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Abstract: We argue that an effective field theory of local fluid elements captures the
constraints on hydrodynamic transport stemming from the presence of quantum anoma-
lies in the underlying microscopic theory. Focussing on global current anomalies for an
arbitrary flavour group, we derive the anomalous constitutive relations in arbitrary even di-
mensions. We demonstrate that our results agree with the constraints on anomaly governed
transport derived hitherto using a local version of the second law of thermodynamics. The
construction crucially uses the anomaly inflow mechanism and involves a novel thermofield
double construction. In particular, we show that the anomalous Ward identities necessitate
non-trivial interaction between the two parts of the Schwinger-Keldysh contour.
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1 Introduction & Summary

The past few years have seen an increasing and successful effort in furthering our under-
standing of hydrodynamics, which is perhaps one of the simplest effective field theories.
The reasons for this are many-fold: theoretical results from the study of holographic fluids
via the fluid/gravity correspondence [1], experimental results for strongly coupled systems
in the hydrodynamic limit such as the quark-gluon plasma or cold atoms at unitarity, cf.,
[2] and developments in condensed matter theory have driven much of the recent progress.
Spurred by these and other developments we have now come to appreciate that the mi-
croscopic details of the underlying quantum dynamics leave behind indelible signatures in
hydrodynamic transport.

The essential point, which forms the main focus of this investigation, is that quantum
anomalies, which conventionally are discussed in the context of non-thermal observables,
influence equilibrium thermodynamics and near-equilibrium hydrodynamical behaviour in
an essential manner. The effects of pure flavour anomalies were recently first noticed in
holographic computations of charged fluids using the fluid/gravity correspondence [3, 4],
where their origins could be traced to gauge Chern-Simons terms in the dual supergravity
theory.1 Whilst surprising at first sight, it was quickly realized in [9] that consistency with a
local version of the second law of thermodynamics in near-equilibrium situations necessitates
that a part of the hydrodynamical transport is controlled directly by the quantum flavour
anomaly. It is these terms which we refer to collectively as anomalous transport (we will
be more specific below).

Following these early developments, much effort has been expended in understanding
how anomalies influence near-equilibrium thermal physics. First steps were taken in the
derivation of Kubo formulae [10, 11] to explain the anomaly controlled phenomena of chiral
magnetic and chiral vorticial conductivities in four dimensions, whence it was realized that
not only global flavour current anomalies but also mixed flavour-Lorentz anomalies leave
an imprint on fluid transport in flat spacetime [12]. Together with independent analysis of
the macroscopic form of the second law demanding the existence of an entropy current with

1There are earlier discussions of these terms in [5, 6]. A clear account of the historical development of
anomalous transport can be found in the recent review [7]. It should further be noted that even in the
gauge/gravity context, there are signals in the holographic analysis of [8] which point to anomalous effects
in hydrodynamics.
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non-negative divergence generalizing [9], it was shown in [13, 14] that, in any even spacetime
dimension, the part of hydrodynamic transport controlled by flavour anomalies could be
completely determined assuming that such transport did not lead to entropy production.2

In addition accumulation of evidence from holography [14–16] and analysis of free field
theories [17] lead to a near-complete picture of anomalous transport induced by flavour
anomalies (see also [18, 19] for related discussions and [20, 21] for general symmetry based
group-theoretic approach).

The current state of the art uses crucially the fact that anomalous transport can be
determined by equilibrium dynamics by virtue of their being non-dissipative. The logic
exploited in [22, 23] is that equilibrium configurations of a fluid in the presence of arbitrary
time-independent spatially varying sources (which thereby allow non-trivial stationary fluid
flows) can be equivalently described by a partition function of the sources. By writing down
the most general partition function compatible with the symmetries in a systematic low
energy gradient expansion, together with introduction of parity-odd terms to account for
anomalies, it was shown in [22] that all known effects of global anomalies in hydrodynamics
could be captured explicitly. Furthermore, this was shown to be explicitly in agreement
with the general entropy analysis of [13] in [24] ([25, 26] use this formalism to explain
anomalous transport in two dimensions with the latter focusing on the Lorentz anomaly;
cf., also [27, 28]). The authors of [29] argued that this framework needs to be extended
further before contribution from gravitational anomalies can be fully understood – the
key point which they exploit is the fact that in equilibrium, characterized by a thermal
partition function by considering the theory on a Euclidean time circle, one should be
free to consider other cycles for thermal reduction, leading to further global constraints,
which fix the contribution from the gravitational anomaly. These results have been recently
extended in [30–32].

While these results are impressive, they have also served to focus our attention on the
aspects of hydrodynamics that we don’t understand so well, viz., how does one think about
this effective field theory in a standard effective action formulation? As conventionally
formulated, hydrodynamics is the universal low energy effective theory of any interacting
quantum system, valid when the length scales of departure from equilibrium are large in
units of the mean free path. We use thermodynamic variables such as local temperature
and chemical potential together with the (normalized) fluid velocity field to characterize the
energy-momentum tensor Tµν and charge current Jµ. The constitutive relations express the
stress-energy tensor and the conserved currents in terms of fluid dynamical variables, while
the conservation equations (supplemented with sources if necessary) serve as equations of
motion.

Note that this description does not correspond to the standard formulation of effec-
tive field theories. There is no low energy Lagrangian, and the stress-energy tensor and
conserved currents are not constructed from more fundamental degrees of freedom of a
true effective field theory (the equilibrium partition functions of [22, 23] are functionals of

2This hypothesis of anomalous transport being non-dissipative is independently supported by the fact
that the Kubo formulae determine these in terms of zero frequency correlators, supporting the notion that
such processes are time-invariant and hence non-dissipative.
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background sources). It is therefore interesting to examine the extent to which an effec-
tive field theory of hydrodynamics can be formulated in terms of appropriate degrees of
freedom. The naive argument against effective actions is the fact that hydrodynamics is
a dissipative theory. However, this does not preclude the existence of an effective action
for non-dissipative fluids. Moreover, in light of the above discussion, one should expect to
capture effects of quantum anomalies in such a framework.

There is indeed a natural framework for discussing the dynamics of fluids using intrinsic
variables which has been used over the years to describe ideal fluid dynamics [33–39]. This
framework was re-examined recently in [40] who suggested that it could be useful beyond
the ideal fluid level; by studying the corrections to the ideal fluid effective action [41] argued
that the transport of non-dissipative neutral fluids could be systematically understood in
this framework. Moreover, this effective action approach has proven useful to understand
aspects of anomalous transport in two dimensions [42], parity-odd Hall viscosity in three
dimensions [43, 44] and more recently even been argued to be useful in understanding
aspects of dissipation [45–47].

The basic idea [40, 41] is to use as fields the local fluid element variable φI ; we have
d − 1 degrees of freedom in these fields characterizing the dynamics of a d-dimensional
hydrodynamic system. Since these fluid element labels are arbitrary we need to allow
arbitrary diffeomorphisms in the configuration space of φI (which is assumed to admit a
manifold structure and calledMφ), so long as they preserve the total volume of the fluid.
As a result we have a theory which enjoys a large symmetry under the group of volume-
preserving diffeomorphisms Sdiff(Mφ) of the configuration space Mφ. As shown in the
works above, from these coarse-grained building blocks, a complete set of fluid dynamical
variables can be constructed and one can systematically derive the constitutive relations for
the conserved currents. By virtue of the Sdiff(Mφ) symmetry, it transpires that the theory
admits an exactly conserved vector field, which is identified with the canonical entropy
current of fluid dynamics. This current is conserved off-shell, and as a result the class
of fluids one naturally describes in this framework are non-dissipative. Generalizations to
incorporate conserved charges are straightforward: we introduce fields for the local charge
label and enlarge the symmetry to allow local reshuffling of the charges.

The effective action approach has hitherto been used to study neutral fluids [41] and
charged parity-odd fluids in 2 + 1 dimensions [44]. From these analyses one learns that the
family of non-dissipative fluids derivable from an effective action is restricted when com-
pared to those which one would obtain by writing down constitutive relations for conserved
charges together with demanding the existence of a conserved entropy current [48]. The
latter construction is a variant of conventional approaches to hydrodynamics, generalizing
earlier analyses of [49–52] (to restrict oneself to non-dissipative fluids). While the statement
seems natural, in that the existence of an effective action is a more stringent condition than
simply the lack of entropy production, the precise details of the effective actions described
in the aforementioned references leave something to be desired. Before rushing to conclude
that hydrodynamic constitutive relations obey constraints beyond the local form of the sec-
ond law of thermodynamics (for generic fluids), we should ensure that the effective action
approach can be reliably applied to obtain sensible results.
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The natural context to test the effective action formalism is to ascertain whether the
formalism can tackle to derive the hydrodynamic transport driven by anomalies. The first
step in this direction was taken in [42] who show that the effective action captures the
physics of anomalous fluid transport in two dimensions. However, they already noted that
there are some puzzles extending their analysis to higher dimensions; naively there does not
seem to be a way to respecting the symmetries of the effective action formalism compatible
with incorporating the anomaly.

In the present work we demonstrate that it is indeed possible to write down an effective
action which reproduces the known anomalous transport data. To be specific we will restrict
attention to global current anomalies, though it seems quite plausible that our analysis
can be generalized to Lorentz anomalies as well. The logic we employ is quite simple:
using a combination of the symmetries of the effective action and the inflow mechanism
for anomalies, we first argue that we can construct an independent anomalous part of the
effective action which reproduces the known anomalous constitutive relation. In doing so
we will allow some additional structures which deviate from the considerations of [42] which
will explain some of the difficulties that were encountered earlier.

In fact, the result for the anomalous part of the effective action is succinctly summarized
as3

Sanom =

∫
M2n+1

T 2n+1[A, Â] =

∫
M2n+1

u

2ω
∧
(
P − P̂

)
. (1.1)

Here T 2n+1[A1,A2] is a transgression form – it is essentially the difference of two Chern-
Simons forms for the gauge potentials A1 and A2 up to the removal of an exact piece which
ensures that the transgression form is covariant (we review this below). In the effective
action A is the background gauge potential, and Â = A+µu is the hydrodynamic shadow
gauge field, introduced in [30]. In fact, all the dependence on the fluid element variables
has been packaged into the hydrodynamic velocity 1-form u and the chemical potential µ
appearing in Â.4

The subscript of M2n+1 denotes that the integral is over a manifold which is one
dimension higher than the manifold in which the fluid lives. Here, we have found it useful
to employ the anomaly inflow mechanism [53] (we refer the reader to the appendices of
[30] for a recent review), i.e., viewing our anomalous field theory in d = 2n dimensions
as the boundary dynamics of a bulk topological theory (in 2n + 1 dimensions), to guide
us in writing covariant effective actions. So the physical part of the effective action in
2n dimensions is the boundary term arising from the transgression form, with the Chern-
Simons pieces ensuring cancellation of the anomaly contributions between bulk and the
boundary.

3We will use bold-face symbols to denote differential forms. Sources are denoted by the usual one-forms
for the vector potential, while we will find it convenient to present results for currents in terms of the Hodge
dual d− 1 form.

4In the equation above, we have also provided an explicit expression for this transgression form in terms
of the hydrodynamic velocity 1-form u, the vorticity 2-form ω and the anomaly polynomial P which is a
2n+2 form.The symbol P̂ denotes the anomaly polynomial evaluated over the shadow gauge field. We use
the notation previously described in [13, 29, 30]; see also footnote 14 and Appendix G for our conventions
on differential forms.
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We arrive at this action by simply following our nose in demanding that we have a gauge
covariant action preserving the basic symmetries (a generalization of the volume preserving
diffeomorphisms to include the charge degree of freedom) of our set-up.

The action (1.1) passes several consistency checks:

1. the currents obtained from it are precisely the anomaly induced transport currents
derived in [13] using the entropy current analysis.5

2. It reduces quite simply to the anomalous equilibrium partition function derived in
[22, 30] upon restricting to stationary flows.

While the anomalous part of the effective action is a useful starting point, one would like
to have a complete action, which has the correct dynamical structure. A curious property
of the anomalous part of the current Jαanom is that its divergence is the difference of the
anomalies of the background gauge field and the hydrodynamic shadow gauge field. For
example in d = 4 dimensions we find explicitly

∇αJαanom =
3cA
4
εαβρσFαβFρσ −

3cA
4
εαβρσF̂αβF̂ρσ , (1.2)

∇βTαβanom = FαβJ
β
anom − µuα

(
3cA
4
εβγρσF̂βγF̂ρσ

)
. (1.3)

Here, Tαβanom is the anomalous part of the energy momentum tensor. This structure of the
anomalous current conservation was already noted in [13]. However, were we to naively write
down a complete non-dissipative hydrodynamic action as Sf = Snon−anom + Sanom then
clearly the currents derived from Sf would continue to obey an equation like (1.2), which
of course are not the (anomalous) conservation equations of hydrodynamics. It therefore
appears that while the effective action is capable of generating the correct off-shell currents
accounting accurately for the details of anomalous transport, it does not capture the correct
hydrodynamic Ward identities.

Fortunately, there is a simple cure to this malaise. We argue that the correct (anoma-
lous) Ward identities should be recovered in a non-equilibrium system from a Schwinger-
Keldysh construction involving two copies of the dynamical degrees of freedom. Utilizing
this formalism we argue that the hydrodynamic effective action, not only consists of the
two copies of the naive effective action, but also demands the existence of an interesting
cross-term between the two to ensure that one has the desired anomaly. The anomalous
piece of the effective action can be succinctly summarized again in terms of transgression
forms:

SanomSK =

∫
M2n+1

(
T 2n+1[AR, ÂR]− T 2n+1[AL, ÂL] + T 2n+1[ÂR, ÂL]

)
. (1.4)

The first two terms are the standard terms we would encounter in a thermofield double
construction, with AR living on the forward part of the Schwinger-Keldysh contour and AL

5It was already remarked in [13] that a generating function of the form u
2ω
∧
(
P − P̂

)
can be used to

generate the anomaly-induced currents.
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Gravity inspiration: anomalous effective action

ARÂR

T 2n+1[AR, ÂR]T 2n+1[AL, ÂL]

T 2n+1[ÂR, ÂL]

AL ÂL

Figure 1. The heuristic picture of anomalous effective actions suggested by the Schwinger-Keldysh
thermofield double construction, illustrated holographically using the eternal black hole in AdS.

the source on the reversed part of the contour. The new term is the third one which consists
of a cross-term involving just the shadow fields on either piece of the contour. Incorporating
this term, we find a very simple effective action which gives the correct anomalous currents
with the expected anomalous conservation equations of hydrodynamics. The necessity for
this term is easy to intuit once we realize that its presence is necessary to ensure that the
correct amount of current inflows into each part of the contour.6

Heuristically, one can motivate the above action, by thinking about the hydrodynamic
theory in the holographic language using the fluid/gravity correspondence. Since we are
restricting to adiabatic pieces of transport, we can consider a stationary (planar) black hole
in AdS in its maximally extended Kruskal spacetime. The two sources AR and AL are the
background fields we turn on on the right and left boundaries. The hydrodynamic shadow
gauge field can roughly be viewed as living on the horizon of the black hole (it secretly
is a proxy for the horizon gauge field as we will describe later). The individual terms on
the left and right given by the transgression form in (1.1) can be viewed as the effective
action obtained by working with the Goldstone mode which is the Wilson line interpolating
between the boundary and the horizon as described in [45] (see also [54] for a derivation from
a holographic renormalization group perspective). While this individual decoupled left-right

6Abelian anomalies in two dimensions are special. Indeed in this case one can write down an action
which does not involve the shadow fields [42]. This happens in part because the contribution from the
cross-term turns out to be irrelevant in the hydrodynamic limit as we explain in Appendix C.
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construction suffices for non-anomalous pieces of the transport, to correctly incorporate
the failure of gauge invariance of the effective due to the anomaly, we need to demand
a particular gluing condition across the horizon. This ensures that there is a the desired
amount of anomaly inflow, but in the process it couples the left and right sectors through
the horizon degrees of freedom. It is this gluing condition that leads to the third term in
the effective action (1.4), see Fig. 1 for an illustration. While we find this heuristic picture
compelling, we should add that we do not derive it from first principles, but rather motivate
its inclusion in the Schwinger-Keldysh formalism based on symmetry arguments. The fact
that it reproduces much of the known results of anomaly driven transport and its rather
simple structure (which as we will see is not obvious a-priori in our construction) leads us to
believe that we are on the right track; it nevertheless would be nice to have an independent
argument in favour of our construction.

This paper is organized as follows. To keep the paper self-contained we start with
some basic preparatory material in §2. First we give an overview of anomalous transport
in hydrodynamics in §2.1 focussing on the results we require for our analysis. Following
this in §2.2 we review the effective action description of non-anomalous, charged, perfect
fluids. Armed with this basic background material, we begin in §3 with a simple and
straightforward derivation of an effective action in (3 + 1) dimensions which captures the
triangle anomaly for a single U(1) current. We will go through the computation explicitly
to exhibit the tight cancellations to ensure the symmetries we want and then establish
consistency with the previous derivations. Our next step will be to show that although
the currents are taking the expected form, the effective action does not give the correct
anomalous dynamics – the conservation equations are different from the expected ones.
In §4 we show that our method can be easily generalized to all even dimensions and to
arbitrary number of abelian currents. In §5 we develop a more elegant formalism which
expresses our result in a way that makes all the symmetries manifest. In this language,
anomalies of non-abelian gauge symmetries are also easily treated. In section §6 we present
the final result of our paper; a careful treatment of the problem in the Schwinger-Keldysh
formalism. This will result in a simple expression for the effective action which gives the
correct covariant currents including the correct anomalous dynamics. We conclude with a
discussion and highlight some open issues in §7.

The appendices contain technical details explicating the calculations reported in the
main text. In Appendices A and B we provide some details of the four dimensional con-
struction, while in Appendix C we take a close look at the two dimensional story to contrast
with previous analysis. In Appendix D we give some useful formulae for variations of trans-
gression forms, which we then use in Appendix E to derive the currents and equations of
motion. Appendix F gives a quick overview of the Schwinger-Keldysh construction, while
Appendix G lays out our conventions for differential forms.

2 Preliminaries: review of some background material

We collect some relevant data about anomalous transport and the general framework of the
non-dissipative hydrodynamic effective actions, which we use in the later sections.
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2.1 Anomalies in hydrodynamics: brief review

In §1 we have given a brief overview of the historical development of the subject of anomaly
induced transport in hydrodynamics. While our primary interest is in deriving an effective
action for describing the anomaly contributions in hydrodynamics, it is worth reviewing
the statements in the literature to set the proper stage for our discussion (and furthermore
clarify what we mean by anomalous transport in precise terms). In general the conserved
currents of a hydrodynamical system take the form:

Tαβ = ε uα uβ + pPαβ + qα uβ + uα qβ + Παβ , Παβ u
β = 0 ,

Jα = ρ uα + να , (2.1)

with Pαβ = gαβ + uαuβ being the projector onto the space orthogonal to the velocity field,
Pαβ u

β = 0. The quantities {ε, P, ρ} are thermodynamic parameters. Often these are
viewed as functions of the local temperature and chemical potential. By a suitable change
of thermodynamic state functions (Legendre transform) we will view them as functions of
the entropy density s and the chemical potential µ instead.

In writing the expression for the currents above we have made no a-priori choice of
fluid frame, preferring to keep the gradient terms captured in the heat current qα, the
transverse part of energy-momentum Παβ and the charge currents να arbitrary for the
moment. The constitutive relations for the fluid express them in gradients of the fluid
velocity and thermodynamic parameters, ∇αuβ and ∇α (µ/T ) respectively. Typically this
is done on-shell in that we use the ideal fluid equations of motion to eliminate the gradients
of the temperature in favour of the derivatives above.

The hydrodynamical equations of motion are the conservation of the energy-momentum
and charge current in the absence of sources. However, if either the flavour symmetry
associated with the charge or the Lorentz symmetry is anomalous and we furthermore
have background electromagnetic and gravitational fields turned on then the conservation
equations have sources and read:

∇αJα = PA(A,Γ) , ∇βT βν = F να Jα +QA(A,Γ) (2.2)

where the charge source PA(A,Γ) and the energy-momentum source QA(A,Γ) are function-
als of background electromagnetic (A) and gravitational (Γ) connections. In what follows,
we will focus on pure flavour anomalies7, i.e., the case in which the functionals PA(A,Γ)

and QA(A,Γ) are independent of the background gravitational connection Γ.
We now turn to the allowed forms of these functionals in field theory.8 Field theoretical

considerations imply that possible anomalies of a QFT in d = 2n spacetime dimensions are
7In addition in certain circumstances we could encounter diffeomorphism anomalies and Weyl anomalies

(the latter in scale invariant theories). In two dimensions these already contribute to the thermodynamics
and are well understood, cf., [29] for a clear discussion of these contributions. The effects of Weyl anomalies
in hydrodynamics is less clear beyond two dimensions (for some preliminary statements see [55]) though as
we describe later it might be possible to use the action formalism to decipher these.

8We refer the reader to [56, 57] for the essential machinery behind the classification of possible anomalies
in a field theory.
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JH

JBZ Jcons
∂M : physical theory

M : Hall insulator

Figure 2. Illustration of the anomaly inflow mechanism. The bulk theory in M2n+1 is the Hall
insulator theory, and on the boundary we have the physical theory with the anomaly. The Hall
current J

H
propagates in the bulk and its inflow shows up as anomaly in the boundary theory.

Coupling to the Hall insulator corrects the physical current Jcons by a Bardeen-Zumino contribution
J

BZ
. The consistent boundary current Jcons together with the Bardeen-Zumino term J

BZ
gives the

total current Jcov which transforms covariantly.

characterized by a Chern-Simons (2n + 1)-form ICS2n+1[A] in one dimension higher. In
turn, this Chern-Simons form defines an anomaly polynomial P [F ] = dICS2n+1[A] which is a
(2n+2)-form defined in two dimensions higher than the original field theory. As the notation
signifies, the anomaly polynomial P is a gauge-invariant functional of the background field
strength F .

To clarify the physical interpretation of these forms, we adopt an inflow picture of
anomalies whereby one imagines placing the field theory under question at the boundary of
an appropriate Hall insulator in one dimension higher.9 The anomaly in the QFT is then
simply understood as a flow of a conserved charge from the Hall bulk to the boundary, see
Fig. 2. These charge currents in the Hall insulator are captured by a generating function
ICS2n+1[A] which is the Chern-Simons (2n + 1)-form introduced above. More explicitly, let
the variation of this Chern-Simons term be characterized by

δICS2n+1 = δA ∧ ?2n+1JH + d [δA ∧ ?JBZ ] , (2.3)

9We refer the reader to the appendices of [30] for a recent review of anomaly inflow along with the
explicit form of anomalies that follows from this picture.
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or equivalently10

δ

∫
M2n+1

ICS2n+1 =

∫
M2n+1

√−g2n+1 J
a
H
δAa +

∫
∂M2n+1

√−g2n J
α
BZ
δAα , (2.4)

where we will call the bulk part of the charge current Ja
H

as the Hall current and we will
call the current Jµ

BZ
induced along the boundary of a Hall insulator as the Bardeen-Zumino

current. The explicit form of these currents is given by11

P ≡ dICS2n+1 , ?2n+1JH ≡
∂P
∂F

, ?JBZ ≡
∂ICS2n+1

∂F
. (2.5)

Thus, the total boundary current in this picture is then the sum of two contributions:

• the usual charge current of the boundary QFT obtained from varying the QFT path-
integral as in (2.23). This current is neither gauge covariant, nor is conserved [58].
It however satisfies the Wess-Zumino consistency condition obtained by demanding
commutativity of an explicit gauge transformation against variation of the background
gauge potential. For this reason, this current is often called the consistent current.

• Bardeen-Zumino current that arises from the bulk Chern-Simons term.

This total charge current in the boundary transforms covariantly and is hence called the
covariant current of the field theory under question. The divergence of this covariant current
is non-zero in an anomalous field theory: in fact, using the inflow picture, the amount of
boundary covariant charge that is produced is equal to the charge injected by the bulk Hall
currents, viz.,

∇αJαcov = J⊥
H
. (2.6)

where ⊥ denotes the direction of the outward normal to the boundary.
As an example, let us begin by considering an abelian flavour symmetry that is anoma-

lous in d = 2n spacetime dimensions. The most general Chern-Simons (2n+ 1)-form made
of a single abelian field is given by ICS2n+1 = cAA ∧ F n where cA is the anomaly coefficient
of interest. Then we define the anomaly polynomial (2n+ 2)-form P ≡ dICS2n+1 = cAF

n+1.
The Hodge dual of the Hall current Ja

H
in (2n + 1) dimensional bulk and the Hodge dual

of Bardeen-Zumino current Jµ
BZ

in the 2n dimensional boundary are given by

?2n+1JH ≡
∂P
∂F

= (n+ 1) cAF
n ,

?JBZ ≡
∂ICS2n+1

∂F
= n cAA ∧ F n .

(2.7)

10We use lower case Greek indices for the QFT (boundary) directions and lower case Latin indices for
the bulk Hall insulator theory. The direction normal to the boundary will often be denoted by ⊥.

11See [30]. We give a short derivation of this and related results in Appendix D.
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In components, we have

Ja
H

=
(n+ 1) cA

2n
εap1p2···p2n−1p2n Fp1p2 · · ·Fp2n−1p2n ,

J⊥
H

=
(n+ 1) cA

2n
εα1β1···αnβn Fα1β1 · · ·Fαnβn ,

Jα
BZ

=
n cA
2n−1

εαβδ1δ2···δ2n−3δ2n−2 Aβ Fδ1δ2 · · ·Fδ2n−3δ2n−2 .

(2.8)

The covariant currents of the field theory under question are then obtained by first comput-
ing the consistent current via (2.23) and then shifting it by the Bardeen-Zumino contribution
above:

Jγcov = Jγcons + Jγ
BZ

= Jγcons +
n cA
2n−1

εγβδ1δ2...δ2n−3δ2n−2 Aβ Fδ1δ2 · · ·Fδ2n−3δ2n−2 .
(2.9)

The anomalous current and energy-momentum conservation equations relevant for hydro-
dynamics are then given by the behaviour of the covariant current, viz.,

∇αTαβ = F βα (Jcov)α , ∇αJαcov = J⊥
H

=
(n+ 1) cA

2n
εα1β1···αnβn Fα1β1 · · ·Fαnβn . (2.10)

While the covariant current is what appears in hydrodynamics, it is the consistent current
that is natural from an effective action viewpoint. As a result we will keep track of both
of these and also derive the relevant Bardeen-Zumino term to translate between the two
currents via an explicit (2n+ 1) dimensional Chern-Simons action.

The statement that anomalies influence hydrodynamical transport entails that there
are contributions to {qα, να,Παβ} which are determined explicitly by the quantum anomaly.
In particular, it is convenient to view the contributions to these currents as:

qα = qαanom + qαdiss , να = Jαanom + ναdiss , Παβ = Παβ
anom + Παβ

diss . (2.11)

where we use the subscripts to denote the contribution to the hydrodynamical transport
to indicate their origins from the anomaly (anom) and the conventional dissipative contri-
butions (diss).12 The anomalous transport terms come in two varieties: (i) contributions
to the current which are functionals of background sources and (ii) contributions involving
intrinsic fluid dynamical data (e.g., gradients of velocity field). An example of the former is
a term in the charge current proportional to the magnetic field (called the chiral magnetic
effect in four dimensions), while contributions involving the fluid vorticity (chiral vorticial
effect) exemplify the latter. The key point to note is that terms involving intrinsic fluid
variables remain non-vanishing even in the absence of external sources, which means that
in hydrodynamics one can infer the presence of an anomaly without explicitly turning on
background electromagnetic (or gravitational) fields.

While the conserved currents form the basic content of hydrodynamics, there is another
object of interest, viz., the entropy current JαS . Following the earlier decomposition we can
write:

JαS = s uα + JαS, anom + JαS, diss (2.12)
12It is typically possible to set qαdiss = 0 without loss of generality and this is indeed exploited in various

constructions.
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explicitly demarcating the contributions of the perfect fluid, the anomaly and the dissipative
effects. The entropy current is required to satisfy a local form of the second law, ∇αJαS ≥ 0;
as has been discussed extensively in the literature this constrains transport in a non-trivial
manner.

The analysis of [13] (generalizing the original argument of [9]) shows that by invok-
ing adiabaticity of the anomalous contributions, one can reduce the requirement of the
second law of thermodynamics of local entropy increase to only involve the dissipative con-
tributions. This leads to an equation that should be satisfied by the covariant anomalous
currents:

(∇α + aα) qαanom − JαanomEα = T ∇αJαS, anom + µ
(
∇αJαanom − J⊥H

)
(2.13)

with J⊥
H

being the covariant anomaly given in (2.6), while the electric field and fluid accel-
eration defined as Eα = Fαβ u

β and aα = uβ∇βuα respectively (see Table 1). It was shown
that this equation has a consistent solution, which furthermore could be obtained from a
Gibbs potential constructed from the anomaly polynomial. It was later demonstrated that
this solution is also obtained from a free energy by considering equilibrium configurations
on backgrounds with arbitrary spatial dependence (with slow variations as appropriate to
hydrodynamics) [24, 30]. For the moment we refrain from writing down the particularities
of the solution; the reader will find all the relevant details in §3 and §4.

2.2 An effective field theory for non-dissipative fluids

We now quickly review the essential ingredients of the effective action approach. Following
[40] (see also [41, 44] for further comments) the basic degrees of freedom for a fluid in d

dimensions are d− 1 fundamental fields {φI} which give the position of local fluid elements
in physical space (coordinates xα). Additional fields characterize the charge label of a single
fluid element; for a global U(1) charge we can take a phase field ψ to capture this degree
of freedom (the non-abelian generalization is discussed later). The U(1) particle number
symmetry is implemented as a translation in field space

ψ −→ ψ + c . (2.14)

We assume that this configuration space has a manifold structure and denote it byMφ,ψ.
Noting that the labels of individual fluid elements is an arbitrary choice, we demand

reparametetrization invariance under arbitrary diffeomorphisms ofMφ ⊂Mφ,ψ subject to
the condition that the total volume of the fluid remains fixed, i.e.,

φI → ξI(φ) , Jacobian(ξ, φ) = 1 , (2.15)

leaves the effective action invariant. This leads us to considering a theory with volume-
preserving diffeomorphisms in configuration space. Furthermore, the phase field itself can
be made to depend on the co-moving position within the fluid because charge conservation
holds locally (at least for the non-dissipative fluids that we are dealing with). Therefore,
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the particle number symmetry (2.14) can be enlarged to a symmetry of the theory under
the following transformation:

ψ −→ ψ + f(φI) , (2.16)

where f(φI) is an arbitrary function of the φI . Following [40], we will call this the chemical
shift symmetry. In effect the theory is invariant under the combined symmetry group
generated by (2.15) and (2.16); for brevity we refer to this complete symmetry group as

˜Sdiff(Mφ,ψ).

There are some important consequences of the symmetry ˜Sdiff(Mφ,ψ) which were ex-
plained in [40, 41]:

• An effective field theory with this symmetry naturally ensures that the dynamical
equations of motion of an effective Lagrangian contain no more data than the conser-
vation of the energy-momentum tensor and charge current.

• The fields φI and ψ are Goldstone modes; thus canonical assignment of dimensions is[
dφI
]

= [dψ] = 0. The effective action is then built out of the gradients of φI and ψ
in a systematic low energy expansion.

• An important consequence of volume preserving diffeomorphisms which we denote as
Sdiff(Mφ) ⊂ ˜Sdiff(Mφ,ψ) , is that the vector field

JβS =
1

(d− 1)!
εβα1...αd−1 εI1...Id−1

d−1∏
j=1

∂αjφ
Ij . (2.17)

is trivially conserved ∇αJαS = 0 and [JαS ] = 0. We interpret this object as the entropy
current of our fluid and the fact that it is divergence-free amounts to saying that the
formalism deals with non-dissipative fluids.

To construct the effective action we also introduce background sources; the metric gαβ
on the physical spacetime and background gauge fields Aα which couple to the charge. The
abelian gauge transformations are implemented via

ψ −→ ψ + Λ(x) , Aα −→ Aα − ∂αΛ(x) , (2.18)

for an arbitrary scalar parameter Λ(x). This in particular means that the gauge covariant
derivative of the field ψ is that appropriate to a phase field

Dαψ = ∇αψ +Aα . (2.19)

Armed with these basic variables we are now in a position to describe the hydrodynamic
fields relevant for charged fluid dynamics. We define a velocity field uα along the direction
of JαS which is normalized to uαuα = −1 and the entropy density via the norm of JαS . We
also introduce a chemical potential µ that couples of the conserved U(1) charge. To wit,

JαS = s uα , s =

√
− gαβ JαS J

β
S , µ = uαDαψ . (2.20)
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The chemical potential µ is invariant under gauge transformations and the chemical shift
symmetry (2.16), since JαS is co-moving with the fluid elements (i.e., JαS ∂αφ

I = 0).
The leading order action invariant under Sdiff(Mφ) (2.15), the chemical shift symmetry

(2.16) and given our assignment of scaling dimensions [dφI ] = [dψ] = 0 is just [40]

S0 =

∫ √−g f(s, µ) . (2.21)

Abbreviating f,s ≡ ∂
∂sf and f,µ ≡ ∂

∂µf , we find the following stress tensor and charge
current (which as always are defined by varying the background sources):

Tαβ(0) =
2√−g

δS0

δgαβ
= (f − sf,s) gαβ + (µ f,µ − s f,s)uαuβ , (2.22)

Jα(0) =
1√−g

δS0

δAα
= f,µ u

α . (2.23)

We thus have a post-facto justification of our identification of the thermodynamic pa-
rameters in this framework, obtaining the energy density ε = (µ f,µ − f), the pressure
P = (f − sf,s) and the charge density ρ = f,µ. Finally since the entropy current is given
by (2.20) at every order in the gradient expansion, the hydrodynamic constitutive relations
are obtained in the entropy frame.

3 An effective action for the triangle anomaly

We have now assembled all the ingredients to address the question of deriving an effective
action for anomalous hydrodynamics. To illustrate the procedure we will first explain how
the global current anomaly in four spacetime dimensions manifests itself in hydrodynamic
transport. This turns out to be the prototypical case and generalizations to other even
dimensions turn out to be quite straightforward (and are explained in §4). As noted in §1
[42] derive the anomalous hydrodynamical transport equations in 1 + 1 dimensions using
the effective action approach; our approach has some similarities, but deviates from them
in an essential manner, which we will indicate where appropriate.

3.1 Preliminaries: a useful basis of fields

While we will use the effective action formulated in terms of the fluid element fields {φI , ψ}
it is useful to construct a basis of independent fluid data relevant to our analysis. First of
all, we start with the fluid velocity uα whose gradient can be decomposed in a standard
form

∇αuβ = σαβ + wαβ − uα aβ +
1

d− 1
ΘPαβ , (3.1)

into the symmetric-traceless shear σαβ , antisymmetric vorticity tensor wαβ , transverse vec-
tor acceleration aα, and scalar expansion Θ; explicit definitions for these are given in Table
1. An object that plays a key role in the anomalous transport is the vorticity vector

ωα =
1

2
εανρσ uν ∇ρuσ . (3.2)
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Note that this vector can be expressed in terms of the vorticity tensor and the acceleration.
In addition to the fluid velocity we also have the thermodynamic parameters temperature
T and chemical potential µ. We view the former as a function of the entropy density s

when necessary.
The background fields are the metric gαβ which for the most part plays a passive role

and the electromagnetic potential Aα. The electric and magnetic fields are defined by
projection of the gauge field strength with respect to the velocity field, i.e.,

Eα = Fαβ uβ , Bα =
1

2
εανρσ uνFρσ , Fαβ ≡ 2∇[αAβ] . (3.3)

We also find it convenient following [24, 29] to introduce a transverse gauge field Âα:

Âα = Aα + µuα , F̂αβ ≡ 2∇[αÂβ] . (3.4)

In particular, it will be useful to note that the transverse electric and magnetic fields are
given by

Êα ≡ F̂αβ uβ = Eα − µ aα − Pαβ∇βµ , (3.5)

B̂α ≡ 1
2 ε

αβρσ uβ F̂ρσ = Bα + 2µωα , (3.6)

with the transverse field Êα = 0 in equilibrium.13

In Table 1 we summarize the basic hydrodynamic fields we use, listing in addition
to their transformation properties under the spatial SO(3) symmetry, the objects which
typically are taken to be on-shell independent after imposition of the ideal fluid conservation
equations. We will use some of the these variables viewed as functions of {φI , ψ} in addition
to other tensors built from ψ as the basic building blocks of our effective action.

3.2 The reveal: anomalous action summarized

Before going into details, let us summarize the basic logic and the main result of our
construction. As described earlier, the effective action built out of the fluid element variables
is required to respect ˜Sdiff(Mφ,ψ) symmetry described by the transformations (2.15) and
(2.16). We also want to ensure that the effective action correctly reproduces the abelian
flavour anomaly of the current. These are a-priori the only requirements on the effective
action we wish to construct.

The anomaly inflow mechanism [53] reviewed in §2.1 guarantees that∫
M5

ICS2n+1 +

∫
M4

Leff (3.7)

is invariant under local gauge transformations A→ A−dΛ. In the case of four dimensional
U(1)3 triangle anomalies it is easy to argue that the Chern-Simons term of relevance is
simply ICS2n+1 = cAA ∧ F ∧ F . The corresponding Hall and Bardeen-Zumino currents are
given by ?2n+1JH = 3 cAF ∧ F and ?JBZ = 2 cAA ∧ F .

13In deriving this identity we had occasion to exploit the ideal fluid equation of motion Pµλ∇νT νλ =

PµλF
λνJν and the Gibbs-Duhem relation dP = s dT + q dµ.
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Data On-shell independent

Scalars Θ ≡ ∇αuα

uα∇αT Θ

uα∇αµ
aα ≡ uβ∇βuα aα

Vectors Eα ≡ Fαβuβ Eα

Pαβ∇βT Êα ≡ Eα − µ aα − Pαβ∇βµ

Pαβ∇β( µT )

Pseudo- ωα ≡ 1
2ε
ανρσ uν∇ρuσ ωα

Vectors Bα ≡ 1
2ε
ανρσ uνFρσ Bα

Tensors σαβ ≡ PαρP βσ
(
∇(ρuσ) − Θ

3 Pρσ
)

σαβ

Table 1. Complete basis of (3 + 1)-dimensional fluid and background (gauge field) data at first
order in derivatives which is useful for our construction. We have used the ideal fluid equations to
arrive at the on-shell independent data, listed here for convenience.

Since this Chern-Simons form guarantees the correct anomaly, we start with this term
and proceed to determine the form of Seff =

∫
M4
Leff built from the fields φI , ψ that (i)

ensures that the total action is gauge invariant and (ii) respects the ˜Sdiff(Mφ,ψ) symmetry.
It transpires that the volume preserving diffeomorphisms Sdiff(Mφ) are easily taken care
of by working directly with the fluid velocity and the entropy density (since JαS is invari-
ant under (2.15)). The non-trivial constraint comes from (2.16), which demands that in
addition to the Chern-Simons term involving the background gauge field above, we also
include a Chern-Simons term written in terms of the transverse field Â. In particular, as
already anticipated in [42] there is no action that respects the chemical shift symmetry and
reproduces the anomaly.

To proceed, we take inspiration from the analysis of [13]. As described in §2.1 the
adiabaticity argument leads to an equation for the anomalous hydrodynamic currents (2.13).
A solution to this equation is given as JαS, anom = 0 and an anomalous current Jαanom which
turns out to satisfy d ? Janom = 3 cA(F ∧ F − F̂ ∧ F̂ ) or

∇αJαanom =
3 cA

4
εαβγδ

(
Fαβ Fγδ − F̂αβ F̂γδ

)
= −6 cA

[
EνB

ν − ÊνB̂ν
]
. (3.8)

Since our effective action formalism naturally conserves the entropy current, we ask whether
it is possible to engineer a situation wherein we reproduce the solution to (2.13) directly.
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The main claim then which we justify in the rest of the section is that the action

Sanom = − cA
∫

(Dψ ∧A ∧ F − D̂ψ ∧ Â ∧ F̂ ) + cA

∫
M5

(A ∧ F ∧ F − Â ∧ F̂ ∧ F̂ )

− cA

∫ √−g Dαψ
(
µ2 (2ωα) + 2µBα

)
= − cA

∫
(Dψ ∧A ∧ F − D̂ψ ∧ Â ∧ F̂ )− cA

∫
Dψ ∧ u

2ω
∧
(
B̂2 −B2

)
+ cA

∫
M5

(A ∧ F ∧ F − Â ∧ F̂ ∧ F̂ )

(3.9)

satisfies all the requirements listed above and reproduces precisely the anomalous transport
currents derived earlier using the entropy considerations (see Appendix G for some conven-
tions concerning integration of differential forms and Hodge duals).14 In particular, from
the action Sanom in (3.9) we argue that one obtains the currents

qαanom = −4 cA µ
3 ωα − 3 cA µ

2Bα , Παβ
anom = 0 , (3.10)

Jαanom = −6 cA µ
2 ωα − 6 cA µB

α , (3.11)

which are precisely those derived by solving (2.13) in [13] .
In the action (3.9) we use the gauge invariant one-form (Dψ) = dψ + A and hatted

quantities are constructed from the transverse gauge field introduced in (3.4).
Note that the anomalous pieces of qαanom, Παβ

anom, and Jαanom provide an off-shell solution
to anomalous transport for similar reasons as in [13]. These terms by themselves don’t
satisfy traditional hydrodynamic equations of motion and furthermore are derived without
ever referring to the lower order equations of motion. Indeed, we never need to invoke the
dynamics of fluid transport equations to derive these contributions. We will return to on-
shell data once we justify the construction above and describe some interesting conundrums
from our ignorance of their presence.

3.3 Derivation of the anomalous action

We will now derive the action (3.9) in a constructive way, exploiting as remarked above,
the fact that the anomalous current derived from the adiabaticity argument is known from
[13].15 The anomalous current (in the entropy frame) Jαanom is required to satisfy (3.8); this
provides a valuable clue. A natural way to start, is to ignore the symmetries of the system
momentarily and ask if we can write down an action which reproduces the anomalous
variation to give the r.h.s. of (3.8).

This is rather easy to do. Consider, the parity-odd topological term

SwzI = ℵ
∫
M4

[
Dψ ∧A ∧ F − D̂ψ ∧ Â ∧ F̂

]
(3.12)

14To retain compact expressions we perform some formal manipulations with differential forms as in
[13, 29, 30]. Divisions by a differential form implicitly indicates that the numerator when expanded out
always has a factor which cancels the form we divide by; see the first step in the manipulation of (5.14) for
an illustration.

15Even in the absence of this result we could have taken the known Landau frame result derived in [9] and
rotated it to the entropy frame. We describe the connection between various frame choices in Appendix B.1.
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with constant ℵ tuned such that the correct anomalous variation is produced. We have
already been inspired by the symmetric form (3.8) of the divergence of the anomaly piece
of the current, to introduce just one constant parameter.16

Now under a gauge transformation (2.18), this action is clearly not invariant. It trans-
forms as

δSwzI = −ℵ
2

∫ √−g εαβρσ [Dαψ ∂βΛFρσ − D̂αψ ∂βΛ F̂ρσ

]
= −ℵ

4

∫ √−g Λ εαβρσ
[
FαβFρσ − F̂αβF̂ρσ

]
. (3.13)

Of course, due or the presence of an anomaly we cannot have a gauge-invariant action in
3 + 1 dimensions. However, exploiting the inflow mechanism [53], all we need is a five
dimensional Chern-Simons action which will serve to cancel the anomalous variation in
(3.13) above. This is simply

SCS = −ℵ
∫
M5

[
A ∧ F ∧ F − Â ∧ F̂ ∧ F̂

]
(3.14)

Under a gauge transformation, the Chern-Simons term gives a boundary term on the four
dimensional spacetime which cancels the variation (3.13). So SwzI+SCS is a gauge invariant
action.

Having dealt with the gauge invariance we need to address the second requirement, viz.,
demanding that the terms in the effective action respect the chemical shift symmetry (2.16).
It is a simple exercise to check that SwzI by itself is not invariant under this symmetry (SCS

is blind to transformations of the ψ field); we need to augment the action with other terms.
However, since we have taken the trouble to ensure gauge invariance, we now should restrict
attention to terms that are explicitly gauge invariant.

Thus we need to determine the most general parity-odd, gauge invariant term which
we can build from one-derivative data that can appear in the action. The focus on one-
derivative data is because the action SwzI is itself built out of the first order gradients and
we know from earlier analysis that the four dimensional global anomaly is manifested at
this order.

This set of requirements is in fact quite constraining. There are precisely two one
derivative parity-odd vector fields at our disposal: the vorticity ωα and the magnetic field
Bα.17 The only scalars at hand are the entropy density s, the chemical potential µ and the
norm χ of the transverse part of Dαψ:

χ ≡ ζαζα , with ζα ≡ P βα Dβψ . (3.15)

16We could, of course, not refer to the knowledge about this conservation equation and indeed introduce
a second constant ℵ̂ at this stage, and determine it later from demanding consistency. This would make
the calculations slightly more complicated with the same end result.

17In the counting of derivatives the electromagnetic potential has mass dimension zero, [A] = 0. Also
note that the other obvious parity-odd vector B̂α is related to the two we use via (3.5), so does not comprise
independent data.
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All of these are parity-even and cannot appear in the action with gradients. The only other
potential term of interest at this order is the parity-odd vector εανρσ uν ∇ρζσ. The three
vectors in question can contract against the zero-derivative object Dαψ. However, not all
three scalars thus constructed are independent. Indeed

∇λDσψ −∇σDλψ = Fλσ ⇒ εµνλσuν(∇λDσψ −∇σDλψ − Fλσ) = 0

⇒ εανρσDαψ uν∇ρζσ = (2µωα +Bα)Dαψ .

As a result the only combination of terms that is allowed at this order is

SwzII =

∫ √−g [ηω(s, µ, χ)ωα + ηB(s, µ, χ)Bα]Dαψ , (3.16)

where we have allowed arbitrary functions ηω, ηB of the three scalars. Note that at zeroth
order we refrained from introducing an explicit dependence on χ: this was disallowed by
the chemical shift symmetry (2.16). Now a dependence on χ is allowed because we do
not require the action (3.16) to by itself be invariant under the chemical shift symmetry.
Rather, only the sum SwzI + SwzII needs to respect that symmetry.

We now need to determine the coefficients ηω and ηB such that the full action

Sanom = SwzI + SwzII + SCS (3.17)

is invariant under the chemical shift symmetry. This uniquely fixes the coefficient functions
ηω and ηB in terms of the constant ℵ and demanding that we have the correct U(1)3

anomaly leads to (3.9).
This is actually rather straightforward. Under ψ → ψ + f(φI), the variation is

δ(SwzI + SwzII) =

∫ √−g [(ηω ωα + ηB B
α) ∂αf +

ℵ
2
εαβρσ

{
(∂αf)AβFρσ − (∂αf)ÂβF̂ρσ

}]
=

∫ √−g [−∇α(ηω ω
α + ηB B

α)− ℵ
4
εαβρσ

(
FαβFρσ − F̂αβF̂ρσ

)]
f

(3.18)

which implies that in order to get an invariant action we need to make the choice

ηω ω
α + ηB B

α =
1

3
Jαanom + J α , ℵ = −cA (3.19)

where J α is an exactly conserved gauge and chemical shift-invariant vector ∇αJ α = 0.
The divergence of the current Jαanom in Eq. (3.11) has been calculated using:

∇α
(
µ2 ωα + µBα

)
=

[
(2µωα +Bα)∇αµ+ µ εαβρσ∇αuβ∇ρAσ +

µ2

2
εαβρσ∇αuβ∇ρuσ

]
= −1

8
εαβρσ(FαβFρσ − F̂αβF̂ρσ) =

[
BαE

α − B̂αÊα
]
, (3.20)

where we applied (3.5), (A.2) and (A.4) on the first, second and third term of the first line,
respectively. Therefore, demanding invariance under the chemical shift symmetry amounts
to requiring (anomalous) current conservation.
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It is instructive to derive this result slightly differently to see the contribution from
various terms. Consider the energy-momentum tensor and charge current derived from
(3.9). Since we work in entropy frame, we expect contributions to the heat current and the
charge current proportional to the parity-odd vectors ωα and Bα. Specifically,

qαanom = qω ω
α + qB B

α , Παβ
anom = 0 , (3.21)

Jαanom = jω ω
α + jB Bα (3.22)

with coefficients qω, qB, jω, jB which are a-priori functions of s, µ and χ. As we will see,
demanding that we obtain the correct form of the conserved currents suffices to determine
uniquely ηω, ηB and reproduce the solution (3.19).

Carrying out the variations with respect to the background sources, from the full
anomaly action Sanom we find the stress-energy tensor and current at first order to be:18

Παβ
anom = − [s (ηω,s ω

ν + ηB,sB
ν)Dνψ]Pαβ

− [2 (ηω,χ ω
ν + ηB,χB

ν)Dνψ] ζαζβ (3.23)

2 qαanom = 4µ ηω ω
α + (ηω + 2µ ηB)Bα + 4µ (ηω,χ ω

ν + ηB,χB
ν)Dνψ ζ

α

+ [(µ ηω,µ − 2 ηω)ων Dνψ + (µ ηB,µ − ηB)Bν Dνψ]uα

+ ηω,χ ε
ανρσDνψ uρ∇σχ− (ηω,µ − 4ℵµ) εανρσDνψ uρÊσ , (3.24)

Jαanom = [(ηω,µ − 2 ηB)ωνDνψ + (ηB,µ − 2ℵ)Bν Dνψ]uα

+ [2(ηω,χ ω
ν + ηB,χB

ν)Dνψ] ζα

+ (ηω + 2µ ηB)ωα + (2 ηB + 2ℵµ)Bα + ηB,χ ε
ανρσDνψ uρ∇σχ

+ εανρσDνψ uρ

(
2ℵ (Êσ − Eσ) + ηB,µ∇σµ+ ηB aσ

)
. (3.25)

We must now require that (3.23, 3.24, 3.25) take the forms (3.21, 3.22) and solve for
the coefficient functions ηω and ηB in terms of the thus far undetermined constant ℵ. This
means that we need to solve the following equations:

ηω,s = ηB,s = 0 ,

µ ηB,µ − ηB = 0 ,

ηω,µ − 4ℵµ = 0 ,

µ ηω,µ − 2 ηω = 0 ,

ηω,χ = ηB,χ = 0 ,

ηω,µ − 2 ηB = 0 ,

(3.26)

2ℵ Êσ − 2ℵEσ + ηB,µ∇σµ+ ηB aσ = 0

This system of equations has a rather simple solution:

ηω = 2ℵµ2 , ηB = 2ℵµ . (3.27)

The expressions (3.23, 3.24, 3.25) thus take the forms (3.21, 3.22) with

qω = 4ℵµ3 , qB = 3ℵµ2 , jω = 6ℵµ2 , jB = 6ℵµ . (3.28)

18For details on the calculation and the different contributions from distinct parts of the action, see
Appendix A.
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Finally, we see that comparison with (3.8) fixes ℵ as quoted in (3.19).
This confirms that there exists an effective action with the proposed symmetries (gauge

invariance and chemical shift symmetry) which is indeed able to capture the constitutive
results for the anomalous parts of the currents. The stress tensor and the charge current
which are defined by Eqs. (3.21, 3.22) and (3.28) coincide with the result of the entropy
current analysis of [13] (in entropy frame). The reader is invited to consult Appendix B for
a comparison with earlier discussions in the literature – we map our answer to the Landau
frame and demonstrate that the shadow terms vanish in equilibrium there.

3.4 Currents & dynamics

So far we have established that using the fluid element variables, we can construct an
action that reproduces the solution (3.10) and (3.11) to (2.13). As described in [13] the
latter equation arises as an off-shell constraint on anomalous fluid dynamics. Note that in
deriving it a crucial assumption has been made, viz., the local form of the second law of
thermodynamics is unchanged by the presence of quantum anomalies. More specifically,
the constraints from the second law on dissipative parts of transport are independent of the
theory suffering from anomalies.

A-priori it would appear that we are pretty much done. We have a parity-odd first
order action Sanom in (3.9) which together with the zeroth order action (2.21) should serve
to determine the dynamics of the system. Ideally, we would like to see that the dynamics
of the system is given by (2.10). Unfortunately this is not true as we now describe.

As we remarked in §2.2 there are the dynamical Euler-Lagrange equations of the system
S0 + Sanom obtained by varying the fields φI and ψ. In the absence of anomalies these are
isomorphic to the conservation of energy-momentum and charge. However, we need to be
careful in the presence of anomalies [42].

Consider first the charge current dynamics; we have the equation of motion of the ψ
field

∇αJαN = 0 , JαN ≡
δ(S0 + Sanom)

δ∇αψ
, (3.29)

where the subscript N denotes the fact that here we are calculating a Noether current. It
is a simple matter to check that

JαN = ρ uα +
1

3
Jαanom −

cA
2
εαβγδ

(
Aβ Fγδ − Âβ F̂γδ

)
= (Jcov)α − 2

3
Jαanom −

cA
2
εαβγδ

(
Aβ Fγδ − Âβ F̂γδ

)
(3.30)

where we have written the total covariant current arising from the action S0 + Sanom. It is
then easy to see using (3.8) that the conservation of the Noether current associated with
ψ-translations implies that

∇αJαcov =
3 cA

4
εαβγδ

(
Fαβ Fγδ − F̂αβ F̂γδ

)
(3.31)

or d ? Jcov = 3 cA

(
F ∧ F − F̂ ∧ F̂

)
. So the covariant current does not reproduce the

correct anomaly, but rather the difference of the anomaly in the gauge field A and its
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hatted counterpart Â. It is easy to check that the consistent current

Jαcons =
δ(S0 + Sanom)

δAα
= Jαcov − cA εαβγδ

(
Aβ Fγδ − Âβ F̂γδ

)
(3.32)

and again gives the difference of the consistent anomaly for the gauge field and its hatted
counterpart. A similar problem arises in case of the stress tensor conservation equation as
indicated in (1.3); we demonstrate this explicitly in Appendix E. We conclude that these
equations of motion do not have the form of conservation equations of anomalous hydro-
dynamics. Note, however, that the corrections as compared to traditional hydrodynamic
equations of motion only involve transverse gauge fields and therefore vanish in equilibrium.
We will resolve this issue in §6 invoking a formalism suitable for non-equilibrium physics.

4 Global anomalies in all even dimensions

Thus far we have focussed on the triangle anomaly in 3 + 1 dimensions. The extension of
our analysis to include global anomalies in all even dimensions is relatively simple. Aided
by the key observation which is the generalization of (3.8), we show that the effective action
can be written down exploiting the analysis of [13]. We sketch the general structure below,
demonstrating that the physical requirements are met. We contrast our analysis in d = 2

with the earlier discussion of [42].

4.1 Deriving the anomalous effective action

There is a straightforward way to generalize the procedure of the previous section to all even
dimensions: in d = 2n dimensions the non-invariant action which is supposed to eventually
give the anomaly becomes

SwzI = −cA
∫
M2n

[
Dψ ∧A ∧ F n−1 − D̂ψ ∧ Â ∧ F̂ n−1

]
, (4.1)

where F n−1 denotes the wedge product of n− 1 copies of F . Similarly, the Chern-Simons
action which restores gauge invariance will be

SCS = cA

∫ [
A ∧ F n − Â ∧ F̂ n

]
. (4.2)

These two actions must be supplemented by the most general gauge invariant (but not
chemical shift-invariant) action SwzII that can be written down in d dimensions. Each
term in this action is accompanied by an a-priori undetermined function of all possible
independent scalar data. By requiring the stress-energy tensor and charge current to take
the general form (3.21, 3.22), one determines these coefficient functions. After having
determined these free parameters, the complete action SwzI+SCS+SwzII should be invariant
under the chemical shift symmetry.

In fact, we can carry out this idea explicitly in arbitrary dimensions. We have seen in
the four-dimensional analysis that the integrand of SwzII was proportional to ?Janom∧Dψ,
where ?Janom is the (2n− 1)-form current Hodge dual to Janom. We thus use as an ansatz
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that SwzII in d-dimensions should have an integrand proportional to the d-dimensional
analog of ?Janom∧Dψ. From [13] we know what ?Janom looks like in arbitrary dimensions.
Using that knowledge, we claim that the solution in d = 2n dimensions reads explicitly

SwzII = −cA
∫
Bn − B̂n

2ω
∧ u ∧Dψ , (4.3)

where we have already fixed the numerical pre-factor relative to SwzI with the benefit of
hindsight. For convenience we use only differential forms here. The magnetic 2-form B and
the vorticity 2-form ω are defined as

B ≡ F − u ∧E , 2ω ≡ du+ u ∧ a , (4.4)

where a is the acceleration 1-form. Note that dividing by a 2-form in (4.3) is a well defined
procedure because every term in the numerator contains at least one factor of 2ω. Also,
every term in the numerator is a product of 2-forms, so their ordering is arbitrary and there
is no problem with sign conventions when performing the division.

The above Eqs. (4.1-4.3) are the main result of this section and they solve the problem
of anomalies in the effective action approach in all even dimensions. One can check that the
above three contributions to the anomaly action give the following anomalous contributions
to the charge current:

?Janom = ? (JwzI + JwzII + JCS) = −(n+ 1)cA
B̂n −Bn

2ω
∧ u , (4.5)

?qanom = −cA
Bn+1 − B̂n+1 + (n+ 1) (2ωµ) ∧ B̂n

(2ω)2
∧ u . (4.6)

such that the gauge invariant current and stress tensor are given by what one would expect
from the analysis in [13]. Here qanom is the (2n− 1)-form Hodge dual of qαanom that can be
derived in a similar fashion as Janom.

We can easily check that the combined action SwzI + SwzII is invariant under the
chemical shifts ψ → ψ + f(φI). The variations are, respectively:

δSwzI = −cA
∫ (

df ∧A ∧ F n−1 − df ∧ Â ∧ F̂ n−1
)

= cA

∫ (
F n − F̂ n

)
· f , (4.7)

δSwzII = −cA
∫
Bn − B̂n

2ω
∧ u ∧ df

= ncA

∫ (
E ∧Bn−1 − Ê ∧ B̂n−1

)
∧ u · f

= −cA
∫ (

F n − F̂ n
)
· f , (4.8)

where we used integration by parts in both calculations. In the last step we used

F n = n ·Bn−1 ∧ u ∧E (4.9)
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and similarly for the transverse gauge field (cf., [13]).
Finally, in Appendix E we show that the conservation equations satisfied by this off-

shell solution (in the sense of traditional hydrodynamics) are

∇αJαanom = J⊥
H
− Ĵ⊥

H
, ∇βTαβanom = FαβJ

β
anom − µ uα Ĵ⊥H . (4.10)

where ?2n+1JH = (n+ 1)cAF
n and ?2n+1ĴH = (n+ 1)cAF̂

n. Again these equations encode
hydrodynamical dynamics up to unwanted terms that are built from the hatted gauge
connection. The resolution of this problem is postponed to §6.

4.2 Consistency checks

One can immediately check that the action (4.3) in d = 4 reduces to our result in §3. In
order to do so, we just need to note that

Bα =
1

2
εαβγδuβBγδ , ωα =

1

2
εαβγδuβωγδ , (4.11)

and obtain in d = 4:

SwzII = −cA
∫
B2 − B̂2

2ω
∧ u ∧Dψ = −2 cA

∫ √−g (µBα + µ2 ωα)Dαψ . (4.12)

As a further check of this proposal, we demonstrate that we can reproduce the anomaly
in d = 2 using our techniques. This is of a certain interest because the two-dimensional
problem has been solved in [42] in a slightly different manner. As we show in Appendix C,
following the logic we employ in the 4-dimensional case §3 equally well works in two di-
mensions and we obtain the result of [42]. The main difference from their analysis is that
we allow for the presence of the transverse fields built from Â. As a result of the previ-
ous discussion for arbitrary dimensions, we propose the following action for the anomalous
transport in d = 2 (note that now we are using the fact that the anomaly appears at zero
derivative order)

S(2d)
anom = −cA

∫
M2

(Dψ ∧A− D̂ ∧ Â)− cA
∫ √−g µ εαβ Dαψ uβ

+ cA

∫
M3

(A ∧ F − Â ∧ F̂ )

(4.13)

This actions gives rise to the following stress tensor and current:

qαanom = −2 cA µ
2 εαρ uρ , Jαanom = −2 cA µ ε

αρuρ . (4.14)

We see again that the anomalous first order piece of the current satisfies an analog of Eq.
(3.8):

∇αJαanom = cA ε
αβ(Fαβ − F̂αβ) . (4.15)

Eq. (4.14) is precisely the result obtained in [42]. Once again only the dynamics described by
Eq. (4.15) is spoiled by the presence of F̂ . Note that this however doesn’t affect equilibrium
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results. It is easy to see that we reproduce the equilibrium partition function of [24] in all
dimensions.

In order to be ultimately able to repair this unfortunate state of affairs, the next
section introduces some formalism which enable us to write our results so far in a much
more efficient way.

5 Transgression forms and non-abelian effective actions

Thus far we have used the basic framework of the non-dissipative effective actions to capture
the anomalous contribution. While the computation is straightforward, one can present
the result in a much more elegant fashion. We will now show that the effective action
which encodes the gauge anomaly of non-dissipative hydrodynamics can be written as a
transgression form. Along the way we will see a simple way to generalize our construction
to non-abelian global symmetries. In order to do so we take inspiration from holographic
ideas [45], viewing the charge field ψ as a Wilson line interpolating between the boundary
and the horizon. This will then naturally suggest a more general picture a la Schwinger-
Keldysh which we will eventually use to fix the Ward identities.

5.1 Deconstructing anomalous liquids

Let us imagine for a moment that we are working with a holographic liquid such as those that
naturally arise in the fluid/gravity context. The gauge field source A = Aµ dx

µ then lives
on the boundary of some asymptotically AdS bulk spacetime and should be the boundary
value of a bulk gauge field Aa dxa. Here {xµ} are the boundary coordinates and A is valued
under the boundary global symmetry group G∂ .19 The bulk geometry dual to the fluid is
generically a black hole spacetime [1]. While for a general fluid flow such a black hole
is inhomogenous and dynamical, to discuss anomalies we are only interested in adiabatic
flows. So we imagine that we have a stationary inhomogeneous black hole geometry. On
the spatial sections of the horizon we introduce coordinates {φI}: these will be conflated
with the fluid element fields we used to construct our effective action.20 For completeness
let us also record that the temporal direction will be denoted by affine parameter v along
the horizon (which goes along for the ride by virtue of adiabaticity).

To describe the charge sector, following the analysis of [45] we introduce a Goldstone
mode c which generalizes the phase ψ that was used earlier to discuss abelian currents. We
assume that there is an independent gauge symmetry on the horizon, with gauge group
Gh and a horizon gauge field Ah. Clearly, since we are visualizing the horizon degrees
of freedom as corresponding to the effective action variables, we should demand that the
chemical shift symmetry is realized as a gauge transformation of this horizon gauge field.
Note that the in subscripts G∂ and Gh are only used to refer to the locations where the
symmetries act; we are interested in fluids carrying G-valued charges.

19For non-abelian symmetry algebras, we will work in an anti-hermitian basis. We follow the conventions
described in [30] for non-abelian gauge fields, currents etc.

20For practical purposes it suffices to think about the stretched horizon and the fields φI living on spatial
sections of a timelike hypersurface straddling the true event horizon.
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With the basic fields in place let us turn to the symmetries: the gauge potentials trans-
form under the appropriate symmetries as usual, being adjoint-valued in the Lie algebras.
The charge field c should interpolate between the boundary and the horizon; it therefore
must transform as a bi-fundamental of G∂ × Gh. For group elements (g(xµ), f(φI , v)) ∈
G∂ ×Gh, the various fields transform as:

c→ g−1 c f , A→ g−1A g + g−1 dg Ah → f−1Ah f + f−1 df . (5.1)

What we achieved by this interpretation is simply to gauge the chemical shift symmetry
(2.16) (more precisely its non-abelian generalization). The horizon gauge transformations
are the chemical shifts of the c field andAh gauges this symmetry. From the transformation
rules we see that the natural gauge-covariant derivative is just

Dc = dc+Ac− cAh such that Dc→ g−1Dc f . (5.2)

We are now in a position to define the non-abelian gauge covariant chemical potential as

µ = iu
[
Dc c−1

]
such that µ→ g−1µ g , (5.3)

where iu denotes contractions, i.e., iu(A) = uµAµ. It is easy to check that this definition is
gauge-covariant and chemical shift invariant.

We now make the following claim: the hydrodynamic shadow gauge field which ap-
peared somewhat mysterious in the previous analysis, has a natural interpretation in terms
of the horizon gauge field. In fact,

Â = cAh c
−1 − dc c−1 , (5.4)

This definition of Â is basically motivated from the requirement that the abelian identity
µ = iu(A − Â) generalize to the non-abelian case. As such this leaves us the freedom to
shift Â by a transverse piece relative to the definition (5.4); we gauge fix this extra freedom
and simply work with (5.4).

To motivate our identification of the hydrodynamic shadow field with the horizon gauge
field, let us recall that the fluid/gravity correspondence posits that the horizon ought to be
regular [59]. Since we are turning on boundary values of bulk gauge fields on the horizon in
Ah, demanding horizon regularity is tantamount to asking the chemical potential to vanish
there, i.e.,

iu(Ah) = 0 . (5.5)

Computing then the chemical potential difference between the boundary and the horizon
using (5.3) we can show that (5.4) follows. By viewing the gauge symmetry and the chemical
shift symmetries as two manifestations of the same symmetry on the boundary and at the
horizon respectively, in this deconstruction language we see that the shadow gauge field
Â is just the boundary manifestation of the horizon gauge symmetry or equivalently the
chemical shift symmetry (up to dressing by a Wilson line).

Operationally, the identification (5.4) is useful because it defines Â as a gauge field
which transforms in the same way as A under gauge transformations:

Â→ g−1Â g + g−1dg . (5.6)
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We will now proceed to show how the results of our previous analysis can be recast in terms
of a simple transgression form using this picture.

5.2 Anomalous effective action as a transgression form

Having formulated a non-abelian setup for effective field theories of non-dissipative hydro-
dynamics we can now proceed to generalize the action that was responsible for the anomaly.
It turns out that such a generalization can easily be found if we look at our previous results
from the point of view of transgression forms.

Given a non-abelian Chern-Simons term ICS2n+1 (and the corresponding anomaly poly-
nomial P = dICS2n+1 ), the transgression form for two gauge fields A1 and A2 is defined as
[30, 60, 61]

T 2n+1 [At] ≡
∫ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
=

∫ 1

0
dt

dAt

dt
· (?2n+1JH )t , (5.7)

where At is an interpolating field

At ≡ tA1 + (1− t)A2 , Ft = dAt +A2
t ,

dAt

dt
= A1 −A2 ≡ ∆A. (5.8)

Here, · indicates a trace over gauge group adjoint indices. By construction, the transgression
form transforms covariantly. In fact, it can be written as the difference of two Chern-Simons
forms plus an exact form (see Appendix D):

T 2n+1[A1,A2] ≡ ICS2n+1[A1]− ICS2n+1[A2]− dB2n[A1,A2] , (5.9)

where

B2n [At] ≡
∫ 1

0
dt

[
dAt

dt
·
(
∂ICS2n+1

∂F

)
t

]
=

∫ 1

0
dt

dAt

dt
· (?JBZ )t (5.10)

The fact that the transgression form written as Eq. (5.9) is gauge covariant is easily seen
from the fact that it only depends on the difference of two gauge connections, such that
their respective gauge non-invariance cancels out.

We will now prove the claim that our effective action Sanom given by (3.9) in d = 4 or
its generalization discussed in §4 is just the transgression form for the two gauge fields A,
Â, i.e.,

S(abelian)
anom ≡ SwzI + SwzII + SCS =

[∫
M2n+1

T 2n+1[A, Â]

]
abelian

. (5.11)

It is easy to intuit this result: firstly A and Â transform similarly under gauge transforma-
tions (which include both the boundary gauge transformations as well as the chemical shift
transformations). This being the case, their difference ∆A as well as the interpolating field
strength Ft transform as tensors such that their trace is gauge invariant. All the symmetries
that we imposed in the construction of our abelian effective action (gauge invariance and

– 27 –



chemical shift symmetry) are thus manifestly preserved by the transgression form.21 So
clearly the effective action must have a simple realization in terms of this object.

Let us verify our claim explicitly: it is trivial to see how the two Chern-Simons terms
in Eq. (5.9) reproduce SCS. Let us therefore consider the remaining part SwzI + SwzII . It
is useful to rewrite

SwzI = −cA
∫
M2n

[
Dψ ∧A ∧ F n − D̂ψ ∧ Â ∧ F̂ n−1

]
= −cA

∫
dψ ∧ d

( u
2ω

)
∧
(
AF n−1 − ÂF̂ n−1

)
(5.12)

where we used the fact that d
(

u
2ω

)
= 1. We can write SwzII as

SwzII = −cA
∫
M2n

Bn − B̂n

2ω
∧ u ∧Dψ

= −cA
[∫
M2n

u

2ω

(
AF n − ÂF̂ n

)
−
∫
M2n

dψ ∧ u

2ω
∧
(
F n − F̂ n

)]
, (5.13)

where we used Bn ∧u = F n ∧u and similarly u∧Dψ = u∧ (dψ+A) = u∧ (dψ+ Â). If
we now add SwzI +SwzII , we see that by means of F = dA, the r.h.s. of Eq. (5.12) together
with the second integral in the r.h.s. of (5.13) gives an integral over an exact form which
vanishes. We conclude

SwzI + SwzII = −cA
∫
M2n

u

2ω

(
AF n − ÂF̂ n

)
= −

[∫
M2n

B2n[A, Â]

]
abelian

, (5.14)

where we have used (D.21) in the last step. This proves the claim (5.11) that S(abelian)
anom is

just given by the integral of a transgression form.

5.3 An effective action for non-abelian anomalous hydrodynamics

Motivated by the result of the previous section, it is now clear what the non-abelian gener-
alization of our anomalous effective action should be. We just write down the transgression
form with A and Â using the definitions (5.3) and (5.4). In short,

Sanom =

∫
M2n+1

T 2n+1[A, Â] =

∫
M2n+1

u

2ω
∧
(
P − P̂

)
=

∫
M2n+1

[
ICS2n+1[A]− ICS2n+1[Â]

]
−
∫
M2n

B2n[A, Â]

=

∫
M2n+1

[
ICS2n+1 − ÎCS2n+1

]
−
∫
M2n

u

2ω
∧
(
ICS2n+1 − ÎCS2n+1

)
.

(5.15)

Note that as far as this construction goes two Chern-Simons terms provide appropriate
amounts of anomaly inflow into the theory with action B2n on the boundary. Clearly,

21The consistent use of differential form language makes sure that also that diffeomorphism invariance is
manifest.
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we have an anomalous contribution both in the original gauge symmetry as well as in
the shadow fields. This explains the appearance of transverse fields in the anomalous
conservation equations which are derived from these actions.

In Appendix E we re-derive the anomalous conservation equations in this (non-abelian)
formalism. In order to get a feeling for the non-abelian case, we quote the result for the
anomalous part of the charge current in two-dimensional theories:

?JI2 = −2cA µ
I u . (5.16)

with I being the adjoint index associated with the symmetry group G. In the abelian case,
this result reduces to the well-known expression (4.14) obtained before in [42].

To summarize, we have seen how it is useful and insightful to interpret the Lagrangian
for the anomalous part of the charge current and stress tensor as a transgression form.
This has several advantages: first of all, the symmetries (diffeomorphism invariance, gauge
invariance and chemical shift symmetry) do not have to be imposed by hand, but are man-
ifest by construction. Secondly, the transgression form is very easy to vary with respect to
the gauge field, so the charge current is easily obtained from it.22 Furthermore, since the
transgression formalism constructs covariant actions, we immediately are able to generalize
the discussion to non-abelian symmetries. Finally, the fact that Sanom is given by a trans-
gression form, shines some light on the physical significance of the transverse gauge field as
originating from a horizon field that treats the chemical shift symmetry as another gauge
symmetry.

6 Schwinger-Keldysh formalism: covariant currents with correct dynam-
ics

Our discussion thus far has involved constructing an effective action which respects the
symmetries of the underlying physical system formulated in terms of the fluid element
variables. The general picture we developed in §5 makes it clear that the transgression
form is the natural action that is compatible with the symmetries. Phrased this way we
have a clear problem with the Ward identities: the anomaly inflowing into the boundary is
a combination of the (desired) global anomaly associated with the background gauge field
and the undesirable one associated with the hydrodynamic shadow field. As we have argued
before this shadow contribution vanishes in equilibrium, rendering our picture correct in
that limited context.

What does it take to ensure that there is an effective action valid outside equilibrium
that allows us to obtain the correct anomalous currents along with the correct Ward iden-
tities? We can turn this question around and ask how to derive the Ward identities in
general for anomalous systems in the non-equilibrium regime. This is clearly the remit of
the real-time Schwinger-Keldysh (SK) formalism. In this section we will therefore examine
the Ward identities more carefully. After developing a framework for treating anomalous

22Note that because the action satisfies the adiabaticity constraint by construction, we can efficiently get
the stress tensor by plugging the charge current into the adiabaticity constraint and solving for the stress
tensor.
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Figure 3. Complex time Keldysh contour for systems out of equilibrium in Schwinger-Keldysh
formalism.

systems in the Schwinger-Keldysh language we proceed to apply this prescription to hydro-
dynamics. At the end of the day we will be able to argue that the correct Schwinger-Keldysh
action constructed by doubling the non-dissipative hydrodynamic system, necessarily has
an additional term which ensures that the correct anomalous Ward identities are attained,
whilst maintaining the form of the anomalous currents derived hitherto. While we will not
be able to rigorously justify each step of our argument, the final result is compelling in its
simplicity to suggest that we are on the right track.

6.1 Anomalies in the Schwinger-Keldysh formalism

Before we get into the discussion of anomalies let us recall some of the basic facts about
the Schwinger-Keldysh (or in-in) formalism. The interested reader can find a more detailed
description in Appendix F; for the present we will content ourselves with a brief reminder.

To describe real-time dynamics of a quantum system with a Hilbert space H and
Hamiltonian H, we begin by doubling the degrees of freedom. To wit, we consider an
enlarged system with a Hilbert spaceHR⊗HL, with the indices being used to refer to the two
copies. Our choices of L,R systems is inspired by the realization of the Schwinger-Keldysh
formalism in the gravitational AdS/CFT context in terms of the eternal black hole with
the two quantum systems being the right (R) and left (L) CFTs on the two boundaries as
envisaged originally by Israel [62] and subsequently by Maldacena [63]. This formalism has
of course proved to be useful in deriving the real-time prescription for computing correlation
functions of single trace operators [64]. The dynamics is implemented in this framework by
the difference Hamiltonian HR −HL.

However, for the purposes of discussing the effective action it is more useful to think
about the complex Schwinger-Keldysh contour to describe the time-ordering prescription;
see Fig. 3. We complexify the time coordinate and consider two anti-parallel contours CR
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and CL which refer to the two parts of the doubled system. Often the two contours are joined
through a purely imaginary part (for equilibrium questions the imaginary time separation
is set by the inverse temperature) to obtain the so called Keldysh-Baym contour, but this
detail is not relevant for what we wish to discuss here. The time-ordering is left to right on
the top CR contour, and opposite on the bottom CL contour.

If our quantum system is described by an effective action Seff then in the Schwinger-
Keldysh framework we consider Seff,R − Seff,L to be the action inserted into the path
integral, consistent with the evolution described earlier. The main question to address is
when we couple the basic degrees of freedom to sources so as to be able to write down the
generating function for computing correlators. We introduce of course independent sources
JR,JL for the two halves and thus would have to take

SSK = Seff,R(JR)− Seff,L(JL) (6.1)

Since we have independent sources we can obtain generically a tensor of correlators with
operator insertions on both contours. However, the main object of interest which enters
any discussion of non-equilibrium dynamics is the causal retarded correlators. These one
can argue are obtained by considering linear combinations of correlation functions with
insertions on CR and CL respectively. In particular, defining J = 1

2 (JR + JL) and j =

JR−JL we can argue that the causal correlation functions of interest have a single variation
with respect to the difference source j [65].

6.1.1 General prescription for anomalous theories

We would like to use the Schwinger-Keldysh formalism described above to work out the
effective action for a quantum field theory with a global anomaly. The most straightforward
way to proceed is to use the anomaly inflow mechanism. Consider a physical anomalous
theory in 2n dimensions with an effective action Seff [A; . . .] with the background gauge
source alone explicitly indicated and let the global current coupled to A have an anomaly
as indicated by (2.10).

We take this anomalous theory and construct an explicit anomaly-free theory in one
higher dimension by exploiting the inflow picture. Viewing the manifold on which the
field theory lives as the co-dimension one boundary of a higher dimensional spacetime,
M2n = ∂M2n+1, we offset the anomaly by introducing a bulk topological sector:

S =

∫
∂M2n+1

Seff [A; . . .] +

∫
M2n+1

ICS[A] , (6.2)

where dots denote matter fields that do not play a role in this treatment. By construction
S respects the underlying gauge invariance, so in this enlarged theory we are in a position
to use the standard Schwinger-Keldysh formalism.

From our discussion above it is then clear that for the anomaly free bulk+boundary
theory, the Schwinger-Keldysh action in real time representation would thus be

SSK = Seff [AR; . . .]− Seff [AL; . . .] + SCS[AR]− SCS[AL] , (6.3)
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The left and right covariant currents are defined as before by varying with respect to the
appropriate sources

?JR,L =
δSSK
δAR,L

. (6.4)

These currents of course have the correct anomaly and satisfy (2.10) with the appropriate
L,R subscripts. It also follows that the linear combination of currents J = 1

2 (JL + JR)

also has the desired anomaly.
We assert that the “hydrodynamical current” is the one which enters the retarded

correlation function and is given precisely by the linear combination J . It can be obtained
by writing the action in terms of the common and difference sources A and a respectively
defined as

A ≡ 1

2
(AR +AL) , a ≡ AR −AL , (6.5)

and varying with respect to the difference source. To be specific,

?Jhydro ≡
δSSK
δa

∣∣∣∣
a=0

=
1

2
(JR + JL)

∣∣∣∣
a=0

. (6.6)

We have noted that this current satisfies the anomalous Ward identity (2.10) by construc-
tion.23 Our discussion so far has been sufficiently general and has made no reference to
the specific form of Seff ; the next task is to specify this discussion to the non-dissipative
effective action derived in the previous sections.

6.1.2 Construction of an action for hydrodynamics and anomalous current
conservation

In our construction of an effective action for anomalous hydrodynamics (5.15), we have
seen that the anomaly always turned out to contain unexpected contributions from hydro-
dynamic shadow fields which don’t generically vanish out of equilibrium. While working
with a single copy of the effective action has provided us with no avenue out of this impasse
we will now argue that the extra freedom inherent in the doubled Schwinger-Keldysh for-
malism possesses enough structure to cure this problem. What we do below is to identify an
additional contribution necessary in the doubled theory to ensure that the anomaly inflow
into the left and right theories is the correct amount.

Let us recall our basic goal: we wish to construct a Schwinger-Keldysh action SSK
which contains in it an anomalous contribution LanomSK [AR, AL]. Our discussion of §6.1.1
indicates that in order to have the correct anomaly inflow the action should take the form

SSK = Sn−a[AR]− Sn−a[AL] + SanomSK , (6.7)

SanomSK =

∫
M2n+1

ICS2n+1[AR]− ICS2n+1[AL] +

∫
M2n

LanomSK [AR,AL] , (6.8)

23This can easily be shown by a similar argument as in Appendix E. However, the observation that one
recovers the correct anomalous conservation equations is quite obvious from the fact that the structure of
the Chern-Simons terms in the action (6.3) is such that it gives the correct inflow.
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where Sn−a[A] is the part of the hydrodynamical effective action that is non-anomalous and
ICS2n+1[A] has been defined in §5.2. By the identity (5.9), we can rewrite the Chern-Simons
bulk pieces of Eq. (6.8) in terms of transgression forms:

SanomSK =

∫
M2n+1

(
T2n+1[AR, ÂR]− T2n+1[AL, ÂL] + ICS2n+1[ÂR]− ICS2n+1[ÂL]

)
+

∫
M2n

(
B2n[AR, ÂR]−B2n[AL, ÂL] + LanomSK [AR,AL]

)
. (6.9)

While there is more than one way to write the difference of the left and right Chern-
Simons forms in terms of a transgression form (one could simply have written T (AR,AL)

for example), we are using the prior knowledge of (5.15) to start assembling pieces that
capture the anomaly in the fluid dynamical theory.

The first two terms in (6.9) are transgression forms and therefore gauge covariant; in
fact they are nothing but the anomalous effective action for the right and left currents,
cf., (5.15). Thus LanomSK must be such that together with the remaining terms we obtain
a gauge invariant expression. But there is a unique gauge invariant object which contains
the difference ICS2n+1[ÂR] − ICS2n+1[ÂL] which is simply the transgression between the right
and left hydrodynamic shadow fields, i.e., the transgression form T 2n+1[ÂR, ÂL]. Based on
this observation, and the fact that LanomSK should also contain the B-terms between AR,L

and their shadows, we conclude that the unique gauge invariant action which is consistent
with the ansatz (6.8) is simply

LanomSK [AR,AL] = −
(
B2n[AR, ÂR]−B2n[AL, ÂL] + B2n[ÂR, ÂL]

)
, (6.10)

This implies that the anomalous part of the Schwinger-Keldysh action is the sum of
three transgression forms

SanomSK =

∫
M2n+1

(
T2n+1[AR, ÂR]− T2n+1[AL, ÂL] + T2n+1[ÂR, ÂL]

)
. (6.11)

This action clearly respects all symmetries of the theory and also has the desired amount
of inflow into the left and right parts by construction.

While the result was obtained by demanding that the Schwinger-Keldysh action obeys
the correct symmetries (which in particular demands the appropriate amount of inflow)
the final result can be interpreted in a simple manner. Recall that the hydrodynamic
shadow fields ÂL,R are proxies for the gauge field on the horizon in the deconstruction
picture §5.1. Putting this together with the Schwinger-Keldysh formalism, we have a-priori
independent terms for the left and right halves of the eternal black hole Kruskal geometry.
However, since the geometry has a single bifurcation surface which connects the left and
right black holes, one might ask if there isn’t an ‘interaction’ term which communicates
across the bifurcation surface. In the absence of anomalies such a term is unnecessary and
indeed from the geometric picture one expects the left and right theories to be decoupled.
However, in an anomalous theory the anomaly inflow between the left and right parts
must be carefully regulated to ensure gauge covariance of the action. The extra term
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T2n+1[ÂR, ÂL] encountered in (6.11) can therefore be interpreted as a gluing condition to
join the R and L contours that are described by the first two transgression forms. Note
that to infer its presence we really need to work with the doubled system: a single copy of
the action is incapable of revealing this intricate structure.

One can argue for the presence of such a gluing term more generally. From the general
form of the Schwinger-Keldysh action, Eq. (6.3), one might naively expect that the doubled
system has a gauge symmetry GR × GL acting independently on the two branches. For
example in the abelian case with G = U(1) the action is AR,L → AR,L − dΛR,L or equiva-
lently A→ A−dΛ, and a→ a−dλ with Λ = 1

2(ΛR+ ΛL) and λ = ΛR−ΛL. However, the
existence of non-vanishing cross-contour correlation functions in the Schwinger-Keldysh for-
malism demands that this symmetry be spontaneously broken to a single Gdiag ⊂ GR×GL
(i.e., λ = 0 in the abelian case). The new term T2n+1[ÂR, ÂL] precisely captures the
correct gauge invariant data for such a symmetry breaking pattern.

Let us now show that the third term in the action (6.11) indeed modifies the anomalous
Ward identities in the correct way. In fact, it easy to see that this term does not change the
anomalous current at all, but only the anomaly. To this end, let us start by considering the
current conservation equation for an abelian U(1) current (the non-abelian generalization
is straightforward). The variation with respect to the source a of the new contribution to
the action is given by (see Eq. (D.36))

δa

(∫
M2n+1

T 2n+1[ÂR, ÂL]

)∣∣∣∣
linear in a

=

∫
M2n+1

δab J̃
b
(2n+1) (6.12)

where we only keep track of terms linear in a and defined

J̃ a
(2n+1) = P ab Ĵ

b
H

abelian−−−−→ P ab
(n+ 1)cA

2n
εb l1m1···lnmnF̂l1m1 · · · F̂lnmn . (6.13)

This is a pure bulk current and therefore, by means of an analogous argument as in Ap-
pendix E, it contributes to the anomaly inflow for the current associated to variations with
respect to a (i.e., Jhydro) but it does not affect the particular form of Jhydro itself. Just
as in Appendix E, its contribution to the anomalous current conservation is J̃⊥(2n+1).

24 We
conclude that

d ? Jhydro ≡ d ? (Jn−a + Janom) = ?
(
J⊥H − Ĵ⊥H + J̃⊥(2n+1)

)
= ?J⊥H

abelian−−−−→ (n+ 1) cA

(
F n − F̂ n

)
+ ?J̃⊥(2n+1) = (n+ 1)cAF

n , (6.14)

24Note that as we consider two copies of the gauge field, we also need to consider two copies of the
phase field ψ. This defines an R and an L chemical potential as well as Â = A + 1

2
(µR + µL)u and

â = a + (µR − µL)u. Strictly speaking, a doubling of the Goldstone fields φI is also implied. We can,
however suppress this fact because it is not relevant for our discussion. In the present context a doubling
of the metric is not necessary either; this will however be discussed in §6.1.3 in the context of stress tensor
Ward identities.
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as desired. Here Janom gets contributions from the first two pieces of the action (6.11)
alone, which is the result computed earlier in Eq. (6.6), and Jn−a is due to the non-
anomalous action. This shows that the Schwinger-Keldysh formalism as advertised is indeed
powerful enough to solve the problem of the “hydrodynamic shadow anomaly”. By a natural
modification of the action in the doubled system, we have successfully recovered the correct
hydrodynamical Ward identity for the current. In the next subsection we show how this
reasoning can be applied to the stress tensor Ward identity, as well, thereby completing our
derivation of an anomalous effective action in hydrodynamics.

6.1.3 Anomalous stress tensor conservation

We can now perform a similar analysis for the stress tensor Ward identity which is connected
to the metric and diffeomorphism invariance. By analogous reasoning as for the U(1)

gauge field, we need to consider two copies of the metric gR and gL with independent
diffeomorphism symmetry (as expected for a generally covariant effective action). The
linear combination g = 1

2 (gR + gL) is the classical background metric and γ = gR − gL the
difference metric which describes small fluctuations.25

In order to get physical hydrodynamical quantities, one only needs to keep track of γ
at linear order and in the end take the coincidence limit γ = 0. As in the case of the global
symmetry, the anomalous Schwinger-Keldysh action (6.11) reduces to the “classical” result
only in this limit. To be specific, the metric dependence of the individual terms in the third
transgression form that connects the R and L branches is assumed to be as follows:

T 2n+1[ÂR, ÂL; gR, gL] = ICS2n+1[ÂR; gR]− ICS2n+1[ÂL; gL]− dB2n[ÂR with gR, ÂL with gL] ,

(6.15)

where the last term is meant to be such that right and left fields are contracted with gR and
gL respectively. It is then straightforward to show that variations of (6.15) with respect to
the difference metric γ are given by (see Eq. (D.36))

δγ

(∫
M2n+1

T 2n+1[ÂR, ÂL; gR, gL]

)∣∣∣∣
linear in γ,a=0

=

∫
M2n+1

√
−G 1

2
δγab T̃

ab , (6.16)

with a tensor

T̃ ab = µ
(
P acu

b + P bcu
a
)
ĴcH

abelian−−−−→ µ
(
P acu

b + P bcu
a
)[(n+ 1)cA

2n
εc l1m1···lnmnF̂l1m1 · · · F̂lnmn

]
, (6.17)

whose indices are all contracted with the common metric 1
2(gL + gR). The same kind of

argument that we outline in Appendix E implies that this pure bulk tensor leaves the anoma-
lous stress tensor itself unchanged. However, the conservation equations get a contribution
proportional to the component T̃⊥α and read

∇βTαβhydro ≡ ∇β
(
Tαβn−a + Tαβanom

)
= FαβJ

β
hydro − µuα Ĵ⊥H + T̃⊥α = FαβJ

β
hydro , (6.18)

25In the same sense that a being small in §6.1.2.

– 35 –



which is the correct hydrodynamic anomaly without shadow field contributions. The upshot
of this discussion is simply to affirm that we have an effective action which captures the
physics of quantum dynamics in the presence of anomalies in the hydrodynamic limit.

7 Conclusion

The main result of the paper is an effective action for non-dissipative fluids which captures
the flavour anomaly contribution in the hydrodynamic limit. The action is constructed
exploiting the Schwinger-Keldysh framework, and involves a novel interaction term between
the forward and reversed contours.

In particular, in terms of the hydrodynamical variables φIL,R, cL,R (or ψL,R in the
abelian case) and the background source flavour gauge fields AL,R on the two contours, the
total effective action can be written as the sum of transgression forms. To wit,

SSK = Sn−a[φR, cR,AR]− Sn−a[φL, cL,AL]

+

∫
M2n+1

T2n+1[AR, ÂR]− T2n+1[AL, ÂL] + T2n+1[ÂR, ÂL] , (7.1)

where Sn−a[φ, c,A] is the anomaly free part of the effective action for non-dissipative fluids.
The transgression forms capture all the anomalous terms and are to be interpreted in the
language of anomaly inflow. Note that this piece of the effective action only depends on
the effective field theory degrees of freedom φI and c through the hydrodynamic velocity
and chemical potential which enter into the definition of the shadow gauge potential Â.

The construction crucially employs the anomaly inflow mechanism. We have coupled
our hydrodynamic effective field theory in d = 2n dimensions to a topological Hall insulator
theory in (2n+ 1)-dimensions to ensure that the total Schwinger-Keldysh effective action is
gauge invariant under the flavour symmetry. We have shown explicitly that the action (7.1)
reproduces all of the anomaly induced hydrodynamic transport and the resulting currents
obey the requisite Ward identities, cf., Eqs. (6.14) and (6.18).

The curious aspect our construction is the presence of the hydrodynamic shadow gauge
field Â = A+ µu which necessitates a non-trivial mixing between the two contours in the
Schwinger-Keldysh construction.

The shadow gauge field which plays a critical role needs a better understanding. In §5
we argued that in a holographic context Â should be related to a “horizon gauge field” Ah

which gauges the chemical shift symmetry (2.16). This motivates our terminology of calling
Â a “shadow” of the gauge field A; the field Â lives at the boundary but it just reflects
the horizon gauge symmetry, viz., the chemical shift symmetry. It captures the appropriate
coupling to the Goldstone mode (the Wilson line between horizon and boundary). Vis a
vis, the cross-contour term in (7.1) as remarked in §1 one can give a heuristic argument by
tracking the anomaly inflow between the two contours via the Hall insulator. We believe
that this picture can be developed further using holographic embedding of anomalous fluid
dynamics and in fact one should be able to derive (7.1) using the techniques described in
[9, 54].
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We also note in passing that the shadow gauge field seems to appear whenever parity-
odd transport phenomena is considered, cf., [44] in the context of (2 + 1)-dimensions. It is
interesting to speculate whether the inclusion of cross-contour terms is necessary to account
for Hall viscosity in that context.

The present discussion has been confined to flavour anomalies in QFTs. Another source
of anomaly induced transport is from Lorentz and mixed anomalies. It is interesting to ask
whether the formalism developed herein can capture these contributions to hydrodynamics
as well. We believe that a naive generalization of our construction to include transgres-
sion forms involving the background gravitational connection (and its shadow counterpart)
should be able to account for part of the transport. However, not all gravitational effects
seem to be captured this way. In the language of [29] the transcendental pieces of anoma-
lous transport seem to be outside the remit of the effective action approach, in part because
they necessitate non-trivial changes to the entropy current (and our effective action works
primarily in the entropy frame). It would be interesting to develop this argument further
and ascertain where the bottle-necks are.

Finally, it is interesting to speculate that the formalism developed here could be used
to go beyond hydrodynamics and provide insight into anomaly induced out-of-equilibrium
dynamics.
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A Contributions to the anomalous constitutive relations in d = (3 + 1)

The complete action which consistently gives rise to the anomaly in 3+1 dimensions is
presented in (3.9) which we decomposed as Sanom = SwzI +SwzII +SCS. In this appendix,
we list the contributions to the currents from each of these three terms. Our definition
of the currents is the standard one where we vary the effective action with respect to the
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sources:

Tαβanom =
2√−g

δSanom
δgαβ

, Jαanom =
1√−g

δSanom
δAα

. (A.1)

We will make use of the following (off-shell) identities at various stages to simplify the terms

u[αBβ] = 1
4ε
αβρσ(Fρσ − 2uρEσ) , (A.2)

u[αB̂β] = 1
4ε
αβρσ(F̂ρσ − 2uρ Êσ) , (A.3)

u[αωβ] = 1
4ε
αβρσ(∂ρuσ + uρ aσ) , (A.4)

along with Eq. (3.5). For convenience, let us first record the variations of various quantities
with respect to the metric:

δgu
α =

(
uα

2

)
uαuβδgαβ , (A.5)

δgs = −
(s

2

)
Pαβδgαβ , (A.6)

δgµ =
(µ

2

)
uαuβδgαβ , (A.7)

δgχ =
(

2µζαuβ − ζαζβ
)
δgαβ . (A.8)

The first two (4-dimensional) terms in the full action, SwzI + SwzII , yield the following
contributions to the current:

JαwzI = −2ℵ
[
BνDνψ + B̂ν(D̂νψ − Âν)

]
uα + 2ℵµBα + ℵ εανρσAνFρσ

+ ℵ εανρσ(D̂νψ − Âν)F̂ρσ − 2ℵ εανρσDνψ uρEσ , (A.9)

JαwzII = [(ηω,µ − 2 ηB)ωνDνψ + ηB,µB
νDνψ]uα

+ [2(ηω,χω
ν + ηB,νB

ν)Dνψ] ζα

+ (ηω + 2µηB)ωα + 2ηBB
α

+ ηB,χε
ανρσDνψuρ∇σχ

+ ηB,µ ε
ανρσDνψ uρ∇σµ+ ηB ε

ανρσDνψuρaσ , (A.10)

TαβwzI = −4ℵµB̂ν(D̂νψ − Âν)uαuβ + 2ℵµε(ανρσ(D̂νψ − Âν)F̂ρσu
β) , (A.11)

TαβwzII = − [s (ηω,sω
ν + ηB,sB

ν)Dνψ]Pαβ

+ [(µηω,µ − 2ηω)ωνDνψ + (µηB,µ − ηB)BνDνψ]uαuβ

− [2 (ηω,χω
ν + ηB,χB

ν)Dνψ] ζαζβ

+
[
4µηωω

(α + (ηω + 2µηB)B(α + 4µ(ηω,χω
ν + ηB,χB

ν)Dνψ ζ
(α

+ ηω,χε
(ανρσDνψuρ∇σχ− ηω,µ ε(ανρσDνψ uρÊσ

]
uβ) , (A.12)

There are several gauge non-invariant pieces in the expressions (A.9, A.11). This is to
be expected since the computation above picks out the analog of the consistent current for
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our theory. In particular, without the hatted term in SwzI we would precisely have been
computing the consistent current for our theory. These are the currents that satisfy the
Wess-Zumino consistency conditions (commutativity of variations of the gauge field with
gauge transformations). However, their gauge variation is non-vanishing δA(SwzI+SwzII) 6=
0.

To compute the gauge-covariant currents we would just add appropriate Bardeen-
Zumino terms [58]; we implement this using the Chern-Simons action in the bulk spacetime
explicitly. Varying SCS with respect to either gαβ or Aα gives after an integration by parts

δSCS = −3ℵ
∫
M5

[
δA ∧ F ∧ F − δÂ ∧ F̂ ∧ F̂

]
− 2ℵ

∫
∂M5

(δA ∧A ∧ F − δÂ ∧ Â ∧ F̂ ) .

(A.13)

We see that the variations leave behind a boundary term that can be included in our
definition of the current. The contribution on the 4-dimensional physical space is therefore

δSCS
∣∣
4-dim = −ℵ

∫ √−g εαβρσ(δAαAβFρσ − δÂα ÂβF̂ρσ) , (A.14)

from which we obtain

TαβCS = −
[
4ℵµ B̂νÂν

]
uαuβ + 2ℵµ ε(ανρσÂνF̂ρσuβ) , (A.15)

JαCS =
[
−2ℵ B̂νÂν

]
uα − ℵ εανρσ(AνFρσ − ÂνF̂ρσ) , (A.16)

which precisely cancels the gauge non-invariant pieces in (A.11, A.9). Using the identity
(A.2), we can then simplify the resulting gauge invariant objects:

TαβwzI + TαβCS = −
[
4ℵµ B̂νD̂νψ

]
uαuβ + 2ℵµε(ανρσD̂νψF̂ρσu

β)

= 4ℵµ ε(ανρσDνψuρÊσ u
β) , (A.17)

JαwzI + JαCS = −2ℵ
[
BνDνψ + B̂νD̂νψ

]
uα + 2ℵµBα + ℵ εανρσD̂νψF̂ρσ

− 2ℵ εανρσDνψuρEσ

= 2ℵ εανρσDνψuρ(Êσ − Eσ)− 2ℵBνDνψ u
α + 2ℵµBα . (A.18)

The full stress-energy tensor and charge current in §3.3 are now easily obtained by adding
the contributions (A.17, A.18) to (A.12, A.10).

B Relation to other approaches

For completeness, we now show that our result for the anomalous transport agrees with
other computations in the literature. Firstly we illustrate that the standard result presented
in [9] is indeed recovered by rotating our answer from the entropy frame to the Landau
frame. Since this has been already established in [13] we will be relatively brief. We also
then demonstrate that our action when restricted to stationary fluid flows reproduces the
anomalous part of the equilibrium partition described in [22].
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B.1 The anomaly in Landau frame

The precise form of the solution (3.10, 3.11) to anomalous transport, is parameterized by
the fluid dynamical variables uµ, s, µ. Within hydrodynamics these fields are a-priori am-
biguous as they may be changed by a field redefinition. So the theory is only unambiguously
defined once we eliminate the freedom of field redefinitions by supplementing the consti-
tutive relations (2.1) with some additional constraints. Eliminating the field redefinition
ambiguity thus, is referred to as choosing a fluid frame. One choice of a fluid frame which
is commonly used is the Landau frame where the field redefinition ambiguity is fixed by
imposing qα = uαΠαβ = uα ν

α = 0. The effective action formalism, on the other hand, au-
tomatically lands us in the entropy frame wherein imposes JαS = s uα as an exact statement
to all orders in the derivative expansion.

The result (3.10, 3.11) is the first order realization of the anomalous part of the con-
stitutive relations in entropy frame. In order to rotate this result to Landau frame, we
need to make the anomalous heat current contribution in Tαβ vanish. This is achieved by
performing the field redefinition uα → uα − 1

2
qαanom
ε+P and taking cA = −C

6 yields (see also
[13])

Tαβ(Landau) = (ε+ P )uαuβ + Pgαβ + . . . , (B.1)

Jα(Landau) = ρ uα + C µ2

(
1− 2

3

ρµ

ε+ P

)
ωα + Cµ

(
1− 1

2

ρµ

ε+ P

)
Bα + . . . , (B.2)

Jαs (Landau) = s uα − C s

ε+ P

(
2

3
µ3 ωα +

1

2
µ2Bα

)
+ . . . , (B.3)

where ellipses represent first and higher order corrections in gradients.
The hydrodynamical constitutive relations (B.3) is just the answer for anomalous trans-

port derived in [9] using the entropy current analysis. In deriving this expression use was
made of the zeroth order fluid equations of motion, rendering the construction dependent
on on-shell data. In particular, determining the contribution of the anomalous transport
to higher orders, requires knowledge of qαanom and equations of motion beyond the leading
order in gradients. Our construction is absolved of such complications since the entropy
frame analysis as noted already in [13] side-steps the issue by being explicitly off-shell.

B.2 Recovering the equilibrium partition function

In [22, 23] it has been shown how the hydrodynamic constitutive relations are constrained
by the requirement of the existence of a stationary flow on arbitrary spatially (slowly)
varying backgrounds. Furthermore, the physics of such time-independent flows can be
encapsulated in an equilibrium partition function of the sources. If we restrict the action
which we proposed in §3 to such stationary flows, one would expect to recover the anomalous
part of the equilibrium partition function of [22].26 We now demonstrate this explicitly for
our action Sanom, providing yet another consistency check.

26See also [24, 25] for related discussions of anomalous transport from the equilibrium partition function
perspective.
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In order to write down the equilibrium solution, we pick an arbitrary background
geometry and gauge field configuration which is time-independent. Essentially we write
down the most general set of background sources with a timelike Killing vector ∂t. The
metric and gauge field can be brought into a canonical form (choosing spatial coordinates
xi (i = 1, 2, 3))

ds2 = −e2σ(~x)(dt2 + ai(~x)dxi)2 + gij(~x)dxidxj , (B.4)

Aα = (A0(~x), Ai(~x)) , (B.5)

with Kaluza-Klein gauge field ai(~x). Written in terms of the above parametrization, there
exists a stationary (equilibrium) solution to the prefect fluid equations of motion:

uαeq(~x) = e−σ(~x)δαt , Teq(~x) = T0 e
−σ(~x) , µeq(~x) = A0 e

−σ(~x) . (B.6)

To compare with the equilibrium action (viewed as a functional of the background
sources), we just need to evaluate Sanom on (B.6). The relevant fields take the following
values in equilibrium:

ωαeq =
(

0, 1
4 e

σ εijkfjk

)
, (B.7)

Bα
eq =

(
0 , 1

2ε
ijk(F̃jk +A0fjk)

)
, (B.8)

(Dαψ)eq = Aα = (A0 , Ai) , (B.9)

(D̂αψ)eq = Âα = (A0 + µ(0), Ai) , (B.10)

where F̃jk = 2 ∂[jÃk] and fjk = 2 ∂[jak]. Here, objects with a tilde refer to the Kaluza-Klein
gauge invariant combination

Ãα ≡ (A0 + µ(0), Ai −A0 ai) . (B.11)

Furthermore, to derive (B.9, B.10), we are assuming that the phase ψ → 0 in equilibrium.
We now plug the above stationary solution into our anomaly action (3.9). In order to

obtain a partition function as in [22], we reduce the resulting on-shell action on the Eu-
clidean thermal circle with period 1

T0
. The part of the action SwzI and the four-dimensional

boundary contribution of SCS vanish in equilibrium. We thus obtain for the (Euclidean)
equilibrium action (taking cA = −C

6 )

Sanom

∣∣∣∣
eq

= SwzII

∣∣∣∣
eq

=
C

3

∫
d4x
√−g

(
1

2
A0 e

−σ εijkÃiF̃jk +
1

4
A2

0 e
−σ εijkÃifjk

)
=
C

3

∫
d3x
√
g3

(
A0

2T0
εijkÃiF̃jk +

A2
0

4T0
εijkÃi fjk

)
, (B.12)

where we have done the time-circle reduction and denote the 3-dimensional metric determi-
nant by g3. The result (B.12) is exactly what the authors of [22] find for their equilibrium
partition function.
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C The anomaly in d = (1 + 1) derived from our formalism

In this appendix we re-derive the result of [42] for the anomaly in two dimensions using the
formalism that we developed in §4. Although our logic is quite close to the one used there,
we will point out the reason why [42] got the correct equations of motion even without
using an appropriate Schwinger-Keldysh formalism (c.f. §6).

We start by writing down the relevant pieces of the action according to our prescription:

SwzI = −cA
∫
M2

Dψ ∧A− D̂ψ ∧ Â , (C.1)

SCS = cA

∫
M3

A ∧ F − Â ∧ F̂ , (C.2)

SwzII = −cA
∫
M2

√−g η(s, µ) εαβDαψuβ , (C.3)

where η(s, µ) has to be determined such that the full action is invariant under the chemical
shift symmetry. Adding up these actions gives the action of [42] up to two differences: (i)
we include a Chern-Simons action SCS to account for the anomaly inflow and (ii) we have
extra terms in both SwzI and SCS due to hatted connections. The former point is not too
important. We simply use SCS to derive the Bardeen-Zumino current which [42] just add
by hand. The second point however will be shown to lead to different equations of motion
than what is derived there.

From the two parts of the action SwzI + SCS, one finds the following contributions:

TαβwzI = [cAµ ε
ρσ∂ρψuσ]uαuβ − cAµ ε(αν∂νψuβ) , (C.4)

JαwzI = −cA εαν [(Aν −Dνψ)− (Â− D̂νψ)] + [cA ε
ρσ(D̂ρψ − Âρ)uσ]uα

= −cA εαν(Aν − Âν)− [cA ε
ρσÂρuσ]uα + cA ε

ανDνψ , (C.5)

TαβCS = [cAµ ε
ρσÂρuσ]uαuβ − cAµ ε(ανÂνuβ)

= −TαβwzI , (C.6)

JαCS = cA ε
αν(Aν − Âν) + [cA ε

ρσÂρuσ]uα

= −JαwzI + cA ε
ανDνψ , (C.7)

where the identity

u[αũβ] = 1
2ε
αβ with ũα ≡ εανuν (C.8)

has been used. We see that the added currents TαβwzI+TαβCS = 0 and JαwzI+JαCS = cA ε
ανDνψ

are much simpler than in d = 4 and in particular the contributions from hatted fields in
the different actions cancel. In d = 2 the hatted terms in the effective action do not have
any effect on the form of the final stress-energy tensor and charge current. This is a first
hint that here, unlike in higher dimensions, they may be unnecessary.

If we also include the contributions from SwzII , we find for the full stress-energy tensor
and charge current

Tαβanom = cAs η,s (ũνDνψ)Pαβ + cA [η − µ η,µ](ũνDνψ)uαuβ − 2cAµη ũ
(αuβ) , (C.9)

Jαanom = −cA [η,µ − 1](ũνDνψ)uα − cA(µ+ η) ũα . (C.10)
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Requiring these expressions to take the canoncial form (3.21) and (3.22), respectively, we
need to set η = µ and find the following gauge invariant data:

Tαβanom = −2cAµ
2 ũ(αuβ) , Jαanom = −2cAµũ

α . (C.11)

Naively calculating the divergence of just the anomalous piece of the current leads again to
a contamination by hatted fields:

∇αJαanom = 2cA ∇αεαβ(Aβ − Âβ) = cA ε
αβ(Fαβ − F̂αβ) . (C.12)

One can check that a Noether current argument as used in [42] leads to the same equations
of motion. We conclude that, although our prescription gives the same constitutive relations
(C.11) as in [42], the equations of motion are different.

In two dimensions, we thus encounter the same problem as in any higher dimension.
So why was it nevertheless possible for [42] to get the correct dynamics in d = 2 without
referring to a non-equilibrium Schwinger-Keldysh formalism as we do in §6? We will now
argue that this is quite coincidental. Using the identity (3.5) which still holds in d = 2, one
can readily check that Sanom as derived in this appendix is invariant under the chemical
shift ψ → ψ + f(φI). The calculation is similar to the 4-dimensional case. The crucial
difference is that the hatted parts of the action are already invariant under the chemical
shift by themselves. In particular,

δψ

[
cA

∫
D̂ψ ∧ Â

]
= cA

∫ √−g εαβ∂αf Âβ = 2cA

∫ √−g u[αũβ]∂αf Âβ = 0 . (C.13)

Secretly, this is the reason why the authors of [42] never had to talk about hatted fields in the
action SwzI and therefore also never had to account for their gauge non-invariance by adding
corresponding hatted Bardeen-Zumino terms; the invariance under chemical shift symmetry
can be implemented in d = 2 without introducing extra transverse contributions. As we
have shown above, adding these terms is of course allowed by symmetry and it does not
change the constitutive relations. It does however change the equations of motion. While
this change is optional (and therefore unnecessary) in two dimensions, it is unavoidable in
higher dimensions.

Let us now show consistency of this reasoning with the Schwinger-Keldysh picture that
we advocate in §6. We claim that treating the 2-dimensional case in Schwinger-Keldysh
formalism is particularly simple because there are no cross-contour terms, i.e. the Schwinger-
Keldysh action factorizes into two separate pieces which are just the R and L copies of the
action found in [42]. To be more precise, there is one piece in the Schwinger-Keldysh
action which does not factorize but which is beyond hydrodynamics and does not affect the
constitutive relations. To wit, we claim that for d = 2

SanomSK ≡
∫
M3

T3[AR, ÂR]− T3[AL, ÂL] + T3[ÂR, ÂL]

= SDHN [AR]− SDHN [AL] + Scross[AR,AL] , (C.14)
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where SDHN is the action of Dubovsky-Hui-Nicolis [42] including a Chern-Simons term (this
action contains no hatted gauge fields) and Scross is the remaining cross-contour piece,

SDHN [AR,L] = cA

∫
M3

AR,L ∧ FR,L +

∫
M2

(AR,L ∧DR,LψR,L + µR,L u ∧DR,LψR,L) ,

Scross = 2cA

∫
M2

d(ψR − ψL) ∧ Â . (C.15)

The cross-contour piece is manifestly independent of a, so it does not contribute to the
current Jhydro in Schwinger-Keldysh formalism. Similarly, one can check that it gives
no contribution to the hydrodynamic stress tensor. This term is thus hydrodynamically
irrelevant and SanomSK in d = 2 is physically equivalent to just two copies of SDHNS . This
explains why [42] were able to treat anomalies in d = 2 without referring to the Schwinger-
Keldysh formalism; the extra data in the Schwinger-Keldysh action (which is important
in higher dimensions) is irrelevant in d = 2 where the Schwinger-Keldysh action simply
factorizes.

We conclude by giving some details of the derivation of Eq. (C.14). The first two terms
in the second line of (C.14) can be extracted from the full action in terms of transgression
forms using the same arguments as in §5.2 . This leaves one with the following cross-contour
piece:

Scross = cA

∫
D̂RψR ∧ ÂR − D̂LψL ∧ ÂL − ÂR ∧ ÂL

= cA

∫
dψR ∧ [Pu(AR) + u iu(dψR)]− dψL ∧ [Pu(AL) + u iu(dψL)]− ÂR ∧ ÂL

= cA

∫ √−g [− (u · ∂ψR)(ũ ·DRψR) + (u · ∂ψL)(ũ ·DLψL)

+ (u · ∂ψR)(ũ ·AR)− (u · ∂ψL)(ũ ·AL)− (u · ∂(ψR + ψL))(ũ · a)
]

= cA

∫ √−g [(u · ∂ψR) [(ũ · ∂ψR) + 2(ũ ·A)]− (u · ∂ψL) [(ũ · ∂ψL) + 2(ũ ·A)]]

= cA

∫ √−g [−(uαũβ − ũαuβ)∂αψR ∂βψL

]
+ 2[u · ∂(ψR − ψL)]

[
ũ · D̂Ψ

]
= 2cA

∫ √−g εαβ∂α(ψR − ψL)Âβ , (C.16)

where we defined the common phase field Ψ ≡ 1
2(ψR + ψL) and the common covariant

derivative D̂Ψ = dΨ + Â, and we used the identity (C.8) in the second and in the last step.
Pu is the generalized transverse projector which acts on p-forms α as Pu(α) ≡ α+iu(α)∧u.

D Transgression forms and their variation

We collect various useful formulae for the variation of transgression forms which are useful
to derive the Ward identities and currents described in the text.
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D.1 Variation of Chern-Simons term

We begin by calculating the variation of ICS2n+1

δICS2n+1 = δA · ∂I
CS
2n+1

∂A
+ (DδA) · ∂I

CS
2n+1

∂F

= δA ·
[
∂ICS2n+1

∂A
+D

(
∂ICS2n+1

∂F

)]
+ d

[
δA · ∂I

CS
2n+1

∂F

]
.

(D.1)

This can be simplified further by introducing P = dICS2n+1 where P is the anomaly
polynomial associated with ICS2n+1 made of wedge products of F . Using this, we get

0 = dδICS2n+1 − δdICS2n+1 = dδICS2n+1 − δP

= δF ·
[
∂ICS2n+1

∂A
+D

(
∂ICS2n+1

∂F

)
− ∂P
∂F

]
− δA ·D

[
∂ICS2n+1

∂A
+D

(
∂ICS2n+1

∂F

)]
(D.2)

which implies

∂P
∂F

=
∂ICS2n+1

∂A
+D

(
∂ICS2n+1

∂F

)
. (D.3)

Thus, we can write

δICS2n+1 = δA · ∂P
∂F

+ d

[
δA · ∂I

CS
2n+1

∂F

]
. (D.4)

We can think of
∫
ICS2n+1 as the generating function describing the response of a Hall

insulator to probe electromagnetic fields. Then, by the above formula, the bulk Hall current
is given by

?2n+1 JH =
∂P
∂F

. (D.5)

The normal component of this Hall current J⊥
H

is the amount of charge that flows into the
boundary in the inflow picture and hence, J⊥

H
is also the covariant anomaly of the boundary

theory. It is convenient to define the (ac) Hall conductivity form σH as

σH ≡
∂

∂F
[?2n+1JH ] =

∂2P
∂F ∂F

. (D.6)

The boundary current contribution from
∫
ICS2n+1 is termed the Bardeen-Zumino cur-

rent. It is given by

? JBZ =
∂ICS2n+1

∂F
. (D.7)

This contribution, when added to the boundary charge current obtained by varying bound-
ary action, covariatises the boundary current.

In terms of these currents we can write

δICS2n+1 = δA · ?2n+1JH + d [ δA · ?JBZ ] . (D.8)
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D.2 Transgression forms

Let us now consider a continuous set of connections At parametrised by a parameter t ∈
[0, 1]. One can think of this set as interpolating between the connections At=0 and the
connections At=1. The variational formula then gives

d

dt
(ICS2n+1)t =

dAt

dt
·
(
∂P
∂F

)
t

+ d

[
dAt

dt
·
(
∂ICS2n+1

∂F

)
t

]
(D.9)

which can then be integrated to

(ICS2n+1)t=1 − (ICS2n+1)t=0 =

∫ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
+ d
{∫ 1

0
dt

[
dAt

dt
·
(
∂ICS2n+1

∂F

)
t

]}
=

∫ 1

0
dt

dAt

dt
· (?2n+1JH )t + d

{ ∫ 1

0
dt

dAt

dt
· (?JBZ )t

}
.

(D.10)

This is the basic transgression formula which can be used to write the difference between a
Chern-Simons form evaluated on two different connections. Note that the right hand side
is a sum of a covariant term (we remind the reader that expressions like dAt

dt depend on the
difference of two connections and hence transform covariantly) and an exact term.

Introducing the transgression forms

T 2n+1 (At) ≡
∫ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
=

∫ 1

0
dt

dAt

dt
· (?2n+1JH )t

B2n (At) ≡
∫ 1

0
dt

[
dAt

dt
·
(
∂ICS2n+1

∂F

)
t

]
=

∫ 1

0
dt

dAt

dt
· (?JBZ )t

(D.11)

we can write

(ICS2n+1)t=1 − (ICS2n+1)t=0 = T 2n+1 (At) + dB2n (At) . (D.12)

It is common to take the linear interpolation

At = t At=1 + (1− t)At=0 = At=0 + t∆A (D.13)

where we have defined dAt
dt = ∆A = At=1 −At=0. The field strength is given by

Ft ≡ dAt +A2
t = t Ft=1 + (1− t)Ft=0 − t(1− t)(∆A)2 . (D.14)

Our expressions above can easily be specialised to this case.
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D.3 Variation of transgression forms

Next, we would like to compute the variation of these transgression forms. A direct com-
putation gives

δT 2n+1 (At) =

∫ 1

0
dt

[
dδAt

dt
·
(
∂P
∂F

)
t

]
+

∫ 1

0
dt

[
dAt

dt
·
(

∂2P
∂F ∂F

·DδA
)
t

]
=

∫ 1

0
dt

[
dδAt

dt
·
(
∂P
∂F

)
t

]
+

∫ 1

0
dt

[
dFt
dt
·
(

∂2P
∂F ∂F

)
t

· δAt

]
− d
{∫ 1

0
dt

[
dAt

dt
·
(

∂2P
∂F ∂F

)
t

· δAt

]}
=

∫ 1

0
dt
d

dt

[
δAt ·

(
∂P
∂F

)
t

]
+ d
{∫ 1

0
dt

[
δAt ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

]}
=

(
δA · ∂P

∂F

)
t=1

−
(
δA · ∂P

∂F

)
t=0

+ d
{∫ 1

0
dt

[
δAt ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

]}
.

(D.15)

Next, we subtract from this expression the variation of the Chern-Simons terms

(δICS2n+1)t=1 − (δICS2n+1)t=0 =

(
δA · ∂P

∂F

)
t=1

−
(
δA · ∂P

∂F

)
t=0

+ d
{(

δA · ∂I
CS
2n+1

∂F

)
t=1

−
(
δA · ∂I

CS
2n+1

∂F

)
t=0

} (D.16)

to get

−δB2n (At) =

∫ 1

0
dt

[
δAt ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

]
+

(
δA · ∂I

CS
2n+1

∂F

)
t=0

−
(
δA · ∂I

CS
2n+1

∂F

)
t=1

+ d (. . .) .

(D.17)

We can write these variations in terms of Hall current, Hall conductivity and Bardeen-
Zumino currents as

δT 2n+1 (At) = (δA · ?2n+1JH )t=1 − (δA · ?2n+1JH )t=0

+ d
{∫ 1

0
dt

[
δAt · (σH )t ·

dAt

dt

]}
,

−δB2n (At) =

∫ 1

0
dt

[
δAt · (σH )t ·

dAt

dt

]
+ (δA · ?JBZ )t=0 − (δA · ?JBZ )t=1

+ d (. . .) .

(D.18)

We will now consider some examples which are useful study of anomaly-induced transport.

D.4 Example I: transgression between A and Â

The first example we consider is the transgression with At = A+ (1− t)µu where µ is the
chemical potential and u is the velociy 1-form in hydrodynamics. This is an interpolation
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from the hydrodynamic shadow field Â ≡ A+µu toA with ∆A = −µu. The corresponding
field-strengths are given by

F = dA+A2 = B + u ∧E
F̂ = dÂ+ Â2 = B̂ + u ∧ Ê = B + 2ωµ+ u ∧ (E −Dµ− aµ)

(D.19)

where a is the acceleration 1-form and ω is the vorticity 2-form of the fluid. B and E
are the rest frame magnetic 2-form and electric 1-form respectively. The interpolating
field-strength is Ft = tF + (1− t)F̂ since (∆A)2 = 0 . Further, we note that

dFt
dt

= F − F̂ = −2ωµ+ u ∧ (Dµ+ aµ)

dAt

dt
= A− Â = −µu =

u

2ω
∧ dFt

dt

(D.20)

from which it follows that

T 2n+1

(
A, Â

)
≡
∫ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
=
u

2ω
∧
∫ 1

0
dt

[
dFt
dt
·
(
∂P
∂F

)
t

]
=
u

2ω
∧
(
P − P̂

)
,

B2n

(
A, Â

)
≡
∫ 1

0
dt

[
dAt

dt
·
(
∂ICS2n+1

∂F

)
t

]
=
u

2ω
∧
∫ 1

0
dt

[
dFt
dt
·
(
∂ICS2n+1

∂F

)
t

]
=
u

2ω
∧
(
ICS2n+1 − ÎCS2n+1

)
.

(D.21)

To compute the variation of these transgression forms , we need to evaluate∫ 1

0
dt

[
δAt ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

]
= δA ·

∫ 1

0
dt

[(
∂2P
∂F ∂F

)
t

· dAt

dt

]
+ δu ∧

∫ 1

0
dt

[
(1− t)µ ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

] (D.22)

where we have used u ∧ dAt
dt = 0. We write∫ 1

0
dt

[
δAt ·

(
∂2P
∂F ∂F

)
t

· dAt

dt

]
= δA · ?JP + δu ∧ ?qP

where ? JP ≡
∫ 1

0
dt

[(
∂2P
∂F ∂F

)
t

· dAt

dt

]
?qP ≡

∫ 1

0
dt

∫ 1

t
ds

[
µ ·
(

∂2P
∂F ∂F

)
t

· dAt

dt

]
=

∫ 1

0
ds

∫ s

0
dt

[
µ ·
(

∂2P
∂F ∂F

)
t

· dAt

dt

]
.

(D.23)

These integrals can be easily computed: we get

?JP =

∫ 1

0
dt

[(
∂2P
∂F ∂F

)
t

· dAt

dt

]
=
u

2ω
∧
∫ 1

0
dt

[(
∂2P
∂F ∂F

)
t

· dFt
dt

]
=
u

2ω
∧
{∂P
∂F
− ∂P̂
∂F̂

} (D.24)
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and

?qP =

∫ 1

0
ds

∫ s

0
dt

[
µ ·
(

∂2P
∂F ∂F

)
t

· dAt

dt

]
= − u

(2ω)2
∧
∫ 1

0
ds

∫ s

0
dt

[
dFs
ds
·
(

∂2P
∂F ∂F

)
t

· dFt
dt

]
= − u

(2ω)2
∧
∫ 1

0
ds

dFs
ds
·
{(∂P

∂F

)
t=s

− ∂P̂
∂F̂

}
= − u

(2ω)2
∧
{
P − P̂ −

(
F − F̂

)
· ∂P̂
∂F̂

}
.

(D.25)

Thus, we have

δT 2n+1

(
A, Â

)
= δA · ?2n+1JH − δÂ · ?2n+1ĴH + d

{
δA · ?JP + δu ∧ ?qP

}
,

−δB2n

(
A, Â

)
= δA · ? (JP − JBZ ) + δu ∧ ?qP + δÂ · ?ĴBZ + d (. . .) .

(D.26)

We now use

δÂa = P baδAb + uau
bδ
(
c−1∂bc

)
+

1

2
µ
(
P bau

c + ubP ca

)
δgbc ,

δÂα = P βα δAβ + uαu
βδ
(
c−1∂βc

)
+

1

2
µ
(
P βαu

ρ + uβP ρα

)
δgβρ

(D.27)

to write

δ

∫
M2n+1

T 2n+1

(
A, Â

)
=

∫
M2n+1

√−g2n+1

{1

2

[
µ · Ĵc

H

(
P ac u

b + uaP bc

)]
δgab

+
(
Ja
H

+ P ab Ĵ
b
H

)
· δAa + µ · Ĵc

BZ
ucu

bδ
(
c−1∂bc

)}
+

∫
∂M2n+1

√−g2n

{1

2

[
qαPu

β + uαqβP

]
δgαβ + JαP · δAα

} (D.28)

and

−δ
∫
∂M2n+1

B2n

(
A, Â

)
=

∫
∂M2n+1

√−g2n

{1

2

[(
qαP + µ · Ĵρ

BZ
Pαρ

)
uβ + uα

(
qβP + µ · Ĵρ

BZ
P βρ

)]
δgαβ

+
(
JαP − JαBZ + Pαβ Ĵ

β
BZ

)
· δAα + µ · Ĵρ

BZ
uρu

βδ
(
c−1∂βc

)}
+ Boundary terms

(D.29)

Hence, for a general non-abelian flavour symmetry, we have Jµanom = JµP and qµanom = qµP
where {JµP , qµP} are given by (D.24) and (D.25) respectively.
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D.5 Example II: right to left transgression form

The second example we consider is the transgression with At = tÂR + (1 − t)ÂL which
is an interpolation from the hydrodynamic shadow field ÂL in the left Schwinger-Keldysh
contour to ÂR in the right Schwinger-Keldysh contour. As we argued in the main text,
this contribution to the Schwinger-Keldysh functional of an anomalous theory is necessary
to reproduce the correct conservation equations.

The corresponding field-strengths are given by

F̂R = dÂR + Â2
R = B̂R + uR ∧ ÊR = BR + 2ωRµR + uR ∧ (ER −DµR − aRµR)

F̂L = dÂL + Â2
L = B̂L + uL ∧ ÊL = BL + 2ωLµL + uL ∧ (EL −DµL − aLµL)

(D.30)

where a is the acceleration 1-form and ω is the vorticity 2-form of the fluid. B and E are
the rest frame magnetic 2-form and electric 1-form respectively. The subscripts L and R
signify which set of fields {φ, ψ} and sources {gµν , Aµ} are used in the construction of these
fields.

The interpolating field-strength is

Ft = tF̂R + (1− t)F̂L − t(1− t)(ÂR − ÂL)2

=
1

2

(
F̂R + F̂L

)
− 1

2
(1− 2t)

(
F̂R − F̂L

)
− t(1− t)(ÂR − ÂL)2

(D.31)

and dAt
dt = ÂR − ÂL. We are interested in studying the corresponding transgression forms

T R̂L̂
2n+1 ≡

∫ 1

0
dt

[
dAt

dt
·
(
∂P
∂F

)
t

]
BR̂L̂

2n ≡
∫ 1

0
dt

[
dAt

dt
·
(
∂ICS2n+1

∂F

)
t

] (D.32)

near the hydrodynamic limit, i.e., when the differences between the fields living on left
and the right contours are taken to zero. While the transgression forms themselves vanish
in this limit, as we will show below, their variations give a finite answer which solves the
‘shadow anomaly problem’.

We will begin by first looking at the boundary contribution:∫ 1

0
dt

[
δAt · (σH )t ·

dAt

dt

]
(D.33)

since dAt
dt = ÂR − ÂL → 0 in the hydrodynamic limit, we conclude that there is no

boundary contribution. This is consistent with the statement that {Jµanom, qµanom} calculated
in hydrostatic equilibrium do not receive corrections when we turn on time-dependence.

The finite contributions are given by

δT R̂L̂
2n+1 = δÂR · ?2n+1

(
ĴH

)
R
− δÂL · ?2n+1

(
ĴH

)
L
,

−δBR̂L̂
2n = −δÂR · ?

(
ĴBZ

)
R

+ δÂL · ?
(
ĴBZ

)
L

+ d (. . .) .
(D.34)
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We now use

δÂa = P baδAb +
1

2
µ
(
P bau

c + ubP ca

)
δgbc ,

δÂα = P βα δAβ +
1

2
µ
(
P βαu

ρ + uβP ρα

)
δgβρ

(D.35)

and then take the hydrodynamic limit, i.e., we set the fields on two Schwinger-Keldysh
contours equal keeping only linear terms in AR −AL ≡ a and gR − gL ≡ γ. This gives

δ

∫
M2n+1

T R̂L̂
2n+1 =

∫
M2n+1

√−g2n+1

{
P bc Ĵ

c
H
δab +

1

2
µ
(
P bau

c + ubP ca

)
Ĵa
H
δγbc

}
,

−δ
∫
M2n

BR̂L̂
2n = −

∫
M2n

√−g2n

{
P βρ Ĵ

ρ
BZ
δaβ +

1

2
µ
(
P βαu

ρ + uβP ρα

)
Ĵα
BZ
δγβρ

}
.

(D.36)

As we argue in the main text, this is exactly the contribution needed to cancel the shadow
contributions to the conservation equations.

E Derivation of anomalous dynamics from effective action

In this appendix we present a similar argument as in [29] in order to derive the current and
stress tensor conservation equations from the requirement of gauge and diffeomorphism
invariance of the full action. For the sake of concreteness we will sometimes refer explicitly
to the abelian action Sanom = SwzI +SwzII +SCS ≡ S(2n)

a +SCS in d = 2n as given in §4.1.
However, we keep the notation sufficiently abstract such that the discussion will be very
general and applies to every theory whose total effective action is a sum of any boundary
action S(2n)

a and a Chern-Simons term SCS.
Consider first the variation of the 2n-dimensional part of the action under variations

of the metric, gauge field and ψ:

δS(2n)
a =

∫
M2n

√−g2n

(
1

2
Tαβ(a) δgαβ + Jα(a)δAα + Zα(a)δ(∂αψ)

)
. (E.1)

Now consider infinitesimal gauge and diffeomorphism transformations

δλAα = −∇αΛ +Aβ∇αξβ + (ξ · ∇)Aα = ∇α(Aβξ
β − Λ) + ξβFβα ,

δλgαβ = ∇αξβ +∇βξα , (E.2)

δλ(∂αψ) = ∇αΛ .

After an integration by parts, Eq. (E.1) thus yields

δλS
(2n)
a =

∫
M2n

√−g2n

[
Λ∇α

(
Jα(a) − Zα(a)

)
+ ξα

(
−∇βTαβ(a) + FαβJ

β
(a) −A

α∇βJβ(a)

)]
.

(E.3)

In order to get consistent equations of motion, we need to take into account the anomaly
inflow from the bulk action SCS, as well. We parameterize the variation of SCS as

δSCS =

∫
M2n+1

√−g2n+1

[
1

2
T ab(2n+1)δgab + Ja(2n+1)δAa + Za(2n+1)δ(∂aψ)

]
+

∫
∂M2n+1

√−g2n

[
1

2
TαβCS δgαβ + JαCSδAα + ZαCSδ(∂αψ)

]
, (E.4)
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where Latin indices refer to the (2n + 1)-dimensional bulk spacetime M2n+1 and Greek
indices refer to the boundaryM2n = ∂M2n+1, respectively (the bulk direction is denoted
by ⊥, i.e. a = (⊥, 0, 1, . . . , 2n− 1)). For concreteness, if we want to work out the anomaly
stemming from the Chern-Simons action

SCS =

∫
M2n+1

(
ICS2n+1 − ÎCS2n+1

)
,

This action would give explicitly

T ab(2n+1) = −µ
(
P ac u

b + P bc u
a
)
Ĵc
H
, Ja(2n+1) = Ja

H
− P ab ĴbH , Za(2n+1) = −uaubĴbH ,

TαβCS = −µ
(
Pαγ u

β + P βγ u
α
)
Ĵγ
BZ

, JαCS = Jα
BZ
− Pαβ ĴβBZ , ZαCS = −uαuβĴβBZ .

(E.5)

For the abelian case, we have

Jc
H

=
(n+ 1)cA

2n
εa1b1···anbnc Fa1b1 · · ·Fanbn

Ĵc
H

=
(n+ 1)cA

2n
εa1b1···anbnc F̂a1b1 · · · F̂anbn

Jβ
BZ

=
n cA
2n−1

εβγ1···βnγnAγ1Fβ2γ2 · · ·Fβnγn
Ĵβ
BZ

=
n cA
2n−1

εβγ1···βnγnÂγ1F̂β2γ2 · · · F̂βnγn

(E.6)

We take u⊥ = 0, i.e., the extension of the fluid on the 2n-dimensional physical space
into the bulk M2n+1 is accomplished by working with a (2n + 1)-dimensional fluid that
doesn’t move in the bulk direction. Furthermore, the bulk is consistently connected to the
boundary by demanding

√−g2n+1 ε
⊥α1···α2n

(2n+1) =
√−g2n ε

α1···α2n

(2n) , (E.7)

where subscripts denote dimension of the spacetime that the totally antisymmetric ten-
sor lives in. Using integration by parts, the variation under the infinitesimal coordinate
transformation (E.2) of SCS can then be written as

δλSCS =

∫
M2n+1

√−g2n+1

{
Λ∇a

(
Ja(2n+1) − Za(2n+1)

)
+ξa

(
−∇bT ba(2n+1) + F abJ

b
(2n+1) −Aa∇bJb(2n+1)

)}
+

∫
∂M2n+1

√−g2n

{
Λ
[
∇α (JαCS − ZαCS)−

(
J⊥(2n+1) − Z⊥(2n+1)

)]
+ ξµ

[
−∇βTαβCS + FαβJ

β
CS −Aα

(
∇βJβCS − J⊥(2n+1)

)
+ T⊥α(2n+1)

]}
.

(E.8)

We are now in the position to demand gauge and diffeomorphism invariance of the
2n-dimensional theory, i.e.,

δλS
(2n)
a + [δλSCS]∂M2n+1 = 0 . (E.9)
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Evaluating this equation using Tαβanom = Tαβ(a) +TαβCS and Jαanom = Jα(a) +JαCS gives the general
equations of motion for an anomalous theory:

∇αJαanom = J⊥(2n+1) , ∇βTαβanom = FαβJ
β
anom + T⊥α(2n+1) . (E.10)

where we have

J⊥(2n+1) = J⊥
H
− Ĵ⊥

H
, T⊥α(2n+1) = −µuα Ĵ⊥

H
, . (E.11)

For the particular case of Sanom being the abelian anomalous action from §4.1, Jαanom
and Tαβanom are given by the expressions (4.5, 4.6) and the Chern-Simons contributions (E.6)
give the following anomaly inflow:

J⊥
H

=
(n+ 1)cA

2n
εα1β1···αnβn Fα1β1 · · ·Fαnβn

Ĵ⊥
H

=
(n+ 1)cA

2n
εα1β1···αnβn F̂α1β1 · · · F̂αnβn

(E.12)

For the general non-abelian case, we have

P ≡ dICS2n+1 , ?2n+1JH ≡
∂P
∂F

, ?JBZ ≡
∂ICS2n+1

∂F
. (E.13)

For the current conservation equation, we have used that the detailed form of S(2n)
a

has been carefully engineered such that gauge invariance is preserved in the full theory,
which implies ∇α(Zα(a) + ZαCS) = 0 (as one can explicitly check). A comment is in order
concerning the invariance condition (E.9) which should also hold true for the (2n + 1)-
dimensional theory which has been constructed such that it is gauge invariant and manifestly
diffeomorphism invariant. Demanding the (2n + 1)-dimensional integral in Eq. (E.8) to
vanish gives a set of bulk equations of motion which must be satisfied for consistency.
Those equations corresponding to gauge invariance (Λ) are almost trivially seen to be
true. The equations corresponding to invariance under general coordinate transformations
(ξa) are more involved. They look like stress tensor conservation equations in (2n + 1)-
dimensional fluid dynamics and their purpose is to constrain in a consistent manner the
(a-priori undetermined) bulk components of the various fields involved.

The equations of motion (E.10) in general and the anomaly inflow (E.11) for our theory
of interest in particular, are the main results of this section.

F Brief review of Schwinger-Keldysh formalism for hydrodynamics

In this appendix we review some more details of the Schwinger-Keldysh (SK) technique
in general, thus motivating our calculations in §6. We will first explain the necessity of
a more refined formalism for non-equilibrium quantum field theory in general and then
introduce the single-time representation which allows for a more convenient way to write
SK actions because it does not require complicated integration contours. The seminal papers
by Schwinger and Keldysh are [66, 67]. Our discussion will mainly follow the presentation
in [65, 68, 69].

– 53 –



Consider the fundamental problem of quantum field (or many body) theory of calcu-
lating, for example, the 2-point Green’s function of some complex field Heisenberg operator
ψ:

G(x, x′) = −i〈Ω|T [ψ(x)ψ†(x′)]|Ω〉 , (F.1)

where T denotes standard time ordering and |Ω〉 is the ground state of the full interact-
ing theory. The usual trick to construct a perturbative expansion is by splitting off the
interactions from the Hamiltonian, i.e., H = H0 + Hint and switching to the interaction
picture. The operator U(t0, t) = T exp

(
−i
∫ t
t0
dt′Hint(t

′)
)
then defines time evolution of

interaction picture states and one finds in interaction picture

G(x, x′) = −i〈0|S†T [ψ(x)ψ†(x′)S]|0〉 = −i〈0|T [Sψ(x)ψ†(x′)]|0〉
〈0|S|0〉 , (F.2)

with the S-matrix S ≡ U(−∞,∞) and |0〉 the (early time) ground state of the non-
interacting theory defined by H0. The right hand side of this equation is the starting
point for the usual perturbative expansion. The second step in Eq. (F.2) comes about by
writing the late time groundstate in terms of the early time groundstate, i.e., 〈0|S† = 〈0|eiα
for some phase α which is compensated by 〈0|S|0〉 = eiα. Physically this corresponds to
the crucial assumption that the system evolves adiabatically and slowly follows its ground
state. The physical content of the non-interacting ground state |0〉 is therefore assumed not
to be changed by the time evolution which means that it can change only by a phase factor
eiα. This assumption is not justified in non-equilibrium situations.

The SK formalism solves this problem by avoiding any reference to the evolution of
the ground state at late times and by referring instead only to the ground state |0〉 at
t = −∞. This can be done by defining the SK S-matrix SC ≡ TC exp

(
−i
∫
C dt
′Hint(t

′)
)

with the contour C consisting of two antiparallel contours along the real axis (see Fig. 3)
and TC being the corresponding contour ordering operator which orders its arguments by
their order along the contour.

The corresponding SK Green’s function is defined as

GC(x, x
′) = −i〈Ω|TC [ψ(x)ψ†(x′)]|Ω〉 = −i〈0|TC [SC ψ(x)ψ†(x′)]|0〉 . (F.3)

Note that there is no normalizing denominator any more since the SK S-matrix satisfies
SC |0〉 = |0〉. In order to recover the analog of the causal Feynman propagator, the time
components of x and x′ in the expression (F.3) are both placed on the upper branch CR.
More generally, however, the times can be inserted on CL, as well. Therefore the SK 2-
point Green’s function is actually a 2 × 2 matrix containing real time Green’s functions
that correspond to the 4 combinations of inserting t and t′ on the branches CR and CL:

G(x, x′) =

(
GRR GRL
GLR GLL

)
=

(
GF G<
G> GF̃

)
, (F.4)
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where GF (x, x′) is the well known Feynman propagator, GF̃ (x, x′) is an “anti-causal” Feyn-
man propagator with reversed time ordering and there are two new cross-contour correlators:

GF (x, x′) = −i〈Ω|T [ψ(x)ψ†(x′)]|Ω〉 , (F.5)

GF̃ (x, x′) = −i〈Ω|T̃ [ψ(x)ψ†(x′)]|Ω〉 , (F.6)

G<(x, x′) = i〈Ω|ψ†(x′)ψ(x)|Ω〉 , (F.7)

G>(x, x′) = −i〈Ω|ψ(x)ψ†(x′)|Ω〉 . (F.8)

These four Green’s functions above are related by GF + GF̃ = G> + G<. It is thus
useful to perform a change of basis which results in the following physical Green’s functions
as linear combinations of the above:

GR(x, x′) ≡ −iθ(t− t′) 〈Ω|{ψ(x), ψ†(x′)}|Ω〉 = GF −G< , (F.9)

GA(x, x′) ≡ iθ(t′ − t) 〈Ω|{ψ(x), ψ†(x′)}|Ω〉 = GF −G> , (F.10)

GK(x, x′) ≡ −i〈Ω|[ψ(x), ψ†(x′)]|Ω〉 = GF +GF̃ . (F.11)

The first two of these are the familiar retarded and advanced Green’s functions, while the
third one is an additional “Keldysh” Green’s function.

We have now seen how the treatment of non-equilibrium systems forces us to consider
Green’s functions that involve integration along a SK contour C.27 We now want to put
these insights about 2-point correlators in a more general context and discuss generating
functionals in this formalism. The generating functional clearly involves integration over C
with a source term J (x) that can a-priori take different values on the two branches. If we
consider for simplicity just a real bosonic field ϕ(x), the generating functional reads

Z[J(x)] ≡ 〈Ω|TC exp

[
i

∫
C
L[ϕ(x)] + J (x)ϕ(x)

]
|Ω〉

= 〈Ω|TC exp

[
i

∫ t=∞

t=−∞
L[ϕR(x)] + JR(x)ϕR(x)− L[ϕL(x)]− JL(x)ϕL(x)

]
|Ω〉 ,

(F.12)

where the single time representation in the second line contains subscripts R and L that
indicate (generally independent) fields and sources on CR and CL which have been merged
on the real time axis. The minus sign in front of the part of the Lagrangian and sources
corresponding to CL compensates for the fact that these terms should be integrated back-
wards in time. Calculating correlation functions from Z[JR(x),JL(x)] as given by Eq.

27Let us make a few remarks concerning other integration contours. For details, we refer to [68]. If the
density matrix of the full system is known at some finite time t0, then it is not actually necessary to integrate
time from −∞ to ∞ and back. It can be shown that it is sufficient to integrate from t0 to max(t, t′) and
back again. The resulting correlation functions are, however, not suited for a perturbative expansion if
the system is interacting. Treating interactions by splitting the Hamiltonian as in the interaction picture,
requires to add a third part to the integration contour which looks like half a Matsubara contour and runs
from t0 to t0− iβ with β being the inverse temperature. For our purposes, this three part “Kadanoff-Baym”
contour is more complicated than necessary. Since we will be able to ignore initial correlations at t0, we
can safely take the limit t0 → −∞. Practically, this means that it will always be enough to work in SK
formalism defined by the integration contour C in Fig. 3.
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(F.12) gives the SK correlation functions of Eq. (F.4). The same generating functional also
encodes the physical correlators such as those in Eqs. (F.9-F.11). In order to get the latter
directly from functional derivatives with respect to arguments of the generating functional,
we switch to the “physical” basis for the fields and external currents:(

ϕc
ϕd

)
=

(
1
2(ϕR + ϕL)

ϕR − ϕL

)
,

(
J

j

)
=

(
1
2(JR + JL)

JR − JL

)
. (F.13)

The generating functional becomes

Z[J(x), j(x)] = 〈Ω|TC exp

[
i

∫ t=∞

t=−∞
L[ϕc + 1

2ϕd]− L[ϕc − 1
2ϕd] + Jϕd − jϕc

]
|Ω〉 , (F.14)

such that the difference source j(x) generates the response as a functional of the physical
common field ϕc(x). This is the piece of information that is most relevant to our discussion
in §6: the hydrodynamical current is the one which corresponds to a causal (retarded)
response and it is thus in SK formalism identified as deriving from variations with respect
to the difference source j(x) (the sources are in hydrodynamics of course the background
gauge field or the metric).

Note that the single time formulation is just a calculational tool. At the end of a
calculation, the fields that correspond to the forward and backward branches CR and CL
need to be set equal, i.e., ϕd = 0. In this sense the difference field ϕd describes (quantum)
fluctuations around the common physical field ϕc. It is worth noting that the common
source J(x) does not need to vanish in equilibrium; due to the simplified normalization of
SK Green’s functions (compare e.g. Eq. (F.2) against (F.3)) external sources JR and JL
need to be set equal at the end of a calculation, but there is no need for them to be set to
zero.

Also note that the fields of the forward and backward integration (or ϕR and ϕL in
the single time representation) are not completely independent. This becomes particularly
important if the Lagrangian L[φ] has some symmetry group G acting on ϕ [65]. Then
L[ϕR]−L[ϕL] seems to be symmetric under GR×GL. However, since there are cross-contour
correlation functions such as G<(x, x′) and G>(x, x′) which are generically non-zero and
must respect the symmetry of the Lagrangian, one can infer that this enlarged symmetry
must always be spontaneously broken to a single Gdiag ⊂ GR × GL acting on the whole
contour C.

G Conventions for differential forms

In this appendix, we briefly fix our conventions concerning Hodge duality and integration of
differential forms. In order to make our results well comparable, we adopt the conventions
of [13].

If Xµ dx
µ and Yµ dxµ are 1-forms, we define the Hodge dual (2n− 1)-form ?Y by

X ∧ (?Y) = −(?Y) ∧X = XµY
µ Vol2n , (G.1)
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where Vol2n is the volume form (the Hodge dual of a function f is ?f = f Vol2n). This
allows us, given a 1-form current J = Jµ dx

µ, to talk about the dual (2n− 1)-form current
?J instead.

When we write integrals and switch between differential form language and expressions
in coordinate charts, it is important to keep track of numerical factors. In particular, a
k-form X is related to its components by

X =
1

k!
Xµ1···µk dx

µ1 ∧ · · · ∧ dxµk . (G.2)

We define the Hodge-dual of a p-form V via

(?V )µ1µ2...µd−p ≡
Sign[g]

p!
Vν1ν2...νpε

ν1ν2...νp
µ1µ2...µd−p , (G.3)

or, in other words,

? V ≡ Sign[g]

p!(d− p)! Vν1ν2...νp ε
ν1ν2...νp

µ1µ2...µd−p dx
µ1 ∧ dxµ2 . . . ∧ dxµd−p . (G.4)

We note that acting on a p-form, the square of the Hodge-dual is given by

?2 = Sign[g](−1)p(d−p) ,

It is useful for various manipulations in the text to note that for a (d − p)-form V ,
defined via its Hodge dual in terms of lower forms Ai of rank qi, with

∑k
i=1 qi = p, i.e.,

? V = A1 ∧A2 ∧ . . . ∧Ak , (G.5)

we have in components

V µ1µ2...µd−p =
1

q1!q2! . . . qk!
εµ1µ2...µd−pα1...αq1β1...βq2 ...λ1...λqk

(A1)α1...αq1
(A2)β1...βq2 . . . (Ak)λ1...λqk .

(G.6)
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