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DOUBLE DISPERSION RELATIONS AND UNITARITY AS THE BASIS FOR A 

Geoffrey Fo Chew 

Lawrence Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

June 20, 1960 

I. INTRODUCTION 

The discovery by Mandelstam in 1958 of a prescription for extending 

collision amplitudes into the complex plane, as functions simultaneously 

1 of energy and of momentum transfer, has brought Heisenberg's 1943 idea of 

a dynamical S-matrix theory2 close to realization. Heisenberg recognized 

the importance of the unitarity and Lorentz invariance of the S matrix, 

and understood the close relation between bound states and poles of the 

scattering amplitude. However, the role of the interaction (or force) in 

the s-matrix approach remained obscure until field theoretical considerations 

were applied. 

In 1955, Chew and Low showed for the static model of the pion-

nucleon interaction that one was dealing with an analytic function, that 

the "forces" could be associated with singularities of the scattering 

amplitude in unphysical regions, and that a knowledge of the location and 

strength of these singularities was probably sufficient to determine the 

S matrix.3 Furthermore, these authors showed how crossing relations could 

be used to calculate the unphysical singularities. Of course the static 

* A se~ies of lectures to be delivered in part at the Summer School of 

Theoretical Physics, Les Houches, July 1960; and in part at the Scottish 

Universities Summer School in Physics, Edinburgh, August 1960. 
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model is not Lorentz-invariant, and it fails to include many interactions 

which must. be imp:li:ta.r:tt. That Lorentz invariance was not a difficulty was 

suggested by the form of relativistic fixed-momentum transfer-dispersion 

relations, proposed in 1955 by Goldberger
4 

and by Karplus and Ruderman, 5 

to which. the static Low equations were shown to bear a striking resemblance.6 

These "one-dimensional" relations, however, do riot describe all the 

unphysical singularities and are insufficient to determine the S matrix. 

To include all the forces requires a knowledge of singularities in momentum 

transfe_r as well as energy; .this information is provided by the double-

dispersion relations, proposed two years ago by Mandelstam. 

Actually, a gene:ralization o;f' Mandelstam's ideas to elements of 

the S matrix involvi~g more than two particles is required before the 

theory can be regarded as complete. Such a generalization has not yet 
.. . 

been achieved, but th~re is:qo reason to tnink that more than mathematical 

ingenuity is involved in treating the rap:j.dly increasing number of degrees 

of freedom. From a practical stt;l.ndpoint the lack of generalization is not 

yet of major consequence, since the one- and two-particle S-matrix elements 

·continue to saturate th¢ theorists 1 capacity for calculation. However, 

three-particle states may soon become a center of attention. 

Stated vaguely, the gener1;1l principle_emerging from the work of 

the past 5 years based on field theory is t~t tne S matrix is the 

boundary value of an analytic functio:q of momentum variables,. satisfying 
:·. 

the substitution law (to be discussed below) and with only those 

singularities required by unitarity. It is to be hoped that this notion 

of "maximal analyticity" will be made preci,se by future developments; at 

the moment, one can say that, given the requirements of Lorentz invariance 

l 

I 
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and unitarity, the only prescription yet discovered for extending two-particle 

S-matrix elements into the complex plane, consistent with the substitution 

law, is that given by Mandelstam. This simple fact is in striking contrast 

to the tortuous methods used in current attempts to derive the Mandelstam 

representation from principles of field theory. When one realizes that some 

of these "principles" (such as microcausality) can be expressed only through 

concepts (such as the local field) about which grave doubts have been raised, 

one wonders whether a field-theoretical starting point is worth the trouble. 

If the notion of "maximal analyticity". can be generally and precisely 

formulated, it would seem a promising candidate to replace the framework 

of field theory which has never been satisfactoryo 

Such a point of view has been expressed forcefully by Landau, 7 who 

feels that any further work with field theory is a waste of time. I concur 

in the belief that field theory is inconsistent and will eventually die, . 

but am impressed by the many apparently valid general principles (such as 

the substitution law) that have been discovered by studying the dubious 

concept of the local field. In any case, in this series of lectures field 

theory is not used; we accept the Mandelstam representation as a starting 

point and investigate the consequences, hoping to make plausible the 

conclusion that analyticity and the substitution law, together with Lorentz 

invariance and unitarity, are sufficient to determine the S matrix • 

Such a conclusion cannot be firm until (as stated above) we know 

how to handle general S-matrix elements, involving more than two particles. 

These elements are important even in discussing elastic scattering because, 

through unitarity, they determine the "strength" of important singularities 

in the elastic amplitude. How, then, can we expect to deduce any meaningful 
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consequences from an incomplete theory? The answer rests on two general 

features of the Mandelstam representation: 

(a) The location of singularities is determined by the total 

"masses" of actual physical systems; the higher the mass the farther from 

the origin is the associated singularity. Now, among the strongly 

* interacting particles there are none of zero mass; thus, the total 11 mass" 

of strongly interacting physical systems systematically tends to increase 

with the number of particles, and the singularities near the origin tend 

to be determined by one- and two-particle configurations. If there are 

aspects of the physical problem that are_controlled mainly by 11 near-by" 

singularities, then one can make a meaningful.comparison of' theory with 

experiment without a complete understanding of "faraway11 singularities in 

which multiparticle configurations play a roleo 

(b) The "strength" ofsingularities is related to physical cross 

sections and restricted by unitarity, so that in a limited region of the 

complex plane the behavior of an S-matrix element tends to be controlled 

by the closest singularities. More precisely, an analytic function is 

determined through the Cauchy relations by a kind of Coulomb's law for a 

potential due to point charges (poles) and line charges (branch cuts). 

* Note that problems involving large numbers of low-frequency virtual 

photons, such as Coulomb bound states or low-velocity Coulomb scattering, 

cannot be handled by the approach described in these lectures. Because 

of' the zero mass of the photon, there is no separation of single-photon 

and multiphoton singularities. For high particle velocities, of course, 

the small magnitude of the fine-structure constant often makes it 

possible to neglect multiple photon contributions. 

' 

,. 

, 
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The line-charge "density" is the discontinuity across the cut, which we 

shall see is proportional to physical cross sections and therefore limited 

in magnitude. There is assurance therefore that the 11 Coulomb's law" 

reciprocal dependence on distance, which favors near-by singularities, 

w\11 not be overwhelmed by an increasing strength of singularity with 

distanceo From a practical standpoint, this feature of the S-matrix 

approach is of tremendous importance to a theory of strong interactions, 

permitting an orderly and systematic series of approximations whose 

validity is subject to realistic appraisal without any assumption as to 

the magnitudes of coupling constants. 

We shall see in what follows that the range of a force in the 

conventional point of view corresponds to the .reciprocal distance from 

the origin in the complex (momentum) plane of the associated singularity. 
- -

Thus the ''near-by" singularities, associated with one- and two-particle 

configurations, are the 11 long-range forceso" The forces we cannot calculate 

reliably (but only put limits on) are those of short range. This way of 

assessing the situation sug~ests the two kinds of predictions we can 

expect to make with the incomplete theory: 

(a) Scattering in states of large orbital angular momentum should 

be more or less coropl~tely predictable, since the centrifugal 

"barrier" shields these states from the unknown short-range 

forces. In other wo;rd.s, high-angular-momentum collisions are 

controlled by near-by singularities that our theory is able to 

handle. 

(b) In states of low angular momentum, experience with potential 

scattering suggests that the short-range interaction, even 
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though complicated and exerting a significant influence, can 

be represented by a small number of parameters so far as low-energy 

experiments are concerned. Boundary-condition treatments of the 

hard core in the nuclear force are based on this circumstance, as 

are effective range formulas in general. The Coulomb potential 

analogy to our S-matrix problem in the complex plane suggests a 

general explanation. Any collection of source charges 

(singularities), if sufficiently distant, can be replaced by 

a single point charge (pole) at infinity, so far as the potential 

(scattering amplitude) in a local region is concerned. If one 

wishes to represent the first derivative of tbe potential, that 

is nonzero because of the finite distance of the actual charges, 

an equivalent point charge at a finite distance can be found. 

For higher derivatives, more poles or perhaps multipole$ may be 

added, but it is clear that faraway singularities generally 

produce only smooth variations and can be represented by a small 

number of parameters •. The near-by singularities, in contrast, 

may be expected to produce strong and characteristic variations 

in the amplitude that can be identified in experimental results. 

:These strong variations are predictable in the incomplete theory. 

The inverse relation between range of interaction and distance in 

momentum space is of course traceable to the uncertainty principle. The 

unphysical singularities of an elastic-scattering amplitude correspond 

to the systems that can be 11 exchanged11 between the particles undergoing 

scattering. Only by such exchanges can a force be transmitted, and it is 

well known that according to· the uncertainty principle the range of the 

' 

• 
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force is -1 
IV E ' if E is the total energy necessary to create the exchanged 

system. The incomplete theory allows us to calculate forces due to one-

and two-particle exchange, while three-particle and higher-multiplicity 

exchange must at this stage be treated phenomenologically. Let us consider 

some specific situations, remembering that the possible system to be 

exchanged must obey all the conservation laws of strong interactions. 

1. Nucleon-nucleon scattering. Here the longest-range force (or 

the nearest unphysical singularity) comes from single pion exchange, while 

the next longest is due to two pions. Both of these are calculable, but 

forces of range shorter than one-third of a pion Compton wave length must 

await a generalization of the Mandelstam representation. Note that 

although we could attempt to calculate the force due to K-K exchange 

there is nQt much point in doing so because the mass of two kaons is as 

great as that of seven pions. If a hitherto undiscovered particle exists, 

of zero strangeness and mass less than three pions, then its contribution 

to the nuclear force should be experimentally identifiable. 

2. Pion-pion scattering. Here all odd-pion exchanges are forbidden, 

so the longest-range force is due to pion pairs, and the incomplete theory 

carries us down to one-quarter of a pion Compton wave length in the force 

range. 

3. Pion-nucleon scattering. Here there are two kinds of long-

range forces. The "ordinar:y" forces arise from exchange of systems of 

zero baryon number, of which pion pairs are the least massive and pion 

quartets the first configuration that must be treated phenomenologically. 

(Odd-pion exchange is again forbidden.) However, a very important "baryon 

' exchange" force also must be considered because of the large difference in 
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mass between pion and nucleon. That is to say, the original nucleon can 

"emit" a virtual nucleon, becoming a pion, with a violation of energy 

conservation that is determined not by the nucleon mass alone but rather 

(it turns out) by the geometric mean of nucleon and pion masses. This 

virtual nucleon moves across to the initial pion and is absorbed, 

transforming it into a nucleon and transmitting a force whose range is 

(by the uncertainty principle) approximately (m~ ~)-~2, comparable to 

the range of ~ exchange. The incomplete theory can handle also the 

corresponding force when a single pion accompanies the exchanged nucleon, 

but more than one pion "fellow traveler" is beyond our powers at present. 

We shall see that the complicated nature of the pion-nucleon force is 

reflected in a complicated arrangement of singularities in the complex 

plane. By contrast, the singularities of the ~-~ and N-N amplitudes 

have an exceedingly simple structure. 

It is clear that because of their small mass pions play a 

central role in this kind of approach to a theory of strong interactions. 

It will be impossible to go any distance without understanding the two-

pion system, which occurs prominently not only in theJong-range parts of 

the above-listed interactions but in many other processes as well. This 

circumstance alone would justify devoting much of our attention in these 

lectures to the two-pion configuration; another reason, however, is that, 

of all strongly interacting systems, the ~-~ is the easiest to handle, 

while at the same time it contains all the essential features of the 

general S-matrix approach. If one understands clearly for the ~-~ problem 

what can be done and what cannot be done in the Mandelstam framework, a 

satisfactory foundation for discussing all strong-interaction problems will 

have been laid. 

,. ,, 

, 
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One other general observation may be worth while before we plunge 

into the complex plane. This concerns what is meant by a "complete" 

dynamical theory. Ultimately, of course, we hope to have a theory that 

explains the masses and coupling constants of all particles as well as the 

symmetries that their interactions are observed to possess. However, the 

S-:-matrix approach to be described here makes .!!£ attempt to explain symmetries 

(charge independence, parity, etc.); these are accepted and imposed from 

the beginning as conditions to be satisfied by all matrix elements. In this 

respect we are on the same footing as conventional field theory. On the 

other hand, the question as to how many particles are to be regarded as 

'"elementary" is not so clear. The deuteron is certainly not elementary-­

its existence is to be explained by showing that a pole of definite 

position and residue must occur in that N-N amplitude which has the 

quantum numbers of the deuteron, if we start with a knowledge of certain 

other singularities. Within the framework of approach outlined above, 

based on an ordering of masses, the pion, the nucleon, and the kaon have 

to be accepted as elementary, since by a substantial margin they are the 

least massive systems with strangeness and baryon quantum numbers 

(o, 0), (0, 1), and (1, 0) respectively. It is possible, however, that 

in the future an increase in our ability to handle multiparticle systems 

of high mass may lead to the conclusion that the poles corresponding to 

one or more of the above particles have residues (coupling constants) or 

positions (masses)--or both--that cannot be arbitrarily assigned but are 

in fact controlled by distant singularities. Even within our present 

approach it is possible that some of the hyperons may emerge as "bound 

states;" we shall discuss below possible criteria for distinguishing bound 

states from elementary particles within the S-matrix framework. 
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Though a certain number of' "elementary" particle masses may be 

accepted as necessary input information, there is still the question how 

many additional arbitrary parameters are allowed by the combined requirements 

of' Lorentz invariance, unitarity, and analyticity. Mandelstam has 

conjectured that this number is the same as the number of renormalizable 

interactions in conventional field theory. 7 We shall be able to verify 

in several special cases that the number is not larger; it seems, therefore, 

that the S-matrix approach is at least as "complete" as conventional field 

theory is supposed to be. Of course, with the current limitation to one­

and two-body configurations, the phenomenological representation of 

short-range forces requires extra parameters. 
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II. THE LORENTZ-INVARIANT AMPLITUDE.AND THE SUBSTITUTION LAW 

For reasons of convenience, Moller in his 1945 paper8 introduced 

a matrix S-1 and then in addition factored out an energy-momentum delta 

function, leaving a Lorentz-invariant function of n-1 momentum variables, 

where n is the total number of particles involved (ingoing plus outgoing). 

This reduced matrix has been called by various names; we shall be mainly 

concerned with the case n = 4, where the reduced matrix element will 

simply be referred to as the "invariant amplitude." The normalization of 

the invariant amplitude has not been standardized; we shall choose it as 

close as possible to the "physical amplitude" f(e), which is defined, 

except for a phase, by the barycentric-system differential cross-section 

formula 

do 
em (II.l) 

Here ~ and ~ are the final and initial magnitudes of three momenta 

and e the angle between; and ~ are of course equal for elastic 

scattering. The phase of f(9) will be conventional, ioe., f(9) 

becomes real as the interaction becomes weak, positive for attraction 

and negative for repulsion in the elastic case. More precisely, for 

elastic scattering of particles with zero spin, 

f(e) 
1 CX) 

= !: 
q £=0 

(II.2) 

where o£ is the phase shift in the state of orbital angular momentum £. 

Moller showed that either for inelastic or elastic scattering the factor 

connecting f to the invariant amplitude for zero spin is simply W, the 



UCRL-9289 

-12-

. . 8 . 
total energy in the barycentric system. Thus we normalize our invariant 

amplitude A by the formula 

A = ~f 2 
(II.3) 

The invariant-cross-section formula (for an arbitrary coordinate system) 

in terms of I A 1
2 may be found in Moller's article, as well as in many 

textbooks. All we need here is the knowledge that A is Lorentz-invariant. 

With zero spin, A can depend only on the invariants that may be 

formed from the three independent four-momenta remaining after energy- . 

momentum conservation is applied. To maintain a maximum symmetry let us 

assign four-momenta p1, p2, p
3

, p4, all of which correspond formally 

to ingoing particles. Two of these momenta will always be positive 

timelike, representing the actual ingoing particles, while the other two 

are negative timelike and represent the actual outgoing antiparticles. 

Energy-momentum conservation is stated through the condition 

(II.4) 

while the particle masses are introduced through the four constraints 

2 2 (II.5) pi = mi 

It is convenient to define three invariants 

(pl 
2 

(p2 
2 

sl = + p4) = + p3) ' 
i 2 2 

52 = (p2 + p4) = (pl + p3) ' 
(II.6) 

53 = (p3 + p4) 
2 = (pl + 

2 
p2) ' 

~ 

~ 
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each of which is the square of the total energy in the barycentric system 

for a particular pairing of incoming and outgoing particles. With the 

constraints (II.4) and (II.5), and s
3 

are not independent of 

one another but satisfy the relation 

+ + s '= 
3 • (II. 7) 

Thus, any two of the s variables are to be considered as independent, 

with the third determined by (II.7). We now assert that our invariant 

amplitude A is a function only of the two independent s variables. 

It is trivial to verify that no further independent scalars can be 

formed from p1 ••• p4• That there are two and only two could have been 

anticipated by realizing that in the barycentric system the scattering 

depends on energy and angle and nothing more. What is not trivial, however, 

is to say that A c~nnot depend on which of the four-vectors pi is 

positive timelike and which negative, i.e., on which particles are 

incoming and which outgoing. A Lorentz transformation cannot interchange 

positive and negative timelike vectors, so we are going beyond Lorentz 

invariance; we are invoking the notion of TCP invariance. 

Consider the six reactions represented by Fig. 1. We can classify 

these by pairing the particles--two incoming and two outgo·ing--to define 

three "channels." Channel I is that for which is the square of the 

total energy in the barycentric system, pairing p1 with p
4 

and p
2 

with It describes the reaction 

+ A -+ K 
0 + p 

' 
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~: 

Fig. 1. Diagr~ describing the reactions 

I. Ko 
+ 

A ' -+ p -+ 1( + 

II. 1( + K -+ 
0 

A + p 
' 

III. 1( + p -+ Ko + A ' 

as well as the corresponding antiparticle reactions. 
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* as well as the TCP equivalent antiparticle reaction 

+ 
+p-+1t +A. 

Reactions with 1t ingoing have positive, while those with + 
1( 

outgoing have . p
10 

negative. · The signs of the energy components of the 

other. four momenta obey a similar rule. 

Thus Channel I is characterized simply by the fact that is 

positive and greater than some 11 threshold" value. Channel II is that 

for which s
2 

is greater than·some positive threshold, and includes the 

two reactions corresponding to the pairing (2, 4) and (1, 3), while 

Channel III makes the final pairing (3, 4) and (1, 2) and of course 

has s3 above threshold. It is possible to verify that the physical 

regions of the s variables for the different channels are nonoverlapping. 

Consider the simple case in which all four masses are equal, e.g., the 

diagram of Fig. 2, which includes the three basic reactions, n + p -+ n + p, 

n + p -+ n + p , and p + p -+ n + n • If q and e are the barycentric 

system three-momenta and angle for neutron-proton scattering, then 

* 

2 
s2 -' - 2q (1 cos 9) ' (II.8) 

Because strong interactions have special symmetries, time reversal, 

charge conjugation, and charge independence, a single invariant amplitude 

actually can describe many more than the two TCP equivalent reactions. 

It is confusing, however, to invoke these additional symmetries before 

understanding the general features of the Swmatrix approach. 



UCRL-9289 

\ 

Fig. 2. · Diagram for nucleon~nucleon and nucleon-antinucleon 

scattering. 

I. n + p -+ n + p ' 

-II. p + p -+ n + n 

III. n + p -+ n + p • 

1 • 
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and we see that in the physical region of Channel III (n + p ~ n + p), 

s3 is positive and greater than 4Mt, while s1 and s
2 

are both negative. 

Obviously, in the physical region for Channel II (p + p ~ n + n), s2 is 

greater than 4MF while s1 and s
3 

are negative; for Channel I 

(n + p ~ n + p) the positive variable is s1 • In general those two s 

variables that for a particular channel are not the square of the total 

energy may be interpreted as the negative squares of momentum transfer and 

have physical ranges that extend to minus infinity. 

We may now state the substitution law, which in the present framework 

takes a very simple form. We postulate that a single analytic function of 

two variables, A(s1, s2), describes all three channels corresponding to a 

given diagram, the channel being selected merely by assigning the values 

of the variables. The key word here is "analytic." Since the ranges for 

the three channels are nonoverlapping, one must have a procedure of 

continuation to give such a postulate any physical content. In the 

Feynman-diagram approach to field theory, the substitution law is a direct 

consequence of the Feynman rules and has a clear meaning for any diagram 

whose singularities have been analyzed. All diagrams analyzed to date 

satisfy the Mandelstam representation, which postulates a singularity 

structure permitting analytic continuation between the three physical 

regionse The substitution law has such a simple and plausible appearance 

that its power for many years.was not appreciated, but it is now recognized 

as playing a key role in the dynamical s-matrix approacho 

A principle related to the substitution law, which applies when 

there are two or more identical particles among the four involved in a 

particular diagram, is the so-called "crossing s;ynnnetry." Exchanging two 
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identical particles at most changes the sign of the amplitude, and such an 

interchange means switching two of the s variables, leaving the third 

alone. For example, suppose particles 1 and 3 are identical. Then, 

depending on whether these are bosons or fermions, the amplitude is either 

symmetric or antisymmetric under exchange of p1 

interchanging s1 and s
3
, leaving s2 alone. 

is consistent with the constraint (II.7).) If 1 

and p
3

, which means 

(Note that such an exchange 

and 3 are both 

incoming or both outgoing--i.e., ~ is the energy--the symmetry in 

question is just the Pauli principle. If one is incoming and the other 

outgoing, however, the symmetry cannot be so identified. In this case, 

if one starts with physical values of the s variables, the .exchange in 

question necessarily leads to nonphysical values because of the above-

mentioned nonoverlapping nature of the energy and momentum-transfer ranges. 

Thus crossing symmetry has a general meaning only when continuation of the 

amplitude into unphysical regions is possible. Such a continuation is of 

course allowed by the Mandelstam representation. 

' 
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III. THE MA.NDEISTAM REPRESENTATION 

It is clear that the three s variables are on an equivalent 

footing, even though only two are independent, and the Mandelstam 

prescription for analytic continuation is most simply expressed by a 

representation exhibiting all three. Mandelstam postulates that, except 

for possible subtractions needed if the integrals do not converge, the 

invariant amplitude A can be written in the form 

= l I 
1( 

I I 

..!. If 
I I Pl2(sl ' s2 ) 

+ ds1 ds
3 2 I I 

1( (sl - sl)( s3 - s ) 3 

t i 

.l. I I 
I ' P23(s2 ' s3 ) 

+ ds
2 ds

3 I ' ' 
( III.l) 2 

(s2 - s2)( s3 - s ) 1( 

3 

where the spectral functions and are real and the integrations 

' in each s variable go over a region of the positive real axis 

extending to infinity. More precisely, the spectral functions fail to 

vanish only when an argument is equal to the square of the mass of an 

actual physical system that has the quantum numbers of the corresponding 

channel. 
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For an illustration, let us refer to Fig. 3, which describes 

reactions with two nucleons and two pions. Channel I has charge +1, 

baryon number +1, and zero strangeness. The lightest system with these 

quantum numbers is the proton with mass M; the next lightest are (~0 , p) 

.and (~+, n), · with a range of masses starting from M + 1 * and 

extending to infinity. More massive systems, containing 3, 4, ••• etc. 
I 

particles, fall in this range, so we conclude that the spectrum p1(s1 ) 

has a "line" at s1 ' = ~ and a."continuum" for (M + 1)2 < s 1 ' < oo • 

The "line" obviously leads to a pole in (III.l) of the form R
1

(M2 - s1)-l, 
i 

and once this is removed the lower limit on the ds1 integration is 

equal to (M + 1)2 • 

For Channel II there is no pole because we know of no single 

particle that has the same quantum numbers as two pions, i.e., zero 

baryon number, zero strangeness, and parity (-l)J. The continuum starts 
i 

here with the two~pion system at s
2 

= 4. Channel III is similar to 

Channel I; in fact when the notion of charge independence is introduced 

we shall be able to relate these two channels by crossing symmetry. 

The one-dimensional integrals in (III.l) correspond to Feynman 

diagrams in which at some point a single-particle line joins the initial 

and final configurations. 
I 

That is, the integral containing p
1 

represents 

* 
We shall use the pion mass as a unit, neglecting the difference 

between the masses of charged and neutral pions. We also take 

11 = c = 1. 

' 

,,_., 
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Fig. 3· Diagram for the three channels: 

I. 0 + 
1( + 1? -+ 1( + n ' 

II. 0 
1( + 1( -+ n + 1? ' 

III. 
0 

1( .+ 1? -+ 1( + n 
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all diagrams of the type of Fig. 4, 

which, if spins are ignored, sum up to 

p 
F + (s1) 
~ n ' 

UCRL-9289 

Fig. 4. 

where the F's are vertex functions on the mass shell for the two 

(III.2) 

particles indicated in the subscripts but considered as a function of 

the square of the mass of the intermediate proton, and sP is the 

renormalized proton propagator. It is well known that sP(s1) has a pole 

of unit residue at s = 1 
if, while the vertex functions are analytic in 

the neighborhood of this point. Thus the residue of the corresponding 

pole in our invariant scattering amplitude is 

= ' 
(III.3) 

since the renormalized coupling constants g are defined as the value of 

f 
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the appropriate pion-nucleon vertex function with all three particles on 

the mass shell. It is evident that these considerations apply to any pole 

that may occur, always leading to the residue as a product of two vertex 

functions each on the mass shell • 

. It is possible to deduce the above recipe for relating poles in 

scattering amplitudes to coupling constants without reference to Feynman 

diagrams, but the machinery is cumbersome. Particularly when spin is 

present it is a great convenience to know that the Feynman rules, applied 

to diagrams of lowest order, lead to the correct connection between residues 

and conventional coupling constants. This fact of course explains why 

perturbation theory, blindly applied, occasionally gives sensible answers 

even in strong-interaction problems. Poles dominate the behavior of the 

scattering amplitude in their immediate neighborhood, so if one happens 

to be discussing experiments close to a pole, the lowest-order perturbation 

formula may be reliable. 

In addition to motivating the pole, Formula (III.2) also shows 

' the origin of the continuum part of p1(s1 ) in the well-known branch 

cuts extending from (M + 1)2 to infinity in the vertex and propagator 

functions. The double integrals in (IILl) arise, however, from Feynman 

diagrams ~n which two or more particles are always present in intermediate 

configurations for all three channels. The fourth-order box diagram of 

Fig. 5 is a simple example. Mandelstam has analyzed the fourth-order 

diagrams
1 

to show that they satisfy the double-integral representation, 

and many higher-order diagrams have by now been similarly analyzed by others.9 

It turns out that for certain mass ratios one encounters so-called 

"anomalous thresholds," that is, lower limits on the double integrals not 

determined simply by the masses of possible intermediate states. However, 



UCRL-9289 

-24-

{,• 

Fig. 5. A f'ourth-order "box" diagram. 
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all the problems we shall discuss in these lectures have normal thresholds, 

and the anomalous cases in any event do not seem to present an essential 

difficulty. Techniques for handling them are already being developed.10 

It turns out that constraints exist on the possible masses that can 

occur in intermediate configurations for one channel, given the mass of the 

intermediate configuration for another channel. In other words, the region 
V I 

in which a double spectral function, say p12(s1 , s2 ), fails to vanish 

is not rectangular but bounded by curves asymptotic to the square of the 

lowest mass of a multiparticle system with the appropriate quantum numbers. 

For our pion-nucleon example of Fig. 3, these asymptotes have been shown 

above to be 
I 2 

s1 = (M + 1) and The detailed forms of the 

boundary curves have been calculated by Mandelstam both on the basis of 

Feynman diagrams and by consistency considerations involving unitarity.1 

In general these curves can be correctly obtained from an analysis of the 

lowest order diagrams contributing to the double spectral functions. 

For a variety of reasons it is useful to exhibit the connection 

between the Mandelstam representation (III.l) and one-dimensional dispersion 

relations. First observe that in the physical region for Channel I, say, 

the only denominators that vanish in Formula (III.l) are those containing 
I 

the factor sl - slq Remembering 

1 1 I 

I = p 
I + i 1( 8(s1 - s ) ' 

(III.4) 1 
sl - s sl - s 1 1 

we can then easily calculate the imaginary part of A in this region to be 
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1 I 
+ - J ds · 

:J{ 3 

I 

P12( sl, s2 ) 
I 

s2 s2 

(III.5) 

Outside this region we shall define A1(s1, s 2, s
3

) by Formula (III.5), 

and always refer to it as the absorptive part for Channel I even though 

it will itself become complex when one of the remaining denominators in 

(III.5) vanishes. Note that for fixed sl, Al is an analytic function 

of s2 (or s3) with s3 (or s2) determined by (II. 7). 

In a similar way we can define A2 and A3 to be the absorptive 

parts for Channels II and III, respectively. It is then simply a matter 
. . 

of algebra to verify that (III.l) can be written in three possible ways 

(III .6a) 

(Equation continued) 

i'-

.• 

' 
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2 ' ' A (E m - s - s s s ) 3 2 3 ' 2' 3 

53 s3 

(III.6b) 

( III.6c) 

The first form is usually called the one-dimensional dispersion relation 

for fixed the second for fixed s
2

, and the third for fixed 

In our pion-nucleon example the form that has received most attention is 

that for s2 fixed at a negative value in its momentum-transfer range, 

where the two absorptive parts that occur both correspond to pion-nucleon 

scattering in a more or less physical region. In what follows, however, 

' 

• 

we shall often find it necessary to put the fixed variable into its positive 

(energy) range; the absorptive parts then are nonphysical and have a meaning 

only through (III.5). 
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IV. GENERALIZATION TO INCLUDE CHARGE AND SPIN 

The possibility of degrees of freedom of charge and spin has so 

far been ignored. However, internal degrees of freedom may always be 

absorbed into invariant matrices, whose coefficients are invariant functions 

of the s variables only. The number of such functions depends on the 

complexity of the internal degrees of freedom, and generally the vector 

addition rule can be used in counting. For example, the pion has zero 

spin and isotopic spin 1, while the nucleon has spin Li2 and isotopic 

spin 1/2. The different possible total I-spin values for a 2rr system 

are 0, 1, and 2, so that we expect three independent invariant rt'-rt' 

amplitudes. The possible total I-spin values for a rr-N system are 1/2 

and 3/2, but in addition the nucleon spin can combine in two ways with any 

given orbital. angular momentum t to form J = £ + 1/2 or J = £ - 1/2. 

Thus there are four independent invariant rr-N amplitudes. The N-N 

system is even more complicated; if one counts carefully here, the result 

is ten. 

A proper choice of invariant spin matrices leads to invariant 

amplitudes with exactly the same singularity structure as expressed by 

Eq_. (III.l) for the zero-spin case. The choice of charge matrices is 

obviously irrelevant to analyticity properties, although certain choices 

may be more convenient than others for calculation. To obtain correct 

spin matrices, the current procedure is to guess the answer and then check. 

This has worked so far in all cases involving particles of spin zero and 

spin 1/2, as well as photons. The procedure has been described in some 
• 

detail for the nontrivial N-N case by Goldberger, Grisaru, McDowell, and 

11 Wong. We shall not delve into the spin problem here but simply state 

6 
for illustration the well-known charge-spin result for the rr-N system. 

!\ 
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For a diagram of the type of Fig. 3, rather than specifying the 

charge let us label the pion lines each by the conventional isotopic 

vector index that takes on the values 1, 2, 3· With the pion of momentum 

p1 associate the index a , and with p
3 

the index ~e Nucleon-charge 

degrees of freedom may be suppressed into initial and final isospinors, 

and the problem is then to form two charge-independent combinations of 

nucleon isotopic-spin operators, 

= Bf3a and. 

~k • A possible choice is 

1 
2[~~, ~a] , the one symmetric and the 

other antisymmetric under pion exchange. Nucleon spin may be similarly 

suppressed into initial and final (4-component) spinors, and a choice 

made of two independent Lorentz invariants constructed from the Dirac 

matrices and the four-momenta. Here the correct choice is 

essentially uni~ue and turns out to be 1 and l i r•(p - p
3
). A linear 2 1 

combination of these matrices with constant coefficients is of course 

satisfactory, but s polynomials must be avoided in the coefficients or, 

as explained below, extra poles may be produced in the invariant amplitudes. 

The complete amplitude for a, ~-N diagram of the type of Fig. 3 

may be written 

;; -p4 { 8tla[ -A 0 ( "l' s2' s3) 

(IV .i) 

and the connection with amplitudes for well-defined total I spin is easily 

obtainedo For example, for Channel III, 
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:lf(pl, a) + N(p2) -+ :Jf(~p3' 13) + N( -p4) ' 

we find for the two values I = 1/2, 3/2 

AIII 
112 Ao 2 A

1 
BIII 

1/2 Bo + 2 B1 
= + = ' 

AIII 
3/2 Ao Al 

BIII 
3/2 Bo Bl • = - = 

' 

On the other hand, for Channel II, 

we find that except for normalization the amplitudes for the two total 

isotopic spin values o, 1 are just the quantities already labeled 

12 with these superscripts. Our particular choice of matrices above is 

motivated by crossing symmetry. Under interchange of the two pions, 

a ~ f3 and p
1 
~ p

3
, so that A0 and B1 are symmetric under 

interchange of s1 and s
3 

while A1 and B0 are antisymmetric. 

It can be verified that the four invariant functions A0' 1, 

satisfy the Mandelstam representation--that is, have only "dynamical" 

singularities arising from intermediate states in the various channels--

if one accepts the corresponding conjecture for zero spin. However, 

had we used an essentially different choice of matrices, e;g., 1 and 

7•P1 7·P2 , we should have found additional (kinematical) poles in the 

corresponding invariant functions to compensate for zeros in the spin 

matrices. Care must therefore be used in setting up problems with spin, 

but once a correct choice of amplitudes has been made the use of unitarity 

and analyticity to determine the S matrix follows the same l~ne as for 
\ 

zero spin. \ 

f! 
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V. PHYSICAL INTERPRETATION OF SINGULARITIES 

We are now in a position to see in detail the connection between 

forces and singularities that was emphasized in the introduction. The 

singularities in the Mandelstam representation occur only when one or more 

of the denominators in (III.l) vanish, and this in turn happens only when 

an s variable is equal to the square of the mass of a strongly interacting 

physical system having the quantum numbers of the associated Channel. If 

we are focusing attention on one particular channel, e.g., Channel III of 

Fig. 2 (n + p ~ n + p), then we shall refer to the singularities 

"belonging" to this charmel--that is, due to the vanishing of s
3 

- s
3 

denominators--as "physical" singularities. Most of these occur in the 

actual physical region of s
3 

for Channel III, although there may be some 

extending for a distance below the true physical thresholdo These 

"physical11 singularities may be thought of as consequences of unitarity for 

Channel III, in contrast to the "unphysical" singularities associated with 

Channels I·and II which may be thought of as the "forces" giving rise 

to the Channel III reaction. 

To bring out these ideas in a familiar situation, let us study 

Formula (III.6c) as applied to the amplitude for Fig. 2, where we use 

(II.8) to replace . s1, s2, s
3 

by 2 
q and cos e, the barycentric-system 

variables for n-p scattering. Still ignoring nucleon spin and not worrying 

about a possible n-p bound state, we have 

p3(q'2) ' 4~- ' s;) 2 1 a:> '2 +.!.J ' Al ( sl ' sl - sy 
A(q , cos e) = - J dq ds1 1( 0 r2 2 1( I 

+ 2q2(1 9) q - q sl + cos 

A2(4M2 ' 
lJ ' - s2 - s3' s2 ' s3) 

+ ds2 t 2 1( 

s2 + 2q (1 - cos 9) 

~ 
(V.l) 
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One of the important.features·of this expression.is that the cos e 

dependence of the n-p amplitude comes entirely from the.denoniinators 

of the last two terms. Let us compare the form· (V .1) to the Born 

approximation for scattering by a Yukawa potential of range r 0 • This 

is well known to have the form 

constant (V.2) 
cos 9) 

Thus we see that the last term of (V.l) looks like the Born scattering due 

to a superposition of Yukawa potentials, where the range is 1;f~' .• 

The. second term in (V.l) can similarly be identified with an exchange 

potential, but the first term is of a different type. This contributes 

only to S-wave n-p scattering, and is to be associated with the failure 

of the Born approximation when the S-phase shift is large. If some higher 

phase shifts also are large, further terms are needed in (V.l), corresponding 

to subtractions in the original Mandelstam representation. 

For sufficiently high angular momentum, however, it is reasonable 

to expect the phase shift to be small when 2 q is small, so that the 

interpretation of the second two terms as the Fourier transforms of 

"potentials" is plausible. Now let us consider the strength and range of 

the "potentials," as controlled by the functions A1 and A
2

• The 

longest-range forces will come from the lowest values of s1 and 

and these in turn are determined by the lowest masses of physical systems 

with the quantum numbers of Channel I and Channel II, respectively. 

Consider Channel I, (n ~ p ~ n + p), which gives us our exchange forces, 

and refer to Formula (III.5) to see the structure of A1 • The term p1(s1) 
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contains a delta function corresponding to a discrete ~ state, and the 

coefficient of the delta function is 2 
g • 

c 
Thus the longest-range exchange 

force has a range of one pion Compton wave length and a strength determined 

by the pion-nucleon coupling constant. 

The next longest range force comes from the two-pion parts of the 

and p13 spectra. To calculate this we recall the form of the 

unitarity condition for a matrix 1 
T = 2i (S - 1): 

Our invariant amplitude A is proportional to T and has the same phase, 

so in the physical region for Channel I we can derive an expression of the 

form 

A
1 

( s
1

, s2, s
3

) = constant X Im ( n( -p
3
), p( -p2) IT I n(p

1
), p(p

4
) ) 

(V .4) 

= constant X Z (mjTI n(-p
3
), p(-p2))*(m1Tin(p

1
), p(p4)) 

m 

It is possible to extend this formula to unphysical regions, and since all 

the elements of T conserve energy and momentum, we see that it is the 

unitarity condition which makes A
1 

vanish except for values of 

2 s1 = (p
1 

+ p4) equal to the squares of masses of systems that can be 

reached both from the initial and the final states of Channel I. For the 

range 4 < s
1 

< 9, only ~ states contribute to the sum in (V.4), so 

if we have some means of calculating the matrix element connecting 

nucleon-antinucleon states to two-pion states, we can calculate the 

"strength" of the exchange force for ranges' between one-half and one-third 
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of a pion 'Compton wave length. Since this niatrix element corresponds to 

a four-line diagram (it is in fact Channel II of Fig. 3), there is hope 

that the calculation can be performed. 

Formula (V.4) tells us how to calculate shorter-range forces due 

to multiparticle exchange if the matrix elements connecting these states 

to the n-p system are known. We do not yet have a method for obtaining 

multiparticle matrix elements, but we observe that they are bounded in 

magnitude because of unitarity and therefore there is ~ limit to the 

possible strength of the forces that they generate. 

Formula (V.l) is actually suitable as it stands for calculating 

the high-angular-momentum parts of the n-p scattering amplitude, which 

are determined by the lower range of and The modifications to 

take account of spin and charge have been worked out by several authors 

and expressions given for the one and two-pion parts of A
1 

and A
2

• ll,l3 

The very high £-phase shifts are of course controlled by the one-pion parts 

alone, and thus by the pion mass and the pion-nucleon coupling constant, 

quantities already known with good accuracy. This circumstance has been 

exploited. in re~ent phase-shift analyses of nuc.leon-nucleon scattering. 

It should be .obvious that the considerations of this section are 

generalo The forces producing a certain reaction are due. to the intermediate 

states that occur in the two ncrossed11 reactions belonging to the same 

diagram. The rang~ of a given part of the force is determined by the mass 

of the intermediate state producing it, and the strength of the force by 

the matrix elements connecting that state to the initial and final states 

of the crossed reaction. By considering all three channels on this basis 

we have a sel:f-determining situation. One channel provides forces for,the 

,.., 
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other two--which in turn generate the first. Our task now is to 

understand how many arbitrary parameters there are in such a situation, 

as well as how to handle low angular momentum--or, in other words, how to 

calculate the first~rm on the right-hand side of Eq. (V.l). These two 

questions are closely related. 
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VI. PARTIAL-WAVE AMPLI'IUDES 

·There is no need to treat high-angular-momentum scattering one 

partial wave at a time, and in fact good reason to avoid doing so. Not 

only is simplicity lost, but the partial-wave expansion converges only in 

the neighborhood of the physical region and not throughout the complex 

plane. However, there seems no way to avoid a special discussion of 

certain low-angular-momentum partial·waves. It is here that arbitrary 

parameters may enter, corresponding to an asymptotic behavior that requires 

subtractions, and it is here that the difficult multiparticle singularities 

are most important. In our S-matrix approach, the lowest partial waves 

generate the higher waves, as we shall see in detail below. In a very 

direct sense, then, the low-£ waves constitute the heart of the problem. 

Let us consider the equal-mass spin-zero case and define a 

partial-wave amplitude for Channel III by the formula 

== 2 

1 +1 
J 
-1 

2 d cos 8 P£(cos e) A(q, cos 9) , (VI.l) 

where q2 and cos e are related to the s variables by (II.8). In a 

certain region--including the physical interval, q2 > 0, -1< cos e < +1--

the full amplitude can be represented by the series 

2 A( q , cos e) == 
(X) 

2:: (2£ + 1) 
£==0 

A niii(q2) ( ) x- P£ cos e , (VI.2) 

but even outside this region we may define 

in fact be interested in extending A£(q2) 

by (IV.l). We shall 

to the entire 2 q complex 

plane, where we shall find three sets of singularities, corresponding to 

the three channels of the problem. 
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.·Formula (V.l) is well suited to carrying out the projection (VI.2). 

The first term of (V.l) contributes only to t = o, and there it survives 

the projection unchanged. The second and third terms lead to integrals of 

the form 

1 +1 

2 J d cos e Pi cos e) 
-1 

1 

' 
(VI.3) 

which are simply related to associated Leg~ndre functions of the second 

kind. Certain important properties of these integrals may be seen by 

inspection: 

(a) 

(b) 

(c) 

For small 2 they behave like ( q2) £. q 

For large S I they behave like ( S I )-£-1• 

They are analytic functions of 2 in the cut plane, q 

where the cut should be chosen to run from -s 1/4 to 

-co if the function is to be real for q2 > o. 

The behavior near 2 
q = 0 is maintained after the integrations 

I I 

over ds
1 

and ds2 and is a well-known and general property of 

partial-wave amplitudes, related to the centrifugal barrier effect. 

The large s' behavior·simply confirms the remarks of the preceding 

section about the range of the interaction and the magnitude of s' , 

i.e., as increases the large values of and become less 

and less important, since they correspond to short-range interactions. 

This is again a centrifugal barrier effect. 

The property we are most concerned with is that of analyticity, 

and to get the full story he~e we have to look also at the 2 
q 

dependence of the functions A
1 

and A
2

, which appear in the numerators 

of the integrands in Formula (V.l). Referring to Formula (III.5) 
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for A1 ( s~, 4Mf - s~ - sy · s
3
), we see. that the s

3 
- s

3 
denominator 

2 leads to a cut running from 0 to oo in q while there seems to be 

a second cut associated with the denominator s~- (4Mf- s
3

- s~). It may 

be verified, however, that this second apparent singularity is canceled by 

a corresponding part of the expression for A2(4Mf - s~ - s
3
, 

After multiplying (VI.3) by A
1 

or A2 and integrating over 

we thus produce an analytic function of 2 q with two cuts, one running 

from 0 to oo along the positive real axis, to be called the "right-hand" 

or "physical" cut, and one running along the negative real axis from -oo 

' to 1 ' 
- -4 s ' min where smin is the lowest square of a mass appearing in 

the sp~ctra associated with Channels I and II. This latter will be called 

the "left-hand" or "unphysical" cut. In addition, if there exists a stable 

single-particle state with the quantum numbers of a particular partial 

wave of Channel III, there is a corresponding pole on the negative 

real-axis. 

* 

2 
q 

In general, if the four particle masses are not all equal, there 

are two distinct unphysical cuts, one for Channel I and one for Channel II, 

and these do not lie entirely on the real axis, but wander into the 

complex plane. The location of the cuts is always completely determined 

by kinematical considerations, however, and there are no new essential 

complications beyond the equal-mass case. We continue, therefore, to 

concentrate on that case. 

Notice that our partial-wave amplitude is a real analytic function. 

That is, if we define -J = 2 q , we have 

* 14 See, for example, McDowell. 
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* A£ III ( -J ) = A£ III ( ~*) (VI.4) 

Thus the discontinuity across a cut along the real axis is twice the 

imaginary part of the function at that point, while the function is real 

on the real axis in the 
1 I 

gap between - 4 smin and the origin. In the 

next section it will be shown that AiJ) is determined by the 

discontinuities across its cuts, so it is important to be able to calculate 

the imaginary part along the real axis. On the right-hand cut we are in 

the physical region and the required imaginary part is given by the 

unitarity condition. Comparing (VI.2) with (II.2) and (II.)) we see, 

for -) > 0 , 

= -y..::-J--~-:--m.....,2 sin 5£ ' 
(VI.5) 

so that in the elastic region, where the phase shifts are real, we have 

2 

I A 0 
III( J ) I ) 

XI y , for ">' > 0 • 

(VI.6) 

In general a factor R£ should be added to the right-hand side of (VI.6), 

where R£ is the ratio of total to elastic partial~wave cross sections. 

On the left-hand cut we may most easily .calculate the imaginary part from 

Formula (V.l) before integrating over cos 9. Remembering that A1 and 

A2 may be considered real in this region if we anticipate the above-mentioned 

* cancellation between the two, we find 

* We define the partial-wave amplitude along both cuts as the limit as 

the cut is approached from above. 
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Im At III = 
1 +1 

- 2 f d cos 9 Pp_(cos 9) 
-1 

X { A1(-2,J(1 + cos e), -2~(1 - cos e), 

+ A2~2Y(l +cos 9), -2~(1- cos 9), 

4( .J + m2
)) 

4(~ + m
2l)} J 

for ~ < 0 •. 
(VI. 7) 

Note that the possible presence of the first term in (V.l) for the case 

.t = 0 does not affect either Formula (VI.6) or (VI.7). 

If we think of A
1 

(or A
2

) as made up of a sum of contributions 

from different kinds of intermediate states in Channel I (or II), as 

expressed by Formula (V.4), then, according to (VI.7), Im A III is 
,t 

similarly composed of additive parts and these are nonzero along different 

portions of the negative real axis. It is evident, in fact, that a 

Channel I intermediate state of mass m
1 

gives a nonzero contribution to 

Im AI-III, according to (VI.7), in the interval between -CD and 1 2 
- 4 ml • 

Thus the least massive intermediate states control I~ AI-III on the 

"near-by" portion of the left-hand cut. As we go farther to the left, 

more and more massive intermediate states come into the picture. Taking 

the nucleon-nucleon problem again as an example, we find the left-hand cut 

begins at - ~· , and up to -1 is completely determined by one-pion 

exchange. Between -1 and -9/4, the two-pion contribution must be 

added, between -9/4 and -4 the three-pion contribution, and so on. 

Each new threshold can be shown to be a branch point, with the associated 

cut running to the left. 
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The right-hand cut .of the N-N amplitude of course begins at 

~ = o, where there is a branch point, and the next branch point does not 

occur until Y = ~ (2M + 1) 2 - M
2 ~ 7, the threshold for· s'ingle-pion 

production in nucleon-nucleon collisions. In the interval 0 <J < 7, the 

simple Formula (VI.6) is exact; for J > 7 the factor. R.e should be 

added, In the J = l even-parity amplitude there is a pole corresponding 

to the deuteron and falling in the gap betwee:n cuts .at ..J = ~ ~2 - l-12 -~- - 1~ • 

We shall see.that this pole need not be postulated in advance, but is a 

necessary consequence of the left and right cuts • 
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VII. DETERMINATION OF A PARTIAL-WAVE AMPLITUDE 

FROM ITS UNPHYSICAL SINGUlARITIES 

We now come to the fundamental dynamical problem, the determination 

of a partial-wave.amplitude--given the discontinuity across its unphysical 

("left-hand") cuts. This discontinuity plays the role of the interaction 

potential energy in a nonrelativistic scattering problem, and what we require 

now is the equivalent of the Schrodinger equation to allow us to calculate 

the phase shift from a knowledge of the interaction. The basic technique 

was discovered by Chew and Low, 3 working with the static model of the 

pion-nucleon interaction, and was subsequently modified by Chew and 

Mandelstam15 for use in a more general class of problems. 

Let us, momentarily at least, regard the imaginary part of A£III 

along the left-hand cut as a given quantity, to be called f£(J). Along 

III the right-hand cut the imaginary part of A£ is proportional to 

III 2 
I A£ I , according to (VI.6), so that the imaginary part of the 

reciprocal amplitude is a given function, at least in the elastic region 

where R£ = 1: 

. 
Im(A/II) -1 = = (VII.l) 

Y>O 

That the imaginary part of the direct function is known along the left-hand 

cut, while the imaginary part of the reciprocal is known along the right-hand 

cut, suggests that we write 

(vii.2) 

• 
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where the numerator function N£()) has only the left-hand cut and the 

denominator function D£(~) has only the right-hand cut. Such a separation 

* . is certainly possible if inelastic scattering is neglected, because the 

explicit form of D(y) in terms of the phase shift has been given by Omnes16 

as 

= 

( 

.Y--/, 00 

exp - rr 
0 ·~ di' 

'Q iy I) 

(~ f - ;) ) ( -)• 
0 

(VII.3) 

where we normalize to unity at the arbitrary point on the real axis ~ = ~· 

The Omnes function clearly has only the right-hand cut, and in addition it 
-i'O £ 

has the phase e along this cut o The numerator function, defined by 

(VII.2), is therefore real along the positive real axis, since A£III here 
i'O £ 

has the phase e ; therefore the right-hand cut is absent for N£. 

Formula (VIIe3) is useful for many purposes but does not solve our 

problem. We go back instead to the defining properties of N£ and D£ , 

which allow us to write 

(VII.4) 

= 0 

if ~L is the end of the left-hand cuto At the same time, according to 

(VII.l), we have 

Im Dt = - Nt v Y:m2 ' R.e for ...) > 0 ' 

(VII.5) 

= 0 for .; < 0 • 

* The argument here is due to Mandelstam (unpublished). 
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Let us ~ssume tentatively that N£ vanishes at infinity so that, using 

the Cauchy integral theorem1 we get 

1 
YL Im N£(.J•) 

N £(,}) . = - J d~' ...)'_J ' :n: -oo 
(VII.6) 

1 
~L f£(.)•) Dt<J•) 

= - J a-)• ) • :n: -/ --co 

We are allowed to normalize D£ arbitrarily to unity at ~ = ~0 , so 

that it is necessary only that D~~ vanish at infinity for us to write 

1 -

-J_-) 
0 ~ Ni:J•) 

\1-Jt + m2 (.y• - y'oJ(-Y• - ;J) 

(VII. 7) 

We now have two coupled linear integral equations for N£ and D£ that 

can be converted into a single equation for one unknown function. For 

example, if we substitute (VII.6) into (VII.7) we find 

(VII.8) 

where 

(VII.9) 

Assuming that R£ is known and that Ri~")/~" vanishes as -/'-+ oo, and 

provided that f .e<-J•) vanishes as ""')' -+ oo (which is implied·· by our·. 

original assumption that N£ vanishes at co), the linear integral 
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equation (VII.8) is of the nonsingular Fredholm type and can be solved by 

any number of standard methods. This is the "Schrodinger equation" for 

the s-matrix theory. 

Now let us consider the possibility of zeros in the denominator 

function, which correspond to poles in Atiii. If these occur off the 

real axis they are not consistent with the original Mandelstam representation. 

However, a pole on the real axis for -m2 < J < 0 may be interpreted as a 

* bound state. This is the-sense in which we said earlier that the deuteron 

pole is a consequence of other singularities. If ft is given correctly, 

both the position and the residue of a bound-state pole follow from the 

solution of Eq. (VII.8). 

To illustrate these considerations let us consider a very crude 

approximation for 8-wave scattering in which we take ft(~ to be a 

delta function. In other words, we approximate the left-hand cut (a line 

charge) by a pole (a point charge). This approximation is reasonable for 

a region along the positive real axis whose extent is short compared with 

the "average11 distance to the important left-hand singularities. Figure 6 

shows some of the distances for the case of n-p scattering. We see that 

if the lrr exchange force is not too strong, the replacement of the left­

hand cut by a pole may be reasonable for kinetic energies (lab) of 0 to 

10 Mev. 

* Of course, in a calculation with approximate input functions, ft and 

Rt' one may find zeros in Dt outside the range where they can correspond 

to bourid states. Such a situation should not be interpreted as a 

contradiction of Mandelstam's hypothesis, but only as an indication 

that the particular approximations used are inadequate. 
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10 Mev (lab) kinetic 
~ ener 

1 2 

Inelastic 
branch point 
at ) == 7 4 

Fig. 6. "Near-bi' singularities of a partial-wave 

n-p amplitude. 

Suppose we locate the interaction pole at ~ == _y( and 
~ 

n:ormalize n0 to unity at this point (i.e., choose .,)
0 

== -l{_). Then 

if we introduce a parameter r , to characterize the strength of the 

interaction, by writing 

f 0(Y) ;::: -rc r o(y} + y'i) 

we have, from (VIL6), 

No(-J) 
r 

;::: 
y ' )/.. + 

~ 

and from (VII.7), 

1 -
r co 
- (J + ! ) J d-0 
1( ~ 0 

' 
(VII.lO) 

(VII.ll) 

c-1· + vi)2C!• ~ ' 
(VII.l2) 
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so in this simple case we do not even have to solve an integral equation. 

If both -J 

we may set 

and ). are small compared with the inelastic threshold, 
l 

'R (.J1 ) = 1. The integral in (VII .12) can then easily be 
0 

performed and the nonrelativistic result (i.e., for ~ and ,; · both 
l 

2 small compare·d with m --an excellent approximation for n-p scattering 

where m2 = 44) is 

= 1 -
r ~ + ~i 

m 2\fJ:(-{J: + V)2 
(VII.l3) 

In the physical region, ) > 0, we then find 

= ~ cot 80 = 

(VII.l4) 

Comparing this with the standard nonrelativistic effective range formula, 17 

we see 

1 m "{ 1 -vr (VII.l5a) = r - ' a 2 

1 m 1 1 1 (VII.l5b) -r = r + 
2--{[ 

= 

~ 
+ 
~ 

2. 
l 

Let us study the dependence of our result on the input parameters 

r and Y .• First, if ~. is held fixed and r is small, we see that 
l l 

the scattering length a is proportional to r and has the same sign, 

exactly what we expect if r determines the magnitude and sign of the 
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interaction. Evidently positive r means an attractive force. If r is 

negative (repulsive), increasing its magnitude does not make a indefinitely 

large; the scattering length never exceeds 2/ff. '/ ~ in absolute value. 

This is exactly the behavior of a repulsive potential of range - 2;l~ • 
~ 

If r is positive (attractive), increasing its magnitude makes 

the scattering length increase and in fact become infinite for 

r = 2n -v:J: 
~ 

(VII.l6) 

This is the condition for a bound state to appear; for larger values of r 

one may easily calculate from (VII.l3) that n0(v) has a zero at 

_,) = = 
(r_.2ml(7)2 
lr+ 2m4 (VII.l7) 

Thus we can calculate the binding energy--if there is a bound state--from 

a knowledge of f 0 • 

Problem 1: 

(a) Show that, for our single-interaction pole example, when 

there is a bound state one may write 

" -y;; cot 80 = ... a + (-;) + a2) (~ + l) 
rB 2a ) 

where rB is the residue of the bound~state pole and -0:2 its position. 

(b) ·By comparison with the nonrelativistic formula for the effective 

range in terms of an integral over the square of the bound-state configuration­

space wave function, 18 identify the residue rB with the square of the 

asymptotic normalization coefficient for the bound-state function. 
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Finally we remark that if we are near the condition for a bound 

state, so that the scattering length is large, then according to (VII.l5) 

the effective range is approximately 2~~ • This is a second confirmation 

that the inverse distance to an unphysical singularity corresponds to the 

interaction range. 

In the actual case of n-p scattering the effective-range formula 

is extremely accurate in the interval 0 to 10 Mev, and the empirically 

observed values of the scattering length and effective range for both 

singlet and triplet states have been shown by Noyes and Wong19 to imply a 

value of yi in the above formula approximately equal to unity. In other 

words the "averageu position of the left-hand discontinuity in the n-p 

amplitude occurs near the beginning of the 2rr contribution. This is an 

understandable circumstance if both lrr and 2rr forces are important. 

A two-pole approximation to the left-hand cut is of course better 

than a one pole approximation. The problem can again be solved exactly, 

as it can be for any finite number of poles, and one finds a result 

corresponding to the superposition of potentials of different ranges. In 

short, the discontinuity along the unphysical cuts seems to play a role 

closely analogous to the potential function in nonrelativistic scattering 

theory; any intuition developed from experience with the latter is likely 

to be useful in the S-matrix approach. Take, for example, the question 

of £ = 0 resonances at energies well above the physical threshold. In 

a potential model it .is clear that such reson~nces cannot occur unless 

there is a strong inner attraction surrounded by a strong outer repulsion, 

so that the wave can be "trapped." We would find, correspondingly, by 

studying the properties of Eq. (VII.8), that a single sign for f 0 cannot 

produce a resonance, i.eo, a zero in the real part of n0 (~) for J> 0; 
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rather, f 0 must change sign along the left-hand cut, being negative 

·(attractive) in the far region and positive (repulsive) in the near region. 

In contrast we expect that resonances can occur quite naturally in states 

with angular momentum whenever there is a sufficiently strong attraction, 

because the centrifugal barrier does the "trapping." Let us look now for 

the centrifugal-barrier mechanism in the 8-inatrix approach; this question 

is of importance for many reasons, not just in connection with resonances. 

·.The barrier mechanism arises from the property, derived from 

behaves like Jp, near -) = 0~ We may assign 

a corresponding behavior to our numerator function Np, and make an 

appropriate number of subtractions in Formula (VIIo6): 

= 
f p, ( tJ• ) D p,< )1 I ) 

-J't.<v' .. .)) -
(VII.l8) 

\t-1 It now appears that Np, behaves at infinity like Y , but we cannot 

have changed the asymptotic behavior by making subtractions, so for P, > 0 

the function fp, must oscillate in a special way that guarantees 

consistency. (This property is of course precisely that required to 

~e the original integral (VIIo6) vanish at the origin like Jp,.) The 

subtracted form, (vii.l8), shows that large negative values of )• become 

less and less important as P, increases; this is the centrifugal barrier 

suppressing the influence of short-range interactions. Obviously the 

S wave is most sensitive to the far discontinuity on the left-hand cut, 

the P wave next most sensitive--and so on. The P, value which first 

becomes sensitive to multiparticle singularities varies from one problem 

to another and depends on the precise asymptotic behavior of the partial-
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wave amplitudes. This asymptotic behavior·also controls the number of truly 

independent parameters allowed in each problem. 
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VIII. ASYJvlPTOTIC BEHAVIOR OF PARTIAL-WAVE AMP.LITUDE_S 

AND FUNDAMENTAL I:NTEEACTION .CONSTAWI'S 1.. • 

We have assumed above that N£(~) vanishes at infinity and that 

D£(~) behaves like a constant. This is an oversimplification, since it 

corresponds to the vanishing of the partial-wave amplitude itself at 

infinity, whic~ is not necessarily the case. A glance at Formula (VI.5) 

for the spin-zero partial-wave amplitude, for example, shows that according 

to the unitarity condition A£III(~) may approach a constant that is less 

than or equal to unity in absolute value. If it does approach a constant 

then a subtraction must be made in the Cauchy formula, (VII.6), for the 

numerator function. The necessary subtraction can be made at v = 0 , 

as in (VII.l8), for all £ greater than zero, without introducing a new 

parameter; however, one arbitrary constant seems allowable in the S-wave 

amplitude even if the entire left-hand discontinuity f 0 is calculable. 

It is natural to make the S-wave subtraction at the point .Y
0 

, where 

the denominator function is normalized to unity, and to put ~0 in the 

singularity-free gap between ~ and 0 , so that the subtraction constant 

is real. We then have 

= + 
-J-V. 0 

rc 
fo(V' ).·Do()') 

(.,}' .. ~)(J' - ,}) 
(VIII.l) 

The substitution law implies a relation, between the three different 

channels for a given diagram, that permits a single real parameter to 

determine; 1he ·subtraction constants for all three. Also various symmetry 

principles can be invoked to relate the arbitrary constant for on~ diagram 

to that for another. We shall srebelow how all this works for rc-rc 

scattering. 
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Formula (VI.5), on which the above analysis rests, holds only when 

all four particles in the diagram have zero spin. :several other cases have 

been studied and it is found that the unitarity limitation on asymptotic 

behavior of partial-wave amplitudes depends on spin. For example, Frazer 

and Fulco~0 have shown that for :rr..,N . scattering an analytic .function of 

W = y-;;;, which in the ph;ysical region is related to the phase shift by 

the formula 

18 
; .J,,J i S>. e ... , ~ :p. v n J 

~-- u -~-~-.1.. ¥1' , .(VIII.2) 
1 q 

plays a role analogous to that of in our. zero-spin example. 

Such a function, however, is required by unitarity to vanish at infinity 

and permits no arbitrary constants in its determination. The correspon~ing 

analysis for N-N scattering has been carried out by Goldberger, Grisaru, 

McDowell, and Wong, 11 and again allmtTS no arbitrary constants. Diagrams 

containing one or two photons also have been analyzed with the same result. 

What is the underlying principle here? When are arbitrary constants 

allowed and when are they not? We do not yet have a clear and complete 

answer, but Mandelstam1 has emphasized a striking parallelism with the 

theory of quadrilinear renormalizable interactions. 

In conventional perturbation field theory it is not possible to 

introduce interactions formed by quadrilinear products of arbitrary fields, 

even when all symmetry principles are obeyed. Most of these combinations, 

such as the Fermi beta-decay interaction product of four spinor fields, 

are nonrenormalizable and give divergent results in higher orders of 

perturbation theory. .The one interaction that is renormalizable, however, 

is the product of four scalar (or pseudoscalar) fields. In all cases 
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studied so far the.impossibility of an. arbitrary constant in-the S-matrix 

approach coincides. with tpe nonrenormalizability of the corresponding 

quadrilinear interaction. 

There exist, of course, a number of renor.malizable trilinear 

interactions, .. so that it is natural to ask where the corresponding , constants 

appear in the S-matrix theory. We have anticipated the answer in Section III 

above: The residues of our poles are products of coupling.constants 

associated with trilinear interactions. If particles, other than photons, 

w~th spin greater than ~2 are involved, the interaction is probably not 

renormalizable in perturbation theory; but where such a particle appears 

we have so far been able to regard it as a bound state, so that the residue 

of the pole is determined by other singularities. Such i·s the case with the 

deuteron pole in the diagram of Fig. 2. 

When we consider strange-particle processes, such as (K--p) 

scattering, there are poles corresponding to the A and Z particles, 

and a question arises whether the A and L: are "elementary" or bound 

states. The trilinear interaction here is renor.malizable, so from that 

point of view they may be elementaryo The S-matrix approach outlined 

above allows another test, hovrever, at least in principle. If we solve 

our w/D problem, ignoring the existence of the hyperons, and find that 

the denominator functions deveiop zeros at the correct point, we should 

have demonstrated that they are bound states. If on the other 'hand the 

poles must be inserted at the beginning of the calculation, then we should 

regard these particles as elementary. Of course, iJ:.l practice we don't 

know enough yet about the unphysical singularities of the amplitude to 

perform such a calculation. However, the (K--p). amplitude in the· 

physical region has a characteristically different. behavior in the two 
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cases, so it may be possible to decide the question by a sufficiently 

complete experimental study of K--p scattering. 

This line of discussion brings us to one of the .most t~icky-

aspects of the S-matrix approach. How do we know that all "elementary" 

particles are stable with respect to strong interactions? Unstable 

particles apparently have no place in our scheme, yet in conyentional 

field theory there is no difficulty in introducing a field corresponding 

to a particle that becomes unstable after strong interactions .are "turned 

on." Actually, in the procedure outlined in the preceding section for 

calculating the denominator function there is a loophole that was first 

21 emphasized by Castilleja, Dalitz, and Dyson. This loophole seems the 

natural place to introduce either stable or unstable "elementary" particles 

having the quantum numbe:tS of Channel III; it is the following: We can 

always add poles on the real axis to our expression (VII.7) for D£(v). 

Each such CDD pole produces a zero in D £(.)), close to the pole if the 

residue of the latter is small; and if the position of the CDD pole occurs 

on the negative real axis where D £ is real, :.the associated zero is also 

likely to be on the.negative real axiso In such a case we would have a 

pole in the partial-wave amplitude A /II(-J) that. could be interpreted 

as a stable particle. Two new parameters would have been introduced 

through the position and residue of the CDD pole in the-denominator function, 

h . h th d t . th 't' d 'd f th 1 · A III w J.C en e ermJ.ne _ e posJ. J.On an resJ. ue o e po e J.n £ 

itself. The latter two quantities correspond to the mass and coupling 

constant of the new particles, so we again have complete agreement with 

perturbation theory in the number of arbitrary parameters. 

Actuallyj for stable-particle poles such as the nucleon pole in 

Channel III of Fig • .3, it is inconvenient in practice to go tr.l!'ough the 
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above procedure because one would like to introduce the nucleon mass· and 

the pion-nucleon coupling constant at the beginning of the. calculati·on. 

It is more convenient and completely equivalent to· put such a pole into 

the numerator function. However, a CDD denominator pole on the positive 

real axis is a horse of a different color because here, owing to ··the 

complexity of D.£, the associated zero usually occurs away from thereal 

axis. If the sign of the re'sidue of the CDD pole. is correctly ·chosen, 

the zero of D ,£ ·· can be made to appear on the so-called "unphysical sheet" 

of the Riemann surface, not the sheet on which we are working; ·'and 

therefore it does not violate our postulated properties of analyticity. 

The corresponding pole on the· unphysical sheet for A£ III represents the 

unstable particle, which ag(:l.in is characterized by two parameters. 

When a CDD. denominator pole is present with not too large a 

residue, the reai part of the denominator vanishes somewhere near the 

pole, so that the phase shift goes through 90 deg and we have a resonance. 

The ·question often comes up whether such a ·resonance, due to an unstable 

elementary particle, can be distinguished from a ''dynamical11 resonance 

due to attractive forces arising in the discontinuity across the left-hand 

cut. In general the answer is certainly affirmative; because the phase 

shift must change sign at the position of the CDD pole, which is presumably 

near the resonance. It is possible, of course; for the numerator function 

to have a zero with no CDD pole present, but tb,ere is no reason for this 

to occur in close association with a resonance. More·generally, it is 

obvious that the behavior of a phase shift is more complicated-when an 

unstable elementary particle exists, because of the·. two new parameters in 

its functional form. It seems quite clear, for example, that the low-energy 
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I = 3/2, J = 3/2 resonance in the pion-nucleon system is not due to some 

"hidden" particle. The 33 phase shift does not vanish anywhere near the 

resonance, and its energy dependence, as we shall see below:; is entirely 

compatible with the complete absence of CDD poles. 

To summarize our point of view about unstable elementary particles: 

Some may exist although to date there are no indications of any. 'If some 

do exist we can insert them into the S•matrix framework with exactly the 

same number of new parameters as would be involved in conventional field 

theory. 
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IX. PION-PION SCATTERING: GENERAL _FORMUlATION 

Let us turn now to a specific consideration. of n:"'n: sqattering, 

. where we can see in detail how. the principles described above wor~ Ol,lt in 

practice. Mandelstam and I have been intensively studying i;his simplest 

of. strong-interaction p~blems f9r about two years, 15' 22
. but.more work 

still needs to be.done, as will be seen •. 

The· diagram in question is that of Fig •. 7,. where we are ~n using 

·" 

Fig. 7· Dia~ram for pion-pion scattering. 

the isotopic vector index to label pion charge states. Assuming charge 

independence, we write the complete amplitude as 

(IX.l) 

and observe that crossing symmetry leads to the relations 
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A <- :} s <--+ s ' s3 +-+ s3' 
B 1 2 

+-+ 

A - :} c 
s2 ~ s3' sl +-+ sl, -

A - :} B - sl +-+ s3' s2- s2 • 

(IX.2) 

The connection between A, B, C and the amplitudes for well-defined total 

I spin in Channel III turns out to be 

AIII,O 
= 3A + B + c 

' 
AIII,l 

= B c ' (IX.3) 

AIII,2 
= B + c • 

Problem 2: Derive formulas (IX.3). 

There are no poles and the continuous spectrum in the Mandelsta.m 

representation begins at 4 in each of the s variables. The region in 

0 which any double spectral function p(x, y) fails to vanish turns out to 

be bounded by the curves 

A for x>y, X = y 

(IX.4) 

16x for y>x y 
X - 4 
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as shown in Fig. 8. The large distan~e to the boundary from the corner 

y 

16 

4 

I , 
I 

:\ 

: \ 
: \ 
: \ 
+-\ 

4 

I 
"'-1 

"-!.. 
i "-..... ---

-- _j- _._ -

I 

16 
X 

Fig. 8. The region in which the two-dimensional 1!-1! spectral functions 

are nonvanishing. The dashed curve indicates the boundary if there 
were a ~ vertex. 

y = x = 4 is associated with the absence of a three-pion vertex, and a 

study of Fig. 8 reveals ·a circumstance emphasized in the first paper by 

1 Mandelstam: If multiparticle singularities--in this case due to 41! and 
~- . . . 

higher configurations--are consistently to be ignored, then in the 1!-1! 

problem one need not worry at all about the double, spectral functions, but 

can represent the entire amplitude by one-dimensiona1 d:l.spersion integrals. 

Such would not be the case if a three-pion vertex existed, since the 

boundary then would be the dashed curve. (The double spectral· function in 

the near region, however, can always be explicitly calculated in closed 

form in terms of the coupling constant associated with the vertex. 

is an important consideration in the 11 N-N probl~m. ) 

/ 

This 
' 
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In the n-n problem, the double spectral fUnctions do not begin 

. at all until the region where they involve 4n states, and therefore they 

elude our present calculational power. We must not ignore double spectral 

functions at the beginning of our ~onsiderations, however, or we shall find 

ourselves faced with a contradiction if any phase shifts for t > 0 turn 

out to be large. Keeping only the single-dispersion integrals in (III.l) 

obviously corresponds to assuming that only the S wave has a nonzero 

imaginary part in the physical region. This is a consistent assumption if 

all higher phase shifts are small because we have 

Im A~II,I 

Re A~II,I 
= tan o I 

£ 

We shall find, however, some reasons for believing that the P wave n-~ 

phase shift is large at low energies. 

vlhen we introduce the barycentric-system variables, V and cos e 

for Channel III, the crossing conditions (IX.2) become 

A(-J, cos e) = A(.J, - cos e) 

(IX.6) 

B(i, cos e) = c(.J' - cos e) 

and 

A(.J' cos e) == B(.J 
1

, cos 
I 

e ) ; (IX.7) 

where 

/ = ..L ( 1 + cos e) ( J + 1) 
2 

(IX.8) 

and 



I 

cos e = 
i ( 1 + cos 9) + ( ~ + 1) 

~ ( 1 + cos 9) (..) + 1) 

UCRL-9289 

There is a point of maximum symmetry at s1 = s2 = s
3 

or 

cos g = cos 9' = o • 

(IX.9) 

( IX.lO) 

At this point the three functions A, B, C are all real and eq,ual to each 

other. It is therefore natural to introduce the arbitrary parameter, 

which in Section VIII we saw would be needed, by the definition 

A(-2/3, 0) B(-2j3, 0) = C( -2/3, o) 
-

= -f... ( IX.ll) 

Using (IX.3) we find, accordingly (dropping the superscript III henceforth), 

0 
A (-~3, 0) = - 5 f... , 

(IX.l2) 

It is also possible to derive an infinite number of derivative 

crossing conditions at the symmetry point. 0 2 Remembering that A and A 

are even functions of cos 9, while A1 is an odd function, we find the 

first-derivative conditions, 

... 
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f:) = - d oV A 2 = ~ do')) A 0 = f..1 
l y = -2/3 

cos e = o 

(IX.l3) 

where t..1 can in principle be determined as a fUnction of f.. by following 

the procedure of Section VII. We shall see, however, that if the P-phase 

shift is large, implying that 4~ and higher singularities are important, 

we shall not actually be able to calculate x1 • Higher-derivat~ve 

conditions at the symmetry point will not be written down here. A 

Problem 3: Derive formula (IX~l3), as well as formulas (IX.8) and (IX.9) 

on which it is based. 

consistent procedure of calculation based on the ~ singularities alone 

should satisfy all conditions involving higher derivatives, since these 

are insensitive to distant singularities. 

To carry out the dynamical program of Section VII we need the 

discontinuity across the left-hand cut of the partial-wave amplitudes as 

given by Formula (VI.7). Making use of crossing symmetry to refer all 

absorptive parts to Channel III, and changing variables from cos e ·to 

V' as given by (IX.8), we then find 

-y-1 
= _l._ J dv' 

J) 0 
Pn(l +.2 Jr, + l) I: o:II''A

3
I'(v', 1 +2 -~~, 1 ), 

XI ---::;;--- I '=0' l, 2 .·. y 

(IX.l4) 
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where 

2/3 2 10/3· 

= 1 -5/3 (IX.l5) 

2/3 1/3. 

The basic machinery is now complete; to proceed further we must be able to 

evaluate in (IX.l4) the absorptive parts A
3
I(.), cos 9) in the physical 

region for .J but in the cos e unphysical region -ro < cos 9 < -1. We 

can attempt the necessary extension by a polynomial expansion 

I(.l ..J+l) 
A3 11 ', 1 + 2 ))' = 

( IX.l6) 

but the singqlarities of A
3
I as expressed by the equivalent of Fo:rinula 

(III.5) for Channel III, together with Fig. 8, restrict the region of 

convergence of the series (IX.l6), for the range of ~' needed in (IX.l4), 

to V > -9. If we terminate the series (IX.16) after the first few terms, 

we may hope to have an approximate formula that works somewhat further to 

the left on the unphysical cut, but eventually the polynomial method fails. 

One must go back to the equivalent of Formula (III.5) to·find a better 

technique of continuation, and there we encounter the elusive double-

spectral functions which involve four-pion singularities. This is the 

frontier at present; whether we can improve the polynomial method without 

at the same time understanding diagrams with 6 pion-lines is an open question. 

Backing away from the frontier, it is still interesting to ask how 

much one can predict about ~-~ scattering if the discontinuity across 

the left-hand cut can be handled for -) > -9· After all, 1 Bev pion 
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kinetic. energy (lab) corresponds to only v = 3.5 on. the right-hand cut, 

so that on the basis of our Coulomb-law analogy we should be able to make 

useful predictions up to lab energies of 2 to 3 Bev. Another limitation 

with basically the same origin--is inelastic scattering on the right-hand cut. 

The actual threshold occurs at V = 3 , but experience with ~-N inelastic 

scattering suggests that, until each of the produced pions can have a 

momentum in the barycentric system of order unity, phase-space factors will 

hold the inelastic cross section to a small fraction of the elastic. Thus 

we expect to be able to set R .e equal to unity for -J ~ 10. 

In this low-energy physical region 0 < v ;6 10, we expect phase 

shifts for sufficiently high .e to be small and the corresponding partial-

wave amplitudes to be almost real. It is then appropriate not to discuss 

separate .e values but to evaluate the entire amplitude for .e greater 

than some critical value from Formula (V.l). For I = o, 2, only even .e 

values occur, so it is natural to separate out only the S -vrave for special 

attention. Using the same notation as in (IX.l4), we find 

I A (..), cos e) 
00 

+ .! I 
~ 

0 

1 + 
+ 1 + ~ ( 1 - cos e) ;• + 1 + ~ (1 + cos e) ] 

1 
- 7 .en(l + Y )} .. 

~~ + 1 

(IX.l6) 
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Corresponding;ly, for I= 1 we separate·out the P wave: 

= 3 cos 9 A
1

1(-J) + ]; fd.J• .E o: ·. A,I'(-J•' l + 2 -)+ l) 
1t 0 1 I'=O,l,2 li' 3 '. ))r 

)( { ~ [ y• +1 
1 1 l +22(1-

- J( cos e) ..)• +1+2 1+ cos e) 
2 ' 

3 cos e [(1+2Y'+l) .en(l 
-) 

)) )) + -)' + 1) 
. . 

( IX.l7) 

With ..) held fixed in the low-energy region, the brackets in.theabove 

integrals fall off rapidly as -jr increases, so that the region of 

large -Jr where the polynomial e4PE3Jnsion fails should not be important. 

We may then expect to consistently approximate A
3
I' by keeping only the 

£ = o, 1 terms of the series (IX.l6). That is, for 0 < )• _$ 10, 

' 
(IX.l8a) 

(IX.l8b) 

Problem 4: For ) = 3, find the maximum value of ~· for which the 

l ..J + 1 polynomial expansion for A
3
(Y', 1 + 2 ~· ) converges, on the basis 

of the double-spectral-function boundary formulas (IX.4). Remember that 

- 2J} . 

a Legendre polynomial expansion converges within a singularity-free ellipse 

whose foci are at ±1. 
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Note that while (IX.l6) and (IX.l7} are exact.:expressions, the 

imaginary part of the high-£ part of the amplitude is: automatically real 

if we use a polynomial expansion for The imaginary part cdmes' from 

the high-V' range, vrhere the expansion fails. 

We have assumed here that all 1t-rc phase shifts for · .e > 1 are small 

in the low-energy region and shoWl how, if this is the case, the hi.gher-

angular-momentum part of the amplitude can be calculated in terms of "S- and 

P-phase shifts. The assumption is evidently subject to check a posteriori, 

and if D-phase shifts turn out to be large, for example, we can start over 

with the t = 2 amplitude separated for special treatment along with t = 0 

and t = 1. Conversely, it may turn out that the P-phase shift is so small 

that there was no need to separate t = 1 in the. first place. ··We must . 

separate t = 0, of course, since the chain has to begin somewhere. 

The physical basis for the scheme that arises here may be understood 

in terms of the energy of the pion pairs that are being exchanged and are 

responsible for the long-range pion-pion forces. The longest-range force 

comes from pion pairs with a mininrum of excess kinetic.energy, and these 

obviously .tend to be in a relative S state. Slightly shorter-range forces 

involve pairs of slightly higher relative kinetic energies where P waves 

can contribute, and sq on. Now, as we have emphasized many times, high 

values of the external angular momentum are sensitive only to the long-range 

forces; thus they are determined by what happens at low angular momentum in 

the other two channels. It is clear then that the core of our theoretical 

problem lies in the S and possibly the P waves. ·Fortunately, these also 

should be the most prominent parts of the .. scattering from an experimental 

point of view. 
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·X. · S •DOMINANT SOWTIONS OF. THE · 11: ""1! PROBlEM . 

It turns out that for certain choices of .. the arbitrary parameter 'A. , 

which we shall refer to as the 11:•11: coupling constant, one can find. 

consistent solutions of the.above equations (neglecting inelastic scattering) 

in which only the S,..phase shifts are large at low energies. The solutions 

have been obtained. first by a numerical iteration procedure using a' ·. 

704 computer, 23 and then reproduced in an approximate form by analytical 

22 means. 

The two S-wave amplitudes were each. represented by N/D; where the 

subtraction ·point 1-ras chosen as v
0 

= - 2/3 and the subtraction constants 

0 2 a
0 

and a
0 

.· related to 'A. by (IX.l6) and (IX.l2). If D and nigher 

waves are ·small, ·then 

... 5 ')1. 
' 

(X.l) 

- 2 ')1. 

The iteration. procedure essentially was to choose a value of 'A. and 

start with A
0
°' 2 

= a
0
°' 2 

and. A/= 0 for .£ > o. Fornrula (IX.lBa) 

then allows us to calculate 

A O' 2('))' cos 8' ) 
3 . ' = ' 

(X.2) 

which may be substituted into -(IX.l4) to. give f 0I0)), the Si..wave 

discontinuity on the left-hand cut. The integral equation for the 

denominator function is nonsingular if f£Ib)) tends to zero at -co, 

.. 
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which turns out to be the case in the approximation (X.2). TlJ.us we can 

solve the integral equation numerically and come up with new fUnctions 

with which to start a second cycle. Actually a slightly more 
-. ~ : 

complicated routine was used and the P wave was included after the first 

cycle. However, the £ = 1 phase shift never became large and the result 
. . 

would have been the same if it has been omitted. Convergence was generally 

achieved in no more than 5 or 6 cycles even when ~ was large enough 

to produce a bound state. 

Formula (X.l) tells us that negative values of ~ correspond to a 

net attractive force, andpositive values to a net repulsion. In the 

approximation (X.2) our nonzero range forces are all attr~ctive, as can be 

seen from the appropriate elements of the matrix (IX.l5), together with 

Formula (IX.14). Because we have made a subtraction, we are i~ effect 

allowing a zero-range force, but in potential scattering theory it is well 

known that a_repulsion of zero range has no effect. Thus we have no 

,possibility of repulsion anywhere, and positive values of ~.should be 

impossible. If we go ahead and choose a positive ~ anyhow and solve 

the equations, we get a result but find that the denominator function has 

a zero on the left-hand cut that moves in from -oo as ~ increases. The 

sign of the residue of the corresponding pole_in A0I(~ is such as to 

I correspond to a repulsive delta function in f 0 (v). Thus we don't get 

a solution to the original problem, but instead to a problem with a 

repulsive force in addition to the attractive forces we fed in. It turns 

out that the repulsion has the minimum strength and range necessary to 

produce the required values of .. a0 I. 

So long as the position of the zero in n
0

I is far enough to 

the left, it may correspond to an actual force that we have not considered, 
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but if it moves closer than Y = •9, say, we must reject the solution as 

· inconsistent. A more quantitative cri t'erion is to see how badly th~ · 

derivative crossing condition (IX.l3) is violated by the presence of the 
I . . 

extra pole in A0 , since crossing conditions must be preserved by. any 

sensible assignment of phenomenological singularities. On this-basis it 

seems that values of X greater than about 0.1 are not'permitted .for 

S-dominant solutions. 

Negative values of X give no trouble, except that--as one would 

expect-•bound states eventually develop. This happens first for I 0 

at X = -o.46. Since experimentally there seems to be no bound state of 

the ~-~ system we conclude that the possible range of X for s~dominant 

solutions is limited to· -0.46 <X~ 0.1. Within this range there can be 

no resonances, for the reason discussed above in Section VII: ·There is 

no repulsive .barrier to trap the wave. 

A rough but adequate analytic approximation to the S•dominant 

~-~ problem may be obtained by replacing the continuous'discontinuity 

across the left-hand cut by a delta function, just as in the n-p 

example above. The position and strength of the delta function for each 

. . 22 
I value can be determined from an extended use of crossing symmetry. 

Unfortunately the most definite indication about the actual ~-~ 

interaction, as we shall discuss below, is that there is a P resonance 

at fairly low energies. It will now be shown that such a circumstance 

requires an important role for the discontinuity on the left-hand cut 
.. 

beyond the region of convergence of our Legendre polynomial expansion. 

A second parameter must be introduced to represent this contribution. 
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XI. P-DOMINANT SOLUTIONS OF THE 1C-:rr .PROBLEM 

The structure of our equations is such that if the P- (or any __ 

higher £- ) phase shift becomes large at low energies, then the double 

spectral functions play an essential role and vre cannot ignore the region 

along the left-hand cut where the polynomial expansion fails. To understand 

this point in a concrete way, let us consider the dispersion relation for 

a partial-wave amplitude, for example the P wave: 

-oo 

1-
A (y) 

lL + 

(XI.l) 

' 

remembering that because of (VI.5) the absolute value of A1
1()) is 

v-,)- jl _) bounded by ; in the physical region Y > 0. We have not used 

this relation directly in the ij/D procedure of Section VII, but the 
. 1 

solution of our equations must satisfy (XI.l). The existence of . AlR(:i), 

the integral over the right-hand cut in (XI.l), is guaranteed by unitarity, 

but unless there are oscillations, the existence of A~L(~, the integral 

over the left-hand cut, requires that f 1
1(.Jf/.Y approach zero as "'f) 

approaches minus infinity. A glance then at Formulas (IX.l4) and (IX.l6) 

reveals that if in the polynomial expansion we keep any terms 

of order £ > 1, the asymptotic behavior of is inconsistent with 

(XI.l). The contribution from £ = 1 is marginal; it may lead to no 

worse than constant asymptotic behavior for 1 
f 1 ()), but even this requires 

additional discussion. 
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l 
If f 1 (~) approaches a constant c

1 
without oscillation, then 

l 
for large Y the function A

1
L(-/) l ;:( c

1 
£n Y ·· , which 
l 

increases without bound. Since the 

behaves like 
l 

sum of AlL and AIR is bounded by 

unitarity the only possible salvation is to have a similar logarithmic 

l l 
term in AIR , with the opposite coefficient. However, Im A

1 
is 

positive and bounded by unity, so the necessary cancellation can occur 

only if cl is positive and less than one. 

Retur~ing to Formula (IX.l4), we may calculate from the ,e = l 

part of A l 
3 

to be 

co 
6 J eN' 

0 ' 
(XI.2) 

which happens to be positive but which certainly exceeds unity if there 

is a P resonance of any reasonable width. The same difficulty occurs 

for r0°'
2(~), ·so that there is no possibility of carrying through any·· 

part of the simple program for a large P-wave situation without introducing 

at least one new parameter to represent the portion of the left-hand cut 

where the polynomial expansion for A
3 
I fails. Notice that the diffi.culty 

exists whether or not we attribute the P resonance to an unstable 

elementary particle. In that case we would introduce tvTO new (really 

fundamental) parameters with the CDD pole, but we would still need 

another phenomenological parameter to handle the trouble on the left-hand 

cut. 

One may ask if the difficulty with a P resonance suggests that 

such a resonance is unlikely in the !!•!! system. We think riot, for a 

variety of reasons. For one thing, one has exactly the same kind of trouble 

with the (~2, 3/2) resonance in the 1r-N syste.m,which is firmly 

.. 
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established experimentally. But more important, there is simply no.reason 

to think that.we can avoid the double spectral functions. There must be 

deep physical content there that has not yet been apprec:i,ated. We ought 

not be surprised if such a fundamental question as the existence of a 

resonance depends at least in part on simultaneous ~~alyticity properties 

in two dimensions of our amplitudes. 

There are useful things to be done, nevertheless, before attacking 

the double spectral functions in a serio~s \Yay. Unitarity, for example, 

guarantees that on the left-hand cut the partial-wave discontinuities 

f_/()) approach constants less than unity (or at least oscillate), so 

that some kind of cutoff procedure seems appropriate. One possible 

procedure, which Mandelstam and I are studying, is the following: We 

arbitrarily set and f l, ,}) 
1 .~ equal to zero beyond some point 

v ~ •9, and add delta functions at this point to represent the c 

remainder of the cut. The strengths of the i;hree delta functions are 

adjusted to satisfy the derivative crossing relations (IX.l3) so that they 

are all determined by the single new parameter Al • Of course there is 

some arbitrariness in the choice of cutoff, but we believe.that for a 

definite choice of A and Al the solutions do not depend sensitively 

on the cutoff position unless it is unreasonably close or unreasonably 

far away. This belief stems fro~ preliminary calculations in which the 

near and known part of the left-hand cut for each amplitude was replaced 

by poles. 

These preliminary calcu~ations have yielded some interesting 

qualitative results: 
' '-~ 

(a) The main attractive force to produce a P resonance can come 

from the exchange of a resonating P-wave pion pair. In other words, the 
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contribution to f 1
1 from A

3
1, as given by (IX.l8b), is predominantly 

attractive anc:L sufficiently large--if there is a P resonance-.:.to support 

a P resonance. We thus have a "bootstrap" mechanism. Furthermore, this 

P-wave force has a long-range component that is repulsive, so that the 

resonance can be quite sharp. 

(b) The exchange of a resonating P-wave pair produces a strong 

repulsive force in the I = 0 S state and a strong attraction in the 

I = 2 S state, so that these amplitudes have a behavior quite different 

from the S-dominant situation even for the same value of ~. A resonance 

in the I = 0 state is possible (although not probable) now that long­

range repulsion is present, and the absolute value of (negative) ~ at 

which a bound I = 0 state appears is substantially reduced. 

(c) An upper limit still exists on positive ~ because there 

continues to be no long-range repulsion in the I = 2 state. This 

limit may be slightly larger than in the S-dominant situation because 

we now have no problem with the I = 0 state in this respect. 

No calculations have yet been done with a CDD pole, because so 

far there seems no need to complicate the situation. It is of course 

hoped that in the future we can understand enough about the double 

spectral functions to dispense with ~1 as an independent parameter. 

Even if that is possible, however, we may still. find more than one 

solution for a given value of ~. Our so-called "coupling constant," 

after all, is essentially the value of the S-wave amplitudes at a point 

near zero kinetic energy, and it is well known that quite different sets 

of forces can lead to the same scattering at one particular energy. 



' UCRL-9289 

-75-

XII. THE VERTEX FUNCTION OF ONE VARIABLE: 

PION ELECTROMAGNETIC STRUCTURE AS AN EXAMPLE 

If we were completely to exclude weak and electromagnetic interactions 

from our considerations there would be no need to study the so-called vertex 

functions--which are associated with three•particle diagrams. These have 

entered our strictly strong-interaction approach only when all three 

particles are on the mass shell--where one is dealing yith a single number, 

not a function. If we want to take advantage, however, of the established 

validity of lowest-order perturbation theory with respect to the fine-

structure constant and the Fermi weak interaction constant, i~ discussing 

certain experiments involving photons or leptons as well as strong 

interactions, then we find it necessary to analyze .three-particle vertices 

where the mass of one of the particles is considered a complex variable. 

Suppose, for example, that we want to describe the deviations from 

Coulomb scattering of an electron by a charged pion, deviations due to 

the "structure" of the pion associated with its strong interactions. That 

is to say, a real pion can emit virtual strongly interacting systems of 

appropriate quantum numbers that produce a charge distribution in its 

neighborhood. By electron elastic scattering of sufficiently large 

momentum transfer we should be able to probe the "structure" of this 

charge distribution and learn something about the strong interactions that 

produce it, if we assume that the electromagnetic aspects of the situation 

are completely understood. The latter statement can be given a concrete 

meaning in terms of Fig. 9, which represents 
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Fig. 9· Diagram for electron-pion elastic scattering via 

a single Virtual photon. 

all diagrams in which a single photon is exchanged between the electron 

and the pion; multiple photon exchanges should be weaker in order of 

magnitude by a factor e2 = 1/137· The single-photon part of the amplitude, 

* ignoring electron and photon spin, can be written 

just as for Fig. 4., where S 7 is the photon propaga_tor and F 1rr1r.. and 

F 
7 

are vertex functions, all three depending on .. e+e-

t -
2 2q ( 1 - cos e.) , (XII.2) 

if as usual q and cos e are the barycentric-system variables. What 

is meant when we say we "understand" the purely ele.ctromagnetic aspe~ts 

* Since the pion has zero spin, Fig. 9 involves only one invariant 

function of t even when the electron and photon are correctly 

described. 
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of the problem is the assumption that, to an accuracy of order 2 e , we 

have 

s1(t) 1 
t (XII.)) 

and 
?' 

F + _( t) = e 
e e 

(XII.4) 

There ~ of course known modifications of the photon propagator and the 

electron-photon vertex that play an important role in low-t electrodynamical 

experiments of high accuracy; however, these modifications, being of order 

2 e , are much smaller than expected effects from the pion-photon vertex. 

It is not certain that (XII.)) and (XII.4) are correct for the 

large values of t in which we shall be interested, since the.se formulas 

have been tested only for relatively small t. A failure for large t 

is what is commonly referred to as "a breakdown of q_uantum electrodynamics 

at short distances," and a search for such a breakdown is the main object 

of the extensive electron accelerator program at Stanford University. 

No evidence has yet been developed, however, that we cannot trust (XII..3) 

and (XII.4) to order 2 e for all t ; therefore we shall assume here that 

a measurement of electron-pion elastic scattering is essentially a 

measurement of the pion-photon vertex function. 

The physical range of t in elastic scattering, according to 

(XII.2), is t < 0 • However, one can in addition measure electron-positron 

annihilation to produce a + -
1( 1( pair, a process.that according to the 

substitution law is also determined by (XII.l). In this case the physical 

range is t > 4 We can in principle, then,. measure Frc+rc-( t) over the 

whole real axis except for the gap, 0 < t < 4; so let us now see what 

predictions can be made about this vertex function. 
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The principles to be used can be applied to many other v~rtex 

problems, involving nucleons rather than pions and weak rather than 

electromagnetic "probing" interactions. Actually the nucleon-photon 

vertex is the one for which most data are available, but we shall see in 

the following section that to understand nucleon structure a prior 

understanding of pion structure is required. In addition there are the 

usual complications due to nucleon spin that tend to obscure the 

essential ideas involved. 

It has been shown by a study of Feynman diagrams, as vrell as by 

more rigorous methods for certain special cases, tha~ a vertex function 

of one variable,, except for a possible subtraction, satisfies the 

r~presentation 

F(t) = 
1 
1( J dt' 

g( t t) 
t' t ' 

(XII.5) 

where the real spectral function g(t) * is nonvanishing only for· t 

equal to the square ofthe mass of a possible intermediate p):lysical 

state having the quantum numbers of the single particle whose mass is 

the variable, as well as of the pair of particles on the other side of 

the vertex. The single external particle itself, however, is to be 

excluded from the spectrum •. In our example we need to enumerate strongly 

interacting states having the quantum numbers of a photon as well as a 

+ ... 
1C 1C pair. Even though an external photon is involved, we need not worry 

* As in the case of the Mandelstam representation, there may be anomalous 

thresholds for certain mass ratios. (See, for example, Karplus, 

. 24 
Sommerfield, and Wichmann •. ) We shall not consider such cases here. 
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about photons in intermediate states, because these give contributions to 

our spectral function g{t) which are small, of order 2 e 

Using charge independence·and charge-conjugation symmetry, as well 

as other well-known conservation laws, we conclude that our intermediate 

states must have I = 1, I
3 

~ o, J = 1, be odd· under both space reflection 

and charge conjugation, and of course have zero strangeness and zero· 

baryon number. The lightest such state is the P-wave pion pair, then we 

jump to 4, 6, B ••• pions, KK pairs, etc. It follows that the lower limit 

of integration in (XII.3) is at t' = 4 and that F~(t) is real for 

t < 4. For t > 4, we have 

(XII.6) 

so if we remember that F {t) is proportional to and has the same phase 
~ 

as the matrix element 

where the fictitious initial state consists of a photon with mass ~ , 

and also remember the unitarity condition (V.3), then we see 

g~ ( t) = real constant x E 
m 

(XII. 7) 

For 4 < t < 16 , only the ~ intermediate state contributes, and we have 

g (t) 
~ 

where A 1 
1 

* 1 
real constant X A1 (t) F~(t) for 4 < t < 16 , (XII.B) 

is the I·= 1, .£ = 1 partial wave amplitude introduced 



UCRL-9289 
\ 

-80-

earlier (but considered here as a function of t = 4 (v + 1), which is a 

more convenient variable). Now g (t) 
1( 

is supposed to be real, so-according 

to (XII.8) the vertex function F
11

( t) must have the same phase as the 

P-wave amplitude along the real axis for 4 < t < 16; and to the extent 

that we do nqt expect inelastic :rr-:rr scattering to compete seriously for 

t ~ 40, we may use the simple phase condition over the wider interval. 

In fact, it is consistent with our earlier neglect of :rr-:rr inelastic 

scattering (i.e. we set R..e = 1 over the entire positive real axis) to use 

the simple phase condition over the whole cut of the vertex function F
11
(t). 

If we do so, the solution of the pion-structure problem is amazingly 

simple: 

F (t) 
1( = (XII.9) 

The point is that Formula (XII.5) simply requires F (t) 
1( 

to. be a real 

analytic function in the entire complex t plane, with the single cut 

running along the positive real axis from 4 to co. Otherwise, unitarity 

requires F
11
(t) to have the phase exp(i51

1
) along the cut. These are 

exactly the defining properties of the reciprocal of our :rr-:rr P-wave 

denominator function, so we conclude that F
11
(t) must be proportional to 

1 the reciprocal of D1 • Gauge invariance guarantees 

F (o) = e 
1( 

leading to the. complete result (XII.9), first written in this form by 

Frazer and Fulco. 25 Earlier Federbush, Goldberger, and Treiman26 had . ·'·· 

derived the result in the Omnes form (VII.)), which is suitable if one 

has no particular knowledge about analytic properties of the phase shift. 

-. 
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It is evident from (VII.3) and (XII.9) that if the Po.wave rc-1L 

phase shift is small for 0 < y <- 10 
'V 

(or 4 < t ;5 40)., ·then. the pion 

charge structure factor differs very little from e. . overa corresponding 

range of t along both pos~tive and negative axes. In other words, the 

pion behaves almost as a point charge forelectt'on scattering, and the 

cross section for 1L+-1L- production in .e--e+ annihilation is "normal. 11 

Suppose, on the other hand, that there is a reasonably sharp dynamical 

resonance at t = tR' that is to say, the real part of the denominator 

function vanishes at ~' with a nearly linear dependence extending down 

* to t = 0. (See Fig. 10.) Such a behavior is typical of resonances due 

* 

t-+ 

Fig.· 10. Typical behavior of the real part of the denominator 

function for a dynamical resonance. 

There is of course a branch point_ at t =.4, but it produces a 

1 discontinuity only in second and higher derivatives of D1 (t). 

\ 
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to attractive· "forces" inside a repulsive barrier. (In contrast, a resonance 

due to an unstable elementary particle has.a pole in. the. denominator function, 

close. to t. Such a resonance generally causes a ·completely different 
r 

type of behavior for the structure-function from th!:!-t described here.) At 

the same time, of course, the imaginary part of n1
1 does not vanish. 

. According to (VII. 5) and ( VII.l8), we may expect a behavior . · 

= - f"i3 r(t) V7+I. ' 

where r(t) is a slowly varying function if the important contributions 

from the left~hand cut in (VII.l8) are not too close. Thus, we have the 

rough formula 

that can be used for It I 

t 
r 

:6 t . r 

(XII.lO) 

In the electron-scattering region, t < 0, we see that the cross 

section is simply reduced by a smooth factor 

Comparing to what we would get from a classical extended charge p(;) , 

F = 
:1( 

2 
e(l. r (~ ~ )2 

- ~ ql- ~ + 

(XII.l2) 

.. . . ) ' (XII.l3) 

.. 
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we see that the "mean-square radius" of the piori.is related to the resonance 

energy by 

2 
r 

6 
1 
t 

r 
(XII.l4) 

A completely different kind of effect would be observed in the cross section 

for + e + e + 1( 

multiplied by a resonance factor 

t 2 
r 

(t - t) 2 + r 2 
r 

There the 11 normal11 cross section is 

(XII.l5) 

that greatly enhances the reaction for t near t 
r 

Notice-that for 

a fixed position of the resonance, t , the net enhancement becomes 
r 

greater as .the width of the resonance decreases because the maximum 

-' value of (XII.l5) varies inversely as the square of the width· r . 

This is a characteristic feature of a dynamical resonance_that distinguishes 

it from a resonance associated with an unstable particle. 
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XIII. -THE PROCESSES n: + N ~ n: + -N AND - n: + 'n: +-,:... N + N 

Before we can discuss the electromagnetic structure of the nucleon 

it is necessary to analyze the matrix element for the process n: + n: ~ N + N, 

since the 21! state is expected to play an impor~ant role in the spectral 

function for the nucleon-photon vertex. If we are .to understand one channel 

of a diagram of the type of Fig. 3, however, it is necessary to discuss 

the other two channels at the same time; thus pion-nucleon scattering is 

dra>vn into the picture. Of course, there is every reason to study n:-N 

_scattering in its own right; probably more experimental information is 

available here than for any of the other r~actions that have been considered. 

The basic invariance considerations for the n:-N problem have 

been already outlined in Section IV. We have four invariant amplitudes 

A
0

'
1 and B0

'
1 satisfying the Mandelstam representation. It turns out 

0 1 that A ' have no poles, while the residues of the Channel I ·and 

Channel II poles in B0 ' 1 are just plus or minus the rationalized pion-

nucleon coupling constant, 

2 
2 gr 

g = 1:i1{ ~ 14 . (XIII.l) 

(The value of 2 
g is obtained most accurately from a comparison with 

experiment of n:-N dispersion relations at s
2 

= 0, i.e., in the 

forward direction.) We find, in other vrords, 

(~) 
B . ( s

1
, s

2
, s,) 

poles _/ 
= ' 

(XIII.2) 

Considering first Channel II, n: + n: ++ N + N , we follow Frazer and 

Fulco12 and introduce the barycentric-system variables ~' p2, and cos e2, 
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where ~ is the magnitude of a pion momentum and p2, that of a nucleon, 

while e
2 

is the production angle. We find·. 

sl = 

s2 = 

s3 = 

Next we define 

(AII,T( ) . 
£ s2 ' 

2 
- p2 

4(~ 
2 

2 
p2 

* 

2 ... 2 p ~ cos e - ~ 2 2 

+ 1) 2 . 2 
= 4(p2 + M ) 

' 
2 

+ 2 p2 ~ cos 92 • ... ~ 

' 

(XIII. 3) 

realizing that the index £ here is not the orbital angular momentum. 'de 

0 1 know from crossing symmetry that A and B are even functions of 
1 o II,O 

cos e2, while A and B are odd functions, so that A£ and 

B~I,l vanish for odd £ while A~I,l and B£II,O vanish for even £. 

Frazer and Fulco then introduce helicity amplitudes, .f±J(s2) , for 

well-defined angular momentum J. ·The subscript (+) indicates that both 

nucleon and antinucleon have the same helicity, while ( .. :). , indicates 

opposite helicities. ·Using the techniq,ue of Jacob and Wick27 they find, 

for each .T , 

* ' 
We use T to designate isotopic spin here in order to avoid confusion 

with the channel index. 



f J = 
+ 

f J = 

1 
Tii 

1 
Tii 

[J(J + 1) ]]/2 
2J + 1 

+ 

1 

M · II 
[ (J + l)BJ+l 

( )(. )J-1 
2J + 1 p2~ 

·. II J 
+ J BJ·lj 
(XIII.5) 

(XIII.6) 

and show that these helicity amplitudes are analytic functions of s2 , 

with a cut associated with Channel II running from 4 to oo along the 

positive real axis, and coincident cuts due to Channels I and III running 

from •co . • 

Problem 5: Show that a fixed value of • s ' 
3 

in the spectrum of Channel III 

gives rise to a cut in the helicity amplitude running from 

to - oo • 

The discontinuity across the left-hand cut·has two parts, one from 

the poles starting at 
L , . 

s2 and one from the continuous ~-N · spectra 

starting at s = o. 
2 

Frazer and Fulco give explicit formulas for this 

discontinuity in terms of 
2 . · T . T . 

gr and A
3 

and B
3 

, the absorptive parts 

· of the pion-nucleon elastic--scattering amplitude. We shall not write down 

these formulas because of their complexity; they have basically the same 

structure as (IX.l4), except for the additional term proportional to 
2 . - L 

gr that controls the left-hand cut for 0 < s2 < s
2 

• 

Next Frazer and Fulco consider the right•hand cut and show that 

for 4 < s2 < 16 unitarity requires the helicity ~plitudes to have the 



.. 

UCRL-9289 

-87-

same phase as the :rc-:rc amplitude in the corresponding state (same. J and 

T). The heuristic derivation of this result Pl:l.rallels the discussion of 

the preceding section, but one must be careful becaus~ N-N states.cannot 

really exist for s2 < 4~ = 180. Mandelstam, however, has recently given 

a rigorous justification for the naive extension of the 1ll1itaritY condition 

in the :rc + :rc +-+ N + N 10 channel. The·next step is to argue, as before, 

that if we are concerned only with I s2 I ..$ 40, we may use the simple 

phase condition for the entire right-hand cut; the helicity amplitudes may 

then be explicitly written down in terms of the discontinuity over the 

left-hand cut and the appropriate :rc-:rc denominator function: 

L 
J,T 

1 
52 

t 

f± (s2) = T . J ds2 :rc DJ (s2) -CD 

"' (XIII. 7) 

We see by inspection that this formula makes the helicity amplitude an 

analytic function with the two desired cuts, and at the same time assigns 

the correct phase on the right-hand cut and the correct discontinuity 

across the left-hand cut. 

Two different attitudes may be adopted at this stage. A great 

deal of experimental information exists about Channels I and III, . 

:rc + N +-+ :rc + N , so that the required discontinuity over the left-hand 

cut for the :rc + :rc +-+ N + N partial-wave amplitudes is empirically known 

for a substantial distance. Also.the point s = 0 
2 

is physical for 

:rc.-N scattering, so that the :rc + :rc +-+ N + N heliCity amplitudes and some 

of their derivatives are known at the origin. With all this information, 

D. Wong has shown tha~ one can quite reliably calculate the helicity 

amplitudes along the right;..hand cut for s
2 
~ 40, provided the :rc-:rc 
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. 11 28 amplitudes are also knownin this regJ.on. ' This approach seems:sensible 

if one wants the rc + rc +-+ N + N amplitudes in order to predict such things 

as nucleon-electromagnetic structureand nucleon~nucleon scattering. If 

·one proposes to predict rc-N scattering, ho\v-ever, the logic of. the· situation 

becomes confused. Strictly speaking, one should regard the problem of 

rc + rc +-+ N + N and rc + N - rc + N amplitudes as one of codetermination, 

using the kind of iteration procedure described above for the rc-rc problem. 

If one were to do this, exactly the same kind of difficulties as encountered 

in the rc-re ·problem wouldarise and arbitrary parameters would have to be 

introduced. How many such parameters are .needed is not yet known, because 

the problem is much more complex than in the re+rc case. Let us now take 

at lea:st a brief look at some of the complications arising in a study of 

the Channel I and Channel III partial-wave amplitudes. 

Because of crossing symmetry it suffices to study Channel III, 

where we introduce the usual barycentric-system variables, q
3 

and· cos e
3

: 
t 

= 

. 2 
(M + 1) ][ s

3 

= 
2 

- 2 q3 ,( 1 ... cos 9) ' 
(XIII.8) 

1 - 1 + cos e 
...;,_ __ --:::;.3 ( s - 2M2 .. 2) • 

2 3 = 
2 

These formulas already suggest the woe in store for us as a result of the 

' Aniii(·s3) · unequal masses of pion and nucleon. Next we define )J 

in the usual way and relate these quantities to amplitudes for well-defined 

J and parity. The conventional notation here is to write_ f~;I , vrhere £ 

is the·orbital angular momentum and(±) refers ~o J = £.± 1/2 •. In the 
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physical region we have 

io .e± 
sin o.e± fiii 

e 
= • .e± q 

. 3 
(XIII.9) 

Henceforth we shall drop the superscript III. The relation between 

14 
A.e, B.e, and f.e± turns out to be 

where W = -v:; and 

E = = 

+ (E - M)[.A£±1 + (W +M)B£±1 ~ 
(XIII.lO) 

(XIII.ll) 

Examination of (XIII.lO) shows that f.e± , as a function of s
3 

, has a 

"kinematical" branch point at the origin but that as a function of W 

all the singularities are of the usual "dynamical11 type--that is, they 

arise from the vanishing of denominators in the original Mandelstam 

representation. · McDowe1114 emphasized that an interesting reflection 

property exists in the W plane--which encompasses two sheets of the 

usual s
3 

plane. We see from (XIII.ll) that we have 

(XIII.l2) 

so if we work in the full W plane, the two amplitudes for the same J 

may be considered as a single analytic function in different halves of the 

plane. In view of this circumstance and for certain other reasons 

associated with the peculiarities of the kinematical relations (XIII.8) 



20 and too complicated to discuss here, Frazer and Fulco . introd11ce ... 
I 

= (XIII.l3) 

as the most convenient analytic function. For W real and greater t,han 

M + 1 this function is related to the phase shift for total angular 

momentum J and orbital angular momentum £ = J . 1/2, while for W 

real and less than -(M + 1) we are dealing with the· phase shift for the 

same J but £ = J + 1/2. 

The singularities of hiW) are very complicated. First there 

are the two physical cuts, running from M+l to +oo and from 

-(M + 1) to -oo' both on the real axis. For J = 1/2 and I = J./2, 

there is also the nucleon pole in h0 on the left half plane at W = -M. 

These are all the singularities arising from Channel III. The original 

pole in Channel I (also 1t + N - 1t + N) leads to short branch cuts, on 

the positive real axis for M - ~ ~ W ~ (M2 + 2)
1
/

2 
and on a 

. corresponding range of the negative real axis~ These cuts are so short 

that they are well approximated by. poles. A second branch cut arising 

from the original Channel I pole runs along the ent;tre -length of imaginary 

axis. Before proceeding further with our enumeration of singularities it 

is useful to discuss why the original nucleon pole leads in this way to 

both a long-range and a short-range force. 

We have already in the introduction discussed the long-range force 

(due to the short cuts near the physical regions).a consequence of the 

"exchange" of a nucleon. (See Fig. ll(a).) The general structure of the 

theory, however, requires that the s1 pole also represents the ."exchange" 

of an antinucleon originating with the incident pion •. (Fig. ll(b).). This 
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Fig. 11. The two exchange 

processes represented by 

the pole in the "crossed" 

t 1 
N 1C 

'J'CN channel. 

N 1( 

(a) (b) 

force is of very short range because energy conservation is badly violated, 

and it corresponds to the cut along the imaginary axis--far from the physical 

region. (See Fig. 12) 

~ Due to all Channel I singularities 

Due to Channel I continuum 

1 
Due to Channel I pole 

J- Phy~ical cut (Channel III) 
~~~~~~~~~~~~~ 

M-1 M M+l 

Fig. 12. Cuts in the Channel III 

partial-wave amplitudes due to 

Channels I and III. 
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The continuum singularities of Channel I, starting with the one-pion~, 

one-nucleon contributions, similarly lead to two cuts, and for the same 

reason. The "near-by" cuts run from (M - 1) and -(M 1) to the origin, 

while the far cuts again run along the imaginary axis. 

The intermediate states of Channel II turn out to produce a 

complicated cut·· in the Channel III partial-wave amplitudes, partly on 

the imaginary W axis but also in part following a circle of radius M 

with center at the origin. The ends of this cut come close to the physical 

regions and can be interpreted as long-range rc-N forces due to· 2rc exchange. 

Formulas for the discontinuit~es across all the various cuts have 

been worked out in terms of absorptiveparts for appropriate'~hannels, 20 , 29 

but one finds, just as for rc-rc, that the p¢lynomial expansion of the 

absorptive parts suffices to calculate only:the near-by discontinuities. 

-An extensive investigation of just·how much can be understoodabout the 

observed phase shifts in terms of near-by and calculablesirtgularities has 

been undertaken by Frautschi and Walecka29 as well as others. Final results 

are not yet available, but the qualitative success of the static model has 

been to a certain extent understood. It has been shown, for example, that 

the rc•rc cut has only a weak effect in the I = 3/2, J = 3/2 state, as 

does the near-by part of tne crossed rc-N continuum cut, so the dominant 

near-by singularity in this state is the short cut, near W = M, which can 

be approximated by a pole of residue Replacing all other singularities 

by a distant pole then leads to the Chew-Low effective range behavior for 

4 
3 (XIII.l4) 
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where f2 1 g2 o.oB and :w iS the energy of the 3/'2~ 3/2 = l"::; 

4M
2 R 

resonance~ 'The value of w 
R 

is rela.ted to the strength of the distant 

phenomenological pole and cannot be predicted until we have better 
" 

calculational methods" However, the width of the resonance is correctly 

predicted in terms of r2 • 

..-/ 

• 
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XIV. NUCLEON ELECTROMAGNETIC STRUCTURE 

The basic methods of the S-matrix approach-to strong interaction 

. theory have now been outlined and several examples discus_sed •. We conclude 

these lectures with an example of unusual importance from a practical 

standpoint. This is the problem of thenucleon-photon vertex, or in more 

familiar language, the electromagnetic structure of- the nucl,eon. Recalling 

the considerations of Section XII, we realize that the nucleon-photon 

vertex function can be experimentally measured in the range t < 0 by 

electron-nucleon elastic scattering and for t >4M2 ~ 180 by N + N ~ e+ + e • 

The latter range is very high from the point of view of our approach; however, 

the cut in the photon-nucleon vertex function does not begin at 4M2 but 

rather at 4, the two-pion threshold. By the usual arguments, we should 

expect that the discontinuity across the cut for 4 < t~ 40 should 

dominate the behavior of the function for ltl ~ 40; thus it is reasonable 

to try to understand electron-nucleon scattering up to a few Bev electron 

energy (lab) in terms of two- and three-pion contributions to the spectral 

function of the photon~nucleon vertex. 

Actually four invariant functions are involved in the photon-

nucleon vertex, because of the nucleon spin and charge degrees of freedom. 

Using the same kind of notation as in (IV.l), we would write3° 

uP
2 

-{ i 7• e [G
1

8
( t) + Ty a

1 
v( t)] + 7• e 7•(p1 - p

2
)[a

2
8

( t) H 
3
a

2 
v( t)} 

(XIV .1) 

where € is· the photon polarization vector and where the superscripts S 

and V refer to the isotopic scalar and vector parts of the electromagnetic 
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* interaction. The vertex functions G(t) are related at t = 0 to the 

static nucleon charges and anomalous magnetic moments: 

GlS(O) = Glv(o) = e/2 (XIV.2a) 

G2s(o) ~ +~ 6 e = 2 = ~ o.o 2M (XIV.2b) 

G2V(O) ~ -~ 1.83 e 
= 2 = 2M (XIV.2c) 

Each of the four functions G(t) has a spectral representation of the 

type (XII.5) with the associated spectral functions given by a formula 

of the type (XII.7), except that the 1C+-1(.;. state is replaced by an 

N-N state, with I= 0 for the isotopic scalar functions and I= 1 

for the vector functions. The other quantum numbers are the same as for 

the pion-photon vertex. 

. 26 31 . . 
It then turns out ' that only even-pion intermediate states 

contribute to the isotopic vector part of nucleon electromagnetic 

structure and only odd-pion states to the scalar part. Considering first 

the vector part, let us calculate the spectral functions in the range 

4 < t < 16 where only 21! states contribute. Evidently the result is a 

product of the pion-photon vertex function F ,/ t) and the amplitudes for 

1! + 1! ._ N + N in the I = 1, J = 1 state.. In the preceding section 

we saw that there are two such functions, which may be chosen to be the 

helicity amplitudes f±1' 1(t). Frazer and Fulco found the result25 

* Assuming "minimal" electromagnetic interactions, a photon can be thought 

of as carrying either isotopic spin 0 (scalar) or isotopic spin 1 (vector), 

but nothing more complicated. This follows from the fact that electric 

charge and the z component of I spin ~re li~early related. , 
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v 
gl ( t) = M. [ .· s f 'l,l(t) 

4 \(2 M 

(XIV. 3) 

which may plausibly be used up to t - 40 if 4-pion states behave as 

we expect. 

A priori we do not know how important in the spectral function 

is the region above that where the 2~ state dominates. Experimentally, 

however, the measured slope of the functions G( t) at .. t = 0 gives us 

the mean value of ~t in weight function g(t)~t. 32 Thus if no, 

subtraction is necessary, so that we write 

G.v(t) 
~ 

then we have 

co 
= .! J dt' 

~ -4 

d 
dt 

t' - t 

v 
G. (t)] . 
~ t=O 

G.v(o) 
~ 

(XIV.4) 

(XIV.5) 

There are substantial theoretical reasons for expecting .no subtraction 

in G s,v(t) and weaker ones for G.s,v(t). 
2-~ ~ .. In any case, it, is found 

experimentally that,32 with (XIV.5) as a definition of ( ~) , we have 
;AV. 

1 (XIV.6) -·-· 
12 

This circUmstance strongly implies a dominant role ·for the 2~ state 

in g
2 
V . and probably also in g

1 
V 



UCRL-9289 

-97 .. 

Frazer and Fulco25 proceeded to calculate v 
Gl,2 (t) on the basis 

of (XIV.4) and (XIV.3), with various assumptions for the P-wave 1!-1! phase 

shift, which controls f± l, 1( t) through Eq. (XIII. 7) as well· as F 1! ( t) 

through Eq. (XIIo9)o They found, as had earlier been emphasized by Dre11, 33 

that with a small P-phase shift, the value of G
2
V(O) (the vector anomalous 

moment) is too small by a factor of about five unless large contributions. 

to (XIV.4) come from the unknown region t 1 > 40. In such a case_, however, 

the experimental result (XIV.6) is incomprehensible. In order to achieve 

(XIV.6) Frazer and Fulco had to assume a resonance in the 1!-1! P wave at 

t ~ 12 which'greatly enhances this part of the spectrum. The mechanism 
r 

of enhancement is quickly seen by reference to (XIV.3) and (XIIIo7), from 

which follows IF.(t) 1
2

, so the spectral functions have the 
1! 

behavior (XII.l5) in the neighborhood .of the resonance. The average 

enhancement depends on the width parameter r ; to achieve the experimental 

result (XIV.2c) it appears that r ~ Q4 is required. 

Thus, the large nucleon anomalous magnetic moment together with 

/, 1 1 """2) the large radius of this moment, \( t )Av = b r , suggests a fairly 

narrow dynamical resonance in the P state of the 1!-1! system, and in 

Section XI above we pointed out that such a resonance can come about 

through a "bootstrap" attractive force. Of course, if the -resonance exists 

there must be other experimental manifestations; the cleanest suggested 

so far is the enhancement by the factor (XII.l5) of pion-pair production 

in electron-positron annihilation. In general one would expect enhancement 

of this kind whenever pion pairs are produced, but usually there are other 

strongly interacting particles simultaneously present which confuse the 

situation. The other typical manifestation is the enhancement of the 

unphysical singularities in various amplitudes due to pion pairs. The 
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nucleon~photon vertex of course falls.in this category, and,we may remark 

. _now on the consequence of a P-wave rc-rc, reson~nce for G1V(t); ·the 

charge-vertex function, as well as on ·G2V(t), the magnetic-moment vertex 

discussed above. ·._, 

If we accept (XIV.4) for G1V(t) without-a subtraction, then the 

experimental hear equality of the vector charge and magnetic-moment -radii 

·of the nucleon.is immediately a consequence of·a reasonably sharp rc..;rc 

resonance. That is, both g1V(-:t) and g
2
V(t) are proportional to. 

IF:rc( t) 1
2 

so that the average value of J/t. should .be "' 1/t;,: for both. 

One may ask if (XIV.2a) is consistent with no subtractions in ·G1V(t); a 

tentatively affirmative. answer has been given by Frazer and Fulco, 25 

considering the uncertainty in certain aspects of our knowledge of the 

rc + rc ~ N + N helicity amplitudes f±
1

'
1
(t) We have in 'the equality 

of .charge and magnetic radii, therefore, some confirmation of the resonance 

hypothesis. Many other amplitudes are being similarly analyzed to discover 

the effect of a ~-:rc P-wave resonance. These include N-N scattering,
11 

rc-N scattering, 29' 34 and K-N scattering, 35 as .. well as y + N - rc + N, 36 

in each of which a strong 2:rc exchange interaction should have a marked 

effect·. Calculations in all these cases are more complicated than for 

nucleon electromagnetic structure, and results are still inconclusiye. 

We conclude with a brief mention of G1 2
8(t), the isotopic 

' 
scalar part of the nucleon-photonvertex. Experimentally. G2

8(t) is 

s v very small over the entire range of t studie~, while G1 (t) ~ G1 ·(t). 

The latter circumstance means .a low average value of t in g1
8(t) and, 

with no-subtractions, suggests a low-energy resonance or perhaps even a 

bound state for the three-pion system with quantum numbers J = .1, I = 0 

·• 
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and odd parity. That such a state may feel an unusually strong total 

attraction follows from the fact that all three pairs are in the I = 1 

configuration, 3Twhere we have conjectured a strong attractive force. 

Why the.contribution to from such a three-pion state should be 

small is not clear, but will not constitute a definite difficulty until 

we have methods for handling such multiparticle configurations. That the 

scalar charge radius is so close to the vector charge radius appears a 

coincidence from the present point of view. If it is not a coincidence, 

then the approach described in these lectures is deficient in some very 

basic respect. 
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XV. CONCLUSION 

We have seen how the Manclelstam repres'emtation for scatter-ing 

amplitudes can be used together with unitarity to make a theory·or iong-

range strong interactions--more precisely, of those interactions due to 

exchange of one- and two-particle systems. The theory will not be complete 

until we understand how to handle general-multiparticle exchanges, but we 

have seen that certain experimental questions can already be._di~cussed 

in a meaningfUl way. That is to say, different kinds of experiments can 

be correlated even though the underlying short-range forces are not 

completely understood. We have also attempted here to make plausible 

that the s-matrix approach, when developed into a complete theory by 

extension to many-particle systems, will contain no more free parameters 

than conventional renormalizable field theory. 

A more concrete aspect of these lectures has centered around 

the pion-pion interaction, which in a certain sense is fundamental for 

all strong-interaction questions. Pion•pion scattering is experimentally 

elusive, but we have seen that it must be understood before further 

substantial progress is possible in the theory of strong interactions. 
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