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DOUBLE DISPERSION RELATIONS AND UNITARITY AS THE BASIS FOR A
DYNAMICAL THEORY OF STRONG INTERACTIONS*

| Geoffrej F. Chew

Lawrence Radiation Laboratory and Department of Physics
University of California, Berkeley, California

June 20, 1960

I. INTRCDUCTION

The discovery by Mandelstam in 1958 of a prescription for extending
collision amplitudes into the complex plane, as functions simultaneously
of energy and of momentum transfer,l has brought Heisenberg's 1943 idea of
a dynamical S-matrix theory2 close to realization. Heisenberg recognlzed
the importance of the unitarity and Lorentz invariance of the 5 matrix,
and understood the cloée relation between bound states and poles of‘fhe
scattering amplitude. However, the role of the interaction (or force) in
the S-matrix approach remained obscure until field theoretical considerations
were applied, ,

In 1955, Chew and Low showed for the static model of the pion-
nucleon interaction that one was dealing with an analytic function, that
the "forces" could be associated with singularities of the scattering
amplitude in unphysical regions, and that a knowledge of the location and
strength of these singularities was probably sufficienf to determine the
S ma_trix.5 Furthermore, these authors showed_how crossing relations could

be used to calculate the unphysical singularities. Of course the static

*
A series of lectures to be delivered in part at the Summer School of

Theoretical Physics, Les Houches, July 1960; and in part at the Scottish

Universities Summer School in Physies, Edinburgh, August 1960.
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model is not LorehtzFinvariant, and it fails to include many interactions
which must be important. That Lofentz invariance was not a difficulty was
suggested by £he form of relativistic fixed-momentum transfér-dispersion
relations, proposéd in 1955‘by Géldbergerh and by Karplus and Ruderman,5

_tQ which:the.staticrLowvéqﬁations‘were‘shown,to bear & striking resemblance.
Theée ﬁoneodimensional" relations; hoﬁever, do not describe all the
unphysical singularities and are insufficient to determine the S matrix.
To_include all fhe fbrces reqpires a knowledge of singularities in momentum
transfef as well as energy;.fhis infofmatidn_is.pfovided’by the double-

. diépersion relations, proposed two years ago-bj Ma_ndelst&m° |

Actually,va»generalizatidn»of Mandelstam's ideas to elements of
the S matri# involving mofe than two particles is reéuired beforé the
theory éan be'regarded‘é.s.co_mplet'eo Such a genéralization has not yet
been aéhiéved, but théré is no reason to think that more than mathematical
ingenuity is involved in ﬁréatiné the rapidlyniﬁcreaéing nﬁmber.of degrees
of freedom; From a practical sfandpoint the laék of generalization is not
yvet of majdr cbnséqpehce,_sihce the one; and two-particle S-matrix elements
'éontinue to satﬁrate_the théofists":capécity_for calculation. Howéver,
three-pafticlé states may soon becéme a centér of attention.

Stated vaguely;fthé;géneral principle é@erging‘from.the work of
the past 5 years based on field theory is that the S matrix is the
boupdary value of an_analyt%c‘funqtiqn of.momentum variables, satisfying
the substitution law_(to be discussed below) and with QEEZ those |
singularities required by unitarity. It is to be hoped that'this hotién
of "maximal analyticity" will be made prec?ée by future developments; at

the moment, one can say that, given the requirements of Lorentz invariance
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and unitarity, the only prescription yet discovered for extending two-particle

S-matrix elements into the complex plane, consistent with the substitution
law, is that given by Mandelstam. This simple fact is in striking contrast
to the tortuous methods used in current attempts to derive the Mandelstam
representation from principles of field theory. When one realizes that some
of these "principles" (such as microcausality) can be expressed only through
concepts (such as the local field) about which grave doubts have been raised,
one wonders whether a field-theoretical starting point is worth the trouble.
If the notion of "maximal analyticity" can be generally and pfecisely
formulated, it would seem a promising candidate to replace the framework

of field theory which has never been satisfactory.
T

Such a point of view has been expressed forcefully by Landau, who

feels that any further work with field theory is a waste of time. I concur

"~ in the belief that field theory is inconsistent and will eventually die,

but am impressed by the many apparently valid general principles (such as
the substitution law) that have been discovered by studying the dubious
concept of the local.field. In.any case, in this series of lectures field
theory is not used; we accept the Mandelstam representation as a starting

point and investigate the consequences, hoping to make plausible the

‘conclusion that analyticity and the substitution law, together with Lorentz

invariance and unitarity, are sufficient to determine the S matrix.

Such a conclusion cannot be firm until (as stated above) we know
how to handle general S-matrix elements, involving mofe than two particles.
These elements are important even in discussing elastic scattering because,
through unitarity, they determine the "strength" of important singularities

in the elastic amplitude. . How,:then,-can we expect to deduce any meaningful
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conSequences from en incomplete theory? The answer rests on twe general
features of the Mandelstam‘representation:

(a) The location of singularities is determined by the toﬁal
"masses" of actual physical systems; the higher the mass the farther from

the origin is the associated singularity. Now, among the strongly:

* ' .
~ interacting particles there are none of zero mass; thus, the total "mass"

of‘strongly interaeting physical systems systematically tends to increase
with the number of particles, and the singularities near the origin tend
to be determined by one- and two-particle configurations. If there are
aspects of the physical problem that are controlled mainly by "near-by"
singularities, then one can make a ﬁeaningfulrcomparison of theory with
experiment without a complete understanding of‘"faraway" singularities in
which mﬁltiparticle configurations pla& a role.

(b) The "strength" of singularities is related to physical cross
sections and restricted by unitarity, so that in a limited region of the
complex plene the behavior of an S-matrix element tends to be controlled
by the closest singularities. More precisely, an analytic function is
determined through the Cauchy relations by a kind of Coulomb's law for a

potential due to point charges (poles) and line charges (branch cuts).

Note that problems invqiving'large numbers of low-frequency virtual

photons, such as Coulomb bound states or low-velocity Coulomb scattering,
cannot be handled by the approach described in these lectures. Because
of the zero mass of the photon, there is no separation of single-photon
and multiphoton singularities. For high particle velocities, of course,
the small magnitude of the fine-structure constant often makes it

possible to neglect multiple photon contributions.
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The line-charge "density" is the discontinuity across the cut, which we
shall see is proportional to physical cross sections and therefore limited
in magnitude. There is assurance therefore that the "Coulomb's law"

reciprocal dependence on distance, which favors near-by singularities,

'w%%l not be overwhelmed byeenvincreasing strength of singularity with

distance. From a practicel standpoint, this feature of the S-matrix
approach_is of tremendous importanee to a theery of strong interactions;
permitting an orderly and systematic series of approximations whose
validity is subjeet to realistic appraisal Without any assumption as to
the magnitudes of coupling constants;

We shall see in whet follows that the ranée of & force in the
conventional point of view corresponds to the reciprocal distance from
the origin in the complex_(momentum) plane of the associated singularity.
Thus the "near-by" singulefities, aeseciated with one~ and two-particle
configurations, are the "lengerange ferces." ‘The fofces‘we cannot calculate
reliably (but only put limits on) are those of short range. This way of

assessing the situation suggestsvthe two kinds of predictions we can

- expect to meke with the incomplete theory:

(a) Scattering in states of large orbital aﬁgular momentum should
be_more'Or~leSS‘eeﬁp1ete1y predictable;~sinée.the centrifugal
"barrier" shields these states from the unknown short-range
forces. . In other,words, high-anguler—mgmentum collisions are

_controlled by near-by singularities that our theory is able to
handle.

(b) In states of low angular momentum, experience with potential

scattering suggests that the short-range interaction, even
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though complicated and exerting a significant influence, can
‘be represented by a small number bf parameters so far as lowQénergy
experiments are concerned. Bdundéry-cdndition treatments of the
hard core in the nuclear force are based on this circumstance, as
are effective range formulas in general. The Coulomb potential
analogy to our S-matrix problem in the complex plane suggests a
general explanation. Any collection of source charges
(singularities), if sufficiently distant,_can be replaced by
a single point charge (pole) at infinity, so far as the potential
(scattering amplitude) in a local region is concerned. If one
wishes to represent the first derivative of the potential, that
is nonzero because of the finite distance.of the actual éharges,
an equivalent point charge at a finite distance can be found.
For higher derivatives, more p&les or perhaps multipoles may be
added, but it is clear that faraway singularities generally
produce only smooth variations and can be represented by a small
number of parameters.. The near-by singularities, in contrast,
méy be éxPected to produce strong and characteristic variations
in the amplitude that can be identified in experimental results.
These strong variations are predictableﬂin the incomplete theory.
Thé inverse relation between range of interaction and distance in
momentum space is of course traceable to the uncertainty principle. The
unphysical singularities of an elastic=-scattering amplitude correspond
to the systéms that can be "exchanged" between the particles undergoing
scatteriné. Only by such exchanges can a force be transmitted, and it is

well known that according to the uncertainty principle the range of the

«
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force is o~ E-l, if ‘E is the total energy necessary to create the exchanged

system. The incomplete theory allows us to calculate forces due to one=-
and two-particle exchange, while three—particie and higher-multiplicity
exchange must at this stage be treated phenomenologically. ILet us consider
some specific situations, remembering that the possible system to be
exchanged must obey all the conservation laws of strong interactions.

1. DNucleon-nucleon scattering. Here the longest-range force (or

the nearest unphysical singularity) comes from single pion exchange, while
the next longest is due to two pioﬁs. Both of these are calculable, but
forces of range shorter than one-third of a pion Compton wave length must
avait a generalization of the.Mandelstam representation. Note that
although we céuld attempt to calculate the force due to K-K exchange
there is not much point in doing 80 because the mass of two kaons is as
great as that of seven pions. If a hitherto undiscovered particle exists,
of zero strangeness and mass less than three pions, then its contribution
to the nuclear force should be experimentally identifiable.

2. Pion-pion scattering. Here all odd-pion exchanges are forbidden,

80 the longest-range force is due to pion palrs, and the incomplete theory
carries us down to one~-quarter of a pion Compton wave length in the force
range.

5. Pion-nucleon scattering. Here there are two kinds of long-

range forces. The "ordinary" forces arise from exchange of systems of
zero baryon number, of which pion pairs are the least massive and pion
quartets the first configuraﬁion that must be treated phenomenologically.
(0dd-pion exchange is again forbidden.) However, a very important "baryoﬁ

exchange" force also must be considered because of the large difference in
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mass between pion and nucleon. That is to say, the original nucleon can
ﬁemit" a virtual nucleon, becoming a pion, with a violation of energy
conservation that is determined not byvthe nucleon mass alone but rather
(it turns out) by the geometric mean of nucleon and pion masses. - This
virtual nucleon moves across to the initial pion and is absorbed,
transforming it into a nucleon and transmitting a force whose rénge is

-1/2

(by the uncertaintj principle) approximately (mn mN) , comparable to
the range of 2x exchange. The incomplete tﬁeory can handle also the
corresponding force when a single pion accompanies the exchanged nucleon,
but more than one pion "fellow traﬁeler" is beyond our powers at‘present.
We shall see that the complicated nature of the pion-nucleon force is
reflected in a compliceted arrangement of singularities in the complex
plane. By contrast, the singularities of the n-x ahd N-N amplitudes
have an exceédingly simple structure.

It is clear that because of their small mass pions play a
central role in this kind of approach to a theory of strong interactions.
It will be impossible to go any aistance,without understanding the two-
pion system, which oceurs prominently not only in the]bng-range parts of
the above-listed interactions bﬁt in many other processes as well. This
circumstance alone would justify devoting much of our attention in these
lectures to the two~-pion configuration; ancther reason, however, is that,
of all strongly interacting systems, the =n-nt 1is the easiest to handle,
while at the same time it contains all the essential features of the
general S-matrix approach. If one understands clearly for the x~t problem
what can be done and what cannot be done in the Mandelstam framework, &

satisfactory foundation for discussing all strong-interaction problems will

have been laid.
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One other general observation may be worth while before wé plunge
into the complex plane. This concerns what is meant by & "complete"
dynamical theory. Ultimately, of course, we hope to have a theory that
exPlainé the masses and coupling constants of all particles as well as the
symmetries that their interactions are observed to possess. However, the
.Sfmatrix approach to be described here makes no attempt to explain symmetries

(charge independenée, parity, etc.); these are accepted and imposed from
the beginning as conditions to be satisfied by all,matrix elements. In this
respect we are on the same footing as conventional field theory. On the
other hand, the question as to how many particles are to be regarded as
‘"elementary" is not so clear. The deuteron is certainly not elementary--
its existence is to be explained by showing that a pole of definite
pesition and residue must occur in that N-N amplitude which has the
guantum numbers of the deute;on, if we start with a knowledge of certain
6ther singularities. Within the framework of approach outlined above,
based on an ordering of masses, the pion,‘the nucleon, and the kaon have
to be accepted as elementary, since by a substantial margin they are the
least massive Systems with strangeness and baryon quantum numbers

(0, 0), (0, 1), and (1, O) respectively. It is possible, however, that
in the future an increase'in our ability to handle multiparticle systems
of high mass may lead to the conclusion thatvfhe poles corresponding to
one or more of the above particles have residues (coupling constants) or
positions (masses)--or both--that cannot be arbitrarily assigned but are
in fact controlled by distant singularities. Even within our present
approach it is possible that some of the hyperons may emerge as "bound
states;" we shall discuss below possible criteria for distinguishing bound

states from elementary particles within the S-matrix framework.
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Though a certain number of "elementary" particle masses may be
accepted as necessary input information, there is still the question how A
many additional arbitrary parameters are allowed by the combinéd requirements
of lorentz invariance, unitarity, and analyticity. Mandelstam has
conjectuféd that this number is the same as the number of renormalizable
interactions in conventional field theory.7 We shall belable to verify
in several special cases that.the number is not larger; it seems, therefore,
that the S-matrix approach is at least as "complete" as conventional field
theory is supposed to be. Of coursé, with the current 1imitation to one-
and two-body configurations, ﬁhe phenomenological representation of

short-range forces requires extra parameters.
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IT. THE LORENTZ~-INVARTANT AMPLITUDE AND THE SUBSTITUTION LAW

Fof reasons of convenience, Moller in his 1945 paper8 introduced
a matrix S-1 and then in addition factored out an energy-momentum delta
function, leaving a Lorentz-invariant function of n~-l1 momentum variables,
where n 1is ﬁhe total number of-particles involved (ingoing plus outgoing).
This reduced matrix‘has:beéh called by vérious'namesj we shall be mainly
concerned with the case n = 4, where the reduced matrix element will
:simply be referred to as the "invariant amplitude.” The normalizafion of
the invariant‘amplitudevhas not been standérdized; we shall choose it as
close as possible to the'"physical’amplitude" r(e), vwhich is defined,

except for a phase, by the barycentric-system différential cross-section

formula
d: e 2
a9 = | ng? | . | (II,l)

Here dp and. q; are the final and.initigl magnitudes of three momenta
and © the angle between; 9y and q, are of course equal for elastic
scattering. The phase of f£(6) will be conventional, i.e., £(8)
becomes real as the interactioﬁ becomes wesk, positive for attraction
and negatiye for repulsion in the elastic case. More precisely, for

elastic scattering of particles with zero spin,

1 X iag
fe) = = = (22+1)e sin &, P,(cos &) , (11.2)
4 g0 | L8 |
where" 62 is the phase shift in the state of orbital angular momentum £.

Moller showed that either for inelastic or elastic scattering the factor

connecting f to the invariant amplitude for zero spin is simply W, the
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total energy in the barycentric'system.8 Thus we normalize our invariant

amplitude A by the formula

A W . _ -
A = 5. (11.3)

The invariant-cross=-section formula (for an arbitrary coordinate system)
in terms of I A |2 maj be fqund in Moller's article, as well as in many
textbooké° All we.need here is the knowledge that A is Lorentz-invarignt.
With zero spin, A. can depend only on the invariants that may be
formed froﬁvthe #hreé‘independent four-momenta remaining after energy-
moﬁentum consér&étion is.gpplied. To maintain a maximum symmetry let us
assign four-momenta .pl, Py p3, P)s éll of which correspond formally
to ingoing particles. Two of these momenta will always be positive
timelike, representing the actual ingoing particles, while the cher two
ére negative timelike and represent the actual outgoing antiparticles.

. Energy-momentum conservation is stated through the condition

Pp t Py t Py t Dy =0, | (II.4)

p.2 = m?2 ., (11.5)

It id convenient to define three invariants

sy = (o + p)° = (p, + p3)2 ,
s = (B *+ )" = (o + 2%, (11.6)
s; = (p5 + p)% = (p, + B,

[ Y



UCRL-9289

-13-

each of which is the square of the total energy in the barycentric system
for a particular pairing of incqming and outgoing particles. With the
constraints (II.4) and (II.5), s, S, and 55 are not independent of

one another but satisfy the relation
sp + 8y +osyi= m° o+ omS o+ mS o+ om© o (1I.7)

Thus, any two of the s vﬁriables are to be considered as independent,
with the third determined by (II.7). We now assert that our invariant
amplitude A is a function Qﬁly of the two independent s variables.

It is trivial to verify that no fﬁrther independent scalars can bé
formed from PyeeePy. That there are two and only two could have been
anticipated by realizing thaf in thé barycentric system the scattering
depends on energy and angle and nothing mofe. What is not trivial, however,
is to say that A cannot depend on which of the four-vectors 10 is
positive timelike and which negative, i.e., on which particles are
incoming and which outgoing. A Lorentz transformation cannot interchange
positive and negative timelike vectors, so we are going beyond Iorentz
invariance; we are invoking the notion of TCP invariance. |

Consider the six reactions represented by Fig. 1. We can classify
these by pairing the particles-~tﬁo incoming and two outgoing~-~to define

three "channels." Charnel I is that for which s, is the square of the

1
total energy in the barycentric system, pairing Py with Dy, and P,

with p3. It describes the reaction
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Pp

Fig. 1. Diagram describing the reactions

I. KO.; p - x" + A,

IT. == + Eb‘* A+ p ,
III. = + p - Ky + A,

as well as the corresponding antiparticle reactions.
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*
as well as the TCP equivalent antiparticle reaction

: Rb +'p > n o+ AL

Reactions with - ingoing have plo positive, while those with ﬂ+

outgoing have, plO negatlve.' The signs of the energy components of the

_ other four momenta obey a similar rule.

Thus Channel I is characterized simply by the fact that 81 is

positive and greater than some "threshold" value. Channel II is that

for which 5, isvgréatervthan“some positive threshold, and includes the

two redctions corresponding to the pairing (2, 4) and (1, 3), while
Channel TIT makes the final pairing (3, 4) and (l 2) and of course
has _33 above threshold. It is possible to verlfy that the physical

régions of the s wvariables for the different channels are nonoverlapping.

Consider the simple case in which all four masses are equal, e,g.; the

diagram of Fig. 2, which includes the three basic reactions, n + p=n + p,

n + §-+ n + 5 , and D + 5-» n+n. If q and 6 are the barycentric

system three-moménta and angle for neutron-proton scattering, then

m‘
i

- Qq?(l + cos 8) ,

1
32' =, ;-qu(lv - cos 8) , , ‘ ‘ (11.8)
SB =. )'l'( ‘3.2 + M2> ?

Because strong interactions have special symmetries, time reversal,

charge conjugation, and charge independence, a single invariant amplitude

actuaily can describe many more than the two TCP equivalent reactions.

It is confusing, however, to invoke these additional symmetries before

understanding the general featﬁfes of the S-matrix approach.
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Fig. 2. Diagram for nucleon-nucleon and nucleon-antinucleon

scattering.
I. n + p => n + p,
IT. P + p - n + n )

IIT. n + p =+ n + p .

<
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and we see that in the physical region of Chanmel IIT (n +p-=n+p),

s, 1is positive and greater than hMg,’while s, and S, are both negative.

3 1

Obviously, in the physical region for Channel IT (p + 54»—n + E), Sy is
greater than hME while 'sl and 55 are negative; for Channel T

(n + E-* n+ 5) the pqsitive variable is 8y In general those two s
variables that for a ﬁarticular channel are not thé square of the total
energ& may be inteppreted as the negative squares of momentum transfer and
have physical ranges that extend to minus infinity.

We may now state the substitution law, which in the present framework
takes a very simple form. We postulate that a single analytic function of
two variables, A(sl,‘se), describes all three channels corresponding to a
given diaéram, thé channel being selected merely by assigning the values
of the variables. The key word here is "analytico" Since the ranges for
the three channels are nonoverlapping, one must have a procedure of
continuation to give such a postulate any physical content. In the
Feynman-diagram spproach to field theéry, the substitution law is a direcﬁ
consequence of the Feynman rules and has a clear meaning for any diagram
wvhose singularities have been analyzed. All diagiams anal&zed to date
satisfy the Mandelstam representation, which postulates a singularity
structure permitting analy%ic continuation between the three physical
regions. The substitution law has such a simple and plausible appeafance
that its power for many yea:s.was.not appreciated, but it is now recognized
as playing a key role in the dynamical S-matrix approach.

A principle related té the substitution law, which applies when

there are two or more identical particles among the four involved in a

particular diagram, is the so-called "crossing symmetry." Exchanging two
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identical particles at most changes the sign of the amplitude, and such an
interchange means switching two of the s variébles, leaving the third
alone. For example, suppose particles 1 and 3 are identical. Then,
depending on whether these are bosons or fermions, the amplitude is either
symmetric or antisymmetric under exchange of 15 and p5, which means
interchanging 81 and 83, leaving S, alone. (Note that such an exchange
is consistent with the constraint (II.7).) If 1 and 3 are both
incoming or both outgoing--i.e., W/g;_'is the energy-~the symmetry in
question is just the Pauli principle. If one is incoming and the other
outgoing, however, the symmetry cannot be so identified. In this case,

if one starts with physical values of the s variaﬁles, the exchange in
guestion necessarily leads to nonphysical values because of the above-
mentioned nonoverlapping nature of the energy and momentum-transfer ranges.
Thus crossing symmetry has a general meaning only when continuation of the
amplitude into unphysical regions is possible. Such a continuationvis of

course allowed by the Mandelstam representation.
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ITI. THE MANDELSTAM REPRESENTATION
§ ‘ It is clear that the three s variables aré'on an equivalent
footing, even though only two are independent, and the Mandelstam
prescription for analytic continuation is most simply expressed by a
representation exhibiting all three. Méndelstam postulates that, except
for possible subtractions needed if the integrals do not converge, the

invariant amplitude - A can be written in the form

) t
1 t p (S ) 1 1] P (S )
A(Sl) S 85) -y / dsl —1L—];—- + - ) d52 2, 2
" 1 "% Sp = 8
1 . es(es) 1 ' pla(sl" 52')
t = J dS5 “27“2‘7” + = ] dsl dsé = -
S5 = Sy x (s1 - sl)(s2 - se)
o (s % . !)
+ 5 S as) as, — L2
7 (sl - sl)(s5 - SB)
( 4 ?)
o) S s ‘
+ EE I dset dsB' 2> 2 > 73 , (1T1.1)

T (52’ - 32)(55' - 35)

where the specfral functions pi and pij are real and the integrations
in each s' variable go over a region of the positive real axis
extending tq infinity. Mbre precisely, the spectral functions fail to
vanish only when an argument is equal.to the square of the mass of an
actual physipal system that has the gquantum numbers of the corresponding

channel.
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For an illustration, let us refer to Fig. 3, which describes
reactions with two nucleons and two pions. Channel T has charge +1, A
barjon number +1, and zero strangeness. The lightest system with these
quéntum numbers is the proton with mass M; the next lightest are (x°, p)
and v(ﬂ+, n),- with a range of masses starting from M + 1 * and
extending to infinity.  More massive systems, containing 3, 4, ... etc.
particles, fall in this range, so we conclude that the spectrum pl(sl')

. 1] 1
has a "line" at s, = M2 and a."continuum" for (M + 1)2 < s, < o .

1
The "1ine" obviously leads to a pole in (III.l) of the form Rl(M2 - sl)'l,
and once this is removed the lower limit‘on thé dsl' integration is
equal to (M + 1)2.

For Chennel IT there is no pole because we know of no single}
particle that has the same gquantum numbers as two pions, i.e., zero
baryon number, zero strangeness, and parity (-l)J. The éontinuum starts
here with the two=pion system at 82’ = b, Chaﬁnel IIT is similar to
Channel I; in fact when the notion of charge independence is introduced
we shall'be able to relate thése two channels by crossing symmetry.

The one-dimensional integrals in (III.l) correspond to Feynman

diagrams in which at some point a single-ﬁarticle line joins the initial

and final configurations. That is, the integral céntaining Py represents

*
We shall use the pion mass as a unit, neglecting the difference

betweén the masses of charged and neutral pidns. We also take

/h.=é=l¢-
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Fig. 3. Diagram for the three channels:

o] +
I. = + p =+ X + n,

ITI. T+ p = ﬁo + n .
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all diagrams of the type of Fig. k4,

Fig. 4.

which, if spins are ignored, sum up to
t P P - P ' ' (
Fnop(sl) S (s)) Fo+(s;) , | III.2)

where the F's are vertex functioﬁs on the mass shell for the two
particles indicated in the subscripts but considered as a function of

the square of the mass of the intermediate proton; and SP is the
renormalized proton propagator. It is well known that Sp(sl) has a pole
of unit residue at s, = M2, ‘while the vertex functions are analytic in
the neighborhood of this point. Thus the residue of the corresponding
pole in our invariant scattering amplitude is

R, = Fiop(ME)' Ff+n(M2) -

1 (111.3)

gop gc 2

since the renormalized coupling constants g are defined as the value of
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the appropriate pion-nucleon vertex function with all three particles on
the mass shéll. It ié evident that these considerations apply to any pole
that may occur, always leading to the résidue as a product of two vertex
functions each on the mass shell.

It is possible to deduce the above recipe for relating poles in
scattering amplitudes to coupling constants without reference to Feynman
diagrams, but the maphinery is cumbersome. Particularly when spin is
present it is a great'convenﬁaue to know that the Feynman rules, applied

to diagrams of lowest order, lead to the correct connection between residues

. and conventional coupling constants. This fact of course explains why

perturbation theory, blindly applied, occasionally gives sensible answers

even in strong-interaction problems. Poles dominate the behavior of the
scattering amplitude in their immediate neighborhood, so if one happens
to be discussing experiments close to a pole, the lowest-order perturbation
formula may be reliable.

In addition to motivating the pole, Formula (III.2) also shows
the origin of the continuum part of pl(sl') in the well-known branch
cuts extending from (M + l)2 to infinity in the vertex and propagator
functions. The-doublé inteérals in (III.1) arise, however, from Feynman
diagrams ;ﬁ which two or more particies aré always present in intermediate

configurations for all three channels. The fourth-order box diagram of

Fig. 5 is a simple example. Mandelstam has analyzed the fourth-order

diagramsl to show that they satisfy the double-integral representation,

and many higher-order diagrams have by now been similarly analyzed by others.

It turns out that for certain mass ratios one encounters so-called
"anomalous thresholds," that is, lower limits on the double integrals not

determined simply by the masses of possiBle intermediate states. However,

9
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- Fig. 5. A fourth-order "box" diagram.
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all the problems‘we shall discuss in these lectures have normal thresholds,
and the anomalous cases in any gvent do not seem to present an essential
difficulty. Techniqﬁes for handling them are already~béing devéloped.lo

It turns out that.constraints exist on the possible masses that can
occur in intermediate configurations for one channel, given the mass of the
intermediate configurationlfor another channel. In other words, the region
in which a double specﬁral function, say plz(slv, 32'), fails to wvanish
is not rectangular but bounded by curves'asymﬁtotic to the square of the
lowest mass of a multipartigle system with the appropriate quantum numbers.
For our pion—nucléon example of Fig. 3, these asymptotes have been\shown
above to be sl' = (M + 1)2 and 52' = 4, The detéiled forms of the
boundary curves havé been calculated by Mandelstam both on the basis of
Feynman diagrams and by consistency coﬁsiderations involving unitarity.l
In general these cufves can be correctly bbtéined from an analysis 6f the
lowest order diagrams contributing to the double spectral functions.

For a variety of reésons it is useful to exhibit the connection
between the Mandelstam representation (III.1) and one-dimensional dispersion
relations. First observe that in the physical region for Channel I, say,
the only denominators that vanish in Formula (III.1) are those containing

’ 1
the factor s

1 = 8q° Remembering
. : 1
L = P—2— 4 in (s - s) (ITI.4)
S1 " 8, 1 T 81 : -

we can then easily calculate the imaginary part of A in this region to be
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. ]
’ ’ . l o 1 ple( le 82 )
| Al(sl, S5 53) = .°1§81) + E'f ds,, —
: s - s
2 2
. ]
v Pz(s5, 55 )
s - s
3 » 3

(III.5)

Outside this region we shall define Al(sl, S50 85) by Formula (III.5),
and always refer to it as the absorptivé part for Channel I even though
it will itself become complex when one of the remaining denominators in

(III.5) vanishes. Note that for fixed s;» A, 1is an analytic function

of ‘52 (6r 53) with s3' (or sg) determined by (II.7).

In a éimilaf way we éan define A2 and A _to bé the absorptive

o 3
parts fof Channels II and III, respectively. It is then simply a matter
of algebra.to verify that (ITI.1) can be written in three possible ways

"in terms of A Cand A, :

1 Ao 3
? ¥ 2 ]
. _ p. (s, ) A(s,,s, ,2m°-s.=-58,)
s R R A 1 v Bol818; 5 17 5%
A(sl’ Sy 55) = = f ds, - = - + ﬂ.f dS2 . T
1 1 ' 2 2

+ % [ as

(III.6a)

(Equation continued)
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1 " 2 1
p.(s, ) -, A (s S,y DM -8, =~ S.)
1 v PolSs 1 1 89181 5 Sy 17 S
A(sl, S, 55) = 2 f ds, T + = / ds, — —
' 2 2 R |
2 1 1
A(Zm® -5, -5 S.5 S5 )
1 ' 2 2 mp?
+ =/ ds5 2 - k) 2 ,
s - s
3 3
(III.61)
(s,) (s, = ' )
p (s s m -5, - S5, S
L lyae ) L agg R R ey
85 = Sy s; = 8
. 2 t ]
1 [ a . A2(Z m -8, - 85 Sy, 83)
= 5, — .
2 T %
(III.6c)

The first form is usualiy called the one-dimensional dispersion relation

12 the second for fixed Sy and the third for fixed B3

In our pion~nucleon example the form that has received most attention is

for fixed s

that for s2

where the two absorpﬁive parts that occur both correspond to pion-nucleon

_ fixed at a negative value in its momentum-transfer range,

scattering in a more or less physical region. In what follows, however,
we shall often find it necesséry to put the fixed variable into its positive
(energy) range; the absorptive parts then are nonphysical and have a meaning

&

only through (III.5).
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IV. GENERALIZATION TO INCLUDE CHARGE AND SPIN

The possibility of degrees of'freedom,of charge and spin has éo
far been ignored. However, internal degrees of freedom may always be
absorbed into invariant matrices, whose coefficients are invariant functions -
of the s 'variables only. The number of such functions depends on the
complexit& of the iﬁternal degrees of freedom, and generally the vecfor
addition rule can be used in counting. For example, the pion has zero
SPin énd isotopic spin 1, while the nucleon has spin l/é and isotopic
spin %/g. The different possible total I-spin values for a 2w system
are 0, 1, and 2, so that we expect thfee.independent invariant mnex
ampiitudes. The possible total I-spin values for a =-N system are 1/2
and 5/2, but in addition the nucleon spin can combine in two ways with any
given orbital angular momentum L to form J=4+1/2 or J=4 - 1/2,
Thus there are four independent invariant =-N amplitudes. The N-N
system is even more complicated; if one counts carefully here, the result
is ten.

A proper choice of invafiant spin matfices leads to invariant
amplitudés with exactly the same singulérity structure as expressed by
Eq. (TII.1) for the zeroéspin case. The choice of'chargé matrices is
obviously irrelevant to analytiéity ﬁropertiés, although certain choices
may be more convenient than.others for calculation. Té obtain correct
spin matfices; the currenf procedure is to guess the answer aﬁd then check.,
This has worked so faf in all cases involving particles 6f spin zero and
spin 1/2, as well as photons. The procedure has been described in some

N , :

detail for the nontrivial N-N case by Goldberger, Grisaru, McDowell, and

Wong.ll We shall not delve into the spin problem here but simply state

for illustration the well-known charge~-spin result for the x-N system.
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For a diagram of the type of Fig. 3, rather than specifying the
charge let us label the pion lines each by the conventional isotopic
vector index that takes on the.values 1, 2, 3. ‘With the pion of momentum
Py associate the index <« , and with p3 the index PB. Nucleon-charge
degrees of freedom mey be suppressed into initial and final isospinors,
and the problem is then to form two charge~-independent combinations of
nucleon isotopic-spin operatdrs, T ¢ A possible choice is
% [TB Ty + Ty TB] = Baa and. %[Tﬁ,
other antisymmetric under pion exchange. Nucleon spin may be similarly

Ta] , the one symmetric and the

suppressed into initial and final (Y4-component) spinors, and a choice

made of two independent Lorenté'invariants constructed from the Dirac

matrices 7y and the four-mbmenta° Here the correct choiée is

essentially unique and turns out to be 1 and % i 7-(pl - p5). A linear

combination of these matrices with constant coefficients is of course

satisfactory, but s vpdlynomials must‘be évoided in the coefficients or,

as explained below, extra poles may be produced in the invariant'amplitudes.
The complete amplitude for a n-N diagram of the type of Fig. 3

mey be written |

- 0 0 ‘
u—ph. sﬁa[°A (sl, S5 35) + % i 7o(p1 - p5) B (sl, S5 53) ]

+ '% [TB, Ta][fAl(sl, 8,9 55) + % iye(pl - pB) Bl(sl, Sy 53)] uP

(1v.1)

and the connection_with amplitudes for well-defined total I'spin is easily

obtained. For example, for Channel III,

2

2,
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w(p), @) + N(py).~ w(-pz, B) + N(-py) ;

we find for the two values I = l/é, 3/2

v 0 - _ .1 12 .0 1
A = A+ 24, Bl = B 2 B,

3/ 0 1 . 3p 0 1
Appp” = A A, Brir B B

'On the other hand, for Chamnnel II,
ﬁ(Pl: Ct) + “(P_B; B) "’N(-PQ) +- N("Ph) P)

we findvthét except for ﬁormalization the amplifudes for the fwo total
isotopié spin values O, 1 are just thé quantities already labeléd
ﬁith'these superscripts.12 Our'particular choice of matrices above is
motivated by crossing éymmetry. Under»intérchange of the two pions,

a B and. pl > pB, 80 that AO and Bl a?e symmetric unﬂe?
interchange of él and 5 while A' and B° are antisymmetric.

It can be verified that the four invariant functions Ao’l, Bo’l,
satisfy the Mandelstam representation--that is,‘have only "dynamical"
éingularities arising from intermediate states in the various channels--
if one accepts the corresponding conjecture for zero spin. However,
had we used an essentially different choicé of matrices, e:g., 1 and
7*Py 7°P, 5> We should have found additional (kinematical) poles in the
corresponding invariant functions to compenséte for zeroé in the spin
matrices. Care must therefore be used in_setting up problems with spin,

but once a correct choice of amplitudes has been made the use of unitarity

and analyticity to determine the S matrix follows the same'line as for

A
\

zero spin.

b
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V. PHYSICAL INTERPRETATION OF SINGUIARITIES

We are now in a position to see in detail the connection between
forces and singularities that was emphasized in the introduction. The
singularities in the Mandelstam representation occur only when oné or more
of the denominators in (III.1) vanish, and this in turn happens only when
an s variable is equal to the square of the mass of a strongly interacting
physical system having the quantum numbers of the associated channel. If
we ére focusing attention on one particular channel, e.g., Channel IIT of
Fig. 2 (n +p->n + p), then we shall refer to the singularities
"belonging"” to this channel~-that is, due to the vanishing of 33' - s5
denominators--as "physical" singularities. Most of these occur in the

actual physieal region of s for Channel III, although there may be some

3
extending for a distance below the true physical threshold. These
"physical" singulérities may be thought of as consequences of unitarity for
Channel III, in cbntrast to the "unphysical" singularities associated with
Channels I-and II which may be thought of as the "forces" giving rise
to the Channel ITI reaction.

| Té bring out these ideas in a familiar situation, let us study
Formula (III.6c) as applied to the amplitude for Fig. 2, where we use
(11.8) to repiaée‘_sl, 5,5, 55 by q2 and cos 8, the barycentric-system

variables for n-p scattering. Still ignoring nucleon spin and not worrying

about a possible n-p bound state, we have

A (s W -5, = 8,, 5)
2 1@ ap Pga’) 1 1187 s 1 ?
A(d®, cos 8) =2 [ daq'® 2—— +2 [ as, Lo 3 3
0 q'“ - q . s, +2q (1 + cos 8)
. 2 t 1
1 . Az(hM =8y - 535 5, 53)

s, + 2q2(l - cos 8)

2
- (v.1)
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One of the important‘features¥0f'this:expreséionJis;that the cos 6
dependence of the n-p amplitude comes entirely from the denominators
of the last two terms. Let us compare the form (V.1) to the Born
approximation for scattering by a Yukawa‘poténﬁiai of range ro. This

is well known to have the form

constant : : (V 2)

'—EE + Eq?(l - cos )
ry

Thus we see that the iast'term of (V.1) looks like the Born scatterihg due

t0 & superposition of Yukawa pofenfials, where the range is l/ﬁvg;'..

The second term in‘(V.l) can similarly be.identified.with an exchange.
potehtiéi, but the first term is of a different type, This contributes

only to S-wave n-p 'SCattering, énd is to be associéted.with the failure

of the Born approkimatibn when the S-phase shift is large; If some higher
phase shifts also are largé, further terms aie needed in (V,l),'corresponding
to subtractions in thé original Mandelstam répresentation;

For sufficiently high angulaf momentum, however, it is reasonable
to expect the phase shift to be small when q? is small,'so‘that the
interpretation of the second fwo terms as the Fourief trahsforﬁs ofh
"potentials" is plauéible. Now iet us consider the strengfh and range df
the "potentials," as confrolied by the.functions Al and A2. The
longest-range forces will come from'the loWest values of sl' énd '52',
and these in tufn are determined by the lowés% masses of physical systems
with the gquantum numbers of Chanﬁél I and Chahnel IT, respectively.

Consider Channel I, (n + E'» n + 5), which gives us our exchange forces,

and refer to Formula (III.5) to see the structure of A,. The term pl(sl)
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contains a delta function corresponding to a discrete = state, and the
coefficient of the delta function is gcz.' Thus the longest-range exchange
force has: a rangerf one pion Compton wave length and a strength determined
by the pion-nuéleon coupling constant.

The next longest range force comes from the two-pion parts of the
Pys Ppps and pl3 spectra. To calculate this we recall the form of the
unitarify condition for a matrix T = 515 (s - 1):

*

Im T = i Tmb Tma . (v.3)

ba

Oﬁr invariant amplitude A 1is proportional to T and has the same phase,
so in the physical region for Channel I we can derive an ekpression of the

form

A (s, s, 83) = constant X Im n(-p5), p(-py) 7] nlp)), B(p)) )
| o e ﬂ (v1)

constant X Z.(mlTl n(-pa), 5(-p2))*(m|T|n(pl), E(Ph)> .
m o

It is possible to extend this formula to unphysical regions, and since all
the elements of T conserve energy and momentum, we see that it is the

unitarity condition which makes A, +vanish except for values of

)2

1

8y = (pl + ph equal to the sguares of masses of systems that can be
reached both from the initial and the final states of Channel I. For the
range 4 <'sl <9, only 2r states contribute to the sum in (V.4), so
if we have some means of calculating the matrix element connecting |

nucleon-antinucleon states to two-pion states, we can calculate the

"strength" of the exchange force for ranges between one-half and one-third
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of a pion Compton wave length. Since this’ matrix élemént'ccrresPcnds to
a four-line disgram (it is in féct Channel II of Fig. 3), there is hope
that the calculation can be performed.

Formulae (V.h) tells us how to calculate shorter-range forces due
to6 multiparticle exchange if the matrix eleménts connecting these states
to the n-i system are known. We do not yet have a method for obtaining
multiparticle matrix elements; bﬁt we observe that they are bounded in
magnitude because of unitarity and thereforc'there is g limit to the
possible strength of the forces that they generate.

o Formula>’(V;l) is actually suitable as it stands for calculating
ﬁhe.high-angularfmomentum parts of the n-p scattering ampliﬁcdé, which
ére determined by thevlowef range of sl' and 52'. The modifications to
take account of spin and chafge have been worked out by several authors
andvexpreSSionS'givén for the one énd two-pion pgrts of Al and Ag' 11,15
The EEEX high z-phcse shifts are of course controlled by the one-pion parts
alone, and thus by the pion mass and the piongnuclech coupling constant,
cuantitieé already known with good éccuracy. This circumstance has beep
_ explcited,in'recent phase-shift analyses of nucleon-nucleon scattering.

It should be obvious that the considerations of this section are
general. The forces producing a certain reaction are due to the intermediate
states that occur in the two "crossed" reactions belonging to the same
diagram. The range of a given part of -the forcc,is determined by the mass
of the intermediate state producing it, and the strength of the force by
the matrix elements connecting that state to the initial and final states

of the crossed reaction. By considering all three channels on this basis

‘we have a self-determining situation. One channel provides forces for :the
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other two-~which in turn generate the first. Our task now is to
understand how many arbitrary parameters there are in such a situation,
as well as how to handle low angular momentum--or, in other words, how to
calculate the first term on the right-hand side of Eq. (V.1). These two

questions are closely related.
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VI. PARTIAL-WAVE AMPLITUDES

‘There is no need to treat high-angular-momentum scattering one '
partial wave at a time, and in fact good reason to avoid doing so. Not
only is simplicity lost, but the partial-wave expansion converges onl& in
the neighborhood of the physical region and not throughout the complex
plane. However, there seems no way to avoid a special discussion of
certain low-angular-momentum partial waves. It is here that arbitrary
parameters may enter, corresponding to an asymptotic behavior that requires
subtractions, and it is here that the difficult multiparticle singularities
are most important. In our S-matrix approach, the lowest partial waves
generate the higher waves, as we shall see in aetail below. In a very
direct sense, then, the low-/{ waves constitute the heart of the problem.

Let us cohsider the equal-mass spin-zero case and define a

partial-wave amplitude for Channel III by the formula

+1 .
AEIII(qE) = % / dcos e Pz(cos 8) A(q?, cos ©) , (VI.1)
-1 .

where q? and cos © are related to the s variables by (II.8). In a
certain region--including the physical interval, q? >0, =1<cos 8 < +lw-
the full amplitude can be represented by the series
m .
A(q?, cos 8) = z (22 + 1) AEIII(q?) Pz(cos e) , (VI.2)
£=0 '
but even outside this region we may define Ag(q?) by (IV.1). We shall
in fact be interested in extending Az(q?) to the entire q2 complex
plane, where we shall find three sets of singularities, corresponding to

the three channels of the problem.
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'Formula (V.1) is well suited to carrying out the pfojection (vi.2).

The first term of (V.1) contributes only to £ = O, and there it survives

the projection unchanged. The second and third terms lead to integrals of

the form

1

d cos 6 va(cos 8) — 12 s - (V1.3)
1 v s +2q7(1 % cos ©)

i
f

ol

which are simply related to associated Legendre functions of the second
kind. Certain important properties of these integrals‘may‘be seen by
inspection: :
(a) For small q? they behave like (q?)z.
(b) For large s' they behave like (s')-z'l.
(¢) They are analytic functions of ‘qe in the cut plane,
where the cut should be chosen to run from =-s'/4 to
-0 1f the function is to be real for q? > 0.

The behavior near q? = 0 is maintained after the integrations
over dsi and ds; and is a well-known and general property of
partial-wave gmplitudes,‘related to the centrifugal barrier effect.

The large s' behavior simply confirms the remarks of the preceding
section about the range of the interaction and the magnitude of &' ,
i.e., as £ 1increases the large values of si and s; become less
and less important, since they correspond to short-range interactions.
This is again a centrifugal barrier effect.

The property we are most concerned with is that of analyticity,
and to get the full étory here we have to look also at the. q? (or 55)

dependence of the functions A. and AE’ which appear in the numerators

1
of the integrands in Formula (V.1). Referring to Formula (III.5)
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! 1
for Al(sl, e - 5, - S -sB), we see that the 85 = S5 denominator
leads to a cut running from O +to oo in’ q? , while there seems to be
t ]
a second cut associated with the denominator s, - (th - 55 - sl). It may
be verified, however, that this second apparent sinéularity is canceled by

a corresponding part of the expression for AQ(AM? - sé = Sx) Sp 55).
After multiplying (VI.3) by Al' or A2 and integrating over dsi or dsé,
we thus produce an analytic function of q? with two cuts, one running
from O to oo along the positive real axis, to be called the "right-hand"
or "physical" cut, and one running along the negative real axis from -m
to - % S;i s Where _s;in is the lowest sgpare of a mass appearing in
the spectra associated with Channels I and II. :This latter will be called
the "left-hand" or "unphysical" cut. In addition, if there exists a stable
single~particle state with the gquantum numbers of a particular partial
wave of Channel III, there is a corresponding pole on the negative q
real~akis.

- In general, if the four particle masses are not all equal,% there
are two distinct unphysical cuts, 6ne for Channel I and one for Channel 11,
and these do not lie entirely on the real axis, but wander into the
complex plane. The location of the cuts is always completely determined
by kinematical considerations, however, and there are no new essential
complications beyond the equal-mass case. We continue, therefore, to
concentrate on that case.

Notice that our partial-wave amplitude is a real analytic function.

That is, if we define ) = q? , we have

* 14
See, for example, McDowell,
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A;II'"(J) - AzIII_())*) . | © (VILY)

Thus the discontinuity across a cut along the real axis‘is twice the
imeginary part of the function at that point, whiie fhe function is real
on the real axis in the gap befween - % S;in and the 6rigin. In the

next section it will be shown that A z(’) ) 1is determined by the
discontinuities across its cuts, so itbis important to be able to calculate
the imaginary part along the real axis. On the right-hand cut we are in
the physical region and the required imaginary part is given by the
unitarity condition. . Comparing (VI.2) with (II.2) and (II.3) we see,

for 7) > 0,

e -~/ 2 i85,
AEIII(u)) = -lz~—§j—£L- e ? sin 8, , (vI.s)

so that in the elastic région, wheré the phase shifts arebreal, we have

. 2
Im-AzIII(')/) = [AZIII(J) | , for J> o.

)) + m2 ‘
(VI.6)

In general a factor Rg should be added to the right-~hand side of (VI.6),

where R, 1s the ratio of total to elastic partial-wave cross sections.

£
On the left-hand cut,ve may most easily.calculate the-imaginary part from
Formula (V.1) before integrating over cos 6. Remembering that A, and

A2 may be considered_real in this region if we anticipate the above-mentioned
cancellation between the two, we find*

We define the partial-wave amplitude along both cuts as the limit as

the cut is approached from above.
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+1
Ima T - o4 [ a cos 6 P,(cos 8)
2 -1 £

X Al<-217(1 + cos 8), -29(1 - cos 8),. LL(Q + m2)>

+ Ag(gzﬁ(l + cos 8), -2/(1 - cos ), 4() + m2i> s

for Q < 0 . (VI.7)

Note that the possible presence of the first term in (V.1) for the case

£ = 0 does not affect either Formula (VI.6) or (VI.T).

If we think of A. (or AE) as made up of a sum of contributions

1
from different kinds of intermediate states in Channel I (or IT), as
expressed by Formula (V'h)) then, according to (VI.7), Im.AgIII is

similarly composed of additive parts and these are nonzero along different
portions of‘the negative real axis. It is evident, in fact, that a
Channel I intermediate state of mass my gives a nonzero contribution to
III . . . 1
, according to (VI.7), in the interval between -® and - M

y/
Thus the least massive intermediate states control Im AZIII on the

Im A

'"near-by" portion of the left-hand cut. As we go farther to the left,
more and more massive intermediate states come into the picture. Taking
the nﬁcleon-nucleon problem again as an example, we find the left-hand cut
begins at =~ %’, and up to <1 1is completely determined by one—ﬁion
exchange. Between -1 and ;g/h, the two-bion contribution must be
added, between --2/4 and -4 +the three-pion contribution, and so on.
Each new threshold can be shown to be a branch point; with the associated

cut running to the left.
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The right-hand cut of the N-N amplitude of course begins at
YV = 0, where there is a branch point, and the next branch point does not
occur until ¥ = % (oM + l)2 - »M? ~ 7, the threshold for single-pion
.production in nueleon-nucleon collisions. In the interval O <) < 7, the
simple Formula (VI.6) is exact; for Y. > 7 the factor. R, should be
 added, In the J = 1 even-parity amplitude there is a pole corresponding
to the deuteron and falling in the gap betwean cuts at Y = % MD'-2 -’M2'§~-

We shall see. that this pole need not be postulated in advance, but is a

necessary consequence of the left and right cuts.

1

10



UCRL-9289

4o

VII. DETERMINATION OF A PARTIAL-WAVE AMPLITUDE'
FROM ITS UNPHYSICAL SINGULARITIES

We now come to the fundamental dynamical problem, the determination
of a partial-wave amplitude--given the discontinuity across its unphysical
("left-hand") cuts. This discontinuity plays the role of the interaction
potential energy in a nonrelativistic scattering problem, and what we require
now is the equivalent of the Schrodinger equation to allow us to calculate
the phase shift from a knowledge of the interaction. The basic technique
was discovered by Chew and Low,3 working with the static model of the
pion~nucleon interaction, and was subsequently modified by Chew and
M‘andelstam15 for use in a more general class of problems.

Let us, momentarily at least, regard the imaginary part of AEIII
along the left-hand cut as a given quantity, to be called fé()). Along

the right-hand cut the imaginary part of AleI is proportiohal to

2
l AgIII | , according to (VI.6), so that the imaginary part of the

reciprocal amplitude is a given function, at least in the elastic region

where Rz = 1l:

IIT

-1 Im A
Im<AzIII > - - -____2_5.5 - - s R, . (VII.1)
| IIT | Y+ m

Y >0 )

That the imaginary part of the direct function is known along the left=-hand

cut, while the imaginary part of the reciprocal is known along the right-hand

cut, suggests that we write

I . .
8,0h = w0, | (VI1.2)
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where the numerator function- Nz(Q)' has only the left-hand cut and the

denominator function Dz(Q) has only the right-hand cut. Such a separation

* .
is certainly possible if inelastic scattering is neglected, because the

explicit form of DY) in térms of the phase shift has been given by Omnesl6
as
D,)) = exp | - —F [ D ) (VII.3)
0 O - A -3

wheré we normelize to unity at the arbitrary point on the real axis ¥ = Lé.

The Omnes function clearly hés only the right-hand cut, and in additionbit
has the phase e_;sz along,this cut. The numerator fuhction, defined by
(VII.2), is therefore real along the positive‘feal axis, since AleI here
has the phase eiaz ;.therefore the right-hand cut is absent for Nﬂ.

Formula (VII.3) is useful for many purposes but does not solve our

problem. We go back instead to the defining properties of N, and D, ,

which allow ué to write

It

Im Nz(\)) £,0/) pz(»)) | for ¥ < JL

(VII.4)
= 0 for ¥ > u/L ,

L
(VII.1), we have

if V is the end of the left-hand cut. At the same time, according to

ImD, = =N fror Y > 0,

2 4

(VII.5)

- 0o for Yy< o.

% ' '
The argument here is due to Mandelstam (unpublished).
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Let us assume tentatively that Nz vanishes at infinity so that, using

. the Cauchy integral theorem; we get

DE © ImN,O))
) = 2 'K _.T_ﬁ____ s
W E L Ty
(VII.6)
B }/qu' £,()') D)
I NI/ )

We are allowed to normalize DZ arbitrarily to unity at >) = vé, s0

that it is necessary only that Dﬂ/v vanish at infinity for us to write

V- )% ool N (Q'
Dz(m)) = 1 - — fdQ'R('l)) ‘/ +m2 S _)})(-))v )

(VII.7)

We nbw have two coupled linear integral equations for NZ and Dﬂ that
can be converted into a single equation for one unknown function. For

example, if we substitute (VII.6) into (VII.T) we find

3)

V-3 'L

D,6) = 1 - Ofdu)'H(n) Q)f(a))D(J
(VIr.8)
where
0,9 = L fa O P

H ’ ! = = ay" T T L ] T .
! "o O -0 e -

1
Assuming that R, is known and that RECJ")/QN vanishes as - 00, and

provided that f,()') vanishes as Y' - 0o (which is implied by our .

original assumption that Nz vanishes at oo), the linear integral
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equation (VII.8) is of the nonsingular Fredholm type and can be solved by
any number of standard methods. This is the "Schrodinger equation” for

the S«matrix theory.

Now let us consider the possibility of zeros in the dénominator

function, which correspond to poles in AzIII

« If these occur off the
real axis they are not consistent_with the original Mandeléﬁam représentation.
However, a poie on the real axis for mme < V<o may be interpreted as a
bound-state.* This is the sense in which we sald earlier that the deuteron
pole is & consequence of other singularities., If fg is given correctly,
both the position and the residue of a bound-stéte pole follow from the
solution of Eq. (VII.8).

To illustrate these considerations let us consider a very crude
approximation for S-wave scattering in which we take fz(vb to be a
delta function. In other words, we approximate the left-hand cut (a line
charge) by a pole (a point charge)} This approximation is reasonable for
a region along the positive real axis whose‘extent is short compared with
the "average" distance to the important left-hand singularities. Figure 6
shows some of the distances for the case of n-p scattering. We see that
if the 1x exchange force is not too strong, the replacement of the left-

hand cut by a pole may be reasonable for kinetic energies (lab) of O to

10 Mev.,

*. ‘ .
‘Of course, in a calculation with approximate input functions, fz and

R one may find zeros in Dz outside the range where they can correspond

.Z’
“to bound states. -Such a situation should not be interpreted as a
contradiction of Mandelstam's hypothesis, but only as an indication

that the particular approximations used are inadequate.
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deuter¢n pole

1n Inelastic
b h
br.pt. 10 Mev (lab) kinetic azaffz $iint
vV v__energy
-1/4% b

1 2
Y '

Fig. 6. '"Near-by" singularities of a partial-wave

n-p amplitude.

Suppose we locate the interaction pole at -)) = -»{ and
normalize D, to unity at this point (i.e., choose ‘yg = -){). Then
if wé.intfoduce a parameter I' , to characterize the strength of the

. interécﬁion, by writing
£,0)) = =P8 + V), , (VII.10)

we.haﬁe, from (VII.6),

o ,
NOGV) = T | (VII.1i1)

and from (VII.T),

o) = 1 - L Tar 2 o)

10 Jreme O V) )
- | (VII.12)
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so in this simple case we do not even have to solve an integral equation.
If both 3 and -)i are small compared with the inelastic threshold,

we may set 'RO()') ; 1. The integral in (VII.12) can then easily be
performed and the nonrelativistic result (i.e., for v} and yé‘ both
small-compared with m'2 --an excellent approximation for n-p scattering

where m- = 4Yy) is

NI

R

In the physical region, >} > 0, we then find

Do)y VI
(-2

(VII.13)

Do(z)) = 1

1, 1
Re = cot 8. = + 2)( = + ) .
No(v) m 0 | T ngTi
(VII.14)
Comparing this with the standard nonrelativistic effective rénge form.ula,17
1 1 2
q cot 60 = 5 t3rd
we see
1 m 1
i )i - 5 wJ;Q , . - (VII.15a)
1 m 1 1 - 1 - -
Sr = § + = + . (VII.15b)
r
2 2V, V. )

Let us study the dependence of oﬁr result on the input parameters
I' and i&. First, if }mg is held fixed and T 1is small, we see that
the scattering length a is proportional to I’ and has the séme sign,

exactly what we expect if I' determines the magnitude and sign of the
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‘interaétion, _Evidently'positivé I' means an attractive force., If T is
negative (repulsive), increasing its mégnitude does not_méke a indefinitely
large; the scattering length never exceeds ‘g/ﬁvgg_. in absolute value.
This is exactly the behavior of a repulsive potential of fgnge ~ Q/ﬁqu .

If T 1is positive (éttractive), increasing its magnitude makes

the scattering length increase and in fact become infinite for

r = on'Vyl . ' | (VII.16)

1.

This is the condition for a bound state to appear; for larger values of T
one may easily calculate from (VII.13) that DOO)) has a zero at
2 (T -2V |
_]) = QO —_-')}

A \;—:-e_m-‘_\/? . - (vir.ag)

Thus we can calculate the binding energy-=~if there is a bound state-~from

- a knowledge of fo.

Problem 1:

(a) Show that, for our single-interaction pole example, when

there is a bound state one may write

~ — 2 _:.r_n_ ...];.., X
¥V cot 8, = =@ + (})+ a®) ( PB 5 ),
where I, is the residue of the bound-state pole and -a2 its position.

B
(v) ‘By comparison with the nonrelativistic formula for the effective

range in terms of an integral over the square of the bound-state configuration~-
space wave function,18 identify the residue PB with the square of the

asymptotic normalization coefficient for the bound-state function.
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Finally we remark that if we are near the condition for a bound
state, so that the scattering length is large, then accordihg to (VII.15)
the effective range is approximately %/d%g: . This is a second‘confirmation
that the inverse distance to an unphysical singularity corresponds to the
interaction range.

In the actual case of n-p scattering the effective-range formula
is extremely‘accurate in the interval 0 to 10 Mev, and the empirically
observed values of the scattering length and effegtive range for both
singlet and triplet states have been shown by Noyes and Wong19 to imply a
value of y& in the above formule approximately equal to unity. In other
words the "average" position of the left-hand discontinuity in the n-p
amplitude occurs.near the beginning of the 2r contribution. This is an
understandable circumstance if both 1lx and 2rn forces are important.

A two-pole gpproximation to the left-hand cut is of course better
~than a one pole approximation. The problem can again be solved exactly,
as it can be for any finite number of poles, and one finds abresult
corresponding to the superposition of potentials of different ranges. In
- short, the discontinuity along the unphysical cuts seems to play a role
closely analogous to the potential function in nonrelativistié scattering
theéry; any intuition develdped from experience with the latter is likely
to be useful in the S-matrix approach., Take, for éxample, the question
of £ =0 resonances.at energies well above the physical threshold. In
a potential model it is clear fhat such resonances cannot oééur unless
there is a strong inner attraction surrounded by a strong outer repulsion,
so that the wave can be "trapped." We would find, correspoﬁdingly, by

studying the properties of Eq. (VII.8), that a single sign for fo cannot

produce a fesonance, i.e., & zero in the real part of Do(ﬂ) for Y > 0;
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rather, fo must change sign along theileftQhand'Cut, being negative
‘(attractive). in the far region and positive (repulsive) in the near region.
In contrast we expect that resonances can océur guite ﬁaturally in states
with angular momentum whenever there is a sufficiently strong attraction,

' because the centrifugal barrier does the "trapping.” Iet us look now for
the centrifugal-barrier mechanism in the S-matrix aﬁproach; this question
is of importance for many’réasons, not just in connection with resonances.

- The barrier hechanism-arises from the property, derived from

Eq. (VI.B), that AZIII(J) behaves like'))z near - = O} We may assign
- & corresponding behavior to our numerator function NZ and make an

appropriate number of subtractions in Formula (VII.6):

£ A !
‘:1r"N£CV) _ ;g_ fL . £,(2') D,(J")

T - ' (V£I.18)
..(p _1)ﬂ <))i - .‘\))

¢E-1’ but we cannot

If‘now appears that .Nz behaves gt infinity like
have changed the asymptotic behaviof by making subtractions, so for £>0
fhe fuﬁction fz must oscillate in a special way.that guarantees
conéistehéyo (This property is of’course pfecisely'that required to

ﬁaké the original integral_(VII°6) vanish af the origin like QZ.) The
subt?acted forﬁ,:(VII.IB), showslfhat large negative values of ))' become
less and less.important as £ 1increases; this is the centrifugal barrier
supﬁressing tﬁe influenée of short-range intéraétions. Obviously the

S wave is>most sensitive to the far discontinuity on the left-hénd cut,
the P_wave next most sensitive~-and so on. Thé £ value which first

becomes seﬁsitive to multiparticle singularities varies from one problem

to another and depends on the precise asymptotic behavior of the partial-
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wave amplitudes. This asymptotic behavior.also controls the number of truly

independent parameters allowed-in each problem. -
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R VIII. ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES . - ..
AND FUNDAMENTAL INTERACTION CONSTANTS

| We have assumed above that Nz(Q) vanishes at infinity and that
Dﬁ(Q) behaves like a constant. This is an oversimplification, since it
corresponds to the vanishing of the partial-wave amplitudebitself at
infinity, which 1§ not necessarily the case. A glance at Formula (VI.5)
for the spin-zero partial-wave amplitude, for example,.:shows that according
to the unitarity condition AgIII(Q) may approach a constant that is less
than or equal to unity in absolute value. If it does approach a constant
then a subtraction must be made in the Cauchyvformula, (VII.6), for the
numerator fﬁnction. The necessary subtraction can be méde at Y =0,
as in (VII.18), for all £ greate; than zero, without introducing a new
parameter; however, one arbitrary constant seems allowable in the S-wave
amplitude even if the entire left-hand discontinuity fo is calculable.
It is natural to make the S-wave subtraction at the point v6 , where
the denominator function is normalized to unity, and to put vg in the
singularity~-free gap between ){ and O , so that the subtraction constant
is real. We then have

V- L () D)

3)

0
[ ak . (VIII.1)
0 V= D - )

No(v) = a, + -
The substitution law implies a relation, between the three different
channels for a given diagram, that permits a single real parameter to
determine: the subtraction constants for all three. Also various symmetry
principles can be invoked to relate the arbitrary constant for one diagram

to that for another. We shall ses below how all this works for K-TC

scattering.
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Formula (VI.5), on which the above analysis rests, holds only when
all four particlés in.the diagram have zero spin. “Several other cases have
been studied and it is found that the unitarity limitation on asymptotic
beﬁavior of partial-wave amplitudes depends on spin. For exaﬁple, Frazer
and Fulco20 have shown that for =n«N . scattering an analyticﬂfunction of
W= \[g;—, which ih the physical region is related to the phase shift by
the formula

id
'E:J
2 Wo e i 8ind

W +M)° - 1 q

LI -~ (VIII.2)

plays a role analogous to that of AzIII(Ib in ourﬂzero-spin example.,

Such a function, however, is required by.unitarity to vanish at infinity
and permits no arbitrary constants in.its determination. The corresponding
analysis for N-N scattering has been carried oﬁt by Goldberger, Grisaru,
McDowell, and Wong,ll and again allows no arbit;ary chstants, Diagrams
containing one or two photons also‘have been analyzed with the same result.
What is the underlyipg principle here? When are arbitrary constants
allowed and when are thgy not? We do not yet have a clear and complete
answer, but Mandelstaml has emphasized a striking parallelism with the:
theory of quadrilinear_renormalizable interactions.

In cqnventional perturbatiqn field theory it is not possible to
introduce interactions formed by quadrilinear-products_of arbitrary fields,
even when all symmetry principles are obeyed. Most of these combinations,
such as the Fermi betandecgy interaction prqduct of four spinQr fields,
are nonrenormalizable and give divergent.results in higher orders of
perturbation theory. .The one interaction that igvrenprmalizable, however,

is the product of four scalar (or pseudoscalar) fields. In all cases
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studied so far the,impossibility of an arbitrary cénstant in "“the S-matrix
approach coincides with the nonrenormalizability of the corresponding
quadrilinear}intefaction. |

There exist, of course, a number of.renormalizable trilinear
interactioné,,so that it is natural to ask where. the corresﬁondingdconstants
appear in the S-matrix theory. We have anticibated the answer in Section III
aboveﬁ The residues of our poles are products of coupling . constants
associated with trilinear interactibns. If particles, other than photons,
with spin greater than l/2 are involved, the interaction is probably not
renormalizable in perturbétion theory; but where such a particle appears
we have so far been able t§ regard it as a bound'siate, so that the residue
of the pole is determined by other singularities. Such is the case with the
deuteron pole in the diagram of Fig. 2.‘

When we consider strange-particle processes, suéh as (K';p)
5cattering, there are poles correéponding to the A and = pérticles,
and a question arises whether the A and I are "elémentary“ or bound
states, The trilinear interaction here is fenormalizable, so from that -
point of view they may be elementary. The S-matrix approach outlined
above allows another test,'however, at least in principle. If we sqlﬁe
our ND problem, ignoring the existence of the hyperons, and find that
the denominator functions develop zeros at the cofreét point, we should N
‘have demonstrated that they are bound states. If on the other hand the
"poleé must be inserted at the beginhing of the calculation; then we should v
regard these particles as elementaer Of course, in practice we don't |
know enough yet about the unphysical singularities of the amplitude to
" ‘perform such a calculation. However, the (K -p) amplitude in the

physical region has a characteristically different behavior in the two
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cases, so it may be possible to decide the question by a sufficiently

complete experimental study of K--p scattering.

This line of discussion brings us to one of the most tricky-:
aspects of the S-matrix approach. How. do we know that all "elementary"
particles are stable with respecﬁ to strong interactions? Unstable
particles apparently have no place in our scheme, yet in conventional
field theory there is no difficulty in introducing a field corresponding
to a particle that becomes unstable after strong interactions are "turned
on." Actually, in the procedure outlined in the preceding section for
calculating the denominator function there is a loophole that was first
emphasized by Castillejo, Dalitz, and ﬁysono21 This loophole seems the
natural place to introduce either stable or unstable "elementary" particles
having the gquantum numbers of Channel III; it is the foilowing: We can
always add poles on the real axis to our expression (VII.7) for DﬂﬁJ).
Each such CDD pole produces a zero in DEQQ), close fo the pole if the
residue of the latter is small; and if thé ?osition oflthe CDD pole occurs
on the negative real axis where Dz is real,the associated zero is also
likely to be on the negative real axis. In such a case we would have a
pole in the partial-wave amplitude AéIII(J) that‘eould,bevinterpreted
as a stable particle. Two new parameters‘would have been introduced
_through the position and residue of the CDD pole in the denominator function,
which then determine the position and residue of the pole in A£III
itself. The latter two quantities correspond‘to-the mass and coupling
constant of the new particles, so we again have complete agreement with
perturbation theory in the number of arbitrary parameters,

Actually;4for stable-particle poles such as the nucleon pole in

Channel IITI of Fig. 3, it is inconvenient in practice to go through the
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above procedure because one would like to introduce the nucleon mass and
the pion-nucleon coupling constant at the beginning of the calculation.
It is'mofe convenient and completely equivalent to put such a pole into
the numerator function. However, a CDD denominator‘pole‘cn the positive
real_axié is a horse of a different color because here, owing tb -the -
complexity of- Dg , the asdociated zero usually occurs away from the-real
‘axis. If the sign of the residue of the CDD»polexis-correctly‘chOSeh,

the zero of D,  can be made to appear on the so-called "unphysical sheet"”

£
of the Riemann surface, not thé sheet on which we are working, -and
’therefore.itvdoes not violate‘oui postﬁlated properties of analyticity.
V_The corresponding'ﬁole on‘the'unphyéical sheet. for AEIII represents the
unstable particle, which again is chéracterized'by two parameters.

Whén a CDD. denominator ﬁole is present with not too large a
residue, the reai part éf the denominator vanishes somewhere'near the
pole, so that the bhasé shift goes.through 90 deg and we have a resonance.
The question often comes up whether such a resonance, due to an unstable
elementary particle, caﬁ be distinguished frém a "dynamical" resonance
due to attractive forces arising in the discontinuity across the left-hand
cut. In general the answer is certainly affirmative, because the phase
shift must change sign at the position of the CDD pole, which is presumably
near the resdnance. It is possible, of course; for the numerator function
to have a zero with no CDD pole present, but there is no reason for this
to occur in close association with a resonance. More generally, it is
obvious that the behavior of a phase shift is more complicated when an

unstable elementary particle exists, because of the two new parameters in

its functional form. It seems quite clear, for example, that the low-energy
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T=3R, J-= §/2 ‘resonance in the pion-nucleon system is not due to some
"hidden" particle. The 33 phase shift does not vanish anywhere near the
resonance, and its energy dependence, as we shall see’ béelow; is entirely
compatible with the complete absence of CDD poles,

To suﬁmarize our point of view about.  unstable elementary particles:
Some may exist although to date there are no indications pf any. 'If some
do exist we can insert them into the S<matrix framework with exactly the:
same number of new pafameters as would be involved in conventional field

theory.
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IX. PION-PION SCATTERING: GENERAL FORMUIATION -
Let us turn now to a specific consideration of wn«n scattering,
_where we can see in detail how. the principles described aboye.worg out in
practice. Mandeistam and I have been intensively studying this simplest
of. strong-interaction problems for about.two yeatrs, 15,22 . but more work
still needs to be . done, -as will be-seen;.

The diagram in question is that of Fig..T, where we are again using

P5}7 \ p)_‘.)s

Pi)a PE:B ) : 7
Fig. 7. Diagram for pion-pion scattering.

the isotopic vector index to label pion charge states. Assuming charge

independence, we write the complete amplitude as

A(Sl’ S, 85)§aﬁ 878 + B(Sl’ 5,9 8 ) + C(sl, )

%8 2 53)%¢ %y

(1X.1)

and observe that crossing symmetry leads to the relations
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A <« A
S, <> S,, 5, <> 8.,
B s B 1 e 3 73
A <> B .
8, <> S, 8, «* S_,
C e C 2 3 1 1
z
A e C ‘
S, «> S_, S, €“* S ..
B < Bf 1 3 2 2

(IX.2)

The connection between A, B, C and the amplitudes for well-defined total

I spin in Channel III turns out to be

AIII’O A + B + C ,
ST (1X.3)
JIIL2

B + C.

Problem 2: Derive formulas (IX.3).

There are no poles and the continuous spectrum in the Mandelstam
representation begins at 4 in eaeh of the s variables. The region in
which any double spectral function p(x, y) fails to vanish turns out to

be bounded by the curves

16 '
;—:XH for x>y,

16x . .
y = P for y>x ,

»
It

(IX.4)
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as shown in Fig. 8. The large distance to the: boundary from the corner

N
" « //

o(x, y)# O

| ///_ ' e
| e
N
16,_1[_\__1_____ _____ =
|

Fig. 8. The region in which the_two»dimensionai n-nt spectral functions

are nonvanishing. The dashed curve indicates the boundary if there
were a 3n vertex. ‘

& = X = 4 4is associated with the absence of a three—pién vertex, and a
study of Fig. 8 reveals a circumstance emphasiéed in the first paper by
Mandelstam:l If multiparticle singularities~~in this caée due to Ly and
higher configurations--are consistently to be ignored, then in the m-x
problem one need not worry at éll about the doﬁblefspebtfél functions, but
can réprésent the entire amplitude by One—dimensionai'dispérSion integrals.
rSuch would not be the cése if a threé-pioﬂ vértéx existed, sihbeithe
boundary then would be the dashed curve. (The double spectral function in
the near région, however, canlalways be exblicitly calculated in closed
form in terms of the coupling constant associatéd with the vertex; Thi§

is an important consideration in the N-N problem,ll)
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In the n-x problem, the double spectral functions do not begin
.at all until the region ﬁhere they involve.'hn _statgs, and therefore they
elude our present calculétional power. Wé must not ignore double'spectral
functions at the beginning of our ponsiderations, however? or we shall find
ourselves faced with a contradiction if any phase shifts fér £ >0 turn
out to be large. Keeping only the single-dispersion integrals in (III.1)
obviously corresponds to assuming that only the S wave has a.nonzero

imaginary part in the physical region. This is a consistent assumption if

all higher phase shifts are small because we have

III,I
Im Az T

——— = tan &, . : . (IX.5)
re alIL,I )

2
We shall find, however, some reasons for believing that the P wave n-n
phase shift is large at low energies.
When we introduce the barycentric-system variables, j) and cos ©

for Channel III, the crossing conditions (IX.2) become

A, cos 8) = A, - cos®) ,
(IX.6)
By, cos 8) = C(J, - cos @)
and
AV, cos 8) = B, cose) | o (IX.T)
where ‘
Y = —-’-2)— (L+cos8) - (V+1) ' (1X.8)

and
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' =' : - : . - IX.
P T Yo - DD 2

‘There is a point of maximum symmetry at S) = 8, =8, or

2~ %
V= = ) = -2/3,

(I_‘X..].O)

At this point the three functions A, B, C are all real and equal to each
other. It is therefore natural to introduce the arbitrary parameter,

which in Section VIII we saw would be needed, by the definition

A(‘-»2/5, 0) = B(-2/3, 0) = c(-2/3, 0) = -A . (IX.11)

Using (IX.3) we find, accordingly (dropping the superscript III henceforth),

2-2/3, 0) = -5n,

Al-2/3, 0) = o ;| . (1X.12)
) .
AS(-2/3, 0) = -2A.

It is also possible to derive an infinite number of derivative
crossing conditions at the symmetry point. Remembering that AO and A2
are even functions of cos 8, while Al is an odd function, we find the

first-derivative conditidns,
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d Al L _2 a2 1 3 0,
d cos © v/ . 3V 5 3V 1 Y = -2/3 ?
cos 8 = 0
(1X.13)

where hl can in principle be determined as a function of A by following
the procedure of Section VII. We shall see, however, that if the P-phase
shift is large, implying that Uix and higher singularities are iméortant,
we shall not actually be able to calculate vaa Highef-derivative“

conditions at the symmetry point will not be written down here. A

Problem 3: Derive formula (IX.13), as well as formulas (IX.8) and (IX.9)

on which it is based.

consistent procedure of calculation based on the 2# ’singularities alone
should satisfy all conditions involving higher deri?atives, since these
are insensitive to distant singularities.

To carry out the dynamical program of Section VII we need the
discontinuity across the left-hand cut of the partial-wave amplitudes as
given by Formula (VI.T). Making use of crossing symmetry to refer all
absorptive parts to Channel III, and changing variables from éos 8 to

J' as given by (IX.8), we then find

£,f0) = mae)
' V< -1

-1 , o
B ——l)-)— [ av Pﬂ(l * e i'—s-—l ) = aII'TfABI'(\)') 1+2 l}'tf"l' )s
- 0 - _ Y I'=0,1,2 T - Y

(IX.14)
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where
%/3 2 10/3.
Qrry = 2/3 1 -5/3 . - (1X.15)
o/s -1 13,

The basic machinery is now complete; to proéeed'further we must be able to
evaluate in (IX.14) the absorptlve parts A (J, cos 8) in the'phyéical
reglon for -J but in the cos 8 unphy51cal reglon -0 < cos & < -l. We

can attempt the necessary extens1on by a polynomlal expan51on

1 7 \ )/ 1
Ay (97, 142 25 ) = z?o (24 +1) Ima, I Pz(l + o Xl = + ),

(Ix.16)

but the singularities of ‘A L as expressed by the equivalent of Formula

3
(III.5) for Channel III, together with Fig. 8, restrict the region of
convergence of the series (IX.16), for the range of ' needed in (TIX.1k),
to ¥ > -9. If we terminate the series (IX.16) after the first few terms,
we may hope to have an approximate formula that works somewhat further to
the left on the unphysical cut, but eventually the polYnomial method fails.
One mﬁst g0 back to the equivalent of Formula (III.5) to find a better
technigue of continuation, and there we encounter the elusive double-
spectral functions which involve four-pion singularities. This is the
frontier at present; whether we can improve the polynomial meﬁﬁod without
at the same time understanding diagrams with 6 pion-lipes is an open question.
Backing away from the frontier, it is still interesting to ask how

much one can predict about wn-n scattering if the discontinuity across

the left-hand cut can be handled for Y > -9, After all, 1 Bev pion
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kinetic.energy (lab) corresponds to only 1 = 3.5 on_the right-hand cﬁt,

so that on the basis of our Coulomb-law analogy we should be able to make
usefﬁl predictions up to lab energles of 2 to 3 Bev. Another liﬁitation

with basically the samé origin-~is iﬁelastic gscattering on the right-hand cut.
The actual threshold occurs at » = 3 , but experience with =n-N inelastic
scattering suggests that, until each of_the prodUced pions can have a
momentum in the barycentric system of order unity, phase-space factors will
hold the inelastic cross section to a small fraction of the elastic. Thus

we ekpect to be able to set R equal to unity for J),s 10,

y/
In this‘low-energy physical‘region 0< \);5 10, we expect phase

.~ shifts for sufficientiy high £ +to be smail and the corresponding partial-
wave amplitudes to be almost real. It is then appropriate not to discuss

- separate £ values but to evaluate the entire amplitude for £ greater

than some critical value from Formula (V.1). For I =0, 2, only even £
values occur, so it is natural to_sepafate~out only the S wave for special
attention. Using the same notation as in (IX.14), we‘find

@0 Y+ 1

. I
f dy = aII, A3 ())', 1 +2 —77— )
0 I’éO,l,Q

Al

at), cos 8) = AOI(V) +
1=0,2

| 2 I +1 o+ g (ll-_cos 8) Y+ 1 +_§ (1 + cos ©)

. in(1 + -—431——') .
v Y+l

 (x.16)
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' Correspondingly, for I = 1 we separate out the P wave'

1 ) o1 1% T J+1
AT+, cos8) = 3cos B A () + =[N =T @ «a L AT (I, l+2 )
1 Ty 1'=0,1,2 I 3 o Jr
e S S——
2 ~.)'+1+2-}(1-cose) J'+1+ (l+cos6)
3cose (l+27)+l),@( )/)
v 7 nl+,>v+1 -2

_(ix.17)

With v held fixed in the low~-energy region, the brackets in the above
integrals fall off rapidly as )) ' increases, so that the region of
large 1)' where the polyﬁom'ial- expansion fails should not be important.
We may then expect to consistently approximate A T by keeping orily the

3
£ =0, 1 terms of the series (IX.16). That is, for 0 < ' < 10

2

Aao’z(y', cos 8') = Im AOO’Q(J') s (1X.18a)

ABl())', cos 8') = 3 cos 6' Im All(m)'). . (IX.18b)

Problem 4: For ) = 3, find the maximum value of +* for which the

polynomial expansion for AE())', 1+2 -\—))-)j'—— ) converges, on the basis

of the double-spectral-function boundary formulas (IX.4). Remember that

a Legendre polynomial expansion converges within a singularity-free ellipse

whose foci: are at 1.
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Note that while (IX.16) and (IX.17) are eXa;tYexpressions, the
imaginary part of the high-£ part of the amplitude is:automatically real
if we usé a polynomial expansion for A5I. ~The "imaginary part comes' from
the high-y)" range, vhere the expansion fails.

We have assumed here that all n=x phase shifts for £ >'1 are small
in the low-energy region and show how, if this.is the case, the higher-
aengular-momentum pa?t of the amplitude can be calculatéd in ‘terms of S~ and

P-phase shifts. The assumption is evidently subject to check a pésteriori,

and if D-phase shifts turn out to beAlarge, for example, we can start over
with the £ = 2 amplitude separated for special treatment along with £ = O
and 4 = 1. Conversely, it may turn out that thé P-phase shift is'so small
that there was no need to separate £ = 1 in the first placerl'We must .
separate 4 = 0, of course, since the chain has to begin somewhere.

The physical basis for the scheme that arises hére may be understood
in terms of the energy of the pion pairs that are being exchanged and are
responsible for the long-range pion-pion forées;— The longest-range force
comes from pion pairs with a minimm of excess kinetic. energy, and these
obviously tend to be in a relative 35 state. Slightly shorter-range forces
involve pairs of slightly higher relative kinetic energies where P waves
can contribute, and‘sqlon.‘ Now, as we have emphasized many times, high
values of the external angular momenfum are sénsitive.oﬁly to the long-range
forces; thus they are determined by what happens at low angular momentum in
the other two channels. It is clear then that the cbfe of oﬁr theoretical
problem lies in the S and possibly the P waves. ' Fortunately, these also
should be the most prominent parts of the . scattering from an experimental

point of view.
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KXo SaDOMINANT~SOLUTIONS'OF,THE gt-1t . PROBLEM"

‘It turns. out that for certain choices of . the arbitrary parameter N\ ,
which we shall refer to as the wew coupling constant, one can find.
consistent'sﬁlutions of the. above equations (neglecting inelastic scattering)
.in which only the S-phase shifts are large at 16w energies. The solutions
have been obtained. first by a numerical iteration procedure using a-:

704 computer,?3 and then reproduced in an approximate form by analytical

22
means.

The two S~wave amplitudes were eaéhArepresented by 'N/D; where the

subtraction point was chosen as »6 = - 2/5 . and the subtraction constants

0 0

‘waves: are small, then

8% and a % related to A by (IX.16)and (IX.12). If D and Higher

(X.1)
a = -2\N ,
- The iteration procedure essentially was to choose a value of ‘A and

- start with. AO 0 P

then allows us to calculate

. . " ' : 2 .
ABO;Q())""COS e') =‘ 1/1)__’7"‘_]_- .Aoo_’g_ng'>_ l R

ABl(v)', cos 8') = 0,

0,2 _ afo’2 and. A T, 0O for &£ >.0. Formula (IX.18a)

‘(vx.z)

which may be substituted into {IX.1h) to. give fOI())), the Swwave
discontinuity on the left-hand cut. The integral equation for the

denominator function is nonsingular if ijG)) tends to zero at =~m,
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which turns out to be the case in the approximation.(x.g),: Thus we can
sglve the integral eqpatiqn numerically and come»upbwith new functipns
AOI(?D witb vhich to start a second‘cycle. Actually a slightlyvmqy?
complicated routine was used and the P wave was included after the first
cycle. Howe&er,vthe 4 = 1 phase shift never becameilargevand the result
would have been the same if it has been Qmittéd. Convergence was generally
aEhieved in no more than 5 or 6 cycles efen when X\ was large enqugh
to produce a bound state.

Formula (X.1) tells us that negative values of A correspond to &
net attracti#e force; and positive values fQ a_net repulsion. vIn the
~ approximation (on) our nonzero range forces are all attractive, as can be
seen from the approp;iate elements of the matrix (IX.15), tqgether with
Formula (IX.14). Because we have made a subtraction,,wé aré in effect
allowing a zero-raﬁge force, but in potential scatteriné theory‘it is well
known that-a.repulsion of zero range has no éffecto Thus we have no
. bossibility of repulsion anywhere, and positive'values of A should be
impossible.i vawe go ahead and choose a positive A »anyhow_and'solve
~ the eqpations, we get a result but find that the denominator_function has -
a zero on the left-hand cut that moves in from -oo as N increases. The
sign of the residue of the corresponding pole in AOI(}D is such as to
correspohd to a repulsive delta function in fOIQ)). Thus we doq?t get
a solution to the original problem, but instead to a prob}em with a
repulsive force in'addition to»the attractive forcgs we fed in. It turns
out that the repulsion has the minimum strength and range necessar& to
prqduce the required values_of? 8y e

So long as the position of the zero in D I is far enough to

0

the left, it may correspond to an actual force that we have not considered,
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but if'it moves closer than V = -9, say, ve mist reject fhe'éoiﬁtion‘as
‘inconsistent. A more quantitative ériféridﬁ is to see How badly the
derivative crossing COnaition (IX.lB) is violated byléhé ﬁfeSende éf the
extra pole in AOI,’since crossing conditions must be presérved‘by"éﬁy
sénsiblé aséignment of phenomenological singulérities; Oﬁ fhiszaSis it
seems that values of X\ greatef than about 0.1 are noffperMifted.for
S;dominant solutions. |

Negative values of A give no trouble, except that--as one would
ekpect-—bound states événtually develdpo This happens first for I = O
at A = —O;h6. Since expérimentally there seems to be no'boundVStéte of
the  x-~x system wé conclude that the pdssible range of A for S-dominant
sélﬁtions is limited to  -0.46 < A £ 0.1. Within fhis raﬁge thére can be
no resonances, for thé:reason discussed above in Section VII: "There'is
no repulsive,barriér to trap the wave.

A fough but adéquate analjtic approximation to the Sadomihanﬁ

f-x problem may be obtained by replacing the cbntinudus‘diséonfihuity

across the left-hand cut by a delta function, just as in the vn-p:
example above. The position and strength of the delta function forreach
I value can be determined from an extended use of crossing symm'etry.22
Unfortunately the most definite indication'ébout'thé:actual -5
interaction, as we shall discﬁss below, is that there is a P resonance
at fairly low enefgies. ‘Tt will now be shown that such a circumstance
fequirés an important,réle for the discontinuity on the left-hand cut

beyond the region of convergence'of our Legendre pblyhbmial expansion.

A second parameter must be introduced to'represent this:éontfibution,
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XI. P<DOMINANT SOLUTIONS OF THE .xt-;t PROBLEM
The structure of our equations is such that if the P-‘ (or any. -
higher £~ ) phase shift becomes large at low energies, then the double
spectral functions play an essential role and we cahnot ignore the region
along the left-hand cut where the polynomial expansion fails. To understand
this point in a concrete way, let us consider the dispersion relation for

a partial-wa#e amplitude, for example the P wave:

‘ A R ReD o _ ImA YY)
A l())) _ __}_)___ f ayr 1 + 04 f er I S
: = P -Y) oo oyt =)
‘ _ (XI.1)
- ag(3) . a0

remembering that.because of (VI.5) the absolute value of All(ﬁ) ié
bounded by V 215—i in the physical region 'y)> 0. We have not used
this relation directly in the D procedure of SeCtlon VII, but the
solution of our equations ﬁust satisfy (XI.1). The existence of A (V),
the integral over the right-hand cut in (XI l), is guaranteed by unltarlty,
but unless there are oscillations, the ex1stence of A ()& the 1ntegral
over the left-hand cut, requires that £ (yb/ﬂ approach zero as n/
approaches minus infinity. A glance then at Formulas (IX. lh) and (IX.16)
revealé that if in the polynomial‘expansion for A I

3
of order £ > 1, the asymptotic behavior of fll(u)) is inconsistent with

we keep any terms

(XI.1). The contribution from £ = } is marginal;.it_may lead to no
worse than constant asymptotic behavior for fll(ﬂ), but even this requires

additional discussion.
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If flltﬁ) approaches a consfant cy withqut oscillation, then
for large )/ the function AiL(y§ behaves like % ¢y In y) , which
increases without bound. Sinceethe sum of AlL and AiR is bounded by
unitarity the only possible salvation is to have a similar logarithmie
- term in AiR , with the opposite coefficient. However, Im Al
positive and bounded by unity, so the necessary cancellation can occur
only if ¢y ‘is positive and less than one.

Returning to Formula (IX.14), we may calculate ¢y from the £ = 1

part of A 1 to be

3
L
Im A, (/)1
c, = 6 Zoc'm/' ——rfl-———)-l)-;ﬁ——z , (XI.2)

which héppens to be positive but which certainly exceeds unity if there

is a P resonance of any reasonable width. The same difficulfy occurs

for f (V), - 80 that there is no p0551b111ty of carrylng thrcugh any -
part of the 31mple program for a large P~wave situation without introducing
at least one new parameter to represent the portlon of the left-hand cut
where the poiynomial expansion for A5I fails. Notlce that the difflculty
exists whether or not we attribute the P resonance to an unstable
elementary particle. In that case we would introduce two new (really
fundamental) parameters with the CDD pole, but we would still heed.
.another phenomenological parameter to'handle the trouble on the leff-hand
cut. | -

One may ask if the difficulty with a P resohance suggests éhat

such a resonance is uﬁlikeiy in the x- system. We think net,'for a

variety of reasons. For one thing, one has exactly the same kind of trouble

with the (3/2, 3/2) resonance in the =-N system,which is firmly
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established experimentally. But more importgnt, there is simply no reason
to think that we can avoid the double spectral}functiqnsf‘ Thereﬂmust be
deep physical content there that has not yet been apprec;ated. We ogght
not be surprised if such a fundamental question as thevexistence Qf a
resonance depends at least in part on simgltaneous analyticity properties
in two dimensions of our amplitudes..

There are useful things to be done, nevertheless, beforg_attacking
the double spectral functions in a serious WaY . Unitarity, for example,
guarantees that on the left-hand cut the partial-wave discontinuities
fEI(V) approach constants less than unity (pr'at least oscillate), so
that some kind of cutoff procedure seems_appxopriatef One possible
procedure, which Mandelstam and I are studying, is the folloﬁing: We
arbitrarily set f O’QCV) and fll(ﬂ) equal to zero beyond some point

0
V. & =9, and add delta functions at this peint to represent the

e ~
remainder of the cut. The strengths of the three.delta fgnctions are
adjusted to satisfy the derivative crossing relations (IX.13) sc that they
are all determined by the single new parameter hl . Of course there is
some arbitrariness in the choice Qf cutof?f, butlwe believe‘that for a
definite choice of A and 'hl the,solutions do not depegd sensitively
on the cutoff position unless it is unreasonably closg or unreasonably
far away. This belief stems from:preliminary’calculations ip which the
near and known part of the left-hand cut for each amplitude was replaced
by poles.

These preliminary calculations have yielded some»interesting
qualitafive results:

(a) The main attractive force to produce a P resonance cah come

from the exchange cof a resonating P-wave pion pair. In other words, the
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contribution to fll from A31, as given by (IX.18b), is predominéntly
attractive an@ sufficiently large-~if there is a P resonarnce~=to support
aP resonance; We thus have a "bootstrap" mechanism.'”Furthermbre, this
P-wave forée has a 1ong-range component that 1s repulsive, so that the
resonance can be quite sharp. |

(b) The exchange of a resonating P-wave pair produces a strong
repulsive force in the I = 0 S state and a strong attraction in the
I=2 8§ staté, so that these amplitudes have a behavior quite different
from the S-dominant situation even for the same value of A. A resonance
in the I = 0 state is possible (although not probable) now that long-
rahge repulsion ié present, and,the absolute value of (ﬁegative) A at
which a bound I = O state appears is substantially reduced.

| (c) An‘upper limit still exists on positive A becauSé there
continues to be no long-range répulsion in the T - 2 state. This
limit may be slightly larger than in the S-dominant.situation because
we now have no problem with the I = O state in this respect;

No calculations have yet been done with a CDD pole, because so
far there seems no need to complicate the situation. It is of course
hoped that in the future we can understand enough about the double
spectral functions to dispense with xl as an independent parameter.
Even if that is possible, however, we may still find more than one
solution for a given value of A. Our so-called "coupling constant,"
after all, is essentially the value of the S-wéve amplitudes at a point
near zero kinetic energy, and it is well known that quite different sets

of forces can lead to the same scattering at one particular energy.
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XII. THE VERTEX FUNCTION OF ONE VARIABIE:
PION ELECTROMAGNETIC STRUCTURE AS AW EXAMPIE

If we were completely to exclude weak and electromagnefic interactions
from our considerations there would be no need to study the so-called vertex
functions-~which are associafed,with three-particle diagrams. These have
entered our strictly strong-interaction approach only when all three
particles are on the mass shell--where one is dealing gith a single number,
not é function.  If we want to take advantage, however, of the established
validity of lowest=order perturbation theory with respect to the fine-
structure constant énd the Fermi ﬁeak interaction constant,_in,discuésing
certain experiments involving photons‘or leptons as well as strong
interactions, theh'ﬁe find it neceésafy ﬁd éhalyze_tﬁree-pérticlé Qertices
where the mass of one of.the'partiéles‘is cdnsideredva complex v;riable.

Suppdse, fOr example, that we‘ﬁﬁnt fo'describe the deVié%iohs from
Coulomb scattering ofvan electron by‘a charged:pion;»de§iations'dueit§
the "structure" of the pion associated with its strong interactions. That -
is to say, a real pioﬁ can emit virtual stfongiy interactiﬁg systems of
appropriate quantum numbérs that produce a charge distribution in its
neighborhood. By electron elastic scattering of sufficiently large
momentum transfer we should be able to probe the "structure" of this
charge distribution and learn something about the strong interactions that
produce it, if we assume that the electromagnetic aspects of the situation
are. completely understood. The latter statement can be given a concrete

meaning in terms of Fig. 9, which fepresents
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Py

' Figb 9. Diagram for electron-pion elastic scattering via

a single virtual photon.
all dlagrams in Whlch a 31ngle photon is exchanged between the electron
and the plon, multlple photon exchanges should be weaker 1n order of

magnltude by @ factor e2 = /137 The single-photon part of the amplltude,

*
ignoring electron and photon spln, can be written

7 o | D
-(t) S7(t) F -(t) , (XII.1)

just as for Fig. k4, where s? is the photon propagator and FﬂZﬂﬁ and

4
F

ote- BT€ vertex functions, all three depending on

- 2 2 o '
t = (p) =py)° = (k =k)° = -297(1-cose), . (XII.2)

if as usual ¢ and cos 8 are the barycentric-system variables. What

is meant when we say we "understand" the purely electromagnetic aspects

% , :
Since the pion has zero spin, Fig. 9 involves only one invariant

function of t even when the electron and photon are correctly

described.
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of the pfoblem is the assumption that, to. an accuracy of order e2 , we

have
s”(t) = § , (¥11.3)
and ‘
y .
F,_ (&) = e . (XIT.4)
e'e - .

There gzg‘of course known modifications of the photon propagator and the
electron-photon vertex that play an important role in low-t elédtrodynamical
experiments ofvhigh accuracy; however, these modifications, being of order
e2 , are much smaller than expected effects from the'pioh-photon vertex.

It 1S not certain that (XII.3) and (XII.4) are correct for the
large values of t in which we shall be‘inferested, since these formulas
have been tested only for relatively small t. A failure for large t
is what is commonly referred to as "a breakdown of quantum electrodynamics
at short distances," and a search for such a breakdown is the main object
of the extensive electron accelerator program at Stanford University.

’No evidence has yet been developed, howevér, that we cannot trust (XII.3)
and (XII.4) to order e for all t ; therefore we shall assume here that
a measurement of electron-pion elastic scattering is essentially a
measurement of the pion-photon vertex function.

The physical range of t in elastic scattering, according to
’(XII.E), is t <0 . However, one can in addition measure electron-positron
annihilation to produce a = % pair, a process'that;a§cqrding'ﬁo the
substitution law is also determined'by (XII.l),_ In this case the physical
range is t > 4 . We can in principle, then, measure Fﬂ+ﬁ_(t) over the

whole real axis except for the gap, 0 < t < k4; so let us now see what

predictions can be made about this vertex function.
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The principles to be used can be applied to many other vertex
problems, involving nucleons_rathér than pions and weak rather than.
: electromagnetic "probing" interactions. Actually the nucleon-photon
vertex is the one for which most data are available, but we éhall see in
the following section that to understand nucleon structure a prior: v
ﬁhderstanding of pion structure is reqpired.“In addition there are the
usual complications due to nucleon spin that tend tq qbscu;e the
, essential_ideas involved.

It has been shown by a study of Feynman diagrams, as'welligs by
‘more rigorous methods for certain special cases, that a vertex function
of one variable, except for a possible subtraction, satisfies the

representation

F(t) = % [ aw —Egiél-—" "‘ o (XII.5)

t! t

where the real spectral function g(t) 1is nonvanishing%ronly for t
equal to the square of the mass of a possible intermediate physical

state having the quantum numbers of the single particle whose mass is

the variable, as well as of the pair of particles on the other side of
the vertex. The single external particle itself, however, is to be
excluded from the spectrum. . In our exampie we need to enumerate strongly
interacting states having the quantum nﬁmbers of a photon as well as a

ﬂ+nﬁ. pair. Even though an externai photon is involved, we need not worry

As in the case of the Mandelstam representation, there may be anomalous
thresholds for certain mass ratios. (See, for example, Karplus,

Sommerfield, and Wichmann.?u) We shall not consider such cases here.
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about photons in intermediate states, because these give contributions to
our spectral function g(t) which are small, of order e,

A'Using charge independence-and charge-conjugation symmetry, as well
as other well-known conservation laws, we conclude that_our intermediate
states must have I = 1, I5 = 0, J =1, be odd under both space reflection
and charge conjugation, and of course have zero strangeness and zero:
baryon number. The lightest such sfate is the P-wave pion pair, then ﬁe
jump to k4, 6, 8...pions, KK pairs, etc. It follows.that the lower limit

of integration in (XII.3) is at t' = 4 and that -Fﬁ(t) - is real for

t <L, For t > L, we have

Im Fﬁ(t) = gﬂ(t) s : | (xi1.6)

so if we remember that Fﬂ(t) is proportional to and has the same phase

as the matrix element
+ -
(n(py), n(-p)) [T ] oo, -2) )

where the fictitious ihitial state consists of a photon with mass W/;,

and also remember the unitarity condition (V.5), then we see

- *
real constant X & (m IIT-[ n+(p2), L (—pl) )
m

fl

g (t)

. ) .
x (m | 1| Ao, Pl)}> (XII.7)

For 4 <t <16, only the 2r intermediate state contributes, and we have

il

gﬂ(t) real constant X All (t) Fﬂ(t) , for L<t<16, (X11.8)

where All is'the I'=1, £ =1 partial wave wx-x amplitude introduced
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.earlier (but considered here as a function of f =_4'CQ+ 1), whichyis a

more convenient variable).. Now gﬁ(t) is supposed to be real, so:according
to (XII.8) the'vertéx function Fﬁ(t) must have the same phase as the
P-wave amplifude along the real axis for 4 < t < 16; andvto the extent
that we do n§t expect inelastic =n-n scattering to compete seriously for

t ;§v'ho, we may use the simple phasevcbndition over the.wider interval.

In faét, it is consistent with our earlier neglect of =n-x - inelastic
scattering (i}e. we set Rz = 1 over the eptire positive real axis) to use
the simple phase condition oﬁer the whole cut of the vertex function Fﬂ(t).
If we do so, the solution of the pion~structure problem is amazingly
simple:

e D.1(0)
F(t) = — i(t) . | (XII.9)
, 1 . , .

The point is that Formula (XII.5) simply requires Fﬂ(t) to. be a real
analytic function in the entire complex t plane, with the single cut
running along the positive real axis from 4 to oo. Otherwise, pnifarity
requires Fﬁ(t) t0 have the phase éxp(i&ll) along the cut. Theseiare
exactly the defining properties of the reciprocal of our =n-nt P-wave
denominator function, so we conclude that Fﬁ(t) must be proportional to

the reciprocal of Dll. - Gauge invariance guarantees
Fﬂ(o) = e ,

leading to the complete result (XII.9), first written in this form by
Frazer and Fulco.25 Earlier Federbush, Goldberger, and Treiman26 had .
derived the result in the Omnes form (VII.B), which is suitable if one

has no particular knowledge about analytic properties of the phase shift,
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Tt is evident from (VII.3) and (XII.9) that if the P-wave m=x
phase shift is small for 0 <Y <10 (or L <t 40)," then.the pion
charge structure factor differs very little from- e over a corresponding
range of t along both posffive and negative axes. In other words, the
pion behaves almost as a point charge for electron: scattering, and the
cross section for n+—ﬂ7f production in e"-e’ annihilation.is "normal."
Suppose, on the other hand, that there is a reasonably sharp dynamical

resonance at t = that is to say, the real part of the denominator

tR,
function vanishes at tR’ Wlth a nearly 11near dependence extendlng down

*
to t = 0. (See Flg. 10.) Such a behav1or is typlcal of resonances due

. 1(t
pe 20
)

I

Fig. 10. Typical behavior of the real part of the denominator

function for a dynamical resonance.

There is of course a branch point at ¢t ;{M, but it produces a

discontinuity only in second and higher derivatives of Dll(t).
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to attractive'"forces“ inside a repulsive barrier. (In contrast, a resonance
due to an unstable elementary particle has.a pole in‘the'denaminator function,
close. to tr' Such'a resonance generally causes a ‘completely different

" type of behavior for the structure function from that described here.) At

- the same time, of course, the imaginary part of Dll does not vanish.

. According to (VII.5) and (VII.18), we may expect a behavior -

3
, 1 _ v -
- Im Dl = - )/_{_ i P(t) 2

where T(t) is a slowly varying function if the important contributions
from the left=hand cut in (VII.18)'afe not too close. Thus,‘we have the

rough formula

1 . | : B
= F (t) = _ | S (XII.10)

that can be used for Itl < t

Y r *
In the electron-scattering region, t <O, we see that the cross

section is simply reduced by a smooth factor

. 2
5 L3 . (XII.11)
t, + 2q (1 - cos 6)

Comparing to what we would get from a classical extended charge p(;) s

i(-> _-)‘).—)
F = [dF e 17 %0 o(r) (XII.12)

2 _
e(l - —%— (a’l -'32)2 + oeee )y ' (XII.13)

q
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we see that the '"mean-square radius" of the pion.is related to the resonance

energy by
r o~ 3, | (XTT.14)
, t )
6 r

A completely different kind of effect would be observed in the cross section

+ - + - - v o
for e + e = x + % . There the "normal" cross section is

multiplied by a resonance factor

£ 2

r z - | ' | (XII.15)
(¢, - £)% + T 33%’1 | .

that greatly enhances the reaction for +t near ‘tr . DNotice that for

a fixed position of the resonance, tr , the net enhancement becomes

greater as the width of the resonance decreases because the maximum

value of (XII.15) veries inversely as the square of the width - T' .

This'is a characteristic feature of a dyhamical resonancelthat.distinguishes

it from a resonance associated with an unstable particle.
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'XIII. -THE PROCESSES =x + N'e= x + N AND: ¢t +'xt <> N + §

Before we can discuss the electromagnetic structure of the nucleon
1t is necessary to analyze the matrix element for_the process # + 1t <> N + ﬁ,
'since the 2r state is expected to play an impoftéht role in the spectral
function for the nucleon—photon vertex. If we are to understand one channel
of a‘diagram of the type of Flg. 3, however, it is necesséry.to dlscuss
the other two channels at the same tlme, thus plon-nucleon scatterlng is
drawn into the plcture. Of course, there is every reason to study n-N
~scattering in its own right; probably more experiméntal information is
évailable here than for any of the othef.reactionsvthat ﬁavg been considered.

The basic invariance considerations for the =n-N problem have
‘been already outlined in Section IV. We have four invariant amplitudes
AO’l and Bofl satisfying the Mandelstam representation. - It turns out
that on’l have no poles, while the residueé of the Channel T -and. . -
Channel II poles in BO’l are just plus or minus the rationalized pion-

.'nucleon coupling constant,
& = B~ 1. (XIII.1)

(The value of g2 is obtained most accurately from a comparison with

experiment of =n-N dispersion relations at Sy = O, i.e., in the

forward direction.) We find, in other words,

(o ge g 2
1 T - T
B\ (s s s,) = T —— (XIII.2)
1’ T2’ T3 2 ’
poles - -
, M2 s5 M 5y

Considering first Channel II, = + & ¢ N+ T , we follow Frazer and

Fulc012 aﬁd introduce the barycentric~system variables Ar Pos and cos 62,
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where SN is the magnitude of a pion momentum gnd Py that of a nucleon,

while 62 is the production.angie. We find:

s = - 2 - - 2 cos 8
1 5 "P "% =Py 9% 2 7

4(p22 + M) (XTTT.3)

2

[©]

it

=
~

no

+

’....I
— .

1

+

s5 = - p2 - q2 ,2 p2 q2‘cos 62 o

¥*
Next we define

. -
Ir,T, | II,T o1 i Ve
(Az (52)’ Bz (52)) = 3 {1 d cos 92 Pz(cos 62),, S

T LT |
X (A (52’ cos 92)’_YB (82’ cos @2i> ,

realizing that the index £ here is not the orbital angular momentum. We

know from crossing symmetry that AO and Bl are even functions of

1 0 : 11,0
cos 62, while A~ and B~ are odd functions, so that Az and
BiI’l vanish for odd £ while AiI’l and B)eII’O vanish for even £.

Frazer and Fulco then introduce helicity amplitudes, _fiJ(sg) , for
well~defined angular momentum dJ. - The subscript (+) indiéates that both
nucleon and antinucleon have the same helicity, while («). indicates
opposite helicities. - Using the technique of Jacob and Wiék27 they find,

for each T ,

*

4

We use T +to designate isotopic spin here in order to avoid confusion

with the channel index.
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J 1) P I M : I . II
T, = Ix 3" o) o (27 + (o) [(g +1)By ) + 7 Byl
Pals Pl
(XII1I.5)
I 01 @Y 1 IT _II
s i 2F + 1 [BJ-l - BJ+l] ’ (XIII.6)

(pqu)J'l

and show that these helicity amplitudes are analytic functions of 85 5
with a cut associated with Channel IT running from 4 +to along the
positive real axis, and coincident cuts due to Channels I and IIT running

from 52L = L - ],/M2 to <00 .

?
3

‘ gives rise to a cut in the helicity amplitude running from

Problem 5: Show that a fixed value of s in the spectrum of Channel TII

M _.(55' - - 1)

‘tO - 0 .

S

© e

The discontinuity across the left-hand cut has two parts, one‘from

the poles starting at s L and one from the continuous ﬂaN"spectra

2
starting at 8y = 0. Frazer and Fulco give explicit formulas for this
diScohtinuity in terms of gr2 and. ABT and B3T , the absorptive parts

“of the pion«nucleon elasticescattering amplitude. We shall not write down
these formulas because of their complexity; they have basically the same

structure as (IX.14), except for the additional term proportional to
2 L

&, that controls thevleft;hand cut for 0 < 55 < Sy .

Next Frazer and Fulco consider the right<hand cut and show that

for L < 5o < 16 unitarity requires the helicity amplitudes to have the

4
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same phase as the x-n amplitude in the corresponding state (same . J and
T). The heuristic derivation of this result parallels the discussion of
- the preceding section, but one must be careful because NN _states. cannot

really exist for s, < e - 180. Mandelstam, however, has recently given

2
e rigorous Jjustification for the naive extension of the unitarity condition
inthe x +x «> N + N channel.lo The next step is to argue, as before,

that if we are concerned only with | s S 40, we may use the simple

o |
phase condition for the entire right-hand cut; the helicity amplitudes may
then be explicitly written down in terms of the discontinuity over the

left-hand cut and the appropriate mn-nx denominator function:

L

3,T N 2, om0 (s, )0y (s)
£, (sg) = —F— f ds,, S (XITI.T7)
% Dy (sg) -® (52 - SE> e

We see by inspection that this formula makes_the helicity amplitude an
analytic function with the two desired cuts, and at ﬁhe samé time aséigns
the correct phase on the right-hand cut and the correct discontinuity
across the left-hand cut. .

Two different attitudes may be_adopted at this stage. A great
deal of experimental information exists about Channels.I and IIT, .
,ﬂ + N> x + N, so that the required disconfinuity over the left-hand
cut for the o +m «» N + I partial—Wave amplitudes is empirically known
o = 0 1is physical for
n=N scattering, so that the =« + n «> N + N helicity amplitudes and some

for a substantial distance. Also the point s

of their derivatives are known at the origin. "With all this information,

D. Wong has shown that one can quite reliably calculate the helicity

amplitudes along the right-hand cut for - 5, S 40, provided the gt-x
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amplitudes are algso known in this region.ll’28 This épproach seems -sensible
if one wants the = + gt <> N + N amplitudes in order to predict such things
‘as nucleon-electromagnetic structure.- and nucleon-=nucleon SCattering+' If
‘one proposes to predict m=N scatterihg, hQWEver,vthevlogic‘of:the‘situation
becomes confused. Strictly speaking, one should regard the problem of

4+ «>N+N and 5 +N<<>x + N amplitudes as one of codetermination,
uéing the kind of 1teration procedure described above for the =n«x problem.
If one were to do this, exactly the same kind of difficulties as encountered
in the wn-x ' problem would arise and arbitrary parameters would have to be
introduced. How many such parameters are needed is not yet knoyn,‘because
the problem is much more complex than in the x4 case. Let us now take
Cat leést a brief look at some ofbthe complications arising in é’study of

the Channel T and Channel IIi partial—wa%e ampliiudesg

Because of crossing symmetry it suffices to study Channel III,

where we introduce the usual barycentric-system variables,' q3 and cos @5:
. t

AY

o lsy - (+)%s, = (0-1)F)
q3 = N ' - 2
v Sz
8, = -2 q52 (1 < cos 8) -, ' (X111.8)
R
. 1 = cos e3 (M® -~ 1) 1+ cos 63 o
1 T T3 . - T3 (s5 - 20 - 2).

3

These formulas already suggest the woe in store for us as a result of the
~ unequal masses of pion and nucleon. Next we define AQIII(35) and BKIIE(SB)

in the usual way and relate these quantities to amplitudes for well-defined
J and parity. The conventional notation here is to_write; fifl , where /£

is the orbital angular momentum and (%) refers to J =L.* 1/2. .In the

\‘
\
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physical region we have
id
el . =, ' (XIII.9)
43

Henceforth we shall drop the superscript IIT. The relstion between
14

A, B, eand fzi turns out to be
l ' .
£alW) = g= (E+M[A, + (W-M)B,] + (E-M{-A, + (W+M)B,,,]
(XTII.10)
where W = \/53 and
2 .2
2 2 W+ M -1

E = P M = — - (XIII.11)

Examination of (XIII.10) shows that £, , 858 function of S5 5 has a
"kinematical" branch point at the origin but that as a function of W
all the singularities are of the usual "dynamical" type--that is, they
arise from the vanishing of denominators in the original Mandelstam
representation., 'McDowelll4 emphasized that an interesting reflection
property exists in the W plane--which encompasses two sheets of the

usual s5 plane. We see from (XIII.1ll) that we have
fz+(4W) = - f(g+l)_(w) s | | (XITI.12)

so if we work in the full W plane, the two amplitudes for the same J
may be considered as a single analytic function in different halves of the
plane. In view of this circumstance and for certain other reasons

associated with the peculiarities of the kinematical relations (XIII.B)
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and too complicated to discuss here, Frazer and Fulcozq_introduceg_ .
J/ T E+M 24

(XITI.13)

as the most éonvenient analytic function. For VW real andlgrggtgr than
M+ i this function is related to the phase éhift for totai'aﬁgﬁiarj
momentum J and orbital angular mémentum £L=J - :1/2,vwhilé_fof W
real and less than ~(M + 1) we are dealing with the»phase shift’for the
seme J but £ =J +1/2. | |

The singularifies of hz(W) are very complicated. TFirst there
are the two physical cuts, rumning from M -+1 to +oco and from ..
~(M +1) to -o0, both on the real axis. For J = 1/2' and I = 1/2,
there is also the nucleon pole in hO on the left half plane at W = -M,
These are all the singularities arising from Channel iII. The original
pole in Channel I (also x + N «» 5 + N) leads to short branch cuts, on
the positive real axis for M - % < W'-s_ (M2 +.2)1‘/.2 and on.a
. corresponding range of the negative real axié9 These cuts are so short
that they are well aﬁproximated by .poles. A second branch cut arising
from the original Channel I pole runs along the entire-length of imaginary
axis. Before proceeding further with our enumeration of singularities it
is useful to discuss why the original nucleon pole leads in this way to
both a long-range and a short-range force.

We have already in the introduction diécussed the loﬁg-range force
(due to the short cuts near the physical regions) a consequence of the
"exchange" of a nucleon. (See Fig. 11(a).) The general structure of the
1

theory, however, requires that the Sy pole also represents the "exchange'

of an antinucleon originating with the incident pion. . (Fig. 11(b).). This
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Fig.1l. The two exchange
processes represented by

the pole in the "crossed"

7N channel.

N 11

(a)

force is of very short range because energy conservation is badly viblated,

and it corresponds to the cut along the imaginary axis--far from the physical

region. {See Fig. 12)

e(////// Due to all Channel I singularities

Due to Channel I continuum
Due to Channel I pole
lw- Phy%;cal cut (Channel III)

M-1 M M+1

Fig., 12. Cuts in the Channel III
partial-wave amplitudes due to

Channels I and III.
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The continuum singularities of Channel I, starting with the one-pion--

one-nucleon qontributions, similarly lead to two cuts, and for the same

reason. The "near-by" cuts run from (M - 1) and -(M - 1) +to the origin,

while the far cuts again run along the imaginary axis. | '

| The intermediate states of Channel II turn out to‘producé.a

complicated cut in the Channel ITI partialfwave-amplitudes} pgrtiy on

the imaginary W axis but also in‘part following a circlé.éf redius M‘

with center at the origin. The ends of this cut come close to the physical

regions and can be interpreted as long-rangé =N forces}due to: 2rn exchange.
Formulas for the discontinﬁities écross all the vérious éuts have

been worked out in terms of absorptive'parts‘for appropriaté”éhannels,20’29

but one finds, just as for =~ that.the polynomial expansion of the

absorptive parts suffices to calculate only:'the near-by discontinuities.

-An extensive investigation of just how much can be understooduabout-the

observed phase shifts in terms of near-by and calculable singularities has

29

been undertaken by Frautschi and Walecka as well as others. Final results
are not yet available, but the qualitative success of the static model has
been to a certain extent understood. It has been shown, for example, that

the =n<w cut has only a weak effect in the I = 3/2, J = 3/2 state, as

does the near-by part of the crossed =-N continuum cut, so the dominant

[

near-by singularity in this state is the shorﬁ cut, near W = M, which can

be approximated by a pole of residue ~gr2. Replacing all ofﬁer.sihgularities

1,

by a distant pole then leads to the Chew-Low effective range behavior for .
5 -
e}
33’ _ .
3 . ,
I W _W
yo2 9 _ "R ,
3 T gt oot 853 R AT S (XIII.J.M-)_
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where I~ = 3 g~ =~ 0,08 and ;WR is the energy of the 3/2, 3/2
UM '

resonance., The value of WR

phenomenological pole and camnot be predicted until we haveé better

is related to the strength of the distant

calculationsl methods. However, the width of the resonance is correctly

predicted in terms of f2 o
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XIV. NUCLEON ELECTROMAGNETIC STRUCTURE
The basic methods of the S-matrix approach to strong interaétion
. theory hévé now been outlined and several examples discussed. We conclude
these lectures withvan examplé\of unusual importance from a practical -
standpoint. This is the problem of the nucleon~photon vertex, or in more
familiar langusge, the electromagnetic structure of the nucleon. Recalling
the considerations of Section XII, we realize that the nucleon-photon
vertex function can be experimentally measured in the range t < 0O by
electronanucleﬁn elastic scattering and for t > hM? ~ 180 by N + N < e+ +e .
The latter range is very hiéh'from the point of view of our approach; however,
the cut in the phoion-nucleon vertex function does not begin at MME but
rather at U4, the two-pion threshold. By the usual arguments, we should
expect that the discontinuity across the cut for 4 <t < 40 should
dominate the behavior of the function for Itl g U40; thus it is reasonable
to try to understand electron-nucleon scattering up to a few Bev electron
energy (lab) in terms of two- and three-pion contributions to the spectral
function of the photon-nucleon vertex.
Actually four invariant functions are involved in the photon--
nucleon vertex, because of the nucleon spin and charge degrees of freedom.

Using the same kind of notation as in (IV.1l), we would write

Epe i yee€ [Gls(t) + TB'QGlV(t)] + 7€ 7+(p, - pg)[GES(t) ~+1‘5G2V(t)] %

(XIV.1)

where € 1is the photon polarization vector and where the superscripts S

and V refer to the isotopic scalar and vector parts of the electromagnetic
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* : .
interaction. The vertex functions . G(t) are related at tv=:O to the

static nucleon charges and anomalous magnetic moments:

c-ls(o) = le(o) = e¢f2 , (X1V.2a)
8 oty , »

G, (o) .= ——5— = 4 0.06 ee""M . (XIV.2b)

va(o) = E-P—;iN— = 1.83 -2% (¥1v.2¢)

Each of the four functions G(ﬁ) ‘has a spectrai répresentation of the
type (XII.5) with the assoclated spectral functions given by_abfofmula
of the type (XII°7), except that the n'-n" state is répléced by an
N-N .state,vwith‘ I=0 for the»isotopic séalar functioné and I-= i
for the vector fﬁnctions, Thé'othéf quéntum numbers are thé'same as for
the pion-photon vertex.

26,31 that oﬁly even-pion intermediate states

It then turns out
contribute to the isotopic vectorvpart of nucleon electromagnetic
structure and only odd«pion states to the scalar part. Considering first
thé vectof part, let ﬁs calculate‘the spectral.functions inrthe range
4 < t < 16 where only 2« states contribute. Evidently the result is a
product oflthe pion-photon vertex function Fﬂ(t) and the amplitudes f;r
f+n<>N +T dnthe IT=1, J=1 state. In the preceding section
we saw that there are two such'functioné, which may be chosen to be thé

helicity amplitudes f+l’l(t). Frazer and Fulco found the result25

- .
Assuming "minimal" electromagnetic interactions, a photon can be thought

of as carrying either isotopic spin O (scalar) or isotopic spin 1 (vector),
but nothing more complicated. This follows from the fact that electric

charge and the 2z component of I‘spin.are linearlyfrélatedo
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v oyl Mo 1,1 1,
§'(©) = - E AT u\/— (t)-f (t)

| (X_IV>.5)
gJ(t) = F_(t) ﬁ - < [’\}% e ble) - ﬁ?}?(t) 1",

vhich may plausibly be used up to t ~ 40 if L-pion statee behave as
vwe expect.

A erorl we do not know how important 1n the spectral fuﬁctlon
is the region above that where the 2ﬂ state domlnates. Experimentally,
vhowever, the measured slope of the functions G(t) at t=0 glves us
the mean value of l/% in weight-function_ g(t)/%. | Thus“lf no,

subtraction is necessary, so that we write

v
© g (t') o L
- LI- . -tl - 1 ‘
then we have = . | B
| d v
L) Lae & (W), o
T ) v ’ . (XIV.5)
Av,i Gy (0) _

There are substantial theoretical reasons for expecting no subtraction

in’ Gé?fv(t) and weaker ones for G.S’V(t). In any case, it is found

experimentally that,3 with (XIV.5) as a definition of 1 ).l , we have
Av.

v [V o
. o (XTv.6)

2
le
l
!

1
t : ) .
Av,1 Av,2

This circumstance strongly implies a dominant role for the 2x state

in gzvz and probably also.in glv .

¢
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Frazer and Fulcoe5

proceeded to calculate'»Gl;QV(t) on the basis
of (XIV.4) and (XIV.3), with various assumptions for the P-wave n-= phase
shift, which controls fil’l(t) through Eq. (XIII.7) as well as Fﬂ(t)
through Eq. (XII.9). They found, as had earlier been emphasized by Drell,55
that with a small P-phase shift, the value of GQV(O)' (the vector anomalous
moment) is too smali by a factor of about five unless large contributions
to (XIV.4) come from the unknown region +t' > 40. 1In such a case, however,
the experimental result (XIV.6) is incompfehensible, ‘In ordef to achieve
(XIV.6) Frazer and Fulco had to assume a resonance in the n-x P wave at
tr ~ 12 which’greafly enhances this part of the spectrum. The mechanism
of enhancement is quickly seen by feference to (XIV.3) and (XIII.7), from
which follows gzv(t) ~ IE&(t)Ig,.so the spectral functions have the
behavior (XII.15) in the neighborhood of the resonance. The average
enhancement depends on the ﬁidth ?afameter T fo achieve the experimental
result (XIV.2¢c) it appears that I' =~ Ok is required.

Thus, the large nucleon anomalous magnetic moment together with
the large radius of this moment, (‘~% )Av = % ;El) » suggests a fairly
narrow dynamical resonance in the P state of the .ﬂ-ﬂ system, and in

Section XI above we pointed out that such a resonance can come about

through a "bootstrap" attractive force. Of course, if the resonance exists

there must be other experimental manifestations; the cleanest suggested
so far is the enhancement by the factor (XII.15) of pion-pair production
in electron=positron annihilation. In general 6ne would expect enhancement

of this kind whenever pion pairs are produced, but usually there are other

'strongly interacting particles simultaneously present which confuse the

situation. The other typical manifestation is the enhancement of the

unphysical singularities in various amplitudes due to pion pairs. ;The
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nucleonsphoton vertex of courseifalls.in this category, and-we may remark
., now on the conséquence of a P-wave n~n. resonance for vGiV(t),I'thé'
chargeavertex function, as well as on 'va(t), the ‘magnetic-moment vertex
~ discussed above.

If we accept (XIV.4) for le(t) without-a subfraction, then the
experimental near equality of the vector charge and magnetic-moment radii
-of the nucleon. is immediately a consequence of a reasonably'sharp' =1
- resonance. That is, both glv(t). and - ggv(t)f are proportional to.’
]Fﬁ(t)]g , so that the average value of %/t. should be -~-%/t£ “for both.
One may ask if (XIV.2a) is consistent with no subtractions in T*le(t); a
- tentatively affirmative.answer has been given”by‘Frazér and .Ful.co,’25
considering the ungertainty in certain aspec¢ts of our knowledge of the
x + 5 <> N + N -helicity amplitudes fil’l(t) . We have in ‘the equality
of charge and magnetic radii, therefore, sdmé confirmation of-the resonance
hypothesis. Many other amplitudes are being similarly analyzed to discover
the effect of a w-1 P-wave resonance. These include N-N .scattering,ll

29, 3k 35 w36

n-N scattering, and. K-N scattering, as.well as 7 + N <>z +
in each of which a strong ©2n exchange interaction should have a marked
effect. Calculations in all these cases are more complicated than for
nucleon‘electromagnetic structure, and results are still inconclusive.

We conclude with a brief mention of . G S-(‘l:), the isotopic-

1,2
scalar part of the nucleon~photén vertex. Experimentélly» Ggs(t) is

very small over the entire range of - t studied, while Gls(t) ~ le(t).
The latter circumstance means .a low average value of t in -gl (t) and,

with no subtractions, suggests a low-energy resonance or perhaps €ven &

bound state for the three-pion system. with quantum numbers J =1, I =0
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and odd parity. That such a state may_feel an unusually strong total
attraction follows from the fact that all three pairs are in the I =1
éonfiguration,37tﬁhere we have conjectured ajstrqu attractive force:
Why the contribution to ges(t) from such a th?eefpion state‘ghéaid‘be
small is not clear,'but will not constitutela definite difficulty until
we have methods for handling such multiparticle configurations. That the
scalar charge radius is so close to the vector charge radius appears a
coincidence from the present point of view. If it is not a coincidence,
then the approach described in these lectures is deficient in some very

basic respect.
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XV. CONCLUSION -

We have seen how the Mandelstan fepfésénfatioﬁ}fbr sééétéfﬁﬁg
amplifudéé éan Be ﬁéed toge%her with ﬁniﬁarify fo make'a'{héorylof-idng& «
raﬁge'stfong interactions--more precisely, of ﬁhosétihteractions due to
exchange of:éne; and tWOaparficle systems.‘ The theéfy'wili'nét bé“cémplete
Cuntil we understand how to haﬁdle‘generalgmulfiparticle'exchangés; but we
have seen that certain experimental qpesfions can airéady be discussed
in a ﬁeaningfﬁl way. That is to‘éay, different kinds of’exﬁéfiﬁeﬁts can
be correlated even though the ﬁnderiying4sh6ftirange‘forcéé”aféfnéf.
completely understood. We have also attempted here to méke.fiéuéiﬁié
that the S-matrix approach, when developed into a complete theory by
extension to many-particle systems, will contain no more free parameters
than conventional renormalizable field theory.

A more concrete aspect of these lectures has centered around
the pion-pion interaction, which in a certain sense is fundamental for
all strong~interaction questions. Pion-pion scattering is eﬁperimentally_
elusive, but we have seen that it rust be undefstood before further

substantial progress is possible in the theory of strong interactions.

il
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