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ABSTRACT Skin microbiome can be altered in patients with atopic dermatitis (AD). 
An understanding of the changes from healthy to atopic skin can help develop new 
targets for treatment by identifying microbial and molecular biomarkers. This study 
investigates the skin microbiome and metabolome of healthy adult subjects and 
lesion (ADL) and non-lesion (ADNL) of AD patients by 16S rRNA gene sequencing and 
mass spectrometry, respectively. Samples from AD patients showed alterations in the 
diversity and composition of the skin microbiome, with ADL skin having the greatest 
divergence. Staphylococcus species, especially S. aureus, were significantly increased in 
AD patients. Metabolomic profiles were also different between the groups. Dipeptide 
derivatives are more abundant in ADL, which may be related to skin inflammation. 
Co-occurrence network analysis of the microbiome and metabolomics data revealed 
higher co-occurrence of metabolites and bacteria in healthy ADNL compared to ADL. S. 
aureus co-occurred with dipeptide derivatives in ADL, while phytosphingosine-derived 
compounds showed co-occurrences with commensal bacteria, for example, Paracoc­
cus sp., Pseudomonas sp., Prevotella bivia, Lactobacillus iners, Anaerococcus sp., Micro­
coccus sp., Corynebacterium ureicelerivorans, Corynebacterium massiliense, Streptococcus 
thermophilus, and Roseomonas mucosa, in healthy and ADNL groups. Therefore, these 
findings provide valuable insights into how AD affects the human skin metabolome and 
microbiome.

IMPORTANCE This study provides valuable insight into changes in the skin microbiome 
and associated metabolomic profiles in an adult population with mild to moderate 
atopic dermatitis. It also identifies new therapeutic targets that may be useful for 
developing personalized treatments for individuals with atopic dermatitis based on their 
unique skin microbiome and metabolic profiles.

KEYWORDS microbiota, skin inflammation, metabolomics profiling, dysbiosis, 
pathogenesis

A s the largest organ of the human body, the skin plays a vital role in maintaining 
a stable internal environment and protecting the body from external factors. The 

skin’s outer layer is composed of lipids and proteins, as well as skin appendages like 
hair follicles and eccrine glands, which produce lipids, antimicrobial peptides, enzymes, 
and salts (1). When the skin is stressed, such as in dermatitis, changes may occur in the 
microbial community living on the skin and the molecules produced by skin cells.

It is well established that the skin hosts microbes that are essential in the systemic, 
pathophysiologic, and biochemical balance of the organism (2). These interactions 
are critical for health and commonly noticed in the human skin (3). Dermatitis and 
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other stress on the skin can change the molecules derived from the host microbes 
and disrupt the healthy balance between the host and skin microbiome. Also, inflam­
matory conditions significantly impact the skin barrier function, resulting in increased 
permeability and water loss (4). This disruption has the potential to modify the skin’s 
chemical composition by perturbing the levels of essential lipids, including ceramides, 
cholesterol, and free fatty acids, which play a critical role in maintaining the integrity of 
the barrier (4). Furthermore, inflammatory processes give rise to reactive oxygen species 
that can exert an influence on the chemical composition by inducing damage to cellular 
structures, lipids, and proteins (5). It should be noted that since inflammatory conditions 
disturb the microbiome, it can also lead to dysbiosis. Dysbiosis refers to an alteration in 
the composition of microbial communities, which can have significant implications for 
skin health and its function (6). For instance, conditions, such as atopic dermatitis, have 
been closely associated with a reduction in microbial diversity and an overgrowth of 
specific pathogenic bacteria, such as S. aureus (7, 8).

In recent years, advancements in mass spectrometry and 16S ribosomal ribonucleic 
acid (rRNA) gene amplicon-sequencing technologies have expanded our understanding 
of the microbes residing in the human skin (9–12), which also influence the molecules 
present on the skin (13). Consequently, mass spectrometry-based metabolomics and 16S 
rRNA sequencing have garnered increased attention in skin research (9–16). Metabolo­
mics focuses on the analysis of small molecules produced by cells, tissues, or organisms 
and how they respond to various conditions or stress (17–19). In contrast, 16S rRNA 
sequencing examines one or two small regions of the gene material from microorgan­
isms (20). This approach enables providing a comprehensive view of microbial commun­
ities in biological samples. Thus, the combination of these two approaches has proven 
valuable in identifying changes in the metabolic and microbiome profiles of various 
biological samples (21, 22). Therefore, in this study, we used metabolomics and 16S rRNA 
sequencing approaches to investigate the changes in the metabolome and microbiome 
of skin swabs of healthy patients and subjects with atopic dermatitis (Fig. 1). Further­
more, the two omics data were integrated by co-occurrence network analysis to explore 
the relationship of metabolites and bacteria in relation to atopic dermatitis.

RESULTS

Microbiome profiles by 16S rRNA sequencing

Atopic dermatitis significantly changed the skin microbial composition. The alpha 
diversity (Shannon diversity index) of the AD lesion was significantly lower than the AD 
nonlesion (P < 0.01) and healthy group (P = 0.01; Fig. 2a), while the diversity of AD 
nonlesion and healthy groups was not significantly different. The overall microbial 
profiles of each group at the species level are illustrated in Fig. 2b. The most abundant 
bacterial lineages observed included Cutibacterium acnes, Staphylococcus sp./epidermi­
dis/aureus, and Corynebacterium tuberculostearicum, accounting for 59% of all read 
counts study-wide. Beta diversity was assessed using weighted UniFrac distance to 
summarize the microbial composition between the groups. Principal coordinates analysis 
(PCoA) was used for qualitative clustering and permutational multivariate analysis of 
variance (PERMANOVA) for significance testing (Fig. 2c). Though there was some overlap 
in the bacterial profiles observed, the mean bacterial composition of AD lesion samples 
was significantly shifted from AD non-lesion (pairwiseADONIS; adj.P = 0.002, R2 = 0.19) 
and healthy samples (adj.P = 0.002, R2 = 0.11). Then, analysis of compositions of micro­
biomes with bias correction (ANCOM-BC) was used to identify six species-level clusters 
that significantly differed between groups (Table S2). Of these, two species (S. aureus and 
S. epidermidis) were found at significantly greater proportions in AD and adult subjects 
and lesion (ADNL) samples compared to healthy skin (Fig. 2d).
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Metabolomics molecular profile

Overall, the processed mass spectrometry data resulted in 9,541 MS1 features (i.e., a 
detected signal with m/z and retention time corresponding to a detected molecule). MS2 

spectra were collected for all MS1 features, which were represented in a molecular 
network (Fig. S1a) based on spectral similarity (23). Around 9.5% of the MS2 spectra were 
annotated by library matches against the reference Global Natural Product Social 
Molecular Networking (GNPS) public libraries, which is similar to the ~10% annotation 
rate reported for other human matrices (24). Some examples of annotated molecules are 
illustrated in Fig. S1b. It is important to note that the suspect library (25), an in silico 
tandem mass spectrometry (MS/MS) library utilized to propagate annotation on GNPS, 
accounted for around 80% of the annotations. We used the MS features to create 
pairwise partial least squares (PLS)-discriminant analysis models. Fig. S2a and b) show a 
remarkable separation between healthy vs ADNL, as well as between healthy vs adult 
subjects and lesion (ADL), suggesting that the metabolic profiles of both ADNL and ADL 
are distinct from the healthy group. For this, we employed a method called random 
forest classifier and trained it on the data set using cross-validation. By measuring the 
decrease in classification accuracy when each feature was randomly permuted, we 
filtered the 15 most informative features for distinguishing between the groups (Fig. 3a). 
Then, we annotated three out of the top five molecules that contribute to classifying 
different groups, such as aspartyl-phenylalanine, leucylproline, N-acetyl-methionine, and 
others more abundant in ADL samples. Five of the top 15 metabolites were not annota­
ted, and it can be attributed to limited MS/MS databases or even to novel molecules. To 
visualize the results, we created boxplots (Fig. 3b) to visualize the distribution of the 
normalized peak intensities of six features across the different groups (healthy, ADNL, 
and ADL). The significant differences in relative concentration for these molecules per 

FIG 1 Experimental design and analytical workflow. A total of 60 volunteers, selected based on the inclusion criteria, participated in this study. Consequently, 

we collected 180 skin swabs as follows: 60 swabs from 30 healthy subjects and 120 swabs from 30 subjects with atopic dermatitis (60 from nonlesioned areas 

and 60 from areas with lesions). Out of the total, 90 swabs were used for 16S rRNA gene-sequencing analysis, and 90 were used for metabolomics analysis 

using liquid chromatography-mass spectrometry. The metabolomics data were analyzed by molecular networking approach and library search. A multi-omic 

microbe-molecule co-occurrence analysis (microbial-molecule vectors [mmvec]) was used to combine both data sets.
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group were assessed by ANOVA analysis (P-value < 0.05). Aspartyl-phenylalanine, 
leucylproline, N-acetyl-methionine, phytosphingosine, and two related compounds were 
annotated at level 2 by GNPS libraries.

Microbiome and metabolomic integration

The integration of 16S rRNA sequencing results with metabolomics data using the 
mmvec (26) method enabled the prediction of co-occurrence patterns between 
molecules, microbial species, and sample groups. High co-occurrence probabilities 
indicate potential relationships, such as a microbe producing a specific molecule or a 
molecule inducing the proliferation of a specific microbe. The biplot in Fig. 4 visually 

FIG 2 The skin microbiome profiles of lesion and nonlesion of atopic dermatitis patients and healthy subjects characterized by 16S rRNA gene sequencing. 

(a) Shannon diversity of 16S rRNA sequencing, grouped and colored by the three sample groups: health, ADNL, and ADL. Boxplots show the median (designated 

by the horizontal line), first, and third quartiles of each of the three groups. Additionally, analysis of variance (ANOVA) and Tukey testing was conducted and 

showed samples to significantly differ between groups, as well as ADL arguing the most between the two other sample groups. (b) Relative abundance of the top 

species grouped and colored according to phyla. (c) PCoA plot based on weighted Unifrac distances of 16S microbiome data. Axes represent the summarization 

of variability in the data set; the greater the distance between points, the greater the dissimilarity. Sample grouping was found to explain significant variation 

in overall bacterial dissimilarity (PERMANOVA; P = 0.001, R2 = 0.13). Larger points indicate each group’s centroids, with black lines connecting each point with 

the corresponding centroid. (d) The arcsine-transformed relative abundance of S. aureus and S. epidermidis was grouped and colored by the sample groups. Both 

species were indicated to be differentially abundant per ANCOM-BC with pairwise testing by Tukey’s honestly significant difference test. Significance asterisks 

represent pairwise testing, where ns = P > 0.05; *0.01 < P < 0.05; **0.001 < P < 0.01; and ***P < .001.
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represents these microbe-molecule co-occurrences. We observed higher co-occurrence 
probabilities in healthy and ADNL groups compared to ADL, represented by more 
bacterial operational taxonomic units (OTUs) toward healthy and ADNL groups (Fig. 4a). 
In the ADL group, a correlation was observed with the presence of S. aureus, which co-
occurred with specific molecules, such as aspartyl-phenylalanine, leucylproline, and N-
acetyl-methionine, previously described in higher concentration in ADL. This suggests a 
potential association between S. aureus and the production or induction of these 
molecules in ADL. Furthermore, microbeMASST (27) was employed to make MS/MS 
single searches for the molecules detected in higher abundance in the ADL group (Fig. 
4b). microbeMASST is a database where users can search MS/MS spectra previously 
detected in experimental data from bacterial, fungal, or archaeal monoculture extracts 
(27). In that regard, aspartyl-phenylalanine, leucylproline, and N-acetyl-methionine were 
also detected in strains of S. aureus, and it is a piece of evidence that these molecules 
could be produced by S. aureus strains. Also, these findings are according to the findings 
observed in the diversity of the skin microbiome (Fig. 2d), which showed a high abun­
dance of S. aureus.

On the other hand, bacteria mainly present in healthy and ADNL groups, such as 
Paracoccus sp., Pseudomonas sp., Prevotella bivia, Lactobacillus iners, Anaerococcus sp., 
Micrococcus sp., Corynebacterium ureicelerivorans, Corynebacterium massiliense, Strepto­
coccus thermophilus, and Roseomonas mucosa (see Fig. S3) showed associations with 
phytosphingosine of m/z 318.3001 and two related compounds of m/z 344.3157 and m/z 
330.2996, respectively (Fig. S1b). The 30 most important OTUs , their taxonomy, and the 
molecules’ information were retrieved from the mmvec analysis (m/z, retention time, and 
spectral library annotations if available). For more details, mmvec per pair analyses can 
be found in Fig. S3. An alternative visualization of these co-occurrences is shown in Fig. 
S4 to S6, in which these top 30 OTUs with co-occurrence probabilities above 5.0 are 

FIG 3 Mapping the main molecules in healthy and atopic dermatitis skin samples. (a) The barplot contains the top 15 MS features that are differentiated from 

three groups: healthy, ADNL, and ADL. They were classified by random forest analysis. The MS features were ranked by mean decrease accuracy. The features 

with annotations that stood out with higher concentration in ADL and healthy groups (in bold) were selected to build boxplots. (b) The y-axis represents the 

normalized peak intensity per MS feature, and the x-axis represents the boxplots and their distribution of values for a specific MS feature by sample group. The P 

values < 0.05 indicate significant differences between groups. Aspartyl-phenylalanine (m/z 281.1132), leucylproline (m/z 229.1545), and N-acetyl-methionine (m/z 

192.0691) were detected in the unhealthy (ADL) group. In contrast, phytosphingosine (m/z 318.3001) and two related compounds (m/z 344.3157 and 330.2996) 

were detected in higher concentrations in the healthy group.
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depicted (Tables S3 to S5). Therefore, these results provide valuable insights into the co-
occurrence patterns between microbiota and metabolites in different groups, shedding 
light on potential microbial–metabolite interactions and their relevance in the context of 
skin health.

DISCUSSION

In this study, to understand the underlying impacts of atopic dermatitis on human 
skin, we investigated the microbiome and metabolomic profiles of skin swab samples 
from healthy adult subjects and patients with mild to moderate atopic dermatitis using 
rRNA sequencing mass spectrometry-based metabolomics. Our results demonstrated 
significant alterations in the skin microbiome, in some comparisons between healthy 

FIG 4 Microbe-molecule co-occurrence biplot. (a) mmvec analysis included samples from the healthy, atopic dermatitis without lesion, and atopic dermatitis 

with lesion groups (90 samples). Spheres in the biplot represent the molecules, while the arrows represent the microbes. Spheres were colored based on 

which group each molecule was most abundant in, while microbes were colored based on which species they belonged to. Small angles between arrows 

indicate microbes co-occurring with each other. Similarly, closer spheres indicate molecules co-occurring. Arrows pointing toward a group of molecules indicate 

microbe-molecule co-occurrence. This biplot shows the 30 most important OTUs (higher vector magnitude). (b) microbeMASST search outputs confirm that 

monocultures of S. aureus and S. sp. could produce molecules, such as aspartyl-phenylalanine, leucylproline, and N-acetyl-methionine, which were detected 

in higher abundance in ADL (retrieved from random forest analysis). Pie charts display the proportion of MS/MS matches found in the deposited reference 

database. Green indicates a match with the monocultures, while pink represents a nonmatch.
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and AD patients, or between ADL samples vs nonlesion and healthy skin. For example, 
diversity and overall composition were significantly altered in AD lesions but were not 
apparently different between healthy and lesion-adjacent (ADNL) skin (Fig. 2a through 
c). The reduced diversity may indicate a loss of beneficial microbial species and a shift 
toward a community state dominated by potentially pathogenic microbiota (28, 29). 
The reduced diversity and shifted composition together support that dysbiosis occurs 
in atopic dermatitis lesions (11, 28); however, the changes between healthy skin and 
lesion-adjacent skin measurements are relatively modest here.

Considering changes that were significant overall between healthy and dermatitis 
individuals, the greatest difference observed was due to increases in S. aureus and S. 
epidermidis in AD patients (Fig. 2d), regardless of whether the sample was taken from a 
lesion. The current findings in an adult population are consistent with previous studies, 
primarily in pediatric patients, that have reported the overgrowth of Staphylococcus 
species in atopic dermatitis lesions, suggesting their potential role in disease pathogene­
sis and exacerbation, particularly dominated by S. aureus strains (11, 28, 30). S. epidermi­
dis is a well-known beneficial bacterium on the skin surface. It produces antimicrobial 
peptides to inhibit pathogenic bacteria, e.g., S. aureus (31), produces ceramides to 
maintain the skin barrier function (32), and regulates host immunity (33). However, we 
detected that S. epidermidis is also significantly increased in AD lesions. The increase in 
S. epidermidis could be due to a compensatory or antagonistic mechanism to control S. 
aureus (7, 31–33). The microbial profiling analyses indicate that active lesions in atopic 
dermatitis are associated with a distinct microbiome composition, and key species found 
in lesions are also more abundant in the adjacent skin, highlighting the importance of 
the skin microbiota in the pathogenesis of the disease.

Additionally, the skin metabolomic profiles were also different between the groups. 
The top 15 features most important for the classification were detected in high relative 
abundance in ADL samples. Among these molecules, three matches against GNPS 
spectral libraries were retrieved, i.e., aspartyl-phenylalanine, leucylproline, and N-acetyl-
methionine. Aspartyl-phenylalanine is a dipeptide metabolic byproduct of aspartame 
(N-L-α-aspartyl-L-phenylalanine 1-methyl ester). However, there is no clear connection 
between consumption of aspartame and atopic dermatitis. In the same way, insights into 
leucylproline are also not established yet. A suitable hypothesis is that they could be 
coming from the degradation of proteins in the human skin and could be acting as the 
first line of defense against infections (34, 35). To gain more information about where 
these molecules are coming from, we searched its MS2 spectra in microbeMASST, which 
revealed that they could be produced by cell culture of S. aureus and Staphylococcus 
sp. These findings align with the higher abundance of S. aureus observed in atopic 
dermatitis patients and suggest that aspartyl-phenylalanine, leucylproline, and N-acetyl-
methionine may originate from the skin microbiome. Thus, it indicates the influence 
of the skin microbiome on the metabolome when submitted to the status of atopic 
dermatitis.

Co-occurrence analysis between metabolomics and microbial sequencing data 
provided insights into possible interactions between the microbiome and human skin 
molecules. The decrease in crosstalk between the microbiome and metabolites in 
the ADL group observed in our study provides further evidence of dysbiosis in skin 
microbiome in subjects with ADL, highlighting the importance of microbial-metabolite 
interactions in skin health. Most importantly, we identified specific molecules exclusively 
present in the normal skin or AD lesion samples suggesting their potential roles in skin 
health. In AD lesions, more microbial-derived metabolites, e.g., dipeptide derivatives, 
were detected, which may be related to skin inflammation, indicating the contribution 
of skin microbiome, especially S. aureus, to the pathogenesis of atopic diseases. While in 
the normal skin more host-derived metabolites were detected to correlate with the skin 
microbiome, such as phytosphingosine (PHS), and two related compounds, phytosphin­
gosine is a natural lipid present in the intercellular spaces of the stratum corneum 
of the skin. It is one of the fundamental components of maintaining the skin barrier 
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function (36). PHS has also been described as with anti-microbial and inflammatory 
activity (37, 38). The association between PHS and normal skin microbiome indicates 
that the crosstalk of the bacteria and molecules contributes to the maintenance of 
skin homeostasis and protects against atopic dermatitis progression. These identified 
molecules and/or bacteria could be used as new therapeutic targets for personalized 
treatment for atopic dermatitis. However, the correlation between the microbiome and 
metabolomics identified in this study is based on computational prediction (mmvec). 
More research is needed to elucidate the exact functions and mechanisms of these 
molecules in the context of skin health and AD.

Overall, our study provides valuable insight into changes in the skin microbiome 
and associated metabolomic profiles. It also identifies new therapeutic targets that may 
be useful for developing personalized treatments for individuals with atopic dermatitis 
based on their unique skin microbiome and metabolic profiles.

MATERIALS AND METHODS

Chemicals

Liquid chromatography-mass spectrometry (LC-MS)-grade acetonitrile (ACN) and water 
with 0.1% formic acid used for LC-MS analyses were acquired from Thermo Fisher 
Scientific (San Diego, CA, USA). For the extraction process, ethanol and water were 
supplied by Thermo Fisher Scientific (San Diego, CA, USA), all of high-performance liquid 
chromatography grade. Analytical-grade chemicals were purchased from Sigma-Aldrich 
(Steinheim, Germany).

Study design and sample collection

The clinical study was conducted by ProDERM (Schenefeld, Germany). An independent 
ethics committee approved the study. All the subjects were above the age of 18 years 
and signed informed consent forms. The patients with mild-to-moderate AD (N = 30) in 
the bend of the arm and non-atopic healthy subjects (N = 30) were recruited. Inclusion 
criteria for AD patients included self-reported AD diagnosis with either two active lesions 
of a size of at least 5 cm in diameter and a local scoring atopic dermatitis (SCORAD) index 
(39–41) of at least 4 in each bend of the arms, or one lesion of a size sufficient to take two 
swabs (each 5 cm in diameter at least) and a local SCORAD index of at least 4 in the bend 
of the arms on sample collection day. Exclusion criteria for all subjects included systemic 
therapy with antibiotics within the last 2 weeks before the start of the study and/or 
throughout the entire course of the study, systemic therapy with immuno-suppressive 
drugs (e.g., corticosteroids) and/or antihistamines (e.g., antiallergics) within the last 30 
days before the start of the study; supporting therapy against atopic dermatitis (UV 
therapy, probiotic homeopathy, etc.) within the last 2 weeks before the start of the study; 
antiseptic or antibacterial wash or topical products within 4 weeks before the start of the 
study; and topical corticosteroids at the test area within the last 2 weeks before the start 
of the study. The subjects were not allowed to use any detergents or leave cosmetics on 
the bend of arms at least 3 days before sample collection.

On the sample collection day, the dermatologist clarified and discussed the AD 
symptoms with the patients, and then the severity of AD was evaluated based on 
the local SCORAD index specifically in the bend of the arms, not the whole area of 
the body. Six parameters, including erythema, edema and papules, oozing and crusts, 
excoriation, lichenification, and xerosis of AD patients, were evaluated by the dermatolo­
gist according to the following scale: 0 = absent, 1 = slight, 2 = moderate, 3 = strong. 
The local SCORAD per test area was the sum of all scores for all six abovementioned 
parameters (minimum = 0, maximum = 18). The subjects with the sum of score of at least 
4 in either one of the bends of the arms were recruited in this study. The local SCORAD 
information of the bend of the arms of each AD patient is listed in Table S1.

Two skin swab samples were collected from the lesion and non-lesion (5 cm away 
from the lesion) sites in AD patients by a trained physician. Two swabs were also 
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collected in the bend of the arm in healthy subjects. One swab was used for 16S rRNA 
gene sequencing analysis; another one was used for metabolomics analysis.

For skin microbiome analysis, an area of 5 cm in diameter was sampled by swabbing 
the skin for 30 s with a sterile flock swab, which was dipped into an aliquot of phosphate­
buffered saline (PBS). The lateral edge of it and the swab were rubbed across the entire 
defined area while being rotated between the thumb and forefinger for 30 s. More 
specifically, the rotating swab was rubbed back and forth in a crosswise manner in the 
defined area in the same fashion for each subject to maintain consistency. After 30 s, 
the head of each swab was placed into a sterile microcentrifuge tube and aseptically 
cut from the breakpoint of the handle before closing the tube lid. All the samples were 
frozen at −80°C until further analysis. A blank swab, which was dipped in PBS without 
taking any skin samples, was stored in a sterile microcentrifuge tube for negative control.

For metabolomics analysis, an area of 5 cm in diameter was sampled with a pre-
cleaned Puritan cotton swab, which was dipped into an aliquot of ethanol-water solvent 
(1:1 vol/vol) mix shortly before sampling. The swabbing procedure was the same as the 
one for microbiome sampling. All the samples were frozen at −80°C until further analysis.

16S rRNA gene sequencing and data analysis

The v1-3 region of 16S rRNA gene sequencing was conducted by RTL Genomics 
(Lubbock, TX, USA) as previously described (42). The v1-3 hypervariable regions of the 
16S rRNA genes were sequenced on the MiSeq platform (Illumina, Inc., San Diego, 
CA, USA). DNA was extracted via KingFisher FLEX instrument and using Zymo ZR-96 
magbead kit following the manufacturer’s instructions. The extraction protocol was 
modified to include a mechanical lysis step with a Qiagen TissueLyser.

Samples were amplified for sequencing in a two-step process. The forward primer was 
constructed (5′−3′) with the forward Illumina overhang adapter (TCGTCGGCAGCGTCAGA
TGTGTATAAGAGACAG) added to the 28F primer (5′ GAG TTT GAT CNT GGC TCA G 3′). The 
reverse primer was constructed (5′−3′) with the reverse Illumina overhang adapter (GTC
TCGTGGGCTCGGAGATGTGTATAAGAGACAG) added to the 519R primer (5′ GTN TTA CNG 
CGG CKG CTG 3′). Amplifications were performed in 25-µL reactions with Qiagen HotStar 
Taq master mix (Qiagen Inc., Valencia, CA, USA), 1 µL of each 5 µM primer, and 1 µL of 
template. Reactions were performed on ABI Veriti thermocyclers (Applied Biosystems, 
Carlsbad, CA, USA) under the following thermal profile: 95°C for 5 min, then 10 cycles of 
94°C for 30 s, 50°C for 90 s (+0.5°C per cycle), 72°C for 1 min, followed by 25 cycles of 94°C 
for 30 s, 54°C for 90 s, 72°C for 1 min, and finally, one cycle of 72°C for 10 min and 4°C 
hold.

Products from the first­stage amplification were added to a second PCR based on 
qualitatively determined concentrations. Primers for the second PCR were designed 
based on the Illumina Nextera PCR primers as follows: Forward, AATGATACGGCGACC
ACCGAGATCTACAC[i5index]TCGTCGGCAGCGTC, and Reverse, CAAGCAGAAGACGGCATAC
GAGAT[i7index]GTCTCGTGGGCTCGG. The second-stage amplification was run with the 
following thermal profile: 95°C for 5 min, then 10 cycles of 94°C for 30 s, 54°C for 40 s, 
72°C for 1 min, followed by one cycle of 72°C for 10 min and 4°C hold.

Amplification products were visualized with eGels (Life Technologies). Products were 
then pooled equimolar by band intensity, and each pool was size selected in two rounds 
using SPRIselect beads (BeckmanCoulter) in a 0.75 ratio for both rounds. Size-selected 
pools were then quantified using Qubit 4 fluorometer (Life Technologies) and loaded 
on an Illumina MiSeq 2 × 300 flow cell at 10 pM for sequencing. Additionally, negative 
controls were introduced starting from sample collection (swabs dipped in PBS at time 
of collection), extraction, and from PCR preparation, which were otherwise treated 
identically to samples and sequenced alongside study samples.

Bioinformatic processing and quality filtering generally followed previous work (43). 
Denoising of sequence reads chimera detection and stitching of 2 × 300 paired reads 
were conducted using Usearch7 (44), UCHIME (45), and PEAR (46), respectively. Quality­
filtered and assembled reads were clustered into OTUs at 97% sequence similarity 
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threshold using the UPARSE algorithm. OTU assignment was then completed using 
USEARCH global search as described by Bokulich (47) compared to the RTL Genomics 
in-house taxonomic reference database, which is adapted from the National Center 
for Biotechnology Information reference database with additional curation. Multiple 
sequence alignment and phylogenetic tree estimation of representative OTU sequences 
were performed for downstream analysis using MUSCLE (48) and FastTree2 (49).

Statistical analysis was conducted using an R programming environment. Prior to 
analysis, OTU-level filtering was conducted to exclude OTUs classified as “no hits” or 
Ralstonia (a common reagent contaminant). The negative controls garnered very few 
reads, ranging from 0 to 20 reads across 13 negative controls, and contamination was 
considered negligible. A read count normalization to 9,600 reads was also implemented 
using scaling with ranked subsampling (50). Bacterial alpha and beta diversities were 
summarized by Shannon diversity and weighted UniFrac dissimilarity (51). The alpha 
and beta diversity differences between ADA lesion, AD nonlesion, and the healthy 
group were analyzed using ANOVA and PERMANOVA, as implemented in the R func­
tion ADONIS. Microshades were used for the visualization of microbial abundance (52). 
PCoA was used to visualize compositional similarity among microbiome communities. To 
evaluate differences in the relative abundances of taxa between cohorts, the ANCOM-BC 
(53) procedure was carried out on taxa present in at least 20% of the samples, using the 
arguments struc zero = T and neg lb = T. Holm’s method was used to adjust P values 
and account for multiple test correction. P < 0.05 is considered statistically significant. A 
focused analysis of S. aureus and S. epidermidis group differences was conducted on both 
the relative abundance and arcsine-transformed relative abundance.

Sample preparation, metabolomics, and data processing

The cotton buds of all samples (30 healthy, 30 ADNL, and 30 ADL—a total of 90 samples) 
were added into a 96-deep well plate (2 mL). Using a multichannel pipette, aliquots of 
500 µL of ethanol/H2O (1:1) were added to each well for extraction, containing 1 mM of 
sulfadimethoxine (internal standard to extraction). The plates were sonicated for 5 min 
in an ultrasound bath, Branson 2800 (Danbury, CT, USA), vortexed (~10 s), and then, 
the swabs were removed with tweezers, and the extracts were dried by speed vacuum. 
Finally, they were stored at −80°C until resuspension.

The samples were resuspended with 200 µL of ACN/H2O (1:1) containing 1 mM 
of sulfachloropyridazine (internal standard to metabolomic analyses), and then, the 
plates were sonicated for 5 min in an ultrasound bath, Branson 2800 (Danbury, 
CT, USA), vortexed (~10 s), and centrifuged for 20 min at 2,000 rpm and 4°C. 
Thus, using a multichannel pipette, aliquots of 150 µL of each sample were trans­
ferred to a 200-µL ThermoScientific 96-well plate for LC-MS/MS analysis. A mix of 
ACN:H2O (1:1) containing 1 mM of sulfachloropyridazine was used as a blank, and a 
mix of sulfamethazine (C12H14N4O2S), sulfamethizole (C9H10N4O2S2), sulfachloropyrida­
zine (C10H9ClN4O2S), sulfadimethoxine (C12H14N4O4S), amitriptyline (C20H23N·HCl), and 
coumarin-314 (C18H19NO4) was used as quality control (QC).

The metabolomic analyses were performed in a Vanquish UHPLC system coupled 
to a Q-Exactive orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 
USA), controlled by Thermo SII for Xcalibur software (Thermo Fisher Scientific, Waltham, 
MA, USA). The chromatographic analysis was carried out on a Kinetex C18 column (50 
× 2.1-mm, 1.7-µm particle size, 100-A pore size, Phenomenex, Torrance, CA, USA). A 
high-pressure binary system was used for gradient elution. The column and autosam­
pler were kept at 40°C, and 25°C, respectively. The flow rate was 0.5 mL/min, and the 
elution was carried out using ultra-pure water (solvent A) and acetonitrile (solvent B), 
both acidified with 0.1% of formic acid (FA). The gradient method was set as follows: 
0–0.5 min, 5% B; 0.5–8.0 min, 5%–100% B; 8.0–11.0 min, 100% B; 11.0–12.0 min, 100%-5% 
B; and finally, 12.0–14.0 min 5% B to stabilize the system before the subsequent analysis.

For mass spectrometry analyses, data-dependent acquisition (DDA) was used in an 
m/z range from 80 to 2,000 Da with an electrospray source operating in the positive 
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ionization mode. Before data acquisition, sodium formate solution (Thermo Fisher 
Scientific San Diego, CA, USA) was used for external calibration with an error rate of 
less than 0.5 ppm. The spray voltage was set to 3.5 kV, sheath N2 gas pressure was set to 
35 psi, and auxiliary N2 gas pressure was set to 10 psi. The ionization source was kept at 
270°C, a 60 V S-lens RF level was applied, and the auxiliary gas heater was kept at 440°C. 
Full-scan MS1 was performed at 1.0 × 106 with a resolution of 35,000 and a maximum ion 
injection of 100 ms. MS2 experiments were performed with a resolution of 17,500 with a 
max IT time of 60 ms, and topK6 was used for the six most abundant precursor ions per 
MS1. The MS2 precursor isolation window was set to 2 Da with an offset of 0.5 Da. The 
normalized collision energy was set to a ramp from 20 to 40 eV, and the exclusion (MS1 

and MS2) for unassigned ion charge states was set to 5 S-Lens, as well as isotope peaks.
The LC-MS/MS data were converted from RAW standard data format (Thermo Fisher 

Scientific, Waltham, MA. USA) to mzML format using MSConvert 3.0.2 (54). Thereafter, 
the data were uploaded to the MassIVE repository (data set MSV000090788) (55). The 
LC-MS/MS data were processed using MZmine 3.1.0 (56). The mass detection of MS1 and 
MS2 levels was performed using a signal noise of 1.0 × 105 and 5.0 × 103, respectively. 
The ADAP chromatogram builder was used to build the chromatogram, and a minimum 
group size of scans was set to 3, the minimum intensity of the group to 1.0 × 105, and 
the highest to 3.0 × 105 with an m/z tolerance of 10 ppm. The ADAP resolver module 
(wavelets) was applied to chromatographic deconvolution. Then, intensity window S/N 
was used as an S/N estimator with a signal-to-noise ratio set to 10, a minimum feature 
height of 1.0 × 104, a coefficient of peak area of 1.70, a peak duration from 0.05 to 
2.0 min, and an RT wavelet range used to build a matrix of coefficients from 0.05 to 
0.10 min. The isotope peak grouper module was applied to detect the isotopes with an 
m/z and RT tolerance of 10.0 ppm, and 0.2 min (charge 1 was used as standard) for the 
most intense isotope. To remove the duplicate features and aligner, the same m/z and 
RT tolerances were used, and the weight for m/z and RT was set to 3:1, respectively. The 
resulting peak list was then filtered to remove features from the blanks, and features 
with isotope patterns and MS2 spectra associated were kept. Thus, a filtered peak list 
containing 9,541 features was exported as a .mgf file and a .csv file containing feature 
information, which was used for downstream statistical analysis.

The outputs containing MS features were then used in the Feature-Based Molec­
ular Networking workflow (23) on the GNPS platform (https://gnps.ucsd.edu/). The 
job can be found at the following link (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=a36305db40414b6ea9c5b9a5de380bea). The parameters used were set as follows: 
the tolerances for the precursor ion mass (MS1) and the MS2 fragment ion were set to 
0.02 and 0.02 Da, respectively. A cosine of 0.6 and a minimum of 4 MS2 matches were 
applied to create the molecular network. The maximum number of neighbor nodes for 
each node was set to 10 for most similar nodes, and the maximum number of molecular 
families was set at 100. All spectra contained in the molecular networks were compared 
to the reference spectra available in the GNPS spectral libraries (57), and a cosine of 0.6 
and a minimum of 3 MS2 matches were applied. The in silico suspect library (25) was also 
used. The molecular network file was visualized using Cytoscape 3.9.1 (58).

Statistical analyses were performed in Python using Jupyter Notebook. Random 
forest was performed using the Random Forest Classifier Scikit-Learn package. The 
Kruskal–Wallis test followed by the Wilcoxon signed-rank test were used to assess 
the differences in samples. Multivariate analysis was performed using the “pan­
das,” “sklearn.decomposition.PCA,” and “sklearn.cross_decomposition.PLSRegression” 
packages. The methods detailed are available in the supplemental material.

Microbiome and metabolomic correlation analysis

Co-occurrence probabilities between microbes and molecules were calculated using the 
mmvec tool (26). This analysis was performed using mmvec 1.0.4 (https://github.com/
biocore/mmvec) as a Qiime2 plugin (59). As inputs for this analysis, a relative abundance 
matrix for the sequencing data should be provided along with a feature abundance 
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table for the ion features. mmvec then uses a neural networking approach to calculate 
the conditional probabilities of observing molecules based on the abundance of each 
microbe. In this study, four mmvec analyses were conducted: (i) 90 samples compris­
ing the three groups (healthy, atopic dermatitis with the lesion, and atopic dermatitis 
without lesion); ii) 60 samples comprising the healthy and atopic dermatitis without 
lesion groups; (iii) 60 samples comprising the healthy and atopic dermatitis with lesion 
groups; and (iv) 60 samples comprising atopic dermatitis with and without the lesion 
groups. For the analyses conducted with 60 samples, the microbial and molecule 
features that were only detected in the excluded group were removed. The mmvec 
parameters were as follows: –p-learning-rate 1e-3, –p-epochs 300. All other parameters 
for the analyses were set as the default values. Emperor (20) was used to inspect the 
feature–feature biplots visually. The spheres were colored based on which group the 
molecules were most abundant, and the arrows indicate the 30 most important OTUs 
retrieved from the analyses (“importance” was calculated for each feature based on the 
magnitude of the vector using Euclidean distance from the origin). Tables of co-occur­
rence values for each microbe with each molecule were also generated for all four 
analyses. Emperor (60) was used to inspect the feature–feature biplots visually. These 
co-occurrence probabilities were also visualized as networks using Cytoscape 3.9.1 (58).
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