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Abstract

Topics in Quantum Gravity and Quantum Information

by

Reginald Caginalp

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yasunori Nomura, Chair

This dissertation explores numerous applications of concepts from quantum information
theory to quantum gravity, the AdS/CFT correspondence, as well as holographic dualities
more generally. A recurring theme will be the notion that geometric quantities in the bulk
are dual to information-theoretic quantities in the boundary.

The Ryu-Takayanagi formula and related results tell us that entanglement entropies in the
CFT are given in terms of the areas of minimal surface in the bulk. This geometric formula
for entanglement entropy imposes inequalities on the entanglement entropies of various CFT
regions for static spacetimes, known as the holographic entropy cone. We will numerically
investigate the validity of the five-region inequalities for a specific dynamical spacetime, a
collapsing black hole spacetime. We find that, for all cases considered, all of the inequalities
are satisfied when the null energy condition is satisfied in the bulk, while all of the inequali-
ties are violated if the null energy condition is not satisfied in the bulk. This provides some
evidence for the validity of the five-region inequalities in general settings in AdS/CFT with a
dynamical bulk. We then discuss the complexity-action and complexity-volume conjectures
in the setting of holographic Friedmann–Robertson–Walker universes, which are more realis-
tic cosmological models than AdS space. These conjectures pass some non-trivial consistency
checks in these settings. Following this, operator complexity is studied numerically for one-
and two-qubit systems using Nielsen complexity geometry. Even though these are relatively
simple systems, some interesting similarities are found with the behavior of complexity for
more interesting, larger systems. Finally, we explore the use of sandwiched Renyi relative
entropy in holography, and in finite-dimensional models of quantum error correction.
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Chapter 1

Introduction

1.1 Quantum Gravity, Black Holes, and Holographic
Duality

Two of the cornerstones of modern physics, quantum mechanics and general relativity, have
revolutionized humanity’s understanding of the natural world. In certain settings, they
depart radically from classical physics, and many of their most consequential predictions
have been experimentally and observationally verified to a striking level of accuracy.

However, quantum mechanics and general relativity appear to be incompatible if one
tries to combine them in the most naive way. Applying the usual methods of quantum
field theory to the metric tensor of general relativity results in a non-renormalizable theory.
This suggests that the theory of quantum gravity may require a significant departure from
classical general relativity in how we conceive of space and time. Although classical general
relativity is expected to break down at around the Planck scale (around 1019 GeV, many
orders of magnitude above the energy scales achieved in any current or near-term particle
accelerators), there are many tantalizing hints of the nature of quantum gravity within
general relativity and quantum field theory.

An important example of this was the discovery that using classical general relativity
and quantum field theory on a curved background, black holes seem to obey a set of thermo-
dynamic laws [13]. In this formalism, a black hole has an entropy associated with it, known
as the Bekenstein-Hawking entropy [15], proportional to the area A of its event horizon,

SBH =
A

4GN

,

where GN is Newton’s gravitational constant, and we are working in units where ~ = kB =
c = 1. This is striking for several reasons. Firstly, in statistical mechanics, entropy is the
logarithm of the number of microstates of a given system. However, in classical general
relativity, a black hole is completely described by its mass, charge, and angular momentum.
This seems to imply that in the full quantum theory of gravity, black holes should have



CHAPTER 1. INTRODUCTION 2

microstates, with associated entropy A
4GN

. In addition, the Bekenstein-Hawking formula
seems to suggest that the entropy of a black hole scales with its event horizon area, rather
than with its volume, as in most classical systems. This result has led to conjectures on
bounds on the entropy of a matter configuration in a given spacetime region [14, 17, 16].
A couple of decades after the discovery of the Bekenstein-Hawking bound, the holographic
principle was proposed by ‘t Hooft and Susskind, which states that a theory of quantum
gravity of a given volume should be encoded on the boundary of that volume [90, 1].

Furthermore, Hawking discovered, by analyzing quantum fields on a classical curved
spacetime, that black holes radiate at a small but nonzero temperature [53, 54]. This is in
sharp contradiction to the expectations from classical general relativity, which predicts that
nothing can escape from inside a black hole. The discovery that black holes radiate also
implies that they gradually lose mass and will eventually evaporate, leaving only thermal
radiation behind. However, this is in tension with the expectation that the laws of physics
should conserve information. To see this, consider a star which collapses to form a black hole.
The black hole will eventually evaporate, leaving only the thermal radiation. The initial star
contains information about its constituent particles, their locations, velocities, and so on.
After the star has collapsed into a black hole and then evaporated, the resulting cloud of
radiation, according to Hawking’s calculation, will be described only by a small number of
parameters. Therefore, there is an apparent loss of a large amount of information. This
peculiarity is known as the black hole information paradox. A significant amount of research
over the last several decades has been dedicated to trying to resolve this paradox. In the
last few years, there has been substantial progress towards solving this problem in favor of
information conservation, and in showing in detail what happens to the information [82, 7,
81, 6].

Another important series of developments in the search for a theory of quantum gravity
has been the research on string theory, which posits that the fundamental particles of nature
are strings rather than particles. The vibrational modes of the string are quantum fields,
one of which is the gravitational field. In this way, string theory provides an ultraviolet-
complete theory of quantum gravity. This line of research has led to many important and
beautiful developments in theoretical physics and in pure mathematics. One particularly
pivotal advance was the discovery of the AdS/CFT correspondence by Maldacena in 1997 [71,
49, 96]. The AdS/CFT correspondence posits that any theory of quantum gravity in (d +
1)-dimensional asymptotically Anti-de Sitter (AdS) space (known as the “bulk” theory) is
equivalent to a conformal field theory (CFT) in d dimensions (known as the “boundary”).
The work of Maldacena therefore used string theory to provide a concrete realization of
the holographic principle. This remarkable equivalence of a theory with gravity to one
without gravity has been very useful in improving our understanding of quantum gravity,
since quantum field theory is relatively well understood. In addition, these holographic
dualities have been useful in studying strongly-coupled quantum field theories, which have
had numerous applications to other areas of theoretical physics, such as condensed matter
physics and nuclear physics.

AdS space is a homogeneous and isotropic solution to the vacuum Einstein equations
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of general relativity with a negative cosmological constant, Λ < 0. However, cosmological
observations indicate that our Universe is not AdS, and in fact indicate that the cosmolog-
ical constant is positive. Therefore, it would be of interest to try to develop holographic
descriptions of gravity for more realistic Friedmann-Robertson-Walker (FRW) universes. In
AdS/CFT, the holographic principle is realized by proposing that the bulk theory is encoded
on the conformal boundary of AdS space. It is therefore natural to investigate the surfaces
that encode the holographic description of gravity in FRW spacetimes. Much work has been
done in this direction in recent years [77, 78, 79, 86]. In particular, it has been proposed
that holographic descriptions of gravity are encoded in the holographic screens. For a given
spacetime, a holographic screen is a codimension-1 that is foliated by marginally trapped or
marginally anti-trapped codimension-2 surfaces. These codimension-2 surfaces that foliate
the holographic screen are known as leaves. These holographic screens satisfy several prop-
erties that are key features of the AdS/CFT correspondence. These results have been used
to obtain information about the entanglement structure of the holographic duals of gravity
theories in FRW spacetimes.

A major theme in research into the holographic dualities (as well as quantum field the-
ory) over the last 15 years has been the use of quantum information theoretic quantities and
methods to gain insight into holography and quantum gravity, and vice versa. This disser-
tation explores several uses of quantum information-theoretic concepts to better understand
various holographic dualities.

1.2 Quantum Information, Entanglement, and
Holographic Duality

A major advance in understanding the role that entanglement and quantum information play
in the AdS/CFT correspondence was the discovery of the Ryu-Takayanagi (RT) formula [85].
Consider a CFT state ρ with a static semi-classical bulk dual, and suppose Σ is a Cauchy
slice of the bulk at a moment of time-reflection symmetry, and suppose A is a boundary
subregion. If we approximate the Hilbert space of the CFT as factorizable, that is,

HCFT = HA ⊗HĀ,

where Ā is the complement of A, then we can calculate the reduced density matrix on A by
tracing out the complement of A, ρA = TrĀ(ρ). The entanglement entropy, or von Neumann
entropy, of the boundary subregion A can be calculated as usual

S(A) = −Tr(ρA log ρA).

The Ryu-Takayanagi formula then states that

S(A) =
minmArea[m]

4GN

,
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where GN is Newton’s gravitational constant, and m is a codimension-2 surface in the bulk
that shares its boundary with A (so that ∂m = ∂A), and is homologous to A (i.e., there exists
a subset χ of the bulk such that ∂χ = m∪A). There exist several important generalizations to
the Ryu-Takayanagi formula. For example, the Hubeny-Rangamani-Takayanagi formula [60]
(which is equivalent to the maximin construction of Wall [94]) is the covariant generalization
of the RT formula. In addition, perturbative corrections in GN have been discussed in the
literature [45]. It was recently proposed that the subregions of leaves that foliate holographic
screens in FRW spacetimes obey an RT-like formula. This passes several basic consistency
checks expected of an entanglement entropy, including strong sub-additivity [79, 86].

These formulae are remarkable for a number of reasons. First of all, that entanglement
in the boundary theory is equivalent to areas in the bulk gravitational theory–entanglement
is geometrized in the dual gravitational description. Computing entanglement entropies
for quantum field theories is, in general, very difficult. For CFT states with semi-classical
bulk duals, the RT formula (and its generalizations) allows us to compute entanglement
entropies by calculating areas of minimal surfaces, which are in general much easier to
compute. In addition, these formulas allow us to obtain a deeper understanding of the
entanglement structures of CFT states with semi-classical bulk duals. The RT formula
and its generalizations also play a prominent role in the connection between the AdS/CFT
correspondence and quantum error correction [5, 40, 51, 50].

This geometric entanglement entropy formula also allows for an elegant proof of strong
sub-additivity [58, 57, 94], which is an inequality that is true for an arbitrary quantum sys-
tem [69, 68]. That is, for any three spatial CFT sub-regions A,B,C, the following inequality
is obeyed

S(ABC) + S(B) ≤ S(AB) + S(BC),

where, e.g., S(ABC) denotes the entanglement entropy of A ∪ B ∪ C. In the same way, it
has also been shown that for a holographic CFT state, monogamy of mutual entanglement
is also obeyed [55, 57]. That is, again for three spatial CFT sub-regions A,B,C, we have

I(A : B) + I(A : C) ≤ I(A : BC),

where I denotes the mutual information between two regions. The mutual information
between two regions A and B is defined as

I(A : B) = S(A) + S(B)− S(AB).

Monogamy of mutual entanglement is not obeyed by all quantum systems, so this provides
some insight into the special entanglement structure of holographic CFT states. More gen-
erally, for n CFT spatial sub-regions obeying the RT formula, one can derive the general
set of inequalities obeyed by CFT states with holographic duals. This set of constraints is
known as the holographic entropy cone, and was derived by Ref. [12] for static spacetimes.

Another fascinating idea involving the interplay between quantum information concepts
in the boundary and geometric quantities in the bulk is the role that complexity may play
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in holography. To understand the motivation for this proposal, consider an AdS black hole.
This is dual to the CFT in a thermal state. Consider a maximal volume slice anchored
at boundary time t. Classically, this volume grows forever, proportionally to t, and the
AdS/CFT correspondence implies that there must be some boundary quantity (that is dual
to this volume) that must grow linearly with time. The entanglement entropy saturates after
a relatively small amount of time [52], so this led to the proposal that the computational
complexity of the CFT state may be proportional to the maximal-slice volume in the bulk.
This is known as the complexity-volume proposal [89]. The computational complexity of a
quantum state |ψ〉 is the minimum number of “simple” gates (i.e., gates acting on a very small
number of degrees of freedom) it takes to build up |ψ〉 from a simple, unentangled reference
state. In a system with N degrees of freedom, the complexity of a state usually grows
linearly with time until t is of order eN , at which point it saturates, up until it experiences
Poincare recurrences at very late times [91]. This conjecture also passes a number of other
consistency checks [91]. Therefore, the complexity is a good candidate for the CFT dual of
a maximal-volume slice in the bulk. This proposal was followed by the complexity-action
proposal [25, 26], which posits that the complexity of a CFT state is proportional to the
action of a certain subset of the bulk, called the Wheeler-deWitt patch, rather than a bulk
volume.

This dissertation explores aspects of the interplay between quantum information, quan-
tum field theory, as well as holographic dualities and quantum gravity.

Chapter 2 explores the validity of the five-region holographic entropy cone inequalities
in dynamical spacetimes by considering a specific example of a dynamical spacetime, an
AdS3-Vaidya spacetime (i.e., a collapsing shell of matter that forms a black hole). We study
this by numerically solving the geodesic equation in the bulk. We find that, for all cases
considered, all of the five-region inequalities are satisfied when the null energy condition is
satisfied in the dynamical bulk spacetime, and that all of the inequalities can be violated
when the dynamical bulk spacetime does not satisfy the null energy condition. These results
provide evidence that the five region inequalities of the holographic entropy cone are valid
in dynamical spacetimes. This chapter is based on Ref. [28].

Chapter 3 applies the holographic complexity conjectures to the context of holographic
descriptions of gravity in FRW spacetimes. We first discuss the complexity-action conjec-
ture applied to a flat FRW universe with one component. In this case, the complexity grows
proportionally to t2, regardless of the value of w, the ratio of the pressure to the energy
density. We then discuss the holographic complexity for a flat FRW universe sourced by a
single scalar field that is undergoing a transition. The calculations show that the complexity
decreases when the entanglement entropy decreases. In addition, we show that the magni-
tudes of the fractional decreases are significantly larger for the computational complexity
than for the corresponding decreases in entanglement entropy. This is to be expected from
basic physical considerations, since entanglement is computationally expensive. We find in
this setting that the gravitational action has many complexity-like properties, while the total
action is negative, and thus is an ill-defined dual to the complexity of the boundary theory.
This is in contrast to the complexity-action conjecture in the context of AdS/CFT. Finally,
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we discuss the implications of the complexity-volume conjecture, and find that the results
are similar to those of the complexity-action conjecture. This chapter is based on Ref. [27].

Chapter 4 numerically analyzes the complexity of unitary time-evolution and precursor
operators using Nielsen complexity geometry for one- and two-qubit systems. We find that
the complexity of one- and two-qubit unitary time-evolution operators initially increase lin-
early with time. The complexities of the precursor operators display switchback-effect-like
growth if we choose the cost factors so that the complexity geometry has negative curvature.
This chapter is based on Ref. [30].

Chapter 5 discusses the role of sandwiched Renyi relative entropy in AdS/CFT. In par-
ticular, we discuss this quantity in the context of finite-dimensional models of holographic
quantum error correction. In the setting of operator algebra error correction, we consider a
natural generalization of sandwiched Renyi relative entropy for finite-dimensional von Neu-
mann algebras. We then prove that the equality of bulk and boundary sandwiched Renyi
relative entropy is equivalent to algebraic encoding of bulk and boundary states, the RT
formula, the equality of bulk and boundary relative entropy, and subregion duality. This
discussion adds one more item to the equivalence of the last four items, which was first es-
tablished as a theorem in this setting by Ref. [51]. Following this, we explore the sandwiched
Renyi relative entropy defined using modular operators. It is discussed how this is the defi-
nition naturally suited to finite-dimensional models of holographic error correction. Lastly,
in order to gain insight into corrections to the equality of bulk and boundary sandwiched
Renyi relative entropy, we discuss some numerical calculations of sandwiched Renyi relative
entropy for a simple random tensor network model of holography. This chapter is based on
Ref. [29].
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Chapter 2

The Holographic Entropy Cone in
AdS-Vaidya Spacetimes

2.1 Introduction
Recent work has unveiled deep connections between gravity and entanglement. The AdS/CFT
correspondence [71, 49, 96] states that any theory of quantum gravity in (d+ 1)-dimensional
anti-de Sitter space (AdSd+1) is equivalent to a conformal field theory (CFT) in d dimen-
sions. The Ryu-Takayanagi (RT) [85] formula and its covariant generalization, the Hubeny-
Rangamani-Takayanagi (HRT) formula [60], posit that the entanglement entropies of holo-
graphic CFTs are given in terms of minimal or extremal areas. These have been derived
from the basic AdS/CFT dictionary [67, 41]. In general, entanglement entropies of quantum
field theories are difficult to compute. It is of great interest to try to determine which types
of states are dual to semi-classical AdS bulks. The fact that holographic entanglement en-
tropies are given by minimal areas should therefore enable us to constrain the entanglement
structure of holographic states.

It is simple to show that if we have three spatial CFT regions, A,B,C, then the RT
formula implies strong subadditivity [58, 57]:

S(ABC) + S(B) ≤ S(AB) + S(BC).

The above inequality is, of course, true for all quantum states [69, 68], though the general
proof is technically complicated. In addition, holographic entropies obeying the RT formula
obey the constraint of monogamy of mutual information [55, 57]:

I(A : BC) ≥ I(A : B) + I(A : C).

Unlike strong subadditivity, this constraint is not obeyed by all quantum systems. In ad-
dition, recent work [12] has shown that holographic entanglement entropies for n regions
obey a set of inequalities known as the holographic entropy cone, assuming the RT formula
holds. Recently, the exact holographic entropy cone for five regions has been obtained [59].
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However, it is not known in general if these inequalities are valid for the covariant HRT
formula.

Using the maximin formalism of Wall [94], it is possible to show that (assuming the
null-energy condition holds in the bulk), strong subadditivity and monogamy of mutual
information hold for the HRT formula. However, the validity of the inequalities for the
entropy cone for the HRT formula for five or more regions remains unknown. Indeed, [84]
showed that the set of five-region inequalities provable with the maximin formalism is less
strong than the entropy cone inequalities.

Understanding the validity of the entropy cone inequalities in the dynamical, HRT case
is thus an important step towards understanding the structure of holographic states. In
this chapter, we will numerically calculate the entanglement entropies for an AdS3-Vaidya
spacetime, and examine the validity of the five-region entropy cone inequalities, using the
HRT formula. This is a very simple setting to test these inequalities, since the HRT surfaces
will be geodesics (not higher-dimensional surfaces), and the AdS3-Vaidya solution is a very
simple dynamical spacetime.

We find that the inequalities are all valid, in the cases we examined, as long as the bulk
obeys the null energy condition. If the bulk violates the null energy condition, then all the
inequalities are violated. This is analogous to the situation for strong subadditivity, which
requires the NEC to hold in the bulk. We believe that this provides strong evidence for the
validity of the five-region inequalities when the bulk is dynamical. Moreover, the shape of
the curves resemble those of the strong subadditivity curves. This may hint that there is
a reformulation of the HRT prescription for which both strong subadditivity and the five-
region inequalities are valid. Indeed, this has already been done in certain limits for the
positive-energy spacetime we considered here [10].

Understanding the validity of these inequalities in general, as well as further study of the
entanglement of holographic states, will be very important in furthering our understanding
of quantum gravity.

Our results build on previous work on the validity of the five-region inequalities for
dynamical bulks. [47, 46] numerically verified the inequalities for a holographic model of
two 1+1 dimensional heat baths joined at t = 0. It has also been shown that they are
valid for large, late-time CFT regions in collapsing black hole spacetimes [10]. Shortly
after the posting of the paper [28] (upon which this chapter is based), a related paper [37]
appeared, with very interesting results. They showed that the five-region inequalities are
valid for the HRT formula in the context of AdS3/CFT2. Our work provides strong evidence
for the validity of the conclusions of [37] by providing explicit numerical calculations. We
also provide a detailed analysis of HRT surfaces in AdS3-Vaidya spacetimes that should
be useful in other contexts. The results presented here are closely analogous to [31, 4,
83], which numerically studied the validity of strong subadditivity and monogamy of mutual
information for AdS3-Vaidya spacetimes. Similar computations have been done in the context
of the quantum null energy condition [44].
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2.2 Setup
Consider a holographic CFT with a Cauchy slice Σ of a static bulk, at a moment of time
reflection symmetry. Let A be a boundary subregion. The Ryu-Takayanagi formula posits
that

S(A) =
minmArea

4GN

,

where m is a codimension-2 surface in the bulk (with ∂m = ∂A) homologous to A. That is,
there is a bulk region χ such that ∂χ = A∪m. The Hubeny-Rangamani-Takayanagi formula
is the covariant generalization of this equation. If A is some spacelike CFT subregion, then
the HRT formula says that

S(A) =
minextremal mArea

4GN

,

where extremal m means that m is a co-dimension 2 spacelike surface that extremizes the
area and has ∂m = ∂A and is homologous to A.

We will consider the planar AdS3-Vaidya spacetime, with metric

ds2 = −(r2 −m(v))dv2 + 2drdv + r2dx2.

The null-energy condition (i.e., Tµνkµkν ≥ 0 for all lightlike k) is satisfied if and only if
dm/dv is positive.

We can re-write this metric in more standard coordinates, t and r, with

v = t+ g(r), g′(r) =
1

f

=⇒ dv = dt+ g′(r)dr = dt+
dr

f
,

which means

ds2 = −f(dt2 +
dr2

f 2
+ 2

dtdr

f
) + 2drdt+ 2

dr2

f
+ r2dx2

= −fdt2 +
dr2

f
+ r2dx2.

(2.1)

We will consider a thin-shell limit,

m(v) = ±mΘ(v),

which represents a shell of infalling null matter. The plus sign satisfies the null energy
condition and corresponds to positive energy matter–inside the shell, the metric is pure
AdS3, outside the shell, the metric corresponds to a black hole, i.e., the BTZ metric. The
minus sign violates the null energy condition; this choice represents a shell of negative-energy
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Figure 2.1: The quantities T (left) and M (right) plotted vs tb. We see that T > 0 and
M > 0 so strong subadditivity and monogamy of mutual information are always satisfied.
The jumps at late times are due to numerical errors.

null matter so that outside the matter, the metric is pure AdS, while inside it is BTZ. We
will consider both cases, starting with the positive-energy metric. For simplicity, we will set
m = 1.

For AdS, we have f = r2 so that

g′ = −1

r
=⇒ v = t− 1

r
.

Meanwhile for BTZ, we have g = r2 − 1, which gives

g′ = − 1

r2 − 1
=⇒ g = − tanh−1 1

r
=⇒ v = t− tanh−1 1

r
.

Our discussion of geodesic kinematics largely follows that of [31].

2.3 Positive Energy Vaidya Metric
We wish to obtain enanglement entropies in the CFT dual to the Vaidya metric. The HRT
prescription tells us that we need to calculate the areas of the extremal codimension 2 surfaces
that are anchored at the boundary of the CFT subregion. In our case, this corresponds to
spacelike geodesics. We discuss the geodesic kinematics in the Appendix A.1.
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Figure 2.2: The quantity S0 plotted vs tb. We see that S0 > 0 so the corresponding inequality
is always satisfied. The jump at late times is due to numerical errors.

Constant-Time Intervals

We begin by testing strong subadditivity. We consider adjacent three regions A,B,C, all at
constant time tb. We choose `A = 2, `B = 4, `C = 2. We then consider the quantity

T (A,B,C) ≡ 4GN [S(AB) + S(BC)− S(ABC)− S(B)]

as a function of the boundary time tb. Strong subadditivity will be satisfied if and only if
T ≥ 0. S(AB) is given by the length of a geodesic with `x = 6 over 4GN . S(BC) is identical.
ABC is an interval of length 8, while B is an interval of length 4. Using this information,
we can plot T as a function of tb. This is done in Figure 2.1. We see that T > 0, so strong
subadditivity is always satisfied.

We do the same calculation for monogamy of mutual information. Define

M ≡ 4GN [I(A : BC)− I(A : B)− I(A : C)]

= 4GN [S(A) + S(BC)− S(ABC)− S(A)− S(B)

+ S(AB)− S(A)− S(C) + S(AC)]

= 4GN [−S(A) + S(BC)− S(ABC)− S(B)

+ S(AB)− S(C) + S(AC)].

(2.2)

We plot this quantity as a function of tb in Figure 2.1. Again, since M > 0, we see that
monogamy of mutual information is always satisfied.

Next, we consider five regions. There are several inequalities that are valid for the RT
formula for five regions. These bound the holographic entropy cone. For example, we have
that

S(A|BC) + S(B|CD) + S(C|DE) + S(D|EA) + S(E|AB)

≥ S(ABCDE)
(2.3)
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Figure 2.3: The quantities Si (i = 1, 2, 3, 4) plotted vs tb. We see that Si > 0 for all i so
the corresponding inequalities given in the main text are always satisfied. The jumps at late
times are due to numerical errors.
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(see [12]). Here S(X|Y ) ≡ S(XY ) − S(Y ) is the conditional entropy. To test this in the
non-static case, consider 5 regions A,B,C,D,E, all of which are constant time intervals on
the boundary. Take `A = `C = `E = 2, `B = `D = 4. Then define the quantity

S0 ≡ 4GN [S(A|BC) + S(B|CD) + S(C|DE) + S(D|EA)

+ S(E|AB)− S(ABCDE)].
(2.4)

We plot this as a function of tb. See Figure 2.2. We see that S0 > 0 so this inequality is
always satisfied in this non-static case.

There are several more inequalities for the holographic five-region case [12]. For example,

2S(ABC) + S(ABD) + S(ABE)+

S(ACD) + S(ADE) + S(BCE) + S(BDE) ≥
S(AB) + S(ABCD) + S(ABCE) + S(ABDE)+

S(AC) + S(AD) + S(BC) + S(BE) + S(DE),

(2.5)

S(ABE) + S(ABC) + S(ABD) + S(ACD) + S(ACE)+

S(ADE) + S(BCE) + S(BDE) + S(CDE) ≥
S(AB) + S(ABCE) + S(ABDE) + S(AC)+

S(ACDE) + S(AD) + S(BCD) + S(BE) + S(CE) + S(DE), (2.6)

S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(ACE) + S(BC) + S(DE) ≥
S(AB) + S(ABCD) + S(ABCE) + S(AC) + S(ADE) + S(B) + S(C) + S(D) + S(E),

(2.7)

3S(ABC) + 3S(ABD) + 3S(ACE) + S(ABE) + S(ACD)

+ S(ADE) + S(BCD) + S(BCE)

+ S(BDE) + S(CDE) ≥ 2S(AB) + 2S(ABCD) + 2S(ABCE)

+ 2S(AC) + 2S(BD) + 2S(CE)

+ S(ABDE) + S(ACDE) + S(AD) + S(AE) + S(BC) + S(DE). (2.8)

For each of these inequalities, we define the quantities Si to be 4GN times the left-hand
side minus 4GN times the right-hand side for i = 1, 2, 3, 4. Inequality i will be satisfied if
and only if Si is positive. We plot each of these quantities as functions of tb. See Figure 2.3.
We see that for each i, Si is positive so that the five-region inequalities are all satisfied in
this case, even though the spacetime is not static.
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Figure 2.4: The covariant “trapezoid" and “zigzag" configurations. In both cases, each of the
components (A,B, and C) have ∆x = 1.

Spacelike Intervals with Nonzero ∆t

We now consider the case where the interval is not constant-time. Again, the details of the
kinematics are discussed in Appendix A.1.

To find the geodesic length for a given set of parameters, we proceed as follows. If tb < 0,
we solve for the AdS geodesic. We then calculate v(τ) = t(τ) − 1

r(τ)
. If v never crosses 0,

the geodesic is entirely in the AdS bulk. If it crosses 0, then the geodesic has a portion
in the BTZ spacetime. We then numerically find the values of rc, px, EA that correspond
to the given values of ∆x,∆t, tb. We then substitute these results back into our formula
for geodesic length. Similarly, if tb ≥ 0, we calculate the pure BTZ solution, and see if
v(τ) = t(τ) − tanh−1( 1

r(τ)
) is ever negative, there is a component in the AdS bulk. We

numerically find the values of r1, EA, px that correspond to the values of ∆x,∆t, tb and use
these to find the geodesic length.

Finally, we are ready to test the entropy inequalities for regions that are not purely
spacelike. We begin by testing strong sub-additivity. We test two cases, the "trapezoidal"
case, and the "zigzag" case; both of these are shown in Figure 2.4. We plot the quantity

S(AB) + S(BC)− S(B)− S(ABC)

(times 4GN) for these regions as a function of the boundary start time of the region A, for a
variety of values of ∆t/∆x, fixing ∆x = 1. We show the results in Figures 2.5. These curves
show that strong sub-additivity is obeyed for these regions.

We now test the five-region inequalities. We use the same labeling scheme for the in-
equalities as used above, in the constant-time case. We consider the three configurations
shown in Figure 2.6. We consider a variety of values of ∆t/∆x, again fixing the value of
∆x for each component to be 1. We plot these curves as functions of the boundary start
time tb. We do this for the zigzag configuration in Figure 2.7, the configuration with 2 flat
components in Figure 2.8, and the configuration with 1 flat component in Figure 2.9 We see
that the inequalities are all satisfied, and that the shapes of the curves strongly resemble
those of the strong subadditivity.
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Figure 2.5: Strong subadditivity is verified for the trapezoid and zigzag configurations.

Figure 2.6: The three configurations we consider. Each of the components has its ∆x fixed
to be 1.

2.4 Negative Energy Vaidya Metric
We now consider the negative-energy Vaidya metric. As discussed above, this violates the
null energy condition. We will see that strong subadditivity is violated, as well as the five-
body inequalities. The geodesic kinematics are discussed in A.1.

We consider five adjacent constant-time intervals, A,B,C,D,E. A,C, and E have width
2, while B and D have width 4. To start with, we plot strong subadditivity for a couple
collections of regions in Figure 2.10. We see that strong subadditivity is violated, which is
expected since our metric violates the null energy condition.

Next, we check the five-region inequalities. We use the same numbering scheme as before
(with labels 0 through 4), and we plot 4GN times the left hand side minus 4GN times the
right hand side of each of the inequalities. We show the results in Figure 2.11. We see that
all of the inequalities are violated for this spacetime, roughly in the places where strong
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Figure 2.7: The inequalities plotted vs tb for the zigzag region for a variety of values of
∆t/∆x. We see that the inequalities are all satisfied.
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Figure 2.8: The inequalities plotted vs tb for the Region 2 (with 2 flat components) for a
variety of values of ∆t/∆x. We see that the inequalities are all satisfied.



CHAPTER 2. THE HOLOGRAPHIC ENTROPY CONE IN ADS-VAIDYA
SPACETIMES 18

Figure 2.9: The inequalities plotted vs tb for the Region 3 (with 1 flat component) for a
variety of values of ∆t/∆x. We see that the inequalities are all satisfied.
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Figure 2.10: Strong subadditivity versus boundary time tb for the negative-energy Vaidya
spacetime. We see that strong subadditivity is violated. Here, we consider strong subaddi-
tivity for regions A,B, and C, as well as for AB,C, and D.

subadditivity is violated. Furthermore, we once again see that the curves for the five-region
inequalities resemble the strong subadditivity curves.
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Figure 2.11: The inequalities plotted vs tb. We see that the inequalities are all violated for
this spacetime that violates the null energy condition.
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Chapter 3

Holographic Complexity in FRW
Spacetimes

3.1 Introduction
Recent work has revealed deep connections between between gravity, spacetime, and in-
formation. The AdS/CFT correspondence posits that any theory of quantum gravity in
d+ 1-dimensional anti-de Sitter space (AdS) is equivalent to a conformal field theory (CFT)
in d dimensions [71, 49, 96]. This correspondence is a concrete realization of the holographic
principle, which conjectures that the degrees of freedom in a theory of quantum gravity are
encoded in one fewer dimension.

The celebrated Ryu-Takayanagi formula [85] (and its covariant generalization, the Hubeny-
Rangamani-Takayanagi formula [60]) of the AdS/CFT correspondence posits an equivalence
between entanglement entropy in a holographic CFT and minimal surfaces in the bulk. This
has led to an improved understanding of the rich interplay between the spacetime in the
bulk theory, and information in the boundary theory.

There has been much recent speculation about the possible role of complexity in the
AdS/CFT correspondence. This arises from the following consideration. If we consider the
maximum volume slice anchored at boundary time t, of an AdS black hole, the volume will
grow linearly with t. Moreover, it will (classically) grow forever. However, the entanglement
entropy saturates after a relatively short time. Thus, there must be some CFT quantity that
encodes this growth. Even after the saturation of the entanglement entropy, the quantum
state continues to evolve subtly in time, and the entanglement entropy is too crude of a
measure to detect these changes. A promising candidate for the CFT dual of the volume
growth is the complexity. Consider some state |ψ〉 in a Hilbert space H, and some “simple"
reference state |ψ0〉 ∈ H. For example, in a system of n qubits, the state |ψ0〉 could be the
unentangled state |00 · · · 0〉. Then the complexity C(|ψ〉) is defined as the minimum number
of simple gates (meaning they act on some O(1) number of degrees of freedom) needed to
take |ψ0〉 to |ψ〉. The exact value of the complexity is, of course, dependent on details such as
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tL tR

Figure 3.1: The Wheeler-de Witt patch of a two-sided AdS black hole. It is defined as the
bulk domain of dependence for a slice between tL and tR, shaded in light blue

what gates are allowed, what the tolerance is, and so on. However, the qualitative behavior
does not depend on these details: the complexity, in general, grows linearly with time for a
large amount of time after the entanglement entropy saturates.

This line of reasoning led to the complexity-volume conjecture, which says that the CFT
quantity dual to the maximum-volume slice is the complexity of the CFT state. Issues related
to various ad-hoc factors in the complexity-volume conjecture led to the complexity action
conjecture. Consider a AdS two-sided black hole. Then the complexity-action conjecture
posits that the complexity of the state CFT state |ψ(tL, tR)〉 is given by [25]

C =
IWdW

π~
,

where IWdW is the action on the Wheeler-de Witt patch, which is defined as the bulk domain
of dependence of any spacelike surface between tL on the left boundary and tR on the right
boundary. See Figure 3.1. The authors of [25] argued that is natural for the complexity to
be normalized so that the constant of proportionality is 1

π~ . In this way, when one fixes the
normalization for one particular black hole, it is such that all other black holes saturate the
upper limit on the rate of computation.

However, cosmological observations indicate that our Universe is not AdS (which requires
Λ < 0), but in fact has Λ > 0. However, it is believed that holography holds in more
general spacetimes than AdS space [17, 16]. A considerable amount of recent work has
been done in trying to understand the structure of holography in general spacetimes. It
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Figure 3.2: The construction of a holographic screen. At a point τ on the line p(τ), we follow
the past null geodesics until they have zero expansion. Continuing in this way for the entire
curve p, we have a codimension-1 surface that is foliated by leaves σ(t).

is believed that the details of the holographic theory are encoded on a holographic screen,
which is a codimension-1 surface foliated by marginally trapped (or marginally anti-trapped)
codimension-2 surfaces known as leaves. (Recall that a codimension-2 surface will have two
orthogonal null congruences, labelled by k and `. The surface is called marginal if one of
the expansions, say θk, vanishes. It is called marginally trapped if θ` < 0, and marginally
anti-trapped if θ` > 0.) Recently, it was shown that holographic screens obey an area law
[18, 19, 20].

The proposal of [86, 79] is that, in general spacetimes, the holographic description of this
gravity theory in the bulk lives on this holographic screen. In particular, [86] propose an
analogy with the Ryu-Takayanagi formula for gravity in AdS spacetime. Specifically, if σ(t)
is a leaf of the holographic screen and Γ ⊂ σ(t) is a subset of the leaf, then the entanglement
entropy of the Γ is given by

S(Γ) =
Area(EΓ)

4GN

,

where EΓ is the extremal-area codimension-2 surface that is anchored on Γ: ∂EΓ = ∂Γ.
It is shown in [86] that entropies in the putative holographic dual theory to an FRW

spacetime obey the basic consistency checks that would expected. In particular, they satisfy
a maximin-like formulation, and therefore obey strong subadditivity. Given these successes
in lifting the holographic entanglement entropy conjectures to non-AdS spaces, it is natu-
ral to investigate the consequences of the holographic complexity conjectures in non-AdS
spacetimes.

The purpose of this chapter is to examine the holographic complexity conjectures to
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Figure 3.3: The Wheeler-de Witt patch for a general spacetime. It is the domain of depen-
dence of a slice that is interior to a leaf σ(t) of the holographic screen, shaded in light blue.

more general spacetimes, in the same spirit as the hologaphic entropy conjecture for the
holographic screens. Specifically, we study the same quantity (the action of the Wheeler-de
Witt patch over π~), but modify the WdW patch so that it is the domain of dependence of
the interior of the leaf σ(t). See Figure 3.3. We also examine the behavior of maximal-volume
slices. We begin by reviewing the construction of the holographic screens.

3.2 Holographic Screens
We recall the construction of holographic screens. First, we pick some timelike path p(τ)
through the spacetime. At each τ , we fire a congruence of null geodesics in the past direction
from p(τ). When the expansion parameter θ on this congruence reaches 0, at some point in
the past, this will be the location of the leaf of the holographic screen. By doing this for
all values of τ , we construct a codimension-one surface that is foliated by “leaves" that have
one expansion parameter vanishing. See Figure 3.2. In the case of AdS space, as we show
below, this reduces to the conformal boundary.

AdS Space

First, we analyze AdS spacetimes. Consider, for example, AdS3 in global coordinates, with
the AdS scale set to 1. The metric is given by
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ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dφ2.

In these coordinates, r ranges from 0 to ∞, with the conformal boundary located at r =∞.
We choose our timelike path to simply be the line r = 0. We now consider radial geodesics
fired into the past from r = 0. Because ∂t is a Killing vector, the quantity

E = gttk
t = −(1 + r2)(kt)

is conserved, and E > 0 since the geodesics are past-directed. (We have defined kα ≡ dxα

dλ
.)

Because the geodesic is null, we must have that

−(1 + r2)(kt)2 +
(kr)2

1 + r2
= 0

so that
kt =

E

1 + r2
, kr = E.

One can readily verify that kα∇αkβ = 0 so this does indeed satisfy the geodesic equations.
We compute the expansion parameter to find

θ = gαβ∇αkβ =
E

r
.

Therefore, we see that the expansion θ of this null congruence goes to 0 only at the boundary,
r →∞. The holographic screen for AdS spacetime is the conformal boundary. Moreover, it
is clear that the holographic screen for AdS will always be the conformal boundary, regardless
of our choice for our timelike path p(τ) through the spacetime.

FRW Cosmologies

Next, we examine FRW cosmologies. The metric for this is given by

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
,

where a(t) is the scale factor. k = 0 for a flat Universe, +1 for a closed Universe, and −1 for
an open Universe. The equations governing the evolution of a are the Friedmann equations

ȧ2

a2
+
k

a2
=

8πρ

3
,

ρ̇ = −3
ȧ

a
(ρ+ P ).
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We now find the holographic screen for the FRW metric. Again, we pick our path p(τ)
through the spacetime to be the line r = 0. We now study past directed null geodesics. The
geodesic equation

dkt

dλ
+ Γαβγk

βkγ = 0,

(where λ is an affine parameter) gives

dkt

dλ
+

aȧ

1− kr2
(kr)2 = 0.

Meanwhile, the geodesic is null so that kαkα = 0 or

(kr)2 =
1− kr2

a2
(kt)2

so that
dkt

dλ
+
ȧ

a
(kt)2 = 0.

This equation is solved by kt = − const
a

. We calculate the expansion of this congruence of null
geodesics. The result is

θ = gαβ∇αkβ =
2const(

√
1− kr2 − rȧ)

ra2
.

The holographic screen will be at time t and at the radius when θ = 0, which is given by

r =
1√

ȧ(t)2 + k
.

3.3 Complexity-Action Conjecture in FRW Spacetimes
We begin by computing the complexity given by the complexity-action conjecture [25]. The
contributions wil be the bulk Einstein-Hilbert term, a GHY term for spacelike boundaries,
which we consider first. In section 3.3 below, we consider the null boundary terms and the
corner terms.

We will consider a flat (k = 0) Universe with one component that has the equation of
state

P = wρ.

Then the scale factor behaves as (from the Friedmann equations)

a(t) = ct
2

3(1+w) .

The r-coordinate of the holographic screen, at time tb is given by

r =
3(1 + w)

2

1

ct
−1−3w
3(1+w)

b

.
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WdW
Patch

Holographic
Screen

σ(t)

WdW
Patch

Holographic
Screen

σ(t)

(a) (b)

Figure 3.4: The Wheeler-de Witt patch for a FRW spacetimes. In some cases, (a) the WdW
patch does not touch the Big Bang singularity. In others, (b), it touches the singularity and
there will be a GHY boundary term associated to this boundary of the WdW patch in the
singularity.

We define the scaled coordinates

ρ =
2

3(1 + w)
ct

−1−3w
3(1+w)

b r,

η =
2

3(1 + w)

((
t

tb

) 1+3w
3(1+w)

− 1

)
.

The metric then becomes

ds2 =
9(1 + w)2t2b

4

(
1 + 3w

2
η + 1

) 4
1+3w

· [−dη2 + dρ2 + ρ2dΩ2
2].

(3.1)

The leaf of the holographic screen is at η = 0, ρ = 1. We first consider the upper half of the
WdW patch, the part with η ≥ 0.

Inward, future-directed geodesics from the leaf satisfy ρ = 1 − η. The inward, past-
directed geodesics from the leaf have ρ = 1 + η. Under certain conditions, these geodesics
will intersect the big bang singularity, t = 0. We do this by linearly extrapolating back to
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find the value of ρ at t = 0. If ρ > 0 at this point, it will intersect the singularity. If ρ < 0,
the WdW patch terminates at some strictly positive value of t. See Figure 3.4. When t = 0,

η = − 2

3(1 + w)

so that
ρ = 1 + η = 1− 2

3(1 + w)
=

1 + 3w

3(1 + w)
.

Thus, if w < −1/3, the WdW patch does not intersect the singularity, while if w > −1/3 it
does.

We first consider the upper half of the WdW patch, the part with η ≥ 0. The bulk
contribution to the gravitational action from this region is given by

Iup =
1

16πGN

∫ 1

0

dη

∫ 1−η

0

dρ
√
−gR

∫
dΩ2,

where R is the Ricci scalar. Using Mathematica, we find that

R =

9(ρ2t2(w + 1)2)−12
8

3w+1
−1(η + 3ηw + 2)−

8
3w+1

·
(

1− 16
1

−3w−1 (η + 3ηw + 2)
4

3w+1
−2
(
(η + 3ηw + 2)2 + 4ρ2(6w − 5)

))
.

(3.2)

We then perform the integration to obtain

Iup =
t2

4GN

2−
6

3w+1
−23

2
3w+1

−1(w + 1)
2

3w+1 [(3w − 5)(3w + 2)(3w + 4)(3w + 7)]−1

· (2
6

3w+1
+3
(
−162w4 − 675w3 − 531w2 + 513w + 515

)
(3w + 3)

6w
3w+1 +

81(w + 1)3
(

5(w + 1)(3w − 1)(3w + 2)(3w + 3)
4

3w+1 + 16
1

3w+1 (3w − 5)(3w + 4)(3w + 7)
)

).

(3.3)

We now consider the lower half of the WdW patch. We begin by considering the case
where it does not intersect the Big Bang singularity. We fire past-directed light rays from
the leaf, which satisfy ρ = 1 + η, so they will hit ρ = 0 when η = −1. The bulk contribution
to the gravitational action for the lower WdW patch is then given by

Ilow =
1

16πGN

∫ 0

−1

dη

∫ 1+η

0

dρ
√
−gR

∫
dΩ2.

We perform this integral to obtain
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Ilow =
t2b

4GN

[(3w−5)(3w−1)(3w+2)(3w+4)(3w+7)]−13 ·2−
6

3w+1
−2(w+1)(8

2
3w+1

+1(3w−1)

·
(
3w
(
36w3 + 84w2 + w − 86

)
− 85

)
− 16

1
3w+1 (3w − 5)(3w + 4)(3w + 7)(1− 3w)

2
3w+1

+3+

5(w + 1)(3w + 2)(1− 3w)
6

3w+1
+4). (3.4)

The total bulk gravity action for the WdW patch is, then, (for w < −1/3):

IWdW
bulk,gravity = Ilow + Iup =

t2b
4GN

[2−
6

3w+1
−2(

1

3w + 1
(9(8

2
3w+1

+1(3w − 1)
(
3w
(
36w3 + 84w2 + w − 86

)
− 85

)
− 16

1
3w+1 (3w − 5)(3w + 4)(3w + 7)(1− 3w)

2
3w+1

+3

+ 5(w + 1)(3w + 2)(1− 3w)
6

3w+1
+4)(w + 1))

+ 9
1

3w+1 (2
6

3w+1
+3
(
−162w4 − 675w3 − 531w2 + 513w + 515

)
(3w + 3)

6w
3w+1 +

81(w + 1)3
(

5(w + 1)(3w − 1)(3w + 2)(3w + 3)
4

3w+1 + 16
1

3w+1 (3w − 5)(3w + 4)(3w + 7)
)

)

· (w + 1)
2

3w+1 )]

· [3(3w − 5)(3w + 2)(3w + 4)(3w + 7)]−1.

(3.5)

Next, we consider the case where the WdW patch does intersect the Big Bang singularity,
which is the case when w > −1/3. As can be seen from Figure 3.4, there will be a Gibbons-
Hawking-York boundary term associated to the boundary, where the WdW patch intersects
the singularity. The upper bulk WdW patch remains unchanged, while the action associated
to the lower WdW patch has to be modified – we need to integrate η from its value at the
initial singularity (when t = 0) to 0. Thus, we have

Ilow =
1

16πGN

∫ 0

− 2
3(1+w)

dη

∫ 1+η

0

dρ
√
−gR

∫
dΩ2.

We preform this integral on Mathematica to obtain the total bulk gravity action
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IWdW
bulk,gravity = Ilow + Iup =

t2b
4GN

3

2
{(4(w + 1) (3w (36w3 + 84w2 + w − 86)− 85)

(3w − 5)(3w + 2)(3w + 4)(3w + 7)
−

4
1

3w+1
+19

1
−3w−1w

(
1

w+1

) 2
3w+1

3w + 2
−

9−
3

3w+1
−164

1
3w+1 (3w − 1)(3w(3w(3w(9w(2w + 7) + 37)− 101)− 179)− 100)

(
1

w+1

) 6
3w+1

(3w − 5)(3w + 4)(3w + 7)
)+

[2−
6

3w+1
−23

2
3w+1

−1(2
6

3w+1
+3
(
−162w4 − 675w3 − 531w2 + 513w + 515

)
(3w + 3)

6w
3w+1 +

81(w + 1)3

·
(

5(w + 1)(3w − 1)(3w + 2)(3w + 3)
4

3w+1 + 16
1

3w+1 (3w − 5)(3w + 4)(3w + 7)
)

)(w + 1)
2

3w+1 ]

[(3w − 5)(3w + 2)(3w + 4)(3w + 7)]−1}.
(3.6)

Now, the boundary term is given by

IGHY =
1

8πGN

∫
d3x
√
hK,

where h is the induced metric on the boundary, while K is the trace of its extrinsic curvature.
We consider a η = const slice. The normal vector is given by nη =

√
gηη, all other components

0. We can compute Kµν = ∇µnν and then take the trace K = Kµ
µ. The ρ integral ranges

from 0 to 1 + η. Evaluating the geometric quantities on Mathematica, we obtain

IGHY

=
1

2GN

∫ 1+η

0

dρρ2

[
−9t2b(w + 1)2(η

1 + 3w

2
+ 1)

4
3w+1

−1

]
=
−9t2b
2GN

(w + 1)2(η
1 + 3w

2
+ 1)

4
3w+1

−1

∫ 1+η

0

dρρ2

=
−3t2b
2GN

(w + 1)2(η
1 + 3w

2
+ 1)

4
3w+1

−1(1 + η)3. (3.7)

This is for a surface at η – the term of interest is obtained as we go to the big bang, i.e., by
taking the limit η → ηBig Bang = − 2

3(1+w)
. Taking this limit, we obtain

IGHY =
−3t2b
2GN

(w + 1)2(
2− 3w

3 + 3w
)

4
3w+1

−1(
1 + 3w

3 + 3w
)3.

Notice how both the GHY term and the bulk terms are both proportional to t2b . This is
in contrast to the case of black holes in AdS, where generically, the WdW action is linear
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in t. A possible (very schematic) explanation for this is follows. Roughly speaking, in any
system we expect that the rate of change of the complexity to be proportional to its entropy
[91]:

dC
dt
∼ S.

In the case of AdS/CFT, the entropy is a constant – as we evolve forward in time in the
boundary Hilbert space, we are in a constant time-slice of the CFT. The entropy is roughly
the area of a time slice of the boundary (by the holographic principle), and this is of course
unchanging. Therefore, we would expect that

CAdS ∝ t.

However, in the case of FRW spacetimes, as we evolve forward in time, the Hilbert space
changes. The dimension of the Hilbert space is roughly given by the area of the leaf. Hence,
the complexity at boundary time t should grow as

dC
dt
∼ S ∼ Area[σ(t)]

GN

,

where as usual σ(t) is a leaf of the holographic screen at time t. Now, one also has

Area[σ(t)] ∼
(
a(t)

ȧ(t)

)2

∼ t2.

Thus, we would expect
dC
dt
∼ tO(1),

which is what we found from the bulk computation. The relationship between the Hilbert
spaces of each of the leaves and gravity theory is not yet established. It is possible that these
effects will yield an O(1) exponent for dC/dt.

Null Boundary and Corner Terms

In addition to the bulk Einstein-Hilbert term, and the spacelike boundary GHY term, we
also must consider null boundary terms and corner terms. This was first worked out in [66],
and we follow their procedure, which we summarize in Appendix A.2.

For a given spacetime region W with a null component N of the boundary ∂W , its
boundary and corner terms are given by

IN =
sgn(N)

8πGN

∫
N

dλdθ
√
γκ+

sgn(N)

8πGN

∫
N

dλdθ
√
γΘ log(lc|Θ|)

+
1

8πGN

∫
B1

dθ
√
γa1 +

1

8πGN

∫
B2

dθ
√
γa2. (3.8)
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In the above equation, sgn(N) is +1 if N is to the future of W , and -1 if it is to the
past of W . Also, λ represents a parameterization of the null generators, and the coordinates
θ label the different null generators of N . Meanwhile, B1 and B2 are the endpoints of the
component N . The null geodesics will satisfy the equation

kµ∇µk
ν = κkν .

If λ is an affine parameterization, then κ is of course 0. Θ is the expansion of N , while
γ is the transverse metric. Finally, lc is an undetermined parameter in the counterterm.
As we summarize in Appendix A.2, this is independent of the parameterization of the null
geodesics.

For our case, we first consider the geodesics to have an affine parameterization, which
eliminates the first term. Specifically, we choose our geodesics to be parameterized such that
the tangent vectors are

k =

(
1

a
,− 1

a2
, 0, 0

)
for the upper sheet and

m =

(
1

a
,

1

a2
, 0, 0

)
for the lower sheet.

For the second term, we first consider the upper part of the boundary. For an FRW
universe with equation of state P = wρ, the scale factor evolves as

a = tb, b ≡ 2

3(1 + w)
.

The holographic screen is at location tb, r = 1
btb−1 . The geodesic that composes the upper

portion of the boundary will satisfy

r(t) =
1

btb−1
b

+
−t1−b + t1−bb

1− b
.

Meanwhile, the expansion is

Θ =
−2bt−b−1

r
,

while the transverse metric is √
γ = r2a(t)2dΩ2.

We can rewrite the integral over λ as an integral over t, integrating from tb to the point when
r = 0 along the null geodesic. This occurs when

t = tmax =

(
t1−bb +

1− b
btb−1
b

) 1
1−b

.
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The integral gives

Iupsurf =
1

8πGN(b− 1)b2
∗

[2t−bb (b
(
tbt

b − b2ttbb
)

log

(
2(b− 1)b2lct

b
b

t
(
tbtb − bttbb

))− b2
(
b2 + 1

)
ttbb

+ (b− 1)2b2ttbb 2F1

(
1,

1

b− 1
;

b

b− 1
;
t1−bb tb−1

b

)
+ (b+ 1)tbt

b)]t=tmaxt=tb
. (3.9)

We now calculate the surface counterterm for the lower part of the boundary. In this
case, the null geodesic is described by

r(t) =
1

btb−1
b

+
t1−b − t1−bb

1− b
.

The t integral runs from tmin, the value of t when the expression above for r(t) reaches 0, to
tb. We have that

tmin =

(
t1−bb − 1− b

btb−1
b

) 1
1−b

.

I lowsurf =
−1

8πGN

1

(b− 1)b2
2t−bb [b4ttbb + b

(
b2ttbb − 2btbt

b + tbt
b
)

log

(
2(b− 1)b2lct

b
b

t
(
bttbb − 2btbtb + tbtb

))+

b2ttbb − (b− 1)2b2ttbb 2F1

(
1,

1

b− 1
;

b

b− 1
;
(2b− 1)t1−bb tb−1

b

)
− 2b2tbt

b − btbtb + tbt
b]t=tbt=tmin .

(3.10)

Meanwhile, we consider the corner terms. They are given by

Icorner =
1

8πGN

∫
adS,

where
a = ± log

∣∣∣∣k ·m2
∣∣∣∣,

with k and m being the two normal vectors to the null sheets that join at the corner. The
sign is determined is follows. If W ⊂ J+(N), and the corner is at the past end of N , or if
W ⊂ J−(N), and the corner is at the future end of N , then the sign is positive. In all other
cases, it is negative. In our case, the sign is negative. We know that

k =

(
1

a
,− 1

a2
, 0, 0

)
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for the upper sheet and

m =

(
1

a
,

1

a2
, 0, 0

)
for the lower sheet. Thus, the corner term for the joint between the null sheet fired in towards
the future, and the null sheet fired inwards towards the past is:

Icorner = − 1

8πGN

t2bb
b2t2b−2

b

log

[
1

2

∣∣∣∣− 1

a2
− 1

a2

∣∣∣∣] 4π

= − 1

2GN

t2b
b2

log

[
1

t2bb

]
=

1

GN

t2b
b

log(tb).

(3.11)

Role of the Constant lc in the Counterterm

We comment briefly on the role of the arbitrary parameter lc in the counterterm discussed
above. It was observed [33] that the CA proposal tells us that the complexity of an AdSd+1-
Vaidya geometry has a term

C =
Ld−1

4π2GN

V (Σ)

δd−1
log

(
(d− 1)lc

L

)
+ · · · ,

where L is the AdS scale, δ is the bulk UV cutoff, and V (Σ) is the volume of a boundary
Cauchy slice Σ.

Recent work [34, 62] has also investigated the complexity of Gaussian states in free field
theories. While these are a priori very different from the kinds of field theories expected to
have holographic duals (large-N , strongly-coupled field theories), there are some interesting
similarities between the complexities of these two systems.

Consider a free scalar field φ with its conjugate momentum π. A Gaussian state |S〉 is
one that is annihilated by a certain operator:(√

αk
2
φ(k) + i

1√
2αk

π(k)

)
|S〉 = 0.

The usual ground state corresponds to a Gaussian state with αk = ωk for all k. The reference
state, |R(M)〉, is taken to be a Gaussian state with αk = M for all k, where M is some fixed
scale. The target state is taken to be an approximate ground state,

∣∣mΛ
〉
, with αk = ωk if

k < Λ and αk = M if k > Λ, so that Λ serves as a UV cutoff. The complexity in going from
the reference state |R(M)〉 to the target state

∣∣mΛ
〉
is given by

C ∼ Vol · Λd

∣∣∣∣log

(
M

Λ

)∣∣∣∣ ,
where Vol represents the volume of the time-slice of the spacetime where our quantum field
theory lives.
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Comparing these two results, it seems plausible that the ambiguity in the gravitational
action (parameterized by lc) is related to the ambiguity in choosing the reference state in
the quantum field theory calculation (which in this case is parameterized by M). Much
less is known about the holographic duals of FRW spacetimes (compared with the AdS
case), however, in the dual description of FRW gravitational theories, presumably there
exist ambiguities in defining the complexity. It seems reasonable that these ambiguities will
again be the analog of the ambiguity parameterized by the parameter lc in the counterterm
of the gravitational action.

3.4 Holographic Screen Complexity in an FRW
Spacetime undergoing a Transition

We wish to calculate the holographic screen complexity for a flat FRW Universe undergoing
a transition from a state of matter with one equation of state to another. For concreteness,
we consider a Universe where the matter is a scalar field φ, following section 3.2 of [79]. We
consider a scalar field with potential

V (φ) = 1− e−k(φ−φ0)2 + s(φ− φ0) tanh(p(φ− φ0)).

We consider two values of the parameters: a “steep" potential, with values

k = 5000, s = 0.01, p = 20, φ0 = 0.045,

and a “broad" potential, with values

k = 25, s = 0.01, p = 2, φ0 = 0.5,

as in [79]. The energy density of the scalar field is given by

ρ =
1

2
φ̇2 + V (φ),

so that the Friedmann equation is

1

a

da

dt
=

√
8π

3

√
1

2
φ̇2 + V (φ),

where an overdot denotes a derivative with respect to t. The equation of motion for φ,
meanwhile, is

d2φ

dt2
+ 3

ȧ

a

dφ

dt
+ V ′(φ) = 0,

where a prime denotes a derivative with respect to the scalar field φ. Therefore, we have

d2φ

dt2
+ 3

√
8π

3

√
1

2
φ̇2 + V (φ)

dφ

dt
+ V ′(φ) = 0.
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Figure 3.5: Numerical solution of φ (left), as well as the area of the half leaf (right), for the
steep potential.

Figure 3.6: Numerical solution of φ (left), as well as the area of the half leaf (right), for the
broad potential.



CHAPTER 3. HOLOGRAPHIC COMPLEXITY IN FRW SPACETIMES 37

We integrate this numerically, together with the Friedmann equation. We plot φ as a
function of t, as well as the area of half the holographic leaf, in Figure 3.5 for the steep
potential and 3.6 for the broad potential. In addition, we also plot the proper area of the
leaf of holographic σ(t).

The Wheeler-de Witt patch associated to σ(tb) is given by

0 ≤ r ≤ r̃(t), tlow ≤ 0 ≤ tup,

where r̃(t) is given by

rAH(t)−
∫ t

tb

dt′

a(t′)

if t < tb, and

rAH(t) +

∫ t

tb

dt′

a(t′)

if t > tb. tlow and tup are, of course, the points where r̃(t) = 0. The Ricci scalar of the flat
FRW metric

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2
2)

is given by

R = 6

[
ä

a
+

(
ȧ

a

)2
]
.

The gravity action of the WdW patch is given by

Igrav =
1

16π

∫
WdW

d4x
√
−gR

=
3

8π

∫
dΩ2

∫ tup

tlow

dt

∫ r̃(t)

0

drr2(äa2 + ȧ2a)

=
1

2

∫ tup

tlow

dtr̃(t)3(äa2 + ȧ2a). (3.12)

Meanwhile, the action of the scalar field is given by

Isc =

∫
WdW

d4x
√
−g
(

1

2
φ̇2 − V (φ)

)
=

1

3

∫
dΩ2

∫ tup

tlow

dtr̃(t)3

(
1

2
φ̇2 − V (φ)

) (3.13)

so that the total action on the WdW patch is given by

IWdW = Igrav + Isc.
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(a) (b)

(c) (d)

(e) (f )

Figure 3.7: WdW actions for the steep and broad potentials. (a) Gravitational WdW action
for the steep potential. (b) Gravitational WdW action for the broad potential. (c) Scalar
WdW action for the steep potential. (d) Scalar WdW action for the broad potential. (e)
Total WdW action for the steep potential. (f) Total WdW action for the broad potential
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Figure 3.8: Maximal volume vs boundary time for a single-component flat FRW Universe.
The a w = 0 (matter) universe is on the left, while the w = 1/3 (matter) universe is on the
right.

We calculate numerically these actions, and plot the results in Figure 3.7. In Figure
10 of [79], the authors find that, when the area of the leaf is flat as a function of tb, the
entanglement entropy decreases very slightly. We see in Figure 3.7 that the gravitational
WdW action decreases during exactly these periods of tb–the complexity decreases when the
entanglement entropy decreases. Moreover, the authors of [79] found that the entanglement
entropy decreased only very slightly. The decreases in the WdW gravitational action are
bigger–they are some O(1) fraction of the increases.

For the “steep" potential, the scalar action is much less than the gravitational action.
However, for the broad potential this is not the case. Indeed, the scalar action is negative
so that the total action is negative. Hence, the total action in this case appears to be
unsuitable as a measure of circuit complexity. Therefore, in this case, the gravitational
action (as opposed to the total action) behaves more like a complexity. Furthermore, we
shall see below that the gravitational action qualitatively agrees with the expectations from
the complexity-volume conjecture. This is in contrast to other settings, such as charged
black holes in AdS, which require their total actions (gravitational plus Maxwell) to have
similar behavior as complexity. Of course, there are many ways to define complexity in
putative holographic duals to gravitational theories (depending on tolerance, gate set, etc.),
so perhaps the different actions in the gravity theory correspond to different measures of
complexity. Moreover, it is conceivable that the appropriate way to measure complexity in a
holographic CFT is very different from the appropriate way to measure it in the holographic
dual to FRW gravitational theories. This may explain why two different quantities behave
like complexity in the two different settings.
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3.5 Complexity-Volume Conjecture for FRW
Spacetimes

We wish to analyze the complexity-volume conjecture. In the AdS/CFT context, this states
that if a CFT state |ψ〉 at time t is dual to some bulk geometry, then the complexity of |ψ〉
is given by the volume of the maximum-volume slice that is anchored at boundary time t
[89]:

C(|ψ〉) ∼ maxV.

We examine the generalization of this conjecture to the FRW context by calculating the
maximum volume slice inside of the holographic screen. We do this for an FRW universe
dominated by one component, as well as one undergoing a transition.

Flat One-Component Universe

In this case, we have one dominant matter component with equation of state

P = wρ.

The Friedmann equation gives
a ∝ t

2
3(1+w) .

The holographic screen, at time t will be located at

r =
1

ȧ(t)
.

We need to find the maximum-volume slice inside of (t, r). This will be spherically-
symmetric, and will have coordinates r(λ), t(λ). The volume will be given by

Volume =

∫
dΩ2

∫
dλr2

√
−a(t)2

(
dt

dλ

)2

+

(
dr

dλ

)2

.

Therefore, we need to extremize the functional

I[t(λ), r(λ)] =

∫
dλ

√
−r4a(t)2

(
dt

dλ

)2

+ a(t)2

(
dr

dλ

)2

,

subject to the initial conditions r(0) = r, t(0) = t. This is done by solving the equations

dr2

dλ2
+

2

r

(
dr

dλ

)2

+
2

ra(t)2

(
dt

dλ

)2

+ 2
ȧ(t)

a(t)

dr

dλ

dt

dλ
= 0,

dt2

dλ2
+ a(t)ȧ(t)

(
dr

dλ

)2

+
4

r

dr

dλ

dt

dλ
= 0.

We solve these equations numerically, and calculate the volumes of maximal slices for points
on the holographic screen. We do this for matter (with w = 0) and for radiation (w = 1/3).
The results are shown in Figure 3.8.
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Figure 3.9: Holographic complexity for the steep potentials. The action for the WdW patch
for the steep potential is on the left, while the maximum volume slice is shown on the right.

FRW Universe Undergoing a Transition

We now consider the flat FRW universe that undergoes a transition, sourced by a scalar field.
We previously saw that the bulk gravitational action of the WdW patch increases when the
entanglement entropy increases, and decreases when the entanglement entropy decreases.
We numerically solve for the scale factor for the previously-considered “steep" potential, and
then solve for the maximal slices. We show the results for the CV conjecture (as well as
the results for the CA conjecture for comparison) in Figure 3.9. We see that the behavior
is qualitatively very similar. The maximal volume increases and decreases essentially in the
same time periods that the action of the WdW patch increases and decreases.

3.6 The de Sitter Limit
In this section, we analyze the de Sitter limit, which corresponds to w → −1. de Sitter
space has natural thermodynamic variables associated to it, so it is interesting to see how
this limit behaves with respect to those variables.

We have that the bulk WdW action is (for w < −1/3):



CHAPTER 3. HOLOGRAPHIC COMPLEXITY IN FRW SPACETIMES 42

IWdW
bulk,gravity =

t2b
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(
3w
(
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)
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)
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2
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(
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)
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6w
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·
(
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4

3w+1 + 16
1

3w+1 (3w − 5)(3w + 4)(3w + 7)
)

)

· (w + 1)
2

3w+1 )][3(3w − 5)(3w + 2)(3w + 4)(3w + 7)]−1. (3.14)

We take the de Sitter limit w → −1 to find that

lim
w→−1

IWdW
bulk,gravity =

t2b
4GN

87

1024
.

For a dS universe, we would perhaps expect that

dC
dt

= TS,

where T and S are the standard thermodynamic values for the dS patch,

T =
H

2π
, S =

π

H2
,

where H is the Hubble constant. Clearly, this does not agree with the limit w → −1 of the
FRW result; not even the scaling with t matches. It is possible that this disagreement is to
be expected, since the causal structure of the spacetime changes discontinuously at w = −1.
This question merits further study.

3.7 Relations to Lloyd’s Bound
In the original complexity-action paper [25], it was noted that the normalization of the
complexity

C =
IWdW

π~
,

lead to black holes saturating Lloyd’s bound [70] on the rate of computation. That is, when
one calculates the complexity using the complexity-action proposal, a black hole of mass M
satisfies

dC
dt

=
2M

π
.
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In the FRW cases discussed in this chapter, the complexity grows faster than linearly (for
example, in the case of a Universe with a single component, it grows as t2). Hence, it seems
that the rate of complexity growth can be arbitrarily high, violating Lloyd’s bound.

However, it was later shown that (in the AdS black hole geometries) dC
dt

approaches this
bound from above [32]. Additionally, it was later found that there are cases where Lloyd’s
bound is violated even in the late-time limit [36, 93]. Therefore, even in AdS cases, the above
normalization of complexity leads to values that do not always obey Lloyd’s bound.

3.8 Conclusions and Open Questions
In this chapter, we have examined the possible role of complexity in holographic theories
of FRW spacetimes. We generalized the complexity-action and complexity-volume duali-
ties from AdS to several FRW spacetimes. Specifically, for a flat FRW Universe with one
component, we found that the WdW action grows as t2, regardless of the matter content.
This is to be contrasted with the behavior of the the WdW action for a black hole in AdS,
where the complexity grows linearly with time. In the AdS case, the holographic theory is
encoded in a set of degrees of freedom that remain fixed with time. However, in the FRW
case, the holographic theory is encoded on the leaf σ(t) which is growing in time, so one
would expect the complexity to grow faster for the holographic dual to FRW spacetimes. For
a FRW Universe sourced by a scalar field, undergoing a transition, the gravitational WdW
action decreases during the time intervals when the entanglement entropy decreases. The
fractional decreases in the gravitational action are much larger than the corresponding de-
creases in the entanglement entropy. This is consistent with the intuition that entanglement
is computationally expensive. We then examined the complexity-volume conjecture, where
we find similar qualitative behavior with the complexity-action results. While our work is
speculative, we believe that the apparent consistency of the results are noteworthy. We close
with some possible avenues of further study.

First, it is interesting that, in the FRW cases, the quantity that behaves most like a
complexity is the gravitational, rather than the total action. In other settings, for example,
charged AdS black holes, it is the total (gravity plus Maxwell) action that seems to be dual
to complexity [25]. In the FRW setting, the total action is negative, which is of course
not a sensible result for complexity. Complexity in the putative holographic theory is, of
course, only defined up to choices in parameters like the tolerance, gate set, etc. It is
conceivable that the different WdW actions correspond to different definitions of complexity.
Furthermore, since a holographic CFT and the holographic dual to the FRW universe are
very different theories (see, for example, [77]), it is plausible that they require different
measures of complexity. The precise holographic dictionary between actions and volumes
and complexities clearly merit further research. Our results provide more explicit tests of
holographic complexity conjectures, which may lead to clarification on this dictionary.

It is also noteworthy that in the case of an FRW universe with one component, the scaling
of the complexity with time is t2, independent of the value of w. This is reminiscent of the
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butterfly velocities in holographic theories of FRW spacetimes [78]. It would be interesting
to explore the relationship between butterfly velocities and complexity, and to see if there is
some common explanation for the w-independence of the scaling of these two quantities.

It would also be interesting to try to better understand the de Sitter (i.e., w → −1) limit.
In particular, the holographic screen degenerates to the past/future infinity of dS space. It
is possible that a better understanding of the FRW Universe and its w → −1 limit will lead
to an improved understanding of quantum gravity in dS.

Our analysis in this chapter has largely focused on flat FRW spacetimes. We comment
briefly on the non-flat case here. Previously analysis has considered the entanglement entropy
per degree of freedom (for a region Γ of holographic screen σ), which is

Q(Γ) =
SΓ

(VΓ)/4
,

where SΓ is the entanglement entropy of Γ and VΓ is the volume of the the subregion Γ of the
holographic screen. Specifically, for a curvature-dominate open universe, it was found that
this quantity was lower than for the flat spacetimes [79]. As we have discussed, entanglement
is computationally expensive, presumably this also means that there is less complexity per
degree of freedom. Moreover, it is likely that (as in some of the cases studied above) there is
a much bigger gap for the complexities of the curvature-dominated universe versus the flat
ones than for their respective entanglement entropies. More detailed investigation of this
question clearly merits future work.

Finally, it is has been argued that the holographic theory of FRW spacetimes fall into
one of two structures, which have been termed the “Russian nesting doll" structure, and the
“spacetime equals entanglement" structure [79]. It would be interesting to see if the results
obtained in this chapter could be useful in obtaining a better understanding of the way the
bulk FRW spacetimes are encoded in their boundary theories, and the structure of their
Hilbert spaces.
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Chapter 4

Complexity of One- and Two-Qubit
Systems

4.1 Introduction
Recent work has shown that information plays a fundamental role in gravity, holography
and the structure of spacetime. The crucial role of information is often most easily studied
in the context of the Anti-de Sitter (AdS)/Conformal Field Theory (CFT) correspondence,
which posits an equivalence between quantum gravity in (d + 1)−dimensional AdS space
and a CFT in d dimensions [71, 49, 96]. An explicit example is the Ryu-Takayanagi (RT)
formula [85, 60], which states that the entanglement entropy of a CFT subregion is equivalent
to the area of a minimal surface in AdS anchored on the entangling surface of the CFT
subregion. This information-theoretic entry in the AdS/CFT ‘dictionary’ has led to many
important results in understanding holographic duality including, for example, entanglement
wedge reconstruction [5, 40]. Such advances have motivated a push to understand how other
information-theoretic probes are realized in a theory of quantum gravity.

A recent proposal along these lines regards the role that quantum complexity may play
in holographic duality [89, 25, 26]. Given a state |Ψ〉 in a Hilbert space H, the complexity
C(|Ψ〉) is the minimum number of “simple” gates that one must act on a “simple” reference
state |Ψ0〉 ∈ H to obtain |Ψ〉. For example, in a system of qubits, “simple” gates might be
chosen to be those that act on a small number of qubits, and a reference state might by the
untangled state |000 · · · 0〉. A closely-related concept is the complexity of a unitary operator,
which is the minimum number of “simple” gates we need to compose to obtain the desired
unitary operator. We discuss the approach to operator complexity taken in this chapter,
Nielsen complexity geometry, in more detail in Section 4.2.

Although the precise values of complexity depend on details such as the tolerance, the
precise set of “simple” gates chosen, and so on, complexities obey some simple qualitative
features. For example, a system of a large number of qubits with a generic Hamiltonian
H has time-evolution unitary U(t) = exp(−iHt). In this scenario, one expects that the
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tsat =Oe
N 

t

[U(t)]

Figure 4.1: Schematic of complexity of a unitary time-evolution operator versus time. Ini-
tially, the complexity grows linearly with time, before saturating at some time that is expo-
nential in the number of degrees of freedom N . At very late times, there will be Poincare
recurrences (not shown here).

complexity of U(t) will grow linearly with time, at least initially. However, at a certain
point, the complexity will saturate and be approximately constant thereafter [91]. This was
shown explicitly by [9]. See Figure 4.1. Previous work by Brown and Susskind argued for
a thermodynamics of complexity [23]. In particular, they argued that the complexity of a
quantum system with N qubits is related to an entropy of a classical system with 2N degrees
of freedom. They argue for a “second law of complexity,” which says that any system with
non-maximal complexity will be overwhelmingly likely to increase its complexity. Moreover,
they argue that a system that does not have maximal complexity can use this as a resource
(which the authors of [23] dub “uncomplexity”) for quantum computation.

Another interesting feature of complexity of these systems is the so-called switchback
effect [92, 24]. This involves precursor operators, which are the time-evolved “simple” op-
erators. As an example, for a simple ‘initial’ operator W0 (on a qubit system W0 could be
X ⊗ I ⊗ · · · ⊗ I), the precursor operator W (t) is

W (t) = e−iHtW0e
iHt.

Initially, the operator W (t) is not very complex, since it still is mostly along the “simple”
direction, W0. However, after a time of order a scrambling time, the complexity begins to
grow linearly [92, 24]. This delay in complexity growth on the order of a scrambling time is
the switchback-effect. It can be intuitively understood as the delay for W (t) to be begin to
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t* =O(log(N)) tsat =Oe
N 

t

[W(t)]

Figure 4.2: Schematic of complexity of a precursor operator versus time. Initially, the
complexity is very small, up until the scrambling time t∗, at which point it begins to grow
linearly with time, before saturating at some time that is exponential in the number of
degrees of freedom N . At very late times, there will be Poincare recurrences (not shown
here).

be supported on “complicated” operators since at small times W (t) will consist primarily of
“simple” gates which do not contribute to its complexity. In particular, consider the small-
t expansion of the above precursor. By the Baker-Campbell-Hausdorff formula, there will
be nested commutators of W0 and H. H is a sum of terms that act on a small number
of qubits. As t increases, the terms with larger numbers of nested commutators increase.
These terms with a higher number of nested operators will generate terms with support on
a larger number of qubits, and will thus have high complexity. As these high-complexity
terms are multiplied by higher powers of t, it takes a larger amount of time for them to
become significant. Once W (t) has support on a large number of degrees of freedom, its
complexity will of course be large. See Figure 4.2. A key element of the switchback effect in
large N systems is the negative curvature of complexity geometry [92, 24], which we explain
in greater detail in later sections.

There has been much recent work exploring the role complexity may play in holographic
systems. In a two-sided AdS black hole, it was observed that the entanglement entropy of
one side quickly saturates [52]. However, the volume of the maximum slice of the black
hole keeps growing forever, at least classically. The AdS/CFT duality then asserts that this
volume should be dual to some CFT quantity. The essence of the holographic complexity
proposals [89, 25, 26] is that the dual of this quantity in the CFT side is the computational
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complexity.
The two main proposals are the complexity-volume (CV) proposal [89] and the complexity-

action (CA) proposal [25, 26]. Consider a state |Ψ〉 in a holographic CFT with a semi-classical
dual. The complexity-volume proposal says that the complexity of the state |Ψ〉 is equal to
the volume of the maximal volume slice (i.e., co-dimension 1 surface) through the bulk. The
complexity-action proposal says that the complexity of |Ψ〉 is the action of the Wheeler-de
Witt patch, which is defined as the domain of dependence of the maximum volume slice.

Although these proposals are somewhat speculative, they pass some non-trivial checks.
For example, some recent work has investigated complexity in simple quantum field theories
such as the free scalar field [34, 62]. These are quite different from the types of strongly-
coupled, large-N field theories that are expected to have semi-classical holographic duals, but
there are some intriguing similarities between these. In particular, in the analysis of the states
in free quantum field theories, there are ambiguities in the reference state. It is tempting to
identify these with the ambiguities in the bulk gravitational action [66]. Moreover, there is a
logarithmic divergence in the UV cutoff in the field theory calculation, which is similar to the
logarithmic divergence in the near-boundary cutoff in the complexity-action bulk calculation.

Importantly, these holographic complexity proposals also reproduce the switchback ef-
fect [92, 24], with the standard scrambling time for black holes, t∗ = β

2π
logN2, where β

is the inverse temperature of the black hole, and N is the rank of the gauge group on the
CFT side of the duality [87, 88]. Namely, the complexity of a precursor is low up until the
scrambling time t∗, at which point it begins to grow linearly.

The purpose of this chapter is to help bridge the gap between these qualitative expec-
tations of the CV and CA proposals, and notions of complexity in the boundary theory
of holographic systems. Specifically, we will calculate the complexity of various operators
in one- and two-qubit systems, using the framework of Nielsen complexity geometry, and
analyze their behavior in time. This will allow us to quantitatively calculate complexity and
compare with the qualitative intuition above. In this approach, we assign a metric to the
space of unitaries, making some directions have a much larger cost than others. In a large-N
system, we may assign gates that act on more than two degrees of freedom have a very large
cost. The complexity of a given unitary U is then given by the length of the minimal-length
path (i.e., geodesic) between the identity operator I and the target unitary U . See Figure 4.3

For the operators we consider in this chapter, we will find the following features: the
complexity of unitary time evolution operators grows linearly with time, at least initially,
as expected. For choices of complexity geometry that are negatively curved, the precursors
show the qualitative behavior described above. The initial rate of growth is slow and then
it begins quicken, entering a regime of linear growth of complexity in time; however, the
distinction between the two regimes is not as pronounced as it is in the large-N case.

Our calculations provide support for the aforementioned conjectures in a concrete setting
with explicit computations. In particular, we provide a first numerical study of precursor
complexity in small systems. Previous work analyzed the geodesics in complexity space
using the Euler-Arnold formalism [8, 9]. The paper [8] analyzed the “binding complexity” of
various qubit states that are analogous to multi-boundary wormholes in AdS/CFT. These
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Figure 4.3: Schematic of complexity geometry. The intrinsic curvature, described by the
complexity metric, of the unitary manifold (red surface) covered by coordinate patch (x1, x2)
is visualized as extrinsic curvature in an embedding space. The blue line is the minimum-
length path between the identity operator I and the target unitary, Utarget.
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calculations showed that the binding complexities behave similarly to the expectations from
the holographic complexity proposals. The work in [9] considered the complexity of unitary
time-evolution operators for one-qubit systems, as well as an analysis of the SYK model.

We begin with a brief review of Nielsen complexity geometry. We then investigate com-
plexity in one-qubit geometries, considering a geometry where the Z-direction is much harder
than the X and Y -directions. We find that the complexity of the unitary time-evolution op-
erator grows linearly with time for early times. The complexity of precursors initially grows
slowly, before then growing linearly, mimicking the behavior of large-N systems discussed
above. We discuss how precursors are sensitive to the degree of the anisotropy in unitary
space, while the time-evolution operators are not. We then consider two-qubit systems. As
expected, at early times, complexity of the time-evolution unitary grows linearly with time.
If we choose one-qubit gates to be easier and a Hamiltonian consisting of single qubit terms,
then the complexity of a precursor is constant with time. However, if we take the two-qubit
gates to be easier and a Hamiltonian consisting of two-qubit terms, we find that the complex-
ity of precursors grows slowly at first, and then begins to grow linearly. Although this latter
choice is unusual from a laboratory perspective, it gives a better model of the switchback
effect. We use units where ~ = 1 throughout.

4.2 Nielsen Complexity Geometry
We briefly review Nielsen complexity geometry which we will be using throughout [74, 76, 75,
43, 48]. Suppose that we have a system of N qubits, and a general unitary U in the group of
unitaries that act on the N qubits, SU(2N). Any such unitary, U , can be parameterized by
4N−1 parameters x1, x2, . . . , x4N−1 indicating the extent of that unitary along each generator
of SU(2N). A general metric on this space of unitaries is given by

ds2 = Tr(idUU †TI)IIJTr(idUU †TJ), (4.1)

where TI is a generator of SU(2N) (which later we will take to be a tensor product of Pauli
matrices), and IIJ is the cost factor. We will take IIJ to be diagonal; hence, IIJ characterizes
the ‘hardness’ of applying the generator TI . With the parametrization by coordinates, xI ,
the corresponding group element U ∈ SU(2N) is given by

U(xI) = exp
(
ixITI

)
.

To find the complexity of a unitary, Utarget, we first need to solve the geodesic equation

d2xI

ds2
= −ΓIJK

dxJ

ds

dxK

ds

subject to the boundary conditions

U(xI(s = 0)) = I, U(xI(s = 1)) = Utarget,
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where the ΓIJK are the usual Christoffel symbols for the Nielsen complexity metric 4.1. The
complexity of our target unitary will then by given by the length of the minimal geodesic,

C[Utarget] =

∫ 1

0

√
gIJ

dxI

ds

dxJ

ds
ds,

where gIJ is the Nielsen complexity metric.
In the later sections, we generate random Hamiltonians satisfying certain conditions, and

then compute the complexity of the time-evolution unitary and of precursors with Nielsen
metric such that “easy” gates have a lower cost factor than “hard” gates. We will always take
the Hamiltonian to be a sum of “easy” terms.

In our subsequent discussions, we will often have a target unitary and need to calculate
its coordinates. Orthogonality of the SU(2N) generators:

Tr(TITJ) = 2NδIJ ,

allows us to compute the coordinates of a unitary Utarget via

ixI = 2−NTr(log(Utarget)TI). (4.2)

We can then numerically solve the geodesic equation, subject to the boundary conditions that
the geodesic starts at the identity (xI = 0) and ends at the coordinates of the target unitary.
We numerically calculate the values of the metric and Christoffel symbols. We use the Matlab
function bvp4c to solve the boundary value problem given by the system of ODE’s resulting
from the geodesic equation. The boundary conditions are xI(s = 0) = 0, corresponding to
the identity, and xI(s = 1) being the coordinates of target unitary, given by 4.2. The function
bvp4c uses a collocation method to solve the system of ODE’s with boundary conditions.
The function subdivides the interval [0,1] into subintervals, and discretizing the system of
ODE’s and boundary conditions, which turns it into an algebraic system of equations for
values of the solution at the mesh points. It then numerically solves these algebraic systems.

4.3 One Qubit System
In this section, we consider complexity in a one-qubit system. Specifically, we consider the
setup explored in [22], where the X- and Y -directions are considered “easy” and the Z-
direction is considered “hard”. The Z-direction is taken to be 10 times harder than the X-
and Y -directions.

First, we take our Hamiltonian to be a sum of the easy terms, explicitly,

H = J1X + J2Y,

and consider the unitary time-evolution operator U(t) = e−iHt. We numerically solve the
geodesic equations as described above for a sample Hamiltonian, and plot the complexity
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Figure 4.4: Complexity of a unitary time-evolution operator versus time for a one qubit
system described in the main text. The complexity of this operator grows linearly with
time, at least initially. The time axis is in units of seconds.

C[U(t)] as a function of time in Figure 4.4. We use the values J1 = 0.4387s−1, J2 = 0.3816s−1,
and IXX = IY Y = 0.1, IZZ = 1. However, our answers for complexity will be equivalent for
various classes of Ji. For the time-evolution operator, U(t), for a fixed time t, the geodesic
will lie in the isotropic subspace spanned by the X and Y directions. Hence, if we apply a
rotation to J1, J2, the complexity will not change–the only thing that changes the complexity
is an overall rescaling of Ji, which can absorbed into a rescaling of time t. A similar story
applies for precursors, in that the complexity will be equivalent for various classes of choices
of Ji and W0. See Appendix A.3 for more details.

Initially, before any recurrence time, we see the complexity of U(t) grows linearly with
time, exactly as expected. However, as t increases, there are topological obstructions or
‘conjugate points’ and the length of the shortest path from I to U(t) stops increasing. To
illustrate this point with a concrete example, we plot the complexity of U(t) for a larger range
of time in Figure 4.5. The complexity initially grows linearly with time, until it reaches a
maximum value, at time t = π/

√
J2

1 + J2
2 . For our Hamiltonian, this occurs at t = 5.4031s.

We discuss this in more detail in Appendix A.3. It then starts to decrease linearly to zero,
at which point it begins to increase linearly again. This process repeats itself indefinitely.
This agrees with the qualitative behavior of the complexity of a one-qubit unitary obtained
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Figure 4.5: Complexity of a unitary time-evolution operator versus time for the one qubit
system described in the main text. The complexity of this operator grows linearly with time,
then linearly decreases to zero, at the Poincaré recurrence time. This process repeats itself
indefinitely. The time axis is in units of seconds.

in [9]. These dips in the complexity are the one-qubit versions of Poincaré recurrences. As
discussed in the introduction, in a system with N degrees of freedom, we expect that the
complexity will grow linearly up until a time that is O(exp(N)). In our numerical work, we
will only be concerned with regimes well before the appearance of topological obstructions
or conjugate points.

Now we consider a precursor, W (t), which will be a time-evolved “easy” operator. In our
one-qubit case, we will consider the operators

W (t) = e−iHtiXeiHt

and
W (t) = e−iHtiY eiHt,

where we have chosen the normalization so that detW (t) = 1 and W (t) ∈ SU(2). We
numerically solve the geodesic equations, and plot the complexity C[W (t)] as a function of
time in Figure 4.6, using the same parameters as Figure 4.4.

When t = 0, W (t) = W0 is entirely along an easy direction. However, for nonzero
t, we will of course have terms proportional to the commutator [W0, J1X + J2Y ] ⊃ Z,
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(b) W0 = iY.

Figure 4.6: Complexity of a precursor operator versus time, for the one-qubit system de-
scribed in the main text, for different choices of the operator W0. The time axis is in units
of seconds.

which is a hard direction. In this case, the hardness of Z generates negative curvature in
the complexity geometry and is somewhat reminiscent of the switchback effect for large-N
systems, as discussed above. That is, the precursor will be a sum of nested operators which
are initially suppressed for small times, but become more important for large times. The
nested commutators for the large-N case generate terms that are very complex. Hence, the
complexity is initially suppressed, and then begins to grow. Indeed, we see that the rate
of growth of C[W (t)] is somewhat suppressed for some time, and then it begins to grow
linearly, though of course the difference between the two regimes is less stark than we expect
in the large-N case. Therefore, it appears that this negative-curvature model of one-qubit
complexity is a very simple toy model of information scrambling.

To see the connection between negatively-curved geometry and the structure of the com-
mutators more concretely, consider the following argument of Brown and Susskind [22]. Say
that we have two “easy” directions, O1 and O2. Then the Baker-Campbell-Hausdorff formula
tells us the following:

eiO1teiO2t = exp

[
i(O1 +O2)t− 1

2
[O1,O2]t2 + · · ·

]
.

We can think of the LHS as starting from the identity matrix I, and then traveling a distance
t in the O1 direction to a point P , and then a distance t along the O2 to a point Q. The
RHS is taking a path from the identity directly to the point Q. If the commutator [O1,O2]
is hard, then the length of the “hypotenuse” (the direct path from the identity matrix to the
point Q) will be longer than what it would be in flat space. This is a generic property of
negatively-curved geometries. On the other hand, if the commutator [O1,O2] is easy, then
the length of the “hypotenuse” will be shorter than what it would be in flat space. This is a
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Figure 4.7: Complexity of a precursor operator versus time, for the one-qubit system de-
scribed in the main text, for different choices of the operator W0 for various penalty factors.
The very lowest curves in each panel correspond to the plots shown in Figure 4.6. The time
axis is in units of seconds. Note that there is a jump in the vertical axis.

property of positively curved spaces. Indeed, in the present setup, with IXX = IY Y = 0.1,
we can calculate, for example, the scalar curvature at the origin (the identity matrix), which
is given by R = 10(8− 20IZZ) [22]. Hence, the (curvature of the) complexity geometry will
be negative when the Z gate is much harder than the other directions and positive when the
Z gate is easier.

Finally, we plot the complexity of the same precursors considered above (with the same
Hamiltonian) with various penalty factors, in Figure 4.7. We can see that as we decrease
the “easy” penalty factor relative to the hard one, the switchback effect becomes more pro-
nounced, as expected. Indeed, for the case where both penalty factors are 1 (i.e., the metric
is isotropic), the complexity is a constant as a function of time. We explain this last case
in detail analytically in the next section. Therefore, we see explicitly that this anisotropy in
complexity space that generates the negative curvature is essential to the switchback-like-
behavior in precursor operators.

Hence, we see that precursors are a more sensitive probe of the complexity geometry, and
in particular, the anisotropy, since their qualitative behavior is affected by the introduction of
certain types of anisotropies, as we have shown. Indeed, the unitary time-evolution operator
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will be entirely in the easy subspace, and so will not be affected by this type of anisotropy. 1

4.4 Hard Two-Qubit Gates, Easy One-Qubit Gates
Generally, when one introduces measures of complexity, gates that act on a small numbers of
qubits are considered “easy,” while those that act on larger numbers of qubits are considered
“hard.” Thus, when considering a model of circuit complexity for two-qubit systems, one
expects that the natural choice is to assign gates that act non-trivially on both qubits a
higher penalty factor than those that act on only one qubit. However, we will see in this
section that this is not suitable as a model for the switchback effect. In fact, the reverse (i.e.,
assigning one-qubit gates a much larger penalty factor than their two-qubit counterparts)
seems to be a geometry that much better illustrates the switchback effect. This latter model
is discussed in the next section.

Consider a precursor operator in this model with a large cost factor for the two-qubit
gates. In this case, our “local” Hamiltonian is one built out of easy, i.e., one-qubit operators.
In general, it will take the form

H =
∑
i

(J1i σi ⊗ I + J2i I ⊗ σi) .

We numerically solve the geodesic equations to calculate the complexity of the unitary time
evolution operator U(t) corresponding to this type of Hamiltonian (using the geometry de-
scribed previously). We plot the results in Figure 4.8. Explicitly, the cost factor will be taken
to be 0.1 for one-qubit gates, and 1.0 for two-qubit gates. We use the following coefficients
in the Hamiltonian:

J1X = 0.9390, J1Y = 0.8759, J1Z = 0.5502, J2X = 0.6225, J2Y = 0.5870, J2Z = 0.2077,

where each Jij is given in units of s−1. We see that it is linear in time for early times, as
expected.

Recall that a precursor takes the form

W (t) = e−iHtW0e
iHt,

where W0 is an “easy” operator, a one-qubit operator in this case. As the Hamiltonian is a
sum of commuting single-body terms we can clearly see that W (t) will also be a single-body
operator as the evolution does not generate any operators on the second qubit. Say for
concreteness that W0 = iX ⊗ I (the overall factor is chosen so that W (t) has determinant

1An explicit discussion of the different features of the Nielsen metric probed by precursor and time-
evolution unitary complexity is given in appendix A.3.
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Figure 4.8: Complexity of a unitary time-evolution operator versus time with one-qubit gates
being easier than two-qubit gates. The complexity of this operator grows linearly with time.
The time axis is in units of seconds.

1). Then our precursor W (t) becomes

W (t) = exp

(
−i
∑
i

(J1iσi ⊗ I + J2iI ⊗ σi) t

)
iX ⊗ I exp

(
i
∑
i

(J1iσi ⊗ I + J2iI ⊗ σi) t

)

= exp

(
−i
∑
i

(J1iσi) t

)
iX exp

(
i
∑
i

(J1iσi) t

)
⊗ I.

(4.3)
As we are now only considering single-qubit operators, the matrix exponentials can be easily
computed giving schematic form of (for example)

W (t) = exp

(
i
∑
i

αiσi

)
iX exp

(
−i
∑
i

αiσi

)

=

(
cos (α) I + i

∑
i

α̂iσi sinα

)
iX

(
cos (α) I − i

∑
i

α̂iσi sinα

)
,

(4.4)
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Figure 4.9: Complexity of a precursor operator versus time, with one-qubit gates being easier
than two-qubit gates. In this case, W0 = iX⊗I. The complexity of the precursor is constant
in time, as explained in the main text. The time axis is in units of seconds.

where α ≡
√
α2

1 + α2
2 + α2

3, and α̂i ≡ αi/α, are t-dependent parameters. Using the identity

σiσj = Iδij + iεijkσk,

we can show that W (t) has no term proportional to the identity, since, by cyclicity of trace,
TrW (t) = TrW (0) = 0.

Therefore, for all time t, the precursorW (t) will have no term proportional to the identity,
since all the Pauli matrices are traceless. We can write W (t) in the form

W (t) = exp

(
i
∑
i

βi(t)σi

)
.

We can expand this as

W (t) = exp

(
i
∑
i

βi(t)σi

)
=

(
cos (β(t)) I + i

∑
i

β̂i(t)σi sin β(t)

)
,

where β(t) ≡
√
β1(t)2 + β2(t)2 + β3(t)2, and β̂i(t) ≡ βi(t)/β(t).2

2See appendix A.3 for an explicit calculation of βi(t).
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Because W (t) has no term proportional to the identity, we must have cos β = 0 so that
β = π

2
for all time. In this geometry, all one-qubit directions have the same cost, so we would

expect that the complexity of the precursor will be constant throughout time. Once again,
we solve the geodesic equations, and plot the complexity of W (t) versus time in Figure 4.9.
We see that C[W (t)] is constant with respect to time. (Note that this is exactly the same
reason why the complexity of a precursor was constant in time for the one-qubit case with
an isotropic metric discussed at the end of the last section.) Although we choseW0 = iX⊗I
for concreteness, the complexity of W (t) will be constant in time for any choice of one-qubit
operatorW0 with detW0 = 1, using the exact same logic as above. However, different choices
of W0 will result in different values for the complexity. Hence, this geometry is poorly-suited
to model the switchback effect. Indeed, as discussed above, since the commutator of two
“easy” directions is “easy,” the complexity geometry is not negatively-curved and we should
not expect the precursor to display switchback-effect-like behavior.

We now turn to the other case (where the two-qubit gates have a lower cost factor than
the one-qubit gates), which seems to be a better model of the switchback effect.

4.5 Easy Two-Qubit Gates, Hard One-Qubit Gates
In this section, we consider a geometry in which the two-qubit gates are “easy” while the
one-qubit gates are “hard.” While this may seem counter-intuitive from the perspective of
large-N systems (where gates that act on a small number of qubits are easy), we shall see
that the geometry that results from this choice seems to illustrate the switchback effect. In
this case, the Hamiltonian will be a sum of “easy” terms,

H =
∑
ij

Jij σi ⊗ σj.

The unitary time-evolution operator is then U(t) = exp(−iHt). We solve the geodesic
equation numerically, and use this to calculate the complexity C[U(t)]. We plot the results
in Figure 4.10, for Hamiltonian 1 in Table 4.1. The Hamiltonians in this table were found by
randomly generating the nine two-qubit operator coefficients. As expected, the complexity
grows linearly in time.

Recall that a precursor in this geometry will have the form

W (t) = e−iHtW0e
iHt,

however now W0, being “easy,” will of course act non-trivially on both qubits. At t = 0,
this operator will only have non-zero coordinates in an “easy” direction. However, as we
increase t, we will have terms in W (t) that result from the commutator of terms in the
Hamiltonian and W0. In general, these will lead to terms that act non-trivially on only
one qubit. For example, if W0 = −X ⊗ X, [W0, X ⊗ Y ] will be proportional to I ⊗ Z,
which is a “hard” gate. Note that this is a somewhat similar mechanism to what happens
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Figure 4.10: Complexity of a unitary time-evolution operator versus time with one-qubit
gates being harder than two-qubit gates. The complexity of this operator grows linearly
with time. The time axis is in units of seconds.

to the complexity of precursors in large-N systems. As discussed above, this structure of
the commutator (specifically that the commutator of two “easy” operators yields a “hard”
operator) is a reflection of the negative curvature of unitary space that is a key component
of switchback-like time evolution of precursor complexity. This should be contrasted with
the situation above, where the “easy” gates were taken to be the one-qubit operators. In
this case, the commutator of two “easy” gates is another “easy” gate. Therefore, even though
physically (in, for example, a laboratory setting) this setup (in which two-qubit gates are
taken to be easier than one-qubit) gates is not a good model of complexity, it is a good
mathematical toy model of the switchback effect. In particular, once again, we see that the
negative curvature is necessary to generate switchback-like-behavior of precursor operator
complexity.

When we calculate the complexity of W (t) and plot the results as a function of time (see
Figure 4.11), we see that for a brief initial period, the complexity grows slowly, and then
it begins to grow much more rapidly, exactly as expected from the previous discussion. We
do this calculation for the Hamiltonians given in Table 4.1. This behavior of complexity of
precursors is very similar in form to the behavior of precursors in the usual systems with a
much larger number of qubits [24, 92], suggesting that, qualitatively, the switchback effect
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(a) W0 = −X ⊗X
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(b) W0 = −X ⊗ Y
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(c) W0 = −X ⊗ Z
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(d) W0 = −Y ⊗ Z
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(e) W0 = −Y ⊗ Y
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(f) W0 = −Z ⊗ Z

Figure 4.11: Complexity of a precursor operator versus time, with one-qubit gates being
harder than two-qubit gates for various choices of the operator W0, as well as for various
choices of the Hamiltonian. The complexity of the precursor grows slowly at first, then
begins to grow linearly. This is a result of a switchback effect similar to the one seen in
systems with a large number of degrees of freedom. The time axis is in units of seconds.
Note that the overall factor is chosen so that detW (t) = 1.
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J11 J12 J13 J21 J22 J23 J31 J32 J33

H1 0.1888 0.0012 0.3164 0.6996 0.6253 0.5431 0.4390 0.2874 0.5017
H2 0.9649 0.1576 0.9706 0.9572 0.4854 0.8003 0.1419 0.4218 0.9157
H3 0.7922 0.9595 0.6557 0.0357 0.8491 0.9340 0.6787 0.7577 0.7431
H4 0.3922 0.6555 0.1712 0.7060 0.0318 0.2769 0.0462 0.0971 0.8235

Table 4.1: Hamiltonians considered in the main text. Each row in the table corresponds to
H =

∑
ij Jij σi ⊗ σj. Each Jij is in units of s−1.

is related to the generation of “hard” operators via commutators of “easy” operators and
the role of large N is simply to increase the number of “hard” operators relative to “easy”
operators, sharpening the effect.

4.6 Conclusions and Future Directions
In this chapter, we have analyzed complexity of operators in one- and two-qubit systems,
using Nielsen complexity geometry. This approach allows us to give a precise definition
of operator complexity, and largely confirm our qualitative intuition for how this should
behave. We have found that the unitary time-evolution operators grow linearly with time,
as expected. It was also found that precursor operators grow more slowly at first, at least
when we chose our “hard” and “easy” gates such that the resulting complexity geometry
was negatively curved. For one-qubit systems, this occurred when we considered one of the
three Pauli operators to be “hard,” and the other two to be “easy.” For two-qubit systems,
to obtain negative curvature, we chose two-qubit gates to be “easy,” while considering their
one-qubit counterparts to be “hard.” While this is somewhat counter-intuitive from, e.g., a
laboratory point of view, this choice was necessary to generate negative curvature that is
required to model many of the features of computational complexity.

There are several interesting ways in which our analysis could be extended, which we
leave to future work. First of all, it would be worthwhile to try to extend these types of
computations to larger numbers of qubits. In particular, it would be nice to consider a system
of N qubits, where the one- and two-qubit gates are much less difficult than gates acting
on larger numbers of qubits, reflecting laboratory conditions. In this setting it is natural
to consider two-qubit operators “easy” and commutators of “easy” operators will generate
larger “hard” operators. As evidenced by our two-qubit calculations, the production of
“hard” operators (one-qubit in that case) by commutators of “easy” operators seems to be an
important ingredient needed to observe (qualitatively) the switchback effect. We therefore
expect that the behavior of precursor complexity will look more and more like the behavior
expected for the large-N limit–very small complexity until the scrambling time, and then
linear growth.

Furthermore, it would be interesting to analyze specific qubit models, especially those
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that are of interest from the gravity point of view, such as the SYK model. For, e.g., the
SYK model, the scrambling time is expected to scale logarithmically with the number of
degrees of freedom. Presumably, then, these calculations would show that the time at which
linear growth starts also scales logarithmically with the number of degrees of freedom.

However, doing these calculations for a larger number of degrees of freedom means ana-
lyzing a much more complicated geometric space, the dimension of which scales exponentially
in the number of qubits, which poses a considerable computational challenge.

We expect that future work analyzing these types of problems will continue to illuminate
the connections between information, holography, gravity, and spacetime, and in particular
illustrate how bulk data is encoded in information-theoretic quantities in its holographic
boundary dual.
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Chapter 5

Sandwiched Renyi Relative Entropy in
AdS/CFT

Recent work has uncovered the importance of quantum information in understanding quan-
tum gravity. The anti-de Sitter/conformal field theory (AdS/CFT) correspondence states
that any theory of quantum gravity in (d+ 1)-dimensional anti-de Sitter space is equivalent
to a conformal field theory in d dimensions [71, 49, 96]. The Ryu-Takayagi formula [85]
and the Hubeney-Rangamani-Takayagi [60] formula show that entanglement entropies in the
CFT are equal to areas of minimal or extremal surfaces in the bulk. These formulae can be
derived directly from the basic AdS/CFT dictionary [67, 41]. The role of the Renyi entropy,
a generalization of entanglement entropy, in AdS/CFT has also been studied [38].

An important aspect of this connection has been the role that quantum error correction
plays in the encoding of the bulk in the boundary [51, 50, 5, 40, 80, 42, 39, 2, 61]. In
particular, [51] established a theorem demonstrating the equivalence between (i) subregion
duality, (ii) the equality of bulk and boundary relative entropy, (iii) algebraic encoding, and
(iv) the RT formula.

The purpose of this chapter is to discuss the role of sandwiched relative Renyi entropy in
holographic quantum error correction. The sandwiched Renyi entropy is a generalization of
the relative entropy, which reduces to the usual relative entropy if we take the limit of the
Renyi index to 1. In particular, we show that the the equivalence of bulk and boundary rela-
tive Renyi entropy is equivalent to the conditions stated above (subregion duality, algebraic
encoding, the RT formula, and the equivalence between bulk and boundary relative entropy)
in the context of operator algebra quantum error correction with complementary recovery.
Along the way, we will define a sandwiched relative Renyi entropy in the context of finite-
dimensional von Neumann algebras. We will then show that this definition follows from the
definition of relative Renyi entropy on general von Neumann algebras, which is defined from
modular operators. Finally, we will discuss results from numerical simulations on a simple
holographic tensor model which illustrates the behavior of the sandwiched relative Renyi
entropy near a phase transition. These numerical calculation are a model for approximate
error correction, in contrast to the theorem we will discuss which concerns an equivalence
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between exact equality of bulk and boundary sandwiched Renyi relative entropies.
The sandwiched relative Renyi entropy has previously been used to illuminate the con-

nections between information, entanglement, gravity, and quantum field theory. For exam-
ple, [11] discussed the bulk dual of the so-called refined relative Renyi entropy. The quantum
null energy condition (QNEC) [21] can be expressed as a second shape deformation of the
relative entropy of a given state and the vacuum. For free quantum field theories, it has
been shown that this can be generalized to the sandwiched Renyi relative entropies [72] for
certain values of the Renyi index. Our work in the present chapter is closely related to the
recent article [63] on corrections to the equality of bulk and boundary relative entropy in
AdS/CFT.

We begin this chapter with a discussion of the basic definitions and properties of sand-
wiched relative Renyi entropy as well as a brief review of the theory of holographic quantum
error correction.

5.1 Sandwiched Renyi Relative Entropy
Given a Hilbert space H and two density operators ρ, σ on the Hilbert space, the sandwiched
relative Renyi entropy [73, 95, 65] is defined as

Sn(ρ||σ) ≡ 1

n− 1
log
[
Tr
[(
σ

1−n
2n ρσ

1−n
2n

)n]]
.

This is also known in the literature as the sandwiched Renyi divergence (SRD).

Proposition 1. The sandwiched relative Renyi entropy is invariant under unitary transfor-
mations. That is, given a unitary transformation U on the Hilbert space H, we have

Sn(UρU †||UσU †) = Sn(ρ||σ)

for any density matrices ρ, σ on H.

Proof. This follows from the definition:

Sn(UρU †||UσU †) =
1

n− 1
log
[
Tr
[(

(UσU †)
1−n
2n UρU †(UσU †)

1−n
2n

)n]]
=

1

n− 1
log
[
Tr
[(
Uσ

1−n
2n U †UρU †Uσ

1−n
2n U †

)n]]
=

1

n− 1
log
[
Tr
[(
Uσ

1−n
2n ρσ

1−n
2n U †

)n]]
=

1

n− 1
log
[
Tr
[
U
(
σ

1−n
2n ρσ

1−n
2n

)n
U †
]]

=
1

n− 1
log
[
Tr
[(
σ

1−n
2n ρσ

1−n
2n

)n]]
= Sn(ρ||σ).

(5.1)
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In addition to being invariant under unitary transformations, the sandwiched relative
Renyi entropy is always strictly positive, unless the two density matrices are the same, in
which case it is zero [73, 95, 65].

Proposition 2. Let H be a Hilbert space, and let ρ, σ be two density matrices on H. Then
Sn(ρ||σ) ≥ 0, and Sn(ρ||σ) = 0 if and only if ρ = σ.

Moreover, the limit as n→ 1 of the relative Renyi entropy is the usual relative entropy [73,
95, 65].

Proposition 3. Let H be a Hilbert space, and let ρ, σ be two density matrices on H. Then

lim
n→1

Sn(ρ||σ) = S(ρ||σ),

where
S(ρ||σ) ≡ Tr(ρ log ρ)− Tr(ρ log σ)

is the relative entropy.

In addition, the sandwiched Renyi relative entropy is monotonic in the Renyi index n [65].

Proposition 4. Let H be a Hilbert space, and let ρ, σ be two density matrices on H, and
suppose n1, n2 ∈ (0,∞)\{1} with n1 ≤ n2. Then

Sn1(ρ||σ) ≤ Sn2(ρ||σ).

The sandwiched relative Renyi entropy obeys the data-processing inequality for n ≥ 1/2.
That is, when we apply a quantum channel to the density matrices, the sandwiched relative
Renyi entropy decreases or stays the same. See, for example, [65] and references therein for
a discussion.

Proposition 5. Let H be a Hilbert space, let ρ, σ be two density matrices on H, let n ≥ 1/2,
and let Λ be a quantum channel. Then

Sn(ρ||σ) ≥ Sn(Λ[ρ]||Λ[σ]).

5.2 Holographic Quantum Error Correction
We briefly review some aspects of the connection between quantum error correction and
holography [50, 51]. Consider a finite-dimensional Hilbert space H that factorizes as H =
HA ⊗ HĀ, and a subspace Hcode ⊆ H, and a von Neumann algebra M acting on the code
subspace Hcode.

Then there exists a decomposition of Hcode,

Hcode = ⊕α(Haα ⊗Hāα)
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such thatM is the set of all operators of the form ⊕α(Oα⊗Iāα) where the Oα’s are operators
on Haα . In the above setup, H is the analog of the full Hilbert space of the conformal
field theory, while Hcode corresponds to a code subspace, e.g., the set of states that are
perturbatively close to some smooth classical bulk geometry. HA corresponds to the Hilbert
space of some spatial region A in the CFT, while M represents the set of operators with
support in the entanglement wedge of A, E(A).

These error correcting codes work by encoding a state on M in the “physical" Hilbert
space H. In particular, there are states χα on Hāα and a unitary transfomation UA on HA

such that a state ρ̃ on Hcode is mapped to a state with the following density matrix on HA:

ρ̃A = UA [⊕α(pαρaα ⊗ χα)]U †A.

Each of the ρaα ’s is defined so that

pαρaα = Trāα ρ̃αα,

where ρ̃αα is the αth block of the density matrix of Hcode. Furthermore, each of the ρaα ’s is
normalized so that Trρaα = 1, and

∑
α pα = 1.

The above encoding satisfies an equivalent of the Ryu-Takayanagi formula. In particular,

S(ρ̃A) = Tr(ρ̃ALA) + S(ρa :M),

where LA = ⊕αS(χα)(Iaα ⊗ Iāα) is the analog of the area operator, S(χα) = −Tr(χα logχα)
is the von Neumann entropy of χα, and S(ρa : M) is the algebraic von Neumann entropy
over the algebraM. It is defined as

S(ρa :M) ≡
∑
α

pαS(ρaα)−
∑
α

pα log(pα).

This entropy consists of an average of the von Neumann entropy of each block, plus a
“classical” term that is the Shannon entropy of the probability distribution {pα}.

This error correcting code also satisfies the equivalence of “bulk” and “boundary” relative
entropy. To see this, consider two states on the code subspace that are encoded in the usual
way:

ρ̃A = UA [⊕α(pαρaα ⊗ χα)]U †A, σ̃A = UA [⊕α(qασaα ⊗ χα)]U †A.

We then compute the relative entropy, using the fact that it is invariant under unitary
transformations

S(ρ̃A||σ̃A) = S(⊕α(pαρaα ⊗ χα)|| ⊕α (qασaα ⊗ χα))

In order to calculate this, we will need the logarithm of block diagonal matrices ⊕α(pαρaα ⊗
χα). For a block diagonal matrix, M = ⊕αMα, we have that Mn = ⊕Mn

α and so (by
the Taylor series for matrix exponentiation) exp(M) = ⊕α exp(Mα). Therefore, logM =
⊕α log(Mα). Therefore,

log(⊕α(pαρaα ⊗ χα)) = ⊕α log pαIaαāα +⊕α(log ρaα ⊗ Iāα) +⊕α(Iaα ⊗ logχα).
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Hence,

Tr((⊕α(pαρaα ⊗ χα)) log(⊕α(pαρaα ⊗ χα))) =
∑
α

pα log pα +
∑
α

pαTr(ρα log ρaα)

+
∑
α

pαTr(χα logχα),
(5.2)

and, similarly,

Tr((⊕α(pαρaα ⊗ χα)) log(⊕α(qασaα ⊗ χα))) =
∑
α

pα log qα +
∑
α

pαTr(ρα log σaα)

+
∑
α

pαTr(χα logχα).
(5.3)

Hence,

S(ρ̃A||σ̃A) = Tr((⊕α(pαρaα ⊗ χα)) log(⊕α(pαρaα ⊗ χα)))

− Tr((⊕α(pαρaα ⊗ χα)) log(⊕α(qασaα ⊗ χα)))

=
∑
α

pα log

(
pα
qα

)
+
∑
α

pαS(ρaα||σaα) = S(ρa||σa :M). (5.4)

As with the algebraic entropy considered above, this is the sum of two terms, an averaged
quantum relative entropy, weighted by the probability distribution {pα} and a “classical”
term, which is the relative Shannon entropy of the probability distributions {pα} and {qα}.
Moreover, this algebraic relative entropy is the exact form one obtains from the theory of
modular operators, as we discuss below.

A closely related concept in this construction is that of subregion duality. That is, for all
operators on O ∈ M , there are operators OA which acts nontrivially only on HA such that
O |ψ〉 = OA |ψ〉 for all |ψ〉 ∈ Hcode.

It was shown in [51] that the existence of an encoding map, the RT formula, subregion
duality, and the equivalence of bulk and boundary relative entropy are all in fact equivalent
for these kinds of finite-dimensional Hilbert spaces.

5.3 Sandwiched Renyi Relative Entropy in Holographic
Quantum Error Correction

The so-called α-block decomposition described above has received considerable interest in
recent years [39, 2, 42] and is now relatively well-understood. It is our aim in this section
to discuss the sandwiched Renyi relative entropy in this quantum error-correction context
and to provide a definition of sandwiched Renyi relative entropy that is suitable for this
α-block setting. In the next section, we will show that this definition also follows from a
modular-theoretic definition of sandwiched Renyi relative entropy.
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In particular, we will show that the equality of sandwiched Renyi relative entropy is
equivalent to the four statements above. Consider the same setup as in the previous section,
and consider two states ρ̃ and σ̃ on the code subspace encoded in the usual way

ρ̃A = UA [⊕α(pαρaα ⊗ χα)]U †A, σ̃A = UA [⊕α(qασaα ⊗ χα)]U †A.

We calculate

Sn(ρ̃A||σ̃A) = Sn(⊕α(pαρaα ⊗ χα)|| ⊕α (qασaα ⊗ χα))

=
1

n− 1
log
[
Tr
[(

(⊕α(qασaα ⊗ χα))
1−n
2n (⊕α(pαρaα ⊗ χα))(⊕α(qασaα ⊗ χα))

1−n
2n

)n]]
=

1

n− 1
log

[∑
α

pnαq
1−n
α Tr

[(
σ

1−n
2n
aα ρaασ

1−n
2n
aα

)n
⊗ χα

]]

=
1

n− 1
log

[∑
α

pnαq
1−n
α Tr

[(
σ

1−n
2n
aα ρaασ

1−n
2n
aα

)n]
· Tr(χα)

]

=
1

n− 1
log

[∑
α

pnαq
1−n
α Tr

[(
σ

1−n
2n
aα ρaασ

1−n
2n
aα

)n]]
, (5.5)

where in the first step, we have used the invariance of sandwiched relative Renyi entropy
under unitary transformations, as discussed above. Note that we can write this as

Sn(ρ̃A||σ̃A) =
1

n− 1
log

[∑
α

pnαq
1−n
α exp[(n− 1)Sn(ρaα||σaα)]

]
.

As we discuss below, this is exactly the same as the Renyi relative entropy derived for such
finite-dimensional von Neumann algebras using modular operators. (Similarly, the modular-
theoretic definition of relative entropy reduces to the one defined above for finite-dimensional
von Neumann algebras.) Note that this algebraic entropy is not of the form of a classical
term plus a weighted average of the quantum entropies of each α-block. However, note that
the classical relative Renyi entropy of two probability distributions {pα} and {qα} is given
by

Sn({pα}||{qα}) =
1

n− 1
log

[∑
α

pnαq
1−n
α

]
.

This means that when the quantum states are purely classical probability distributions, our
algebraic sandwiched relative Renyi entropy reduces to the classical relative Renyi entropy.
Moreover, it is clear that when we only have one α-block, the algebraic sandwiched relative
Renyi entropy reduces to the usual sandwiched relative Renyi entropy defined above. This is
exactly as we would expect, in analogy with the corresponding special cases for the algebraic
entropy and relative entropy described above.
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The classical relative Renyi entropy described above is always greater than or equal to
zero, and it is zero if and only if the probability distributions are identical, pα = qα. We
claim that our algebraic relative Renyi entropy is greater than or equal to zero, and that it
is zero if and only if the states are the same. To see this, consider the case where n > 1.
Sn(ρaα||σaα) ≥ 0, so

Sn(ρ̃a||σ̃a :M) =
1

n− 1
log

[∑
α

pnαq
1−n
α exp[(n− 1)Sn(ρaα||σaα)]

]

≥ 1

n− 1
log

[∑
α

pnαq
1−n
α

]
= Sn({pα}||{qα}). (5.6)

since log is a monotone increasing function. Therefore, Sn(ρ̃a||σ̃a : M) ≥ 0. Moreover, the
inequality in the above expression is saturated (i.e., Sn(ρ̃a||σ̃a :M) = Sn({pα}||{qα})) if and
only if ρaα = σaα for all α. Also, as discussed above, Sn({pα}||{qα}) = 0 if and only if the
probability distributions are identical, pα = qα. Therefore, Sn(ρ̃a||σ̃a : M) = 0 if and only
if ρaα = σaα and pα = qα for all α, i.e., the states are identical, as claimed. The case with
n < 1 is similar.

In addition, we claim that our algebraic sandwiched Renyi relative entropy limits to the
algebraic relative entropy defined above as n → 1, just as the sandwiched Renyi relative
entropy converges to the relative entropy when n→ 1. Note that

lim
n→1

Sn(ρaα||σaα) = S(ρaα ||σaα)

for all α. We have

lim
n→1

Sn(ρ̃a||σ̃a :M) = lim
n→1

1

n− 1
log

[∑
α

pnαq
1−n
α exp[(n− 1)Sn(ρaα||σaα)]

]
,

and

lim
n→1

log

[∑
α

pnαq
1−n
α exp[(n− 1)Sn(ρaα ||σaα)]

]
= log[

∑
α

pα] = 0.
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Therefore, by L’Hospital’s rule,

lim
n→1

Sn(ρ̃a||σ̃a :M)

= lim
n→1

1

n− 1
log

[∑
α

exp[n log pα − (n− 1) log qα + (n− 1)Sn(ρaα||σaα)]

]

= lim
n→1

∑
α exp[n log pα − (n− 1) log qα + (n− 1)Sn(ρaα||σaα)](log pα − log qα + Sn(ρaα||σaα))∑

α exp[n log pα − (n− 1) log qα + (n− 1)Sn(ρaα||σaα)]

+ lim
n→1

∑
α exp[n log pα − (n− 1) log qα + (n− 1)Sn(ρaα ||σaα)](n− 1)∂nSn(ρaα||σaα)∑

α exp[n log pα − (n− 1) log qα + (n− 1)Sn(ρaα||σaα)]

=

∑
α exp[log pα](log pα − log qα + S(ρaα||σaα))∑

α exp[log pα]
=
∑
α

pα log

(
pα
qα

)
+
∑
α

pαS(ρaα ||σaα),

(5.7)

which is the algebraic relative entropy, S(ρa||σa :M), as claimed.
Now, as noted above, it was previously established that subregion duality, algebraic en-

coding, equality of bulk and boundary relative entropy, and the RT formula are all equivalent
for this setting. We have shown that the algebraic encoding implies the equality of bulk and
boundary sandwiched relative Renyi entropy (using the algebraic definition discussed above).
Equality of bulk and boundary sandwiched relative Renyi entropy implies the equality of bulk
and boundary relative entropy, by taking the limit n → 1, since the algebraic sandwiched
relative Renyi entropy converges to the algebraic relative entropy in this limit. Therefore,
the equality of bulk and boundary sandwiched relative Renyi entropy is also equivalent to
subregion duality, algebraic encoding, equality of bulk and boundary relative entropy, and
the RT formula.

5.4 Sandwiched Renyi Relative Entropy using Modular
Operators

We now discuss relative entropies and relative Renyi entropies using the theory of modular
operators, closely following [97, 64]. We begin by reviewing modular operators.

Consider a Hilbert space H that has the following structure,

H = ⊕A(HA ⊗HĀ),

and for simplicity we consider the case where dimHA = dimHĀ. Consider two (normalized)
states, |Ψ〉 , |Φ〉 ∈ H. We can write

|Ψ〉 =
∑
A

rA |ψA〉 ,
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where each |ψA〉 is normalized, and
∑

A |rA|2 = 1. We can write each |ψA〉 as

|ψA〉 =
∑
i

c(i, A) |i, i, A〉 ,

where |i, i, A〉 = |i, A〉 ⊗ |i, A〉′, and {|i, A〉} is an orthonormal basis for HA, and {|i, A〉′}
is an orthonormal basis for HĀ. Each |ψA〉 is normalized, so

∑
i |c(i, A)|2 = 1. In the exact

same way, we can write

|Φ〉 =
∑
A

sA |φA〉 , |φA〉 =
∑
α

d(α,A) |α, α,A〉 ,

where |α, α,A〉 = |α,A〉⊗|α,A〉′, and {|α,A〉} is an orthonormal basis for HA, and {|α,A〉′}
is an orthonormal basis for HĀ. Once again, we have the normalization conditions∑

A

|sA|2 = 1,
∑
α

|d(α,A)|2 = 1.

Consider the algebra of operators A defined by operators on H that are block-diagonal and
have the form ⊕A(OA ⊗ IĀ), where IĀ is the identity operator on HĀ. We first determine
the relative Tomita operator, SΨ||Φ, which is defined by

SΨ||ΦO |Ψ〉 = O† |Φ〉 for all O ∈ A.

Consider an operator O ∈ A, which we can write as ⊕A(OA ⊗ IĀ), that acts as follows:

O |i, A〉 = |α,A〉

and
OA |j, B〉 = 0

for all j 6= i, and for all B 6= A. Then the adjoint acts as

O† |α,A〉 = |i, A〉

and
O† |β,B〉 = 0

for all β 6= α, and for all B 6= A. Therefore,

O |Ψ〉 = rAc(i, A) |α, i, A〉 ,O† |Φ〉 = sAd(α,A) |i, α, A〉 .

Hence, the relative Tomita operator acts as

SΨ||Φ |α, i, A〉 =
sA
rA

d(α,A)

c(i, A)
|i, α, A〉 .
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The relative Tomita operator is an anti-linear operator, so the adjoint acts as

S†Ψ||Φ |i, α, A〉 =
s∗A
r∗A

d(α,A)∗

c(i, A)∗
|α, i, A〉 .

Using this, we can compute the relative modular operator, ∆Ψ||Φ = S†Ψ||ΦSΨ||Φ. We find

∆Ψ||Φ |α, i, A〉 =
|sA|2

|rA|2
|d(α,A)|2

|c(i, A)|2
|α, i, A〉 .

Define σA to be the reduced density matrix of |φA〉 on HA, and ρ̄A to be the reduced density
matrix of |ψA〉 on HĀ, and define pA ≡ |rA|2, qA ≡ |sA|2. With these definitions, and the
expressions above for |ψA〉 and |φA〉, we obtain

∆Ψ||Φ = ⊕A
(
qA
pA
σA ⊗ ρ̄−1

A

)
.

Having computed the relative modular operator, we now turn to the calculation of algebraic
relative entropy. Recall that the Araki definition of relative entropy over our von Neumann
algebra A is given by

S(Ψ||Φ : A) ≡ −〈Ψ| log ∆Ψ||Φ:A |Ψ〉 .

Now, for a block diagonal matrix, M = ⊕AMA, Mn = ⊕AMn
A so that (by the Taylor series

definition of matrix exponentiation) expM = ⊕A expMA. which means that for a block-
diagonal matrix M = ⊕AMA, logM = ⊕A logMA. Therefore,

S(Ψ||Φ : A) = −〈Ψ| ⊕A log

(
qA
pA
σA ⊗ ρ̄−1

A

)
|Ψ〉 = −〈Ψ| ⊕A log

(
qA
pA
σA ⊗ ρ̄−1

A

)
|Ψ〉

= −〈Ψ| ⊕A
[
log

(
qA
pA

)
IA ⊗ IĀ

]
|Ψ〉 − 〈Ψ| ⊕A log

(
σA ⊗ ρ̄−1

A

)
|Ψ〉 . (5.8)

Now,
log
(
σA ⊗ ρ̄−1

A

)
= log σA ⊗ ĪĀ − IA ⊗ log ρ̄A,

and the first term in S(Ψ||Φ : A) becomes

− 〈Ψ| ⊕A
[
log

(
qA
pA

)
IA ⊗ IĀ

]
|Ψ〉 = −

∑
A

〈ψA| r∗ArA log

(
qA
pA

)
|ψA〉

= −
∑
A

pA log

(
qA
pA

)
=
∑
A

pA log

(
pA
qA

)
. (5.9)
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Therefore, the relative entropy becomes:

S(Ψ||Φ : A) =
∑
A

pA log

(
pA
qA

)
− 〈Ψ| ⊕A log

(
σA ⊗ ρ̄−1

A

)
|Ψ〉

=
∑
A

pA log

(
pA
qA

)
+ 〈Ψ| ⊕A (IA ⊗ log ρ̄A) |Ψ〉 − 〈Ψ| ⊕A (log σA ⊗ IĀ) |Ψ〉

=
∑
A

pA log

(
pA
qA

)
+
∑
A

pA 〈ψA| IA ⊗ log ρ̄A |ψA〉 −
∑
A

pA 〈ψA| log σA ⊗ IĀ |ψA〉

=
∑
A

pA log

(
pA
qA

)
+
∑
A

pATr(ρ̄A log ρ̄A)−
∑
A

pATr(ρA log σA). (5.10)

Now, each |ψA〉 is a pure state for each A, so Tr(ρ̄A log ρ̄A) = Tr(ρA log ρA) for each A, where
ρA is of course the reduced density matrix of |ψA〉 on the Hilbert space HA. Thus,

S(Ψ||Φ : A) =
∑
A

pA log

(
pA
qA

)
+
∑
A

pATr(ρA log ρA)−
∑
A

pATr(ρA log σA)

=
∑
A

pA log

(
pA
qA

)
+
∑
A

pA [Tr(ρA log ρA)− Tr(ρA log σA)] . (5.11)

This is a sum of a purely classical “relative entropy” of the probability distributions {pA}
and {qA}, and a weighted sum of the quantum relative entropies of the density matrices ρA
and σA, weighed by the probabilities pA. This is the usual definition of algebraic relative
entropy for this type of von Neumann algebra. Moreover, the above expression is the type
of relative entropy that appears in the equality of bulk and boundary relative entropies in
the context of holographic operator algebra quantum error correction.

The algebraic Renyi relative entropy is defined by Lashkari [64] using modular operators
as

Sα(Φ||Ω : A) =
1

α
sup
Ψ∈H

log 〈Φ|∆α
Ω||Ψ |Φ〉 ,

for α > 0, and similarly for α < 0. Note that the index α is different than the index n above
– they are related by α = n−1

n
. In order to analyze this, we first need to discuss various

matrix norms. For a matrix X, its p-norm is defined to be

‖X‖p ≡ Tr(|X|p)1/p.

This norm satisfies Holder’s inequality

‖XY ‖1 ≤ ‖X‖p‖Y ‖q,

where p and q satisfy 1
p

+ 1
q

= 1, p, q > 1. Now, Tr(XC) ≤ ‖XC‖1 so Holder’s inequality
tells us

sup
‖C‖q=1

Tr(XC) ≤ ‖XC‖1 ≤ ‖X‖p‖C‖q = ‖X‖p,
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where 1
p

+ 1
q

= 1. The matrix X has polar decomposition X = U |X|. Consider an operator
C0 = A|X|p/qU †, where A is a constant. We have that

‖C0‖q = A · Tr(|X|p)1/q.

By requiring that ‖C0‖q = 1, we find A = 1
Tr(|X|p)1/q

so that

C0 =
|X|p/qU †

Tr(|X|p)1/q
.

We then find

Tr(XC0) =
Tr(U |X||X|p/qU †)

Tr(|X|p)1/q
=
Tr(|X|1+p/q)

Tr(|X|p)1/q
.

Now, 1
p

+ 1
q

= 1, so

Tr(XC0) =
Tr(|X|p)
Tr(|X|p)1/q

= Tr(|X|p)1−1/q = Tr(|X|p)1/p = ‖X‖p.

We know that sup‖C‖q=1 Tr(XC) ≤ ‖X‖p, and that C0 saturates this inequality with ‖C0‖q =

1, so we conclude that
sup
‖C‖q=1

Tr(XC) = ‖X‖p.

Now, recall that we wrote our state |Φ〉 as |Φ〉 =
∑

A sA |φA〉. Each of the states |φA〉 can in
turn be written as |φA〉 =

∑
α d(α,A) |α, α,A〉 . The reduced density matrix of |φA〉 on HA

is then
σA =

∑
α

|d(α,A)|2 |α,A〉 〈α,A| .

Therefore, for full rank σA,

|φA〉 = (σ
1/2
A ⊗ IĀ)

∑
α

|α, α,A〉 .

Now, let X and Y be two Hermitian operators, so that

〈φA|X ⊗ Y |φA〉 =
∑
α,β

〈α, α,A|σ1/2
A Xσ

1/2
A ⊗ Y |β, β, A〉

=
∑
α,β

〈α,A|σ1/2
A Xσ

1/2
A |β,A〉 〈β,A|Y |α,A〉

=
∑
α,β

〈α,A|σ1/2
A Xσ

1/2
A Y |α,A〉 = TrHA(σ

1/2
A Xσ

1/2
A Y ). (5.12)
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We can apply this result to the algebraic relative Renyi entropy. We use the same notation
for the expansions of |Ψ〉 and |Φ〉 as before. We can write the state |Ω〉 as

|Ω〉 =
∑
A

tA |ωA〉 ,

and write |ωA〉 as
|ωA〉 =

∑
µ

g(µ,A) |µ, µ,A〉 ,

where |µ, µ,A〉 = |µ,A〉 ⊗ |µ,A〉′, {|µ,A〉} is an orthonormal basis for HA, and {|µ,A〉′} is
an orthonormal basis for HĀ. We have our usual normalization conditions∑

A

|tA|2 = 1,
∑
µ

|g(µ,A)|2 = 1.

We write τA for the reduced density matrix of |ωA〉 on HA, and τ̄A for the reduced density
matrix of |ωA〉 on HĀ.

Recall that our modular operator ∆Ω||Ψ is given by

∆Ω||Ψ = ⊕A
(
pA
wA

ρA ⊗ τ̄−1
A

)
,

where wA ≡ |tA|2. The algebraic relative Renyi entropy is then given by

Sα(Φ||Ω : A) =
1

α
sup

Ψ|〈Ψ|Ψ〉=1

log 〈Φ|∆Ω||Ψ |Φ〉

=
1

α
sup

Ψ|〈Ψ|Ψ〉=1

log

(∑
A

qA
pαA
wαA
〈φA| ραA ⊗ τ̄−αA |φA〉

)
.

(5.13)

We can use our result above to write this as

Sα(Φ||Ω : A) =
1

α
sup

Ψ|〈Ψ|Ψ〉=1

log

(∑
A

qA
pαA
wαA

TrHA(σ
1/2
A ραAσ

1/2
A τ−αA )

)

=
1

α
sup

Ψ|〈Ψ|Ψ〉=1

log

(∑
A

qA
pαA
wαA

TrHA(ραAσ
1/2
A τ−αA σ

1/2
A )

)
. (5.14)

We are taking the supremum over all |Ψ〉 ∈ H that are normalized. This is equivalent to,
in the notation used above,

∑
A pA = 1 and Tr(ρA) = 1 for all A. So, we need to take

the supremum over all probability distributions {pA} (which we write as sup{pA}, where it is
understood that we are taking the supremum over all pA with all pA > 0 and

∑
A pA = 1), and
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the supremum over all normalized density matrices ρA. Define ηA = ραA, so that Tr(ρA) = 1
is equivalent to ‖η‖1/α = 1. Putting this all together,

Sα(Φ||Ω : A) =
1

α
sup
{pA}

log

(∑
A

qA
pαA
wαA

sup
ηA|‖ηA‖1/α=1

TrHA(ηAσ
1/2
A τ−αA σ

1/2
A )

)
.

Now define XA = τ
−α/2
A σ

1/2
A so that (using the equality of sup-norm and matrix norm derived

above)

sup
ηA|‖ηA‖1/α=1

TrHA(ηAσ
1/2
A τ̄−αA σ

1/2
A ) = sup

ηA|‖ηA‖1/α=1

TrHA(ηAX
†
AXA) =

∥∥∥X†AXA

∥∥∥
1

1−α

=
∥∥∥XAX

†
A

∥∥∥
1

1−α

=
(
Tr
[
(τ
−α/2
A σAτ

−α/2
A )

1
1−α

])1−α
= exp(αSα(σA||τA)), (5.15)

where
Sα(σA||τA) =

1− α
α

log
(
Tr
[
(τ
−α/2
A σAτ

−α/2
A )

1
1−α

])
is the sandwiched relative Renyi entropy defined earlier, with a different index, α, related to
n by α = n−1

n
. Therefore,

Sα(Φ||Ω : A) =
1

α
max
{pA}

log

(∑
A

qA
pαA
wαA

exp(αSα(σA||τA))

)
.

We need to maximize the quantity in the logarithm, subject to the constraint that
∑

A pA =
1. To do this, we introduce a Lagrange multiplier λ to enforce the constraint. We then define

f(pA, λ) ≡
∑
A

qA
pαA
wαA

exp(αSα(σA||τA))− λ

(∑
A

pA − 1

)
.

The maximum will then be given by the solution to the system

∂f

∂pA
= 0,

∑
A

pA = 1.

This gives

qA
pα−1
A

wαA
exp(αSα(σA||τA)) = λ,

∑
A

pA = 1,

which means
pα−1
A = λ

wαA
qA

exp(−αSα(σA||τA)),

pαA = λ
α
α−1

w
α2

α−1

A

q
α
α−1

A

exp

(
− α2

α− 1
Sα(σA||τA)

)
.
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Therefore,

Sα(Φ||Ω : A) =
1

α
log

∑
A

qAλ
α
α−1

w
α2

α−1

A

q
α
α−1

A

exp

(
− α2

α− 1
Sα(σA||τA)

)
1

wαA
exp(αSα(σA||τA))


=

1

α
log

∑
A

qA
w

α2

α−1

A

q
α
α−1

A

exp

(
− α2

α− 1
Sα(σA||τA)

)
1

wαA
exp(αSα(σA||τA))

+
1

α
log
(
λ

α
α−1

)
.

(5.16)

Let us begin by considering the first term, which we call S̄α(Φ||Ω : A). We have

S̄α(Φ||Ω : A) =
1

α
log

∑
A

qA
w

α2

α−1

A

q
α
α−1

A

exp

(
− α2

α− 1
Sα(σA||τA)

)
1

wαA
exp(αSα(σA||τA))


=

1

α
log

(∑
A

q
α−1
α−1
− α
α−1

A w
α2

α−1
− (α2−α)

α−1

A exp

([
α2 − α
α− 1

− α2

α− 1

]
Sα(σA||τA)

))

=
1

α
log

(∑
A

q
− 1
α−1

A w
α
α−1

A exp

(
−α
α− 1

Sα(σA||τA)

))
. (5.17)

Next, we must solve for λ. We know that

pA = λ
1

α−1
w

α
α−1

A

q
1

α−1

A

exp

(
− α

α− 1
Sα(σA||τA)

)
,

∑
A

pA = 1.

Hence,

λ
1

α−1

∑
A

w α
α−1

A

q
1

α−1

A

exp

(
− α

α− 1
Sα(σA||τA)

) = 1

so that
λ

1
α−1 =

1∑
A

[
w

α
α−1
A

q
1

α−1
A

exp
(
− α
α−1

Sα(σA||τA)
)] .

The second term in Sα(Φ||Ω : A) therefore becomes

1

α
log
(
λ

α
α−1

)
= log

(
λ

1
α−1

)
= − log

(∑
A

q
1

α−1

A w
α
α−1

A exp

(
− α

α− 1
Sα(σA||τA)

))
.
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Finally, putting everything together, we obtain an expression for the algebraic relative Renyi
entropy,

Sα(Φ||Ω : A) = S̄α(Φ||Ω : A) +
1

α
log
(
λ

α
α−1

)
=

1

α
log

(∑
A

q
− 1
α−1

A w
α
α−1

A exp

(
−α
α− 1

Sα(σA||τA)

))

− log

(∑
A

q
1

α−1

A w
α
α−1

A exp

(
− α

α− 1
Sα(σA||τA)

))

=
1− α
α

log

(∑
A

q
− 1
α−1

A w
α
α−1

A exp

(
−α
α− 1

Sα(σA||τA)

))
. (5.18)

We now rewrite this in terms of the index n, related to α by α = n−1
n

= 1− 1
n
so that n = 1

1−α
and α

1−α = n− 1. Thus, we find

Sn(Φ||Ω : A) =
1

n− 1
log

(∑
A

qnAw
1−n
A exp((n− 1)Sn(σA||τA))

)
,

which is exactly the form of relative Renyi entropy obtained in the holographic error-
correction setting above.

5.5 Numerical Tensor Network Calculations
The discussion above established an equivalence between exact equality of bulk and boundary
sandwiched Renyi relative entropy and other entries in the AdS/CFT dictionary, such as
the exact equality of bulk and boundary relative entropy as well as exact quantum error
correction. Previous work has shown that approximate equality of bulk and boundary relative
entropy can lead to bounds on approximate error correction [35]. Thus, it is of interest to
have an understanding of approximate equality of bulk and boundary Renyi relative entropy.

To this end, we consider random tensor networks as a model of AdS/CFT [56] (i.e., tensor
networks where the tensors are drawn from probability distributions). Random tensor net-
works have been a very useful tool for understanding features of the entanglement structure
of AdS/CFT, such as the RT formula, the equality of bulk and boundary relative entropy,
reflected entropy and so on [63, 56, 3].

We study a simple random tensor network with 1 tensor, 1 bulk qudit, whose Hilbert
space has dimension dbulk, and two boundary qudits, whose Hilbert spaces have dimensions
dbdy,1 and dbdy,2. We consider two states ρb, σb on the bulk qudit. We can calculate, for
example, the bulk relative entropy between these states as usual. To find the corresponding
boundary quantity, we proceed as follows. Let |0x〉 be a fixed state on all the qudits. We
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Figure 5.1: Difference between the bulk relative entropy and the (averaged) relative entropy
of the states on boundary qudit 1 for various values of the boundary bond dimensions, and
the difference between the bulk SRD and the (averaged) SRD on boundary qudit 1 for Renyi
index α = 0.2
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then generate a Haar-random unitary U , and let |Vx〉 = U |0x〉. We then calculate the
corresponding boundary state corresponding to our bulk state ρb:

ρbdy = Trbulk(ρbulk |Vx〉 〈Vx|),

where Trbulk is a trace over the bulk leg. The state on, e.g., boundary qudit 1 can obtained
by taking a further partial trace ρ1 = Tr2ρbdy. To obtain the sandwiched Renyi divergence
on boundary qudit 1, we compute the SRD of ρ1 and σ1, and average over Haar-random
unitary matrices U .

We now consider specific cases, setting dbulk = 2 throughout. First, we calculate the
difference between the bulk relative entropy and the (averaged) relative entropy of the states
on boundary qudit 1 for various values of the boundary bond dimensions, and the difference
between the bulk SRD and the (averaged) SRD on boundary qudit 1 for Renyi index α = 0.2.
The results are shown for a specific example in Figure 5.1. From this figure, we see that
these differences only depend on the ratio of our boundary bond dimensions x ≡ dbdy,1

dbdy,2
. As

we increase x, the difference converges to 0, so that equality of bulk and boundary relative
entropy (as well as bulk and boundary SRD) holds.

In Figure 5.2, we plot the SRD difference as a function of dbdy,1 (with dbdy,2 = 20) for two
different values of α = 0.8, 7.4. The α = 7.4 difference seems to fall off somewhat faster.

In Figure 5.3, we plot the bulk and boundary qudit 1 SRD (and their difference) as a
function of Renyi index α, with dbdy,1 = 6, dbdy,2 = 2. In addition, we plot the data from
Figure 5.1 on a log-log plot, shown in Figure 5.4. It seems that the SRD difference is has a
peak close to (but not equal to) α = 1. At α = 1, of course, the SRD is the usual relative
entropy. Thus, there are values of the index α where the difference in SRD is smaller than the
difference in relative entropy. It would be very interesting to see if these leads to new bounds
on, for example, approximate reconstruction of bulk operators. We leave such investigations
for future work.

5.6 Conclusions
In this chapter, we have explored the role of the sandwiched Renyi relative entropy in
AdS/CFT. In particular, we have shown that the equivalence of bulk and boundary sand-
wiched Renyi relative entropy is equivalent to the RT formula, algebraic encoding, subregion
duality, and the equivalence of bulk and boundary relative entropy, expanding the equivalence
theorem (established in [51]) of the latter four statements. We then discussed the Renyi rela-
tive entropies from the perspective of modular operators. In the context of finite-dimensional
von Neumann algebras, this algebraic definition of the sandwiched Renyi relative entropy
was shown to reduce to the form found in the context of the holographic error-correction
setting. Finally, we explored numerical calculations of the sandwiched Renyi relative entropy
in a simple random holographic tensor network.

There are several possible avenues for further investigation. Previous work has shown
that the corrections to the equality of bulk and boundary relative entropy can bound errors
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Figure 5.2: The SRD difference as a function of dbdy,1 (with dbdy,2 = 20) for two different
values of α = 0.8, 7.4.

on the reconstruction of low-energy bulk operators [35] using the twirled Petz map. It would
interesting to see if the corrections to the sandwiched Renyi relative entropies can place a
similar bound on the accuracy of the reconstruction of low-energy bulk operators, perhaps
using some channel other than the twirled Petz map. In particular, it would be of great
interest if there were situations in AdS/CFT where the bounds on the differences between
bulk and boundary SRD’s lead to a more accurate reconstruction of bulk operators than
the bound on the difference between bulk and boundary relative entropies. It would also be
interesting to continue to do numerical simulations on larger tensor networks, in addition
to investigating possible analytic results on sandwiched Renyi relative entropies in various
tensor network models of holography.
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Figure 5.3: Bulk and boundary qudit 1 SRD (and their difference) as a function of Renyi
index α, with dbdy,1 = 6, dbdy,2 = 2
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Figure 5.4: The data from Figure 5.1 on a log-log plot
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Appendix A

Appendix

A.1 Geodesic Kinematics for the Vaidya spacetime
In this Appendix, we describe some of the details of the geodesic kinematics for the Vaidya
spacetime. The geodesic equation for v is given by

v̈ +
1

2
∂rfv̇

2 − rẋ2 = 0,

where an overdot denotes a derivative with respect to the affine parameter τ . In addition,
the tangent vector dxµ/dτ has unit norm, so that

−f(r, v)v̇2 + 2v̇ṙ + r2ẋ2 = 1.

Because the metric has no explicit x-dependence, the quantity px ≡ gxxẋ = r2ẋ is conserved
along the geodesic. When we express the metric in terms of t and r (instead of v and r), we
found that the metric takes the form

ds2 = −h(r)dt2 +
1

h(r)
dr2 + r2dx2,

where h(r) = r2 in AdS, and h(r) = r2 − m in BTZ. For simplicity, we will set m = 1
throughout. Other than at the shell, there is no explicit dependence in the metric on t, so
there is a quantity that is conserved except at the shell. It is given by

E ≡ gttṫ = h(r)ṫ.

In these coordinates, the normalization condition for the vector dxµ/dτ becomes

−h(r)ṫ2 +
ṙ2

h(r)
+ r2ẋ2 = 1

ṙ2 = h+ E2 − hp2
x

r2



APPENDIX A. APPENDIX 94

Alternatively, we can write this in terms of r′, where the prime denotes a derivative with
respect to x. Then we obtain

r′2 =
r4h

p2
x

+
r4E2

p2
x

− hr2.

We will first solve these equations for constant time intervals, and then solve them for general
covariant regions.

Constant Time Intervals for Positive-Energy Metric

We begin by considering a region A on the boundary that is constant in time, and is a single
interval in x. That is,

A = {(x, t) ∈ CFT|x ∈ [0, `x], t = const = tb}.

To calculate the entanglement entropy S(A) of this region in the CFT, the HRT prescription
tells us that we need to find the extremal boundary-anchored curve (i.e., spacelike geodesic)
χA such that ∂χA = ∂A and χA is homologous to A.

There are three cases (i) the geodesic is entirely in the AdS bulk, (ii) the geodesic is
entirely in the BTZ bulk, or (iii) the geodesic is in both the BTZ bulk and the AdS bulk.
See Figure A.1. We consider each of these cases in turn.

Geodesics Entirely in the AdS Bulk

We are considering a constant time geodesic in the AdS bulk, so E = 0. Therefore, we have

dr

dτ
=
√
r2 − p2

x,

which has solution
r(τ) =

1

2
(p2
xe
−τ + eτ ).

Now, x obeys the equation
ẋ =

px
r2
,

which has solution
x(τ) = Const− 2px

p2
x + e2τ

.

This means that
`x = x(τ =∞)− x(τ = −∞) =

2

px
.

We have normalized our affine parameter so that τ measures the length of the curve. For
τ approaching ±∞, r approaches ∞. For large R, there are two roots of τ ., one large and
positive, the other large and negative. They are

τb− = − log(2R) + 2 log(px)
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Case i

Case ii

Case iii

AdS

BTZ

AdS
Boundary

Figure A.1: A Penrose diagram of the Vaidya spacetime (the red line represents the shell
of null matter), showing the three cases for the spacelike geodesics. (i) Entirely in the AdS
bulk, (ii) entirely in the BTZ bulk, and (iii) partially in the BTZ bulk, and partially in the
AdS bulk.

τb+ = log(2R),

so the total length of the curve is

L = τb+ − τb− = 2 log(2R)− 2 log(px).

To get to the boundary, of course, we need to send R→∞, and the length diverges. Thus,
to obtain a regularized, finite length, we need to subtract the UV-divergent term. Thus, we
obtain:

Lreg = 2 log
`x
2
.

This is a concave function, so it satisfies strong subadditivity.

Geodesics Entirely in the BTZ bulk

In this case we have

ṙ =

√
r2 − 1 + E2 − p2

x +
p2
x

r2
.
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There are two solutions to this equation:

r1(τ) =
1

2

√
−2E2 + 2p2

x + 2 + e2τ − E4e−2τ + 2E2(p2
x + 1)e−2τ − (p2 − 1)2e−2τ , (A.1)

r2(τ) =
1

2

√
(−E2 + 2E2p2

x + 2E2 − p4
x + 2p2

x − 1)e2τ − e−2τ − 2E2 + 2p2
x + 2. (A.2)

With a few lines of algebra, we can cast these in the following form:

r1(τ)2 =
1

4
(eτ +B+e

−τ )(eτ +B−e
−τ ),

r2(τ)2 = −1

4
(B+e

τ − e−τ )(B−eτ − e−τ ),

where we have defined the quantities

B± = (px ± 1)2 − E2.

We are, of course, looking for geodesics that are boundary anchored. As τ goes to minus
infinity, r2

2 goes to −1/4. Thus, the solution r2 can never describe the geodesics we are inter-
ested in. Therefore, we restrict our attention to the solution r1. We first obtain expressions
for x and t. We find

t(τ) = const+
1

2
log

(
A− + e2τ

A+ + e2τ

)
,

x(τ) = const− 1

2
log

(
B− + e2τ

B+ + e2τ

)
,

where we have defined
A± = p2

x − (1± E)2.

An analysis exactly the same as above gives us that the regularized length is (subtracting
off the UV-divergent term 2 log(2R))

Lreg = −1

2
log(B+B−).

Meanwhile,

∆t =
1

2
log(A−/A+), `x = −1

2
log(B−/B+).

In particular, if we have a constant-time interval, then E = 0 and

Lreg = −1

2
log
(
p2
x − 1

)2
, `x =

1

2
log

(
px + 1

px − 1

)
.

Finally, we turn to geodesics that are partially in AdS and partially in BTZ.
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Geodesics in both AdS and BTZ

Because the shell is located at v = 0, if the interval is at boundary time tb < 0, it will be
in pure AdS. If tb > 0, then we calculate v(τ) = t(τ) − tanh−1(1/r(τ)) for the pure BTZ
geodesic, and see if it dips below 0. If it does, then it will have a component that is in the
AdS bulk. If not, it will be contained entirely in the BTZ bulk.

We begin by considering what happens at the junction of AdS and BTZ. Because we do
not want a delta function in v′′, then v′ needs to be continuous. This means:

v′ = 2(r′A − r′B).

In AdS space, we have that

v′ = t′ +
r′A
r2
c

=
EA
px

+
r′A
r2
c

,

where rc is the value of r when the geodesic crosses the shell, and EA is the value of E in
the AdS region. We combine these two to get

r′B = −EA
2px

+

(
1− 1

2r2
c

)
r′A

From the BTZ side we know that

v′ = t′ +
r′B

r2
c − 1

=
r2
c

r2
c − 1

EB
px

+
r′B
r2
c

=
r2
c

r2
c − 1

EB
px

+
r′B

r2
c − 1

.

This gives us:

(r2
c − 1)

EA
px

+ r′A −
r′A
r2
c

= r2
c

EB
px

+ r′B

(r2
c −

1

2
)
EA
px
− r′A

2r2
c

= r2
c

EB
px

EB = (1− 1

2r2
c

)EA −
pxr
′
A

2r4
c

.

In addition, we know that

r′A =

√
r6
c

p2
x

+
r4
cE

2
A

p2
x

− r4
c .

The value of the affine parameter in the BTZ geodesic when r = rc is given by

αc ≡ exp(2τc) =
1

2
[−(B+ +B−) + 4r2

c

+
√
−4B+B− + (B+ +B− − 4r2

c )
2].

(A.3)
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There are two BTZ components. For second component, from τc to τ =∞, we have

∆xB = x(τ =∞)− x(τc) = −1

2
log

(
B− + αc
B+ + αc

)
,

∆tB =
1

2
log

(
A− + αc
A+ + αc

)
.

At the shell, we have that tc = tanh−1(1/rc), so the boundary time is

tb = tanh−1(1/rc) + ∆tB.

Meanwhile, the length of the curve is

LB = log 2R− 1

2
logαc.

By symmetry, the portion of the curve in AdS has E = 0, and the two BTZ components
have the same ∆x and the same length. The curve in AdS obeys

r(τ) =
1

2
(p2
xe
−τ + eτ )

This satisfies r = rc at two values of the affine parameter

τ± = log
(
rc ±

√
r2
c − p2

x

)
.

Using our expression for x(τ), we find that

∆xA = x(τ+)− x(τ−) =
2

rcpx

√
r2
c − p2

x

and that

LA = τ+ − τ− = log

(
rc +

√
r2
c − p2

x

rc −
√
r2
c − p2

x

)
.

We know that L = LA + 2LB and `x = 2∆xB + ∆xA. We then find

`x =
2

rcpx

√
r2
c − p2

x +
1

2
log

(
B+ + αc
B− + αc

)
,

Lreg = log

(
rc +

√
r2
c − p2

x

rc −
√
r2
c − p2

x

)
− logαc.

For given values of tb and `x, we can solve numerically to find the corresponding values
of rc and px. We do this numerically for tb = 0.8, and show the result in Figure A.2.
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Figure A.2: The regularized geodesic length Lreg as a function of the boundary interval
length, `x at boundary time tb = 0.8.

AdS
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AdS
Boundary

(i)

(ii)

(iii)

(iv)

Figure A.3: A Penrose diagram of the Vaidya spacetime (the red line represents the shell of
null matter), showing the four cases for the general spacelike geodesics. (i) Entirely in the
AdS bulk, (ii) entirely in the BTZ bulk, (iii) starts in AdS, crosses into BTZ, and (iv) starts
in BTZ, crosses into AdS, and crosses back into BTZ.
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Spacelike Intervals with Nonzero ∆t for Positive-Energy Metric

In this situation, there are four cases: (i) entirely in AdS, (ii) entirely in BTZ, (iii) starts
in AdS, crosses into BTZ, (iv) starts in BTZ, crosses into AdS, crosses back into BTZ. See
Figure A.3. Without loss of generality, suppose ∆t ≥ 0. Then the interval is characterized by
three parameters, ∆x,∆t, and the starting boundary time of the interval tb. Again, because
the shell is located at v = 0, if tb < 0, the curve is either (i) or (iii). If tb ≥ 0, the curve is
either (ii) or (iv).

Geodesics entirely in AdS or BTZ

We begin with the AdS case. The solution is:

r(τ) =
1

2
((p2

x − E2)e−τ + eτ ),

t(τ) = Const− 2E

p2
x − E2 + e2τ

,

x(τ) = Const− 2px
p2
x − E2 + e2τ

.

This is very similar to the case considered above with E = 0. We calculate

∆x =
2px

p2
x − E2

,∆t =
2E

p2
x − E2

, Lreg = − log
(
p2
x − E2

)
.

We calculated the solution to the BTZ case with E 6= 0 above. The solution is

r(τ)2 =
1

4
(eτ +B+e

−τ )(eτ +B−e
−τ ),

t(τ) = Const+
1

2
log

(
A− + e2τ

A+ + e2τ

)
,

x(τ) = Const− 1

2
log

(
B− + e2τ

B+ + e2τ

)
,

where we have defined the quantities

B± = (px ± 1)2 − E2, A± = p2
x − (1± E)2.

This tells us that

∆x =
1

2
log

(
A−
A+

)
,∆t = −1

2
log

(
B−
B+

)
, Lreg = −1

2
log(B+B−).

We now turn our attention to the geodesics that cross the shell.
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Geodesics that start in AdS, end in BTZ

In this case, the geodesic intersects the shell once, say at coordinate rc. The affine parameter
(in the AdS portion) at which the crossing occurs is

τc = log

(
rc +

√
r2
c + E2

A − p2
x

)
Because this occurs at the shell, we need tc = t(τc) = 1/rc, which fixes the constant in the
equation for t(τ). The length of the geodesic in AdS is given by

LA = log 2R + log

(
rc +

√
r2
c + E2

A − p2
x

)
− log

(
p2
x − E2

A

)
.

Meanwhile,

∆xA =
2px

p2
x − E2

A

− px

rc(rc +
√
r2
c + E2

A − p2
x)
,

∆tA =
EA
px

∆xA.

(A.4)

As we calculated above, the value of E in the BTZ portion is given by

EB = (1− 1

2r2
c

)EA −
pxr
′
A

2r4
c

, r′A =

√
r6
c

p2
x

+
r4
cE

2
A

p2
x

− r4
c .

The value of the affine parameter in the BTZ portion of the crossing is

αB ≡ exp(2τB) =
1

2
[−(B+ +B−) + 4r2

c

+
√
−4B+B− + (B+ +B− − 4r2

c )
2],

(A.5)

where B± is as defined above, using the energy EB. Furthermore, we have

∆xB = x(τ =∞)− x(τB) = −1

2
log

(
B− + αB
B+ + αB

)
,

∆tB =
1

2
log

(
A− + αB
A+ + αB

)
,

LB = log 2R− 1

2
logαB.

In the AdS region, the time of the boundary crossing is given by tc = 1/rc. Therefore, the
starting time of the interval is

tb =
1

rc
−∆tA.
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The total (regularized) length of the curve is

Lreg = −1

2
logαc = log 2R+

log

(
rc +

√
r2
c + E2

A − p2
x

)
− log

(
p2
x − E2

A

)
,

(A.6)

while
∆x = ∆xA + ∆xB,∆t = ∆tA + ∆tB.

Geodesics that start in BTZ, cross into AdS, end in BTZ

Finally we consider the geodesics that start in the BTZ bulk (so that tb = 0), cross over into
the AdS bulk, and then cross back to the BTZ bulk. These geodesics cross the shell twice,
say at r1 and r2, with r1 > r2. If the part of the geodesic in AdS has EA, then the length of
the AdS portion is given by

LA = τ1 − τ2 = log

(
r1 +

√
r2

1 + E2
A − p2

x

)
− log

(
r2 +

√
r2

2 + E2
A − p2

x

)
.

(A.7)

Also,

∆tA =
1

r2

− 1

r1

,∆xA =
px
EA

∆tA.

We now consider the BTZ portions of the geodesics. Consider the upper BTZ arc of the
geodesic. The shell is at v = 0, so since r1 > r2, r′1 < 0. Thus, we obtain

r1′
A = −

√
r6

1

p2
x

+
r4

1E
2
A

p2
x

− r4
1,

and
EB1 = (1− 1

2r2
1

)EA −
pxr

1′
A

2r4
1

.

We know r x and t as functions of τ for the BTZ curve for these values of the conserved
momenta. We can numerically solve for τ 1

B when rB1 is equal to r1. Because tB1(τ 1
B) has to

be equal to tanh−1(1/r1), this fixes the constant. We then compute

∆xB1 = xB1(τ∞)− xB1(τ 1
B),∆xB1 = xB1(∞)− xB1(τ 1

B),

LB1 = τ∞ − τ 1
B.

(A.8)

We repeat this procedure for the bottom BTZ arc. For r2, however, r2′
A > 0, so that

r1′
A =

√
r6

2

p2
x

+
r4

2E
2
A

p2
x

− r4
2,
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which means
EB2 = (1− 1

2r2
2

)EA −
pxr

1′
A

2r4
2

.

We then follow the same procedure to compute ∆xB2,∆tB2 and LB2. The totals are, of
course,

∆x = ∆xA + ∆xB1 + ∆xB2,∆t = ∆tA + ∆tB1 + ∆tB2.

To obtain the regularized geodesic length, we have to subtract off the usual UV-divergent
term:

Lreg = LA + LB1 + LB2 − 2 log(2R).

The boundary time of the start point of the interval is given by

tb =
1

r1

−∆tB1.

If we are given r1 and EA, we can calculate r2 as follows. In the AdS region, we can solve
for the value of τ at which r is equal t or1. We know that t evaluated at this value is 1/r1,
which fixes the value of the integration constant in the t(τ) function. We then find the other
value of τ for which the function v(τ) = r(τ)− 1

t(τ)
vanishes. Evaluating the function r(τ) at

this value then gives us r2. Therefore, the geodesic is specified by three parameters: EA, px,
and r1. From these we can calculate the starting time tb and the values of ∆x and ∆t. For
values of tb, ∆x and ∆t, we can numerically find the corresponding values of EA, px, and r1,
and then use these to calculate the geodesic lengths.

Geodesic Kinematics for Constant-Time Intervals for
Negative-Energy Metric

We consider constant-time intervals. For boundary time tb < 0 the geodesics will be entirely
in the BTZ bulk, while for large enough tb it will be entirely in the AdS bulk. These cases
were treated above; we will now consider the case where the geodesic is partially in the AdS
region, and partially in the BTZ region. We first consider the BTZ part. By the symmetry
of the problem, E = 0 in the BTZ arc. Suppose that the geodesic crosses the shell at rc.
The value of the affine parameter at this value of r is

τc = log
(√
|r2
c − 1|+

√
|r2
c − p2

x|
)
.

From the equation for ṙ, it is clear that r = px is the turning point. Therefore, by symmetry,
the length of the BTZ part of the geodesic is

LB = 2(τc − τpx) = 2 log

(√
|r2
c − 1|+

√
|r2
c − p2

x|√
|p2
x − 1|

)
.
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Similarly, the change in x is given by

∆xB = − log

(
(px − 1)2 + (

√
|r2
c − 1|+

√
|r2
c − p2

x|)2

(px + 1)2 + (
√
|r2
c − 1|+

√
|r2
c − p2

x|)2

)

+ log

(
(px − 1)2 + (

√
|p2
x − 1|)2

(px + 1)2 + (
√
|p2
x − 1|)2

)
.

(A.9)

We now turn to the AdS components. Similar to the positive-energy case, we require
that at the shell v = 0 we must have

v′ = 2(r′A − r′B).

EB = 0 so

v′ =
r′B

r2
c − 1

,

which means that
r′A = r′B +

v′

2
= r′B +

r′B
2(r2

c − 1)
=

(2r2
c − 1)r′B

2(r2
c − 1)

.

Note that this means that r′A becomes negative when rc < 1
2
. In AdS, we know that

r′2A =
r6
c

p2
x

+
r4
cE

2
A

p2
x

− r4
c ,

r′2Ap
2
x = r6

c + r4
cE

2
A − r4

cp
2
x,

r′2Ap
2
x

r4
c

+ p2
x − r2

c = E2
A,

E2
A =

(2r2
c − 1)2r′2Bp

2
x

4r4
c (r

2
c − 1)2

+ p2
x − r2

c .

Also, we know that

r′2B = (r2
c − 1)r2

c (
r2
c

p2
x

− 1),

which means

E2
A =

(2r2
c − 1)2(r2

c − p2
x)

4r2
c (r

2
c − 1)

+ p2
x − r2

c

=
((2r2

c − 1)2 − 4r4
c + 4r2

c )(r
2
c − p2

x)

4r2
c (r

2
c − 1)

=
(r2
c − p2

x)

4r2
c (r

2
c − 1)

.

(A.10)
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If rc > 1
2
then r′ > 0 and ṙ > 0, and the solution is

r(τ) =
1

2
(eτ + (p2

x − E2)e−τ ).

We have that
τc = log

(
rc +

√
r2
c + E2

A − p2
x

)
.

For large R, the corresponding (large, positive) value of τ is log 2R so the length of the AdS
arc is

LA = log 2R− log

(
rc +

√
r2
c + E2

A − p2
x

)
.

The change in x is given by

∆xA =
px

rc(rc +
√
r2
c + E2

A − p2
x)
.

We find the starting point of the interval in the usual way:

tb = tc −∆tA =
1

rc
− EA

rc(rc +
√
r2
c + E2

A − p2
x)
,

since ∆tA = ∆xA
EA
px

. The total arc length and displacement are

L = LB + 2LA,∆x = 2∆xA + ∆xB.

On the other hand, if rc < 1
2
, ṙ < 0 and the solution is given by

r(τ) =
1

2
(e−τ + (p2

x − E2)eτ ),

and we have that
τc = − log

(
rc +

√
r2
c + E2

A − p2
x

)
.

The positive affine parameter for large R is given by

τ∞ = log(2R)− log
(
p2
x − E2

A

)
,

which means that the total length of the AdS arc is given by

LA = τ∞ − τc = log(2R)− log
(
p2
x − E2

A

)
+ log

(
rc +

√
r2
c + E2

A − p2
x

)
.

(A.11)
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Figure A.4: The regularized geodesic length Lreg as a function of the boundary interval
length, ∆x for various values of the boundary time tb in the negative-energy Vaidya space-
time. We see that the curves are not convex, meaning there will be violations of strong
subadditivity

Meanwhile,

∆xA = x(τ∞)− x(τc) =
px

rc(rc +
√
r2
c + E2

A − p2
x)

− 2px
−E2

A + p2
x + (p2

x − E2
A)2

(A.12)

and
tb =

1

rc
− EA

px
∆xA.

Once again, the total geodesic length and displacement are

L = LB + 2LA,∆x = 2∆xA + ∆xB.

To find the geodesic for the negative-energy metric for a given interval, we proceed as
follows. First, if tb ≤ 0, the geodesic is of course entirely in BTZ. If tb > 0, we find the
trajectory of the geodesic in AdS, and calculate v(τ). If at any point it dips below 0, then
there will be a portion of the geodesic that is in the BTZ bulk. We then use a numerical
algorithm to find the values of rc and px that correspond to the desired tb and ∆x. We
show a plot of the (regularized) geodesic length as a function of the displacement for various
values of the boundary time tb in Figure A.4. We see the non-convex behavior of some of
these curves, which means that strong subadditivity will be violated.
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A.2 Null Boundary and Corner Terms in the Action of
a Spacetime Patch

Consider a spacetime region W . Its gravitational action will consist of the bulk Einstein-
Hilbert and boundary Gibbons-Hawking-York term, as well as null boundary terms and
corner terms. This prescription was first worked out in [66]. Suppose the boundary ∂W
consists of several smooth pieces that are connected at “corners." Consider one such smooth,
null component N , with corners B1 and B2. The boundary and corner terms are:

IN =
sgn(N)

8πGN

∫
N

dλdθ
√
γκ

+
sgn(N)

8πGN

∫
N

dλdθ
√
γΘ log(lc|Θ|) +

1

8πGN

∫
B1

dθ
√
γa1

+
1

8πGN

∫
B2

dθ
√
γa2,

(A.13)

where sgn(N) is +1 if N is to the future ofW , and -1 if it is to the past ofW . The quantities
a1, a2 depend on the precise nature of the joint. In the case where we have a joint between
two null surfaces, with normal vectors k and m, the joint will have

a = ± log

∣∣∣∣k ·m2
∣∣∣∣.

The sign is determined is follows. If W ⊂ J+(N), and the corner is at the past end of N ,
or if W ⊂ J−(N), and the corner is at the future end of N , then the sign is positive. In all
other cases, it is negative.

As was first demonstrated in [66], the above action is independent of the parameterization
of the null generators of N . We demonstrate that here. Suppose, for definiteness, that W
lies to the past of N . Let B2 be at the future end of N , and let B1 be at its past end. The
boundary and corner terms associated to N are given by

AN =
−1

8πGN

∫
N

dλdθ
√
γκ− 1

8πGN

∫
N

dλdθ
√
γΘ log(lc|Θ|)

− 1

8πGN

∫
B1

dθ
√
γA1 +

1

8πGN

∫
B2

dθ
√
γA2,

(A.14)

where Ai denotes the positive sign of ai.
We now show that IN is independent of the geodesic parameterization. Suppose that

we parameterize the null geodesics by a new parameter, λ̄(λ, θ), and define e−β ≡ dλ̄/dλ.
Clearly, we have

k̄ =
∂λ

∂λ̄
k = eβk,
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and that
Θ̄ =

1
√
γ

∂
√
γ

∂λ̄
= eβΘ.

We define the vector Nα to be the null vector such that kαNα = −1 so that

κ = −Nνk
µ∇µk

ν .

Of course, N̄ = e−βN (since k̄ · N̄ = −1), which means that

κ̄ = −Nνk
µ∇µ(eβkν) = eβκ−Nνk

νkµ∇µe
β = eβ(κ+ ∂λβ).

Thus, since Ā = A+ β, we obtain

ĪN = − 1

8πGN

∫
N

dλdθ
√
γ(κ+ ∂λβ)− 1

8πGN

∫
N

dλdθ
√
γΘ log(lc|Θ|)

− 1

8πGN

∫
N

dλdθ
√
γΘβ − 1

8πGN

∫
B1

dθ
√
γA1 +

1

8πGN

∫
B2

dθ
√
γA2

− 1

8πGN

∫
B1

dθ
√
γβ +

1

8πGN

∫
B2

dθ
√
γβ

= − 1

8πGN

∫
N

dλdθ
√
γκ+

1

8πGN

∫
N

dλdθβ∂λ
√
γ

− 1

8πGN

∫
N

dλdθ
√
γΘ log(lc|Θ|)−

1

8πGN

∫
N

dλdθ
√
γΘβ

− 1

8πGN

∫
B1

dθ
√
γA1 +

1

8πGN

∫
B2

dθ
√
γA2

= − 1

8πGN

∫
N

dλdθ
√
γκ− 1

8πGN

∫
N

dλdθ
√
γΘ log(lc|Θ|)

− 1

8πGN

∫
B1

dθ
√
γA1 +

1

8πGN

∫
B2

dθ
√
γA2 = IN .

Hence, we see that IN is invariant under reparameterization.

A.3 Parameterization of One-Qubit Operators and
Recurrence Times

In this Appendix, we give an analytic discussion of the parameterization of one-qubit op-
erators and of recurrence times for time-evolution operators. Much of our discussion here
overlaps with that in [9]. A general single-qubit “easy” Hamiltonian in our setup may be
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described by a real three-dimensional vector Ji with1

H =
2∑
i=1

Ji σ
i.

Accordingly, we may introduce the magnitude J =
√∑2

i=1 J
2
i . The time-evolution unitary

is then
U(t) = cos(Jt)− i sin(Jt) Ĵiσ

i

with Ĵi ≡ Ji/J . This makes it clear that the recurrence time-scale of the system is trec =
2π/J . It is clear that the coordinates describing the time-evolution unitary are xI(t) = −JIt
for the easy directions, and x3 = 0 for the hard direction, since we have U(t) = exp(−iJiσit).
This is certainly true for small times t << trec; however, at large times, we can see that our
parameterization of SU(2) ‘breaks down’.2 Thus we see that the unitary described by xI(t)
is equivalent to that described by x̃In(t) = −JItn with tn ≡ t + 2πn/J , for n ∈ Z, and
I ∈ {1, 2}, x̃3

n = 0. This is an example of a ‘topological obstruction’ discussed earlier.

It was shown in [9] that in the submanifold generated by easy directions, there are linear
geodesics γn between the identity and any point in the “easy” submanifold. These geodesics
are described by coordinate functions of the parameter s ∈ [0, 1]:

xIn(s; t) = −JI · tn · s,

for I ∈ {1, 2}, and x3
n(s; t) = 0. It is clear from the metric in the space of unitaries, Eq 4.1,

that the metric at the identity will be proportional to the cost factor, since our generators TI
are orthogonal. The above solution solves the geodesic equation, so s is an affine parameter,
and therefore, the metric projected along the geodesic (expressed in terms of s) is a constant
along the geodesic, since xI ∝ s. The geodesic passes through the identity, so the metric on
the one-dimensional space (the geodesic) is the metric projected onto the tangent vector of
our geodesic, which we call h(s). This is

h(s) = gIJ
dxIn
ds

dxJn
ds

= 4
2∑
I=1

J2
I III · (tn)2.

The length of these geodesics in the Nielsen metric are therefore given by

l(γn) = 2

√√√√ 2∑
I=1

J2
I III · |tn|,

1In principle one should add a multiple of identity to H to ensure it is positive definite; however, this
will not be important for our discussion.

2That this should happen is clear since, topologically, SU(2) ∼ S3 so it should be described by three
angles, not an arbitrary three-dimensional vector. In geometric language, the coordinate chart, xI , we have
been using is really only valid for a subset of the xI , not for xI ∈ R3.
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and minimizing over this family of geodesics gives the complexity

C[U(t)] = 2

√√√√ 2∑
I=1

J2
I III ·min

n∈Z
|t+ 2πn/J |.

It is clear from this formula that the complexity of the time-evolution unitary will have initial
linear growth until t = π/J at which point it will decay linearly to zero and then the same
curve will repeat with period 2π/J . The geodesics with non-minimal n describe paths that
‘wind’ around the group many times before finally ending at the desired unitary.

The formula above for C[U(t)] shows us that the unitary complexity always grows linearly
with time, and the only feature that is sensitive to the precise details of the complexity
geometry is its slope. On the other hand, the qualitative behavior of the precursor complexity
is sensitive to the precise details of the complexity metric.

We now briefly discuss precursor operators. We wish to discuss Pauli operators, however,
these have determinant −1 and thus are not in SU(2) so we choose to “re-phase by i” so
that the operator σ̃i = iσi is described by coordinates xj = π

2
δji. Conjugation of σ̃i by the

time evolution unitary yields an operator that is rotated by angle 2Jt around the Ĵ axis.
Clearly this operator σ̃i(t) is still described by coordinate vector xj(t) of magnitude π/2.
The complexity of the precursor is given by the length of the geodesic from the identity to
the vector xj(t) in the Nielsen metric.

One finds that, for an initial operator W0 = Fiσ̃
i (with |F |2 = 1 for unitary) we find the

coordinates of the precursor W (t) to be

βk(t) =
π

2

(
cos(2Jt)Fk + (1− cos(2Jt))(FlĴl)Ĵk + sin(2Jt)(εijkĴiFj)

)
.

As we mentioned in the main text, the complexity of precursors will be equivalent for
large classes of Ji (corresponding to the Hamiltonian) and Fi (corresponding to the choice
of W0). From the above equation, we see that the coordinates, βk, are a sum of three terms.
The first two terms are only in the X and Y directions. The time dependence is always of
the form Jt, so any overall rescaling in J can be absorbed into a redefinition of the time
parameter t. The second term involves the dot product of Ĵi and Fi so it only depends on
the angle between Fi and Ji. The third term is proportional to the cross product between Ĵi
and Fi, so it is in the Z direction and again only depends on the angle between Ĵi and Fi.
Therefore, since the sub-manifold generated by the X and Y directions is isotropic, up to a
rescaling of time, the complexity of the precursor only depends on the angle between Fi and
Ji.




