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Abstract

Background & Aims: The benefit of colonoscopy for colorectal cancer prevention depends on 

the adenoma detection rate (ADR). The ADR should reflect adenoma prevalence rate, estimated to 

be greater than 50% among the screening-age population. Yet the rate of adenoma detection by 

colonoscopists varies from 7% to 53%. It is estimated that every 1% increase in ADR reduces the 

risk of interval colorectal cancers by 3-6%. New strategies are needed to increase the ADR during 

colonoscopy. We tested the ability of computer-assisted image analysis, with convolutional neural 

networks (a deep learning model for image analysis), to improve polyp detection, a surrogate of 

ADR.

Methods: We designed and trained deep convolutional neural networks (CNN) to detect polyps 

using a diverse and representative set of 8641 hand labeled images from screening colonoscopies 

collected from over 2000 patients. We tested the models on 20 colonoscopy videos with a total 

duration of 5 hours. Expert colonoscopists were asked to identify all polyps in 9 de-identified 

colonoscopy videos, selected from archived video studies, either with or without benefit of the 
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CNN overlay. Their findings were compared with those of the CNN, using CNN-assisted expert 

review as the reference.

Results: When tested on manually labeled images, the CNN identified polyps with an area under 

the receiver operating characteristic curve (ROC-AUC) of 0.991 and an accuracy of 96.4%. In the 

analysis of colonoscopy videos in which 28 polyps were removed, 4 expert reviewers identified 8 

additional polyps without CNN assistance that had not been removed and identified an additional 

17 polyps with CNN assistance (45 in total). All polyps removed and identified by expert review 

were detected by the CNN. The CNN had a false-positive rate of 7%.

Conclusion: In a set of 8641 colonoscopy images containing 4088 unique polyps the CNN 

identified polyps with a cross-validation accuracy of 96.4% and ROC-AUC value of 0.991. The 

CNN system can detect and localize polyps well within real-time constraints using an ordinary 

desktop machine with a contemporary graphics processing unit. This system could increase ADR 

and reduce interval colorectal cancers but requires validation in large multicenter trials.

Keywords

Machine Learning; Convolutional Neural Networks; Colorectal Cancer Prevention; ADR 
improving technology

1. INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer related death in the U.S.1. 

CRC arises from precancerous polyps2 with a mean dwell time of 10+ years3. The National 

Polyp Study showed that 70%-90% of colorectal cancers are preventable with regular 

colonoscopies and removal of polyps4. Seven to nine percent of colorectal cancers occur 

despite being up-to-date with colonoscopy5. It is estimated that 85% of these “interval 

cancers” are due to missed polyps or incompletely removed polyps during colonoscopy6.

The prevalence of precancerous polyps in the > 50-year-old screening population is 

estimated to be 50+%7. Adenomas are the most prevalent precancerous polyp. Adenoma 

detection rate (ADR; percentage of screening colonoscopies with at least one adenoma 

found) is a measure of a colonoscopist’s ability to find adenomas. Ideally, the ADR should 

reflect adenoma prevalence. Unfortunately, ADR varies widely (7% - 53%) among 

colonoscopists performing screening colonoscopies8. In tandem colonoscopies, 22-28% of 

polyps and 20-24% of adenomas are missed7 and CRC has a diagnostic miss rate of 5%9. 

ADR is dependent on a colonoscopist’s level of training, time spent, and technique used 

during withdrawal, preparation quality and other colonoscopist/procedure-dependent 

factors10. A large Kaiser Permanente study showed that for each 1% increase in ADR, 

interval cancer rate was reduced by 3%8. A subsequent study with nearly 1 million person-

years of follow-ups in Poland showed a 6% reduction in interval cancer rates for each 1% 

increase in ADR11. This study also revealed an 82% reduction in interval cancers among 

colonoscopists that improved their ADR to the top quintile. Not surprisingly, ADR is now a 

key quality measure reportable in the United States to CMS and is tied to reimbursement 

under MACRA/MIPS beginning in the year 201712.
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Several novel technologies have been developed to improve ADR, including enhanced optics 

(resolution, zoom and wide angle, chromoendoscopy, digital auto-fluorescence, extra lenses 

for side and forward view), and attachments/modifications to aid view behind and between 

folds, including cap-assisted techniques and a balloon-assisted device13. Extra-wide angle 

colonoscopes/multi-camera systems initially showed promise to increase ADR compared to 

standard forward-facing camera systems13. However, a recent meta-analysis and a large 

randomized study showed no difference in ADR compared to standard forward-viewing 

colonoscopy14. Review of five studies on the effect of high-definition colonoscopes on ADR 

revealed conflicting evidence13, with one study concluding that ADR is only improved for 

endoscopists with low ADR (<20%)15. Similarly, most studies on digital chromoendoscopy, 

specifically Narrow-Band Imaging or NBI, show that NBI does not improve ADR when 

compared to white light imaging13. Evidence suggests positive effects of auto-fluorescence, 

but it is associated with added expense and poor image resolution13.

Computer-assisted image analysis has the potential to further aid adenoma detection but has 

remained underdeveloped. A notable benefit of such a system is that no alteration of the 

colonoscope or procedure is necessary.

Deep learning has been successfully applied to many areas of science and technology16, 

such as computer vision17,18,19,20,21, speech recognition22, natural language processing23, 

games24,25, particle physics26,27, organic chemistry28, and biology29,30,31,32,33,34, to name 

just a few areas and examples. A convolutional neural network (CNN) is a type of deep 

learning model that is highly effective at performing image analysis.

Ideally, a polyp-detection assistance module should have a sensitivity of 1 (or close to it) to 

avoid false negatives, but this comes at the cost of an increased false positive rate when the 

AUC (area under the curve; see Supplementary Section 1.3) is not close to 1. A large false 

positive rate, even with perfect sensitivity, diminishes the benefits of an assistance-system, if 

user desensitization comes into play. A polyp detection module must also process images at 

a minimum of 30 frames per second to be applicable during colonoscopy. Surmounting the 

constraints of accuracy and processing speed were therefore our primary goals.

2. METHODS

2.1 – Convolutional Neural Networks

We trained a variety of convolutional neural network (CNN) architectures in this study, 

including models with weights initialized by training on the ImageNet data corpus35, before 

refining the weights on our data set. All trained CNNs consisted of the same fundamental 

building blocks, including: 1) convolutional layers, 2) fully connected layers, 3) max- or 

average-pooling, 4) nonlinear activation functions, and 5) optionally, batch normalization 

(bn) operations36, and skip connections19,37

We followed each convolutional layer by the rectified linear (ReLu) activation function. The 

last hidden layer of the models was densely connected to the output units. For regression 

problems (localization), we optimized the L2-loss with linear output units. For classification 
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(detection) we used softmax output units and optimized the KL-divergence. An overview of 

the different neural network layer types can be found in Supplementary Section 1.1.

All experiments are implemented using the Keras38 and Tensorflow39 software libraries.

2.2 - Model regularization

We used established techniques to reduce over-fitting when training neural networks. We 

applied dropout40,41 with a rate of 0.5 to the input of the first and second fully-connected 

layer in all models. Prior studies demonstrated that data augmentation improves deep 

learning performance42, a process of synthetically generating additional training examples 

by using random image transformations, including rotations and mirroring of the input 

images during the training process. Doing so forces the model to learn to become invariant 

to these transformations. We used random horizontal and vertical mirroring, rotations in the 

full range of 0 to 90 degrees, and shearing. Another technique we used to reduce over-fitting 

is “early stopping”, where a small subset of the training set is reserved exclusively for 

monitoring the CNN’s accuracy during training, and the weights of the network at the point 

of best performance are saved, as opposed to the weights obtained at the end of training.

3. EXPERIMENTS

3.1 - Data Sets & Preprocessing

Five different data sets are used for training and/or evaluating the deep learning models 

presented in this work: (1) the general purpose, computer vision, ImageNet challenge35 data 

set implicitly used to pre-train the model weights; (2) 8641 hand-selected colonoscopy 

images from over 2000 patients, to avoid a possible intra-patient polyp similarity bias; (3) a 

separately collected data set of 1330 colonoscopy images from different patients; (4) 9 

colonoscopy videos; (5) a combined data set consisting of the 8641 images and 44947 image 

frames extracted from the 9 videos; and (6) a separate data set of 11 deliberately more 

“challenging” colonoscopy videos. All the colonoscopy images and videos were recorded 

using state-of-the-art Olympus PCF-H190 colonoscopes with a resolution of 1280×1024 

pixels and NBI capability. The combined duration of all 20 videos is approximately five 

hours (~500k frames), with significant variation in the number of polyps per video (see 

Supplementary Table 5).

(1) The ImageNet challenge data set contains 1.2 million natural images of objects 

like boats, cars, and dogs, but no medical images. We reasoned that many of the 

fundamental features learnable on this data set will be transferable to the task of 

detecting polyps and thus use it to preinitialize the weights of some of our deep 

neural networks to test this hypothesis.

(2) The set of 8641 colonoscopy images contains 4088 images of unique polyps, of 

all sizes and morphologies, and 4553 images without polyps (Figure 1), i.e. the 

data set is almost perfectly balanced. The data set includes both white light and 

NBI images (Figure 1), and covers all portions of the colorectum, including 

retro-views in the rectum and cecum, appendiceal orifice, and ileocecal valve. 

The number of NBI images is 840 in total, with the remaining 7801 obtained in 
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WLE conditions. We deliberately and randomly included features such as 

forceps, snares, cuff devices, debris, melanosis coli, and diverticula in both 

polyp- and non-polyp-containing images in a balanced fashion, to prevent the 

machine learning system from associating the appearance of tools with the 

presence of polyps. The images were stored at a resolution of 640×480 pixels. 

Locations and dimensions of bounding boxes were recorded for images 

containing polyps by a team of colonoscopists (fellows and faculty at UCI with 

ADR >45% and procedures >100).

(3) A separate set of 1330 colonoscopy images (672 unique polyp- and 658 non-

polyp images) collected from different patients.

(4) The colonoscopy videos were recorded and evaluated at their original resolution 

of 1280×1024 pixels. The first set of 9 videos was selected randomly, from 

archived video studies.

(5) The larger data set was obtained by augmenting the original set of 8641 images 

with 44947 image frames selected from the nine videos that were labelled as 

part of the first validation study. Because consecutive frames are highly 

correlated, we selected every 8th image frame that contained no polyp, as well as 

every 4th image frame containing a polyp (resulting in 13292 polyp frames and 

31655 non-polyp frames).

(6) The colonoscopy procedures of the second set of 11 videos were performed by a 

highly skilled colonoscopist (ADR ≥ 50%) and contain segments where the 

scope was deliberately withdrawn without closing in on already identified 

polyps, in an attempt to mimic a missed polyp scenario. This set of videos is 

used only for validation purposes in our experiments, and never for training.

All the images from the different data sets are preprocessed identically before being passed 

to the machine learning models. As a first step, the individual frames are rescaled to a fixed 

size of 224×224 (unless noted otherwise). Then, the values of the pixels in each frame are 

normalized to be unit-normal distributed by subtracting the mean pixel value from all pixels 

in the frame and dividing the resulting values by the standard deviation measured across all 

pixels. This preprocessing and normalization approach allows us to apply the same neural 

network to data from different sources, with different resolutions, without requiring further 

adjustments.

3.2 - Neural Network Architectures and Training

A detailed description of the deep neural network architectures, training methods and 

algorithms is given in Section 1 of the Supplementary Material. A short summary is given 

below:

We trained and evaluated polyp-detection and -localization models separately for clarity and 

to exclude confounding factors. They are architecturally identical except for the final layer, 

which performs either binary classification (detection) or regression (localization). We 

implemented localization by predicting the size and location of a bounding box that tightly 

encloses any identified polyps. This allows us to build CNNs that can operate in real-time - 
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as opposed to prior attempts, based on individual pixel classification, which struggle to 

operate in real-time43. We tested three variations for training the polyp localization model: 

(1) optimizing the size and location with the mean-squared error loss (L2); (2) optimizing 

the Dice loss, which directly maximizes the overlap between the predicted bounding box and 

the ground truth; and (3) a variation of the “You Only Look Once”20 algorithm where the 

CNN produces and aggregates over, typically, 49 individual weighted predictions of the 

polyp size and location in a single forward pass – we will refer to it as “internal ensemble”. 

All detection and localization variants have almost identical run-time complexity (< 1% 

difference).

We experimented with several different CNN architectures, falling into one of two 

categories: those initialized with random weights (denoted NPI for “not pre-initialized”) and 

those pre-initialized with weights obtained by training the corresponding model on the 

ImageNet Challenge data of natural images (denoted PI for “pre-initialized”). Within the 

class of pre-initialized architectures, we used the architectures VGG1618, VGG1918, and 

ResNet5019. All CNN architectures (NPI and PI) were trained using the colonoscopy data. 

All experiments were performed using modern Titan X (Pascal) GPUs with 12GB of RAM 

and a processing power of 11 TFLOPS.

3.3 – Training and Testing

Throughout the experiments, we either used multiple splits of the same data set (cross-

validation) or trained on one data set and tested the model on a completely different data set. 

For early stopping and hyperparameter optimization we always set aside a small subset of 

the training set for monitoring the model’s performance. The main experiments were:

- Cross-validation on the 8641 images.

- Training on the 8641 images and testing on the 9 videos, 11 videos, and 

independent data set.

- Training on the 8641 images + 9 videos and testing on the 11 videos, and 

independent data set.

In most cases we use models pre-trained on ImageNet.

3.4 - Colonoscopy Video Study with Expert Colonoscopists

Three expert colonoscopists (ADR > 50%) were tasked to identify all polyps in nine 

deidentified colonoscopy videos, selected from archived video studies, without benefit of the 

CNN overlay. Experts recorded the first and last frame where they believed to have 

encountered a polyp in the videos. Their “polyp encounters” were then combined by 

consensus. We filter CNN predictions for polyps by requiring at least 8 or more contiguous 

video frames with >40% probability for polyp presence, as predicted by the PI-CNN 2 
model alone. The decision to filter CNN predictions in blocks of n=8 frames yielded a 

balanced sensitivity/specificity (see Supplementary Figure 2 for an analysis of different 

block-sizes). This optimal setting may shift for a different training data set or CNN model.
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We generated CNN-overlaid videos by superimposing a small green box on each frame 

where a polyp was detected with >95% predicted probability at the location and with 

dimensions that were predicted by our polyp localization CNN.

A senior expert (ADR ≥ 50%, >20K colonoscopies) was tasked to review the CNN-overlaid 

videos and assign uniqueness of each polyp and confidence level of true polyp presence 

(High vs Low; see Figure 2). Contingency analysis compared the number of agreements and 

disagreements on individual video frames between post-processed CNN predictions alone 

and CNN-assisted expert review. We repeated this study using a second set of 11 more 

challenging videos (see Section 3.1).

4. RESULTS

4.1 - Polyp Detection

We summarize polyp detection results in Table 2. The first two rows (NPI-CNN1 and 2) 

correspond to models that were trained starting from random weights and these obtain 

accuracies that are comparable to previously published state-of-the-art polyp classification 

models44.

Networks pre-initialized from prior training on the large ImageNet data set of natural images 

surpass those starting from random weights by a significant margin (PI-CNN1-3), despite 

meticulous hyperparameter optimization of all models. We further observe that the scores of 

the pre-initialized ImageNet models are surprisingly similar for the different architectures.

At a sensitivity level (true positive rate) of 90% the best model (PI-CNN 2) has a false 

positive rate (FPR) of 0.5%; at a sensitivity of 95.2% it has an FPR of 1.6%; and at 97.1% 

sensitivity the FPR increases to 6.5%. Thus, we have a reasonably large range of high 

sensitivities at which the number of expected false positive alerts remains very low.

Nonpolypoid (flat and depressed) polyps are challenging to detect compared to polypoid 

polyps and were often neglected, until their potential to cause CRC worldwide (beyond 

Japan only) was discovered45. To investigate whether the CNN is able to correctly classify 

all polyps irrespective of their morphology, we reviewed a random subset of 1578 true 

positive polyp predictions (out of 3860) and all 228 false negative polyp predictions from the 

validation set of 8641 images. We categorized them using both Paris classification and their 

estimated size. The results are presented in Table 1 and show that 381 nonpolypoid lesions 

(IIa, IIb, IIc) and 678 polypoid polyps (Ip, Is) were present in this subset. The CNN missed 

12% of polypoid polyps (84 of 678) and 11% of nonpolypoid lesions (41 out of 381) in this 

biased subset. Based on this similarity, we can conclude that the CNN is able to detect either 

type of polyps equally well. Furthermore, if we correct for the sampling bias by including all 

the remaining true positives, then the percentage of missed polyps would fall to about 5%.

All previously discussed results are obtained with models operating on inputs scaled to 

224×224 pixels, which is the native resolution for which VGG16, VGG19, and ResNet50 

were designed. We also optimized and trained the models at a resolution of 480×480 pixels 

to test whether they are limited by the lower resolution. In a seven-fold cross-validation 
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experiment, the networks preinitialized with weights from the VGG16 / VGG19 / ResNet50 

models obtain a test accuracy of 96.4% / 96.1 % / 96.4% and an AUC of 0.990 / 0.991 / 

0.992 respectively. These results are almost identical (up to noise) to those obtained with a 

lower resolution of 224×224 pixels, but more than double the computational cost (processing 

time).

Finally, the VGG-19-based CNN trained on the 8641 images was tested on the independent 

data set of 1330 images, where it achieved a test accuracy of 96.4% and AUC of 0.974. This 

accuracy is identical to the accuracy obtained by cross-validation analysis on the 8641 

colonoscopy images, further confirming that intra-patient polyp similarity does not present a 

notable bias.

4.2 - Polyp Localization

We trained models on the polyp localization task on the data-subset containing only a single 

polyp per frame, which is the vast majority of the samples with polyps.

The test-set results, as presented in Table 3, show that the pre-initialized ImageNet CNNs 

(PI-CNN 1, 2) perform significantly better at localizing polyps than the randomly initialized 

neural network, which is consistent with our findings in polyp presence detection (Section 

4.1).

Neither of the two loss functions (L2 vs. Dice) has a consistent advantage over the other.

Further, we find that the “internal ensemble” is noticeably better than the other approaches, 

improving the Dice coefficient from 0.79 to 0.83 for the best model (PI-CNN 2 / VGG19).

To give a sense of scale: in previously published literature43 a Dice score of 0.55 was 

obtained on a polyp segmentation task using a different dataset.

4.3 - Colonoscopy Video Study with Expert Colonoscopists

Among nine colonoscopy videos that we considered in this study, 36 polyps were identified 

by three experts reviewing unaltered videos and 45 were identified by reviewing CNN-

overlaid videos. Only 28 of 45 polyps were removed by the original colonoscopists (Table 

4). No unique polyps were missed by the CNN. Of the nine additional polyps found with 

CNN assistance, confidence was high for three and low for six (cf. Figure 2). Sensitivity and 

specificity of CNN-predictions relative to expert-review of CNN-overlaid videos (based on 

single frames) was 0.93 and 0.93, respectively (Supplementary Table 3, chi-square p < 

0.00001). Rare false negatives were enriched with views of distant and field edge polyps. 

False positives were enriched with near field collapsed mucosa, debris, suction marks, NBI, 

and polypectomy sites. Tables 4 and 5 show polyp-level summaries of the results of the 

video study.

The second set of 11 videos contains a total of 73 unique polyps, found by expert review 

with- and without CNN assistance. The CNN trained on the 8641 images identified 68 of 73 

polyps at a frame-by-frame false positive rate (FPR) of 7%, when compared to the expert 

labels of the videos. Fine-tuning the CNN on the labeled frames from the first video study 

Urban et al. Page 8

Gastroenterology. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enabled the CNN to identify 67 of 73 the polyps at a FPR of 5% (or, on a more sensitive 

setting, 72 of 73 polyps at a FPR of 12%) in this second set of videos. The additional 

training samples from the videos of the first study noticeably helped reduce the number of 

false positive detections, most likely due to the great abundance and variety of random 

artefacts such as water, air bubbles, fecal matter, and low quality- and blurry frames from 

quick movement. This suggests that using additional training data could lead to further 

improvements.

The Supplementary Material contains a detailed breakdown of the polyps found in the 20 

videos by the experts, including their location, size, morphology, and other details.

4.4 – Additional Experiments

We performed further experiments to test: (1) whether a system trained on WLE+NBI can 

do well on colonoscopies without NBI capability; and (2) whether a system trained on WLE 

data only can perform even better on WLE-only colonoscopies than a system trained NBI + 

WLE. We retrained the same VGG-19-based CNN on either NBI-only, or WLE-only, or 

subsets of the 8641 colonoscopy images in 7-fold cross-validation analyses. Training and 

testing the CNN on WLE-only data resulted in a cross-validation test accuracy of 96.1% and 

AUC of 0.991, while training and testing on NBI-only data yielded an accuracy of 92.9% 

and AUC of 0.970. In both cases, this is worse than what the same CNN achieved when 

trained on WLE + NBI: an accuracy of 96.4% with 0.992 AUC on WLE-only data, and an 

accuracy of 94.8% and 0.988 AUC on NBI-only data. The test accuracy on NBI images was 

consistently worse than on WLE data, but this may be explained by the significantly lower 

amount of NBI training data (840 NBI images versus 7801 WLE images). In summary, we 

find that it is beneficial to train the CNN on NBI+WLE images combined, as this increases 

the total amount of training data resulting in a synergistic knowledge “transfer” between the 

two modalities.

4.5 - Discussion

An early application of computer-assisted polyp detection, utilized traditional non-learning-

based computer-vision engineering methods and achieved an AUC of 0.98 for detecting a 

limited class of polyp types43, but could not work in real-time requiring 19 seconds to 

process a single frame. Of 8 submissions to the MICCAI 2015 Endoscopic Vision Challenge 

for polyp detection, none could operate in real-time, and the most accurate (CUMED) had a 

detection accuracy of 89%, tested across 18092 video frames43. Other CNNs applied to the 

task of polyp detection have been limited by small databases of polyp images and videos. An 

implementation operating on multiple small sub-patches of images reached a classification 

accuracy of 91%44, whereas another approach utilizing three convolutional layers operating 

on heavily sub-sampled images of size 32×32 pixels obtained an AUC of 0.86, a sensitivity 

of 86%, and specificity of 85%46.

In this study we trained state-of-the-art CNNs, pre-initialized on millions of labeled natural 

images (ImageNet) on a data set of over 8000 labeled colonoscopy images from over 2000 

patients. For the first time, these models can identify and locate polyps in real-time while 

simultaneously achieving high accuracy and AUC. The highest performing model can 

Urban et al. Page 9

Gastroenterology. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process 98 images per second (10ms per frame) for both polyp- detection and localization 

when using a modern consumer-grade GPU. This is about four times faster than required to 

implement real-time assistance software, given that commonly used video encodings are 

standardized to 25 or 30 frames per second (PAL / NTSC standards). In comparison, the 

fastest polyp localization model presented in prior work47, among eight, can process only 7 

frames per second, and the slowest one merely 0.1 frames per second. A main contribution 

to the speed of our system comes from the choice of locating polyps through bounding 

boxes rather than unnecessarily precise polyp-boundaries.

In terms of resolution, while all human assessment of videos was done at high resolution, we 

found that a 224×224 pixels resolution was sufficient for the CNNs, and virtually 

indistinguishable from a 480×480 resolution. We believe that future advances in computer 

hardware and machine learning will make it feasible to use even larger input fields while 

preserving real-time capabilities and potentially improve the detection accuracy.

Our feasibility study of nine colonoscopy videos, reviewed by expert colonoscopists with 

and without aid of CNN-overlay, demonstrated that the model identified all polyps, and 

aided discovery of additional polyps with relatively low burden of false positives. In a 

second study, with eleven purposefully difficult colonoscopy videos, recorded by a senior 

colonoscopist, featuring “flyby” scenarios without closing in on previously found polyps 

during withdrawal, the CNN alone identified 67 of 73 unique polyps, with an average of less 

than 5 false positives per video. Missed polyps were located in “flyby” segments of the 

video, suggesting that CNN-assistance cannot compensate for hurried withdrawal and poor 

inspection technique. Polyp morphology did not play a role in CNN performance, i.e. 

nonpolypoid lesions were not missed by the CNN more often than polypoid polyps.

Our feasibility study suggests that CNN-assistance during live colonoscopy will result in 

fewer missed polyps. However, extrapolation to real-time use is limited by several factors, 

including unknown effects of the CNN on inspection behavior by the colonoscopist. Another 

limitation derives from the anonymized and de-identified nature of the videos, which 

excluded information about the indications for colonoscopy or the histology of polyps. CNN 

performance may vary by indication (screening vs surveillance).

Polyp histology is especially relevant with respect to added time and pathology costs. Time 

spent for polypectomy is “added value” whenever a true positive is precancerous, malignant, 

or relevant for calculating surveillance interval and/or ADR. However, if use of the CNN 

results in polypectomies of clinically irrelevant lesions, the added time and unnecessary 

pathology costs would be unacceptable. Future randomized studies can directly address the 

overall value (quality/cost) of the CNN by examining its effects on colonoscopy time, 

pathology costs, ADR, polyps per procedure, surveillance-relevant polyps per procedure, 

and surveillance irrelevant polyps per procedure (normal, lymphoid aggregates, etc.).

Finally, live use of the CNN may lengthen colonoscopy procedure times due to second looks 

at false positives and additional polypectomies. Time to assess a false positive will likely 

average <5 seconds at an estimated false positive rate of less than 8/colonoscopy. This 

relatively minor time cost could be reduced with further optimization of detection accuracy 
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(e.g. more training data), user interface (e.g. color selection, sound effects), and 

simultaneous running of accurate optical pathology AI algorithms.

While our results were obtained using Olympus endoscopes, which have a 70% endoscope 

market share48, we expect that the proposed method will also work with endoscopes from 

other vendors with little additional tuning of the algorithm. This is consistent with hundreds 

of experiments reported in the literature on “transfer learning” and our extensive experience 

with other biomedical imaging problems30,31,32.

Our proposed method demonstrates great promise in helping to close the gap between ADR 

and true adenoma prevalence, especially for colonoscopist with low ADR. By meeting the 

constraints of high accuracy and real-time performance using standard personal computers, 

this is the first reported polyp detection AI application ready for real-time validation studies.

5. CONCLUSION

We have built a state-of-the-art polyp detection and localization model using deep learning 

that is easily capable of operating in real-time conditions (processing one frame in 10 ms). 

We can detect the presence of polyps in a frame with an accuracy of 96.4% and an AUC of 

0.991 using a convolutional neural network that was first trained on the ImageNet corpus of 

natural images and then re-trained on our polyp database. A small adaptation of the model 

enabled it to localize polyps to within a bounding-box with a state-of-the-art Dice/F1 score 

of 0.83 with a processing time of only 10ms per frame. When overlaid on colonoscopy 

videos, the algorithm identified all polyps found by expert viewers (adenoma detection rate 

>50%), as well as additional polyps missed on expert review of non-overlaid videos. We 

therefore believe that, when running live during colonoscopy, this model will prompt more 

careful inspection and discovery of additional polyps. It is thus well positioned for validation 

in prospective trials to test effectiveness for improving ADR and reducing adenoma miss 

rate. Furthermore, there is no reason to believe that the same methods, with the proper 

adjustments and training sets, could not work to tackle other real-time needs in endoscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CNN Convolutional Neural Network

CRC Colorectal Cancer

GPU Graphics Processing Unit
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Figure 1: 
Examples of our data set. Top row: images containing a polyp with a superimposed 

bounding box, bottom row: non-polyp images. Three pictures on the left were taken using 

NBI (narrow band imaging) and three pictures on the right contain tools (e.g. biopsy forceps, 

cuff devices, etc.) that are commonly used in screening colonoscopy procedures.
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Figure 2: 
Representative frame shots of CNN-overlaid colonoscopy videos. Presence of a green box 

indicates that a polyp is detected with >95% confidence by our CNN polyp localization 

model; the location and size of the box are predictions of the CNN model. Expert confidence 

that box contained a true polyp is shown in upper left of the images.

(Video collages of CNN localization predictions: http://www.igb.uci.edu/colonoscopy/

AI_for_GI.html)
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Table 1:

Categorization of a random subset of 1578 true-positive and all 228 false-negative polyp CNN predictions on 

the test set of 4088 unique polyps, categorized by size/Paris classification. Results obtained via 7-fold cross-

validation on the 8641 colonoscopy images. All polyps >3mm are categorized by the Paris classification 

scheme. The CNN performs equally well at detecting nonpolypoid lesions (II a/b/c) and polypoid polyps (I 

p/s).

True Positives False Negatives

≤ 1cm > 1cm ≤ 1cm > 1cm

Dim (≤ 3 mm) 644 - 103 -

I p 37 25 8 6

I s 487 45 68 2

II a 246 37 36 4

II b 34 15 1 0

II c 4 4 0 0
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Table 2:

Summary of polyp classification results for the architectures described earlier (see Table 1), obtained by 7-fold 

cross-validation on the 8641 colonoscopy images. The sensitivity (true positive rate) is given at false negative 

rates of 5% and 1% (i.e. a specificity of 95% and 99% respectively), as sensitivity and specificity are 

interdependent values.

Model Initial Weights Accuracy AUC Sensitivity at 5% FNR Sensitivity at 1% FNR

NPI-CNN 1 - 91.9 ± 0.2% 0.970 ± 0.002 88.1% 65.4%

NPI-CNN 2 - 91.0 ± 0.4% 0.966 ± 0.002 86.2% 60.6%

PI-CNN 1 VGG16 95.9 ± 0.3% 0.990 ± 0.001 96.9% 87.8%

PI-CNN 2 VGG19 96.4 ± 0.3% 0.991 ± 0.001 96.9% 88.1%

PI-CNN 3 ResNet50 96.1 ± 0.1% 0.990 ± 0.001 96.8% 88.0%
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Table 3:

Summary of polyp localization results for a subset of the architectures described earlier (see Table 1), obtained 

by seven-fold cross-validation on the 8641 colonoscopy images. Standard deviation of mean estimate from the 

cross-validation is shown.

Model L2 regression [Dice] Dice score optimization [Dice] “Internal Ensemble” Regression [Dice]

NPI-CNN 1 0.63 ± 0.01 0.681 ± 0.002 0.731 ± 0.006

PI-CNN 1 0.77 ± 0.01 0.76 ± 0.01 0.823 ± 0.003

PI-CNN 2 0.79 ± 0.01 0.784 ± 0.004 0.827 ± 0.003
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Table 4:

Unique polyps found and removed during colonoscopy, found by expert review, and found by CNN-assisted 

expert review of the nine videos. The VGG-19 based CNN was trained on the 8641 colonoscopy images and 
applied to the nine videos without further adaptation.

Polyp size Original Colonoscopist (Polyps Removed) Expert Review CNN-Assisted Review

1-3 mm 12 19 24

4-6 mm 12 13 16

7-9 mm 0 0 1

>10 mm 4 4 4

Total Polyps Found 28 36 45
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Table 5:

Analysis of the VGG-19 based CNN tested on all 9 + 11 videos after training on the 8641 colonoscopy 

images. CNN-assisted expert review annotations were used as reference. The delay to detection * of a polyp is 

the time span between a polyp entering the field of view of the camera for the first time and the CNN 

producing its first positive polyp prediction. All false positives with duration of 1+ seconds are counted. A 

frame-by-frame analysis of the video study can be found in Supplementary Table 3. “Challenging videos” 

were produced by an expert colonoscopists who performed “flybys” that included but avoided inspection of 

known polyps to mimic missed polyp scenarios.

9 Videos 11 “Challenging” Videos

Total polyps found 45 68

Total polyps missed 0 5

Total False positives 81 46

Avg. delay to detection* 0.2 ± 0.1 sec 1.3 ± 0.3 sec
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