
UC Berkeley
UC Berkeley Previously Published Works

Title
A texture synthesis method for liquid animations

Permalink
https://escholarship.org/uc/item/9bj3w0tj

Authors
Bargteil, AW
Sin, F
Michaels, JE
et al.

Publication Date
2006-09-02

Supplemental Material
https://escholarship.org/uc/item/9bj3w0tj#supplemental
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bj3w0tj
https://escholarship.org/uc/item/9bj3w0tj#author
https://escholarship.org/uc/item/9bj3w0tj#supplemental
https://escholarship.org
http://www.cdlib.org/


Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)
M.-P. Cani, J. O’Brien (Editors)

A Texture Synthesis Method for Liquid Animations

Adam W. Bargteil Funshing Sin Jonathan E. Michaels Tolga G. Goktekin James F. O’Brien

University of California, Berkeley

Figure 1: This splashing motion was textured using our texture synthesis technique for liquid animations. Despite topological
changes and significant surface distortions, the salient characteristics of the synthesized texture remain constant.

Abstract
In this paper we present a method for synthesizing textures on animated liquid surfaces generated by a physically
based fluid simulation system. Rather than advecting texture coordinates on the surface, our algorithm synthesizes
a new texture for every frame using an optimization procedure which attempts to match the surface texture to an
input sample texture. By synthesizing a new texture for every frame, our method is able to overcome the disconti-
nuities and distortions of an advected parameterization. We achieve temporal coherence by initializing the surface
texture with color values advected from the surface at the previous frame and including these colors in the energy
function used during optimization.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Surfaces and object representations; Physically based modeling; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Animation; Color, shading, shadowing, and texturing; I.6.8 [Sim-
ulation and Modeling]: Types of Simulation—Animation.

Keywords: Texture synthesis, texture mapping, surface texturing, natural phenomena, physically based animation,
fluid simulation, surface tracking, surface modeling, semi-Lagrangian contouring.

1. Introduction

Liquid simulation techniques have become a standard tool
in production environments, producing extremely realistic
liquid motion in a variety of films, commercials, and video
games. Surface texturing is an essential computer graphics
tool, which gives artists additional control over their results
by allowing them to stylize surfaces or add detail to low-
resolution simulations. For example, an artist could use tex-

turing techniques to add the appearance of foam to a wave,
bubbles to beer, or fat globules to soup. Unfortunately, tex-
turing liquid surfaces is difficult because the surfaces have
no inherent parameterization.

Creating a temporally consistent parameterization is ex-
tremely difficult for two primary reasons. First, liquid simu-
lations are characterized by their complex and frequent topo-
logical changes. These topological changes result in signifi-

c© The Eurographics Association 2006.



346 A. W. Bargteil et al. / A Texture Synthesis Method for Liquid Animations

Figure 2: This figure shows several textures applied to a simulation of a melting bunny.

cant discontinuities in any parameter tracked on the surface.
Second, liquid surfaces tend to stretch and compress dramat-
ically over the course of a simulation. Similarly, an advected
parameterization will also stretch and compress. While it
may be appropriate to squash and stretch some textures with
the motion of the liquid surface, many textures, such as fat
globules on the surface of soup, should maintain a particular
scale even as the liquid surface deforms. For these reasons,
advected texture coordinates are often unsuitable for textur-
ing liquid surfaces.

In this paper we present a method for generating textures
on animated liquid surfaces. Rather than advecting texture
coordinates on the surface, we synthesize a new texture for
every frame. We initialize the texture with color values ad-
vected from the surface at the previous frame. We then run an
optimization procedure which attempts to match the surface
texture to an input sample texture and, for temporal coher-
ence, the advected colors.

By synthesizing a new texture for every frame, our
method is able to overcome the discontinuities and distor-
tions of an advected parameterization. We avoid disconti-
nuities in the parameterization due to topological changes
by building a new parameterization of the surface for each
frame. Discontinuities in advected colors are removed dur-
ing the optimization procedure. Similarly, we avoid stretched
and compressed parameterizations; because we optimize the

surface texture for every frame, it maintains a consistent
level of detail throughout the simulation. We ensure tempo-
ral coherence by initializing the optimization with the ad-
vected colors and including a coherence term in the energy
function used during optimization. As a result, our method is
able to produce textures with excellent temporal coherence,
while still matching the input sample texture.

2. Related Work

Soon after the introduction of fluid simulation techniques
to computer graphics, researchers began experimenting with
texturing these simulations. The simplest approach, demon-
strated by Witting [Wit99] advects texture coordinates
through the flow field and uses these texture coordinates to
lookup color in the texture map. Unfortunately, over time,
the texture becomes progressively more distorted. To address
this distortion, Stam [Sta99] advects three separate layers of
texture coordinates, each of which is periodically reset. The
final texture map is then a superposition of these three tex-
ture maps. Neyret [Ney03] built on this approach and also
advects several layers of textures. Additionally, he computes
and advects the local accumulated deformation for each tex-
ture layer. Using this deformation measure, he combines the
various texture layers to arrive at a final texture, which is
well adapted to the local deformation. When using procedu-

c© The Eurographics Association 2006.



A. W. Bargteil et al. / A Texture Synthesis Method for Liquid Animations 347

Figure 3: In this simulation, two balls of viscoelastic fluid are thrown at each other and merge. The texturing method handles
this topological change without introducing any objectionable “pops.”

ral noise-based textures, he combines the layers in frequency
space to avoid ghosting effects and contrast fading.

While these techniques work relatively well for advect-
ing textures through general fluid simulations, they are not
directly applicable in the case of free-surface liquid simula-
tion. In this case, we wish to texture the liquid surface rather
than the fluid volume. To address the particular context of
liquids, Rasmussen et al. [RNGF03] describes a method
that advects texture particles, initialized near the free sur-
face, through the fluid flow field. During rendering, when a
ray intersects the surface the texture coordinates from the
nearest 64 particles are interpolated to provide a texture
coordinate for the surface point being shaded. In a simi-
lar approach, Wiebe and Houston [WH04] and Houston et
al. [HNB∗06] stored three-dimensional texture coordinates
in a grid structure and advected them like any other scalar
field. To avoid artifacts resulting from volumetric advection
the authors used extrapolation techniques to force the gradi-
ent of the texture field to be perpendicular to the free surface
normal. Bargteil et al. [BGOS06] introduced a free-surface
tracking method that allowed for advection of texture coordi-
nates (or other surface properties) on the actual surface. Un-
fortunately, all these approaches suffer from problems with
discontinuous and distorted parameterizations.

Bargteil et al. [BGOS06] also proposed generating tex-
tures with a reaction-diffusion simulation [Tur91, WK91]
driven by advected morphogens. Their approach is able to
deal with topological changes and surface distortions. Un-
fortunately, their approach only admits textures which can
be generated from reaction-diffusion simulations and suf-
fers from the fact that very small perturbations of the surface

can substantially change the resulting texture. Consequently,
small surface motion can cause large changes in the texture.

In this paper we take an approach similar to the reaction-
diffusion textures of Bargteil et al. [BGOS06] and syn-
thesize the texture for every frame. However, we use an
example-based, rather than simulation based, texture syn-
thesis method. Example based texture synthesis has been
a popular research area in computer graphics with early
work being done by Heeger and Bergen [HB95] and De
Bonet [Bon97]. More recently, Efros and Leung [EL99], Wei
and Levoy [WL00], and Efros and Freeman [EF01] have
demonstrated extremely impressive results. Our texture syn-
thesis is based on the flexible optimization approach devel-
oped by Kwatra et al. [KEBK05].

Any surface texturing method must construct some pa-
rameterization of the surface. Numerous methods for the au-
tomatic generation of parameterizations of arbitrary surfaces
exist. These methods can be roughly divided into two cate-
gories: methods that parameterize a set of (potentially over-
lapping) small patches and methods that attempt to find a
globally-optimal parameterization. Our work belongs to the
first category. The pioneering work of Bennis et al. [BVI91]
introduced the idea of using piecewise parameterizations of
surfaces for texture mapping. Later, Maillot et al. [MYV93]
introduced the idea of texture atlases, which allow the sur-
face to be broken up into patches where each patch has its
own parameterization and texture. They also introduced a
widely used surface-flattening heuristic. The lapped textures
technique of Praun et al. [PFH00] places overlapping, irreg-
ularly shaped texture patches on the surface. This approach
works quite well for many textures and is very similar to
our approach, the primary difference being that we opti-

c© The Eurographics Association 2006.



348 A. W. Bargteil et al. / A Texture Synthesis Method for Liquid Animations

mize the mapping of texture patches onto the surface. Con-
currently, Wei and Levoy [WL01] and Turk [Tur01] intro-
duced texture synthesis methods which create local param-
eterizations of the surface and then synthesize textures di-
rectly on the surface. However, their greedy texture synthesis
approach differs from the optimization approach presented
here. More recently, Sorkine et al. [SCOGL02] introduced a
greedy method for creating bounded-distortion local surface
parameterizations based on a simple distortion metric, which
was introduced by Sander et al [SSGH01].

When implementing the approach described in this pa-
per, we recommend having Bargteil et al. [BGOS06], Kwa-
tra et al. [KEBK05], Sorkine et al. [SCOGL02], Wei and
Levoy [WL01], and Praun et al. [PFH00] on hand.

3. Methods

Our method is built from three relatively new computer
graphics technologies: the ability to track surface proper-
ties in liquid simulations [BGOS06], techniques to param-
eterize overlapping patches of surface [PFH00, SCOGL02],
and an optimization-based technique for texture synthe-
sis [KEBK05]. By combining these three methods we have
developed a new algorithm that generates coherent, undis-
torted textures on liquid surfaces based on sample textures.

3.1. Surface Tracking

The motion in our examples is generated using a state-
of-the-art physically based liquid simulator. More specifi-
cally, we use the staggered-grid data structure of Foster and
Metaxas [FM96], the semi-Lagrangian advection method in-
troduced by Stam [Sta99], the extrapolation boundary con-
dition of Enright et al. [EMF02], the viscoelasticity model of
Goktekin et al. [GBO04], and the surface tracking method of
Bargteil et al. [BGOS06].

A necessary feature of any liquid simulation system is the
ability to track the liquid’s free surface. While several tech-
niques exist, the semi-Lagrangian contouring method pre-
sented by Bargteil et al. [BGOS06] also provides a mapping
between liquid surfaces at adjacent timesteps. This mapping
can be used to accurately track arbitrary surface properties
on the actual liquid surface at negligible additional cost. We
use this feature to advect colors and parametric directions
on the surface through time. If a different surface track-
ing method is preferred, the texture particle interpolation
method developed by Rasmussen et al. [REN∗04] could be
used to advect colors, though this approach would introduce
significant computational expense and may cause unwanted
blurring between nearby surfaces.

3.2. Surface Parameterization

To apply any texture to the surface, we must construct some
parameterization of the surface. For our optimization-based

Figure 4: These images show the patches used in our opti-
mization process. Each patch will be assigned colors from
one region of the input texture and overlapping patches will
have their colors blended together. It is interesting to note
that we cannot always construct perfect patches and this
leads to small holes in some of the patches.

synthesis method (see Section 3.3), we create local param-
eterizations of a set of overlapping patches on the surface
(see Figure 4). For each patch, the parameterization allows
us to map colors on the surface to two-dimensional texture
space and vice versa.

The surface meshes generated by the liquid simulation
system, which uses a marching cubes method, contain many
poorly shaped triangles and large dihedral angles. Unfortu-
nately, these meshes do not admit even local parameteriza-
tions without significant distortions. Consequently, as a pre-
processing step, we re-tile the surfaces using the method pre-
sented by Turk [Tur92]. This re-tiling step also allows us to
control the resolution of the texture on the surface [WL00].
We then uniformly sample points on the surface using the re-
pulsion method described by Turk [Tur92]. For each point,
pi we grow a surface patch using the method described by
Sorkine et al. [SCOGL02]. The principal difference is that
we allow our patches to overlap, rather than creating disjoint
patches.

We grow our patches by first mapping the triangle con-
taining pi to texture space. This triangle is oriented based
on the parametric direction advected during surface track-
ing (Section 3.1). We then iteratively add vertices adjacent
to the patch. We place each vertex in texture space at the
point which minimizes the distortion to the triangles cre-
ated by adding the vertex. We reject any vertex that creates
overly distorted triangles or causes any self-intersections of
the patch in texture space. Finally, we apply the patch opti-
mization procedure described by Praun et al. [PFH00]. This
optimization involves solving a sparse linear system and
seeks to align all of the triangles in the patch with the ad-
vected parameter directions.

3.3. Texture Synthesis

Due to discontinuities, surface stretching/compression, or
blurring of the surface signal, the distorted pattern of col-
ors generated by the semi-Lagrangian mapping typically

c© The Eurographics Association 2006.



A. W. Bargteil et al. / A Texture Synthesis Method for Liquid Animations 349

w = 0.0 w = 0.2 w = 0.4 w = 0.6 w = 0.8 w = 1.0

Figure 5: This figure shows the last frame of an animation similar to those in Figure 2 for a variety of w values. For low values
of w, the final texture more closely matches the input texture. As w increases there is more temporal coherence between the
frames, but the optimization is less able to match the details of the sample texture.

will not be a good match to the original texture pattern.
To force the surface colors to more closely match the in-
put sample texture, we employ an optimization-based tex-
ture synthesis method based on the one presented by Kwatra
et al. [KEBK05].

Throughout the optimization we store three types of color
for each vertex of each surface patch: the current colors, the
advected colors, and the best-match colors. The current col-
ors refer to the colors currently stored on the mesh—a blend
of all the best-match colors of all the patches overlapping a
given vertex. The current colors represent the current state
of the optimization and change with each optimization step.
When optimization is complete the current colors will define
the final texture on the surface. The advected colors refer to
the distorted colors generated through the semi-Lagrangian
mapping. The advected colors are used to initialize the cur-
rent colors, but remain constant during optimization. The
best-match colors are the colors, chosen from the input tex-
ture sample, that most closely match the current colors in a
given patch.

Each iteration of the optimization process comprises four
steps for each patch:

1. Map the current and advected colors from the surface to
texture space.

2. Find the best-match to the current colors and advected
colors in the sample texture.

3. Map these best-match colors to the surface.
4. Update the current colors on the surface.

Step (1) uses the parameterization described in Section 3.2
to map the current and advected colors from the surface to
texture space. Step (2) finds the best match in the input sam-
ple texture to both the advected and current colors by finding
the region in the input sample texture which minimizes the
energy function

E(c,a,b) = ∑
i, j

g(i, j)
∥∥(1−w)(ci j −bi j)+w(ai j −bi j)

∥∥2
,

where c are the current colors for the patch (mapped to tex-
ture space), a are the advected colors, b are the best-match
colors (which is the variable we are minimizing over), i and j
vary over the two-dimensional texture region, g(·) is a Gaus-
sian weighting function which ensures that colors near the

Figure 6: This figure shows two textures applied to an ani-
mation of a tank filling with viscous fluid.

center of the patch have more weight, and w is a weighting
parameter that trades off temporal coherence and matching
the sample texture (see Figure 5). Step (3) maps these best-
match colors from texture space to the surface mesh. Finally,
step (4), removes the contribution of the previous best-match
colors from the current colors stored at the mesh vertices and
blends in the colors of the new best match. Following Kwa-
tra et al. [KEBK05], we perform the optimization at several
mesh resolutions and for several patch sizes at each resolu-
tion.

This optimization approach is particularly appealing in
our context. In many parts of the surface that have expe-
rienced minimal distortion, the advected colors may quite
closely match the sample texture. Consequently, the op-
timization makes only minor changes. Additionally, we
achieve temporal coherence by initializing the optimization
with the advected colors and including a term in the energy
function which attempts to match these advected colors. This
temporal coherence is demonstrated in Figure 3.

4. Results

We have implemented the method described in this paper
and demonstrated it with a variety of fluid motions and
texture samples. The fluid motions demonstrate significant
squashing and stretching of the surface as well as a variety
of topological changes. Our method generates surface tex-
tures which match the input sample texture while remaining
temporally coherent.

Figure 1 shows an animation of a splash created when a
ball of fluid is thrown into a shallow pool of fluid. The re-

c© The Eurographics Association 2006.



350 A. W. Bargteil et al. / A Texture Synthesis Method for Liquid Animations

Figure 7: This figure shows some examples with multiple textures. After initialization the optimization searched both textures
for the best match.

sulting motion demonstrates significant stretching of the sur-
face, but the surface texture does not become overly distorted
and always provides a good match to the input sample tex-
ture. If we simply advected colors on the surface, the texture
would significantly blur and distort.

Figure 2 shows an animation of a melting bunny with a
checkerboard texture. Though the resulting texture is not a
perfect checkerboard, which is impossible because the sur-
face is not developable, locally the texture quite closely
matches the checkerboard sample, and globally the texture
does resemble a checkerboard.

Figure 3 shows an animation of two balls of fluid thrown
at each other. Because we explicitly include temporal co-
herence in the energy function there is no noticeable “pop”
when the two spheres merge, rather they gradually move to-
ward a continuous texture which matches the sample. Fig-
ure 6 shows an additional example of viscous fluid filling a
tank with two different textures. Figure 7 shows some exam-
ples with multiple textures.

Unfortunately, our implementation is not particularly fast.
Re-tiling a surface mesh takes about one minute, generat-
ing and optimizing the surface patches takes between fifteen
and thirty minutes for a single frame, and the texture opti-
mization takes between one and fifteen minutes per frame,
depending on the amount of distortion of the texture and
the number of vertices in the mesh. Fortunately, the re-tiling
and patch generation can be done in parallel, so they do
not create a significant bottleneck in a traditional rendering
pipeline. Additionally, in this work we were more concerned

with developing a method which produces high quality re-
sults rather than one optimized for speed. We believe the
general method could be made much faster, perhaps using
ideas developed by Magda and Kriegman [MK03].

Concurrently with our work, Kwatra et al. [KAK∗06a,
KAK∗06b] have developed a very similar example-based
texture synthesis method for fluids. However, they do not
build and optimize patches as a precomputation, but rather
construct color neighborhoods on the fly using the method
presented by Turk [Tur01]. They also have a more developed
texture synthesis module which uses K-means trees to find
the best match in the example texture rather than our brute
force approach.

5. Conclusion

We have presented a new technique for texturing liquid sur-
faces, which overcomes the discontinuities and distortions
of an advected parameterization while maintaining excellent
temporal coherence. Our method is able to handle a wide va-
riety of input sample textures and should prove to be a useful
tool for artists, complementing existing texturing techniques
such as procedural texturing [EMP∗02], and advected tex-
ture maps.

6. Acknowledgments

We thank the other members of the Berkeley Graphics
Group, the anonymous reviewers and Vivek Kwatra for their
helpful criticism and comments and Greg Turk for his mesh

c© The Eurographics Association 2006.



A. W. Bargteil et al. / A Texture Synthesis Method for Liquid Animations 351

retiling code. This work was supported in part by Califor-
nia MICRO 04-066 and 05-044, and by generous support
from Apple Computer, Pixar Animation Studios, Autodesk,
Intel Corporation, Sony Computer Entertainment America,
and the Alfred P. Sloan Foundation. Adam Bargteil was sup-
ported in part by a Siebel Scholarship.

References

[BGOS06] BARGTEIL A. W., GOKTEKIN T. G., O’BRIEN J. F.,
STRAIN J. A.: A semi-Lagrangian contouring method for fluid
simulation. ACM Trans. Graph. 25, 1 (2006).

[Bon97] BONET J. S. D.: Multiresolution sampling procedure for
analysis and synthesis of texture images. In the Proceedings of
ACM SIGGRAPH 1997 (1997), pp. 361–368.

[BVI91] BENNIS C., VÉZIEN J.-M., IGLÉSIAS G.: Piecewise
surface flattening for non-distorted texture mapping. In the Pro-
ceedings of ACM SIGGRAPH 1991 (1991), pp. 237–246.

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In the Proceedings of ACM SIG-
GRAPH 2001 (2001), pp. 341–346.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. In Proceedings of the International Confer-
ence on Computer Vision-Volume 2 (September 1999), pp. 1033–
1038.

[EMF02] ENRIGHT D. P., MARSCHNER S. R., FEDKIW R. P.:
Animation and rendering of complex water surfaces. In the Pro-
ceedings of ACM SIGGRAPH 2002 (July 2002), pp. 736–744.

[EMP∗02] EBERT D. S., MUSGRAVE K. F., PEACHEY D., PER-
LIN K., WORLEY S.: Texturing & Modeling: A Procedural Ap-
proach, Third Edition. Morgan Kaufmann, December 2002.

[FM96] FOSTER N., METAXAS D.: Realistic animation of liq-
uids. In Graphics Interface 1996 (May 1996), pp. 204–212.

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.:
A method for animating viscoelastic fluids. In Proceedings of
ACM SIGGRAPH 2004 (Aug. 2004), pp. 463–468.

[HB95] HEEGER D. J., BERGEN J. R.: Pyramid-based texture
analysis/synthesis. In the Proceedings of ACM SIGGRAPH 1995
(1995), pp. 229–238.

[HNB∗06] HOUSTON B., NIELSEN M. B., BATTY C., NILSSON

O., MUSETH K.: Hierarchical RLE level set: A compact and
versatile deformable surface representation. ACM Trans. Graph.
25, 1 (2006), 151–175.

[KAK∗06a] KWATRA V., ADALSTEINSSON D., KWATRA N.,
CARLSON M., LIN M.: Texturing Fluids. Tech. rep., Univer-
sity of North Carolina at Chapel Hill, 2006.

[KAK∗06b] KWATRA V., ADALSTEINSSON D., KWATRA N.,
CARLSON M., LIN M.: Texturing fluids. In the Proceeding
of ACM SIGGRAPH 2006 Sketches & Applications (2006).

[KEBK05] KWATRA V., ESSA I., BOBICK A., KWATRA N.:
Texture optimization for example-based synthesis. ACM Trans.
Graph. 24, 3 (2005), 795–802.

[MK03] MAGDA S., KRIEGMAN D.: Fast texture synthesis on
arbitrary meshes. In Proceedings of the 14th Eurographics work-
shop on Rendering (2003), pp. 82–89.

[MYV93] MAILLOT J., YAHIA H., VERROUST A.: Interactive
texture mapping. In the Proceedings of ACM SIGGRAPH 1993
(1993), pp. 27–34.

[Ney03] NEYRET F.: Advected textures. In ACM SIG-
GRAPH/Eurographics symposium on Computer animation
(2003), pp. 147–153.

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped tex-
tures. In the Proceeding of ACM SIGGRAPH 2000 (2000),
pp. 465–470.

[REN∗04] RASMUSSEN N., ENRIGHT D., NGUYEN D.,
MARINO S., SUMNER N., GEIGER W., HOON S., FED-
KIW R.: Directable photorealistic liquids. In ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2004), pp. 193–202.

[RNGF03] RASMUSSEN N., NGUYEN D. Q., GEIGER W., FED-
KIW R. P.: Smoke simulation for large-scale phenomena. In
the Proceedings of ACM SIGGRAPH 2003 (July 2003), pp. 703–
707.

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R.,
LISCHINSKI D.: Bounded-distortion piecewise mesh parame-
terization. In the Proceedings of IEEE Visualization ’02 (2002),
pp. 355–362.

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPE

H.: Texture mapping progressive meshes. In the Proceedings of
ACM SIGGRAPH 2001 (2001), pp. 409–416.

[Sta99] STAM J.: Stable fluids. In the Proceedings of ACM SIG-
GRAPH 99 (Aug. 1999), pp. 121–128.

[Tur91] TURK G.: Generating textures on arbitrary surfaces using
reaction-diffusion. In the Proceedings of ACM SIGGRAPH 1991
(1991), pp. 289–298.

[Tur92] TURK G.: Re-tiling polygonal surfaces. In the Proceed-
ings of ACM SIGGRAPH 1992 (1992), pp. 55–64.

[Tur01] TURK G.: Texture synthesis on surfaces. In the Proceed-
ings of ACM SIGGRAPH 2001 (2001), pp. 347–354.

[WH04] WIEBE M., HOUSTON B.: The tar monster: Creating
a character with fluid simulation. In the Proceedings of ACM
SIGGRAPH 2004 Sketches & Applications (2004).

[Wit99] WITTING P.: Computational fluid dynamics in a tradi-
tional animation environment. In the Proceedings of ACM SIG-
GRAPH 1999 (1999), pp. 129–136.

[WK91] WITKIN A., KASS M.: Reaction-diffusion textures. In
the Proceedings of ACM SIGGRAPH 1991 (1991), pp. 299–308.

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using tree-
structured vector quantization. In the Proceedings of ACM SIG-
GRAPH 2000 (2000), pp. 479–488.

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over arbitrary
manifold surfaces. In the Proceedings of ACM SIGGRAPH 2001
(2001), pp. 355–360.

c© The Eurographics Association 2006.




