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Towards A Theory Of Quark and Lepton Masses. * !
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Abstract .

Has any progréss been made on understanding and predicting the
13 parameters which describe the observed. masses and mixing angles
of the quarks and leptons? Arguments are glven In favor of pursuing
schemes in which grand unified and family symmetsies provide many
refations among these 13 parameters, A sequence of simple assump-
“tions leads to a supersymmetrlc SO(10) theory with 8 predictions:
tan B, my, Vg, m,, m,/mq, m,/mga, Vi and the amount of CP viola-
tlon J. These predictions are presented, together with experiments
which will test them.

*Plenary talk given at the 16th Texas Symposium on Relntlvhtlc Astrophysics and 3¢d
Symposium on Particles, Strings and C } Berkel ber 1002.
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A major component of experimental high energy physics is the measure-
ment of the masses of the quarks and leptons and their couplings to the W
boson. There is no mystery about why thia is so: we are interested in learn-
ing the fundamental parameters of the standard model, and 13 out of 18 of
these correspond to quark and lepton masses and mixing. I am not trying to

" minimize the importance of the 5 parameters of the gauge and Higgs sectors,
which can be taken as a,a,, Mz,Gr and My; but it is a simple fact that the

majority of the fundamental parameters belong to the flavor sector. These . '
13 parameters consist of 9 masses: for the up-type quarks m,, m. and my, the A

down-type quarks mg,m, and my, and the charged leptons m.,m,.' and my;
and the 4 independent parametera of the Kobayashi-Maskawa (KM) mixing
matrix, which I take as the Cabbibo angle sin 6, = [Viul, {Vas|, {Vis} and the
parameter J which describes the amount of CP violation in the KM matrix.

Each of the 18 fundamental parameters ia represented in the standard
model by a coupling constant. I do not know how to construct a funda-
mental theory and perform a firet principles caleulation of these coupling
constants, Does this mean I have no hope of making predictions? No. It is
always possible to obtain predictions by. reducing the number of frec param-
eters. The Balmer formula provides an illustration of this. A large number
of observables (the hydrogenic spettral wavelengths) are described by a sin-
gle free parameter (the Rydberg constant). Twenty eight years after this
incredibly successful formula was written down, it was understood by Bohr;
indeed, his atomic model gave a theoretical prediction for the Rydberg con-
stant, B = 2r¥mZ3e4/h8, This crowning achievement was the birth of the
‘quantum theory of atomic structure. It may well be that a predictive scheme
for fermion masses, depending on far fewer than the 13 flavor couplings of
the standard model, is a prerequisite for the development of a fundamental
theory of fermion masses, : i

It is interesting to recall in a little more detail how the development of
atomic theory and quantum mechanics grew out of studies of spectral wave-
lengths, and to compare thia evolution with the spectroscopy of today: that

1

of quark and lepton masses. | would argue that the development proceeds
from the experimental ts of the ph , first to a recogni-

tion of regularities amongst the measurements, then to the physical insight
which gives some understanding of these regularities and finally to a funda-
mental theory, which allows the totality of the phenomena to be understood
from a few general principles. The spectral lines of hydrogen were first mea-
sured accurately, to 1 part in 10* for four of the lines of the Balmer series,
by Angstrom in 1860. A simple regularity in thia series of wavelengths waa
noticed by Balmer in 1885, which he described by the formula A = C,—j’%
where n is an integer and C a constant, Few would disagree that the great
leap of physical insight came from Bohr, with his atomic model of 1913. This
provided a picture of what was going on in terms of discrete energy levels, to-
gether with a derivation of Balmer's formula in the now more familiar form
v = R(* - ;}‘) and a theoretical prediction for the one parameter R in
terms of a and m,. Over the next fifteen years this led to the development
of quantum mechanics, a radical new foundation underlying all physics.

At what stage of the development process do we stand today with regard
to quark and lepton epectroscopy? I would guess that if you asked this to
a cross-section of particle physicists, most would say that we are somewhere
between Angstrom (1860) and Balmer (1885). We have some reasonable
data, but essentially no understanding of the regularities or of the underlying
theory. This may indeed be the situation. Attempts to predict the quark
and lepton masses in gauge theories began in 1972 [1], immediately after
these theories were shown to be renormalizable (ie predictive), and there
have becn a variety of approachs, each with an interesting history. Some
achemes have been very ambitious, suggesting an origin for fermion masses
very different than the description provided by the standard madel. Two such
examples are extended technicolor [2) and string theory [3}; however, despite
considerable effort, it is not known whether these ideas are coneistent with
the observed masses, and they are certainly very far from providing predictive
relationa that can be tested. The same criticiam cannot quite be leveled at
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the scheme known aa top condensates {4] as this does predict the top quark
and Higgs boson masses. Nevertheless, while it would be interesting to find
m, near 230 GeV and my near 260 GeV, it would hardly be persuasive,
because these resulls correspond to infrared fixed points and are therefore
quite insensitive to the underlying physics at high mass scales. There are
other ideas, such as gauged generation symmetries and radiative hierarchies,
which are very well motivated, but which again have not led to concrete
accurate predictions which can be experimentally tested. One can therefore
argue quite persuasively that, not only are we far from having a theory of

¢ enlv h

fermion masses, but many are open p y the regularities

of the quark and lepton masses have yet to be found.

In this talk I would like to argue the case for an alternative viewpoint: that
we can already see and understand some of the regularities. This viewpoint
may be completely mistaken, but it should be taken seriously because it is the
only direction which has provided a sufficient number of accurate predictions
toqualify as being “testable”. ‘This direction is the one of parameter reduction

btained by tmposing sy tries. 1f this viewpoint is correct, our stage of
development is somewhere between Balmer (1885) and Bohr (1913), perhaps
even close to Bohr. . :

The regularities are not embodied in a simple formula of the Balmer type,
but in the framework of todays tools of theoretical physica: symmetries. In-
fact, such successful predictions have only been obtained by the combination
of three very different types of symmetry. The first, grand unified gauge sym-
metry is both very elegant and very powerful. It allows relations between
the up, down and lepton masses. The second, family symmetry, is also very
powerful leading to a substantial parameter reduction, however at the mo-
ment it is very ad hoc and is the weak link in the chain. The final symmetry,
supersymmetry, actually leads to an increase in the number of parameters,
but is apparently required by data since otherwise many of the predictions
are not correct. Although there is a simple group theoretic understanding of
the Yukawa coupling structure, these simple regularities are not immediately
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. manifest in the observed masses because the Yukawa couplings are modified

by calculable dynamical effects. :

There is an experimental hint that the above viewpoint of parameter
reduction in the flavor sector is worth pursuing: progress has been made in.
reducing the number of parameters in the gauge sector. In grand unified
theories (GUTs) the three independent gauge couplings become related [5].
This.implies predictions for the weak scale gauge couplings gi(Mw),i=1,2,3
of the form {6]:

9:i(Mw) =Cigom )

where gg is the GUT gauge coupling, C; are numerical group theory constants
and the n;, which are radiative corrections computed with the renormalization
group, depend on mass ratios such as My /Mg, where Mg is the GUT scale.
How many predictions occur in the gauge sector of GUTs? While the C; are
‘purely. numerical group theory conatants, the n; depend on ratios of various
mass scales. If there are two or more masa ratios on which the n; depend,
then there are no predictions: together with gg there are three or more free
parameters for the three standard model parameters g;. The only hope is
for the maximally predictive possibility that the r; depend only on the single

‘mass ratio M /Mg, in which case there will be one prediction, usually chosen

to be the weak mixing angle sin?4.

There are many possible GUTs which have no new scale other than Mg.
How many different predictions for sin? @ can they give? The answer is ba-
sically just two: .211 without supersymmetry and .233 with weak-scale su-
persymmetry [7}. What is the accuracy of these predictions? There are
threshold corrections from GUT (8], Planck [9), and weak scales {10] which
are typically around .002. Since the standard model is consistent with any

* value of gin?@ from 0 to 1, I think that it is very significant that the minimal

supersymmetric scheme _predicts precisely the experimental value of 2334
001, Many people shrug this off, pointing out that it is just one number.
However it is the only significant prediction of any of the 18 parameters of



the standard model, and hence I take it as a valuable indication from exper-
‘iment that these theories are worth pursuing further. In particular it lends
support for two of the three symmetries which we will use to obtain flavor
predictions: the grand unified gauge symmetry and supersymmetsy.

The successful prediction of sin? 8 resulted from requiring a larger symme-
try than required by experiment. It is well known that this same enlargement
of the gauge symmetry can also yield predictions in the flavor sector. Flavor

observables at the weak scale, F,(Mw), can be given by relations of the form

FuMw)=C, Fana . @

where C, are again purely numerical group theory constants, while the dy-
namical factors 1), depend on several parameters, including o, and mass ratioa
such as My /Mgq. Fq represents the set of independent flavor parameters of
the GUT. Clearly a predictive theory must have fewer such parameters than
the 13 flavor parameters of the standard modél. The first such prediction in
GUTs was for ms/m,{11]. However, we now know that in thia case 1, depends
on m; and a,, leading to uncertainties of 30% and 10% respectively. Hence
this successful prediction is much less significant than sin?§, especially as
one successful prediction out of so many flavor parameters is not convincing.
The first successful prediction of type (2) following from family symmetries
was sinf, = ,/m.g/m. {12]. While successful, this is again a single relation at
the 10% accuracy level.

What level of significance can be expected in general from these type
of flavor predictions? This is determined by the experimental uncertainties,
both of the predicted quantities and of the inputs used to determine the free
parameters of the theory. For example if the muon mass could be predicted
with only the electron mass needed as input, then the significance would be
extremely high. However, nobody is even close to being able to do this. In
fact the best we are able to do is to use the six most accurately measured
flavor parameters as inputs: m,,m;, and m, are known at the 1 in 10° level or
better, the Cabibbo angle to 1%, and m, and my to 5 - 10%. In addition, to
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calculate the dynamical cffects one needs to know the strong gauge coupling,
which ia known at the 10% level. Hence in this case the level of significance
of the predictions is dominated by how well the predicted quantity is known,
and this varies from around 15% to 60%. The crucial lesson is that no single
prediction of this sort can possibly be very significant. The only hope that
this approach will lead to significant successes is if there are a large number
of predictions. Imposing grand unified, family and super-asymmetries still
allows a vast number of possible theories. How are.we to decide which such
theories to-study? My answer is that we will simply study those which
offer the hope of obtaining the largest number of predictions within a simple
set of assumptions, We are hoping that nature is kind to us and that the
flavor sector of the GUT depends on only a very few parameters. While. this
*principle of maximal predictivity’ could be criticized as arbitrary, | would
argue that either nature is kind or the approach is not worth pursuing.

The power of combining family and GUT symmetries was realized by
Georgi and Jarlskog [13] who wrote down a simple pattern for the Yukawa
coupling matrices at the GUT scale. This led to relations of the form of
equation (2) allowing successful predictions for all down type quark masses;
mq, m, and my. Harvey, Ramond and Reiss {14) showed how to obtain this
same pattern in the context of an S0(10) GUT. They found that such a
scheme violated CP, led to a prediction for m; from V,; and allowed predic-,
tions to be made in the neutrino sector as well. More recently Dimopoulos,
Hall and Raby [15] showed that this Georgi-Jarlskog pattern, when used in
a supersymmetric theory, was consistent with everything we know about the
flavor parameters. In addition to mg,m,, my and mq, we found that the form
of the KM matrix allows |Vis/Vis| and J to be computed. We were astonished
to find that these two predictions and the top quark mass prediction were
all successful. While it is a relatively simple matter to construct a theory
which gets any one or two of these relations it is very non-trivial to get all six
simultaneously. Despite the success of this framework 1 will not discusa the
predictions further. In the rest of this talk I describe a very different class of
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S0(10) theories which have just 6 flavor parameters and are therefore even
more predictive [16).
The following assumptions are used to define this class of theories:

KM angles is to be understood in terma of pov}em of Ma/M;;. We study
those models with the fewest such operators required for consistency
with the known masses and mixings.

&4

. ® The gauge group is SO(10). This is the smallest gauge group that allows “These non-renormealizable operators have the form
an entire family to be described by a single irreducible representation. : 45, 45 A5y 45 .
- Thus the three families are written as 16; with i=1,2,3 and 16, being 0;; = 16; -ﬁ"m Om...-ﬁ;l N 4)
the heaviest family. Perhaps the most elegant feature of SO(10) is the
way in which all the measured gauge charges of the fermions can be
simply understood in terms of this 16 dimensional spinor.

The mass terms result when the various 45 dimensional adjoint repre-
sentations acquire vacuum expectation values (vevs) of order Mg,

Simple relations amongst the masses in the up, down and electron
sectors (ollow because each 45 vev lies in a definite direction in the
SO(10) group space: in the hypercharge, B — L, Tsp or X direction,

¢ The GUT is supersymmetric. Below the grand unification scale we
take the theory to be the minimal supersymmetric standard model, as
this is the unique minimal possibility for obtaining the successful sin?@

prediction.

The two low energy Higgs doublets of this theory lie in a single 10
dimensional representation of S0(10). This is the unique minimal pos-
sibility. o

o The masses of the heavy generation (m;, my and m,) come from a single

where X preservea an SU(5) subgroup. To see this, recall that when
a 45 vev acts on a fermion in a 16, it gives a numerical “Clebsch”,
which is the charge of the fermion under the particular group generator
corresponding to the direction of this vev. It is the SO(10) group
theory “Clebschs” which allow an understanding of the regularities of
the fermion mass matrix {19).

renormalizable operator SO(10) may be broken to SU(5) by a vev of 45x at ablarger‘scale

than SU(5) is broken. This means that the objects appearing in the
denominators in (4) can be < 45x > as well masses of order Mp.

A 163 10 165 3

where 10 is the multiplet containing the light doublets. This elegant
picture of the unification of the Yukawa couplings Ay, Ay and A, is
reminiscent of the unification of the three gauge couplings g1,g9; and g3
and is due to Ananthanarayan, Lazarides and Shafi [17, 18].

At least two operators of the form (4) are needed in order to give all quark
and leptons a mass, Two such operators, together with (3), allow the 3 x 3
) Yukawa matrices to have non-zero determinants. However the coefficients of
All the masses of the quarks and leptons of the lightest two generations, these three operators can all be made real by rotating the phases of the three
and the mixing angles of the KM matrix, are entirely due to non- 16; fields. Hence this case is excluded because the CP violation in the KM
_ renormalizable operators which give ppressed compared to matrix, J, vanishes. ‘

those from (3) by powers of Ma/Mp where Mp is the Planck scale. The most predictive theories of this sort therefore have thrée operators of
Thus the mass hierarchy between generations and the smallness of the type (4) in addition to the operator (3). Now only three of the four operator '
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coeflicients can be made real, so that there are ﬁve'independcnt GUT flavor
parameters. In addition, the quark and lepton masses depend on tan g, the
ratio of the two Higgs doublet vevs, so there are a total of six independent
flavor parameters. We choose to determine these from the six best measured
flavor parameters: m,,my,my,0;,m; and my. Hence the theory predicts
tan g and the seven standard model flavor parameters my, Vo, m,, ma, my, Vis
and J. We are currently performing a numerical search for all auccessful
theories of this type, and while the search has not yet been completed, we
already know that there is a unique favored class of models. In this talk I will
discuss only this favored class, which ie selected by the additional requirement
that

o there must be a natural understanding of why mcfm; & V3 < m,/my &
m,fm, for quantities renormalized at the GUT scale.

A lengthy but straightforward argument shows that the set of assumptions
marked above by bullets leads to Yukawa coupling matrices renormalized at
the GUT scale of the form:

0 3C 0
U=|iC 0 2,8
0 zB A
0 C 0
D=|C Ee¥ z,B
0 2B A
0 C 0
E=|c 3Ee* =B ®
0 zB A

where A occurs in {3), and B, C and Ee'# are proportional to the coefficients -

of the three non-renormalizable operators of type (4), which must be chosen

to contribute to the 23, 12, and 22 éntries of the matrices respectively. Notice

that while operator (3) yields Uss = Da3 = Ex3, a similar equality ia not found

9

~ obtained from

for the non-renormalizable. contributions. For these the 45 veva introduce
simple numerical Clebsch factors: Uy : Dy t Eja = 0:1: 3 and Ujp ¢
Dyy i Eyg = 1 : 27 : 27. The 22 entry is infact the one similarity of this
scheme with the Georgi-Jarlskog pattern. While we have proved that there

is a unique successful Clebsch ratio for the 12, 21, and 22 entries, the 23 and '

32 cases are quite different. Several Clebsch ratios are possible and we have
parameterized these discrete possibilities by z; and z{ in eq. (5). Infact the
low energy predictions depend on only two combinations of these Clebsch
parameters.

‘Ta demonstrate the power of these theories I will write down the analytic
formulas for the eight predictions. The predictions follow from relations of the
form of eq: (2). A technical problem is that the dynamical renormalization
group factors, 17,, depend not only on a,, but also on the third generation
Yukawa parameter A. Hence the determination of A, and of the 1,, is a non-
linear problem, which has no analytic solution. Of course A and 5, can be
numerically computed with good accuracy. Hence I will give the predictions
in terms of the 6 input parameters, A and 1, and one should simply remember
that A and 5, are understood to be computed numerically from the inputs.

Since the predictions are obtained from relations of the type of eq. (2)

with the GUT parameters Fg delermined from the inputs, the predictions .

take the form
predicted) _ [ group theory input ) dynamical ©
quantity /] \ GUT Clebsch / \ parameter / \ RG factor ’

The eight predictions are as follaws. The ratio of electroweak vevs tan g is

O cefi= f 2m, Vom, (P1)
where v = 247 GeV. The top quark mass parameter is
.my=tanfm,m (r2)

with g determined from eq. (P1). These two predictions follow from just
operator (3) for the heaviest generation and in these cases the GUT Clebsch

10
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factor is unity. The mixing between the two heaviest generations is given by

Vo = x\/%_f ) . (r3)

Thus the GUT relation V3 = \/_ﬁ‘: (14, 15, 20] is modified by a Clebsch factor
X, which we discuss below. Whenever m¢ appears on the right-hand side of a
prediction, it ia understood that the value given by (P2) is to be used. The
strange mass is given by ‘

o = —(l +6) m,. L] (I"li)

which is one of the Georgl-.]arlskog relations, except for a small correction
1 4 & which we discuss below. From the determinant of D and E one finds

= -(l +26) o (PB)

which is a small modification of the second Geotgn~Jarlskog relation. In this
prediction the renormalization factors cancel. The prediction for my/mg
followa from the detérminants of the Yukawa matrices, with m, substituted
from (P4):
( + )m“ ml
me mcmg
The last two predictions are for parameters of the KM matrix. Diagonal-
- ization of U and D yield a KM matrix of the form

(Pe)

-fecp — 3|326-“ R S c,aze"" 8983
V= —an-ae qocae -8 s m
5183 —c183 cac'®
where 83, 82 and ¢ are renormalization group invariants, and s3 = V3 has a
simple scaling behaviour. The CP violating phase ¢ is derived from, but not
identical to, the phase ¢’ of eq. (5). The angles s, and s, are given by

o= ;'7-"1 | @)

Rt

my

8 = ;: . (9)

and ¢ is determined from the Cabibbo angle via
sind, = |Vi,] = |81 + c182¢™) (10)

The two quantities of V which are predicted are

. v
g1 = _ (1)
and the amount of CP violation

J = 81835384 (12)

1t is very interesting to note that equations (7) - (12) also hold in the Georgi-
Jarlskog scheme [15). Indeed it has recently been shown that the successful
predictions (11) and (12) follow from very simple assumptions about the form
of U and D {21}, However, the class of theories under study here is much
more predictive and makes specific predictions for ‘/ﬁ—f and /2« which can
then be substituted in eq. (8) and (9). The prediction for \gia obtained
from (P5) while the prediction for ‘/E gives '

Vs 1 m2m!Am,
gy ——2 B _°
IV‘*I s = 21 m, m, (P1)

The final prediction is for the amount of CP violation in the KM matrix

obtained by using the above expressions for 8y,9; and s3 = Vi in eq. (12)

== eme oy

where ¢ is obtained from (10).

The class of models under discussion does not have a unique operator
contributing to the 23 and 32 entries of the Yukawa matrices. This is reflected
in (5) by the appearance of the Clebschs z; and z} which can assume a set

12



of discrete values. Nevertheless all models of this class lead to the above 8
predictions and the only dependence on these Clebschs is through the two

parameters

Ty — 24
= e 13
X= " : (13)

which only enters the relation for Vy and
' P z.2! — Jzazym,m, ~ (14)
' Tz, mm

The prediction (P3) irﬁpies that the only theoretically allowed values of x
which are experimentally acceptable are: x = 2/3,6/6 and 8/9. The case
x = 1 [14, 15, 20) is disfavored in the present theories which contain operator
~(3) because the resulting values for V5 are uncomfortably large. For all
models of interest § < 1 and hence the § dependence of m, in (P4) and of J
in (P8) is much less than the experimental uncertainties on these quantities,
and can be dropped. The more interesting effects of § are to be found in
(P5) and in (PG), where they give small modifications to the ratios m/my
m;d m./md. ’ -

" In summary our eight predictions for 8, my, Vs, m,, m, /ma, mufma, Vis/Via
and J are given in (P1) - (P8). They all agree with present experimental
'values, and the predictions are sufficiently accurate that future experimenta
will provide critical tests of these theories, The most important advances
which can test our scheme via predictions (P1) - (P8) are

o A measurement of m;.

o A high statistics study of semi-leptonic B meson decay to measure V.
In addition, better theoretical understanding of this matrix element is
required, which looka likely in view of recent developments in heavy
quark effective field theory.

o A measurement of the CP violating decays of neutral B mesons, which
will teat our predictions for the KM matrix.

13
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o A betier theoretical understanding of the values for m../nﬁ and m,/my
implied by experiment.

There are two obvious cbjections to the above scheme:

1) While there-are only six independent continuous flavor parameters,
there are millions of operatora of the form of (4), and therefore there are
extra discrete variables: the Clebscha. If Clebschs can be found to fit any
values of the standard model parameters, then there ia no significance to our
results. )

Infact we find the set of possible Clebschs to be very coarse-grained. As
Clebschs are varied from one set to the next set, the value of a predicted
quantity is found to jump by amounts typically much larger than its exper-
imental error bar, hence successful predictions are significant. A case where
this is not true is the prediction (P3) for V.. In this case the experimental
error bar is of order the interval generated by successive poesible values of
the Clebsch x. A modest decrease in the experimental error bar will simply
serve to choose one of the three presently allowed values of x. :

2) Our scheme is based on a large number (9) of asaﬁmptions, suggesting
that it is unlikely to be the one chosen by nature. .

My response to this is mixed. It may well be that the “zeroth order”
assumption is wrong and that this whole approach to fermion masses is in-

" correct. However, I have argued that this is the only known approach which

yields predictiona of any significance which can be compared to experiment,

Given that this approach is worth pursuing, 1 would argue that the set of
9 assumptions which we have made is the simplest that leads to models of -
such high predictivity. There are undoubtedly more complicated sets of as-

sumptions, and obviously there are less predictive theories, but without major
additions to the basic tools it is unlikely that there is a simpler, more pre-

dictive model. ‘The success of the predictions gives me optimism that nature
may have chosen the very simplest direction.

SO(10) grand unified theories offer the hope that neutrino masses can
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be predicted once a sufficlently simple flavor sector has been written down.
This is because both left and right-handed neutrinos fie in the same 16 di-
mensional spinor representation as the quarks and charged leptons. Actually,
it is the neutrino masa ratios and the leptonic mixing angles which can be
accurately determined. The overall neutrino mass scale involves knowing the
- acale of lepton number violation responsible for the right-handed neutrino
Majorana masses, and this cannot be determined from charged lepton or
_ quark masses, The implementation of the Georgi-Jarlskog ansatz in SO(10)
can yleld specific forms for the neutrino masa matrices [14]. Two very specific
forms predict all the mass ratios and mixing angles as ehown in the Table [22]:

1 ]

0, |(65£.3)107] .15+.04
Our 0814.008 | —.0274.003
0 | (5.74.6)10° ] (19 £0.2)107

my, [m,, 208 4- 42 1870 £ 370
my, [m,, [ (3.1£1.0)10° 38412
My ey 2.5eV 710 eV

Table 1

While extra assumptions, beyond those of Georgi and Jarlskog, are re-
quired to obtain these numbers, the very fact that such precise predictions
can be made is an important result in itself. The best hope for testing these
neutrino masses is offered by searches for v,v, oscillations by the CHORUS
and NOMAD experiments at CERN and by P803 at Fermilab [23]. The
SO(10) scheme which leads to predictions (P1) - (P8) cannot be directly
"used to predict quantities of the neutrino sector. Substantial modifications
are required, and these are presently being studied.
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Extraordinary effort is involved in measuring the 18 parameters of the
standard model. Why bother? Two answers are frequently given: -

o because they aze there and they are fundamental.

o By measuring them more accurately, via a variety of methods, one could
uncover inconsistencies in the standard mode! which would indicate new
physics.

While both of these arguments have considerable merit, a third reason is also
important:

o the accurate determination of the 18 parameters of the standard model
may lead us to a deeper understanding of particle physics: we may be
led to a predictive theory behind the standard model in the same way
that atomic spectra were crucial in pointing the way to the Bohr model
and to quantum mechanics.

T have argued that we have all the symmetry tools we need to construct

predictive theories of fermion masses. Should this direction be correct, does
this mean we have no need of a revolution in the underlying theory? Quite
the reverse: parameter reduction gets us far along the road, but it cannot
be the whole story. Eventually we do need a new framework to address such
questions as why the symmetries are what they are and why the frec param-
eters (there are always some) take the observed values. However, it may be
possible to go very far down the road guided by experiment, and unexpected

features of the underlying theory may only then become apparent.
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