
Lawrence Berkeley National Laboratory
Recent Work

Title
NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

Permalink
https://escholarship.org/uc/item/9bf6n5hr

Author
Chang, C.-C.

Publication Date
1985-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bf6n5hr
https://escholarship.org
http://www.cdlib.org/


LBL-20290~. ~ 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA RrJ.!i~e:!~ 

Physics Division 

Mathematics Department 

NUMERICAL SOLUTION OF STOCHASTIC 
DIFFERENTIAL EQUATIONS 

c.-c. Chang 
(Ph.D. Thesis) 

USRA~y ANI! 
~UMENTS SECTION 

-- '}., ~J!'>~ 
TWO-WEEK LOAN Ct:f ·~~, "t' 

J;p «~ .. August 1985 

I 

This is a Library Circulating Cbpy·-:' · 

which may be borrowed for two "wet, 

"-~-~~ "-·-·----- -~--~---··-·----· 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 

~ 
f[ 
~) 
c;, 
QJ 

!") ..S) 

yo 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-20290 

~ NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS 

•. t 

Chien-Cheng Chang1 

Department of Mathematics 
and 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Ph.D. Thesis 

August 1985 

1Supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. 
Department of Energy under contract DE-AC03-76SF00098. 



1 

Numerical Solution of Stochastic :oorerential Equations 

Cbien-aumc CbaDg 

We present numerical methods of high order accuracy for solving sto­

chastic di..t!erential equations with constant di..t!usion coefficients. Our 

analysis is performed in the La norm. which has the advantage of e$biting 

the non-anticipating property of stochastic di..t!erential equations. 

For the scalar case, a second order method of Runge-Kutta type is 

derived. and in the case of a system. a similar method of order 1~ is 

presented. By a method of Runge-Kutta type. we mean a one-step method 

where one need$ only to evaluate the function involved at several di..t!erent 

points. 

For the case of a system, we also present a method of Taylor series type. 

in which the derivatives of the function involved appear explicitly. The 

analysis of this method in turn leads us to conjecture that the method of 

order 1}2 mentioned above and another simpler method of Runge-Kutta type 

have a second order accuracy in a weak sense. 

Finally, variance reduction techniques for evaluating the expectations of 

functionals of the solution are discussed, and numerical examples are 

presented. 
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1 

lntrodu.cti.on 

In this thesis, we consider the following d-d.imensional stochastic 

ditferential equation 

d:r: = L(t ~) d.t + II d~ • 0 ~ t ~ T (0-1) 

where 11 :<!!: 0 is a constant, .L(t ~)is a sufficiently smooth function satisfying a 

Lipshitz condition with respect to t, and lBl (t :<!!: 0) is a Wiener process 

(Brownian motion). This equation can be interpreted either in Ito's sense or 

in Stratonovich's sense (see chapter 1). 

Equation (Q-1) occurs in the study of several physical phenomena. e.g., 

the motion of a particle in the collision theory of chemical reactions (Benson 

[2]). in blood clotting (Fogelson [11]), in stellar dynamics (Chandrasekhar 

[ 4]), signal modeling in communication systems (Jazwinski [15]), and the sto­

chastic behavior of tluid particles in turbulence theory ( Chorin [7]). 

By introducing t as a tlrst component of~. we can simplify equation (0-1) 

as the d +!-dimensional equation 

dJL = g.{u) d.t + d3l, , 0 ~ t ~ T 

with.U = (t.~) . .Y. = {0, ~) and,g, = (1, .!~)). Hence it suffices to consider 

~ =t.~) d.t + lldll:le I 0~ t ~ T. (0-2) 

We develop and analyze high order accurate methods of constructing sample 

solutions of equation (Q-2) and we further consider variance reduction tech-

niques for evaluating accurately expectations of functionals of these sample 

solutions. 

Most of the methods derived in this thesis are of Runge-Kutta type, i.e., 

one-step method where one need only, at each time step, to evaluate the 
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function L at several points without involving its derivatives. For the sake of 

brevity, if a scheme is of Runge-Kutta type, we call it a Runge-Kutta method. 

Consider the partition of the interval [0, T]: 

rr = c o ..... t,.+l = t" +h,· ... t, = r > . {0-3) 

Let E denote the expectation and 1·1 denote the 2-norm in -W' space. 

We say that a numerical scheme is of order h~' in the 4, sense, if there exists 

a constant C such that, for sufficiently small h, 

1 

[ E)J;. - ~(tn)l'l )i" ~ C hP (0-4) 

where .&. is the numerical solution and ~(tn) is the exact solution of the 

ditferential equation (0-2) attn. Futhermore, a stochastic quantity.!. is said 

to be of order h~' in the 4, sense, if 

1 

(ELd" }i'" is of ordsr h~' . (0-5) 

The difficulty in solving equation {0-2) arises from the nondifferentiability of 

the Wiener process ~. To take a close look at this difficulty, we define the 

variable: 

x(t) =~(t)- v~, 0 ~ t ~ T 

Equation (0-2) reduces then to an infinite set of ordinary differential equa-

tions: 

~=LW.. + V3&lt). 0~ t ~ T (0-6) 

one for each sample path of the Wiener process ~. The theory of ordinary 

ditferential equations assures the existence of the solutions y ( t) of these 

equations, which are only once dit!erentiable as functions of t. 

Since the error estimates of high order accurate methods involve high 

order derivatives of .JL(t ), it is not clear how one is able to obtain high order 

- l.i 
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accurate methods for solving equations (0-6), or equation {0-2). 

In fact, the fundamental question that must be answered before one 

proceeds to analyze numerical methods for solving stochastic ditrerential 

equation is: how does one measure the accuracy of numerical methods, i.e~. in 

which norm should one deal with convergence? 

We are dealing with stochastic schemes, and it is natural to consider the 

accuracy of numerical methods only in a probabilistic senses. However, 

cillferent definitions of convergence lead to ditrerent error estimates: Error 

estimates in the Lt norm lead to what are apparantly the simplest estimates, 

and indeed, L 1 analysis is a very useful tool when one is dealing with the local 

truncation error of numerical methods {see section 2.1 and 3.1). However, 

L 1 analysis fails to exhibit one very important effect: the nonanticipating pro­

perty of the solution of the stochastic differential equation. 

It will turn out that the analysis in the £2 norm does exibit the effect of 

the nonanticipating property. £2 convergence implies £ 1 convergence by 

Liapunov's inequality. For an example of the contrast between the L1 and 

the £2 analysis and an explanation why the latter is superior to the former, we 

refer to section 2.2. 

Let us start considering numerical methods for solving the stochastic 

cillferential equation (0-2). The most popular methods are splitting schemes 

(see Chorin [8,9], Franklin [ 12]). For these schemes, at each time step, one 

approximates. for each sample path of the Wiener process, the differential 

equation 

d:r: = 1. ( t ~> cf.t (0-7) 

by a method for solving ordinary differential equations, then one adds to the 

approximate solution an independent increment of the Wiener process 11 ~. 
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The simplest example of a splitting scheme is Euler's method which is given 

by 

~+1 = .&. + hJ_(k) + v ~l&l (0-8) 

where ~l&l ~ L\wc,.+l - L\wc,.. One more example of a splitting scheme, based 

on mid-point rule, is 

(0-9) 

This type of splitting schemes is only first order accurate in the La sense no 

matter how accurately one solves the nonrandom part (0~7) (see section 2.2). 

To obtain more accurate numerical schemes, McShane [17,18] has 

extended the idea of Runge-Kutta methods to stochastic differential equation. 

For equation (D-2), he proposed 

.£. = k + hJ_(L) + v L\nl&l (D-10} 

.&.+1 = .&. + v L\,.w + ~[ J_~) + L~) ] . 
However, this scheme has the same accuracy as the splitting scheme men-

tioned above (see also section 2.2). 

The ~ajor difference between McShane's approach and that of splitting 

schemes is that the former interlaces the function J_ and the Wiener process 

while the latter does. not. By interlacing, we mean that the function L and 

the Wiener process 1&l& interact with each other at each time step. 

The main purpose of this thesis is to present more accurate numerical 

methods for solving the stochastic differential equation (0-2). For the scalar 

case, we derive a second order (in the £2 sense) Runge-Kutta method. How­

ever, this method does not give a second order accuracy when extended to a 

system. For the case of a system, we derive a Runge-Kutta method of order 
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h 1 ·~ in the £2 sense. We also develop a Runge-Kutta method which computer 

experiments show to have second order accuracy, but in a ditferent sense 

{defined below). 

All our analyses are based on a Taylor expansion of the solution, followed 

by the derivation of· an approximation formula whose Taylor expa~ion coin­

cides to some order with the expansion of the solution. This device is similar 

to the method used by Ghorin [5] in the approximation of Wiener integrals. 

We start by considering the scalar case of the splitting scheme {0:-9) and 

find the following Runge-Kutta method (in {2-55)): 

P,. = v ....;.,· - fJ'2 (Q-11) 

~ = x;. + ~/(~) + v ..JTr{f 

1 . 
.x;_+l = .x;_ + v Anw + ~[I ( Q,. + ...JTiP,. ) + f ( Q,. - ...JTiP,.) ] 

where the random variables {1 and .,. are integrals of increments of the Wiener 

process~ (see {2-44)). We prove that scheme (D-11) has second order accu­

racy in the £ 2 sense. However, the scheme (o-11) fails to maintain its accu-

racy when extended to a system of stochastic dltferential equations. 

For the case of a system, we prove that the following numerical scheme 

is of order h l.:5 in the £ 2 sensE7 {see (2-83) and (3-64)): 

~ =k + ~.!Ck) (Q-12} 

~ =L + ~L(k) + ~ v...JTid_ 

k+l = k + v Anw + ~ [ L(JJ:n) + 2·L~)] 
where .d. = ~p'i J is a set of independent Gaussian random variables and each 

of. them has mean 0 and variance ~. Scheme (0-10) is a particular case of 

the one-parameter family of numerical schemes with the same accuracy: 



.Q.. = k + ~1.~) + k 11..J1i..d. 

~ : ~ + ~1.~) + l II ..Jii.§. 

&.+1 = k + 116n~ + h[ a.t ~) + bf. ~)] 

where the parameters satisfies the conditions: 

a. + b = 1 • a. ·k + b ·l = 1 • a. ·k2 + b ·l2 = ~ . 

Scheme {0-12) corresponds to the parameter values, 

1 2 3 
r~=- b=- k=O l=-3 • 3 • • 2 . 

6 

{Q.o 13) 

For the case of a system of stochastic ditterential equations, we also 

develop the the following scheme of Runge-Kutta type {see {3-59)): 

_g.=~+ ~1.~) (o-14) 

~ : ~ + ~1.~) + II "fi.L 

~+1 : ~ + II VJi.t, + ~ ( 1 ( ~ ) + 1. ( ~) ) 
where .L = t ~~ f is a set of Gaussian variables and each of them has mean 0 and 

v~iance 1. The computer experiments {in chapter 5) show that scheme (0-

14) is a second order method, but in a slightly weaker sense, i.e., there exists 

. a constant C such that, for sufficiently small h, 

(0-15) 

where 'IJ is a sufficiently smooth functional satisfying a Lipshitz condition. I 

have been not able to provide a proof that scheme (0-~4) has second order 

accuracy in the sense of {Q-15). For a heuristic discussion of the accuracy 

and the principle underlying scheme (0-14), see section 3.4. One may notice 

that in schemes {0-11), {0-12) and {Q-14), the function 1. and the Wiener pro-

cess ~ are interlaced. 

; . ... 
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All the schemes discussed above lend themselves to Monte-Carlo sam­

pling with etfective variance reduction. The main purpose of variance reduc­

tion is to substantially increase the accuracy of computed expectations of 

functionals of sample solutions with onlY: a small increase in computational 

etfort. We discuss, in chapter 4, several variance reduction techniques which 

are suitable for stochastic ditferential equations. We introduce the concept 

of partial variance reduction and show how to implement the technique based 

on Hermite polynomial expansions, as suggested by Chorin [6]. Finally, we 

present some computational results and compare them with analytical solu­

tions. 

This thesis is organized as follows. In Chapter 1, we give the needed pro­

bability background. In Chapter 2, we derive Runge-Kutta methods for scalar 

stochastic ditferential equations. In Chapter 3, we derive Runge-Kutta 

methods for a system of stochastic ditferential equations. Chapter 4 is 

devoted to the study of techniques of variance reduction. Finally, in Chapter 

5, we present computational results. 
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Chapter 1 

Preliminary Probability Background 

In this chapter we develop the probabilistic tools needed for our work in 

later chapters and we follow closely the notations in Arnold [1]. We start by 

giving . various ·definitions of convergences · used most often in probability 

theory.· Let~ = fz 1,···. zliJ be an Rei-valued vector and I·~ denote the two 

1 

norm in the Rd space, I.=. I = [~ (xi )2] 2. 
i 

Convergence Concepts 

Let.;, and~. n ~ 1 be Ret-valued random variables defined on a probabil­

ity space (0. 11. P). Four basic convergence concepts are defined in the fol­

lowing: 

{l) If there exists exists a set N e: 11 of measure 0, such that, for CJ e: Nr:, the 

sequence of the ,L(c.J) e: Rd. converges to~(c.J) e: Rc~. th.en la:nJ is said to con­

verge certainly or with probability 1 to~. We write 

ac-lim.~ =~. 
"- (1-1) 

(ii) If, for every e > o; P[c.JI ~(c.J)- ~(CJ)I > e] _.,. 0, as n - ... oo, then ~J 

is said to converge stochastically or in probability to_*.. We write 

st-lim.~ =~. ,_ (1-2) 

(ill) If~ and~ lie in Lp, i.e., EkP' ~ oo and El= - ~~P - ... 0 , then ~ J is 

said to converge inpUl mean to~. We write 

(1-3) 
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(iv) Let F,. and F denote the distribution of ,L and~- If 

lim J g(z) dF,.(z) = J g(z) dF{z). 
n- R4 R4 

{1-4) 

for every real-valued continuous bounded function g defined on RrJ. Then the 

sequence t&a l is said to converge in distribution to~· 

These convergence concepts are related to each other in the following 

fashion: 

convergence in qlh mean 
,u, 

convergence in pelt. mean (p :s; q) 

.u. 
a.c. convergence => s.t. convergence =>convergence in dist. 

Conditional expectations. Let~ e: L 1 be a R"-valued random variable, and 

N C 11 be a sub-sigma-algebra of 11. There exists an N-measurable JJ. such 

that 

JJJ.dP=J~d.P. 
A A 

{1-5) 

which is assured by the Radon-Nikodynm theorem. We call.u. the conditional 

expectation of~ under the condition N and write 1L = E( ~IN ). 

Conditional Probabilities. The conditional probability P( A I N ) of an event 

A e: 11 under the condition N C II is defined by 

P( A I N ) = E( I_. I N ) (1-6) 

where lA is the indicator of the set A. Being a conditional expectation, a con­

ditional probability is a N-measurable function on 0. 

Stochastic processes 

Definition. Let I= (t0, T] nonempty index set and let {0, II. P) be a proba­

bility space. Then, a family of { ~. t e: (t0, T] ) of R"-valued random variables 
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is called a stochastic process {random process, random function) ·.'1\th param­

eter set (index set) I and state space Rtt. 

If {.~. t € [t0, T] ) is a stochastic process, then ~ ( .. ) is, for every fixed 

t € [t0, T]. a Rrl-valued random variable and, for every fixed"' € 0, ~-("') is a 

Rrl-valued function defined on I. It is called a sar..aple function (r~~zation, 

trajectory. path) of the stochastic process. 

One interesting question is how we can tell whether a process has con­

tinuous sample functions or not. A very simple criterion is given as follows: is 

Komolgorov' s criterion. Let { ~. t € [t0, T] ) be a stochastic process: if 

there exist three positive numbers p, q and r such that, for each t and s in 

[to. T], 

Ekt- & ~P ~ r I t- s l 1+q . {1-7) 

Then,~ possesses with probability 1 continuous sample functions. 

:Martingales. Let {0, 11. P) be a probability space, and { ~; t € [to. T] ) be 

a real-valued stochastic process on (0, 11, P). Let ( 11, ) denote an increasing 

family of sub-sigma-algebra of 11. i.e., 

». C 11, for t 0 ~ s ~ t s T. 

If..;, is 11, -measurable and integrable then the. pair ( ~, Me ) is called a mar-

tingale if 

E(.~ I :U.) =,a:. almost certa:inly (1-8) 

for all s and t in [ t 0, T]. where s ~ t. Martingales are an abstract presenta­

tion of the concept of frri:r game. As we shall see, Ito's stochastic integrals 

have the advantage of being martingales. 

In the following discussion, we shall assume that the state space R 11 is 

endowed with the sigma-algebra gJ of all Borel (measurable) sets. 
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:U:arkov processes Let {0, .II, P) be a probability space, a stochastic process 

(.;,, t e: [t 0, T] ) defined on it with state space RrJ is called a Markov process if 

it satisfies the f~llowing .Markov property: 

P(~ e:BIN[t0, s]) = P(.1:, e: Bl & ) almost certainly . {1-9) 

for t 0 ~ s ~ t ~ T and. B e: 11. ~here N([ t 0, s]) is the smaliest sub-sigma­

algebra of :U: with respect to which all the random variables~, t 0 ~ t ~ s are 

measurable. 

The Markov property states that: if the state of a system is known at a partie-

ular time, then the past information has no et!ect on our knowledge of the 

later development of the system. Some useful conditions equivalent to the 

Markov property are {see Arnold [1] pp. 29) 

{i) For t 0 ~ s ~ t ~ T and A e: N([t0, T]), 

P[ AIN([to. s])] = P( AI~), 

{ii) for t 0 ~ s ~ t ~ T and.JL N[t0, T]-measurable and integrable, 

E[.JLIN([to. s])] = E(.JLI & ) , 

{iii) for t 0 ~ s ~ t ~ u. ~ T, A e: N{[t0, s]) and B e: N{[u, T]), 

P( AnB I~ ) = P( A I ~ )· P( B I~ ) , 

{iv) for n ~ 1. t 0 ~ t 1 ~ ... ~ t" < t < T and B e: B'. 

P(~ e: B 1.;, 1, ···, ~ ) = P(.;, e: B I~") . 

{1-10) 

{1-11) 

{1-12) 

(1-13) 

Transition probabilities. Le~ ~, for 0 ~ t ~ T, be a Markov process and 

P(s, ,& , t, B) be the conditional distribution corresponding to the conditional 

probability P~ e: B I & ). Then P(s, ~. t, B) has the following properties: 

{i) For tlxed s ~ t and B e: B', the equality 

P(s.~. t, B)= P~ e:BI ~) 
holds with probability 1. 



(ii) P(s, .=,, t, ·)is a probability for fixed s ~ t and B e: B' . 

(iii) P(s, ·, t, B) is B' measurable for fixed s ~ t and B e: B' . 

{iv) the Cbapman-Komolgorov equation holds: 

P(s, ~. t, B) = f P(u, Jl, t, B)P(s ~ ,u, dJl) 
Rd. 

12 

(1-14) 

(1-14) 

We call the function P(s, ~. t, B) the transition probability of the Markov pro­

cess ~. In fact, any function P satisfying the properties (ii)-{iv) is called a 

transition probability function. 

Di.tl'usion processes A Rd -valued Markov process ~,. t 0 ~ t ~ T with almost 

certainly continuous sample functions is called a di.tfusion process if the tran­

sition probability P(s, ~. t, B) satisfies the following conditions: for 

s e: [t0, T), z e: Rd, and e > 0, {i) 

lim J P(s.~. t, dJl) = 0, 
'~ bt-.&l.>c 

(1-15) 

(ii) there exists a Rd-valued function .L(s, ~) such that 

lim J (u-~)P(s.~.t.dy.)=L(s.~). 
,.. jv.-.&1 s c 

(iii) .there exists a dxd matrix-valued function Ii.(s. ~) such that 

(1-17) 

where the superscript T denote the transpose. The function .L and ./l are 

called, respectively, the drift vector and ditfusion matrix of the ditrusion pro-

cess~. 

Wiener processes. Next we will discuss a remarkable Markov process, the 

Wiener process {or Brownian motion), which plays a fundamental role in in 

stochastic integrals and stochastic ditferential equations. 

.. -
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A R11-valued Wiener process or a Brownian motion is a stochastic process 

~ = !&!(t ), t :2!: 0 satisfying 

{i) 1&!{0) = 0' 

!&!{t x). !&!{fa)- !&!{t x) ... ·, !&!{tn)- !&!(tn-1) a.re independent; 

{ill) for s ~t.!&!(t)-!&!(s) has the normal distribution {0, (t-s)/11 ) 

where Ic~ is the ctxct identity matrix, l.e., it has the probability density: 

-!!.. [ -~11.- %~2 1 [2rr{t-s)] 2 exp = j. 
2(t- s) 

(1-18) 

The property {ii) states that a Wiener process has independent increments, 

and by {ill), the increments are stationary since the distribution of 

!&!{t)-!&!{s) depends only on t- s. We have 

Lemma 1.1. {i) A Wiener process~ is a Gaussian stochastic process with 

mean E0Ja) = 0. and covariance E(y,z. l&ll T] = [min {s, t) ]I~ 

{ii) If ~ is a Wiener process, the processes ~. c-1~2c{c ~ 0), and 

~+• -1B, {sis fixed) are also Wiener processes. 

Now let B, = B {!&!., 0 ~ s ~ t ), i.e., the smallest sub-sigma-algebra of 11 

with respect to which all the random variables!&!.. 0 ~ s ~ t are measurable. 

Then, for s ~ t, E( !&!c I B. ) = E ( l&lll !&!. ·) = !&!. , therefore, { l&ll, B, ) is a mar­

tingale. 

Since E(l~-1&!.14)= (d2+ 2d)(t -s)2, it follows from Komolgorov's criterion 

that there exists a version of a Wiener process with continuous sample func-

tions. We will use this version throughout this thesis. 

Even though almost all sample functions of a Wiener process are continu-

ous, they are nowhere dit!eri:mtiable. 
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Lemma 1.2. Let l!l& be a Wiener process; we have 

qm.-lim ~ !1&ll - ~ ~2 = t - s 
A,. -..a /;l;l , ·-· 

where qm. means quadratic mean, l t~c J is a partition of the interval [ s , t] and 

A,. =max (t~c- t~c_ 1) (see Arnold [1] pp. 49) 

By this lemma. we deduce from the following inequality 

that 

Ll~ -~ 1-... oo as A,._ ... oo 
Jc • :t-1 

with probability 1. This is equivalent to saying that almost every sample 

function of a Wiener process is of unbounded variation in a finite interval of 

time. 

Stochastic integrals 

Now we start to define the stochastic integral 

' .l.(t) = J .!i(s) d.1B. (1-19) 
Co 

where~ is a m.-dimensional Wiener process and £i is a d.xm-matrix valued 

c 
function .. Since l!l& is nowhere differentiable, the integral J Q(s) d.~ cannot 

Co 

be defined in the usual Lebesque Stieltjes sense. If G · = G( t) is absolutely 

continuous, we may define 

c 
.l.(t) =.!i(t)!d:l(t)- J d.c;}ss):!!l(s) d.s. 

Co 
(1-20) 

However, if J;. is only a continuous or an integrable function, this definition 

does not make any sense. 

., 

... 
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The general definition of stochastic integral is through the use of step 

functions. For this purpose, we will introduce the concept of nonanticipating 

functions. 

Letl&U = l&l(t), t ~ 0 be a Wiener process on a probability space (O • .M. P), 

( M, ) be an increasing family of sub-sigma-algebras of ll such that . . 

(i) 

(ii) 

~. 0 ~ s ~ t) c: M, , 

~(t)- ~(s) is independent of .V. . 

for t ~ s, then 11 is said to be non.anticipat.i.Dg with respect to the m.­

dimensional Wiener process 3&U. One may well just take the class: 11, = Be = 
~(s), 0 ~ s ~ t) (defined in the text following lemma 1). 

We let Jlt·'"(t0, t] = ~(t0, t] denote the set: of all nonanticipating func­

tions J:i defined on (t0, T]xO for which the functions G(-. c.>) are with probabil­

ity 1 in L2[t0, t ]. 

A function Ji. e: 112[t 0, t] is called a step fu:nctian if there exists a parti­

tion [0 = t 0• t 1,···, t,. = t] such that J:i{s) =Ji,(ti_1) for all s e: (t,_1, t,). The 

stochastic integral of a step function is defined as follows: 

' ' J J:i dw = jc(s) d~ = 2: G{t1_ 1) (.Ylt• - ~-~> . 
c,. 'o i 

To define the stochastic integral for arbitrary function in M2[0, t ], we need 

the following lemma. Note that a ctxm.-matrix valued function can be under­

stood as a RdlC"'-valued function. 

Lemma 1.3. For every function J:i e: 112[ to. t ], there exists a series of step 

' function~ e: ll2(t 0, t] such that ac -li:rnJ II~ (s) - Ji(s) ~ 2 c1s = 0. ,._ .. _ to 

Lemma1.4 Let £i e: M2[ to. t] and that ~ e: M2[ to. t] be a sequence of step 

functions for which 
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then 

c 
st-limJ ~(s) d~ = I(Q) 

,._ 'o (l-22) 

where I(li) is a random variable that does not depend on the speci.tic choice 

of the sequence of step functions~ (see Arnold [1] pp. 69). 

Definition For every dxm.-matrix valued function G e: M:z(t 0, t], the sto-

chastic (Ito's) integral of J:i with respect to the m. dimensional Wiener process 

~ over the interval is defined by I(li) in (1-18), which is almost certainly 

determined uniquely. The integrals so defined are martingales. 

Stochastic Di1ferential EqUations 

In terms of Ito's stochastic integrals, we can define a stochastic 

differential equation: 

~ = L(t ~) dt + JJ.(t ~) d~ I 0 =' t ~ T < QCI I 

£{to) =~a = .£. 

by its integral form: 

c c 

{1-23) 

~(CJ) =£{to)+ j:L(s,CJ) ds + J .Q(s,l&l) d~{CJ) {1-24) 
Co Co 

where~ is am-dimensional WiEmer process, L is a Rei-valued function and .Q 

is a d xm. matrix-valued function. 

Suppose that L (Rei-valued) and .Q (dxm.-matrix valued) are defined on 

(t0 , T]xRel and satisfy the f~llowing conditions: there exists a constant L > 0 

such that 

(i) {Restriction on growth) for all t e: (t0, T] and£ e: Rei, 

. .. 

'• 



.o' 

. . ~ 

{ii) 

l.!(t. ~H2 + IIQ(t. ~H2 ~ L2 (1 + kD2 • 

(Lipshitz condition) for all t E [to. T] and ~. u. E Rd., 

l.!(t I~) - L(t I u.H + I G{t I~) - Q(t ,_.3£)1 ~ L k-u.ll . 
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These conditions assure the existence and uniqueness of the solution of the 

stochastic differential equation (1-24). We have 

'lb.eorem 1.1. Under the assumptions (i) and (ii) in the above, then equation 

(1-24) has on (t0, T] a unique Rd.-valued solution~(t) which is continuous with 

probability 1 and satisfies the initial condition~0 =~(see Arnold [1] pp. 105). 

'lb.eorem 1. 2. Suppose equation (1-20) satisfies the same conditions of 

theorem 1, then the solution of the equation for arbitrary initial condition is a 

Markov process on the interval [to. T] with the transition probability 

P(s.~. t, B)= P[~ E Bl.& =~] = P~(s.~) E B] 

{see Arnold [1] pp. 146). 

'lb.eorem 1.3. In addition to the assumptions in theorem 1, suppose that the 

functions.! and Ii are continuous with respect to t, then the solution of equa­

tion (1-20) is a d. dimensional ditiusion process on [0, T] with drift vector 

L(t, ~) and ditfusion matrix li.(t. ~) = Q(t, ~)QT(t ~) (see Arnold [1] pp. 

152) . 

In this thesis, we consider the stochastic ditierential equation with con­

stant cillfusion matrix ,li(t, ~) = vld. where !d. is the d. x d. identity matrix. 

Wiener integrals. The expectations of Brownain motion's functionals are 

called Wiener integrals which can be evaluated in the function space C[O, 1] of 

all continuous Rd.-valued functions defined on 0 ~ t ~ 1. 
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Actually, every solution of equation ( 1-24) is a functional of Brownain motion. 

The variance reduction techniques in chapter 4 are devoted to accurate 

evaluation of Wiener integrals of functionals of the solution of equation (1-24). 

For some classes of Wiener· integrals that play a role in physics {see 

Feynman/Hibbs [10] and Jatfe/Glimm [14]), accurate interpolation ~ormulae 

have been derived {see Cameron [3] and Chorin [5]). 

Remark. There is one another useful definition of stochastic integral which 

is in the sense of Stratonovich {see Arnold [1] pp. 168). Ditferent senses of 

definitions of stochastic integrals lead to d.itferent definitions of equation . 

{1-23). However. for the case {constant ditfusion) that we consider in this 

thesis, there is no difference in explaining equation (1-23) in Ito's or in 

Stratonovich's sense. 

.... 

. .. 



,. 
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Chapter 2 

Runge-Kutta llethods in One Dimension 

In this chapter we will derive a second order (iil the L2 sense) Runge­

Kutta method and a class of Runge-Kutta methods of order 1 ~ . (in the £ 2 . 

sense) for solving the scalar stochastic dit!erential equation: 

d:J: = I(.:) dt + II ct:w, • 0 ~ t ~ T (2-1) 

where 11 ~ 0 is a constant and I = I (.:) is a sufficiently smooth function satis­

fying a Lipshitz condition. The main results are stated in Theorem 2.1 (in 

section 2.3) and Theorem 2.2 (in section 2.5). 

We start in section 2.1 by analyzing the local truncation error of the 

splittir.g scheme based on the mid-point rule. Then, in section 2.2, we 

demonstrate that this splitting scheme is not a second order method in any 

Lp sense (p ~ 2) and explain why L2 analysis is preferred to the L 1 analysis. 

In section 2.3, we construct a Runge-Kutta method by interlacing the 

function I and the Wiener process w,. For technical reasons, a Taylor series 

method is developed as an intermediate step. In section 2.4 we prove that 

the Runge-Kutta method derived in section 2.3 has second order accuracy in 

the £2 sense. However, this result does not generalize to the system case. 

F"mally, in section 2.5, we derive a class of Runge-Kutta methods of order 

1 ~ {in the £ 2 sense), which are easy to- implement and will maintain their 

accuracy for the case of a system (discussed in section 3.5). 

2.1 Analysis of a Splitting Scheme Based on the Mid-Point Rule 



Consider a partition of the interval [ 0, T] 

11 = ( 0 ,"",fn+t = tn+h,.·· t, = T] 
and the splitting scheme based on mid-point rule 

X'n+t = X'n + hf ( X'n + ~/ (Xn)) +II 6nw 
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(2-2) 

{2-3} 

where fln w = W,ft+1 - w,". From the theory of ordinary d.i.fierential ·equations 

we see that, if the random etiect disappears (i.e. 11 = 0), then the scheme (2-3) 

is a second order method for the equation (2-1) with 11 = 0. However, in this 

section, we show that if 11 ;t: 0, scheme (2-3) is not a second order method in 

any I, sense (p ;;:e 2) for the stochastic differential equation (2-1). 

Without loss of generality, .we assume that 11 = 1 in the following discus­

sion. That is, we consider the stochastic d.i.fierential equation: 

d:r: = f(:z:)d.t + d.wc, 0 ~ t ~ T 

and the splitting scheme for it: 

X'n+t = X'n + 6nw + hf( Xn + ~/(Xn)). 

(2-4) 

(2-5) 

In analogy with the analysis of numerical methods for ordinary differential 

equations, we analyze the local truncation error Dn of (2-5), which is defined 

by the equation: 

:z:(tn+l) = :z:(tn) + 6nw + hf( :z:(tn) + ~f(:z:(tn)))- Dn · (2-6) 

To facilitate our discussion, for each specified subinterval. say, [tn. tn+l], 

we define the variable: 

y(t) = :z:(t)- !:owe , fn ~ t ~ tn+l = tn +h (2-7) 

where !:owe = 'We -We . From this definition, it follows immediately that 
" 

{2-8) 

for the specified interval. Substituting the definitions in (2-7) into (2-4) and 

(2-6), we obtain, respectively 

. .,; .. 



... 
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(2-9) 

and 

(2-10) 

For convenience of analysis, we will rewrite Dn in an integral form. Integrat­

ing equation (2-9) from tn to tn +h, we obtain 

'" +h 
y(tn+t) -y(tn) = [ l(y(s)+Aws) d.s . (2-11) 

and since z(tn) is a random variable for fixed time tn, we have 

'" +h 
hi (z(tn) + ~~ (z(tn))} = [ I (z(tn)+ ~~ {z{tn))) d.s . 

" 
(2-12) 

Substituting the results in (2-11) and (2-12) into Dra of (2-10), we obtain 

ln+A 

-Dn = [ [ l(y(s) + Aw3 ) -I( z(tn)+~J(x{tn)))] d.s. (2-13) 

With Dn in this form. further analysis can be made because of the 

dit!erentiability of the function ! . 

In the following discussion, we will analyze Dn in the L 1 sense, which is 

apparently the simplest way of estimation. And as we shall see, many conclu­

sions in the £ 2 sense can be drawn from the results derived in the £ 1 sense. 

Our next task is to show that Dn is of order h 1·~ in the £ 1 sense, i.e., 

ElDnl ~ canst.·ht.'. From now on. the notation O(hP) will be employed to 

denote a stochastic quantity whose order is hP in the L 1 sense or in the £ 2 

sense . 

We expand each term in the integrand of Dn of (2-10) in a. Taylor series in 

I (y(s) + Aws) =I ( z(tn) + [y (s )- y(tn)+ Aw,] ) (2-14) 



=I (z{tn)) + /:(z(tn})llz. + tJ .=(z{tn))6z.2 + if .={z(tn))~s3 

+ 2~/:={z(tn))~s4 + 1~0 /=.=(z'{tn))~5 :5 
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where the last term is the Cauchy expression of remainder of the Taylor 

expansion. In the same way, we have 

' 1 
/{ z(tn) + 2!'-f(z(tn))) = /{z{tn)) {2-15) 

+ ~~ :~~(z(tn))/ {z(tn)) + ~2/ :(z{tn))l2{z{tn)) 

+ 1a h 3f .=(z"{tn)}/3{z{tn)) 

where, again, we use the Cauchy expression of the remainder. To estimate 

these remainders, we make the assumption: 

sup I ~ (z) I a.re bounded. , 0 ~ JL ~ 5 
:~~ {jzl4 

{2-16) 

to assure that the expectations involved exist (in the following discussion). 

From this assumption, it follows that the remainder in {2-15) is of order h 3 in 

the L1 sense. That is, we can write {2-15) in the form: 

/( z(tn)+ ~/(z(tn))) = /(z{tn)) 

+ ~~ :~~(z(tn))f (z(t")) 

+ ~2/ .=(z{tn))/ 2(z(tn)) + O(h3 ) . 

(2-17) 

To analyze the order of the remainder of the expansion {2-14), more work 

is needed. Let E denote the expectation, as in the previous chapter. Recall 

that llw. is a Gaussian random variable with mean 0 and variance M = s- tn 

by the definition of the Wiener process (see Chapter 1), then 

.., u2 
1 --

Eillw.l = ~Jiul e ~ d.u 2rr _ (2-18) 

.... 

... 

._ . 



. - . 

• u2 

= 2· 1 J u. e -~ d.u. 
~0 

_ n· - 2 = V -:;{ e-v V'lf:i d.v ( v = 2!._) 
11' 0 2~ 

= Yrr~ = Yrr~ s Y1i 
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which says that the increment llw. of the Wiener process we is of order n* in 

!.. 
in the L1 sense. In general. the random variable llwf is of order h 2 in the L 1 

sense since 

• u2 

= 2· 1 J u.P e -~ d.u. 
..../2irlSS 0 

- rr - a.. 2.::L 2 
= V ;:-.{[2~] 2 e -v v 2 d.v (v = ~ 

"o 2~ 

=- IT r(~·[2~]i-s r[~. [2h]i-v;; 2 2 

where r is the ganuna function. Observe further that 

• 

(2-19)-

y(s) -y(t,.) = J f(y(r)+ llw,.) dT (2-20) 
c,. 

which is obtained by integrating equation (2-9) from tn to s. Since f is 

bounded by assumption (2-16). we have the estimate: 

• 
Ely(s) -y(tn)l = [EIJ(y(r)+ llw,.)l d.r ~canst. h 

" 
(2-21) 

which means that y(s)- y(t,.) is of order h in the L1 sense. 

Now we are ready to deal with the remainder in (2-14). The above 

analysis shows that the leading order term of this remainder is 

/==a(z"(t,.))llw. 0 and it is of order h 2·0 in the L 1 sense. Furthermore, the 



same analysis can also be applied to other terms of the expansion (2-14) and 

tbis enable us to rewrite (2-14) in a more compact form: 

f(y(s)+ AWs) = f(x(tn)) + /;r;(z(tn))( y(s)-y(tn)+ Aw.) 

+ ~=(z(tn))(y(s)-y(tn)+ Aw.)2 

+ ~ z=:(z(tn)) (y(s )-y(tn)) AWs 2 

e 
+ tt z=(z(tn))Aw11

3 + 2~ J ;r;z=(z(tn))Aw. 4 + O(h i) . 

(2-22) 

Substituting the results in (2-17) and {2-22) into Dn of (2-13), we can, after 

some cancellation, write Dn in increasing power of Aw.: 

'" +h '" +h 
-Dn = /;r;(z(tn)) [ Aw:sd.s + t-J=:(z(tn)) J Aw:s 2d.s - Rn (2-23) 

"· "' where we keep in -D" only the two terms of the expansion (2-6) with leading 

order in AW:r, and group all the other terms in a lengthy remainder: 

"'+h 
-R,. = /;r;(z(tn)) J (y(s)-y(tn)- ~/(x{tn))) d.s (2-24) 

'" 
'" +h 

+ /z:(x(tn)) J [(y(s)-y(tn))AW:r+ t<y(s)-y(tn))2
] ds 

"' 
'" +h 

+ f;-1
2
1 :;u(z(t")) J (y(s )-y(tn))Aw:s 2 d.s "' . 

'" +1\ 
+ !t::~(z(tn)) [ Aw. 3 ds- ~3/:(x(tn))/ 2(x{tn)) 

"'+1\ 7 

+ 2~ / ;r;z={X{tn)) [ AW:r 4 d.s + O(h 2) . 

" 
Now let us examine the orders of the first two terms of -D" in (2-23). 

The analyses in {2-18) and in (2-19) show that 
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1,. +II 

{a) [ llw. d.s is of order h1.:s in the £ 1 sense. 

C,. +II 

{b) J llw_ 2 d.s is of order h 2 in the L 1 sense. 

'" 
Hence, we can assure that -D" {in (2-21)) is at least of order h 1·~ in the £ 1 

sense. However, it is still not clear, at this stage, what the order of -D" is in 

the £ 1 sense because the orders of the first three terms of -R" {in (2-24)} 

cannot be seen readily. To investigate this question, we need the fqllowing 

lemma. 

Lemma2.1. For the first three terms in -R" of (2-22), we have the follow-

ing estimates: 

(i) 

t,. +II 

J [ y(s)-y(tn)-~1 (z(tn))] d.s 

"' 
C,. +II • 

=I ~(z(t")) J J l::.w,. d.rd.s + ~3 I ~(z(tn))l (z(t")) 

'" '" 

(ii) 

'"+II 

[ (y(s)- y(tn))llw8 d.s 

C,. +II C,. +h 11 7 

=I {z{tn)) [ (s - tn)llw. d.s +I ~{z(tn)) J J llw,.l::.w11 d.rd.s + O(h 2) , 

" "' ~ 
(iii) 
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~~ 7 

J {y{s) - y{tn))2 ds = ~3/ 2(z{tn)) + O(h 2), 

"' (iv) 

~~ ~~ ? 

J {y(s)-y{tn))~w.2 ds =/{z(tn)) J {s-tn)~w.2ds + O{h 2 j. 

"' "' .!.. 
Proof. Since ~?.J.J' is a stochastic quantity of order h 2 , we can derive the 

equality {i) by considering the sequences of equalities: 

~· ... J [y{s)-y(tn)- ~/{z{tn))] ds 

"' tn+ll. 
= J J [ J (y(r )+ ~w,.)-/ (y{tn)) ] d.rds (by {2-20)) 

"'"' 
"'+ll. 

= [ [[J~{y{tn)){y{r) -y{tn) + ~w,.)] drds 

,.~. . 3 

+ J J [ ¥ za{y{tn))(y{r )- y(tn)+ ~w,.)2 + O(h 2) ] d.rds 

"' "' ~,.~. ~,.~. 

= J~{z{tn)) [ [ ~W,. d:rds + /~(z{tn)) J J [y(r)- y(tn)J drds 
8 Cn 'n 

,8..... 7 

+ ~-(z{tn)) J J~w,.2 d:rds + O(h2) 

"'"' while the second term on the right hand side of the last equality can rewritten 

further: 

'" +ll. 
J ~(z(tn)) J J [y(r)- y{tn)] d:rds 

'8 '8 
,...... 3 

= / a{z(tn)) [ j[ (r-tn)/ (z{tn)) + O(h 2) ] d.rds 
" Cn . 

. 7 

= ~3/ :(z(tn))J(z(tn)) + O(h 2). 



To prove the second equality (ii}, it is more convenient to consider the 

difference of the left hand side and the first term on the right hand side of it. 

Using (2-20), we have 

"'·~ J [ y(s }-y(t,.)-(s-t,.}/ (::(t,.)) ].6w. ds 

"' '" ·~. = [ [[ f(y(r}+.611Jr)-/ {y(tn}) ].611Js d:rd.s 

c,. ·~. 
= [[[ f~{y{tn))(y{r)-y(tn)+A'Wr}+ O(h) ]Aw. d.rd3 

c,. ·~. 
= l [[ t~(y(t,.)}A-w,.+O(h) ]Aw. d:rd.s . 

t.,.+~. 7 

=I ~{::{tn}) [ f A'WrAw. d.rds + O(h 2) . 

" "' 
The justification of the equalities {iii) and (iv} can be made by merely 

recalling the estimate following equation {2-19}. This completes the proof of 

·Lemma 1. 

From the expression of -R,. in (2-24), we see that equality {i} in Lemma 1 

corresponds to the first term of -R,., {ii) and {iii) to the second term, and {iv) 

to the third term of -R,.. Substituting the results in the Lemma into -Rn of 

{2-24), we obtain 

·• . ~,.~. - . 

-R,. = /l{::{tn}) [ [A-w,. d:rd.s + ~3/}{::{tn))/{::{tn)) {2-25) 

'" ·~. 
+ ~~(::{fn})/za{z(t,.).) J Jtl'IJJ,o 2 d.rd.s 

"'"' 
~,.~ ~,.~. 

+ /za{z{tn))/ (::(tn)) [ (s -tn)flw_ds + / ~(::(tn})f ={::{tn)) [ J fl'WrAW.d.rds 
" " ,. 
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t,. +h. 

+ -t.r (z(tn))f =a(z(tn)} [ (s -tn)~w.2 ds 

" 
'"+h. 

+ 2~ h3/ 2(z(tn))J~(z(tn)) + !1=a(z(tn)) J llw3
3 ds 

'" 
"'+h. 7 

+ 2~/~(z(tn)) [ ll~ 4 ds + O(hi). 

where all but the last three terms are obtained from these substitutions. 

Let us examine the orders each term of -Rn of (2-25). We find: 

(c) the first and the fourth and the eighth term are of order h2·~ in the £ 1 

sense. 

{d) all the remaining terms except the last one are of order h 3 in the £ 1 

sense. 

These observations imply that -Rn is a stochastic quantity of order h2·~ in the 

£ 1 sense. Therefore, by recalling the comments in (a) and (b), following (2-

24), we conclude that -Dn is a stochastic quantity of order h1·~ in the £ 1 se~se 

and 

e,. +" t,. +h. 

-Dn = /z(z(tn)) J llw3 ds + -t.r ~(z(tn)) J llw3 
2 ds + O(h2·~) • (2-26) 

c,. '" 

Remark. In the above discussion. we encountered expressions of 

remainders whose orders are half integers of the form k + 0.5 (k > 0, an 

2.. 
integer). Since llwf is of order h 2 in the £ 1 sense, in the leading terms of 

the remainders, the increments of the Brownian motion must appear with odd 

power. Recall the nonanticipating property of the solution of stochastic 

differential equation {see [ .. ]), and we conclude that the expectation of the 

leading terms are zero. We will use this fact repeatedly in the later develop­

ment. Here we would like to illustrate this fact by considering an example. 
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Suppose we wish to evaluate the expectation of I ~(z(t"))~w.,.~w.~w, 

where t" ~ r ~ s ~ t ~ tn+l = t" +h. Because of the nonanticipating pro­

perty, I ~(z(t")) is independent of the remaining part of the stochastic quan­

tity considered. Thus, the expectation sought equals to the product of the 

expectations of these two parts. 

Now we expand the increments ~w,.. ~w., ~w. in the following war. 

llw,. = = w,. - w, 
" 

llw. = ( w. -'lLI,o ) + { Wr- we,.) 

llw, = (w,-w.) + (w.-'lLI,o) + (w,.-w,) 
" 

This results in 

+ 2·{w.,.- 'Wf,.)2( W 4 -'lLI,o ) + ( Wr- Wt,. )( W 4 - W.,. )2 

+ ( W,.- Wt,. ) 2( We- Wa ) + ( W,.- 'Wf,. )( W 4 - Wr )(We- W 4 ) 

where, in each term, one factor is independent of the other and at least one 

factor has odd multiplicity. Therefore, the expectation of each individual 

term on the right hand side of the above equation is zero, and thus the expec­

tation· of the stochastic quantity considered is zero. 

2.2 Accuracy of the Splitting Scheme 

Oitierent ways of analyzing the accuracy of numerical schemes for sto-

chastic differential equations may produce very di!Ierent results. In this sec-

tion, we consider this problem by answering the following two questions: 

(i): is the scheme (2-5) a second order method in some Lp sense (p ~ 2)? 

and 
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{ii): why is the £ 2 analysis superior to the L 1 analysis? 

The answer to the first question is no. This can be seen by taking, for exam-

ple, / {z) = z and z{O) = 0 in equation {2-4). That is, we have the Langevin 

equation with initial datum 0: 

dz=zd.t+dw1 , OstsT {2-27) 

the solution z { t) of which, for each fixed t, is known to be a Gaussian variable 

with mean 0 and variance~ {e 21 - 1) {see Arnold [1] pp. 134). Therefore, all 

the moments of z(t) exist, and thus the analysis in the previous set:tion is 

also valid here even though the assumption (2-16) does not hold in this case 

{see the comme.nt following the assumption {2-16)). . 

Let -d,. be the local truncation error of scheme (2-5) in this particular 

case. From the expression of Dn in {2-23) and that of -Rn. in (2-25), we see 

that 

,,. +" ,. +" • 
-dn = r t::.w. ds + J Jt::.w,. drds + ~3z{tn). 

~ c,. c,. 
{2-28) 

or from (2-26). we have 

t,.+h 

-dn = [ t::.w. ds + O{h2·5). 

" 
(2-29) 

Define en = Xn - z(tn). Subtracting equation (2-6) from equation (2-5) with 

I = z. we obtain 

(2-30) 

where a{h) = 1 + h + ~h2• Equation (2-30) has the solution 

Bn = a"-1(h)do + ... + a(h)dn-2 + dn-1 (2-31) 

provided that the initial condition is imposed exactly. Note that the leading 

,,. +" 
terms of dn. Le., J t::.w. ds. are independent of each other. Then the expec­

t,. 

'· 



·' 
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tation of a product of any two of them is zero since the individual expecta-

tions are zero, i.e., for m. ;lfn , · 

(2-32) 

""+h. ' "' +h. 

= [ E[~Ws] d.s· J E[~ws] d.s = 0. 
m eft 

Furthermore, an easy analysis shows that 

(2-33) 

"'+""'+h. " " 
= 2· [ J E[6tu,.6w5 ] d.rd.s = 2·J Jr d.rd.s = ~3 

ft • 0 • 

Recalling the nonanticipating property of the solution z{tn), then, from 

{2-28), for sufficiently small h, we have the leading term estimate: 

E[e:J ~ a.n-2{h)E[d.6] + ... + a.2{h)E[~-2] + E[~-1] 

A~[ a.2n-2(h) + ... + a.2(h) + t]-k3 
3 

2n 1 2 '" 1 A~ a. - h3 A~ e - h3 AI (e21")·h2 

a.2 
- 1 e 2

" - 1 
since A(h) ~ell., where we use the notation P ~ Q to denote that P and Q are 

of same order in h. It follows from this estimate that 

(2-34) 

which implies that, for / = z, the scheme (2-5) is of order h in the L2 sense. 

And by Liapunov inequality 

1 1 

~(e~)]P' :S [E(e~)F-. l<p:Sq<= (2-35) 

i.e., the Lp norm of e,. is not greater than its Lq norm for 1 < p :S q < aa, we 

conclude that scheme {2-5) is not a second order method for the equation (2-
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4) in any L, sense for p ~ 2. 

Now we answer the second question (ii) above by considering, again, the 

same example. By applying the triangle inequality to the right hand side of 

(2-30), we obtain, after taking expectations, 

Since E I dn I is of order h Ul, the above estimate can be rewritten as 

{a) 

On the other hand, by squaring both sides of equation (2-30), we obtain. after 

taking expectation, 

And since E[dn 2] is of order h3, this estimate can be written as 

(b) 

These. two types of analyses in (a) and (b) are, for brevity, called the L 1 and 

the £2 analysis respectively. There is an extreme difference between these 

two analyses in that, we shall see, the existence of the second term on the 

right hand side of equation {b) plays only a minor role in error contributions. 

Recalling the nonanticipating property, we see from the expression '(2-

28) that 

fn+h 

2a.(h)E[endn] = -2a.(h}·E[en}E( J t:/Ws ds] 
c" 

(2-36} 
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rc.. +h. 1 
- 211{h)·E[•.J1 [ [t.w,. rtrdsj- kn'<1{h)·E[e0 z{t,.)] 

In the first and second tei"m on the right hand side of this equality, we can put 

the expectation E inside the integi"al and find that the I"esultant integrals ai"e 

zero and obtain 

2a(h)E[e,.ct,.] = ~3a(h)E(e,.z(t,.)] ~ 2eha(h)E[e~] + 7~ 11(h)e- 1h~E[z2(t,.)] 

whei"e e is an appi"opi"iate positive numbei" and the last inequality is obtained 

by applying once the arithmetic inequality 2 11·b ~ 112 + b 2• The nlll!lbei" e is 

used to keep track of the intei"action between the (accumulating) erroi" e,. 

and the local ti"uncation erroi" d,.. Substituting the result in (2-37) into (b), 

we obtain 

fi"om which we see that 2a(h)E[e,.ct,.] does not play a main I"ole in the ei"roi" 

contributions as eha(h) is dominated by a 2(h) and 7~ a.(h)e- 1h~E[z2(t,.)] by 

O(h3). 

Suppose that the initial condition is imposed exactly. It follows from {b) 

and the theoi"y of ditfei"ence equations 

(2-39) 

and fi"om (2-36) that 

(2-40) 

Comparing these I"esults ((2-39),(2-40)) with that in (2-33), we ftnd that 

only the £2 analysis gives the OI"dei" of the scheme considered. In fact, El en I 

is also of oi"dei" of ordei" h, which is seen from, by Liapunov inequality, 
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Therefore, we conclude that the £ 2 analysis is superior to the L 1 analysis 

since the former exploits the nonanticipating property and thus provide a 

more precise estimate than the latter. As we see from the above discussion, 

the techniques used do not depend on the specific choice of the function 1 , 

this conclusion holds also for the class of functions I satisfying the condition 

(2-16). This important observation provides the basis for the analysis in sec­

tion 2. 3-5, 3. 3 and 3. 5. 

2.3 A Second Order Runge-Kutta Method 

In the previous section, we showed that the Runge-Kutta method based 

on mid-point rule fails to have second order accuracy in the £2 sense. In this 

section, we will develop a method of Runge-Kutta type for the stochastic 

ditferential equation {2-4). The information contained in (2-5), (2-6), (2-23) 

and (2-24) suggests to us to consider first the following Taylor series method: 

(2-41) 

'" ·~ '" +h 
Xn+l= Xn + 6,.w+ hi (Q,.)+ l;r:(Xn) [ /).w• ds + tt :(Xn) [ /).w. 2 ds 

The l~cal truncation error of the scheme is given by Rn in (2-23), i.e., the 

exact solution z= z(t) of the ~tochastic differential equation (2-4) satisfies 

'" ·~ '" +h • • 
+ l;r:(Z{tn)) [ /).w.d.s + tt~(z(tn)) J f).w_ 2ds - Rn 

~ '" 
where we define 

{2-43) 

As we know from the discussion in section 3 that Rn is of order h 2·~ in the 

£ 1 sense~ we would expect that the scheme {2-42) has the order hl.~ in that 
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sense, due to the accumulation of the local truncation errors. 

The question is whether we can have a better estimate, i.e., could scheme (2-

41) has higher order accuracy (better than h u 5)? For we have seen a suc­

cessful example in section 2 where we employed the L2 analysis. 

Therefore, in the following discussion, we will adopt L2 analysis instead of 

L1's since it exploits tbe nonanticipating property. However, our L2 analysis 

will not be made directly to the scheme (2-41). 

Scheme (2-41) is an intermediate step which leads to a more satisfying 

method of Runge-Kutta type. The main idea is to interlace the function I 

and the Wiener process w1 , i.e., to let them interact with each other at each 

time step. 

Before we go further, let us detlne some useful random variables: 

s '" +h "' +-h 

{J = h 2 (J' = J !::.Wsd.s. ,_ = h 2"'' = J LlWs 2cJ.s (2-44) 

"' '" 
From these definitions, it is obvious that the random variables p' and ,_. are of 

order 1 in the L1 sense and scheme (2-41) can be rewritten as 

(2-45) 

s 
.l<;.+l= -X;.+ l::.w,. + hf (Q,.)+ h 2p'J z;(Xn)+ ~2,.'/ :=(Xn) 

which has a more convenient form that we can work on to obtain a Runge­

Kutta method. The first step is to add a term involving p' to Qn so that the 

tlrst derivative term in .x;.+l will appear implicitly. Observe that 

hf ( Q,. + ..../1i {i) 

3 ~ 

= hf ( Q,.) + h 2 p'J:,( Qn) + ~2p'2/ :={ Q,.) + O(h 2) 
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= hf(Q,.,) + hip·J~(X,.) + ~2P'2/a(X11 ) + O(h 2) 

which leads us to consider the following scheme: 

~ = Xn + ~/(X11 ) + Vfip' 

x;.+l = X'n + ~'Wn+ hf(Q;,) + ~2[1)'-P'2]/.=(X11 ). 
the local truncation error T~ of which is defined in the equation: 

36 

(2-46) 

z(tn+l) = z(t11 ) + ~'Wn + hf(q'(t11 )) + ~2['17-'-p'2]/.=(z(t11))- T~ (2-47) 

where we define 

q'(t11) = q(t11 ) +...nip'= Z{t71 ) + tn-/(z(t11 )) +...nip'· (2-48) 

Here we have been careful in making the local truncation error T~ of scheme 

(2-46) have the same order (in the L1 sense) as that, i.e., Rn of scheme (2-41) 

(or (2-45)). This can be seen by analyzing T~ further. As a starting point, 

for seeing that T~ and Rn are of the same order, we carry out the Taylor 

expansion: 

hf(q'(tn)) = hf( q(t,.}+ ...nip'} (2-49) 

3 

= hf(q(tn)) + h 2 fJ'J:(q(t11 )} + ~2{3.2/.=(q(t11 )} 
15 ? 

+ ~2p'3/:=(q(tn)) + 2~ h3p''"!=.=(q(tn)) + O(h2). 

Recall the definition of q(t11 ) in (2-43). Each term on the right hand side of 

the above equation is then expanded in a Taylor series about z{t11 ) and this 

gives 

8 

+ ~2P'/(z(tn))/.=(z{tn)) + ~2P'2/.=(z(t11 )) 

·., 
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5 

+ tn-3J 2(z(tn))/:=(z(tn)) + tn-2p'3Jz=(z(tn)) 

. 7 

+ ~3p'2J(z(tn))/.z=(z(tn)) + 2~ h3p'4/=:=(z{tn)) + O(h2) 

Substituting this result into (2-47), we obtain, after some cancellation, 

(2-51) 

3 

+ h 2p'J a{z{tn)) + ~2,'/ :={z{tn)) 

5 5 

+~ 2P'/ {z{tn))/ ={={tn)) +tn-3
/

2(z(tn))/ :=(z(tn)) + tn- i'p'3/.z={z{tn)) 

7 

+ ~3P2/{z{tn))/z=(Z{tn)) + 2~ h3P'4/=:={z{tn)) + T~ + O(h2) 

Recalling the definitions of p' and ,. in (2-44) and comparing this expression 

with that in (2-42), we can relate T~ and Rn in the equation: 

15 

-Rn = -T~ + ~ 2p'J (z(tn))/ :=(z{tn)) + tn-3/ 2(z(tn))/ =(z{tn)) {2-52) 

e 7 

+ tn- 2 P'3/.z=(z(tn))+ ~3f!/ (z(tn))/z=(Z(tn))+ 2~ h 3P'4f =:=(z{tn))+ O{h2), 

in short, 

15 

-R,. = -T~ + O(h 2) {2-53) 

15 

Recall that Rn is of order h 2 in the La sense, thus so is T~. In other words, 

T~ and Rn have the same order in h in the L2 sense. 

At this stage, it is still not clear how· one is able to derive a Runge-Kutta 

method from the scheme (2-46). For there exists a second derivative term 

of I with a coefficient containing ,. -p'2• However, from the definition of the 

random variables p· and ,., we find a very interesting relationship: p'2 ~ ,., 

since the inequality 
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3 rc" +I& ]2 "'+I& 
h3{J'2 = (h 2p')2 = [ [ llWsd.s ~ h [ flw. 2d.s = h[h 21)'] = hS,' (2-54) 

holds by the Cauchy-Schwartz inequality. Hence, the random variable ,. -{1'2 

is positive. It is this fortunate observation that leads us to succeed in d~riv-

ing the Runge-Kutta method: 

.P 'A = ....; ,. -p·2 {2-55) 

Q~= X,.+ ~I(X")+ ...ni.~ 

x"+l= ~ + ~w + ~[! (" + ...ni.P")+ 1 (~- ...ni.P")] 

with p' and ,. defined in {2-44)~ This scheme is obtained by a symmetry con-

sideration so that we need only to evaluate one intermediate value, i.e., Q~ at 

each time step. Now we state the main result of this chapter. 

Theorem 2.1. Let I be a sufficiently smooth function satisfying a Lipshitz 

condition and the condition stated in {2-16). Then the above scheme is 

second order in the L2 sense, i.e., there exists two constants C and ho such 

that 

l 

.[ E(z(t") - ~)2 ] 2 ~ C h 2 • h s h 0 

for all h ~ h 0, provided that the initial condition is imposed exactly or to 

second order in the L2 sense {say, [E(z(O)- z 0) 2]*s C0 h 2). The constant C 

depends on the bounds for the function I and its first few derivatives. 

Remark. In scheme (2-55), if we replace {J by v p·, ,. by v2 1)', and P" by 

v P". then we obtain the corresponding scheme {0-9) for solving equation 

(0-2). A!3 v tends to zero, this scheme reduces to the ordinary mid-point 

Runge-Kutta method as we expect. 

'z 
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Before we prove Theorem 2.1, we devote the rest of this section to 

analyzing the local truncation error Tn of scheme (2-55), which is defined in 

the equation: 

z(t,.+1) = z(tn) + 6nw (2-56) 

+ ~(I (q'(tn)+ ...ni.Pn) +I (q'(tn)- ...ni.Pn) ] + Tn . 

Recall the definition of q~(tn) in (2-48). We start by considering a Taylor 

expansion of l(q'(tn) + VliPn) about q(tn): 

s ~ 

+ ~2pn31~(q'(tn)) + 2~ h 2Pn 4l=:(q'(tn)) + O(h 2) 

and a Taylor expansion of I (q'(tn) + ...ni.Pn) about q'(tn): 

9 ~ 

- ~ 2 Pn 31 ~(q'(tn)) + 2~ h 2Pn 4/ :::z::zz(q'(tn)) + O(h 2) . 

Summing up the results in (2-57) and (2-58), we obtain, after some cancella;. 

tion, 

(2-59) 

7 

= h/ (q'(tn)) + ~2 Pn 2 /:c(q'(tn)) + 2~ h 3Pn 4/ z=(q'(t11 )) + O(h 2). 

The second term on the right hand side is then expanded in a Taylor series 

about q(t11 ). We obtain: 

(2-60} 

~ 

= ~2Pn 2/~{z(tn)) + ~2p'Pn 2/=:(x(t")} 

7 

+ ~3Pn 2l(x(tn)}f=(x(tn)) + ~3P'2Pn 2/z=(Z(tn))+ O{h 2). 
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In a similar way, the third tenn on the right hand can be expanded as 

. 7 

2~ h3PJ/==:(q'(tn)) = 2~ h3PJ/==:{z{tn)) + O(hi). 

Substituting this result and that in {2-60) into (2-59), we obtain: 

(2-61) 

:5 

= hf (q'(tn))+ ~2PJ/ ={z{tn)) + ~ 2 {iPJ/ z:=(Z{tn)) 

7 

+ ~3P:t (z(tn))/ z:={z{tn)) + ~3p-2PJ/ .==(z{tn)) + 2~ h3PJ/ ==:(~(tn)) + O(h 2) 

Recalling the definition Pn = v,r;· - tfl and substituting the result in (2-61) 

into {2-56), we obtain: 

:5 

+ ~2p'PJ/z:={Z{tn)) + ~3PJ/(z{tn))f={z{tn)) 

+ [- ~·~· + ~·~~~· + ~h..,~ jt,...(z(t,})- T, + O(h~). 
By comparing this expression with that in (2-4 7), we can relate Tn and T~ in 

the equation: 

:5 

-T~ = -Tn + ~2""[p·,r;·- P'3]/ z:={z{tn)) 

(2-63) 

Now we are ready to write down explicitly the local truncation error Tn of 

scheme {2-55), since we have the relationship (2-52) between Rn and T~ and 

the relationship (2-63) between T~ and Tn. 

.. 

. . ... 
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Again, for convenience of analysis, let us define some useful variables: 

5 e,.., 
7 = h 2 7' =- [ (s -tn).~w. d3 , 

" 
5 e,. +ll 

T =- h2.r' = J ~w5 9 d3, 
c,. 

(2-64) 

5 '" +ll s 
cS = h Z'.s' = J J ~w,. d.rd.s . 

&,. &,. 

From these definitions, it is clear that the random variables 1', cS', -r' are all of-

order 1 in the £ 1 sense. With these definitions, we find from Rn in (2-23), (2-

52) and (2-63) that the local truncation error T,. can be written in the form: 

15 

-Tn = ~2(27'-p')J(z(t,.))f=(z(tn)) 

15 

+ h 2 cS'J:{z(tn)) (2-65) 

5 

+ ~ 2( -r' -3{J'1)' +2{J'9)/ z= (z (tn}) - V,. 

in which we keep only those terms of order h 2·5 (e.g. 151 , 4U& and gU& term.S in 

Rn) and collect the reniaining terms in 

c,. +h s 

-Vn = ~3 /(z(t,.))/:2{z{tn)) + t,r:{z(tn)) f=(z(tn)) J J ~wr2 d.r~-66) 
c,. c,. 

c,. +ll s 

+ /,.(z(tn)) /=(z(tn)) J J6.wr~Ws d.rd.s- 1~h3/ 2(:z:(tn)) /={z(tn)) 
c,. c,. 

&,. +ll 

+ t.r (z(tn))f z:{Z{tn)) [ (s -tn)~Ws 2d3 - ~~·/ (:z:(tn}) / :=(z{tn)) 

" 

2.4 Convergence of the Second Order Runge-Kutta Method 
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In this section, we will prove Theorem 2.1, i.e., scheme (2-55) with the 

local truncation error Tn in {2-65) is of order h 2 in the £ 2 sense under the 

conditions stated in the theorem. For this purpose, let us write down the fol­

lowing equations: the numerical scheme (2-55): 

~+1 = ~ + flnw + ~( /(~+ -..fFi.Pn)+ /(Q~- ...rFi.Pn)]. · {2-67} 

and the exact equation with local truncation error: 

Let e11 denote Xn - z{tn). Like in the theory of ordinary differential 

equations, we subtract equation (2-68) from equation (2-67). This gives 

{2-69) 

where we define 

{2-70} 

and 

To make an £2 norm analysis, let us square both sides of equation (2-67), 

then 

9~+1 =e~+henVn + ~2vn2 +2enTn +hvnTn + Tn 2
· 

We now estimate the expectations of the last ftve terms on the right hand side 

or the above equation. Let I satisfy the following Lipshitz condition: 

1/(z)-/(y)lsLiz-yl. z,ye:R. 

where L ~ 0 is a constant. Consider Vn.t-t Vn.-: and appiy lhe Lipshil:.G condi-

tion of J to them. We ftnd 

", 



and 

lvn,+l = 1/{q(tn)+...ni{P'+Pn)) -J(Q,.+v'ii'(,B'+Pn))l 

~ L I q{tn)- Qn I 

= L I {z(tn)+~l (z(tn))) - {Xn + ~~ (Xn)) I 

~ L ( 1 + ~L) I Bn I 

lvn,-1 = ll{q{tn)+...ni(,B'-Pn)) -I(Q,.+...ni(,B'-Pn))l 

~ L I q{tn)- Qn I 

= L I {z{tn)+ ~~ (z(tn))) - (Xn + ~~ (X"n)) I 

1 
~ L { 1 +2M') I Bn I · 

43 

Therefore, the second term on the right hand side of equation (2-71) can be 

estimated as: 

The estimation of the third term is quite similar and we have, by the 

Lipschitz condition for J , 

{2-73) 

Next comes the fourth term where we need to take into account Tn given 

in (2-65), thus Vn in (2-66). Recall that those terms in which the independent 

increment llw appears in odd power will vanish after taking the expectation. 

Thus 

. -E[Tn] = -E[Yn] (2-74) 

= E[}flz2 + 1~!:1= +if:!::- 1~12/:: + tJI:::)·h3 
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+ ~{- k-J!~+ [~ . ; - ~. ;~- 2~ 1~ + 2~] '==)hs + ~(h4)) 

= E{{t-J~2 + if~!=+ 2~121=+ 2~//~ + l.!ot==)h3 + O(h4)). 

where all the functions' values are evaluated at .:z:(tn). The detailed deriva­

tion of (2-74) is carried out in lemma 3 of appendix A. This resuit.suggests 

that we write E[Yra] = h3E[V,.], where V,. = h-3 vn is of order h 0 in the L2 

sense. Therefore, the independence of en and the increments of a Wiener. 

process leads to the following estimate: 

(2-75) 

where we use twice the arithmetic inequality 2ab ~ a 2 + b2 with 

and e 1 is an appropriate positive number. A similar trick can be applied to 

the fifth term. and yields 

I E[hvn Tn] I ~ ~ t?ft.L -l E(vJ) + t2 - 1hLE( T~) ] 

~ ~2 hL(l + ~£)2 E[eJ] + O(h8
) 

(2-76) 

where again t 2 is an appropriate positive number and E[TJ] is of order h'J 

(see below). F"mally we arrive at the estimation of the expectation E[ TJ]. 

By the Cauchy-Schwartz inequality, we have (a+b +c )2 ~ 3 (a2+b 2 +c 2), and if 

we apply this result to TJ, we find the estimate: 

E[TJ] ~ 3. ~'JE[(2i-p')2]E[/2/ ~] (2-77) 

+ 3·E(o'2)h'JE[/:4]+ 3· 3~h'JE[(;'-3p·,·+2P'3)2]E[/~]+ O(h8) 

. . 
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= 3·!.. ~5E[!2/2 ]+ 3· .J-.iL5E[/4]+ 3· _1_ 11 L5E(!2 ]+ O(h6) 
4 30 = 20 ~ 36 2520 n. ~ . 

where all the functions' values are evaluated at z(t,.). Therefore we have the 

following estimate: 

E[ T~] " { 4~ E[j 2/.l.] + ! E[Jt]+ 30~~ E[j ~] }h 0+ O(h8
) 

which, for convenience-, will be written as 

where 

~ = ~E[/2/~] + 230£[/~4] + 30~0£[/!:] 
is of order h 0• For a detailed calculation involved in (2-77), we refer to 

Lemma 4 of Appendix A. Finally, we reach the stage of estimating the whole 

equation {2-71). By collecting the results from (2-72)-(2-78) and taking 

expectations on both sides of equation (2-71), we obtain: 

where 

To have a common bound for all time steps, let us define 

G =- max E[ G,.Z] and V = max E[ 'Vn 2 
] 

" " 
and let M = G+ e11 L -l V , the inequality {2-79) becomes 

{2-80) 

where we set e= e1 + ea so that B(h) ~ e (a+c)lll.. This is a recursive relation 

we encounter often in the theory of ordinary differential equations. An ele-

mentary calculation shows that the solution of (2-80) is 
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(2-81) 

The right hand side of this inequality is of order h 4 provided that the initial 

condition is properly imposed. Suppose that E(e~] ~ C~ h 4, where C0 is a 

constant. Substituting this into the above· equation and taking square root 

on both sides of the resultant inequality, we complete the proof o"f'Theorem 

2.1 with 

. . 1 

c = SUD { M (eC2+c)TL- 1) + C2 ·e(2+ r:TL) + O(h) )
2

. {2-82) 
h..C0 {2+ e)L 0 

Remark. The reason of introducing the two positive numbers e1 and e2 is 

twofold: to keep track of the 'interaction' between Tn and en {see {2·75)) or 

Vn {see (2:_76)), and to balance the error contributions from the initial error 

and local truncation errors (see {2-81)) in hope that the constant C can be 

minimized with suitable choice of e. 

2.5 Runge-Kutta Methods ot Order One and Halt 

There are two main difficulties with scheme {2-55): the first one is that 

we do not have an efficient way to sample systematically the Gaussian vari­

ables {i, ~~ and the non-Gaussian random variable 1)' (defined in (2-44)); and 

the second one is that it will not be a second order method when extended to 

the case of a system. To see the complexity of the distribution of 1)', we refer 

to Levy [16]. 

To sample only Gaussian random variables, one should be content with 

schemes with less accuracy. In this section, we provide such schemes of 

order h 1·0 in the £2 sense. The main advantage with these schemes is that 

they will maintain the order of accuracy when extended to a system of sto-

·, 

.. 

·- ~ 
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chastic ditierential equations. 

To design a scheme of order h 1•15, we have several choices. Let us con-

sider first the following theorem. 

Theorem 2.2. Under the same conditions of Theorem 1, the following 

scheme 

Q,. =X~+ ~I (Xn) (2-83) 

~ = Xn + ~/(Xn) + ~{J' 

Xn+l = Xn + ~w + ~ [ /(Q,.) + 2·/(Q;,)] 

has 1.5 order accuracy in the £ 2 sense (see (0-4) for the definition). 

Proof. There is no substantial difference between this proof and that of 

Theorem 1. We need only to assure whether the techniques used in the 

latter can be applied in this case. The key point is to examine the local 

truncation error of scheme (2-83). Let us define 

(2-84) 

Then_ the local truncation error T~ of the scheme (2-83) is defined in the equa-

tion: 

To make an error analysis, let us carry out the following Taylor expansion of 

f(q•(tn)): 

hf (q •(tn)) = hf (q (tn )+ ~ {J') (2-86) 

9 5 

= hf (q (tn)) + ~ 2 (J'f :(z(tn)) + ~2{1'2/ :(z(tn)) + O(h 2) 
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~~ . 0 

= hf(q(tn)) + ¥:(z{tn)) J 6w, ds + ~2p'2/=(.:z:(tn)) + O(h2). 
~ 

Replacing I (q •{tn)) in {2-85) by the above expression. we obtain 

(2-87) 

~~ 0 

+ /:{.:z:(tn)) J 6w, ds + ~2p'2/:=(Z(tn)) + T~ + O(Ji.F). 
. ~ . 

Comparing the above expression with that in {2-42) and recalling that R,.. is of 

order h 2·r,, we arrive at 

~~ :5 

T~ = tt={z(tn)) [ 6w11
2 ds - ~2p'2f=(:r:(tn)) + O{h2). 

" 
(2-88) 

One major fact about T~ is that its expectation is of order h 9• The reason is 

that {i) the expectations of those terms of order h 2·0 is zero, and (ii) 

E[(p')2]= ; {see appendix A.) and 

{2-89) 

which make the expectations of the leading terms in in T~ cancel each other. 

With this fact in mind, the rest of the proof proceeds exactly in the same way 

as in the proof of theorem 1. 

The general idea in designing a scheme of order h 1.:5 like (2-83) is to consider 

the family of schemes: 

Q,. = Xn + ~I {Xn) + k~ p· 

~=X,.+ ~/{X,.)+ L~p· 

Xn+l = Xn + ~1JJ + h[ a.f(Q,) + bf(~)] 

{2-90) 

where a., b , k, L are parameters to be determined. In a similar way as we did 

in theorem 2, we find that the exact solution of of stochastic equation 

.. 
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satisfies: 

(2-91} . 
. ~ .. 

+ h(a.·k+ b·l){i!~(z(tn}} + ~(a.·k2+ b·l2)p'1/:=(z(tn}) + O(h2) + r;,. 
By comparing the above expression and {2-26), we are led to choose 

a. + b = 1 • a.·k + b ·l = 1 (2-92} 

in order that scheme (2-90) have first order accuracy. With these choices, 

the local truncation error r:.. of scheme {2-80) is 

~~ ~ 

r;, = ~ :={z{tn}) f !::.w:s 2d.s - ~(a.·k2 + b ·l2)p'2! :=(z{tn}) + O(h 2) . (2-93) 
c,. 

However, as we understand from the proofs of theorem 2 (or 1), we may wish 

lo minimize the contribution of the local truncation error r;,. One way to 

achieve this is to choose the parameters so that the expectations of the lead­

ing terms of r;, are zero {e.g. in (2-88)). This leads to 

a.·k2 + b ·L2 = ~ . (2-94) 

The case corresponding to scheme {2-83) is a.= .1.. b = g_ k = 0 l = ~ We 
3' 3' I 2' 

make this choice so that we need only three function's evaluations at each 

time step, and all parameters are rational numbers with a., b positive . 
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In this chapter, we consider the following d. dimensional system of sto­

chastic ditrerential equations (see chapter 1): 

d:z: = .! ~) d.t + v d.~ , 0 ~ t ~ T , (3-1) 

where v ~ 0 is a constant and .! = .! ~) is a smooth function satisfying a 

Lipsbitz condition The main results are stated in theorem 3.1 (in. section 

3.2) and theorem 3.2 (in section 3.3). 

We start, in section 3.1, by analyzing the local truncation error of the 

splitting scheme based on the mid-point rule, an analysis that parallels sec­

tion 2.1. Then, in section 3.2, we derive a Taylor series method which we 

prove to have second order accuracy in the L2 sense, and explain why the 

Runge-Kutta method derived in section 2.3 does not generalize to the system 

of equations (3-1). 

On the basis of this Taylor series method, in section 3.3, we develop 

Runge-Kutta methods under the consideration of the weak convergence 

sense, defined in (0-14). Finally, in section 3.4, we extend the Runge-Kutta 

methods derived in section 2.5, and prove that they maintain their accuracy 

for the system case. We also discuss the convergence of these methods in 

the weak sense. 

3.1 Analysis of a Splitting Scheme Based on the Kid-Point Rule 

Consider a partition of the interval [0, T]: 

IT= [ O, .. ·,tn+l :: tn +h, .. ·,t, = T] 

· .. 

'· 
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and the splitting scheme based on the mid-point rule 

~+1 = k + 6,.w + hJ.( Xn + ~.!Ck)) (3-2) 

for solving the stochastic dit!erential equation {3-1), where 6nldl = ~~rl+t -:-1dlt"· 

In analogy with the analysis of numerical methods for . ordinary 

dit!erential equations, we analyze the local truncation error -Jk of the 

scheme {3-2), which is defined by the equation 

To facilitate the discussion, we define, for each specified interval, say 

[tn, tn+l], the variable: 

{3-4) 

where /j:w1 = 1dlt - w1 • From this definition, it follow-s immediately that 
" 

(3-5) 

for the specified interval. Substituting the definitions in {3-4) into equation 

(3-1) and the scheme (3-4), we. obtain respectively 

(3-6) 

and 

For convenience of analysis, we will write -12a in an integral form. Integrat­

ing equation {3-6) from tn to tn +h, we find 

'" +h 
.u{tn+l) -.u(tn) = [.! (.u(s) + ~14ls) ds , 

" 
(3-8) 

and since..;: {tn) is a random variable for fixed tn, we have 
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' '"+h. 

h!.(~(tn) + ~!.~{tn))) = [ !.(~{tn) + ~L~(tn)) ) d3 · {3-9) 

" 
Substituting the results in (3-8) and {3-9) into -.Ik. of (3-7), we obtain 

c,. +h. 

-.12n = [ [.[.6J.(s) + 6l!la) - L~(tn) + ~L~(tn))) ] d.s · {3-10) 

With -.!2, in this form. further analysis can be made because of the 

ditferentiability of the function .f.. 

As we did in section 2.1, we will show that each component - D! of -/Jn. is 

of order h 1•15 in the L 1 sense and in the £ 2 sense. 

In the_ following, we will adopt the S'IJ.mmation convention, which says 

that any repeated subscript or superscript in a multiplication term is to be 

summed over its range, e.g., aJbj = l:[aJbi] (there is no summation over i). 
J 

Let us stipulate that a superscript specifies the component, and sub­

scripts with a comma in the first place denote d.itferentiation, e.g., !~11: means 

ditferentiation of!' with respect to its ju.. and /cu.. arguments. 

Now we expand each term in the integrand of 1k. of {3-10) in a Taylor 

series around~(~)= u(tn). Define the variable~= ~u(s )-u(tn)+ ~~.we 

have· 

(3-11) 

l . 

+ Lfl"' I :r:(t ))&:& ; 6% II:/\,.,. '/).::& 17\ 24 .;lAm \A n • s ...-. s 
0 

+ 1~0 /~jlclm.n~·~(tn))6z.i ~.II: 6%• l ~."' 6:r:s n 

where the last term is the Lagrangian expression of remainder ot the Taylor 

expansion. In the same way, we have 
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/i(~(tn) + ~i.~(tn))) = L~{tn)) (3-12) 

+ ~~~~~(tn)),Li~(tn))+ kn-2/~jt~{tn))Ji~(tn))Ji~(tn)) 

+ 4~ h5/~j/U.~"( tn))J i ~{tn)}Jt ~(tn) )/ l ~( tn)) 

where, again, we use the Cauchy expression of the remainder. To estimate 

these remainders, we make the following assumptions: 

aP-t+···+,.,.. 

sup I ~ a'""' I i ~) I a.re bounded , 
~ %···· Zn 

(3-13) 

for 0 ~ JJ.1 + · · · + JJ.n ~ 5, 0 ~ i s d . 

From this definition, it follows immediately that the remainder in {3-12) is of 

order h 3 in the L 1 and £ 2 sense . Thus we can write (3-1~) in the form: 

Ji(~(tn) + ~.!{~{tn))) = /i(~(tn)} 

+ tt~~~(tn))Ji ~(tn)} 

+ ~2~~~(tn))Ji ~{tn}}/t~(tn}) + O(h3) 

(3-14) 

To analyze the order of the remainder of the expansion (3-11), more work 

is needed. Let E denote the expectation, as before. Recalling that 6~ is a 

Gaussian random vector of which each component has mean 0 and variance 

t:.s = s - tn and is independent of each other, we see from (2-18) that 

E l6w! 1• • • 6-w, 1" I = E l6w! 1 1· · · E l6w!" I (3-15) 

~ 
which says that the product 6w! 1· • · 6w;" is of order h 2 In general, 

j l j l !-{L 1 +···+L,) 
[6w. 1] 1···[6w."] 11 is of order h 2 , since 

(3-16) 
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: (~"(2M) t<tl + .. ·He~). I"( l1 + 1 )- .. f'[ l_, + 1 ] 
1T' 2 2 

. oHtt+•··+'ct) 
~ canst. · h 2 ( As = s - tn ) 

where r is the gamma ~ction. Observe further that 

• 
(JL(S) -JL(tn))' = J J'(;u.(r) + ~~) dr (3-17) 

"' which is obtained by integrating {3-6) from tn to s. Since I' is bounded by 

assumption (3-13), we have the estimate: 

"'+I& 
El (;u.(s) -JL(tn))' I s [ Elf'(;u.(r) +~~)I dr ~ canst. ·h (3-18) 

which shows that (;u.(s ):-Jl{tn))' is of order h in the £ 1 and £ 2 sense. 

Now we are ready to deal with the remainder in (3-11). The above analysis 

shows that the leading term of this remainder is 

/~ldmza{i(tn))Aw,i Aw,lc Aw,' Aw1 "' l:lw, n 

and is of order order h u in the L 1 and £2 sense. Furthermore, the same 

analysis can also be applied to other tenns of expansion (3-11) and this 

enables us to rewrite {3-11) in a more compact form: 

!'(JL(s) + l:ll&la )= J'~(tn))+ ~~~(tn))(JL(s) -.u{tn) + l:lw, )i (3-19) 

+ tr~Jic~(tn))(.U(s) -.ll(tn) + l:lw, )i(JL(s) -.u{tn) + l:lw, )lc 

+ t,f~w~(tn))( .u(s) -.u{tn) )i l:lw, lc l:lw,' + kt'~jlct~ (tn))l:lw,i l:lw,lc ~w,' 

3 

+ 2~ f~lelm ~(tn ))l:lw,i l:lw,lc l:lw, 'l:lw,"' + ~(h 2) 

Substituting the results in (3-14) and (3-18) into -Dn of (2-10), we can write, 

after some cancellations, 

~~ "'~ 
-D~ = /~j~(tn)) J f:lw,i ds + ~~lc~(tn)) J l:lw,i l:lw,le ds - R~ (3-20) 

'~ "' 
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where we keep in -IJf& only the two terms of expansion {3-11) and put all the 

other terms in the following remainder 

"'+h 

-.Rf. = f~J(A(tn)) [ {_y{s)-l£{tn)- ~L(A{tn)) )fds (3-21) 

t,. +h 

+ J~~c(:z:(tn)) [ [(u(s )-_y(tn)Y ~'Ws lc + t<u<s )"'"3L(tn))i (u(s )- _y(t~))k] ds 

" 
"'+h 

+ !f~;~ct(A(tn)) J (u(s )-lt(tn))i ~w,lc ~w,'ds 
.r;o "' . . 

t,. +n 

+ tt~jlct~{tn)) J ~w,i ~w,lc ~w,'ds - ~3/~~c(A(tn))fi (A{tn))/lc (A(tn)) 

"' . 
f,.M . 7 

+ 2~ /~jlclm (:z: <tn)) J ~w,i ~w, lc ~w, t ~w,"' ds + O(h 2) . 

'" 
Now let us examine the orders of the first two terms of -D~ {in (3-20)) in 

the L1 sense. From the analyses in {3-15) and (3-16), we see that 

"'+h 

{a) [ ~wi cis is of order h 1 ·~ in the L1 and L 2 sense. 

t,. +ll 

(b) J ~wi~wlc ds is of order h 2 in the L1 and L2 sense. 

'" 
Hence, we can assure that -~ {in {3-20}) is at least of order h 1·~ in the L1 

sense. However, it is still not clear, at this stage, what the order of -D~ is in 

the L1 sense because the orders of the first three terms of -R~ (in (3-21)) 

cannot be seen readily. Before we go further, we need the following lemma. 

Lemma3.1. For the first three terms in-~ of (3-21) .. we have the follow-

ing estimates: 

(i) 



(ii) 

{iii) 

(iv) 

tn +ll 

J ( y(s )-y(tn)-~/ ~(tn)) )i ds 
t,. 

"'+ll. 
= f!Jc(;.(tn)) J jt:J:w,.lc d.rds + ~3/~(;.(tn})f 11 (;.(tn)) 

t,.t,. 

t,. +ll. 7 

+ ~f~.t£~(tn)) J [b.w,.lt;b.w,.' drds + O(hr") 
t,. n 

tn +ll 

[ (u(s )-JL(tn))i b.w.lt; ds 
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t;. +ll . "'+ll • 7 

= fi(z(tn)) [ (s- tn)b.w_lt; ds + /~z(z(tn)) J [Aw.,."Aw.' d:rds + O(h 2 ) 
fn n 

~~ 7 

[ (ll(s)-lL{tn))i(u(s)-.u(tn))lc ds = ~3Ji(;.(tn))/ll:~(tn)) + O(h 2) 

~~ ~~ ' 
J (u(s)-JL(tn))ib.w • .I:Aw.' ds = fi(z(tn)) J (s- tn)Aw • .cAw.' d.s + O(h2'). 

"' t,. 

Proof. From the analyses in (3-15) and (3-16), we see that the equality (i) 

can be derived by considering the sequences of equalities: 

'n +ll. 

[ {u(s)-.u(tn}-~L~(tn))i ds 

c,. +ll. 

,= [ [(L(u(r)+ A~)-l,{u(tn)))i d:rd.s 

~,.~. 7 

= [ j[ J!,e(u(tn))fl#+ tJ!.cz(ll(tn)}~~ d.rd.s + O(hi') 
n Cn 

.. 
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~~. ~~. 

= /~(z(tn)) J Jllw~ d.rds + f~{£(tn)) J j6/.(r)- .u.(tn))k d.rds 

'" t,. '" '" 
"'+h • '1 

+ ~~(z(tn)) J Jllw,.kllw.,.' d:rds + O(h2) 

'" '" 
where 2:z. = JL(r)- .u.(tn)+ flw as we used in {3-11). The second term on the 

right hand side of the last equality can be rewritten further: 

'"+h. 

J!k(£(tn)) J J 6/.(r )- .u.(tn))k d.rd.s 

'" '" 
"'+h. s 

= J~{£(tn)) J J [(r-tn)JA=~(tn)) + O(h2)] d.rds 

t,. '" 
'1 

= ~3J!~c~(tn))JA=~(tn))+ O(h 2). 

To prove the second equality (ii), it is more convenient to consider the 

difference of the left hand side and the first term on the right hand side of it. 

We have 

'" +h J [ll(s )-:!L(tn}- {s -t ).!~(tn))]i llw.k ds 

"' "'+h. 

= J j[.L 0J. ( r) +flw.,.)-.! 6/. { tn)) ]i flw. k d.rds 

'" '" 
t,. +h. 

= [ [[/~6/.(tn))6/.(r)-:!£{tn)+flw.,.)'+ O(h)]!lw.A= d:rds 

~ 

"'+h. 

= [ [[1 ~ (z ( tn ))llw.,.' + O(h) ]flw. Jc d:rd.s 

'" +h • '1 = ~~~(tn)) J J llw.,.lcflw.' d.rds + O(h 2) 
t" t" 

The justification of the equalities (iii) and (iv) can be made by merely 

recalling the estimate in (3-17). This complete the proof of lemma 1. 
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From the expression of -J?! in {3-21), we see that equality {i) 

corresponds to the first term of -!?!. (ii) and (iii) to the second term, and (iv) 

to the third term of -/?!. Substituting the results in the lemma into -R! of 

{3-21), we obtain 

"'+h. 

-W,. = /~j~{t,.))J!Jc~(t,.)) J J~w,./t; d:rd.s (3-22) 
c,. e,. 

e,. +h • . 

+ ~3/~~(t,.))/!Jc~(tn))//c~{tn)) + ~~i~(t,.))J~~(t,.)) J J~wr/c~wr'drd.s 
'" c" 

"'+h e,. +h • • 

+ /~"J=~(t,.))Ji~(t,.)) [ (s-t,.)~WsA:ds + I~JA:~(t,.))J!L~(t,.)) [ [~w,.A:~w.'d.rd.s 

. t,.+h 

+ ~~A:l~(t~))Ji~(t,.)) J (s-t)~Ws/c~Ws'd.s 

"' 
'" +h . 

+ 2~ h3/~jA:~(t,.))Ji~(t,.))JA:~(tn)) + k;~A:l{z{t,.)) J ~w.i~w.lc~w.'d.s 
c,. 

~,.~ . 7 

· + 2~/~A:lm{z{t,.)) [ ~'Wsi~'Wslo~w.'~w11 "' ds + O{h2). 

" 
where all but the last three terms are obtained from the equalities in lemma 

1. Examining each term on the right hand side of {3-22), we find that the 

~ 
leading terms are the 1", 4'" and ae~a term, which are of order h 2 • This 

observation enables us to write 

'" +h If 
-R! = ~~~{t,.))/!Jc~(t,.)) [ J~w: drd.s 

" c,. 
{3-23) 

t" +h 

+ /~A:~{tn))Ji~(t,.)) J (s- t,.)6wf ds 

"' t" +h 

+ ~ /~A:l~{t,.)) J ~wJ~W:~w; d.s + O(h3
). 

'" 
Thus -~is of order h2·~ in the L 1 sense, and we conclude that -D~ is of order 
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h 1·5 in the £ 1 sense. 

Actually, the above conclusions also hold for the £ 2 analysis, i.e., -.12n and 

-& are of order h 1·5 and h 2·5, respectively. We need only to make sure that 

the expectations involved in above discussion also exist if taken in the £ 2 

sense, which is guaranteed by the assumption (3-13). 

For the sake of brevity and convenience in later discussion, we introduce 

the variables: 

3 ~~ ~~ 

pi = h 2 p·J = J !J;:wi d.s , ~" = h 2't)'ilc = J f:lwi l:lwlc d.s . 

~ '~ 
(3-24) 

Then the expression of -D! in (3..:20) can be written as 

-D! = /~;~(tn)){Ji + ~ ~~jlc~(tn))~lc - R! (3-25) 

Furthermore, we introduce 

'" +" ~kl = [ 6w/6w:6w; d.s (3-26) 

and 

~ +" • '" +" r = J [l:lw,." ard.s' ole= J (s- tn)l:lw: d.s . 

~ " ~ 
(3-27) 

The expression of -R! in (3-23) can be rewritten as 

-~ = ~~~(tn))/'.Jc~(tn))r (3-28) 

+ /~~c~(tn))/i~(tn))o" + !:t~Jkl~(tn))'I}Jkl + O(h3). 

Remark. Recall the estimates in (3-15), (3-16) and the nonanticipating 

property of the solution of stochastic differential equation. As we have done 

in the remark of section 2.1, we conclude that any stochastic quantity whose 

order is of the form: It: + 0.5 (It: is an integer) in the £ 1 sense has zero expec­

tation, since the components of the Wiener process are independent of each 
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other and these components, as a whole, must appear with odd power in the 

stochastic quantity considered. This important observation suggests to us 

to consider the convergence of a stochastic scheme in the £ 2 sense instead of 

the £ 1 sense since £ 2 analysis exploits the nonanticipating property while the 

latter does not. 

3.3 A Second Order Taylor Series .Method 

In this section, we will prove second order accuracy (in the £ 2 se~se) of a 

Taylor series method and explain why the result in theorem 2.1 of section 2.2 

does not generalize to a system of stochastic differential equations. This Tay­

lor series is derived as an intermediate step and will serve as a basis for the 

Runge-Kutta method. 

A close look at equation (3-3), (3-7) and the expressions of -D~ and-~ 

given in {3-10) and (3-21) leads us to consider the following Taylor series 

method: 

(3-29) 

La+l =La+ 6~ + hJ_(A) 

~~ ~~ . 
+ LJ(k) J fllJ!.i d.s + ~i.JA:~) J flwsi flwsA:d.s 

'ft eft 
with the local truncation error -R~ given in (3-22) (or (3-23)). where we note 

the appearance of cross derivative terms of J_ in this scheme and these cross 

terms, as we shall see, will eventually destroys the second order accuracy of 

the Runge-Kutta method (2-55) when extended to the system case. 

Now we prove the following theorem: 
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'lb.eorem 3.1. Let L be a smooth function satisfying a Lipshitz condition and 

the conditions stated in {3-13). In addition, suppose that each component of 

L and each of its first and second partial derivatives satisfy a Lipshitz condi­

tion with the same Lipshitz constant. Then the scheme {3-25) is of SE;!cond 

order in the L2 sense: there exists two constants he and C so that 

1 

[ElL& - ~{tn)l 2 p-~ C h 2 

for all h ~ hg, provided that the initial condition is exactly imposed or accu- . 

rate to the second order in the L2 sense. The constants Con depends the 

global bounds for the function L and its partial derivatives to the fifth order. 

Proof. F"U"st. let us define 

{3-30) 

By combining {3-3) with (3.20) we see that the exact solution~(t) satisfies 

(3-31) 

t,. +h c,. +h 

+ LJ~{tn)) [ 6w_f ds + ~.jl:~(tn)) [ 6w:/6w11 l: ds - & 

where the remainder-& is of order h2·~ either in the L1 or in the L2 sense. 

Let.£. = .& - ~(tn). Subtracting the above equation from the second equa­

tion in (3-29), we obtain immediately 

(3-32) 

"'+h 

+ [LJ~)-.!.j~(tn))] J 6w11 i ds 

"' 
"'+h 

+ ~ .!.Jl; ~ )- .!.jl: ~{tn)) ] [ 6wsi 6ws l: ds - Rn . 

" 
For the sake of brevity, we introduce the notations: 
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(3-33) 

and 

where we may notice that there is no comma {which means difierentiation) in 

the subscripts for either v' or v~. Then. recalling the definitions _in {3-24), 

we can write equation (3-32) in the (component) form: 

(3-34) 

To make an £ 2 norm analysis, we are led to square both sid~s of this 

equation and take a sum over the index i on both sides of the resultant equal-

ity. This results in 

+ 2 t. [ he~v'+ e~vj(Ji + te~vJ~~:1P"= ] (3-35) 

+ 2 ,.rl,[ hvivipi + kviv~ 1P" + .!..v1 v· ~t,:;l~] ~ J 2 Jl&: 2 Jt J~P 
1.=1 

In all, there are fifteen terms on the right hand side of the above equation to 

be estimated. However, by the nonanticipating property, the expectations of 

the 611'. 6th and 10~ terms are zero. 

Therefore. we need only to deal with the remaining twelve terms. Let 

each component of 1. and its partial derivatives up to second order (J_J, L.j~c) 

satisfy the Lipschitz condition: 

lg~)- g<.Jl) I ~ L ~~- J£1 {3-36) 

where g can be any one of the functions stated above. Now consider 
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11.£.-.£{tn)l = 1.&-~(tn)+ ~[l,(k)- ,!(;.(tn))]ll (3-37) 

~ lk-~(tn)l+ tn-LI.!Ck)-.t(;.(tn))l = (1+ ~hL)I~I 
Then the second and the third term on the right hand side of {3-35) can be 

estimated respectively as: 

Eft h:a(v' )2] ~ dh:aL2EI.£.- .a(tn)l:a ~ dh:aL:a(1 + J:....fiihL )2 El!n 12 
~=1 2 

{3-38) 

and 

(3-39) 

= E[t (vJlvJa)]- ~36itia = ~3E[l;(vJ)2] 
\=1 iJ 

~ k3.ct2L:at[El!nll2] = ~2h3·E~I2. 
3 \=1 3 

The analysis of the fourth term is somewhat complicated. Consider the 

expression: 

E[t(v}.t~.t)2] = E[t(vJ.~.vJ~a't)it.tt'!Ji~a)]' 
\=1 \=1 

If one index (of j 1, k1o J2, k 2) appears singly, then the expectation of the 

corresponding term is zero. This observation leads us to consider the follow-

ing foUl" cases: 

(i) j 1= k 1= j 2= k2: there are d. possibilities and in this case 

E['1Jit•l't)i~a] = E[~i~i] = ~4 
12 

{ii) it= k 1 ;11! i2= k2: there are d.(d.-1) possibilities and we have 

· E['l)Jt.tt'l)ia.ta] = E['t)idt]E['t)izia] = -4.• 
. 4 

(iii) j 1= J2;11! k 1= k2: there are d.{d.-1) possibilities and we have 
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(iv) j 1= k 2 re k 1= j 2: this case is completely the same as the case (iii). 

All the above calculations can be found in the appendix A. With these results, 

the expectation of the fourth term can be estimated as: 

(3-40) 

We estimate the fifth and the seventh term by applying the Cauchy­

Schwartz inequality in the following way:. 

E[,~1(he!v')).: hE[ <,t,<•!)")~(.~1(v'}2}~] 
"'4 l.r..l·"il£(1+ ~h£}1!..1] 
s VclhL(l+ ~hL)EI£nl2 

and 

E[f:(e~v}t~t)] = E[t(e~vjt)]E(~t) = E[f;(e~vjA:)]-k2oit 
'i=l 'i=l i=l 2 

= !had t ECeAvj;) lj 
2 l J=U=l 

(3-41) 

(3-42) 

.: ~ 2 {~, [<.~ ( e!}
2

} : <,~, ( vJ1 }
2

} : ]) .: ~ Vilh 
2 LEI •.12 

. 

The estimation of the ninth term ori the right side of (3-35) is similar to 

that of the seventh term. The result is 

(3-43) 
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Now we estimate the last five terms, each of which contains the factor 

-B.n -the local truncation error. Hence, to estimate these terms, the expres-

sion of -& either in (3-22) or in (3-28) will be used. 

Let us start by considering the expectation of -.Rf. (see (3-22)). 

Remember that those terms in which the components of A3IJ. appears with odd 

power (the t•', 4th and Blh term) will vanish after taking expectations. 

All the expectations in {3-22) of remaining terms can be easily evaluated 

except the second before last term in which we need to consider two c~es: 

(i} i ,k ,l,m. are all equal: there are d. possibilities, 

(ii) j,k,l,m. are equal in pairs, but are not all equal: there are c!(d.-1) possi­

bilities. Then, by a simple calculation. we find 

-E[fl!] = E [ t!-•t~l!•t•+ t,r~t;,.· ~36"+ !':;.fir ~36"] (3-44) 

+ E [ .L,,_ Ji· k3o.tl + ~3/' !;!~~:] 2 .I .Jit:l. 3 24 .Jl: 

+ E [ ..L t [/~m·h3] + ..L ~ [!~JJA:.t' k3] l + O(h4) 
24 i=l 24 jrtll: 3 

where all functi.ons' value are evaluated at ~(tn ). Finishing the arithmetic by 

letting -R~ = h 314. ,where M~ is a stochastic quantity of order h0 in the £ 1 

sense or in the £ 2 sense, we have 

(3-45) 

+ E[ .::.h61 3'tl~;~~:~~:fi+ 214/~~:/J/11:+ 214 'tl'.;jjj+ 712 ~/~;;A:.t+ O(h)]. 
11:=1 J=l Jrtll: 

With this result, we can now estimate the eleventh and twelfth term on the 

right hand side of (3-35) as: 
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-E[f; (e~.R!)] = h3E[f; (e~~)] 
\=1 \=1 

(3-46) 

and 

-E[ t(hv'R~)] = h4E[f;(v'M~)] 
\=1 . \=1 

r 1 
~ tt tldh.2£2(1+~L)2E~I2 + t1-1Bfhs j 

where t 1 is an appropriate positive number and 

Now we estimate the thirteenth term ~Jpi J?1a on the right hand side of 

{3-35). Replacing -.R! by its expression in (3-23), we find that only the lsc, 

4th and 7U. lerm will remain after taking expectations. The only difficult 

point is evaluating the expectation of the 7th term in which two cases need to 

be considered: (i) all four durruny indexes are the same or (ii) they are equal 

in pairs. The result is 

(3-48) 

+ .!-£[f;vJJ~iii'h3] + ~[3· ~vjf~ldc· 4 3] + E[vj-O(h4)] 
6 j=l 6 j,a/1 3 

= EL~~ vJ [ ~3[/~i/~~+ 2/}1Jii1 + ~c~/~iklc] + O(h4)]) 

=- h 3E[ t vJMJn] 
j=l 

where MJn = h-3pi R! is a stochastic quantity of order h 0 in the L1 or £ 2 sense. 

Then we have the estimate: 
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(3-49) 

~ .l.e2d-2L- 1hE[~(vJ)2] + ki1Ld2h5E[~{WJ1')2] 
2 1.J 2 1.J 

~ .l.eehLE~Ia + LaaeilLBa2h5 
2 2 

where, again, e2 is an appropriate positive number and 

There are still two terms remain to be treated. From the abov~ discus-

sion, we see that what really matters in a estimation is the order of the sto­

chastic quantity. Therefore for a much complicated term like v]A:'lP~ R!, we 
. . 

may set MJ~m = h -<~,Pic m. and write 

A[' 'A:m] 4"'[ t ·~c ·] -E~ Vj~c'lP fin = h ~ Vj~c'lP M]~m 
i=l i.j,/c 

(3-50) 

since ,p"t is of order h 2 and -m. is of order h 2·5 and the expectations of a term 

of order h 4·5 is zero. Hence, the expectation of the second last term on the 

right hand side of {3-35) can be estimated as 

(3-51) 

~ k3h2£2Eie 12 + keB 2 
2 ~ 2 · 3 

where the first inequality is obtained by applying the Cauchy-Schwartz ine-

quality to the right hand side of (3-50) once and 

The estimation of the last term: IRn 12 can be done in a similar way~ 

Squaring both sides of the expression of R~ in (3-28) and taking sum over the 

index i, we find: 
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11&12 = E[t(R!)2] = h5Eft[J~/~~:ok + /~j~:/ 1r + -!-f~jA:t~kl]2lJ + O(h8
) 

\~1 ~=1 6 

~ 3·h:sEft[/~J~o'.t]2 + t[J~.tfi1'.t]2 + ..Lt[J~ikl1J'ikl]2] + O(ha) 
~=1 \=1 36\=1 

(3-52) 

where the definition of BR2, similar to those of B~, Bl· and B~, is Clear from 

the last inequality. 

To complete the proof of theorem 3.1, we need to summarize all the esti· 

mates that have been made in the above. Taking into account all the 

coefficients in (3-35) and collecting the estimates from (3-36) to (3-52), we 

obtain 

where 

and 

~2 = 2{ 2d + eld.L -2 + l.a"\171£ -1 ] 
2 

Gs3 = 6-[pv'p + ~£-1 + ta"\171£-2 + etd...r'dL-2], 

G • = 24·[ !..a2+ .!.a2L-2 + .4 d2£-2+ ~3£-2] 4 4 4 4 1 48 

(3-53) 

With this expression. if we choose e = e 1 + e2 so that G1 is greater than G1, ~. 

Gs and G., Then for equation (3-53), we have the following estimate: 

(:3-54) 
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An elementary calculation shows that the solution of this recursive relation is 

given by 

{3-55) 

Let El.!.oll 2 :!i: C~ h". By squaring both sides of the above inequality, we com­

plete the proof of theorem ;3.1 with 

C= suo [ B (eC2...tii'+c)TL_l)+C2e(2v'Ci+c)TL_+O(h)}}· 
h~0 (2 ..J'ii + e)L 0 

From the proof, we see that the local truncation error of a numerical 

scheme for solving equation {3-1) must be of order hu or even higher in 

order that the scheme itself be of order h 2 in the L2 sense. 

Now we can explain why the theorem 2.1 does not generalize to a system 

of stochastic differential equations. A natural extension of {2-55) to a sys-

tern is -

(3-57) 

A= k + ~L~) + ..JTi.B.. 

k+l = x;. + ~[ J_(Jk + ..JTL&) + J_(~ - ..JTL&) ] . 

A simple analysis shows that the local truncation error of the above 

scheme contains a term: 

(3-58) 

which is of order h 2 (in the L2 sense, and thus destroys the second order 

accuracy of the scheme (2-57) in the L2 sense. In other words, we may say 

that the appearance of the cross derivative terms of L make the scheme 

{3-57) fail to be a second order method in the L2 sense. 
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3.3 Runge-Kutta Methods of order One and Half 

In this section, we will extend the results in section 3.5 to the system 

case. We need only to interpret the schemes in section 2.5 in vector nota-

tion. Consider the family of Runge-Kutta methods: 

~ =La + ~L~) + kv'Ji:: 

-" =La + ~L(k) + L v'Ji"J_ 

~ .. t =.&. + ~~ + h[ aL~) + bL~)] 

(3-59) 

where a + b = 1, a·k + b ·L = 1 and a·k2 + b ·l2 = ~. In particular, we will 

prove 

Theorem 3.2. Let L be a smooth function satisfying the condition {3-13). 

In addition, assume that every component J" of L satisfies a Lipshitz condi­

tion with the same Lipshitz constant. Then the following scheme 

~ =k + 4L(k) 2 

~· = k + ~L<k) + ~~ 

.&.+1 =k + ~~ + ~[LU?n) + 2·LU?n")] 

(3-60) 

is of order h l.:5 in the L2 sense ( see (0-4) or theorem 3.1 for the definition). 

Proof. The proof is very similar to that of Theorem 2.2 in Chapter 2 except 

that. we need to use the summation convention. The first step is to figure out 

the local truncation error of scheme (2-64). Let us define 

.i{tn) =~(tn) + ~L~(tn)) +~,d. (3-61} 

The local truncation errorof scheme (3-64) is defined in the equation 

-. 
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~(t"+l> = ~(t") + 6n~ + ~[ t.(a(t")) + 2·t.(a'(t")) l + .L . (3-62) 

To make an error analysis, let us carry out the following expansion of 

(3-63) 

9 . . 0 

= hJ'(g,(t")) + ~ 2 J~(A(t"))p'i + ~2!~k(A(t"))p'1 p'k + O(h 2 ) 

~~ 5 

= hf'(A(t")) + ~~~(A(t")) J t:.wi ds + ~2/~jk(A(t"))p'i;g'k + O(h 2) . 

'" 
Replacing J.{g,'(t")) in (3-62) by the above expression, we obtain (in com-

ponent form) 

(3-64) 

~~ 0 

+ f~(A(t")) [ t:.wi ds + ~2/~ik(A(t"))p'i p'k + O(h 2) + T~' . 

Comparing the above expression with (3-27) and recalling that -& = ~-~~ 
5 

is of order h Z: we arrive at 

~~ .0 

T~t = tt~jc(A(t"}) J t:.wit:.wk ds- ~2/~jk(A(t")),e'Jp·k + O(h2) .(3-65) 

'" 
As in the scalar case, the main fact about T~ i is that its expectation is of 

order h 3 despite of the appearance of the cross terms. The expectations of 

the cross terms are zero because of the independence between any two com-

ponents of a (multi-dimensional) Wiener process. In fact . 

E[T~'] = }€U~c(A(t"))]- ~2oi•- ~2·£[/~l:~(t"))l toi• + O{h3
) (3-66) 

= .42£[ t1~ii(A(t"))]- =-n.4
1 2E[ t1~ii(A(t"))] + O(h3

) = h3E[M~'] 
4 j=l j=l 

where M~;. is an quantity of order h 0 in the £ 1 sense. Let e~ = x'(t") - ~-

Subtracting the third equation in {3-60) from (3-62), we have {in component 
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{3-67) 

where we define 

v~ = v~. 1 + 2·vA.z 
and 

vA.z = !'(sz.'(tn) -/1.(A') · 

Squaring equation {3-67) and taking sum over the index i, we obtain 

l!a+1l2 = l.inl2 + ~f:[eAv~] + k 2f:(vA)2 
3 \=1 . 9 1.=1 

{3-68) 

+ 2· f:[eAT~i] + ~. f:[v'T~'] + IIZI2 . 
i=1 3 i=1 

Our analysis is based upon the estimation of the expectations of the 

terms on the right band side of (3-68). Consider vA defined above and apply 

the Lipsbitz conditions on I: then 

Using this fact and the Cauchy-Schwartz inequality on the right hand side of 

(3-68), for the fist and second term, we find 

h2E[f;(vA)2] ~ 9h2E[ f;£2~12] ~ 9 dJt2£2Eil£niz {3-70) 
\=1 \=1 

and 

hf;[eAvA] ~hE[ [f;(eA}2 ]*-[f:(v!)2 J*] ~ 3·VdhLE!.!n~·2 . (3-71} 
i=l i=l i=l 

Now note that the local truncation error~ appears in the last three terms on 

the right hand side of {3-68}. Recall the nonanticipating property of the 

solution ~{tn}. Using the fact in (3-66} to the term t [eAT~'] and the arith-
i=l 
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E[ t e~T~;.] = h 3E[ te~M~;.] ~ te 1hLE~I2 + O(h:s). 
i=l i=l 

{3-72) 

The same trick is also applied to the last two terms on the right hand 

side of (3-68), we have 

(3-73} 

since E[t (T~')2] = £1~112 is of order h4 in the £ 1 sense as we shall see in a 
i=l 

moment. Now we give an estimate of the leading terms of ILII2
• which dom­

inates the error of the scheme {3-60). Recalling the definition of ,j'i~ in (3-

24), we can write {3-65) in the form: 

:s 
T~;. = h2·J~i~~(tn))[ ~ 1)'i~ - ! p'i p·~] + O(h 2) . {3-74} 

-
The remark at the end of section 3.3 and the independence between p'i , ,j'i~ 

and ~~~~(tn)) enable us to write 

E[T~']2 = ~4£[ ~~~~(tn))(,j'i~- ~ p'ip'Je) ]2 + O(h5) (3-75} 

~ ~··E(~(/~~e~{tn)))2]-£[~(1)'ile - ~p·i p·Je)2] + O(h:s) 
4 j): . J.lc 2 

~ ~··[B.} ]2 ·E[ ~[ ,j'i~ _ ~p'i p·~ ]2] + O(h5) 
4 J): 2 

where [B) ]2 =- max E[~{J~jJe)2]. In the last inequality of (3-75), let us con­
~sr i.kJ 

sider two cases: 

{i) j = k: there are d. possibilities, 

(3-76) 
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= .:L - 3· 13 + g__ .L = 1 
12 30 4 3 30 : 

(li) j #c : there are cl{d-1) possibilities, then 

(3-77) 

= 1 2 9 1 1 
-- 3·-+ -·-·-= 6 15 4 3 3 

1 
so· 

Substituting the results in {3-76) and {3-77) into (3-75), and summing over the 

index i, we obtain 

E~l2 ~ ( ~ + ~(d-1) ]B1
2h4 = ~(d+1)B12h.4 (3-78) . 120 240 240 

where B} = 't [B} ]2• Collecting the results from (3-70)-{3-73) and (3-78), and 
•=1 

substituting them into {3-68), we obtain 

Ei.L+1i2 ~ [ 1 + (z-..1([ + e)hL + d 2h 2£ 2 ] E~l2 + 
2
!o d 2(ct+ 1)h4 + O(h:5) 

where e = e1 + e2• Solving the recursive inequality (3-79), we arrive at the 

following estimate: 

Using the initial condition: E~l2 ~ C9 h 3 in (3-80), we then complete the 

proof of theorem 3.2 with 

(3-81) 

where 

{ } 

t 
(2 Vc1 +r:)TL - 2 

C = suo - 1-· 8 1 d.2(ct+1)Bj + C9 eC2 va' H)TL + O(h) . 
h~a 240 (2 ..Ja. + e)L 

From this expression we see that, if the initial error is sufficiently small, 

Le., C0 is a very small number, then for h ~ 
2
!o ~ .00417, scheme (2-60) is 

practically of order h 2 (i.e. second order) in the £2 sense. 

--
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3.4 Heuristic Second Order Runge-Kutta Methods 

As we know from the discussion of section 3.2 that there are substantial 

ditficulties in deriving second order Runge-Kutta method in the £ 2 sense. 

From the practical point of view, £ 2 convergence is a strong requirement, and 

one may be content with a convergence in a weaker sense. 

In this section, we will consider the accuracy of numerical schemes in 

the weak sense (defined in (D-14)). Let rp be a smoothfunctional satisfying 

the Lipshitz condition: 

{3-82) 

£2 convergence implies weak convergence as can be seen from the following: 

(3-83) 

where the second inequality is obtained by applying the Cauchy-Schwartz ine­

quality once. Moreover, from (3-83), we see that the rate of weak conver­

gence is not less than that of £2 convergence, and we may expect a faster 

convergence in the weak sense. 

The purpose of this section is to consider the rate of convergence of 

numerical schemes in the weak sense in the hope that the Runge-Kutta 

methods of second order in that sense can be derived based on the Taylor 

series method (3-29). 

Consider the {d-dimensional) stochastic ditferential equation: 

d.%= L{z)d.t + d3&lt, o s t sT. (3-84) 

Let us write down the second order {in the £2 sense) Taylor series method (3-

29} in terms of pi and ,p7c defined in {3-24): 



and 

then 

A =k + ~L(Xn). 

k+1 = k + ~l&l + hL(A) + LJ(k)pi + tt.j.t(Xn)1V11 
• 

Define 

Given a smooth functional rp, consider 
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(3-85) 

(3-86) 

(3-87) 

rp{L+l) = rp(k + ~) (3-88) 

= rp(Bn) + rpJ(Bn)·S~ 

+ ~.;~:<&) [~l&l + L.tP']1 -[~~ + t..m.P"'].t 

. ~ 

+ ~JA:i(k)~wi~w~~~w' + 2~ 't'.;ttm.<.l2'n)~wi~wk~w'~w"' + O(h2). 

Note that the increment 6,.~ is indep~ndent of the solution~(tn) before and 

at time tn (the nonanticipating property); we can thus carry out the calcula-

tion: 

(3-89) 

+ ~[ ~ rp,;~Ulz-)·0 ]+ 2~ E[tlit'jJJi{B,.)·3h2+ r:S".jjk.t{B,.)·3h2] + O(h3) 
j)c,l i=l jJt/c 

where the function L and its partial derivatives are evaluated at tn. Finish-

ing the calculation by using the property of oilc (i.e., oilc = 1, if j = k; = 0, oth-

erwise) and combining the summations on the second last term on the right 

hand side. we obtain 

·. 
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(3-90) 

+ ~ E[hf; 'PJi(/i,)+ h 2 ~ 'PJA:I!d~]+ ~2E[ ~'P.;;.t.eel&.)] + O(h3
) • 

J=l J,A:.& j,A: 

In obtaining the expression in (3-89) (or (3-90}}, we use the following facts: 

(i): A,. wi is a Gaussian random variable with mean 0 and variance h; 

(ii): 

Note that~ (defined in (3-24)) is not a Gaussian random variable. These 

conditions can be satisfied by a single Gaussian random variable, ·if in the 

second equation of (3-85), we make the substitutions: 

where ! ~i J is a set of k independent Gaussian random variable with mean 0 

and variance 1. In other words, if we de.fine 

(3-92) 

and 

~+l = Iln + s;., (3-93) 

where Iln is defined in (3-86) (note that we use the same k). then 

E[rp~+d] = E[rp(Iln + ~)] (3-94) 

= E[rp(Iln)] + ~21 2E[ t 'P.J(Iln)!~.t.e] 
J=l 

+ ~[ h·t 'PJi(l&.) + h2 ~ 'PJA:f~!~] + ~2[ ~'PJi.t.e(Iln)] + O(h3) 
J=l j.JcJ J.lc 

which has exact the same form as (3-90). Comparing (3-94) with (3-90), we 

find that they dit!er from each other with an amount of order h 3,i.e., 

(3-95) 
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With the substitutions in {3-91), we now consider the numerical scheme 

(3-96) 

3 

Z.+l =k +...nil..+ h.l.(-'?n) + ~2.l..s~>t1 + ~2.l..;11~)t1 f=. 
which is obtained from (3-85) by making the substitutions {3-91). In the 

below we show that the local error {or one-step error) of the scheme (3-96) is 

of order h 3 in the weak sense. 

For clarity, let L+t• k+I denote the numerical solutions in (3~85) and 

{3-96) at tn+l with the exact value L = Zn = ~(tn) imposed attn. Consider 

&{tn) = .Z. + .B.n . 
By a argument similar to that in the derivation of (3-90), we have 

sP~(tn)) = sP<L. +En) 

that is, 

= E(sP~) + Y'.,t(L)R~] + O(h:s) 

= E[sP{L.)] + O{h3) I 

{3-97) 

for a sufficiently smooth functional sP satisfying the Lipshitz condition {3-82). 

Combining the results in (3-95) and {3-97), we obtain 

I EsP~(tn+l) - EsP~+l) I S I ES"~{tn+l)) - EY'~+l) I (3-98) 

+ I EsP~+l)- EY'~+l) I ~ h 3 + h 3 ~ h 3
. 

which means exactly that the local error of the scheme {3-96) is of order h 3 

in the weak sense. A class of Runge-Kutta methods with the same accuracy 

as (3-96) can be designed as follows: 

-, 
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-· 

where 

~ = k + ~.!(J;.) + k"li..L 

~ =~ + ~.!~) + l...ni..L 

k+1 = ~ + VIL.L + h[ t1·,!{.g.) + b ·.!~)] 

(I + b = 1 • (1•/c + b ·l = i . C1·k 2 + b ·l2 = i . 
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(3-99) 

(3-100) 

On the other hand, one may notice that the conditions {i) and (ii) follow­

ing (3-90) are also satisfied by the scheme (3-60), as can be seen from (3-64) 

if in {3-85) we make the following substitution: 

{3-101) 

Since we have shown that one-step error of the scheme (3-96) is of order h 3 

in the weak sense, we make the following 

Conjecture. Under the assumptions of theorem 3.1. the family of schemes 

(3-59) and the family {3-99) are of order h 2 in the weak sense defined in (Q-14) 

or (3-83), provided that the initial error is of order h 2 in the L2 sense. 

Remark. The difficulty in proving this conjecture lies in the fact that there 

is no obvious way to 'link' the errors at successive time steps. Since we have 

proved that the family of schemes {3-59) are of order 1 ~ , it seems conceiv­

able that they are of order 2 in the weak sense. Indeed. computational 

results (in Chapter 5) show that these two families have about the same order 

accuracy in the weak sense. 

In particular, if we choose a rational solution of (3-100) : C1 = b = ~, k = 0, 

l = l, we have: 
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~=~+~.!~) (3-102) 

..Q.' = ~ + ~.!~) + .../TiJ_ 

k+1 =k +...niL+ ~[L~) +.!~')]. 

Furthermore, if we replace the substitutions in (3-91) by 

~} -~ {~~ti + ~h~.r}' r-J -~ {¥•tit" + ~"'i'l•} 
where, again, 12. = ~.,S I is a set of d independent Gaussian random variables 

with mean 0 and variance 1: and define 

3 

~ = ..JTiJ_+ ~2.!J<Bn)[(i +. ~ rr] + l~ha.!.JtU1n)[2·~i ~+ 1JJ1JA:]. (3-104) 

~+1 =& +~ 

then the the ditierence between E[S~~{x;.+ 1)] {in {3-90)) and E[9'~+l )] is only 

of order h 4• But then we have .to sample two R,j-valued random variables W 

and b:zj. 

·-
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Chapter 4 

Variance Reduction Techniques 

In this chapter we consider variance reduction techniques for evaluating 

the expectations of functionals of solutions of stochastic d.it!erential equa­

tions. Intrinsically, the numerical evaluation of these expectations involves a 

sampling process. i.e., Monte-Carlo computation. Being a finite process. 

Monte-Carlo computation creates statistical errors due to imperfect sam• 

pling. The errors depends heavily on how one chooses the estimators for the 

expectations. 

Our goal is to construct estimators with a small variance. In the first 

section we consider Chorin's variance reduction technique for evaluating 

expectations of functionals of Gaussian random variables. This technique 

exploits specific properties of the Hermite polynomials. In section 2 we 

introduce the concept of partial variance ·reduction and show how to imple-. 

ment Chorin's techniques for functionals of solutions of stochastic differential 

equations. 

4.1 Variance Reduction Using Hermite Polynomials--Chorin's Estimator 

Consider a random function g(tJ = g(t1, .. ·,(') where 1.. = {t1, .. ·,(') is an 

Rei-valued Gaussian random variable with distribution N(Jl IrJ) (see {1-40)). 

The expectation of g (tJ is 

{4-1) 

where .Y. = (u. 1, .. ·, u.ci), d.Y, = du. 1 .. -d:u.ct and we recall that I.Y.I is the 2-norm of 

.Y. in the Rei space. The Gaussian random variable 1.. can be readily sampled 
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(see chapter 5). The usual Monte-Carlo estimate of E(g(t)] is given by 

E(g(t)] = N-1 f gf.!J) = N-1 f g(t},·", t/) (4-2) 
i=l i=l 

where ~ tf J are drawn from the Gaussian distribution with mean 0 and vari-

ance 1. The standard deviation of this estimate, which yields the order of 

magnitude of error, is 

{4-3) 

_.!_ 

which is proportional to N 2 , thus may not be acceptable for reason~ble size 

N. Hence, an estimate of E[g (t)] with smaller standard deviation is needed 

to achieve more accuracy of Monte-Carlo computation. 

In [6] Chorin proposed a method to obtain an estimator for E(g(t)] with 

substantial reduction in standard deviation. The main idea is to use finite 

Hermite series of the goal function g to design an estimator of control variate 

type for E[g (t) ]. The set of Hermite polynomials 

.z .z 
{ 1)" -d." --

H. (z) = - e 2 ---e 2 n = 1 2 · · · n -v'1iJ d.z n • • • ' 
(4-4) 

form a family of orthonormal functions in the space L2(R) of square integr-

.z 
able functions defined on R with respect to the weight _ ~ e-~ That is, 

v2tr 

1 .z 
(2nf 2 j Hn(z)Hm(z)e- T d.z = Onm (4-5) 

The first few of them are H0(z) = 1, H1{z) = z, H2 = ~ (z2- 1), 

Hs(z) = Js (z 3 - 3z ). In fact, Hermite polynomials satisfy the recursive 

relation: 

.. 

. , 
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In general. let m = {m1•• ... m") with mi nonnegative integers and denote 

lm I = m.1 + ··· + m". We define the product polynomials: 

Hm. = H(ml ....• ,.rt)W.) = H,.t{U 1) · • • H,.rt(U") . {4-7) 

Then the family of functions 

-~18 
H.W.)·e 2 

' 0 ~ lm I < aa 
(4-8) 

form a complete orthonormal set in the space L2(Rd.) of all square integrable 

-L- ~12 
functions deftned on R" with respect to the weight {2rr) "e 2 • For a 

more detailed analysis of the family of Hermite polynomials Hm.. ·see Chorin 

- ~12 
[6], Hitzl and Maltz [19]. Assuming that the function g{3&.) e 2 lies in the 

space L2(R") we can expand it in terms of the orthonormal functions in {4-8): 

{4-9) 

.i.e .. 

where 

• d. 1 
-- - ;Hu~2 a. = E[Hm. (l)g W] = {2rr) 2 J Hm. (3&.)g {3&.) e 2 d.u {4-10) 

because of the orthonormality: 

We also notice that {i): aJl = E[g W ]. and recall that {ii): E[Hm. W] = 0. Con-

sider 

{4-11) 

\ 
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which is valid for any set of numbers ~ bm f. In actual computation, we will 

take ~ bm f to be ~ c;,; f. The success of Chorin's variance reduction lies in 

the fact that the identity does not imply that Monte-Carlo estimatiors on the 

both sides of it will have the same amount of standard deviation. 

· Chorin's idea is to make a ftrst sampling to determine the coefficients bm 

in {4-11) according to the formula (4-10), then a second sampling to simulate 

the Gaussian variables that appear in the argument·. of g and the polynomials 

Hm. = H,., 1, ... ,,.,t. on the right hand side of (4-11). Specifically, we have 

(4-12) 

and 

E[g(!)] = ~ + ~E{g{!.;)- ~ ~ Hm(E!)} (4-13) 
j . lm.l:&;l~l 

where 1J = l ~J f and 11 = f ~J f are two sets of independent samples drawn 

from the Gaussian distribution with mean 0 and variance 1. The formulae ( 4-

12) and (4-13) are called Chorin's estimator for E[g(!)]. In order to see the 

standard deviation of Chorin's estimator, let us define the remainder 

rJI.(y) = g6A) - ~ tim Hm.Ul:) 
lmlsl~l 

(4-14) 

the L2 norm of which is given by [EIIr~l 2]*. Then Chorin's estimator has the 

following standard deviation: 

(4-15) 

where C is constant depending on the function g. For sufficiently smooth g 

. and IR.I = O(Nc), e>O; {4-15) is of order O{N-(l-c)) since [Eir~i 2]* is relatively 

, small. Indeed, Maltz and Hitzl [19] showed that Chorin estimator has the 

exact standard deviation: 

·-
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(4-16) 

where a! is the variance of ~ in (4-12) with N = 1, i.e., the single sample 

variance in the Monte-carlo estimate of a.. 

4.2 Partial Variance Reduction in Numerical Simulation 

Let rp be a sufficiently smooth functional; we consider how to implement 

Chorin's variance reduction technique to evaluate accurately the expectation 

E[rp(X;.)] where ,X;. is the numerical solution of equation {3-1) with some 

numerical method. To be specific, we consider the scheme {3-99): 

A = .x;. + k.t (X;.) 
2 

~· = .x;. + ~.!(X;.) + ...nil.n 

..ta+l = ~ + ...nil.n + ~[!{.£.) + .!~)]. 

{4-17) 

We recall that the Rei-valued random variables ll.n J have the Gaussian distri-

bution N~k) and are independent of each other. For convenience in later 

discussion, we define 

k = ~(g.) + .!U?n')] , n = 0, 1, 2, .... (4-18) 

We note that ,X;., thus rp{A;.) is a function of the n independent R 11-valued 

Gaussian random variables f .L J since we implement the scheme ( 4-17) n 

times. That is, rp(.t.) is a function of n·d (scalar) Gaussian random variables. 

Hence, it is not acceptable even if the variance technique considered in 

the previous section is applied only once to all these Gaussian variables to 

evaluate expectation (rp~)]. since then we need to apply Chorin's estimator 

with respect to n · d Gaussian random variables. 
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Therefore, we wish to do only partial variance reduction, i.e., to deter-

mine a proper expression for E[~~+1)] so that we have some dis­

f:i:n.gu:i.shsr:l.L in this expression and apply Chorin's variance reduction tech­

nique to them orily. 

Strategy A We observe that, in terms of the definition in (+18) 

{~19) 

=··· 

= ~<Ao + ~Ua + ··· + ln-1l + h[Yo + ... +.E.-d) 

from which we see that the accumulating random variable 1rJ + .. · + !n-1 play 

a major role in determing ~~) while the individual b. 0 ~ k ~ n-1 plays 

only minor role. Hence, our first strategy is to apply Chorin's estimator to 

evaluate E[~C&a)] at each time step with respect tolo + ... + .!n-1 only. 

The main drawbacks with strategy A are (i): variance reduction is only 

done with respect to 1.o + ··· + ln-1 and (ii): there is no connection between 

any two successive evaluations E[~C&a)] and E[~~)] for any fixed n. To 

improve variance reduction technique and 'link' E[~~)] at each time step, 

we write first 

For each piece or ~~+1)- ~(k), we carry out the Taylor expansion of 

11~+1) about .X. by using the definition in (4-18): 

(4-21) 

3 

+ ~ ~J'~) d ~L + O(h2) 

where 1.Jc = ~ 11, ~ is the random variable sampled at the ku, time step. 

Removing the first term on the right hand side to the left and denoting the 

resultant expression by lflt. we have 
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(4-22) 

s 
= h91J(k)_a + ~sPJ,(k) tl t~ + O{h2) · 

Note the independence of A.: from~. Taking expectations on both sides of 

the first equality in (4-22) and summing the results over k from 0 to n.-1. we 

have 

(4-23) 

which is equivalent to 

{4-24) 

Thus we obtain a recursive relation between E[sP~)] and E[sP(~:tu 1 )]. From 

the second equality of. ( 4-22), we see that, for each fixed k, b play a leading 

role in de terming t.&:. And the same argument as in A shows that 

1tJ + ··· + ~-t play a major role in determing sP,j{k) and sP.jA:(k). Hence we 

have 

Strategy R We evaluate the expectation E[sP~)] by applying Chorin's esti­

mator to evaluate E[tn-d in (4-24) with respect to!n and ~ + ··· + !n-1) 

{nomalized) where tn-1 is computed according to first equality in ( 4-22), and 

adding the result to E[sP~-1)] which is obtained from the previous (the 

(n.-1}11\) time step. 

Intuitively, we would expect that strategy B give a better result than 

strategy A in the evaluation of E[sP{J;.)) since we apply Chorin's estimator to 

more Gaussian random variables in the former case. However, it is not clear 

how the standard deviation, at each time step, of the estimate in strategy B 

will accumulate and whether this accumulation will destroy the accuracy of 

the variance reduction. These questions are answered in theorem 1 in the 
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below. 

Lem.ma4.1. Let z 11 z2, ···, Zn ben. random variables, then their·variances 

satisfy the following relation 

(4-25) 

By applying the Cauchy-Schwartz inequality to the right hand side of the 

above inequality, we find 

(4-26) 

From the second equality in ( 4-22), we may write ~- = h g11 for each fixed 

k, where g11 is of order h0• Then from formula (4-16) we see that the stan­

dard deviation SD11 of Chorin's estimator for each E[~11 ] is of order 

(4-27) 

for some finite m' s, where .r,p. is defined similar as in ( 4-14) with g = g11 and 

we suppress the dependence of Lza on 1c. Let the maximum of ( 4-27) over 1c 

be SD110 for some Tc 0, then by lemma 1, we have the bound n.·hSD/1:0 = t" ·SD/1:0 

for the estimate in strategy R Hence we have 

Theorem 4.1. The standard deviations of the estimates in strategy B with N 

samplings are of the form in (4-16) which is proportional tot" at then."' step, 
. 

i.e., the piecewise application of Chorin's variance reduction technique to 

each summand in (4-23) produces a standard deviation as in (4-16). 

1b.is theorem tells us that, for short time, tn is small and the strategy B 

produces a very small standard deviation which is proportional to tn and 

SD110• This is consistent with computed results as we shall see in next 
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chapter. Of course, the main disadvantage of strategy B is that we need to 

evaluate the first order partial derivatives of rp as can be seen in { ~22) and 

(4-23). 
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Chapter5 

Nunm.eri.cal Implementation 

In order to compare the accuracy between various numerical schemes 

and support the conjecture made in section 4 of Chapter 3, in this chapter, 

we present computational results for the following schemes: 

Euler's Method 

Method A {3-102) 

.£a =k + kt.~) 2 

"""= .& + ~t.(&) + v7i..t, 

~.~ =~ +...ni..t+ ~[L~) +1.~)] 

Method B {3-60) 

.£a=~+ ~1.~) 

~ =~ + ~LC&) + ~.4 

k+l =k + 6,.~ + ~[1.~) + 2·1.~)] 

To simulate the Gaussian random variables 6n.!!:! and~ in Euler's method 

and Method B, we write 

1 V3 
6,..1!:! = VTi..t. d. = ?-+ ~ 

where 1. {as in Method B) and 11 are two independent R'Lvalued Gaussian vari,... 

abies with distribution N{O, frt). These expressions give the exact correlation, 

between 6r.Y! and D.. Then 1., and .!l are sampled according to the Box-Muller 

,. 
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formula 

1 

, < ">r . 12 ( =cos 21M.I. l-2log{v\)j 

1 

'1' = sin{21M.1.")[-2log{v')] 2 
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where y and _y_ are two independent R"-valued uniform distribution over 

[0, 1]11 • 

The first computational example which we present here is the 2 x 2 sys­

tem of linear equations: 

d%2 =- z 1dt + dw2 

with zero initial data z 1{0) = z 2{0) = 0. Adding these two equations together 

and by a simple calculation, we find 

"'+1\ 

z 1{t) + za{t) = [ e-<c-s) d(w 1(s) + w 2(s)) 

" 
which is a Gaussian random variable with mean 0 and variance 1- exp(- 2t ). 

We consider the expectation: E[cos{z1(t)+ z2(t))] which has the exact value: 

The second computational example is the 2 x 2 system of nonlinear equa-

tions: 

- <~ +~-' d% 1 = e 1 21dt + dw 1 

J- - -<~1 +~p)dt + J 
~a- e u.Wa 

with the zero initial data z 1 = .:ta{O) = 0. By a calculation, we can find 

'" +1\ 
8 (~1(C)+~z(C)): 1 + J 

8
-(w,(s) +wz(.t)) ds 

'" 
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We consider the expectation: E(e<~t(t) + ~z(t))] which has the exact value 

3 exp(t)- 2 

For each scheme we compute the expectations in two ways: (i): the usual 

Monte-Carlo estimator .and (ii): Chorin's estimator in Strategy B of Chapter 4. 

The errors depend on the stepsize (~t) and the number of simulation {N). 

The situation is shown in table 5.1-6. In each table, we list the results at three 

ditferent time: 0.2, 0.4 and 0.8. 

For each scheme, in the first subcolumn, we list the errors of computed 

solution obtained by using usual Monte-Carlo estimators and the second 

column for Chorin's estimators. Especially, in table 5.2 and 5.5, we also list 

the standard deviations of the computed solutions. 

From these tables. we can see that Chorin's estimators can precisely 

show that Euler's method is a first order method. For methods B and C, 

Chorin's estimators can roughly show that they are second order method. 

But, to effect variance reduction for many step runs, we must increase the 

number of simulations N . 



Ex.A: t = 0.2 N= 2,500 T = 0.8480 

At. Euler Sch. A Sch. B 

0.2000 -3.16-2 -2.92-2 5.50-4 2.55-3 2.15-4 2.21-3 

0.1000 -1.94--2 -1.38-2 -4.82-3 1.02-3 -4.94-3 2.95-4 

0.0500 -1.40-2 -8.8o-3 -8.97-3 3.02-4 -7.12-3 -2.20-4 
.. 

0.0250 -1.07-2 ·3.23-3 -7.31·3 9.88-4 -7.34--3 -5.02-5 
.. 

0.0125 -3~47-2 ·-1.85-3 1.24-3. 3.01-4 -1.22·3 -2.62-4 

Ex.A: t = 0.4 N = 2.500 T= 0.7593 

At Euler Sch. A Sch.B 

0.2000 -4.76-2 ·3.92·2 -4.35-3 4.5o-3 -5.15-3 1.87-3 

0.1000 ·2.95-2 -1.89-2 9.74--3 -1.41-3 -1.03-2 -2.16-4 

0.050Q -1.98-2 -9.11-3 -1.04-2 2.92-3 -1.05-2 -2.92-4 

0.0250 -9.79-4 -8.06-3 3.34-3 2.28-4 3.29-3 -1.17-3 

0.0125 5.91-4 -3.41-3 2.74-3 5.81-4 2.78-3 ·125-3 i • I 
I 

Ex.A: t. = 0.8 N = 2,500 T = 0.6710 

At Euler Sch. A Sch. B 

0.2000 -5.54-2 -4.23-2 -9.3Q-3 5.56-3 -1.15-2 1.38-3 

0.1000 -3.22-2 -2.08-2 -1.12-2 7.13-3 -1.16-2 -1.04-3 

0.0500 ·2.87-3 -1.68-2 6.64-3 -1.53-3 6.49-3 -7.07-3 

0.0250 7.57-4 ·9.62-3 5.44-3 -1.36-3 5.55-3 -4.89-3 

0.0125 3.02-3 -8.37-3 5.35-3 -2.82·3 5.37-3 -6.15·3 

Table 5.1 



Ex.A: t = 0.2 N = 10.000 T = 0.6480 

6t Euler Scb.A 
94· 

Scb. B 

0.2000 -2.85-2 -2.92-2 3.07-3 2.50-3 2. 71-3 2.31-3 
:!:2.33-3 %2.18-4 .:t-1.97-3 i:L8C>-4 *1.98-a_ ~1.87-4 

0..1000 •1.50-2 .. 1.38->2 -8.8? .. 8.50-4 "'7.32-&. 5.2H 
%2..14--3 +5.15-4 :t2.01-3 %3.79-4 %1.91-3 1*'3.88-4 

o.oeoo -8.48-3 -8.E&3. -1.70-3 4.42-4 ·1.70-3 3.28-5 
~09-3 :1:2.21-4 2:2.11-3 i:L33-4 %2.01-3 2:1.89-4 

0.0250 -3.87-3 -3.07-3 -8.03-4 5.78-4 -a. 74-4 1.83-4 
%2.05-3 2:1.73-4 i:1.98-3 :!:2.23-4 *2.01-3 !Zt~8~ 

0.0125 8.15-4 ·1.58-3 2.20-3 -8.12-5 2.22:.3 4~48-5 
i:2.00-3 :1:2.25-4 i:2.02-3 :1:1.99-4 .:!=1.98-3 ~2.28-4 

hA: t. = 0.4 N = 10,000 T = 0.7593 

At Euler ScheA Sch..B . 

0.2000 -4.14-2" ·3.8N 1.28-3 3.78-3 8.83-4 2.88-3 
:t3.39-3 :!:1.55-3 :1:2.07-2 *4..88-3 :1-1.18-2 :t2.24-3 

0.1000 -2.10-2 -1.87-2 ·1.73-3 ·1.70.3 -1.85-3 3.05-4 
*3.22G3 :1:7.58-4 :!:2.93--3 :H.,ls-3 .:t-2.96-3 *1.17-3 

0.0500 -9.18-3 -8.52·3 ·1.2H 1.7S..3 -6.40--5 4.80-4 
i-3.14--3 2:5.oo-4 :t-2.08-3 i-3.97-t. ±3.04-3 ±5.48-4 

0.0250 -7.54-4 -4.52-3 3.81-3 -3.03-4 3.87-3 -8.80.5 
+3.03-3 :1:7.08-4 :t2.03-3 i-7.02-t. :i-2.98-3 :t7.07-4 

0.0125 5.87-4 -2.22-3 2.73-3 -1.20.31 2. 71-3 -2.87-5 
%3.01·3 -i-7.82-4 +2.83-3 i:7.18-4. :1-2.98-3 +7.58-t. 

hA: t.= 0.8 N = 10,000 T = 0.8710 

6t. Euler Scb.A Sch. B 

0.2000 -4.40-2 -4.20.2 1.14-3 5.97-3 1.98-2 1.8Q.o2 
• +4.28-3 :i-2.&3 -t-3.88-3 +1.08-3 %3.68-3 ±1.79-3 

0.1000 ·1.7~ -1.88-2 2.29-1 4.87-3 2.29-3 1.25-3 
:!:4.13-3 :1:.1.07-3 ~3.7o-3 *1.21-3 :3.94-4 %1.21-3 

.... 
0.0500 -4.57-3 -1.08-2 5.13-3 -1.03-3 5.28-3 -9.1H 

2:3.91-3 :1:1.92-3 ~3.88-3 :t1.18-3 ±3.68-3 *1.89-3 
0.0~ -1.00c3 -5.24-3 3.75->3 2.92-3 3.6~3 -3.57-4 

2:3.91-3 :1:2.4+3 :!:3.59-3 :t2.00-3 ::e3.87-3 .:i-2.11-3 
0.012:S 1.57·3 -2.38-3 3.94-3 -5.90.3 3.94--3 5.74-5 

i-3.87-3 ±2.20-3 ±3.75-3 ±2.17-3 ~3.6S·3 :1:2.18-3 

Table 5.2 



Ex.A; t= 0.2 N = 40,000 T = 0.8480 

95 
At Euler Sch. A Sch. B 

0.2000 -2.92-2 -2.93-2 5.08-3 2.38-3 2.02-3 1.85-3 

0.1000 -1.25-2 -1.35-2 1.8Q-3 6.65-4 1.51-3 5.96-4 
.i,: 

0.0500 -5.31-3 -6.59-3 1.3+2 -6.9Q-6 1.31-3 9.76-5 

0.0250 -2.5q-3 -3.3Q-3 6.86-4 -2.03-5 6.67-4 -6.21-5 

0.0125 1.17-3 1.67-3 2.75-3 -2.64-4 2.74-3 6.5.3-5 

Ex.A; t = 0.4 N = 40,000 T_= 0.7593 

At Euler Sch. A Sch. B 

0.2000 -3.7Q-2 -3.86-2 5.08-3 3.64-3 4.4Q-3 2.99-3 

0.1000 -1.63-2 -1.85-2 2.65-3 2.78-4 2.47-5 5.18-4 

0.0500 -7.73-3 -9.28-3 1.31-3 -1.51-4 1.23-3 -2.65-4 

0.0250 -2.66-4 -4.68-3 4.11-3 -8.19-4 4.1Q-3 -2.40-4 

0.0125 -3.59-3 -1.94-3 -1.39-3 -2.44-4 -1.4-Q-3 2.36-4 

Ex.A; t = 0.8 N = 40,000 T= 0.6710 

At Euler Sch. A Sch. B 

0.2000 -3.86-2 -4.18-2 6.11-3 2.3Q-3 5.11-3 2.46-3 

0.1000 -1.8Q-2 -2.13-2 2.42-3 -5.88-4 2.13-3 -8.37-4 

0.0500 -4.47-3 -1.07-2 5.27-3 -2.2Q-3 5.13-3 -7.99-4 

0.0250 -7.33-3 -3.72-3 -2.48-3 -2.27-4 -2.53-3 1.06-3 

0.0125 -3.02-3 -1.73-3 -6.39-4 -1.46-4 -6.3+4 6.47-4 

Table 5.3 



Ex.B: t = 0.2 N = 2.500 T = 1.6640 

6t Euler Sch. A · Sch. B 
98 

0.2000 1.83-1 1.82-1 8.01-3 -8.48-3 7.50-3 -6.68-3 

0.1000 8.03-2 7.~2 6..36-3 4.57-4 6.65-3 1.03-3 

0.0500 3.73-2 2.95-2 1.68-2 -5.98-4 3.27-3 -3.79-3 

0.0250 8.47-3 -1.32-2 -9.54-3 -8.41-4 -9.51-3 -1.77-3 

0.0125 -1.10.2 5.78-3 -1.87-2 1.48-4 -1.66-2 -3.98-4 

Ex.B: t = 0.4 N = 2.500 T= 2.4750 . 
6t Euler Scb.. A Sch. B 

0.2000 3.72-1 3.52-1 9.77-3 -7.01-3 1.21-2 -4.94-3 . 
0.1000 1.92-1 1.44-1 3.52-2 -a.oo-3 3.61-2 -6.98-3 

0.0500 9.3Q-2 5.96-2 -2.4-Q-2 -4.7~3 -5.80-2 •5.8lo3 

0.0250 -4.92-2 2.53-2 -3.38-2 2.81·3 -3.35-2 -2.02-3 

0.0125 -1.61-2 9.28-3 -3.23-2 -5.75-4 -3.23-2 -2.22-3 

Ex.B: . t. = 0.8 N = 2,500 T= 4.6770 

At Euler Sch. A Sch. B 

0.2000 8.92-2 7.29-1 7.20-2 e5.14-2 8.12-2 -5.24-2 

0.1000 2.3o-1 2.63-1 -1.07-1 -3.~2 -1.05-1 -5. 76e2 

0.0500 9.37-2 1.18-1 -6.5Q-2 -4.04-3 -6.26-2 -1.4Q-2 

0.0250 1.23-2 4.80-2 -6.40-2 1.2Qe3 -6.35-2 -7.31-3 

0.0125 -2.26-2 1.42-2 -6.01-2 -1.51-3 -5.98-2 -6.76-3 

Table 5.4 



Ex.B: t = 0.2 N = 10,000 T = 1.6640 

At. Euler Sch.A Scb. B 
-

0.2000 L68-1 1.58-1 -3.27-3 ·LlD-2 -3.13-3 -l.OB-2 
.:t:1.3D-2 ~3.24--4- ~9.89-3 :!:8.79-3 :f:l.OD-2 :!:9.49-4 

0.1000 7.72-3 8.98-2 3.45-3 -3.45-3 3.14--3 -3.63-3 
:!:1.13-2 :!:1.19-3 :!:l.OD-2 :!:1.01-3 :!:1.01-2 :!:8.35-4 

0.0500 3.97-2 3.29-2 8.01-3 -7.43-4 5.37-3 -1.18-3 
fi-1.07-2 *9.63-4 :!:9.97-3 :!:8.38-4 ~1.02-2 :!:2.20-4. 

0.0250 2.12-2 1.62-2 4.9o-3 -1.48-3 4. 77-3 -2.38-4 
:H.04-2 1:!:1.17-3 :1:9.87-3 :!:9.48-4 :1:1.01-2 :!:1.12-3 

0.0125 1.73-2 7.91-3 9.25-3 -3.35-4 9.17-3 3.14-4 
l:t-1.03-2 l:t1.22e3 :!:9.82-3 %9.33-4. :!:1.02-2 :t:1.2D-3 

Ex.B: t. = 0.4 N = 10,000 T = 2.4750 

At. Euler Sch.A Sch. B 

0.2000 3.52-1 3.34-1 -7.70.3 -2.3Q-2 -7.94-3 -2.23-2 
+2.78-2 :1:7.51-3 :1:2.11-2 :1:4.83-3 ~2.18-2 :!:5.84-3 

0.1000 1.67-1 1.45-1 1.23-2 -5.61-3 1.17-2 -7.97-3 
:1:2.44-2 ~3.90-2 %1.47-2 :1:1.33-3 :1:1.86-2 :1:3.32-3 

0.0500 7.8Q-2 6.99-2 7.18:3 1.02-3 6.79-3 -1.41-3 
. :1:2.26-2 :1:4.71-3 :1:1.87-3 :1:4.33-3 :1:2.16-2 :!:4.44-3 

0.0250 5.12-2 3.39-2 1.7D-2 -1.36-3 1.66-2 -1.06-3 
~2.~2 :1:4.85-3 :!:1.86-2 :1:3.13-3 ±2.20-2 :1:4.72-3 

0.0125 6.97-3 1.61-2 -9.50.3 -2.03-3 9.46-3 -8.97-4 
±2.21-2 ~4. 79-3 ±2.02-2 ±4.17-3 :1:2.19-2 ±4.73-3 

Ex.B: t. = 0.8 N = 10,000 T = 4.6770 

At. Euler Sch. A Sch. B 

0.2000 8.18-1 7.45-1 6.83-3 -3.95-2 4.90-3 -5.24-2 
%6.34-2 ~2.65-2 :!:5.16-2 :1:2.11-2 ±6.70-2 ±2.12-2 

0.1000 3.46-2 3.37-1 1.01-3 -3.41-3 -1.04-3 1.17-2 
:1:6.76-2 ±2.68-2 ±5.20.2 :1:2.01-2 :1:6.33-2 :1:2.41-2 

0.0500 1.98-1 1.62-1 3.79-2 -6.96-3 3.61-2' -4.15-3 
±6.92-2 :1:2.65-2 ±5.83-2 :1:2.07-2 ±6.61-2 :1:2.47-2 

0.0250 . 5.12-2 7.36-2 -2.56-2 -1.19-2 -2.54-2 -4.86-3 
:1:6.68-2 ±2.53-2 :1:5.83-2 :i-2.13-2 ±6.74-2 :i-2.47-2 

0.0125 -6.27·3 3.26-2 -4.36-2 -1.07-2 -4.37-2 2.01-3 
±8.11-2 ±2.53-2 ±5.56-2 +2.03-2 +8.44-2 :1:2.50-2 

Table 5.5 
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At Euler Sch.A Sch. B 

0.2000 1.52.;.1 1.57-1 -1.56-2 -1.21-2 -1.35-2 -1.01-2 

0.1000 6.38-2 7.08-2 8.73-3 -2.27~3 -8.30-3 -1.80-3 

0.0500 2.88-2 3.28-2 -4.7~3 -6.21-4 -4.60-3 -4.42-3 

0.0250 5.62-3 1.56-2 -1.03-2 1.05-4 -1.03-2 1.07-4 

0.0125 -8.06-3 7.46-3 -1.58-2 2.23-4 -1.58-2 3.90-4 

Ex.B: t = 0.4 N = 40,000 T = 2.4750 

At Euler Sch. A Sch.B 

0.2000 3.21-1 3.38-1 -3.28-2 -1.87-2 -2.95-2 -1.51-2 

0.1000 1.37-1 1.46-1 -1.43-2 -5.26-3 -1.34-2 -4.11-3 

0.0500 4.96-2 6.81-2 -2.0Q-2 3.01-4 -1.98-2 3.61-4 

0.0250 -2.48-3 3.2Q-2 -3.56-2 3.36-4 -3.54-2 1.18-3 

0.0125 -7.12-3 1.46-2 -1.65-2 5.7Q-4 -1.65-2 1.01-3 

Ex.B: t = 0.8 N = 40,000 T = 4.6770 

At Euler Sch. A Sch. B 

0.2000 7.2~1 7.5Q-1 -6.6Q-2 -3.96-2 -6.00-2 -3.14-2 

0.1000 3.05-1 3.4Q-1 -3.77-2 6.35-3 -3.61-2 6.81-3 ..:· 

0.0500 4.88-2 1.51-1 -1.07-1 6.87-4 -1.06-1 4.80-3 

0.0250 3.75-2 6.83-2 -3.9Q-2 1.54-3 -3.89-2 4.06-3 

0.0125 -1.95-2 2.3Q-2 -5.68-2 -5.85-4 -5.67-2 5.34-4 

Table 5.6 
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Appendix A 

In this appendix. we will carry out the two calculations that leads to 

{2~74) and (2'-77) respectively. To do this, we need the following lemma. 

ummaA1. Let t and 17 are two Gaussian random variables with mean 0 

and variance 1 and have the correlation coefficient p. Then the random vari­

able (' = ~ ( 17- p€ ) is Gaussian with mean 0 and variance 1, independent 
1 p . . 

oft. 

Proof. From the given condition, we know that the joint probability density 

of t and 17 is given by 

/ f,fJ(u,v) = b exp(- ( 
1 

2) (u.2- 2puv+ v 2
)] (a~l) 

211' 1-p 2 1-p 

Let z = k ( v- pu.). We see that the Jacobian of the transformation 
1 p 

( u., v ) --t ( u., z ) is I J I = ~. Hence, the exponential part of the den­

sity (a-1) becomes 

1 ( u 2- 2puv+ v 2 ) 
2(1- p2) 

=- 1 2 [ u2- 2pu. (pu.+ ~z) + (pu+ ~z)2] 
2(1- p) . . 

= _ L(u2+ z2) 
2 

Therefore, the joint probability d~nsity oft and <"is: 

/e.c(u.,z) = 1Jife.11(u,v) = 2~ exp(- k<u.2+ z 2
)] 

which implies that (' is Gaussian with mean 0 and variance 1 and is indepen-

dent from t. This completes the proof. 
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Corollary 1. Under the assumption of the theorem 1 but that ~ and 11 have 

variances ur and u~ respectively, we have E[f11] = E[~1]2] = 0 and 

E[f?72] = uf-a~·(1+ 2p2). 

LemmaA2. The random variables {J',i,o' have Gaussian distributions with 

mean 0. Their variances are 1 
3' 

2 
15 

and 2~ respectively. 

Proof. Since these random variables are nothing but line~ combination of 

independent increments of the Wiener process, they are Gaussian with mean 

0. By the definition of {J, we have 

c,. +Ia c,. +Ia 

E[{J2
] · = l [ llw,.llWs d.rd.s 

"'+Ia • 

= 2· [ [ E[flw,.flw.] d.rd.s 

" " 
Ia • 

= 2·J J r d:rd.s = 2· .k3 = k 3 

0 0 6 3 

which is equivalent to saying that the variance of {J' is ; . Note that we 

changed the domain of integration in the last integral. The second variance 

can be found in a similar way. The evaluation of the third variance is a little 

more complicated. We have 

.. 
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~&••[•e•t · •are · l = 2·J J J Jr2 d.r1d.r2 + J Jr1 dr1d.ra ds2ds1 
0 0 0 r 2 0 0 

. . 

·which says that the variance of o' is 
2
1
0 

. This completes the pi"oof of the 

lemma2. 

Now we begin to carcy out the details of (2-74) and {2-77). A cai"eful 

look at the calculation in (2-31) and of Vn of (2-24) shows that evei"ything is 

sti"aightfoi"Ward except the expectation of {J2,j'. Remembei" that {i is a Gaus-

sian variable; we can employ the technique of the lemma 1, since 

t,.+h 

E[.B2-tJ] = [ E[,82 6Ws 2] ds . (a-2) 

Let a1 and a2(s) denote the standard deviations of {J and b.w3 I"espectively. 

Then the coi"'"elation coefficient p(s) of {Jand b.Ws can be calculated in 

t,.+h 

ara2(s)·p(s) = E[{Jb.w.] = J E[b.Wsb.w,.] d.r 

"' 
• "'+h 

= [ (r-tn) dr + £ (s~tn) ds = (s-tn)h- t<s-tn)2 . 

Then by coi"ollary 1 of lemma 1. fi"om (a-2), we have 
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= l { ~h3 + 2·{s2h2- s3h+ ~4}} ds = ;~h~ 

which is equivalent to saying that E[,8'21)'] = ;~ . In the same way, we have 

E[ 1)'2] = 1~ , thus we arrive at 

LemmaA3. E[p'21)'] = 13 and E[ 1)'2] = .1_ 
30 12 

Now we come to carry out the calculation in (2-53). The techniques are 

quite similar to those used in the· above. By using lemma 1; 2 and corollary 1 

of lemma 1 and noting dependences between random variables, one is able to 

show that 

[( • ')2] [ '2 . . '2] 2 5 1 1 E 21'- p = E 41' - 4")',8+ p = 4· -- 4· -+ -= -15 24 3 30 
(a-4) 

Now we evaluate the expectation of (i- 3,8'1)'+ 2,8'3) 2• There is no sub-

stantial difference from the above in the calculation except that more work is 

needed. The result is 

E[ ( i- 3,8'1)' + 2{f3)2 ] 

= E[ ;'2] + 9E[p'2p'2] + 4E[,8'6] - 6E[ ip·-,·] + 4E[ ip'3 ] - 12E[p'41)'] 

= 9 25 5 30 1 . 271 7 11 
5 + 9' 28 + 4' 9 - S· 240 + 4' 280 - 12' 10 = 2520 (a-5) 

We collect the results from {a-3) to {a-5) in the following 

Lem.maA4. 

Finally, to illustrate the role that independence play in the calculation, 

we evaluate the expectation E[i2] in (a-5). For convenience, we will calculate 
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c,. +h 

E[ -ri]. Recall the definition of T = J ~:w. 3 ds. We have 
c,. 

"'+h "'+h 

E[-r2] = [ [ E[ flw51
3flw. 8

3
] ds 1ds2 

" " 

in which we rewrite 

c,. +lu2 

= 2· J jE[ flw.
1
3flw52

3 ] ds1ds2 , 
,,. c,. 

6:w.1
3/lw58

3 = [ (flw.2- flw51) + flw51 ]3flw313 
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(a-6) 

= {flw52- flw.
1
)
3flw.3

1 
+ 3·(flw52- flw51)

2flw.4
1 

+ 3·{flw.
3

- flw.
1
)flw3

5
1 + flw.8

1 

Then the independence between flw81 and flw52 ~ flw31 shows that expectations 

of the first and third terms on the right hand side of the above identity are 

zero. Thus from (a-6), we are led to 

t,. +h•a 

E[-r2] = 2· J J[3·E[(flw58- flw. 1) 2flw.~] + E[flw. 1
8

] ds1ds2 
c,. ,,. 
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