Study of the $B^- \rightarrow J/\Psi K^- \pi^+ \pi^-$ decay and measurement of the $B^- \rightarrow X(3872)K^-$ branching fraction

Permalink
https://escholarship.org/uc/item/9bg381v7

Journal
Physical Review D - Particles, Fields, Gravitation and Cosmology, 71(7)

ISSN
1550-7998

Authors
Aubert, B
Barate, R
Boutigny, D
et al.

Publication Date
2005-04-01

DOI
10.1103/PhysRevD.71.071103

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Study of the $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ decay and measurement of the $B^- \rightarrow X(3872)K^-$ branching fraction

(BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik I, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, OH 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
23Ecole Polytechnique, LLR, F-91128 Palaiseau, France
24University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

B. AUBERT et al. PHYSICAL REVIEW D 71, 071103 (2005) 071103-2
STUDY OF THE $B^+ \to J/\psi K^- \pi^+ \pi^-$ DECAY…

University of Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
Florida A&M University, Tallahassee, Florida 32307, USA
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
Harvard University, Cambridge, Massachusetts 02138, USA
Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
Imperial College London, London, SW7 2AZ, United Kingdom
University of Iowa, Iowa City, Iowa 52242, USA
Iowa State University, Ames, Iowa 50011-3160, USA
Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
University of Liverpool, Liverpool L69 72E, United Kingdom
Queen Mary, University of London, E1 4NS, United Kingdom
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
University of Manchester, Manchester M13 9PL, United Kingdom
University of Maryland, College Park, Maryland 20742, USA
University of Massachusetts, Amherst, Massachusetts 01003, USA
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
McGill University, Montréal, QC, Canada H3A 2T8
Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
University of Mississippi, University, Mississippi 38677, USA
Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
University of Notre Dame, Notre Dame, Indiana 46556, USA
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Ohio State University, Columbus, Ohio 43210, USA
University of Oregon, Eugene, Oregon 97403, USA
Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Università di Perugia, Dipartimento di Elettronica and INFN, I-06100 Perugia, Italy
Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
Prairie View A&M University, Prairie View, Texas 77446, USA
Princeton University, Princeton, New Jersey 08544, USA
Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
Universität Rostock, D-18051 Rostock, Germany
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
University of South Carolina, Columbia, South Carolina 29208, USA
Stanford Linear Accelerator Center, Stanford, California 94309, USA
Stanford University, Stanford, California 94305-4060, USA
State Univ. of New York, Albany, New York 12222, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
University of Texas at Austin, Austin, Texas 78712, USA
University of Texas at Dallas, Richardson, Texas 75083, USA
Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
Vanderbilt University, Nashville, Tennessee 37235, USA
University of Victoria, Victoria, BC, Canada V8W 3P6
University of Wisconsin, Madison, Wisconsin 53706, USA
Yale University, New Haven, Connecticut 06511, USA

* Now at Department of Physics, University of Warwick, Coventry, United Kingdom
† Also with Università della Basilicata, Potenza, Italy
‡ Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
§ Deceased
We study the decay $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ using 117 × 10^6 $B\bar{B}$ events collected at the $Y(4S)$ resonance with the BABAR detector at the PEP-II e^+e^- asymmetric-energy storage ring. We measure the branching fractions $\mathcal{B}(B^- \rightarrow J/\psi K^- \pi^+ \pi^-)$ = (116 ± 7(stat) ± 9(sys)) × 10^{-5} and $\mathcal{B}(B^- \rightarrow X(3872)K^-) \times \mathcal{B}(X(3872) \rightarrow J/\psi \pi^+ \pi^-)$ = (1.28 ± 0.41) × 10^{-5} and find the mass of the $X(3872)$ to be 3873.4 ± 1.4 MeV/c^2. We search for the h_π narrow state in the decay $B^- \rightarrow h_\pi K^-$, $h_\pi \rightarrow J/\psi \pi^+ \pi^-$ and for the decay $B^- \rightarrow J/\psi D^0\pi^-$, with $D^0 \rightarrow K^- \pi^+$. We set the 90% C.L. limits $\mathcal{B}(B^- \rightarrow h_\pi K^-) \times \mathcal{B}(h_\pi \rightarrow J/\psi \pi^+ \pi^-) < 3.4 \times 10^{-6}$ and $\mathcal{B}(B^- \rightarrow J/\psi D^0\pi^-) < 5.2 \times 10^{-5}$.

DOI: 10.1103/PhysRevD.71.071103

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

The study of B decays to final states containing charmonium and strange mesons is especially suited to the search for new charmonium states and for intrinsic charm. In particular, the decay $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ [1] can occur via the production of charmonium states decaying into $J/\psi \pi^+ \pi^-$ or possibly via $B^- \rightarrow J/\psi D^0\pi^-$, with $D^0 \rightarrow K^- \pi^+$. Recently the Belle [2] and CDF [3] collaborations have observed a new state, the $X(3872)$, decaying into $J/\psi \pi^+ \pi^-$. This state is either a charmonium candidate or even possibly a molecule of charmed D and D^* mesons [4]. In this paper, using 117 × 10^6 $Y(4S)$ decays into $B\bar{B}$ pairs, we confirm the observation of the $X(3872)$ and search for the unconfirmed charmonium $1P_1$ state $h_\pi(3526)$ [5]. In addition, we study the final state involving a D meson to test models developed to explain the excess of low momentum J/ψ mesons in inclusive B decays [6]. The presence of intrinsic charm in B mesons could explain this excess if $\mathcal{B}(B^- \rightarrow J/\psi D^0\pi^-)$ exceeds 10^{-4} [7].

The data were collected at the PEP-II asymmetric-energy e^+e^-B-factory with the BABAR detector, which is fully described elsewhere [8]. The detector includes a silicon vertex tracker and a drift chamber in a 1.5-T solenoidal magnetic field, which detect charged particles and measure their momentum and energy loss. Photons, electrons, and neutral hadrons are detected in a CsI(Tl)-crystal electromagnetic calorimeter. A ring-imaging Cherenkov detector is used for particle identification. Penetrating muons and neutral hadrons are identified by resistive-plate chambers in the steel of the flux return. We use a Monte Carlo simulation of the BABAR detector based on GEANT4 [9] to validate the analysis procedure and to estimate efficiency corrections.

The event reconstruction and selection follow closely those described in an earlier paper [10]. The present analysis has been optimized to maximize the sensitivity to $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ decays. We reconstruct $J/\psi \rightarrow e^+e^-$ candidates from pairs of tracks selected with criteria that are 98% (7%) efficient for electrons (pions). To account for energy losses, we combine the electron pairs with bremsstrahlung-photon candidates and use an asymmetric mass window, 2.95 < $m_{ee}(\gamma)$ < 3.14 GeV/c^2. We reconstruct $J/\psi \rightarrow \mu^+\mu^-$ candidates from pairs of tracks selected with criteria that are 77% (8%) efficient for muons (pions), satisfying 3.06 < $m_{\mu\mu}$ < 3.14 GeV/c^2. The nominal J/ψ mass [11] is imposed as a constraint on J/ψ candidates, thereby improving the resolution on the B four-momentum and on any charmonium states in its decay. Kaons are identified using criteria that have an efficiency of 97%, with a 15% pion-misidentification rate. B-meson candidates are formed by combining a J/ψ candidate with a kaon candidate and two additional oppositely charged tracks. To suppress further the background from light-quark production, which is characterized by back-to-back jets, the angle θ_J between the thrust axes of the reconstructed B candidate and the rest of the event in the center-of-mass system is required to satisfy $|\cos\theta_J| < 0.8(0.9)$ for $J/\psi \rightarrow e^+e^-$ ($J/\psi \rightarrow \mu^+\mu^-$) candidates.

Signal and combinatorial background are discriminated using two kinematic variables: the beam-energy-substituted mass, $m_{ES} = \sqrt{(\sqrt{s}/2)^2 - p_B^2}$, and the difference of the B candidate’s measured energy from the beam energy, $\Delta E = E_B^* - (\sqrt{s}/2)$. Here E_B^* (p_B^*) is the energy (momentum) of the B candidate in the center-of-mass frame and \sqrt{s} is the total center-of-mass energy. The signal region is defined to be $|\Delta E| < 3\sigma$, where the resolution σ, determined with data, is 12 MeV. A binned likelihood fit to the m_{ES} distribution [Fig. 1(a)] is used to separate the signal, taken as a Gaussian distribution with a fitted width of about 2.5 MeV/c^2, plus a small low-mass tail to account for energy losses [12], from the combinatorial background distributed as an ARGUS threshold function [13]. We have checked with Monte Carlo simulation that there is no significant background from B decays that has the same m_{ES} distribution as the signal.

To reduce systematic uncertainties, we measure

$$R = \frac{\mathcal{B}(B^- \rightarrow J/\psi K^- \pi^+ \pi^-)}{\mathcal{B}(B^- \rightarrow J/\psi(2S)K^-)}$$

$$= \frac{N_{events} \epsilon_{\psi(2S)}}{N_{\psi(2S)} \epsilon} \mathcal{B}(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-),$$

where $N_{events} = 2540 \pm 72$ is the number of $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ signal events extracted from the fit to the m_{ES} distribution. The number of $\psi(2S)$ events, $N_{\psi(2S)} = 556 \pm 30$, is obtained by fitting the $m_{J/\psi \pi\pi}$ distribution, after subtracting combinatorial background [14], with two Gaussian distributions representing the $\psi(2S)$ signal and a
We estimate the uncertainty on the fit to the distribution in m_{ES} (Fig. 2(c) shows the corresponding unsubtracted distribution). This binned χ^2 fit gives a resolution on $m_{J/\psi\pi\pi}$ of 3.1 ± 0.2 MeV/c^2 for the core Gaussian containing 70% of the events and 12 ± 3 MeV/c^2 for the broader Gaussian. The total $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ and the $B^- \rightarrow \psi(2S)K^-$ selection efficiencies, ϵ and $\epsilon_{\psi(2S)}$, are extracted from Monte Carlo simulation: we obtain $\epsilon_{\psi(2S)}/\epsilon = 1.17 \pm 0.03$. We use $B(\psi(2S) \rightarrow J/\psi\pi^+\pi^-) = (31.8 \pm 1.0)\%$ [11].

We estimate the systematic error due to the choice of the signal m_{ES} shape function by replacing it with a simple Gaussian. We estimate the uncertainty on the fit to the $m_{J/\psi\pi\pi}$ distribution by using the signal resolution function as measured on Monte Carlo and by varying the background shape. Including all these errors, we measure $R = 1.70 \pm 0.10(\text{stat.}) \pm 0.09(\text{syst.})$ which, combined with $B(B^- \rightarrow \psi(2S)K^-) = (6.8 \pm 0.4) \times 10^{-4}$ [11], yields

$$B(B^- \rightarrow J/\psi K^- \pi^+ \pi^-) = (116 \pm 7(\text{stat.}) \pm 9(\text{syst.})) \times 10^{-5}. \quad (2)$$

Note that this measurement includes $B(B^- \rightarrow \psi(2S)K^-)$.

To investigate the possible presence of narrow charmonium states decaying to $J/\psi\pi^-\pi^+$, we have studied the distribution in $m_{J/\psi\pi\pi}$ [Fig. 2(a)]. We observe an excess in the region of the $X(3872)$ [Fig. 2(d)], but do not find any excess in the h_c region [Fig. 2(b)]. The mass of the $X(3872)$ state is extracted from an unbinned maximum likelihood fit to the two-dimensional distribution in m_{ES} and $m_{J/\psi\pi\pi}$. The probability density function (PDF) is taken to be the relative to the $X(3872)$ PDF, the region [Fig. 2(d)], but do not find any excess in the h_c region [Fig. 2(b)]. The mass of the $X(3872)$ state is extracted from an unbinned maximum likelihood fit to the two-dimensional distribution in m_{ES} and $m_{J/\psi\pi\pi}$.

The requirement $m_{J/\psi\pi\pi} > 5.27$ GeV/c^2 is applied.

FIG. 1. Distribution of m_{ES} for (a) $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$ candidates, and (b) events in the $X(3872)$ region, $3862 < m_{J/\psi\pi\pi} < 3882$ MeV/c^2. The solid curves represent the binned likelihood fits described in the text; the combinatorial components are indicated by the dashed curves.

FIG. 2. Distribution of $m_{J/\psi\pi\pi}$ (a) in the entire range, (b) in the h_c region, (c) at the $\psi(2S)$, and (d) in the region of the $X(3872)$ with the projection of the unbinned likelihood fit superimposed. The measurement of the branching fraction $B(B^- \rightarrow X(3872)K^-) \times B(X(3872) \rightarrow J/\psi\pi^-\pi^+)$ is performed with a counting technique. We select events in a ± 10 MeV/c^2 window around $m_{J/\psi\pi\pi} = 3872$ MeV/c^2, and find the number of events with $m_{ES} > 5.27$ GeV/c^2 to be $N_{data} = 63$. We estimate the number of these events
due to combinatorial background ($N_{\text{comb}} = 22.0 \pm 4.3$) from a fit to the m_{ES} distribution [Fig. 1(b)]. The number of events with the same final state $B^- \rightarrow J/\psi K^- \pi^+ \pi^-$, but not belonging to the $X(3872)$ signal, is estimated to be $N_{\text{peak}} = 10.5 \pm 3.2$ from a fit to the m_{ES} distribution in the symmetric sideband $15 < |m_{J/\psi \pi \pi} - 3872| < 45$ MeV/c^2. The resulting number of signal events is 30.5 which agrees within the errors with the number of signal events, 25.4 ± 8.7, obtained from the fit to the $X(3872)$ in Fig. 2(d). The branching fractions are determined using a frequentist confidence level [15]. This technique treats properly the small number of events and includes the systematic errors directly in the computation of confidence intervals or limits. The confidence level, α, a function of $B(B^- \rightarrow X(3872)K^-) \times B(X(3872) \rightarrow J/\psi \pi^+ \pi^-)$ is computed as the fraction of times that a random number generated according to a Poisson distribution with a mean value of $\mu = N_{\text{bkg}} + N_{\phi(2S)} \epsilon_w \frac{B(B^- \rightarrow X(3872)K^-)B(X(3872) \rightarrow J/\psi \pi^+ \pi^-)}{B(B^- \rightarrow \psi(2S)K^-)B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-)}$ (3)

exceeds the observed data. For a given value of $B(B^- \rightarrow X(3872)K^-) \times B(X(3872) \rightarrow J/\psi \pi^+ \pi^-)$ the variables N_{bkg}, $N_{\phi(2S)}$, $B(B^- \rightarrow \psi(2S)K^-)$, and $B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-)$ are randomly generated to determine a value of μ, which is then used in a Poisson distribution to generate a new value of the number of detected events. The generation is repeated many times and the fraction of times the random number exceeds $N_{\text{data}} = 63$ yields the value of α. The variables N_{bkg}, $N_{\phi(2S)}$, $B(B^- \rightarrow \psi(2S)K^-)$, and $B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-)$, are generated according to Gaussian distributions. The mean of $N_{\phi(2S)}$ is 556 and $\sigma = 30$. The mean of N_{bkg} is $N_{\text{comb}} + N_{\text{peak}} = 32.5$ and $\sigma = 5.9$, which includes a systematic error on N_{peak} calculated by varying the boundaries of the sideband. We use published values [11] for the remaining branching fractions and their errors, assumed to be Gaussian. Finally, $\epsilon_w = (92 \pm 2\%)$ is the fraction of events that fall in the $m_{J/\psi \pi \pi}$ window, from applying the same mass window cut to the $\psi(2S)$ and assuming the same efficiency. From the values of $B(B^- \rightarrow X(3872)K^-)$ at which $\alpha = 16\%$ and 84% we measure

\[B(B^- \rightarrow X(3872)K^-) \times B(X(3872) \rightarrow J/\psi \pi^+ \pi^-) = (1.28 \pm 0.41) \times 10^{-5}. \] (4)

The probability that the observed events are a background fluctuation in the considered mass window is 5.4×10^{-4}, corresponding to 3.5 Gaussian standard deviations. As a check, we performed the same measurement on the $J/\psi \rightarrow e^+ e^-$ and $J/\psi \rightarrow \mu^+ \mu^-$ samples separately, obtaining $B(B^- \rightarrow X(3872)K^-) \times B(X(3872) \rightarrow J/\psi \pi^+ \pi^-) = (1.94 \pm 0.62) \times 10^{-5}$ and $(0.52 \pm 0.46) \times 10^{-5}$ respectively, consistent within 1.8 standard deviations.

The decay of a charmonium state into $\rho J/\psi$ is a strongly suppressed isospin-violating process. In order to investigate the nature of the $X(3872)$ state, we plot the invariant mass of the $\pi^+ \pi^-$ system in both the $X(3872)$ and the $\psi(2S)$ region (Fig. 3). In the $\psi(2S)$ case, the events are concentrated near the kinematic limit. Such behavior is not excluded for the $X(3872)$, but the statistics are too small to allow a clear conclusion. Measuring both the $m_{\pi^+ \pi^-}$ and angular distributions with significantly greater statistics would provide important information on the nature of the $X(3872)$.

The search for the h_c is performed with the same frequentist technique in a ± 10 MeV/c^2 mass window centered on $m_{J/\psi \pi \pi} = 3526$ MeV/c^2 [5]. With $N_{\text{data}} = 9$, $N_{\text{comb}} = 6.9 \pm 3.5$, $N_{\text{peak}} = 0.6 \pm 1.5$, and assuming the same efficiency $\epsilon_w = (92 \pm 2\%)$, we set a 90\% C.L. limit $B(B^- \rightarrow h_c K^-) \times B(h_c \rightarrow J/\psi \pi^+ \pi^-) < 3.4 \times 10^{-6}$. The probability that we would see a signal as large as the one observed from background fluctuations alone is 39\%.

Finally, we search for $B^- \rightarrow J/\psi D^0 \pi^+$ decays with $D^0 \rightarrow K^- \pi^+$. The decay $D^0 \rightarrow K^- \pi^+$ would have an r.m.s. width of 5.4 MeV/c^2 in $m_{K^- \pi^+}$ as determined from Monte Carlo. We study this distribution in the same way we studied $m_{J/\psi \pi \pi}$. The $m_{K^- \pi^+}$ combinatorial-subtracted distribution (Fig. 4) shows no significant structure, and it is therefore used to set a limit. We fit the

FIG. 3. Distribution of $m_{\pi^+ \pi^-}$ (a) at the $X(3872)$ and (b) at the $\psi(2S)$, after subtraction of combinatorial and peaking background.
FIG. 4. Distribution of $mK^-\pi^+$ in events $B^-\rightarrow J/\psi K^-\pi^+\pi^-$, with combinatorial background removed. Overlaid is an exponential fit. The arrow indicates the 3σ region expected for $D^0\rightarrow K^-\pi^+\pi^-$. Background from other $B^-\rightarrow J/\psi K^-\pi^+\pi^-$ decays with an exponential function of $m_{K^-\pi^+}$ and obtain $N_{\text{peak}} = 2.9 \pm 1.4$. The frequentist approach described above, with $N_{\text{data}} = 10$, $N_{\text{comb}} = 7.8 \pm 2.8$ and $\epsilon/\epsilon_{\phi(2S)} = 1.00 \pm 0.07$ yields the 90% C.L. limit $\mathcal{B}(B^-\rightarrow J/\psi D^0\pi^-) < 5.2 \times 10^{-5}$.

In summary, we measured $\mathcal{B}(B^-\rightarrow J/\psi K^-\pi^+\pi^-) = (116 \pm 7(\text{stat.}) \pm 9(\text{syst.})) \times 10^{-5}$ with an error almost a factor two smaller than the present average [11] and we confirmed the observation of $B^-\rightarrow X(3872)K^- [2,3]$. We performed an accurate measurement of the branching fraction $\mathcal{B}(B^-\rightarrow X(3872)K^-) \times \mathcal{B}(X(3872)\rightarrow J/\psi\pi^+\pi^-) = (1.28 \pm 0.41) \times 10^{-5}$ and of the mass $m_{X(3872)} = 3873.4 \pm 1.4$ MeV/c2. We also studied the $m_{J/\psi\pi\pi}$ distributions searching for $B^-\rightarrow h^-_1K^-$ decays and set limits on their branching fractions, $\mathcal{B}(B^-\rightarrow h^-_1K^-) \times \mathcal{B}(h^-_1\rightarrow J/\psi\pi^+\pi^-) < 3.4 \times 10^{-6}$ at 90% C.L. Finally, from the $m_{K^-\pi^+\pi^-}$ distribution we find $\mathcal{B}(B^-\rightarrow J/\psi D^0\pi^-) < 5.2 \times 10^{-5}$ at 90% C.L., thus ruling out the explanation of the inclusive J/ψ momentum spectrum with intrinsic charm proposed in [7].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[1] Charge-conjugate reactions are included implicitly throughout this paper.
[14] Throughout this paper the distributions after combinatorial-background subtraction are obtained by fitting the m_{ES} distribution of the events within each bin of the variable of interest ($m_{J/\psi\pi\pi}$ in this case).