expansion. In the same way, we have
 f(at)+ thr ) = £ (t)) (2-15)
@) (@ () + S (2t (2 (1)

1 "
+ Ehafm(z (Ea NS ¥z (tn))
where, again, we use the Cauchy expression of the remainder. To estimate

these remainders, we make the assumption:

sup I-%:;-f(z)l are bounded , 0=su<5 (2-16)
L4

to assure that the expectations involved exist (in the following discussion).

From this assumption, it follows that the remainder in (2-15) is of order h3in

the .Ll sense. That is, we can write (2-15) in the form:
£(z(ta)+ 2hf @(t) = 1 (2(t)) (2-17)
+ Lhr @)1 (= (8) |

+ 2hf (2 (t))S 22 (t)) + O(RY)
To analyze the order of the remainder of the expansion (2-14), more work
is needed. Let £ denote the expectation, as in the previous chapter. Recall
that Aw, is a Gaussian random variable with mean 0 and variance As =s- ¢,

by the definition of the Wiener process (see Chapter 1), then

o uz

ElAw,| = \/%Eflu' e 28 gy (2-18)
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which says that the increment Aw, of the Wiener process wy is of order A% in

in the L, sense. In general, the random variable Awf is of order 2 ? in the L,

sense since

' - - 82
E|Aw,1v=-vﬁjlu|pe A (2-19) -
1. - -u2
= 2'--———%]11.’ e 8 dy
0

= /T2y aes1Es 2L ()

where ['is the gamma function. Observe further that

s ,
y(s) ~y(ta) = ,‘{f(y(r)*- Awy) dr (2-20)
wﬁich is obtained by integrating equation (2-9) from ¢, to s. Since f is

bounded by assumption (2-18), we have the estimate:

. .
Ely(s) =y(ta)l = [EIS (y(r)+ duy)] dr < comst. h (2-21)
n
which means that y(s) — y(¢,) is of order A in the L, sense.

Now we are ready to deal with the remainder in (2-14). The above
analysis shows that the leading order term of this remainder is

£ zz2es (T (£ ))Aws® and it is of order h%3 in the L, sense. Furthermore, the
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same analysis can also be applied to other terms of the expansion (2-'14) and

this enable us to rewrite (2-14) in a more compact form:
I (y(s)+ duy) = f(z(ta)) + fo(z(ta))(y(s)y(tn) + Dy )  (2-22)

+ ;ﬁz(z(tn))(y (S)— y(tn).l. Aw’)g

+ a3 (ta)) (W(s) -y (ta)) uy?

1 1
+ gff:a(z(tn))Awsa + érfmz(z(tn))&wa* + o(hZ) . )
Substituting the resuits in (2-17) and (2-22) into D, of (2-13), we can, after
some cancellation, write D, in increasing power of Aw,:

tath ty+h _
=Dn = fa(z(ta)) [ bwnds + Zfa(z(ta)) [ s =Ry (220)
n . b '

where we keep in =D, only the two terms of the expansion (2-6) with leading
order in Aw,, and group all the other terms in a lengthy remainder:

tath _
~Fn = f2(zt) [ )= yltn)- g (e as  (220)

tath
+ (@) [ (@)t + W)~y ()] ds

tath
* =) [ W)y, ds

tath
* g mm(E(tn)) [ ue® ds = gh¥ a2 () ¥z ()

tﬁ+h
b e (2 (t)) [ dugtds + 0(1 7).

NIQ

Now let us examine the orders of the first two terms of —D, in (2-23).

The analyses in (2-18) and in (2-19) show that



toth ,
(a) ]{ Aw, ds is of order A3 in the L, sense.

thath
(b) f Aw, 2 ds is of order h? in the L, sense.
i

n
Hence, we can assure that =D, (in (2-21)) is at least of order h!?® in the L,
sense. However, it is still not clear, at this stage, what the order of ~Dp isin
the L, sense because the orders of the first three terms of =R, (in (2-24))
caﬁnot be seen readily. To investigate this question, we need the following

lernma.

Lemma 2.1. For the first three terms in —R,, of (2-22), we have the follow-
ing estimates:
(1)

tath .

/ [y()=y(ta)-3hS (z(ta)) ] ds

bnth
= f2(@(ta) [ [ bup drds + 5h? £o(2(60))] (2 (t))

thth g

+ %—f,,(z(tn)) Ni [ Aw 2 drds + O(h
B b

Nlﬂ

).
(ii)

toth

{ (y(s) -y(tn))Aw: ds

ta th v thth g 7
= f(z(tn)) f (s = ta)dw, ds + fo(z(ts)) [ [Ouptow, drds + O(RZ),
A th Tn

(i)



thth
f (y(s) —y(ty))?ds = —haﬂ(z(t,.))w(ha)

(iv)
thth C tath

f (y(s) - y(ta))Aw,2 ds = f(z(t,)) f (s —tn )0w,?ds + 0(h=)

2 .
Proof. Since AwP is a stochastic quantity of order h?, we can derive the

equality (i) by considering the sequences of equalities:
iy th
f [y(s)-y(ta)- Shs (z(tn)) ] ds

t,‘+h
f f [f(y(r)+Au+) f(y(t,.))]drds (by (2-20))

thth g

{ {[ Iyt () = y(ta) + dw,) ] drds

tnth o

3,
+ f f [—fu(y(tn))(y(r) Y(ta)+ buw,)? + O(h?) ] drds

. thth g hath o
=f=(=(t,.)){ f A, drds + f,(z(t,)) [ [ [y(r) —y(t,)] drds
tath g A

MlQ

+ —fu(z(tn)) f f Aw,? drds + O(h?)

while the second term on the nght hand side of the last equality can rewritten

further:

tath g

I=(z(ts)) ff[y(f’)-y(tu)]lels

thth s

= fz(z(tn)) [ Sl (r-tn)f(z(t,.)) + O(hz)]dm

i
2

O)Lo-

T=(z(ta))S (?-'(tn)) + 0(h%)
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To prove the second equality (ii), it is more convenient to consider the

difference of the left hand side and the first term on the right hand side of it.

Using (2-20), we have

th+h :
{ [y(s)"y(tn)-(s— n)f(z(tn)) ]Aw: ds

tath o

= { ,[ [ 7 (y(r)+bwe)~1 (y(tn)) 10w, drds

thth

= { {[ 7= (ta))(y (P) =y (ta)+0wy,) + O(R) Jbw, drds

tath o

= { [ [ 72(y(ta))0w,+0(R) JAw, drds

‘n"h 2 1-
= f2(z(tn)) [ S dwrbw, drds + O(h?).
n n
The justification of the equalities (iii) and (iv) can be made by merely
recalling the estimate following equation (2-19). This completes the proof of

‘Lemma 1.

From the expression of —R, in (2-24), we see that equality (i) in Lemma 1
corresponds to the first term of —R,, (ii) and (iii) to the second term, and (iv)
to the third term of -R,. Substitutiﬂg the results in the Lemma into =R, of
(2-24), we obtain ’

| thath,

R = 13 (0) [ [ drds + eh DS (20D (229)

tath g :

+ (@t ) = (2 (t) [ [ aras

thth tnth o

+f=(=(tn))f(=(tn))f (s —tn)Awsds + f2(z(tn))] = (2 (tn)) [ { Aw, Aw, drds



tath

+ f (2(ta)) e (=(t0) J (s=ta)bw,? ds

tnth
* 3TN = () + G (=) [ b s

ty+h 7
+ Ff (2 (tn)) [ Awytds + O(h?).

where all but the last three terms are obtained from these substitutions. .
Let us examine the orders each term of ~R, of (2-25). We find:

(c) the first and the fourth and the eighth term are of order 225 in the L,

sense.

(d) all the remaining terms except the last one are of order k3 in the L,

sense.

These observations imply that —FR, is a stochastic quantity of order %3 in the
L, sense. Therefore, by recalling the comments in (a) and (b), following (2-

24), we conclude that —D, is a stochastic quantity of order 2'® in the L, sense |

and
tath 1 tath
=Dy = f(z(tn)) f Aw, ds + Eﬁ'u(z(tﬁ)) if Aw,? ds + O(h?5) . (2-26)
ta n
Remark In the above discussion, we encountered expressions of

remainders whose orders are half integers of the form k + 0.5 (k > 0, an

B
integer). Since Awf is of order h? in the L, sense, in the leading terms of

the remainders, the increments of the Brownian motion must appear with odd
power. Recall the nonanticipating property of the solution of stochastic
differential equation (see [..]), and we conclude that the expectation of the
leading terms are zero. We will use this fact repeatedly in the later develop-

ment. Here we would like to illustrate this fact by considering an example.
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Suppose we wish to evaluate the expectation of f.(z(f,))Aw,Aw,Aw,
where ta,<sr<s=<t <it,,, =t,+h. Because of the nonanticipating pro-
perty, fz(z(t,)) is independent of the remaining part of the stochastic quan-
tity considered. Thus, the expectation sought equals to the product of the
expectations of these two parts.

Now we expand the increments Aw,., Aw,, Aw, in the following way:

Ay = =wp —wy,

Aw, (w:-‘wr)*”(wr‘wfn)
dwy = (we - wy) + (wy~wy) + (wr—wy)
This results in

by Ay Ay = (wp— 2y )?

+ 2 (wp—wy P wy—w )+ (we—w we—wy )?

+(we—wy Y we—w, ) + (wp—wy, J(ws— wr ) we—ws )
where, in each term, one factor is independent of the other and at Ieast.one'
factor has odd multiplicity. Therefore, the expectation of each individual

term on the right hand side of the above equation is zero, and thus the expec-

tation of the stochastic quantity considered is zero.
2.2 Accuracy of the Splitting Scheme

Different ways of analyzing the accuracy of numerical schemes for sto-
chastic differential equations may produce very different results. In this sec-

tion, we consider this problem by answering the following two questions:

(i): is the scheme (2-5) a second order method in some L, sense (p = 2)?

and



(ii): why is the L, analysis superior to the L, analysis?

The answer to the first question is no. This can be seen by taking, for exam-
ple, f/(z) =z and z(0) = 0 in equation (2-4). That is, we have the Langevin

equation with initial datum 0:
dr =z dt +dw,, 0<t<T .. (2-27)

the solution z(t) of which, for each fixed ¢, is known to be a Gaussian variable

with mean 0 and variance % (e - 1) (see Arnold [1] pp. 134). Therefore, all

the moments of z(¢) exist, and thus the analysis in the previous section is
also valid here even though the assumption (2=18) does not hold in this case

(see the comment following the assumption (2-18)).

Let —d,, be the local truncation error of scheme (2-5) in this particular

case. From the expression of D, in (2-23) and that of =R, in (2-25), we see

that
 n+h g,,+h,
-d, = [Aw, ds + [ [bw, drds + -é—hﬂz(t,‘), (2-28)
in in

. or from (2-28), we have

to+h
—d, = [ Aw, ds + O(h%9) . ' (2-29)

Define e, = X, —z(t,). Subtracting equation (2-6) from equation (2-5) with

J = =z, we obtain
ensy = a(h) e, +dy (2-30)
where a(h)' =1+ h + %A% Equation (2-30) has tt.1e solution
gy = 2™ Y R)dg + - + @(h)dp-z + dn_, (2-31)

provided that the initial condition is imposed exactly. Note that the leading
A tath
terms of d,, i.e.. f Aw, ds, are independent of each other. Then the expec-
‘ll <
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tation of a product of any two of them is zero since the individual expecta-

tions are zero, i.e., for m#n ,
[t +h ] [t +h ft,, +h

El/A‘w,ds{Aw,ds Elwa, ]EI[Aw,ds] ‘2-32)

tpth tyth
}/-E’[Aw,]ds fE[Aw,]ds =0.

Furthermore, an easy analysis shows that

b +H 12 rtn+ht,.+h
[ A, dsl = z[ [ [ Ay Aw, drds (2-33)
tn +hty +A

= { [ E[bwdw,] drds = szr drds = %h.s

Recalling the nonanticipating property of the solution z(£,), then, from

(2-28), for sufficiently small k, we have the leading term estimate:
Eleg]~a™*(h)E[d§] + - + a¥(R)E[d 2] + E[di-]
N[ a2 2R) + - +a?(h) + 1] él-ha

-1

N———l R~ E — R3 w3 (e 1) n2

-1 a2h -
since A(h) ™ eh, where we use the notation P & @ to denote that P and @ are

of same order in h. It follows from this estimate that

VIEED]~e™n (2-34)
which implies that, for f = z, the scheme (2-5) is of order & in the L, sense.

And by Liapunov inequality

L . L
[E(EK)}’ < {E(ex)J" , 1<psg<e= (2-35)
i.e., the I, norm of e, is not greater than its [, norm for 1<p S q <=, we

conclude that scheme (2-5) is not a second order method for the equation (2-



4) in any L, sense forp = 2.

Now we answer the second question (ii) above by considering, again, the
same example. By applying the triangle inequality to the right hand side of
(2-30), we obtain, after taking expectations, |

Elens1| sa(h)E|es| + E|dp]

Since £|d,| is of order h!5, the above estimate can be rewritten as
(2)
Elensi| sa(h)E|eq| + O(R!)

‘On the other hand, by squaring both side; of equation (2—30). we obtain, after
taking expectation,

EleZ, ] = a*(h)E[ef] + 2a(h)E[endy] + £[ds?]
And since E[dn?] is of order A3, this estimate can be written as
(b)

Eleg.] = a¥(R)E[ef] + 2a(h)E[endn] + O(h?)
These two types of analyses in (a) and (b) are, for brevity, called the L, and
the [:z analysis respectively. There is an extreme difference between these

two analyses in that, we shall see, the existence of the second term on the

right hand side of equation (b) plays only a minor role in error contributions.
Recalling the nonanticipating property, we see from the expression {2-
28) that

th+h
2a(h)E[epdn] = —2a(h) E[en]-E[ [ Aw, ds] (2-36)



fen+h 4 ]
—2a(h) Efes] [ wa,. d‘rds] - %h%(h)-E'[e,,z(t,‘)]
n "I

In the first and second term on the right hand side of this equality, we can put
the expectation £ inside the integral and find that the resultant integrals are

zero and obtain

2a(h)E[endn] = %had(h)E[en’-'(tn)] < 2cha(h)E[ef] + %a(h)s—lhsgtzz(tn)]
where ¢ is an appropriate positive number and the last inequality is obtained
by applying once the arithmetic inequality 2ab<a?+b2 The number ¢ is
used to keep track of the interaction between the (accumulating) error e,
and the local truncation error d,. Substituting the result in (2-37) into (b),
we obtain '

E[e?2,]1=<[a®(h) + cha(h)] E[e2] + O(h®) + ¢ 'h3E[z3(t,)] (2-38)
from which we see that 2a(h)E[end,] does not play a main role in the error
contributions as cha(h) is dominated by a?(h) and -ilé—a(h)e"‘h"’E’[zz(t‘,,)] by
O(h3).

Suppose that the initial condition is imposed exactly. It follows from (b)

and the theory of difference equations

Ele,| is of order h93 (2-39)

and from (2-38) that
VE[eZ] is of order h (2-40)

Comparing these results ((2-39),(2-40)) with that in (2-33), we find that
only the Lj analysis gives the order of the scheme considered. Infact, £|e,]

is also of order of order h, which is seen from, by Liapunov ihequality,

Ele,| = VE[el]~h
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Therefore, we conclude that the L, analysis is superior to the L, analysis
since the former expioits the nonanticipating property and fhus provide a
more precise estimate thah the latter. As we see from the above discussibn,
the techniques used do not depend on the specific choice of the function f,
this conclusion holds also for the class of functions f satisfying the condition
. (2-18). This important observation provides the basis for the anal}s;is in sec-

tion 2.3-5, 3.3 and 3.5.

2.3 ASecond Order Runge—Kutta Method

In the previous section, we showed that the Runge-Kutta method based

on mid-point rule fails to have second order accuracy in the L, sense. ‘In this
section, we will develop a method of Runge-Kutta type for the stochastic
differential equation (2-4). The information contained in (2-5), (2-6), (2-23)

and (2-24) suggests to us to consider first the following Taylor series method:

@ = Xt h (%)  (2-41)

tath tnth

Xonr= Xo+ Baw+ Af (@) + f2(Xn) { By ds + 2f o (Xa) S dwPas

The local truncation error of the scheme is given by R, in (2-23), ie., the

exact solution z= z(¢) of the stochastic differential equation (2-4) satisfies

Z(tnsr) = Z(ta) + Baw + hf (g (tn)) (2-42)
tath tath

H Te(m(t)) [ dwds + Sfw(2(ta) [ dunas ~ B,

where we define

1
q(ta) = z(ts) + Ehf (z(ta)) (2-43)
As we know from the discussion in section 3 that R, is of order 223 in the

L, sense, we would expect that the scheme (2-42) has the order A!S in that



sense, due to the accumulation of the local truncation errors.

The ciuestion is whether we can have a better estimate, i.e., could scheme (2-
41) bas higher order accuracy (better than A'%)? For we have seen a suc-
cessful example in section 2 where we employed the L; analysis. |

Therefore, in the following discussion, we will adopt L3 analysis instead of
L,'s since it exploits the nonanticipating property. waever. our Lj analysis
will not be made directly to the scheme (2-41). )

Scheme (2-41) is an intermediate step which leads to a more satisfying
method of Runge-Kutta type. The main idea is to interlace the function f
and the Wiener process wy, i.e., to let them interact with each other at each
time step.

Before we go further, let us define some useful random variables:

L Spth thth
B=hf = [Auwds, BS=h¥ = [ dwids (2-44)
t t :

|  From these definitions, it is obvious that the random variables g’ and ¥ are of

order 1 in the L; sense and scheme (2-41) can be rewritten as
1
G =X, + 5hf () (2-45)

s
Xani= Xo+ B+ 1S (@) + h2E L (Xn)+ Th38 S (Xn)

which has a more convenient form that we can work on to obtain a Runge-
Kutta method. The first step is to add a term involving 8 to @, so that the

first derivative term in X, ,, will appear implicitly. Observe that

hf (@ + VRE)

M'Cﬂ

3
=hf (@) + h261.(Gn) + Th% (@) + O(r?)



L . 5
= AL (@) + h2ETo(Xa) + SHE% m(Xa) + O(h)

.which leads us to consider the following scheme:
Q=X + %—hf (%) + VE @ (2-48)

. 1 v
X1 =Xp + Dwn+ Rf(Q,) + Ehz["’ -8 = (%) -
the local truncation error T;, of which is defined in the equation:

Z(tas1) = 2(ts) + Awp + RS (g(Ly)) + %hz[ﬂ"‘ B2 = (z(t)) — T;'(2-47)A
where we define A B

q(t) = 9(ta) + VEF = z(ta) + Thf @(t) + VEE . (2-48)
Here we have been careful in making the local truncation error T, of scheme
(2-48) have the same order (in the L, sense) as that, i.e., B of scheme (2-41)
(or (2—-45)). This can be seen by analyzing T, further. As a starting point,
for seeing that T, and R, are of the same order, we carry out the Taylor

expansion:
RE(g'(ta)) = RF( q(ta)+ VEE) | (2-49)

. .
= hf (3(ta)) + A2 12(a(ta)) + 2h20% (g (tn))
- 7
+ ThTE (9 (t) + orh I (3 () + O(RF)
Recall the deﬁnition of g(t,) in (2-43). Each term on the right hand side of

the above equation is then expanded in a Taylor series about z(¢,) and this

gives

s
Rf (' (ta)) = hr(q(ta)) + R2E £ (z(t))

3
+ SAZEL (2 (t)) (2 () + ShE% m((tn))

n J:



+ LR () (2 (t)) + TAEE a2 (t)

' r
+ h%S (2(ta)) e (F(tn)) + 2T waaa (2 (80)) + O(RF)

Substituting this result into (2-47), we obtain, after some cancellation,
Z(tnsr) = Z(ta) + Aaw + hf (q(t)) (25

F RIS (2 (t)) + 1A (e (t0))
5 5
+ 5201 @ (ta))f (2 (ta) + gL A2 (ta)) (2 (tn)) + G2 E e (2 (E0))

7
1,3, 1 ' . z
+ A (@(t)) 2 (2 (k) + 5rh%E e (2(t0)) + Tn + O(RF)
Recalling the definitions of 8 and ¥ in (2-44) and comparing this expression
with that in (2-42), we can relate T, and R, in the equation:

5
~Ra = =Tp + W21 @) =(2(t)) + A A2 (t)f(z(ta))  (252)
s z
+ S e (2(ta))+ ThIS (2 (t) (@ () 2 h%6 e (2 (ta))+ O(R ),
in short, |
s
—Ry = =T, + O(r?) (2-53)

3
Recall that R, is of order h? in the L3 sense, thus so is T.. In other words,

T, and R, have the same order in h in the L, sense.

At this stage, it is still not clear how-one is able to derive a Runge-Kutta
method from the scheme (2-48). For there exists a second derivative term
"of f with a coeflicient containing ¥ ~8% However, from the definition of the
random variables § and ¥, we find a very interesting relationship: B'zs g,

since the inequality



e, +n 2 e

3
R3g? = (hZF) = 1 [ bunds| < b [ tuytds = R[] = 2% (254
| tn »
holds by the Cauchy-Schwartz inequality. Hence, the random variable ¥'-g2
is positive. It is this fortunate observation that leads us to succeed in deriv-

ing the Runge-Kutta method:
Pa=Vo-g? (2-55)
Q=Ko+ Zht (X,)+ VR

1 B ’ .
Xan1= Xnt+ Aqw + -Z_h[ f(@+ VRP,)+ S (G- VR P,) ]
with §' and ¥ defined in (2-44). This scheme is obtained by a symmetry con-
sideration so that we need only to evaluate one intermediate value, i.e., &, at

each time step. Now we state the main result of this chapter.

Theorem 2.1. Let f be a sufficiently smooth function satisfying a Lipshitz
condition and the condition stated in (2-18). Then the above scheme is
second order in the L; sense, i.e., there exists two constants € and hg such

that

1 .
«[E(z(t,,) -)(,.)2]2 <sCh?, hs=hg

for all h < hg, provided that the initial condition is imposed exactly or to
second order in the L, sense (say, [£(z(0)—z¢)?}% < Cyh?). The constant C

depends on the bounds for the fuhction f and its first few derivatives.

Remark. In scheme (2-55), if we replace § by v 8, ¥ by v*¥, and P, by
v P,, then we obtain the corresponding' scheme (0-9) for solving equation
(0-2). As v tends to zero, this scheme reduces to the ordinary mid-point

Runge-Kutta method as we expect.
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Before we prove Theorem 2.1, we devote the rest of this section to
analyzing the local truncation error T, of scheme (2-55), which is defined in

the equation:
Z(tnsr) = Z(tn) + B w - (2-56)
+ [ £ (g (ta)+ VEP) + £ (g (ta)=VEPA) 1 + T, .

Recall the definition of g,(f,) in (2-48). We start by considering a Taylor
expansion of £ (¢'(¢,) + VRP,) about gq(¢,):

F(@'(ta)+ VRP,) = f(q'(ta)) + VRPf=(q(ta)) + %thzfu(Q(tu)) (2-57)

a s
2P (7 (tn)) + 5 rhPPat (4 (8)) + O(RP)

and a Taylor expansion of f (¢'(¢s) + VRP,) about g'(t,):

+

o ;LH

f(q'(tn)- \/EP,.) = f(q'(tn)) - \/Epnfz(q'(tn)) + %‘hpnzfu(q'(tn)) (2-58)

mlu

- l'hg-‘pnsfm(q'(tn)) + ithn“fza(q‘(tn)) + O(h®).

6
Summing up the results in (2-57) and (2-58), we obtain, after some cancella-

tion,

AL £(@(ta)+ VEP,) + £ (3(ta)- VEF,) ] (2-59)

?
. 1 . 1 . =
=R (g () + 5h2 Pa® f=(q(tn)) + 5rh%PatS ez (g () + O(RP) .
The second term on the right hand side is then expanded in a Taylor series

about g(¢,). We obtain:

%’thnafz (q.(tn ) = é‘*épnzfn (g(ta)+VR B) (2-60)

= é—thuzfu(z(t,,)) + Sh2EPY o (2(t)

8] ;.-

-+

%h-apnzf (Z(tn)) fzzz(z(tn)) + %haﬂ'zpnzfm(z(tn))'*' O(h

N'Q

).



In a similar way, the third term on the right hand can be expanded as

lﬂ

21 SP‘fm(q () = Lh7P 4t e (2 (6)) + O

N

)

Substituting this result and that in (2-80) into (2-59), we obtain:
AL 1 (@) +VER)* £ (ta)VEP)]  (261)

' s
= hf (3 (ta))+ THPPES ez (t0)) + gw'szaz(tn»

—hasz (2 (ta)) fz22(2(0)) + —hsﬂqufm(z(tn)) + TP e (2(ta)) + O(R ;_

Recalling the definition P, = V& = 8% and substxtutmg the result in (2-61)
into (2-58), we obtain:

Z(tns1) = Z(ty) + qw + Rf(g(t,)) + %hz[”- ﬂlz]fz (z(tn)) (2-62)

+ ‘é—hg—ﬁ'}%?fm(z(tn)) + i—hsp,?f (z(tn))fm(:"'(tﬂ))

] i
1 , 1 2 o 1
- o3t + Lasgrs 4+ La%® |fee(2(t0)) - T + O(0F).

By comparing this expression with that in (2-47), we can relate T, and T, in
the equation:

~Tp=-Th+ ¢[gv- ﬁla]f:u(z(tn))

S :LH

v Lad- 6711 (2 () fum (2 0))

lel

51 (2-63)

- D p3g4 s —haﬂz‘d + 51—;1%12] Loz (Z(£2)) + O(RF)
Now we are ready to write down explicitly the local truncation error Ty, of
scheme (2-55), since we have the relationship (2-52) between R, and T, and

the relationship (2-63) between T, and Tj.

o«
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Again, for convenience of analysis, let us define some useful variables:

Lo

g_ [(s-,.)Aw, ds ,

75

r= [ twdds, (2-64)

From these definitions, it is clear that the random variables ¥, &', 7' are all of

order 1in the L, sense. With these definitions, we find from R, in (2-23), (2-

52) and (2-63) that the local truncation error T, can be written in the form:

~Ta = 3h2(2-F) (2(ta))f (2 (2n))

S
+ h25 1 (2 (th)) (2-65)
5
1.5 .
+ Ehz(‘r ~38Y +28%) [z (z(tn)) — Var
in which we keep only those terms of order h?3 (e.g. 1%, 4** and 9" terms in

R,) and collect the remaining terms in

thth o

—Vp = Lh’f(z(t,.))f (z(ta)) + —fz(z‘(tn)) [==(2(tn)) f f Aw,? drd®- 66)

=]

tath o

+ f:(z(tn)) fn(:(tn)) f warAws drds — —'h'afa(z(tn)) fzz(z(tn))

by th
+ '-f(z(tn))fza(z(tn)) [(s-t Yaw,%ds — —-h'*‘df(r(t ) fzz2(2(tn))

. ' tath 7.
(5~ g% - gt [ bt | S (o(60)) + OAT).

2.4 Convergence of the Second Order Runge—Kutta Method
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In this section, we will prove Theorem 2.1, i.e., scheme (2-55) with the
local f.runcation error T, in (2-65) is of order h? in the L, sense under the
conditions stated in the theorem. For this purpose, let us write down the fol-

lowing equations: the numerical scheme (2-55):

X=X+ Aw + ZAL £ (@t VER)+ £(G-VER) ] (267)

and the exact equation with local truncation error:

Z(tns) = 2(tn) + byw + SAL £ (@ta)+ VEPL)+1 (3 (ta)- VEPW) ] = T, (2-68)

Let e, denote X, —z(f,). Like in the theory of ordinary differential

equations, we subtract equation (2-68) from equation (2-67). This gives

Bpsy = € + %h Uy + T (2-69)
where we define
Up = Up 4 + Up - (2-70)
and
.vn.i» = f(q.(tn)"' \/EP,,) -f (QT'I+ \/Epn) '
Un-= J (g (ta)= VRP,) - f(@—VRP,).
To make an L, norm analysis, let us square both sides of equation (2-87),
then

82,, = e + hayu, + %hzunz +2e, Ty +hu,Ty + To2.

We now estimate the expectations of the last five terms on the right hand side

of the above equation. Let f satisfy the following Lipshitz condition:

lf(z)-f)IsLl|z-y|. z.ycR.

where L = 0 is a constant. Consider vp 4, ¥n -; and appiy the Lipshitz condi-

tion of f tothem. We find



(Unel = [ £(@(ta)+VE (E+Pa)) = £ (Gu+VE (G +P,)]
SLIQ(tn) = Qn’
= L1(2(ta)+ 107 (2(t)) - (G + 247 ()]
< L(1+-;:M.)| e, |
and
|un.-| = £ (g{ta)+VR (8 =F,)) = f (@ +VR (' =F,))|
SLIQ(tn) - in
= Li(z(ta)* S0 (2(t)) = (Kt 207 (%))
< L(1+ ZhL) en] -
Therefore, the secbnd term on the right hand side of equation (2-71) can be
estimated as: |
| E[henvn]| S hE|epva| < hE(|en| ]vn,++”n.f]) < 2rL(1+ é'—hL)E’[E,?] .

The estimation of the third term is quite similar and we have, by the

Lipschitz condition for f,
B[ %hzu,.z] < %h.zE[v,f'] < h2L%(1 + %—hL)zE[e,?] . (2-73)
Next comes the fourth term where we need to take into account T given

in (2-65), thus V, in (2-66). Recall that those terms in which the independent

increment Aw appears in odd power will vanish after taking the expectation.

Thus
=E[Ta] = -E[V,] (2-74)

=ELfft Sl t oS = g m t é—ffm]‘ha



E{{ _ffau [%’ é—" éf"é%- 2_14_"—72-"' ;T]f::a]hs + Q(h4)}

= E{{_fz + _Zfzfzz 24_fzf=+ szfns + Izi'o—fm}ha + o(hi)} .

where all the functions’ values are evaluated at z(£,). The detailed deriva-
tion of (2-74) is carried out in lemma 3 of appendix A. This result suggests
that we write E[V,] = h3E[V,], where V, = h-3V, is of order A° in the L,
sense. Therefore, the independence of e, and the increments of a Wiener

process leads to the following estimate: '
| Bl2en Ty | = 24%| Blen Vol < e,hLETed] + 7' L RIE[R?]  (275)
where we use twice the arithmetic inequality 2ab < a® + b? with |
b -L
a =(s,hl)%e, and b =(g,hL) *h%V,

and &, is an appropriate positive number. A similar trick can be applied to

the fifth term, and yields
| E[hun Ta]l < < £2hL7'E(v2) + 27 'ALE(TE) ] (2-76)

=

N‘r—b NJ_'H

2hL(1 + é—hL)z E[e?] + O(r®)

where again ¢, is an appropriate positive number and E[T}?] is of order AS
(see below). Finally we arrive at the estimation of the expectation E[T?].
By the Cauchy-Schwartz inequality, we have (a+b +c)? < 3 (a?+b%+c?), and if

we apply this result to 7;2, we find the estimate:

E[T3] s 3 L2y -0 1ELr 1 2] (2-77)

Y

357 BT -89 +26°P)E[f & ]+ O(R®)

+ 3 E(6HR3E[f 3]+ 3



.5 :

1 1 ,sprpe Splr4le a1 L1 45 6
=37 ﬁ’h E(f f=]+3 —h E'[f,]+3 36 2220 ———hSE[f2.]+ O(hS).

where all the functions’ values are evaluat.e.d at z(¢,). Therefore we have the

following estimate:

2 .1_ 2p2 _3__ 4 5 8
E’[T,.]s{40 E[feril+ >0 E(ri]+ 30240 E’[f,u]]h. + o(h. )
which, for convenience, will be written as

E[T2 < E[GZ h% + O(h®). (2-78)
where ' ‘
21 242 3 4
is of order A% For a detailed calculation involved in (2-77), we refer to
Lemma 4 of Appendix A. Finally, we reach the stage of estimating the whole
equation (2-71). By collecting the results from (2-72)—(2-78) and taking
expectations on both sides of equation (2-71), we obtain:
Eledn] s B()E[eZ]+ [B(GD) + L, "L E(RHIR + O()  (279)

where
B = B(h) = 1+ (2+ £,+ £2)hL + (2+ ‘2—291&2 +[1+ é—eg]haz,s + ih"L".
To have a common bound for all time steps, let us define
Gs= m’:;sz[G,ﬂ and V= mr?xE[ V,"?]
and let ¥ = G+ £;'L™'V, the inequality ‘(2-79) becomes
Efe2,,]s e®* ML E[e2] + M A% + O(h®) : '(z-ao)

where we set &= g, + &3 so that B(h) < e®*9ML This is a recursive relation
we encounter often in the theory of ordinary differential equations. An ele-

mentary calculation shows that the solution of (2-80) is
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(2+2)t,, L

e -1 4 (2+¢e)2, L 2 5 : 2-81
Gr ol Hht+e E[ed] + O(n%). (2-81)

Eleg] =
The right hand side of this inequality is of order h* provided that the initial
condition is properly imposed. .Suppose that E{ed] < C3 h* where Cyis a
constant. Substituting this into the above equation and taking square root
on both sides of the resultant inequality, we complete the pfoof of Theorem

2.1 with
C= )?2'? {(2—+&IT)L—(3(2+‘)H‘ -1) + Cg'é(2+ eTl) 4 O(h) ]2 . (2-82)
0

Remark  The reason of introducing the two positive numbers &, and ¢z is
twofold: to keep track of the ’interaction’ between T, and e, (see (2-75)) or
v, (see (2—786)), and to balance the error contributions from the initial error
and local truncation errors (see (2-81)) in hope that the constant C can be

minimized with suitable choice of &.
2.5 Runge—Kutta Methods of Order One and Half -

There are two main difficulties with scheme (2-55): the first one is that
we do npt have an efficient way to sample systematically the Gaussian vari-
ables 8, Aw, and the non-Gaussian random variable ¥ (defined in (2-44)); and
the second one is that it will not be a second order method when extended to

the case of a system. To sée the complexity of the distribution of ¥, we refer

to Levy [18].

To sample only Gaussian random variables, one should be content with
schemes with less accuracy. In this section, we provide such schemes of
order h!3 in the Lz sense. The main advantage with these schemes is that

they will maintain the order of accuracy when extended to a system of sto-
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chastic differential equations.
To design a scheme of order h!5, we have several choices. Let us con-

sider first the following theorem.

Theorem 2.2. Under the same conditions of Theorem 1, the following

scheme
@& = Xa + Zf (X) (2-83)
Q=X + Thr(X) + SVEQ
Xor1 =X+ Baw + A [ £(@) +2(8) ]

has.1.5 order accuracy in the L sense (see (0-4) for tﬁe definition).

Proof. There is no substantial difference between this proof and that of
Theorem 1. We need only to assure whether the techniques used in the
latter can be applied in this case. The key point is to examine the local

truncation error of scheme (2-83). Let us define
2°(ta) = 2(ta) + Lhs (z(ta)) + 2VE 4. (2-84)
Then the local truncation error T, of the scheme (2-83) is defined in the equa-
tion:
1 ' . .

Z(tne1) = 2(ta) + Baw + FRLS(G(tn)) + 2 (9 7(z(ta)) ] + Tn . (2-85)
To make an error analysis, let us carry out the following Taylor expansion of
7(q"(ta)): i

RS (2 (ta)) = Af (g (t)+ SVE ) (2-86)

3 5

= ke (q(ta) + ShEEL2(2(ta)) + G2 (2 (tn) + O(RT)
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i th ‘5

= hf (g(ta)) + 3F(z(tn)) f Buw, ds + —hzﬁzfz(z(tn)) + 0(r?).
Replacing f (g °(¢»)) in (2-85) by the above expression, we obtain

Z(tns1) = Z(tn) + Apw + hf (3 (t)) (2-87)
t +8

+ fz(z(tn)) f Aw, ds + —hzﬁzfn(z(t N+ Tn+ O(hg—

Comparing the above expression with that in (2-42) and recalling that R, is of
order h%3, we arrive at
tnth

—f,,(z(t,,)) [ Aw,2ds - —-hzﬁaf,,(z(t,,)) + 0(h=) (a-ae)

One major fact about 7}, is that its expectation is of order h3. The reason is

that (i) the expectations of those terms of order h%3 is zero, and (ii)

E[(#)?]= %-(see appendix A.) and

thth -
E[ wa.zds ] —js ds = %hz (2-89)

which make the expectations of the leading terms in in 7, cancel each other.
With this fact in mind, the rest of the proof proceeds exactly in the same way

as in the proof of theorem 1.

The general idea in designing a scheme of order hA!-® like (2-83) is to consider

the family of schemes:
G = Xo + Zh () +EVES (2-50)
@ =Xy + Th(X,) + IVRG

Xn+1 = X + Hw +h'[ af (@) + bf(Qn) ]
where a, b, k, | are parameters to be determined. In a similar way as we did

in theorem 2, we find that the exact solution of of stochastic equation



satisfles:
Z(tne1) = z(tn) + baw + h(a+ 8) (g (tn)) (2-91)
+h(ak+b-l)ffz(z(ta)) + %h(a-lczi- b;lz)ﬁ'ef,,(z(t,.)) + O(hg-) +Ta.
By comparing the above expression and (2-28), we are led to choose

a+b=1, ak+bl=1 (2-92)
in order that scheme (2-90) have first order accuracy. With these choices,

the local truncation error T, of scheme (2-80) is

tath
Tn = :la_fu(z(t,.)) S dw,Pas - %h(a-lc% b-1%)8% = (z(ta)) + Oh
tn

Nlﬂ

). (2-93)

However, as we understand from the proofs of theorem 2 (or 1), we may wish
to minimize the contribution of the local truncation error T,. One way to
achieve this is to choose the parameters so that the expectations of the lead-

ing terms of T, are zero (e.g. in (2-88)). This leads to

a-k?+56:1%=

mlm

(2-04)

The case corresponding to scheme (2-83) is a= ;‘—- b= -g—- k=90,1= g— We

make this choice so that we need only three function's evaluations at each-

time step, and all parameters are rational numbers with a, b positive.



Chapter 3
Runge—Kutta Methods for a System

In this chapter, we consider the following d dimensional system of sto-

chastic differential equations (see chapter 1):
de = f(z)dt +vdu, 0<st<T, (3-1)

where v=0 is a constant and f = f£(z) is a smooth function satisfying a
Lipshitz condition. The main results are stated in theorem 3.1 (in_section

- 3.2) and theorem 3.2 (in section 3.3).

We start, in section 3.1, by analyzing the local truncation error of the
splitting scheme based on the mid-point rule, an analysis that parallels sec-
tion 2.1. Then, in section 3.2, we derive a Taylor series method which we
prove to have second order accuracy in the L; sense, and explain why the
Runge-Kutta method derived in section 2.3 does not generalize to the system
of equatiohs (3-1). |

On the basis of this Taylor series method, in section 3.3, we develop
Runge-Kutta methods under the consideration of the weak convergence
sense, defined in.(0—14). Finally, in section 3.4, we extend the Runge-Kutta
methods derived in section 2.5, and prove that they maintain their accuracy
for the system case. We also discuss the convergence of these methods in

the weak sense.
3.1 Analysis of a Splitting Scheme Based on the Mid—Point Rule

Consider a partition of the interval [0, T]:

H=[0tns = tn+hity = T ]
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and the splitting scheme based on the mid-point rule

Zovi = Lo + B + RE( X + ZHE(X)) (3-2)

for solving the stochastic differential equation (3-1), where Ahw = We ,, T W .

In analogy with the analysis of numerical methods for ordinary
differential equations, we analyze the local truncation error =2, of the

scheme (3-2), which is defined by the equation

Z(ta) = Z(ta) + baw + RL(2(ta) + ALE(E)) —Ln - (3)
To facilitate the discussion, we define, for each specified inﬁerval, say

[tn. tn+1]. the variable:
y(t)=z(t) —dw;, t, <t <ty =th+h, (3-4)
where Awy = wy ~ wy, . From this definition, it follows immediately that
u(én) = z(ta) (3-5)

for the specified interval. Substituting the definitions in (3-4) into equation

(3-1) and the scheme (3<4), we obtain respectively
%—:L(y FAw), th <t <t,+h (3-6)

y(tn) = z(ts)
and
' 1
=Ln =y(ta) —y(tn) —hL(z(ts) + E”"L(ﬁ(tn)) ). (3-7)
For convenience of analysis, we will write =, in an integral form. Integrat-
ing equatidn (3-8) from ¢, to t, +h, we find

ta+h

U(tnr) —u(tn) = 7f.t(y(S) + Aw,) ds (3-8)

and since z(¢,) is a random variable for fixed ¢,, we have
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: t,+h
ML(a(ta) + ShE@ED) = [ Halt) + Irza)) s, (39)
n
Subst;ltuting the results in (3-8) and (3-9) into ~D, of (3-7), we obtain
ty +A '
“Bn = [TL@E) + ) ~£E(t) + GheE() 1ds. (310
With -0, in this form, further analysis can be made becaué;a of the
differentiability of the function f. |
As we did in section 2.1, we will show that each component —Dj of =2, is
of order h!% in the L, s;ense and in the Lj sense.
In the following, we will adopt the summation convention, which says
that any repeated subscript or superscript in a rnulfiplicatiori term is to be

summed over its range, e.g., ajbJ = Y[aibi] (there is no summation over i).
J

Let us stipulate that a superscript specifies the component, and sub-
scripts with a comma in the first place denote differentiation, e.g., f fj,‘ means

differentiation of f* with respect to its j** and £ arguments.

Now we expand each term in the integrand of D, of {(3-10) in a Taylor
series around z(%,) = y(tnx). Define the variable Az, = Ay(s )~ (ta)+ Aws, we
have’ '

7 (uls) + by ) = £ z(tn) + [uls) - ulta)+ ] ) = (3-11)

£t £z + 2 @ (t)bz, 02k + o Gz (t))An A2, b,
1 .
+ %{ffjum(g(t,‘))&,j&,k&,‘&,m

1 .
* W‘-‘ﬂ‘m(ﬁ,(.-'E(tn))AzsjAzskA:slArsmAz:n
where the last term is the Lagrangian expression of remainder ot the Taylor

expansion. In the same way, we have
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FUE(t) + FhLEt)) = LE(E) (3-12)
+ AL YEENL @) T R @E S 2 ()1 (2(t))

1 "
+ gt mE (S (2 (80)) S * (2 () (2 (tn)
where, again, we use the Cauchy expression of the remainder. To estimate

these remainders, v;re make the following assumptions:

apl...... +
ap‘zl-"a“"z,,

for 0 s+ +u, <5 0=<is<sd.

sgp ' f‘(g)l are bounded , ) (6-13)

From this definition, it follows immediately that the remainder in (3-12) is of

order A% in the L, and L, sense. Thus we can write (3-12) in the form:
7 (z(ta) + ZhL(2(t)) = 14 (2(ta) ) (3-14)
+ LY@t (2(tn))

+ SR Yt @ (D) * 2 (t)) + ORY)
To analyze the order of the .remainder of the expansion (3-11). more work
is needed. Let £ denote the expectation, as before. Recalling that Aws is a
Gaussian random vector olf which each component has mean 0 and variance

As = s - t, and is independent of each other, we see from (2-18) that

E[Aw,j"--Aw,jﬂ =E’|Aw,j‘|---E’|Aw3“| . (3-15)

L4 14 4 L4
=[72‘_—As]2 s[;?ﬁz [s = ta]? =const.-h? .

£

which says that the product Aw:‘---sz‘ is of order h In general,

;—\(l,h-«»ld)

[A‘wz‘]“---[ij‘]“ is of order h , since

El[awi]r - [awd 1] = £lauwdt' - B awd®)" (3-16)



Lgon \Hrrl) L1 t1
(?G(ZAS)Z ' r‘[ zﬁ I‘[ d
< const. AT (As =5 —¢,)

where [ is the gamma function. Observe further that

. .

(uls) —u(ta))! ={f‘(u(r) + by ) dr o (317)
which is obtained by integrating (3-8) from ¢, to s. Since f* is bounded by
éséumption (3-13), we have the estimate:

tﬂi-h.
E|(u(s) —u(ta))'| s {EII‘(y(r) + dwy)| dr < const.-h  (3-18)

which shows that ((s)—-u(¢,))! is of order h in the L, and L sense.

Now we are ready to deal with the remainder in (3-11). The above analysis

shows that the leading term of this remainder is

ffjum(s:(tn))AwijAw:kAwslAwsmAwsn
and is of order order h%% in the L; and L; sense. Furthermore, the same

analysis can also be applied to other terms of expansion (3—11) and this

enables us to rewrite (3—-11) in a more compact form:
rHuls) + by )= £z (t))+ £ ()N uls) —ulta) + By ) (3-19)

+ e (@) ls) —u(tn) + awy Y(uls) —ulty) + A, )

+ _f kl(_(tn))(ﬂ(s) -y(ty ) Y Dy ® At + _f u(_(tn))AwaJAwskAws

Nlu

+ 2Tf Hm(—(tn))AwsjAwskA‘w,‘A‘w m % O(h )

Substituting the results in (3-14) and (3-18) into ~D, of (2-10), we can write,
after some cancellations,

Lo th thth

=D} = £5(z(ta)) f Awyfds + —f ‘e (Z(tn)) f M, dw,®ds — RY (3-20)
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where we keep in —D} only the two terms of expansion (3-11) and put all the

other. terms in the following remainder

i th
“RE = () [ (ue)-ultn)- ghr@t) Yas (32

tath
+ i) [ (@)= u(ta)V b + Zule)u(t)V (w(s) - u(ta))] as
t,;+h '
+ 2 b)) [ )= utn) b,

gy +n
+ %{fjkl(g(tn)) _‘{A'wsjAwskAws‘ds - 'é-haffjk(ﬂ(tn))fj@i(tn)).fk@_:(tn))

thth . 4
1 ; FX
+ 3 Ymm((tn)) ‘f Ay Awg* bt wg™ds + O(R?) .
n
Now let us examine the orders of the first two terms of —D% (in (3-20)) in

the L, sense. From the analyses in (3-15) and (3-18), we see that
t+h
(a) { Aw/l ds is of order A% in the L, and L, sense.

tath
(b) f Awi AwF ds is of order h?in the L, and L, sense.
:

n
Hence, we can assure that =D} (in (3-20)) is at least of order A!3 in the L,
sense. However, it is still not clear, at this stage, what the order of —D} is in
the L, sense because the orders of the first three terms of ~R} (in (3-21))

cannot be seen readily. Before we go further, we need the following lemma.

Lemma 3.1. For the first three terms in —R} of (3-21), we have the follow-

ing estimates:

)



tyth

'{(y(s)-'y(t,.)-éhf (z(t,)) ) ds

thth g

=1t [ [ourt drds + ohSrh ) ()

bnth g
+ T () [ [ b bt drds + o)
bhota
(W)

S, +h

Z ()= ulta)V du,* ds

tyth . tath o 7
= 19(z(ta)) t{ (s=ta)dwy* ds + fi(z(ta)) [ [ Aw® Awyt drds + o(hg)
bn $n

(i)
t,+h 7
[ @)~ uEV @) -u(tn)) de = Gt )fH(2(t) + 00 )
(iv)

toth tath
f (y(s)—y(tn))jAwskAws‘ ds = fj(z(tn)) f (s- tn)AwskAws‘ ds + O(h
& : i

N|~3

).

Proof. From the analyses in (3-15) and (3-18), we see that the equality (i)

can be derived by considering the sequences of equalities:

tath
[ @($)- y(ta) - FAL(t)) ds

thth

= [ S dw)- 2lu(ta)) drds

thth,
= [ JUr4 Gt )aafe 3f huta))ssttat ards + O(h

Nlﬁl

)
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tath o tath o

= 5(z(ta)) _‘f {Aw,’-‘ drds + fl(z(tn)) [ ,‘f(u(r)—,u(tn))" drds

tnth s 7
bz (t)) [ [ " byt drds + 0(h)

ﬂ‘ﬂ

where z. (r)-y(t )+ Aw as we used in (3-11). The second term on the
right hand side of the last equality can be rewritten further:
toth o

Th(z(ta)) f[(u(r)-y(tn))* drds

‘n#h’ 3

Si(z(ts)) f f [(r—ta)f*(z(t)) + O(R?)] ards

z

= LR3p8 (2(t)) 5 (2 (ta)) + O(RZ).

(=2}

To prove the second equality (ii), it is more convenient to consider the
difference of the left hand side and the first term on the right hand side of it.
We have

tath

{ [u(s)=u(ta)= (s =t )L.(z(ta)) ) by ¥ ds

thth 5
=/ ST Q)+ ) =L (8)) s s

thth g

[ S @t u(r)—ults >+Aw,)'+ O(h)]Mw,* drds

ﬂ"l

thth g

= [ [ [ 4(z(ta))bup! + O(h) Ay * drds

t +h 7
Ji(z(ta)) f f Aw.* dw,' drds + O(h?)

The justification of the equalities (iii) and (iv) can be made by merely

recalling the estimate in (3-17). This complete the proof of lemma 1.
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From the expression of —FR% in (3-21), we see that equality (i)
corresponds to the first term of —R%, (ii) and (iii) to the second term, and (iv)
to the third term of —R%. Substituting the results in the lemma into —R} of
(3-21), we obtain

thth

-R‘ T45(Z(ta)) 1% L(tn))[ [ Aw.*® drds . (3-22)

thath

+ SHIYEENSEEN () + S Y@ @) [ J B, ® by drdls

th+h toth g’

+ 152 (tn)) 17 (Z(tn)) [ (s=ta)bus*ds + £ (2(tn))f H(z(tn)) { {Aw,"Aw drds

tath

u(_(t NI (z(tn)) f (s —t)hwy* byt ds

tath

+ —h (Z(Ea S ¥ (2(20)) S 2 (2(tn)) + —f et (Z(2n)) wa.’Aws"Aws‘ds

ta+h ' 7
T+ ——f Liim (2 (En)) }[Aw.wa,"Aw,‘Aw,'" ds + O(h?).

 where all but the last three terms are obtained from the equalities in lemma

1. Examining each term on the right hand side of (3—22), we find that the

leading terms are the 1%, 4'* and 8"‘ term, which are of order hg- This
observation enables us to write
thth o
—R = 145zt ) h(z(ta) [ { Awk drds (3-23)
. n
' tath

Lzt N1 (z(ta)) { (s— tn)dwE ds

t +h
+ —f Y (Z(tn)) f AwiAwFsuwl ds + O(R).

Thus =R is of order A9 in the L, sense, and we conclude that —D} is of order
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h!Sin the L, sense.

Actually, the above conclusions also hold for the L analysis, i.e., =2, and
—Rn are of order h!® and h?%3, respectively. We need only to make sure that
the expectations involved in above discussion also exist if taken in the Ly

sense, which is guaranteed by the assumpt.idn (3-13).

For the sake of brevity and convenience in later discussion, we introduce

the variables: N
3 ty +h L th '
B =n?g’= [Awids, 9% =h%* = [prwiswtds.  (3-24)
t i '

Then the expression of —D} in (3-20) can be written as

0k = £H(E(E)B + S (z(ta))* - R (3-25)
Furthermore, we introduce
th+h
9k = { Awidwkbw? ds (3-26)
and
thth o tath ,
¥ = f[Aw,." grds, 6 = [ (s—t,)Awkds . (3-27)
in in tn ’

The e:_cpression of =R} in (3-23) can be rewritten as
-Ry = ff)(i(tn))f{b(i(tn))f (3-28)
+ L@ ENS @) + of u(z(ta))s™ + O(h) .

Remari. Recall the estimates in (3-15), (3-16) and the nonanticipating
property of the solution of stochastic differential equation. As we have done
in the remark of section 2.1, we conclude that any stochastic quantity whose
order is of the form: k + 0.5 (k is an integer) in the L, sense has zero expec-

tation, since the components of the Wiener process are independent of each
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other and these components, as a whole, must appear with odd power in the
stochastic quantity considered. This important observation suggests to us
to consider the convergence of a stochastic scheme in the L; sense instead of
the L, sense since L; analysis exploits the nonanticipating property while the

latter does not.

3.3 A Second Order Taylor Series Method

In this section, we will prove second order accuracy (in the L, seqse) of a
Taylor series method and explain why the result in theorem 2.1 of section 2.2
does not genefalize to a system of stochastic differential equations. T’his Tay-
lor series is derived as an intermediate step and will serve as a basis for the

Runge-Kutta method

A close look at equation (3-3), (3-7) and the expressions of —Df and -/}
given in (3-10) and (3-21) leads us to consider the following Taylor series
method:

8 =X+ ZALK) (3-29)

Xne1 = Xn + dwn + RL(Q,)

thth . Ly +h .
+L.,-(x.)ifm_u_,’ds + =L () [Aw,’Aw,"ds
n "

with the local truncation error —R} given in (3-22) (or (3—23)), where we note
-the appearance of cross derivative terms of £ in this scheme andvthese cross
terms, as we shall see, will eventually destroys the second order accuracy of

the Runge-Kutta method (2-55) when extended to the system case.

Now we prove the following theorem:
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Theorem 3.1. Let f be a smooth function satisfying a Lipshitz condition and
the conditions stated in (3—13). In addition, suppose that each component of
Z and each of its first and second partial dérivatives satisfy a Lipshitz condi-
tion with the same Lipshitz cdnstant. Then the scheme (3-25) is of second

order in the L, sense: there exists two constants Ag and C so that

|51 - 2t [F= o2

for all h < hy, provided that the initial condition is exactly imposed or accu-
rate to the second order in the L; sense. The constants C on depends the

global bounds for the function I and its partial derivatives to the fifth order.

Proof. First, let us define

2ta) =2(ta) + THL(z(ta)) - (3-30)
By combining (3-3) with (3.20) we see that the exact solution z(t) satisfies

Z(tne) = Z(ta) + by + RL(G(tn)) (3-31)

ta+h ty+h
*Lylz(tn)) [ ! s + gLa(@tn) [ dunitut ds — B,

where the remainder —f, is of order h?3 either in the L, or in the L, sense.
Let e, = X, —z(ty). Subtracting the above equation from the second equa-
tion in (3-29), we obtain immediately

Zner = £n + R(£(@)- £(@(t)) (3-32)

t”+h
+[ LX)~ 2i(z(ta)) ] { Aw,d ds

' tyth
¢ Lal)- L)) ] [ dufbu® os - R,

For the sake of brevity, we introduce the notations:



u=12(2)) - £((t)). (3-39)

and
Y s L£5060) ~LAz(t)) . up =L (X)) = La(z(ta)) .

where we may notice that there is no comma (which means differentiation) in
the subscripts for either v* or v},,. Then, recalling the definitions in (3-24),

we can write equation (3-32) in the (component) form:

e,y =ef +hut +ujgl + %-v}kﬂﬁ‘ ~RS.  (3-34)
To make an Lz norm analysié. we are led to square both sides of this

equation and take a sum over the index 1 on both sides of the resultant equai-

ity. This resultsin

Len l? = le,[2 + i [ R + ff) + Hupo)? ]

d L L
+2 ) [hefvi+ elvigi+ %e},u;kﬂl“ ] (3-35)
i=1

A ) 1 i
+ Z‘g[ hvtuigl + Ehv‘v}kﬂ)" + FJ}{Uj?kﬁ“‘!’jak ]

=2 3, [eARh + h'RY + ofg! RS + %u}kﬁj"f?,‘; 1+ ]Ral2

=

In all, there are fifteen terms on the right hand side of the above equation to
be estimated. However, by the nonanticipating property, the expectations of

the 6, 8** and 10** terms are zero.

Therefore, we need only to deal with the remaining twelve terms. Let
each component of £ and its partial derivatives up to second order (£ ;, £ ji)
satisfy the Lipschitz condition:

lg(z) —gw) =L lz -yl (3-36)
where g can be any one of the functions stated above. Now consider
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18- 2(ta)l = 1K= 2(ta)+ TALLUG)= L ()] (W

< - z(ta)l+ THLILK) - L&) = (1+ 2VERL)en
Then the second and the third term on the right hand side of (3-35) can be

estimated respectively as:

ELfIhz(v‘)2 < dh2L?F| @, - g (ta)I? < dRL3(1 + -;-«/E'hL)2 sz . (3-38)
=1
and |

E(L up/)] = ES lof 60 = ES Wt JELE0] (aa9)

; E[i(‘u};u;g)]' 'é‘hadj‘jg = %};35[2(.”;3)2]
=1 5

< Lnta2e P [Elenl?] = Larth® Elenl?
i=1

The analysis of the fourth term is somewhat complicated. Consider the

expression:

. . py . k s -
B[S, (o971 = BLS (s vhn, o 1979)],
It one‘index (of ji k1, j2, k2) appears singly, then the expectation of the
corresponding term is zero. This observation leads us to consider the follow-

ing four cases:

() ji=k)=jz=kz thereared possibilities and in this case
E[g’l"xﬂj?“s] = E[oigii] = %h‘*

(i) §,= k,# j2= k2 there are d(d—1) possibilities and we have
B[ = VBT = Lt

(iii) j,= j2# k= k2 there are d(d~1) possibilities and we have

J18y oS Kay kel = 14
E[¢'y ]-E[ﬂ"!ﬂ’]—gh.



(iv) j,= ka# k;= jz this case is completely the same as the case (iii).
All the above calculations can be found in the appendix 4. With these resuits,
the expectation of the fourth term can be estimated as:

E[ﬁl‘”},ﬁ”}ﬂ“’ tiglete)] (3-40)

: | .
sd| Zd(g+2 Had-1) ] hL2E e, |2 = -l%dsh‘LzE!lg,.ﬂz-

We estimate the fifth and the seventh term by applying the Cauchy-

Schwartz inequality in the following way:

L
2

P 1
sif et =g (B Eor| @

< hE|len |- VEL(1+ %\/HhL)ﬂg,.iJ

< VIRL(1+ %vzmwg,,az

and

B[S (etufo™)] = B[S (etup)]8(5%) = B[S (eduf)] Latom (3-42)

i=1

m;]:-

& 1§ S eiud | |

==

s{i[(i@m AE wh L7

The estimation of the ninth term on the right side of (3-35) is similar to

}s %d\/?h.ZLE'ﬂenﬂz .

that of the seventh term. The resuit is

B[S, (rutulys™)] = h-EX (vl Th%e ] (3-43)
i=1 |
- %_hs.g[zui-u}j] < %d\/a‘hst(u- é—/EhL)EIEnia-
I
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Now we estimate the last five terms, each of which contains the factor
—BEn-the local truncation error. Hence, to estimate these terms, the expres-
sion of =R, either in (3-22) or in (3-28) will be used.

Let us start by considering the expectation of ~Ry (see (3-22)).
Remember that those terms in which the components of Aw appears with odd

power (the 1%, 4** and 8" term) will vanish after taking expectations.

All the expectations in (3-22) of remaining terms can be easily evaluated

except the second before last term in which we need to consider two cases:
(i) j.k,l,m are all equal: there are d possibilities,

(ii) j.k.l,m are equal in pairs, but are not all equal: there are d(d—1) possi-

bilities. Then, by a simple calculation, we find

' | o 1
-E[R]= & [ RIS A S GRS S g8 | (344
1 1 1 i pd
+E | S haf T 5hO6 + ‘ézhaf‘gkf’f"]
1 1 RSl 1o i . 1l,s 4
*E | g 5 Ularh+ 50 T Ul 51| + 009

where all functions’ value are evaluated at z(¢,). Finishing the arithmetic by
letting ~R% = h34%, where M} is a stochastic quantity of order A® in the L,

sense or in the L, sense, we have
1 ' 1
B[] = Bl Sr4raro+ S0 rystut 13 1% rs ] (3-45)
8 12,5, 8 x=1
1 32 $ gie 1 st gier, 1 i : 1 i
+E[ A3y fhali+ oSS+ LY+ 550 L et O(R) ]
8" & 24 24 & 72

With this result, we can now estirmate the eleventh and twelfth term on the

right hand side of (3-35) as:



~E[S (e4RD] = B[S (ehird)] | (346)
< %‘{ g1hLE[ i (2)’] + &' LROE( i (M%)Z] J
i=1 i=1

< %-[s,hLE’ng,,ﬂz + s{’L"‘B?h’]

and
-5 30 R8) ] = hELE (' 11)] (3-47)

[ » ]
< é—l £1dh?L3(1+ ZhL)Elenl? + £, B RS ]
where £, is an appropriate positive number and

Bf = sup E[i(M,i)"']

=1

Now we estimate the thirteenth term —vjg/ #; on the right hand side of
(3-35). Replacing —R} by its expression in (3-23), we find that only the 1%,
4% and 7* term will remain after taking expectations. The only difficult
point is evaluating the expectation of the 7%* term in which two cases need tb
be considered: (i) all four dummy indexes are the same or (ii) they are equal

in pairs. The result is

~E[vi! RE] = E[ufrYy f 3] ghl6™ + E[ujsur”) tndei (3-48)

1 o 1 . 1 )
+ E—E[iv; Y R3] + =6—£.‘[32v} 5,*-5-113] + E[v} O(h%)]
Jj=1 J »k

. d
= [i W [ghLr 3+ 215t + L el + own}

i=

= h3E[ 3 il ]

i=1
where M}, = h™3g7 R} is a stochastic quantity of order A% in the L, or L sense.

Then we have the estimate:



~£T 3o/ i1 1 = SB[ ufita] (3-49)

< Lod 2L BT (0})2] + Les'LdPRIE(T (M)
2 ‘J 2 ) {J‘

< ;—82hwn£alz + é_dzaz-lwazhﬁ

where, again, £, is an appropriate positive number and

B3 = SI’J‘p E[?j(M}n)zl

There are still two terms remain to be treated. From the above discus-
sion, we see that what really matters in a estimation is the order of the sto-
chastic quantity. Therefore for a much complicated term like vh9* RS, we
may set M}, = R~ R} And write

~ES (o R ] = A4 T [0 i ] (3-50)
since " is of order 2% and —R} is of order %2 and the expectations of a term

of order h*3 is zero. Hence, the expectation of the second last term on the

right hand side of (3-35) can be estimated as
| 1
—E[ uj0* Ry ] < St R3E [‘sz(u}k)z] + hSE [i;x(frf}m)zl ] (3-51)

< LdNUPElen|? + LhoBS?
where the first inequality is obtained by applying the Cauchy-Schwartz ine-
quality to the right hand side of (3-50) once and

B3 = sup E[ ) (Mn)?]
n iJj.k
The estimation of the last term: ]Rn|? can be done in a similar way,

Squaring both sides of the expression of R} in (3-28) and taking sum over the

index 1, we find:



P 1 ]
L&a1* = BL5 (RE] = "’SELE:% [F5768% + S 17 + G wo™T| + O(a)

<omgiriraeF+ BT ¢ Lo + 00

< Bp?hS+ O(r®) (3-52)
where the definition of Bg?, similar to those of B¢, 5% and B%, is clear from
the last inequality.

To complete the proof of theorem 3.1, we neeci to summarize all the esti-
mates that have been made in the above. Taking into account all the
coéflicients in (3-35) and éouect;ing the estimates from (3-36) to (3-52), we

obtain

[ ]
Ele, ., |2 = ll + GhL + %-Gz?h,sz + ;—Ggh,az.a + éGth‘L“]-ELe_,.ﬂz

+ B A% + O(h®) (3-53)

where

Gi=2Vd +¢,+ &3,

GR=2[2d +¢e,dL2+ %d\/ZL'l ]

G =6[pVp + %dL“ + %d\/&'[.'z +edvaL?],

Gt = 24 1a?+ Lazr-2 s Legep-2 Tg3s-2)

4 4 4 4! 48

and

B = (1 + El-lL-l)Blz + 83-1 Ldaszz + BRZ .

With this expression, if we choose £ = g, + £, so that G, is greater than G;, G,

Gs and G,. Then for equation (3—53), we have the following estimate:

Elensi|?< e®Y3 +Mogler |2 + B h% + O(h%) (3-54)
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An eleméntary calculation shows that the solution of this recursive relation is
given by

L,(2Vd+e) :
e -1 4 (2Vd + e)tnl 2 5 3-55
GVdraL 2t Eleol® + 0(a%)  (3-59)

Let £leg)? < C§ h*. By squaring both sides of the above inequality, we com-

E,enlzs

plete the proof of theorem 3.1 with

1

- _ B i evi+om _ 2 ,(2Vd +o)TL 2
C‘ EEIE, {(2ﬂ+s)[‘(e 1)+ C§ e +0(h)} .
From the proof, we see that the local truncation error of a numerical

scheme for solving equation (3-1) must be of order 223 or even higher in

order that the scheme itself be of order h%in the Lj éense,

Now we can explain why the theorem 2.1 does not generalize to a system
of stochastic differential equations. A natural extension of (2-55) to a sys-

temis -
Pi = Vgt - gt? (3-57)
G =X+ ThE(Xa) + VRS

1 ' .
Lin=Xo + Zh[ L@ + VER) + L(@a - VRE) ].
A simple analysis shows that the local truncation error of the above

scheme contains a term:
R¥fa(z) PLPE, j 2k (3-58)

which is of order h2? (in the L, sense, and thus destroys the second order
accuracy of the scheme (2-57) in the Lz sense. In other words, we may say
that the appearance of the cross derivative terms of f make the scheme

(3-57) fail to be a second order method in the L, sense.



3.3 Runge—Kutta Methods of order One and Half

In this section, we will extend the results in section 3.5 to the system
case. We need only to interpret the schemes in section 2.5 in vector nota-

tion. Consider the family of Runge-Kutta methods:
8 =Ko+ SAL(K) + kVRE  (a59)
Q=Ko+ LX) +IVRE
X=X + 8w +h[af (@) +0L£(Q) ]
where a +b =l ak +bl=1and ak?+b2=3 In particuler, we will
prove |

Theorem 3.2. Let f be a smooth function satisfying the condition (3-13).
In addition, assume that every component f! of £ satisfies a Lipshitz condi-

tion with the same Lipshitz constant. Then the following scheme
@ =X + ZHE(K) (3-60)
. 1 3 ,
G =Xo + LK) + SVRE

Kosr =Ko + Bow + Sh[£(@) +2L(2)]

is of order !9 in the L, sense ( see (0-4) or theorem 3.1 for the definition ).

Proof. The proof is very similar to that of Theorem 2.2 in Chapter 2 except
that we need to use the summation convention. The first step is to figure out

the local truncation error of scheme (2-64). Let us define

Cg(ta) =Z(ta) + ThL(t)) + SVEE . (3-61)

The local truncation error of scheme (3-84) is defined in the equation



7n

Z(tne)) =2(ta) + bar + TA[L@@(tn)) + 2L () 1+ Th . (362)

To make an error analysis, let us carry out the following expansion of

.L(g'(tn )):

RPUG(t)) = he¥(@(ta)+ SVEE) (3-63)

l ) . . ' ’ ..
= he'(@(ta)) + h 2152t ))E? + Th3riu(z(t))E'E* + O 7)

‘1\+h 5
= hf4@(t)) + Shr(a(t)) [ sl ds + Trrrha(ta)E7 " + 0 7).
‘ﬂ

Replacing £{q'(¢a)) in (3-62) by the above expression, we obtain (in com-
ponent form) .
24 tn 1) = 2%(tn) + Aaw® + RS (g(tn)) (3-64)

ity +h 5

* ) [ o ds v TN - 00 + T

- Comparing the above expression with (3-27) and recalling that ~f%, = {—R}}

5
is of order A2, we arrive at

thth 5
. 1 . 3 . o 2
Ta' = 57 l(z(ta)) [ bwitwt ds = A% lu(z(t))78* + O(h?) (3-65)
n .
_As in t.he scalar case, the main fact about T,'.‘ is that its expectation is of
order h3® despite of the appearance of the cross terms. The expectations of
the cross terms are zero because of the independence between any two com-

ponents of a (multi-dimensional) Wiener process. In fact,

E[T3'] = L8[zt )] $17%6% - 202 B[ (2 (t))] 56 + O(%)  (3-66)

1 g
= %h’-E’[ _}fl 1is(a(t)) 1 = ThEL jilff,-,(z(tn)) 1+ 0(r®) = R3E[M,}]
j= =
where M, is an quantity of order k% in the L, sense. Let ef = zi(t,) — Xi.

Subtracting the third equation in (3-60) from (3-62), we have (in component



form)

el,, = e} + %—h vt + T (3-67)

where we define

v =us, +2u
and

vaa =L a(t)) = 14 &) .

upz = g (tn) - 14(&)
Squaring equation (3-87) and taking sum over the index i, we obtain

lenuil® = Lenl® + ZnBlekui] + T2B @ty (3-68)

+2 3 [T+ 2 Bt + L.
t=1 i=1
Our analysis is based upon the estimation of the expectations of the

terms on the right hand side of (3-88). Consider v} defined above and apply
the Lipshitz conditions on f; then

E[(aP1s E[ (va.)? + 4vg vha + 4(vn2)° 1< 9 L2E]en]?.  (3-69)

Using this fact and the Cauchy-Schwartz inequality on the right hand side of
(3-88), for the fist and second term, we find

i=1

R2E[ S (u)?] < ORZE( 3. L¥len|? ] SO AR2LEle, P (3-70)
i=1 ’

and

n3lokud] < AL (5 (4 BIR AN F1<avanLElenl.  (a71)
=1 i=t =1
Now note that the local truncation error T, appears in the last three terms on

the right hand side of (3—68). Recall the nonanticipating property of the

solution z(¢,). Using the fact in (3-88) to the term i [ei 7a'] and the arith-
=1



metic inequality 2:a-b< a? + b2, we find

B[ STt 1 = A3E] Sethyt ]< -é—s,hLE‘Le,,ﬂz +O(r%). (372
i=1 i=1 :

The same trick is also applied to the last two terms on the right hand
side of (3-68), we have

B[RS uiTt ] h[g-ezL"Ei (Wi)? + -;—ez‘lwi(r,;*‘)q
i=1 {=1 &
< e nLEle, 12 + O(hY)  em
- since E[é (T.Y)?] = B} T.|? is of order h* in the L, sense as we shall see in a
i=1 .

2

moment. Now we give an estimate of the leading terms of ] T, [% which dom-

inates the error of the scheme (3-60). Recalling the definition of ¥7% in (3-

24), we can write (3-65) in the form:

5
Ta = h2 £zt ) 307 - 676%] + 0(n?). (3-74)
The remark at the end of section 3.3 and the independence‘between g1, o

and . (z(ts)) enable us to write
E[T2' P = L[ £ (@(ta))(™ - S-676%) F + O(rY) (3-75)
< Lnr E[D(f 4zt FELR@* - S-876%)2] + 0(nY)
4 ik s ik 2
s Lns (B2 B[ 0 - 76 2] + 0(n%)
" FeElg 2 |
where [B}]? = max E[3(f%)?]. In the last inequality of (3-75), let us con-
Py ir

sider two cases:

(i) j = k: there are d possibilities,

E'[ »ﬁ'jk _ g_ﬁ-jﬁ'g ]2 = E[ (1"}1‘)2 - 3.15'1'13'1'2 + %(5'1)4 ] (3-76)
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7 _ 13,91 _ 1
‘ 12 3 4 3 30
(ii) j =k : there are d(d—1) possibilities, then
B[ o% - Sg7g* * = B[ (87) - 397 1g* + 2(g1)(g*)? ] (3-77)
- L_g2 .9 1.1 _ 1
8 15 4 3 3 60 °

Substituting the results in (3-78) and (3-77) into (3-75), and summing over the

index i, we obtain

EILP <[ 1554 + gesd(d-1) 1Bfat = S=d(d+1)BR*  (3-78)

where Bf = i[B} . Collecting the results from (3-70)-(3-73) and (3-78), and
{=1
substituting them into (3-68), we obtain

Eleaul?<[ 1+ (VT + £)hL + d%h%L2 ]| Elen|? + E%-d"‘(dﬂ)h* + O(h%)
where ¢ = £, + £2. Solving the recursive inequality (3=79), we arrive at the

following estimate:

e(z d +e)t L

2. 1 .
Bleal*s 55 GV v oL

=L y2(d+1)B3R% + e®7F ML Lo 2 + O(nY),

Using the initial condition: Eley}? < €% A? in (3-80), we then complete the
proof of theorem 3.2 with

VE[e, |2 < C hlS (3-81)

where

i 8(2ﬁ #c)n_l
C= su . —
rek, | 240 (@ VA f o)l

From this expression we see that, if the initial error is sufficiently small,

L
d%(d+1)BF + CF e@ V3 +OTL 4 O(n) }2

i.e., Cg is a very small number, then for h = Ei_O_N .00417, scheme (2-60) is

practically of order h? (i.e. second order) in the Lj sense.



3.4 Heuristic Second Order Runge—Kutta Methods

As we know from the discussion of section 3.2 that there are substantial
difficulties in deriving second order Runge-Kutta method in the L, sense.
From the practical point of view, Lz convergence is a strong requirement, and

one may be content with a convergence in a weaker sense.

In this section, we will éonsider the accuracy of numerical scbel;nes in
the weak sense (defined in (0-14)). Let ¢ be a smooth functional satisfying
the Lipshitz condition: |

lo(z) ~ o) s Lz —ul. z.u<cr?. (3-82)

L, convergence implies weak convergence as can be seen from the following:
|E¢(£(tn)) "E'S"(.&t)l SL,.E'I]gaHSL,vEI_Lenﬂ (3-83)

where the second inequality is obtained by applying the Cauchy-Schwartz ine-
quality once. Moreover, from (3—83), we see that the rate of weak conver-
gence is not less than that of Lz convergence, and we may expect a faster

convergence in the weak sense.

The purpose of this section is to consider the rate of convergence of
numerical schemes in the weak sense in the hope that the Runge-Kutta
methods of second order in that sense can be derived based on the Taylor

series method (3-29).
Consider the (d-dimensional) stochastic differential equation:
dz = f(z)dt +duy, 0st<T. (3-84)

Let us write down the second order (in the L; sense) Taylor series method (3-

29) in terms of 7 and W* defined in (3-24):



@ =Ko+ (X)), (3-85)
Xaur =X + Do + RE(@) + L5600 + Lt (X)0% |
Define -
By=X +h L(&) (3-86)
~ and ' ' -

Sa = buw + £50)E + SL 5 (K )OH (3-87)
then A '
Xne1=Bn + Sn.

Given a smooth functional ¢, consider
¢(Xn+1) = 9(Ba + Sn) (3-88)
= 9(Bn) + 245(Bn) S}

+ %fp,jg(ﬁn) (Anw + LBV [Bns + £ mB™ ]

. 8
* %“’M&MN’AW“A"‘”‘ * 'é%.fmm(ﬁn)a,\wm,,wmnw‘anw" + O(h?) .

Note that the increment A, w is i.ndepéndent of the solution z(t,) before and
at time £, (the nonanticipating property); we can thus carry out the calcula-

tion:

Elo(a )] = ELp(Ba)] + B 5o (Ba) G471 ™ ] (3-89)
+ ZBL o (Ba) [RE* + THALAL50E™ + fonsi6™)] ]

1 1
+ EE[ 2 Piul(Ba) 01+ ZTE[t¢.jjjj(ﬁal)'3hz+° 2 ¢ 4k (Ba)-3h%] + O(RY)
ary j=1 §rk
where the function £ and its partial derivatives are evaluated at {,. Finish-
ing the calculation by using the property of 6 (ie., 6= 1, if j= k; = 0, oth-
erwise) and combining the summations on the second last term on the right

hand side, we obtain



Elp )] = Blo(Ba)] + 54*EL Z04(Ea)f % ] (3-90)

1 1
+ ‘2"5["2 2i(Bn)* R2 Y oS hr5]+ g‘hzﬁ'[ Yesme(Bn) 1+ O(R®) .
i=1 jkd ' ik
In obtaining the expression in (3-89) (or (3-90)), we use the following facts:

(i): Anw? is a Gaussian random variable with mean 0 and variance h;
(@) E[F1=0. E[fdcw*]= Sh%6* and E[o*]= Lh*e* .

Note that 3* (deflned in (3-24)) is not a Gaussian random variable. These
conditions can be satisfied by a single Gaussian random variable, if in the

second equation of (3-85), we make the substitutions:

o] ). ) fve] o] = fpvee].
where {£¢/] is a set of k independent Gaussian random variable with mean 0

and variance 1. In other words, if we define

L

Sa=VEL+ ShTL (B + h7L (B¢ (3-92)

™ J.-H

and
Xne1 =B8n +5a (3-93)
where B, is defined in (3-86) (note that we use the same X,), thén
E[p(Xa+1)] = E[¢(Bn + Sa)] | - (3-94)
= Elp(a)] + $A°5T $0s (81 he ] |
+ RS 0 B) + A2 Do s 4741+ 35 T e (B) 1+ 00K

which has exact the same form as (3-80). Comparing (3-94) with (3—90), we

find that they differ from each other with an amount of order 23,i.e.,

|Eol) - Ep() mA® (3-95)
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With the substitutions in (3-91), we now consider the numerical scheme
1 ' '
Q=X+ gh.l(&.). (3-98)

.
- 1 b . .
L =Xa+ VEE+RL(@) + ShEL ;K + It Al
which is obtained from (3—85) by making the substitutions (3—-91). In the
below we show that the local error {or one-step error) of the scheme (3-98) is

of order A3 in the weak sense.
For clarity, let ¥, .1, Z.+; denote the numerical solutions in (3-85) and

(3-98) at t,+; with the exact value ¥, = Z, = z(¢,) imposed at ¢,. Consider

Z(ta) =Xn + Bn .

By a argument similar to that in the derivation of (3-90), we have

p(z(tn)) = ¢(Tn + Fn)

= E[¢(Xa) + ¢y (%) RL] + O(RY)
= E[p(Xa)] + O(rS),
that is, A
| Ep(z(tn+1)) — E¢(Yn+1)| ™ RE (3-97)

for a sufficiently smooth functional ¢ satisfying the Lipshitz condition (3-82).
Combining the results in (3-95) and (3-97), we obtain

| Ep(z(tner) = E¢(Zns1)| S | E@(Z(tns1)) — E(Lnsi)l (3-98)
+ |E¢(far)) = E¢(Znwr)| A +h3 ~AI,
which means exactly that the local error of the scheme (3-98) is of order A3

in the weak sense. A class of Runge-Kutta methods with the same accuracy

as (3-98) can be designed as follows:



G =Ko+ %h.t%) +EVEE ) ~ (3-99)
& =Ko + FhL(Xa) + IVEL

Xonr =X +VEL+R[a-£(Q) + b-£(&) ]

where

a+b=1, ak+bl =%-, ak?+bi2=

NIH

(3-100)

On the other hand, one may notice that the conditions (i) and (ii) follow-
ing (3-90) are also satisfied by the scheme (3-60), as can be seen from (3064)
if in (3-85) we make the following substitution: |

[191"‘} - {%hzﬂ"ﬂ"‘]. ' (3-101)

Since we have shown that one-step error of the scheme (3-96) is of order A2

in the weak sense, we malke the following

Conjecture. Under the assumptions of theorem 3.1, the family of schemes
(3-59) and the family (3-99) are of order h? in the weak sense defined in (0-14)

or (3-83), provided that the initial error is of order A2 in the L, sense.

Remark. The difficulty in proving this conjecture lies in the fact that there

is no obvious way to 'link’ the errors at successive time steps. Since we have

proved that the family of schemes (3-59) are of order l% it seems conceiv-

able that they are of order 2 in the weak sense. Indeed, computational
results (in Chapter 5) show that these two families have about the same order
accuracy in the weak sense.

L

In particular, if we choose a rational solution of (3-100): @ = b = > k=0,

l=1, we haveﬁ



G=X+ %h.t(&.) (3-102)

@ =X+ The (%) + VEE

Lin=X +VEL+ Inl£(@) + 2(@) ]
Furthermore, if we replace the substitutions in (3-91) by

1,5, 1 % | 1 1 '
i} — 2 2,j —_ 2 k

Y [gde+ o], o) v« b}
where, again, 7 = {7} is a set of d independent Gaussian random variables

with mean 0 and variance 1; and define

Nlu

5= VELr ZhRL(BE+ Jonf] + Soh?L u(Ba) 28 64+ nint], (3-109)

Xon1 =B, + 51:
then the the difference between E[¢(X;.,)] {(in (3-90)) and. Ele(Xn+1)] is only

of order A*, But then we have to sample two R%¢-valued random variables §£}

and {n}.
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Chapter 4
Variance Reduction Techniques

In this chapter we consider variance reduction techniques for evaluating
the expectations of functionals of solutions of stochastic diﬁ'erential equa-
tions. Intrinsically, the numerical evaluation of these expectationé involves a
sampling process, i.e., Monte-Carlo computation. Being a finite process,
Monte-Carlo computation creates statistical errors due to imperfect sam-
pling. The errors depends heavily on how one chooses the estimators for the
expectations.

Our goal is to construct estimators with a small variance. In the first
section we consider Chorin's variance reduction technique for evaluating
expectations of functionals of Gaussian random variables. This technique
exploits specific properties of the Hermite polynomials. In section 2 we
introduce the concept of partial variance reduction and show how io imple-.
ment Chorin's techniques for functionals of solutions of stochastic differential

equations.

4.1 Variance Reduction Using Hermite Polynomials——Chorin's Estimator

Consider a random function g(¢) = g(¢!,--,¢2) where £ = (¢!,---.4%) is an
R3-valued Gaussian random variable with distribution N(0, /;) (see (1-40)).

The expectation of g(¢) is

-3 -Lye
Elg®]=Elg(¢ 4] =(2m) 2 fg(u)e 2 du (4-1)

where u = (u!,---, u%), du = dul--du® and we recall that |u] is the 2-norm of

u in the R? space. The Gaussian random variable £ can be readily sampled



(see chapter 5). The usual Monte-Carlo estimate of £[g(£)] is given by

Bl @1= 878 960 = N5 g (e ) (&2
where i ¢f ] are drawn from the Gaussian dxstnbutmn with mean 0 and vari-
ance 1. The standard deviation of this estimate, whxch y1e1ds the order of

magnitude of error, is

L
N-%[E[ga(ﬁ)]—[Eg(t)]zlz o - @9

-L
which is proportional to N 2

» thus may not be acceptable for reasonable size
N. Hence, an estimate of £[g(¢)] with smaller standard deviation is needed

to achieve more accuracy of Monte-Carlo computation.

In [8] Chorin proposed a method to obtain an estimator for E[g(¢)] with
substantial reduction in standard deviation. The main idea is to use finite
Hermite series of the goal function g to design an estimator of control variate
type for E[g(£)]. The set of Hermite polynomials

T -2 -2z
H,.(z)=-(7%—e2£-’-:-‘-e 2. n=12 -, (4-4)

form a family of orthonormal functions in the space L;(R) of square integr-

-2
able functions deflned on R with respect to the weight —\/12=n_e 2. Thatis,
32
(27?) 2 Zf H.(2)Hn (z)e 2 dz =6, (4-5)

The first few of them are He(z) = 1, H,(z)=z, H2=V—1,_e-(zz— 1),

Hs(z) = —\}E(z’- 3z). In fact, Hermite polynomials satisfy the recursive

relation:
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Hpar(2) = ZomreHa(2) = \/ —2hy(2) (+8)

In general, let m = (m!,--, m%) with m/ nonnegative integers and denote

lm| =m! + - + m%, We define the product polynomials:

Ha = Hopy .. ty() = Ho(ul) - H g(u?). (4-7)
Then the family of functions

H,.m)-e'é"“"’. 0s|m| <= (4-8)

form a complete orthonormal set in the space Ly(R?%) of all square integrable

1 1

Fiul
functions defined on R¢ with respect to the weight (27) 3e 2 ., For a

more detailed analysis of the family of Hermite polynomials Hg. see Chorin

- Hup
[8], Hitzl and Maitz [19]. Assuming that the function g(z)e 2  liesin the

space Lz(R?) we can expand it in terms of the orthonormal functions in (4-8):

14,42
—',uzl

gw)e 7" = ENNATY (4-9)

.Le.,
glu) = § Qm Ao ()
where

1

om = B9 O] = @n) [ Hawow e ¥ ay @10
b;cause of the orthonormality:
E[Ha(O)Hn (O] = E[H,1 . na®H s na®)] =22 = gniml. - ndmd
We also notice that (i): ag = E[g (¢)], and recall that (ii): E[Hn(£)] =0. Con-

sider

mislal

E[gw]=bn+5‘[y(£)- Y bm m(ﬁ} (4-11)
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which is valid for any set of numbers §{ b5 {. In actual computation, we will
take § by J to be § am }. The success of Chorin’s variance reduction lies in
the fact that the identity does not imply that Monte-Carlo estimatiors on the

both sides of it will have the same amount of standard deviation.

‘Chorin’s idea is to make a first sampling to determine the coefficients by,
in (4-11) according to the formula (4-10), then a second sampling to simulate
the Gaussian variables that appear in the argument of g and the polynomials

Hpn = H,1 .. ma on the right hand side of (4-11). Specifically, we have

an= L5 {Hm(&) g(ﬁ)] (s12)

=
and
PR Ny - o ']
Elg(®)] =a, + N;[g(i.) _vlmém amHm(E)} (4-13)

where £; = { ¢} } and 2; = § 2} | are two sets of independent samples drawn
from the Gaussian distribution with mean 0 and variance 1. The formulae (4-
12) and (4-13) are called Chorin's estimator for £[g(¢)]. In order to see the

standard deviation of Chorin’s estimator, let us define the remainder

ra(w)=g@) - Y op Ha(w) (4-14)

Imisinl

the L, norm of which is given by [E]7a|?%. Then Chorin's estimator has the

following standard deviation:

_ |
N %‘[E'irglzlz + Nlo(Clnl) : (4-15)

where C is constant depending on the function g. For suﬂicienﬁly smooth g
‘and |p| = O(N¥), £>0; (4-15) is of order O(N~(1-9) since [E|r,|?}# is relatively
small. Indeed, Maltz and Hitzl [19] showed that Chorin estimator has the

, exact standard deviation:



_1 ' N _
N 2‘[Elr,;ll%!v-‘ D -o.flz (4-186)
lmlsla|

‘where 02 is the variance of ay in (4-12) with N =1, i.e., the single sample

variance in the Monte-Carlo estimate of ay,.
4.2 Pﬁrtial Variance Reduction in Numerical Simulation

Let ¢ be a sufficiently smooth functional; we consider how to implement
Chorin’s variance reduction technique to evaluate accurately the expectation
E[¢(Xs)] where X, is the numerical solution of equation (3-1) with some

numerical method. To be specific, we consider the scheme (3—99):
&=+ thri) (4-17)
8 =X + ShE(X) + VR
Zan=Xo + VEL + ZhIL(@) + £(20)].

We recall that the R%-valued random variables § £, | have the Gaussian distri-

bution N(Q, [;) and are independent of each other. For convenience in later

discussion, we deflne

Yo = (@) +£(@)] =012 (4-18)
We note that X,, thus ¢(X,) is a function of the n independent R%-valued
Gaussian random variables { £ | since we implement the scheme (4-17) n

times. That is, ¢(X,) is a function of n-d (_scalar) Gaussian random variables.

Hence, it is not acceptable even if the variance technique considered in
the previous section is applied only once to all these Gaussian variables to
evaluate expectation [¢(X;)]. since then we need to apply Chorin's estimator

with respect to n-d Gaussian random variables.



'I'herefofe. we wish to do only partial variance reduction, i.e., to deter-
mine a proper expression for E[p(Xn+1)] so that we have some dis-
tinguished ¢ in tms expressmn and apply Chorin's variance reduction tech-

nique to them only

Strategy A  We observe that, in terms of the definition in (4-18)

p(Xn) = ¢(Xn-1 + VREn + R1R) (4-19)

= oo + VE[fo+ - + fari] + Ao + - + Yona))

from which we see that the accumulating random variable £5 + - + £,-, play
a major role in determing ¢(X,) while the individual L, 0k < n -1 plays
only minor role. Hence, our first .strateg)" is to apply Chorin’s estimator to
evaluate E[¢(X,)] at each time step with respect to £ + - + £, -, only.

The main drawbacks with strategy A are (i): variance reduction is only
dqne with respect to £5 + -+ + £, and (ii): there is no connection between
any two successive evaluations E[¢(X,)] and E[¢(X,)] for any fixed n. To
improve variance reduction technique and ‘'link* E[p(X,)] at each time step,

we write first

p(Xns1) = [p(&ner) = 2(X)] + - + [0(Kes1) — p(Xe)] + - + 9(Xo) - (4-20)

For each piece of ¢(X+)) — ¢(Xi). we carry out the Taylor expansion of
¢(Xx +1) about X, by using the definition in (4-18):

plnn) 9 = 95V ALY (+21)

3
Shopale) ¢ ¢ + O(R?)

where £ = § £ ] is the random. variable sampled at the k® time st.é'p.
Removing the first term on the right hand side to the left and denoting the

resultant expression by 9, we have
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&y = p(XKes1) = o(Xe) = VR 9 (X)) €] ' (4-22)

1 —
=hpy (X)W + E""?’.jl(Xk) gl el + 0(h?).
Note the independence of X, from £,. Taking expectations on both sides of
the first equality in (4-22) and summing the results over & from 0 to n—i. we

have

ELp(%)] = E[#n_,] + - + E[8,] + E[p(Xo)] (4-23)

which is equivalent to

Elp(%)] = E(p(&i)] + El8n-a] .  (a29)

Thus we obtain a recursive relation between E[¢(X,)] and E[¢(Xn+)]. From
the second equality of,(4—22). we see that, for each fixed k, £, play a leading
role in determing $,. And the same argument as in A shows that
£y + -+ + £, play a major role in determing ¢ ;(X.) and ¢ (Xe). Hence we

have

Strategy B.  We evaluate the expectation E[¢(X,)] by applying Chorin’s esti-
mator to evaluate E[$,_,] in (4-24) with respect to £, and 7_1;(50 + o+ gay)

(nomalized) where $,., is computed according to first equality in (4-22), and
adding the result to E[¢(X,-1)] which is obtained from the previous (the

(n-1)*) time step.

Intuitively, we would expect that strategy B give a better result than
strategy A in the evaluation of E[¢(X,)] since we apply Chorin's estimator to
more Gaussian random variables in the t'orfner case. However, it is not clear
how the standard deviation, at each time step, of the estimate in stratégy B
will accumulate and whether this accumulation will destroy the accuracy of

the variance reduction. These questions are answered in theorem 1 in the



below.

Lemma4.1. Let 2y, 25, .zn ben randdrh variables, then their variances

satisfy the following relation
RS [ R SUE S - ) | (4-25)

By applying the Cauchy-Schwartz inequality to the right hand side of the
above inequality, we find

O rrg, SN[ 0% + o + 0%, ] ‘ : (4-26)

From the second equality in (4-22), we may write &, = h g for each fixed
k, where g, is of order A% Then from formula (4—16) we see that the stan-

dard deviation SO, of Chorin's estimator for each £[$, ] is of order

L
2

_1
h-SD, =h-N 2| Elma?+ N Y o (4-27)
lmi<ial

for some finite m's, where_r_; is defined similar as in (4—14) with g = g, and
we suppress the dependence of 7, on k. Let the maximum of (4-27) over k

be SD, for some kg, then by lemma 1, we have the bound n-hSD,, = t5-SDg,

for the estimate in strategy B Hence we have

Theorem 4.1. The standard deviations of the estimates in strategy Bwith N
samplings are of the form in (4-16) which is proportional to £, at the n® step,
i.e., the piecewise application of Chorin's variance reduction techniqﬁe to

each summand in (4-23) produces a standard deviation as in (4-16).

This theorem tells us that, for short time, ¢, is' small and the strategy B
produces a very small standard deviation which is proportional to £, and

SDg, This is consistent with computed results as we shall see in next
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chapter. Of course, the main disadvantage of strategy B is that we need to
evaluate the first order partial derivatives of ¢ as can be seen in (4-22) and

(4-23).



Chapter 5
Nunmerical Implementation -

In order to compare the accuracy between various numerical schemes -
and support the conjecture made in section 4 of Chaptef 3, in this chapter,

we present computational results for the following schemes:

Euler’'s Method |
a1 = Xn + 8w +RL(X)

Method A (3-102)

=X+ ALK

@ =X+ ZhE(X) + VEE

Lo =Xo +VEL+ [ £(@) + £(&) ]
Method B (3-60)

@ =X + THE(K)

@ =X+ ght(X) + 3VEE

Low =X + 8w + SA[£(2) +2£(@) ]

To simulate the Gaussian random variables A, and § in Euler’'s method

and Method B, we write

1 V3
baw=VRE, £=o£+ 20
where £ (as in Method B) and 7 are two independent R¢-valued Gaussian vari--
ables with distribution N(0, /3). These expressions give the exact correlation"

between Apw and §. Then £ and 7 are sampled according to the Box-Muller
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formula

g = cos(2ml.‘){—210g('u")}z—

1
7t = sin(zm‘)[—mog(v‘)] 2

where » and v are two independent R%-valued uniform distribution over
[o. 1]4.
The first computational example which we present here is the 2 x 2 sys-
tem of linear equations:
dz) = —zpdt + dw,

. (i’tz = —zldt + d‘UJz
with zero initial data z,(0) = z,(0) = 0. Adding these two equations togéther
and by a simple calculation, we find »
ta+h
z(t) +zelt) = [ @7 d(wils) + wels)

which is a Gaussian random variable with mean 0 and variance 1— exp(— 2t).

We consider the expectation: E[cos(z,(¢)+ z2(¢))] which has the exact value:

exp(- 3{1- %))
The second computational example is the 2 x 2 system of nonlinear eqﬁa—
tions:
dz, = e~ "1 7 dt 4 quw,
dz, = e~ F1*edgy o dw,

with the zero initial data z; = zg(O) =0. Bya calculation, we can find

Ly th
a(81(‘)* zp(e) _ 1+ f e'(“x(’) +wa(s)) ds

tn



(z4(8) + z5(¢ ))]

We consider the expectation: £[e which has the exact value

3exp(t) -2
For each scheme we compute the expectations in two ways: (i): the usual
Monte-Carlo estimator and (ii): Chorin’s estimator in Strategy B of Chapter 4.
The errors depend on the stepsize (At) and t.he: number of sirnu}atién (N).
The situation is shown in table 5.1-6. In eachﬁ l!able. we list the results at ihree

different time: 0.2, 0.4 and 0.8.

For each scheme, in the first subcolumn, we list the errb'rs of computed
solution obtained by using usual Monte-Carlo estimators and the second
column for Chorin’'s estimators. Especially, in table 5.2 and 5.5, we also list

the standard deviations of the computed solutions.

From these tables, we can see that Chorin's estimators can precisely
show that Euler’s method is a first order method. For methods B and C,
Chorin's estimators can roughly show that they are second order method.
But, to eflect variance reduction for many step runs, we must ix;lcrease the

number of simulations N.



ExA: t=0.2 N=2,500 T=0.8480

At Euler Sch. A Sch. B

0.2000 | -3.16-2 | -2.92-2 | 5.504 | 2.55-3 | 2.15-4 | 2.21-3

0.1000 | -1.94-2 | -1.36-2 | 4.82-3 | 1.02-3 | -4.94-3 | 2.95+4¢

0.0500 | -1.40-2 | -8.80-3 | -8.97-3 | 3.02-4 | -7.12-3 | -2.20¢

-10.0250 | -1.07-2 | -3.23-3 | -7.31-3 | 9.88-4 | -7.34-3 | -5.02-5

0.0125 | -3.47-2 |-1.85-3 | 1.24-3.| 3.01-4 | -1.22-3 | -2.624

ExA: t=04 N=2500 T=0.7593

At Euler Sch. A Sch.B

|0.2000 | 4.76-2 | -3.92-2 | 4.353 | 4.50-3 | -6.15-3 | 1.87-3

0.1000 | -2.95-2 | -1.89-2 | 9.74-3 | -1.41-3 | -1.03-2 | -2.16+4

0.0500 | -1.98-2 | -9.11-3 | -1.04-2 | 2.92-3 | -1.05-2 | -2.924¢

0.0250 | -9.794 | -6.08-3 | 3.34-3 | 2.28-4 | 3.29-3 | -1.17-3

0.0125 | 5.91-4 | -3.41-3 | 2.74-3 | 5814 | 2.78-3 | -1.25-3,

ExA: t=0.8 N=2,500 T=0.8710

At Euler Sch. A Sch. B

0.2000 | -5.54-2 ~4.23-2 | -9.30-3 | 5.56-3 | -1.15-2 | 1.38-3

0.1000 | -3.22-2 | -2.08-2 | -1.12-2 | 7.13-3 | -1.18-2 | -1.04-3

0.0500 | -2.87-3 | -1.68-2 | 6.84-3 | -1.53-3 | 6.49-3 | -7.07-3

0.0250 | 7.574 | -9.82-3 | 5.44-3 | -1.36-3 | 5.55-3 | -4.89-3

0.0125 | 3.02-3 | -8.37-3 | 5.35-3 | -2.82-3 | 5.37-3 | -6.15-3

Table 5.1



ExA: t=0.2 N=10,000 T =0.8480
At Euler Sch. A Sch. B
0.2000 | -2.852 | -2.92-2 | 3.07-3| 2.50-3| 2773 | 2.31-3
£2.33-3 1 $2.16-4 1 +1.97-3 1 +1.80-4 | +1.96.3 H-1.67-4 |
0.1000 | -1.50-2 | -1.36-2 | -8.87-4 | 6.50~4 | -7.32-4 | 5.26-4
42.14-3 | +5.15-4 | £2.01-3 | £3.79-4 | £1.97-3 [+3.86-4
0.0500 | -8.48-3 | -8.88-3 | -1.70-3 | 4.42¢ | -1.70-3 | 3.28-5
+2.09-3 | $#2.21-4 | £2.11-3 | +1.33-4 | £2.01-3 |+1.89-4
0.0250 | -3.87-3 | -3.07-3 | -8.034 | 5.76-¢ | -5.74-4 | 1.834
+2.05-3 |+1.734 | +1.968-3 | £2.234 | +2.01-3 [+1.80-4
0.0125 | 68.154 | -1.58-3 | 2.20-3 | -8.12-5 | 2.22-3 | 4.48-5
+2.00-3 | £+2.25-4 | +2.02-3 | £1.99-4 | +£1.98-3 +2.26-4|
ExA: t=0.4 N=10,000 T =0.7593
. - "~ |
At Euler Sch. A Sch. B
0.2000 | 4.14-2'| -3.88-2 | 1.28-3 | 3.76-3 | 8.83-4 | 2.88-3
+3.39-3 [+£1.55-3 | £2.07-2 | +4.86-3 | +1.18-2 [+2.24-3
0.1000 | -210-2 | -1.87-2 | -1.73-3 | -1.70-3 | -1.85-3 | 3.05<4
4+3.22-3 | £7.56-4 | £2.93-3 | +1.168-3 | +2.96-3 | #1.17-3
0.0500 | -9.18-3 | -8.52-3 | -1.204 | 1.78-3 | -8.40-5 | 4.80-4
-] #3.14-3 | £5.00-4 | $#2.08-3 | #3.974 | +3.04-3 | +5.484
0.0250 | -7.544 | 4.52-3 | 3.81-3 | -3.03-4 | 3.87-3 | -8.60-5
+3.03-3 | £7.08-4 | +2.03-3 | +7.024 | +2.98-3 | +7.074
0.0125 | 5.87-4 | -222-3 | 2733 | -1.20-3 | 2.71-3 | -2.87-5
| +3.01-3 | +7.82-4 | +2.83-3 | £7.18-4 | +2.98-3 | +7.58-4
ExA t=08 N=10,000 T=0.8710
__
At Euler Sch. A Sch. B
0.2000 | 4.40-2 | 4202 | 1.14-3 | 5973 ] 1.98-2 | 1.80-2
+4.28-3 | #2.29-3 {+3.868-3 | +1.08-3 |+3.88-3 | +1.79-3
6.1000 | -1.79-2 | -1.88-2 | 2291 | 4.87-3 | 2.29-3 | 1.253
+4.13-3 | £1.07-3 [£3.70-3 | £1.21-3 |£3.94-4 | £1.21-3}
0.0500 | 4.57-3 | -1.08-2 | 5.13-3 | -1.03-3 | 5.26-3 | -9.18-4
+3.91-3 | £1.92-3 [+3.868-3 | #1.18-3 |+3.86-3 | +1.89-3
0.02%50 | -1.00-3 | -5.24-3 | 3.75-3 | 2.92-3 | 3.89-3 | -3.57-4
+3.91-3 | £2.44-3 [+3.59-3 | £2.00-3 |+3.87-3 | +2.11-3
0.0128 | 1.57-3 | -2.38-3 | 3.94-3 | -5.90-3 | 3.94-3 | 5.74-5
+3.87-3 | £2.20-3 [£3.75-3 | £2.17-3 1+3.85-3 | +2.18-3

Table 5.2
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ExA: t=0.2 N=40,000 T =0.8480
0.2000 | -292-2 | 2.93-2 | 5.08-3 | 2.38-3 | 2.02-3 | 1.853
0.1000 | -1.25-2 | -1.35-2 | 1.80-3 | 6.85-4 | 1.51-3 | 5.98-4
0.0500 | -5.31-3 -6.59-5 1.34-2 | -6.90-6 | 1.31-3 | 9.78-5
0.0250 | 2.55-3 | -3.30-3 | 6.86-¢ | -2.03-5 | 6.67-4 | -8.21-5
0.0125 117-3 | 1.87-3 | 2753 | -2.644 2.74-3 8.53-5
ExA: t=04 N=40,000 T= 0.7583
At Euler . Sch. A | Sch. B
0.2000 | -3.70-2 | -3.86-2 | 5.08-3 | 3.84-3 | 4.40-3 | 2.99-3
0.1000 | -1.83-2 | -1.85-2 .aes-a 2764 | 2.475 | 5184
0.0500 | -7.733 | -9.283 | 1313 | -1.51-4 | 1.23-3 -2.65-4
o.ozso. -2.66-4 | ~4.68-3 | 4.11-3 | -8.19-4 | 4.10-3 | -2.40-4
0.0125 | -3.59-3 | -1.94-3 | -1.39-3 | -2.44-4 | -1.40-3 | 2.36-¢
ExA: t=0.é N =40,000 T=0.6710
At Edler Sch. A Sch.B |
0.2000 | -3.86-2 | 4.18-2 | 8.11-3 | 2.30-3 | 5.11-3 | 2.48-3
0.1000 | -1.80-2 | -2.13-2 | 2.42-3 | -5.88-4 | 2.13-3 | -8.374
0.0500 | -4.47-3 | -1.07-2 | 5.27-3 | -2.20-3 | 5.13-3 | -7.99-¢
0.0250 | -7.33-3 | -3.723 | -248-3 -2.27-4 -2.53-3 | 1.08-3
0.0125 | -3.02-3 | -1.73-3 | -8.39-4 | -1.46-4 | -6.34-4 | B8.47-4

Table 5.3




ExB: t=0.2 N=2500 T=1.8840

At Euler Sch. A 'Seh.B
0.2000 | 1.83-1 | 1.82-1 | 8.01-3 | -8.48-3 | 7.50-3 | -8.88-3
0.1000 | 8.03-2 | 7.40-2 | 6.36-3 | 4.574 | 8.85-3 | 1.03-3
0.0500 | 3.73-2 | 2952 | 1.88-2 -5.98-4" 3.2743 -3.79-3|
0.0250 | 8.47-3 | -1.322 | -9.54-3 | -B.414 | -9.51-3 -1.77-344
0.0125 | -1.10-2 | 5783 | -L.B7-2 | 1.464 | -L86-2 -:3.'9@-4 .

Ex.B: t=04 N=2500 T=2.4750

O e T e

At Euler Sch. A Sch. B
0.2000 | 3.72-1 3.5?-1 9.77-3 -7.61-3-_ 1.2‘1-2 ~4.94-3
0.1000 | 1.92-1 | 1.44-1 . 3.52-2 | -8.00-3 | 3.61-2 | -8.96-3
0.0500 | 9.30-2 | 5.96-2 | -2.40-2 | -4.74-3 | -5.80-2 | -5.81-3
0.0250 | 4.92-2 | 2.53-2 | -3.38-2 | 2.81-3 | -3.35-2 | -2.02-3
0.0125 | -1.81-2 | 9.28-3 | -3.23-2 | -5.75-4 | -3.23-2 | -2.22-3

ExB: t=0.8 N=2,500 T=4.68770

At Euler Sch. A | Sch. B
0.2000 | 8.92-2 | 7. 29—1 7.20-2 | -5.14-2 | 8.12-2 | -5.24-2
0.1000 | 2.30-1 | 2.63-1 -1.'0"}-1 -3.64-2 | -1.05-1 | -5.78-2
0T 0500 | 9.37-2 | 1.18-1 | -8.50-2 | -4.04-3 | -6.26-2 | -1.40-2
0.0250 | 1.23-2 | 4.80-2 | -8.40-2 | 1.20-3 -6.55-2 -7.31-3
0.0125 | -2.28-2 | 1.42-2 | -8.01-2 | -1.51-3 | -5.98-2 | -8.76-3

Table 5.4
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ExB: t=0.2 N=10,000 T=1.6840

Euler

" Sch. A

Sch. B

0.2000

1.88-1
+1.30-2

1.58-1
+3.24-4

-3.27-3
+9.89-3

-1.10-2
+8.79-3

-3.13-3
+1.00-2

-1.08-2
£9.49-4

0.1000

7.72-3
+1.13-2

8.96-2
+1.19-3

3.45-3
+1.00-2

-3.45-3
+1.01-3

3.14-3
+1.01-2

-3.83-3
+8.35-4

0.0500

3.97-2
+1.07-2

3.29-2
+9.63-4

8.01-3
+9.97-3

<7.434
+8,36-4

5.37-3
+1.02-2

-1. 1&3
*2.20‘4

0.0250

2.12-2
+1.04-2

1.82-2
+1.17-3

4.90-3
+9.87-3

-1.48-3
+9.48-4

4.77-3
+1.01-2

-2.368-4
+1.12-3

0.0125

1.73-2
+1.03-2

7.91-3
+1.22-3

9.25-3
+9.82-3

-3.35+4
+9.33-4

9.17-3
+1.02-2

3.14-4

ExB: t=0.4 N=10,000 T=2.4750

0 5 e e e —————————————— i

At Euler Sch. A Sch. B
0.2000 | 3.52-1 | 3.34-1 | -7.70-3 | -2.30-2 | -7.94-3
+2.78-2 |£7.51-3 +2.11-2 | +4.83-3 | +2,18-2 | +5.84-3
0.1000 | 1.87-1 | 1.45-1 | 1.23-2 | -5.81-3 | 1.17-2{ -7.97-3
+2.44-2 +3.50-2 | +£1.47-2 |+1.33-3 | +1.868-2 | +3.32-3
0.0500 | 7.80-2 | 8.99-2 | 7.18:3 | 1.02-3 ]| 8.79-3 | -1.41-3
" 142.268-2 |+£4.71-3 14+1.87-3 | £4.33-3 | +2.18-2 | +4.44-3
0.0250 | 5.12-2 | 3.39-2 1.70-2 | -1.38-3 1.88-2 | -1.08-3
42 .25-2 [+4.85-3 | +£1.86-2 | $3.13-3 | +2.20-2 | +4.72-3
0.0125 | 6.97-3 | 1.81-2 | -8.50-3 | -2.03-3 | 9.48-3 | -8.97-4
+2.21-2 1+4.79-3 {£2.02-2 | £4.17-3 | +2.19-2 | +4.73-3
ExB: t=0.8 N=10,000 T =4.8770
At Euler Sch. A Sch. B
0.2000 8.18-1 | 7.45-1 8.83-3 | -3.95-2 | 4.90-3 | -5.24-2
+6.34-2 +2.85-2 |+5.18-2 | +2,11-2 | +6.70-2 | #2.12-2
0.1000 3.468-2 | 3.37-1 1.01-3 { -3.41-3 | -1.04-3 1.17-2
+6.78-2 |+2.88-2 | +5.20-2 | £2.01-2 | +8.33-2 | £2.41-2
0.0500 | 1.98-1 | 1.82-1 | 3.79-2 | -8.96-3 | 3.81-2°| -4.15-3
+8.92-2 {+2.85-2 tS.BGi +2.07-2 | +68.81-2 | £2.47-2 ‘
0.0250 | 5.12-2 | 7.38-2 | -2.568-2 | -1.19-2 | -2.54-2 | ~4.86-3
+6.88-2 |+2.53-2 | £5.83-2 | #2.13-2 | £8.74-2 | +2.47-2
0.0125 | -8.27-3 | 3.28-2 | 4.38-2 | -1.07-2 | -4.37-2 2.01-3
+68.11-2 |$£2.53-2 [ +5.58-2 | +2.03-2 | £8.44-2 | £2.50-2

Table 5.5

£1.20-3|

2232|




ExB: t=0.2 N=40,000 T=1.6840
At Euler - Sch. A . Sch. B

0.2000 1.52-1 | 1.57-1 | -1.56-2 | -1.21-2 | -1.35-2 | -1.01-2
0.1000 | 6.38-2 { 7.08-2 | 8.73-3 | -2.27-3 | -8.30-3 | -1.80-3
0.0500 | 2.88-2 | 3.28-2 | 4.74-3 | -6.21-4 | -4.60-3 | -4.42-3
0.0250 | 5.82-3 | 1.56-2 | -1.03-2 | 1.05-4 | -1.03-2 | 1.07-4
0.0125 | -8.08-3 | 7.46-3 -1.58—2 2.23-4 | -1.58-2 | 3.90-4 ‘

ExB: t=0.4 N=40,000 T=2.4750

 — e I |
At Euler Sch. A Sch. B

0.2000 3.21-1 3.38-1 | -3.28-2 | -1.87-2 | -2.95-2 | -1.51-2
0.1000 1.37-1 | 1.46-1 -.1.43-2 -5.26-5 -1.34-2 | 4.11-3
0.0500 | 4.98—2 6.81-2 | -2.00-2 | 3.01-4 | -1.98-2 | 3.61-4
0.0250 | -2.48-3 | 3.20-2 | -3.56-2 | 3.38-4 | -3.54-2 | 1.18-3
0.0125 | -7.12-3 | 1.48-2 | -1.85-2 | 5.70-4 | -1.65-2 1.01-3

ExB: t=0.8 N=40,000 T = 4.6770
- At Euler Sch. A Sch. B
0.2000 | 7.24-1 | 7.50-1 | -6.80-2 | -3.968-2 | -6.00-2 | -3.14-2
0.1000 | 3.05-1 | 3.40-1 | -3.77-2 | 6.35-3 | -3.61-2 | 6.81-3
0.0500 | 4.88-2 | 1.51-1 | -1.07-1 | 6.87-4 | -1.06-1 | 4.80-3
0.0250 | 3.75-2 | 6.83-2 | -3.90-2 | 1.54-3 | -3.89-2 | 4.06-3
0.0125 | -1.95-2 | 2.30-2 | -5.68-2 | -5.85-4¢ | -5.67-2 | 5.34-4

Table 5.8
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Appendix A

. In this appendix, v:ve will carry out the two calculations that leads to

'(2_—474-) and (2-77) respectively. To do this, weAneed'the following lemma.

LemmaA 1l . Let ¢ and 7 are two Gaussian random variables with mean 0

and variance 1 and have the correlation coefficient p. Then the random vari-

able ¢ = ———(1 n—-pt)is Gaussian with mean 0 and variance 1, independent
of &.

Proof. From the given condition, we know that the joint probability density

of £ and 7 is given by

IE.n(u'”)=Z‘_7!—;?_exP[ 2—(1——)<u2 2 + v7)] (a-1)

1 . .
let z = v—pu). We see that the Jacobian of the transformation
s (v=pu)

(v, v)=—(u,z)is|J| =V 1- 2. Hence, the exponential part of the den-
sity (a-1) becomes

-1
2(1-p%)

= - E-(Té;-zs-[ u2 - 2ou (pu+ Vi-p2z) + (pu+ Vl.—.pzz)z]

(u?-20uv+ v?)

Therefore, the joint probability density of { and ¢ is:
1 1
S ecwz) = V1S enfuw) = gl = gue 23]

which implies that ¢ is Gaussian with mean 0 and variance 1 and is indepen-

dent from £. This completes the proof.
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Corollary 1. Under the assumptiori of the theorem 1 but that £ and 7 have

variances of and o¢f respectively, we have E[¢*n]=E[tn*]=0 and

E[¢*n®] = of-0f-(1+ 20%) . | .

LemmaA2  The random variables g.7.6" have Gaussian distributions with :
. . 1 2 1 .

mean 0. Their variances are 3 ' 15 and 50 respectively.

Proof. Since these random variables are nothing but linear combination of
independent increments of the Wiener process, they are Gaussian w:ith mean

0. By the definition of 8, we have

tnth iy +h
E[f?] = { f Aw, Mwy drds

thth
=2 [
n

]

A
=2 [[rads=2
(VI

E[Aw, Aw, ] drds

TN

(o] .'JrH
[*)
il
m;-‘
w

which is equivalent to saying that the variance of f§ is %— Note that we

changed the domain of integration in the last integral. The second variance
can be found in a similar way. The evaluation of the third variance is a little
more complicated. We have

tythi +A 3,3,

E[azjéz { { { { M, Ay dr drods \ds;

ty +h o +h 24 32 .
= 7[ ff min(r ~tn,r2—ty ) dr drads ds,
i
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Loth 33,38,
[ [ [ min(r,~t,,ra~t,) dradr ds,ds,

4

A8y | Se3y ' spTp - ' .
=2ff1[f[rs ,drz+ffr, drdry } ds,ds,
00 [0r,
r
A% 1
=2-{{ f(slrg-rg)dr2+f§r dra | dsads,
}

1 1,5
3}*?3}452431 ‘2‘0""

]
o
ot >

)

1. o2
{{=s 53~
0{{2 92

“which says that the variance of § is —1— This completes the proof of the

20
lemma 2.
Now we begin to carry out the details of (2~74) and (2-77). A careful
look at the calculation in (2-31) and of ¥, of (2—24) shows that everything is
straightforward except the expectation of § 28. Remember that § is a Gaus-

sian variable; we can employ the technique of the lemnma 1, since

ath
E[p*3] = { E[p%0w,?] ds . (a-2)
Let o, and 03(s) denote the standard deviations of § and Aw, respectively.
Then the correlation coeflicient p(s) of 8 and Aw, can be calculated in
tath

01 02(s)p(s) = E[fdw,] = ,‘{ E[bw, bwy] dr

tath
{(r-t,.)dr +f (s—,.)ds = (s =tp)h = —(s—,‘)2

Then by corollary 1 of lemma 1, from (a-2), we have
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tath

E[p*] = { [ Fhi(s=t)[1+ 2/=>(S)2]] (a-3)

211 2 1 13
- 34 0.{c2p2_ o8 4 = 5
{{-—sahi-Z{sh, sm-—s4 }}ds Eo—h

which is equivalent to saying that E[g%9] = 3

0 In the same way, we have

E[¥?] = 1—-2- thus we arrive at

‘ 2g7= 13 212 1
Lemma A 3. ﬁ[ﬂ 9] = 30 and E[9%] = 15

Now we come to carry out the calculation in (2-53). The techniques are
quite similar to those used in the above. By using lerﬁma 1, 2 and corollary 1
of lemma 1 and noting dependences between random variables, one is able to

show that

E[(2Y - )] = B[4~ 47+ Fl =4 -4 2v 2= 2 (a9)

Now we evaluate the expectation of (7— 389+ 28°)2. There is no sub-
stantial difference from the above in the calculation except that more work is

needed. The result is

E[ (- 38%+28%)2]
= E[7?] + 9E[8%8%] + 4E[B®] - 6E[TB ] + 4E[T83] — 12E[*S]
9 25 5 301 271 7 _ 11
5 v tYy %20 tY2s0 " ¥ 10 T 20 (a-5)

We collect the resuits from (a-3) to (a-5) in the following

Lemma A4, E[2y- B8R = 2= and E[T-3f9+28%R = z—é'é?

Finally, to illustrate the role that independence play in the calculation,

we evaluate the expectation £[77?] in (a-5). For convenience, we will calculate

PE
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tath _
E[7?]. Recall the definition of 7 = f Aw,3 ds. We have
‘ﬂ

thth i, th

El#1= [ [ £ by 33 dsds; . (a8

+thsy
2 ‘f E[ Aw, 3Aw, 3 ] ds,ds,,

r

in which we rewrite
A, FAw, 3 = [ (Aw,,— Aw, ) + Aw, JPAw, 3

= (Aw,,— Ay YPAw® + 3-(Aw, ~ Aw, PAwsd + 3-(Auwy - By Jows + Awd

Then the independence between Aw; and Aw,,~ Aw,, shows that e'xpectationsv
of the first and third terms on the right hand side of the above identity are
zero. Thus from (a-6), we are led to ‘

‘,r"'l’a

E[P?1=2 [ [[3 E[(8ws,~ bw, Awd ] + E[Mw, O] ds ds,
' |

h 82 y s
=2'ff[ 9(s2— s,)sf + 15sf ] ds,ds, =2-f{3$§ + %sf} dsz = g-hs'
00 0
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