
1

Bottom-Up/Top-Down Image Parsing with Attribute Grammar

Feng Han and Song-Chun Zhu

Departments of Computer Science and Statistics

University of California, Los Angeles, Los Angeles, CA 90095

{hanf, sczhu}@stat.ucla.edu.

Abstract

This paper studies a simple attribute graph grammar as a generative image representation for
image parsing in a Bayesian framework. This grammar has one class of primitives as its terminal
nodes – 3D planar rectangles projected on images, and six production rules for the spatial layout
of the rectangular objects. All the terminal and non-terminal nodes in the grammar are described
by attributes for their geometric properties and image appearance. Each production rule either
instantiates an non-terminal node as a rectangular primitive or expands a node into its components.
A production rule is associated with a number of equations that constrain the attributes of a parent
node and those of its children. This grammar, albeit simple, can produce a combinatorial number
of configurations and objects in made-made scenes, such as buildings, hallways, kitchens, and living
rooms etc. A configuration refers to a planar graph representation produced by a series of grammar
rules in a parsing graph (augmented from a parsing tree by including horizontal constraints). A given
image is then generated from a configuration by a primal sketch model [5] which is formulated as the
likelihood in the Bayesian framework. The paper will be focused on designing an effective inference
algorithm which computes (or construct) a hierarchical parsing graph from an input image in the
process of maximizing a Bayesian posterior probability or equivalently minimizing a description
length (MDL). It is worth clarifying that the parsing graph here is only a generic interpretation
for the object layout and it is beyond the scope of this paper to deal with explicit scene and
object recognition. The inference algorithm integrates bottom-up rectangle detection as weighted
candidates (particles) which activate the grammar rules for top-down predictions of occluded or
missing components. Intuitively each grammar rule maintains a list of particles as in an “assembly
line”. The top-down process chooses the most promising particle (with heaviest weight) at each step.
The acceptance of a grammar rule means a recognition of a certain sub-configuration so that the
description length is decreased in a greedy way, and it also activates a number of actions: (i) creating
new “top-down” particles and insert them into the lists; (ii) reweighting some particles in the lists;
(iii) passing attributes between a node and its parent through the constraint equations associated
with this production rule. When an attribute is passed from a child node to a parent node, it is
called bottom-up; and the opposite is called top-down. The whole procedure is, in spirit, similar to
the datat-driven Markov chain Monte Carlo paradigm [20], [16], except that a greedy algorithm is
adopted for simplicity.

This manuscript is submitted to IEEE Trans. on PAMI. A short version was published in ICCV05.

2

I. Introduction

In real world images, especially man-made scenes, such as buildings, offices, and living

spaces, a large number of patterns (objects) are composed of a few types of primitives

arranged in a small set of spatial relations. This is very similar to language where a huge

set of sentences can be generated with relatively small vocabulary and grammar rules in a

hierarchy from words, phrases, clauses, and to sentences. In this paper, we study a simple

attribute grammar as a generative image representation for image parsing in a Bayesian

framework. Fig. 1 illustrates such a representation for a kitchen scene.

Given an input image, our objective is to compute a hierarchical parsing graph where

each non-terminal node corresponds to a production rule. In this parsing graph, the vertical

links show the decomposition of scene and objects into their components, and the horizontal

(dashed) links specify the spatial relations between components through constraints on their

attributes. Thus a parsing graph is more general than a parsing tree in language. The parsing

graph then produces a planar configuration which is a sketch or graph representation as in

the primal sketch model [5]. The parsing graph is not pre-determined but constructed “on-

the-fly” from the input image with bottom-up and top-down steps which in combination

maximize a Bayesian posterior probability in a greedy way.

It is worth clarifying that the parsing graph here is only a generic interpretation for the

object layout and it is beyond the scope of this paper to deal with explicit scene and object

recognition.

In the following, we shall briefly introduce the representation and algorithm, and then we

discuss the literature and our contributions.

3

A CB

scene

objects

surfaces

D

configuration
 C

image
I

parsing graph
 G

rule
r5rule

r2

rule
r6

rule
r4

S

Fig. 1. An example of generative scene representation and parsing with graph grammar. The spatial layout

of a kitchen scene is interpreted in a hierarchical parsing graph where each non-terminal node corresponds

to a grammar rule and a terminal node is a projected rectangle. We only show part of the parsing graph for

clarity. The parsing graph forms a planar configuration which in turn generates an image in a primal sketch

model (Guo et al 2003). The parsing graph is inferred from an image in a top-down/bottom-up procedure

by maximizing a Bayesian posterior probability.

A. Overview of the representation and model

In this paper, our grammar has one class of primitives as the terminal nodes which are 3D

planar rectangles projected on images. Obviously rectangles are the most popular elements

in man-made scenes, such as buildings, hallways, kitchens, living rooms etc. As shown in

Fig. 3, a rectangle is specified by 8 variables called attributes. A degenerated rectangle has

fewer variables. A rectangle consists of two pairs of parallel line segments which intersect at

two vanishing points in the image plane. If a pair of line segments are parallel in the image

plane, then their vanish point is at infinity. The grammar has six production rules as shown

4

in Fig. 4 and three of them are illustrated in Fig. 1. For example, a “line rule” aligns a number

of rectangles in one row, a “nesting rule” has one rectangle containing the other, and a “cube

rule” has three rectangles forming a rectangular box. Each production rule is associated with

a number of equations that constrain the attributes of a parent node and those of its children.

Thus our graph grammar is attributed. These rules can be used recursively to generate a

large set of complex configurations. Fig. 2 shows two typical configurations – a floor pattern

and a toolbox pattern, and their corresponding parsing graphs.

a b c ed

a
b c

d er2

r4 r4

r4

a

b
c

d

r2

r4
r4

r6

abc de

e

f

f

g

g

(a) (d)(c)(b)

Fig. 2. Two examples of rectangle object configurations (b) and (d) and their corresponding parsing graphs

(a) and (c). The production rules are showed as non-terminal nodes.

Note that the parsing graph is hierarchical, and each non-terminal node corresponds to

a grammar rule. The configuration is represented in a planar sketch graph. This graph

is further broken into smaller image primitives for edge elements, bars, and corners in an

image primitive dictionary, which in turn, generates the image by the primal sketch model

[5], [6]. Therefore our model is fully generative from the scene node to the pixels (see image

reconstruction results in Figs.11 and 12) and it is divided into two levels. The first level is

what this paper will be focused on and it goes from the scene node to the configuration. The

second level goes from the configuration to the image pixels and is referred to a previous

work on primal sketch [5], [6].

We shall formulate a prior probability model on the parsing graphs and it integrates two

interesting components studied widely in the literature. One is the stochastic context free

5

grammar (SCFG) for the hierarchical parsing graph and the other is a Markov model on the

configurations (graphs) for local spatial relations. The likelihood adopts the primial sketch

model. This yields a Bayesian posterior probability (or equivalently a description length) to

be optimized.

B. Overview of the top-down/bottom-up inference algorithm

The paper is mostly focused on designing an effective inference algorithm that integrate

top-down and bottom-up inference for attribute grammars. We adopt a greedy algorithm

for maximizing the Bayesian posterior probability. It mainly proceeds in three phases.

Phase I is bottom-up detection. We first compute a number of edge segments from the

input image, and estimate a number of vanish points (usually three) using a method studied

in [19]. Thus the line segments are divided into three line sets as illustrated in Fig. 7. Then

a number of rectangle hypotheses are generated in a method similar to RANSAC [3]. We

draw two pairs of line segments from two out of the three line sets, and then evaluate it by

the goodness of fit to a rectangle in the edge map. Each rectangle is a weighted hypothesis

called a particle. An excessive number of rectangles are proposed as bottom-up particles

which may overlap or conflict with each other. The bottom-up particles are candidates for

activating the instantiation rule r5 and are sorted in decreasing order by their weights. Each

rule maintains its own candidate set as Fig.9 illustrates.

Phase II initializes the terminal nodes of the objective parsing graph in a greedy way.

In each step, the algorithm picks the most promising bottom-up particle (with the heaviest

weight) among all the candidate and accept it if it increases the Bayesian probability or

reduces the description length. Then the weights of all the candidates who are overlapping

or conflicting with this accepted rectangle are updated.

Phase III integrates top-down/bottom-up inference. Each rectangle in the current state

of solution matches to a production rule (say rule r5 for a single rectangle) with attributes

6

passed to the non-terminal node. These non-terminal nodes are in turn matched (often

partially) to other production rules (rule r2, r3, r4, r6) which then generate a number of top-

down particles for predictions whose weights are defined based on the prior probabilities.

For example, two adjacent rectangles may activate the line rule r2 (or a mesh r3 or a cube

r6), which then generates a number of rectangles along the aligned axis. See Fig.10 for

the top-down examples in the kitchen scene. Some of these top-down particles may have

existed in the candidate sets of bottom-up particles. Such particles bear both the upward

and downward arrows in Fig.9.

Like the Phase II, in each step the algorithm picks the most promising particle (with the

heaviest weight) among all candidate sets. Then it is accepted if it increases the Bayesian

probability or reduces the description length. Thus a new non-terminal node is added to

the parsing graph. It means a recognition of sub-configuration and activates the following

actions (i) Creating possibly new “top-down” particles and insert them in the lists. (ii)

Re-weighting some particles in the candidate sets. (iii) Passing attributes between a node

and its parent through the constraint equations associated with this production rule.

The top-down and bottom-up computing is illustrated in Fig. 8 for the kitchen scene. For

most images, the parsing graphs have about 3 layers with about 20 nodes, so the compu-

tation can be done by AI search algorithms, such as best first search. In our experiments,

we observed that the top-down and context information helps the algorithm detect weak

rectangles which are missing in bottom-up detection. Some “illusory rectangles” could also

be hallucinated, especially due to the line and mesh grammar rules.

C. Related work on attribute grammar, rectangle detection, and image parsing

In the literature, the study of syntactic pattern recognition was pioneered by Fu et al [4],

[17], [18] in the 1970-80s. Its applicability has been limited by two difficulties: (i) The prim-

itive patterns (terminators in their description languages) could not be computed reliably

7

from real images. Thus their parsing algorithms were mostly applied to artificial image or

diagrams. (ii) The study was mostly on string grammar and stochastic context free gram-

mars (SCFG) in early work which are less expressive. In recent years, attribute grammars [1]

and context sensitive graph grammars[12] have been developed in visual diagrams parsing,

such as music notes and diagrams for relational databases. These grammars are much de-

sired in vision. In the vision literature, graph grammars are mostly studied in binary shape

recognition, such as the grammars for medial axis [21] and shock graph [13].

Detecting rectangular structures in images has been well studied in the vision literature,

especially for detecting building roofs in aerial images. One type of methods [8], [9], [15]

detect edge segments, line primitives and then group them into rectangles. The other types

of methods [23], [19] use Hough Transforms on edge maps to detect rectangles globally. Our

method is a combination of various techniques as we introduced in a previous subsection.

Rectangle detection will not be a main technical focus of our paper. Although this paper is

focused on rectangular scenes, we argue that the method could be extended to other classes

of objects.

Our work is closely related to some previous work on object recognition and image parsing

by data-driven Markov chain Monte Carlo (DDMCMC) [20], [16]. The common goal is to

design effective algorithms by integrating bottom-up and top-down steps for inferring hier-

archical image structures. In comparison to the previous work, this paper has the following

novel aspects.

1. It extends the representation with an attribute grammar, which sets the ground for rec-

ognizing objects with structural variabilities.

2. It derives a general probability model that combines both SCFG (or Markov tree) model

and the Markov random field models on graphs. This model is tightly integrated with the

primal sketch models to yield a full generative representation from scene to pixels.

8

3. It extends the bottom-up and top-down parsing mechanism for grammar rules. This also

includes a new algorithm for rectangle detection.

The remaining of the paper is organized as follows. We first present the attribute grammar

representation in Section II. Then we derive the probability models and pose the problem as

Bayesian inference in Section III. The top-down/bottom-up inference algorithm is presented

in Section IV. Some experimental results are shown in Section V. We then conclude the

paper with a discussion of future work in Section VI.

II. Attribute graph grammar for scene representation

In this section, we introduce the attribute graph grammar representation to set the back-

ground for the probabilistic models in the next section.

A. Attribute graph grammar

An attribute graph grammar is augmented from the stochastic context free grammar by

including attributes and constraints on the nodes.

Definition 1: An attribute graph grammar is specified by a 5-tuple

G = (VN , VT , S,R, P). (1)

VN and VT are the sets of non-terminal and terminal nodes respectively, S is the initial node

for scene. R is a set of production rules for spatial relationship. P is the probability for the

grammar to be discussed in the next section.

A non-terminal node is denoted by capital letters A,A1, A2 ∈ VN , and a terminal node is

denoted by lower case letters a, b, c, a1, a2 ∈ VT . Both non-terminal and terminal nodes have

a vector of attributes denoted by X(A) and x(a) respectively.

R = {r1, r2, ..., rm} (2)

9

is the set of production rules expanding a non-terminal node into a number of nodes in

VN ∪ VT . Each rule is associated with a number of constraint equations. For example, the

following is a rule that expands one node A into two nodes A1, A2 ∈ VN .

r : A → (A1, A2). (3)

The associated equations are constraints on the attributes.

gi(X(A)) = fi(X(A1), X(A2)), i = 1, 2, ..., n(r). (4)

gi() and fi() are usually projection functions that take some elements from the attribute

vectors. For instance, let X(A) = (X1, X2, X3) and X(A1) = (X11, X12), then an equa-

tion could be simply an equivalence constraint (or assignment) for passing the information

between nodes A and A1 in either directions,

X1 = X11. (5)

In the parsing process, sometimes we know the attributes of a child node X11 and then pass

it to X1 in rule r. This is called “bottom-up message passing”. Then X1 may be passed

to another child node’s attribute X2 with X21 = X1. This is called “top-down message

passing”.

A production rule may instantiate a non-terminal node to a terminal node

r : A → a, (6)

with constraints

gi(X(A)) = fi(x(a)), i = 1, 2, ..., n(r).

Definition 2: A parsing graph G is a tree structured representation expanded from a root

node S by a sequence of production rules

G = (γ1, γ2, ..., γk).

10

Definition 3: A configuration C is a set of terminal nodes (rectangles in this paper),

C = {(ai, x(ai)) : ai ∈ VT , i = 1, 2, ..., K}.

The attributes are denoted by X(C).

C = C(G) is generated deterministically by the parsing graph. In this paper, the rectangle

configuration C(G) is represented as a planar graph.

Definition 4: A pattern of grammar G is the set of all valid configurations that can be

derived by the production rules starting from a root node S. It is denoted by

Σ(G) = {(C,X(C)) : S
γ1,...,γk−→ C, γi ∈ R, i = 1, 2, ..., k.}, (7)

By analogy to grammars in natural language, Σ is called the language (i.e. all valid sentences)

for grammar G.

Fig.2 illustrates two parsing graphs for two configurations of rectangle scenes using the

production rules discussed next.

Most grammars are ambiguous, and thus a configuration C may have more than one

parsing graphs. Our goal is to compute the most probable parsing graph according to the

Bayesian formulation in the next section. In the following, we explain the primitive and

production rule of our grammar for rectangle scenes.

B. A class of primitives — rectangles

In this paper, we use only one class of primitives – planar rectangle in 3-space illustrated

in Fig. 3. The two pairs of parallel line segments in 3D may intersect at two vanishing points

v1, v2 through projection. Therefore, the terminal set is

VT = {(a, x(a)) : x(a) ∈ Ωa}. (8)

There are many equivalent ways to define the attributes x(a) for a rectangle. We choose the

variables to simplify the constraint equations, and thus denote a by 8 variables: two vanishing

11

points v1 = (x1, y1) and v2 = (x2, y2), two orientations θ1 and θ2 for the two boundaries

converging at v1, and two orientations θ3 and θ4 for the two boundaries converging at v2.

x(a) = (x1, y1, x2, y2, θ1, θ2, θ3, θ4). (9)

VT is a rather large set.

O

v1
v2

Fig. 3. A planar rectangle (shaded) is described by 8 variables. The two vanish points v1 = (x1, y1) and

v2 = (x2, y2) and four directions θ1, θ2, θ3 and θ4 at the two vanish points.

C. Six production rules

As a generic grammar for image interpretation, it has only two types of non-terminal nodes

– the root node S for the scene and a node A for object.

VN = {(S, X(S)), (A,X(A)) : X(S) = n,X(A) ∈ ΩA}. (10)

The scene node S generates n independent objects. The object node A can be instantiated

(assigned) to a rectangle (rule r5), or be used recursively by other four production rules: r2

– the line production rule, r3– the mesh production rule, r4– the nesting production rule,

and r6 –the cube production rule. The six production rules are summarized in Fig. 4.

The attribute X(A) = (`(A), Xo(A)) includes a label ` for the type of object (structure)

represented by A, and Xo(A) for other attributes, for example geometric properties and

appearance.

`(A) ∈ ω` = {line, mesh, nest, rect, cube} (11)

12

r1
S ::= S

m

r2

::=A A

A1
m

scene

line

r3

::=A A

A11

mxn

mesh

AmA2

r4

::=A A

A1

nesting

A2

r6

::=A A

cube

A1

A2
A3

r5

::=A

instance

A

A1
A2

A3

line production rule

A1 A2

nesting production rule

A1
A2

A3

cube production rule

rectangleA1 A2 Am A1m

A2m a

Fig. 4. Six attribute grammar rules. Attributes will be passed between a node to its children and the

horizontal lines shows constraints on attributes. See text for explanation.

Thus accepting a production rule is to recognize one of the five patterns in inference. For

object recognition tasks, we should further introduce different object categories. The other

attributes Xo(A) are different for different object types, so we have the space of A as the

union of the five different subspaces.

ΩA = Ωline
A ∪ Ωmesh

A ∪ Ωnest
A ∪ Ωrect

A ∪ Ωcube
A

The geometric attributes for all the four different objects (except rectangle) are described

as following. For clarity, we introduce the the appearance attributes (intensity) in the next

section together with the primal sketch model.

1. For a line object of n rectangles,

Xo(A) = (v1, v2, θ1, θ2, θ3, θ4, n, τ1, ..., τ2(n−1)).

The first eight parameters define the bounding box for the n rectangles, and the rest 2n− 2

13

orientations are used for the remaining directions specifying the individual rectangles in the

object, as illustrated in Fig. 4 (row 3 left).

2. For a mesh object of m× n rectangles,

Xo(A) = (v1, v2, θ1, ..., θ4,m, n, τ1·1..., τ2(m−1)·(n−1))

Again, the first eight parameters define the bounding box for the mesh, and the rest includes

2(m−1)(n−1) orientations for the remaining directions specifying the individual rectangles

in the object.

3. For a nest object with 2 rectangles.

Xo(A) = (v1, v2, θ1, ..., θ4, τ1, ..., τ4)

4. For a cube object,

Xo(A) = (v1, v2, v3, θ1, θ2, θ3, θ4, θ5, θ6).

It has three vanish points and 3 pairs of orientation angles.

Remark 1: If the rectangles are arranged regularly in the line or mesh objects, for example,

equally spaced, then we can omit all the orientations τi for defining the individual rectan-

gles. The sharing of bounding boxes and orientations are intrinsic reasons for grouping and

composition, as it reduces the description length.

Remark 2: The rectangle elements in the above attribute description could be the bounding

box for other objects to allow recursive applications of the rules.

Remarks 3: In addition to these hard constraints for passing attributes among nodes, we

shall introduce probabilities to impose soft constraints on the free variables (mostly the τ ’s)

so that the elements are nearly equally spaced.

In the following we briefly explain the constraint equations associated with the rules. In

most of the cases, the constraint equations are straightforward but tedious to enumerate.

Therefore we choose to introduce the typical examples.

14

The simplest rule is r5 for instantiation. It assigns a rectangle and the associate attributes

to the the non-terminal node A. Therefore the constraint equation is simply an assignment

for the 8 variables.

r5 : A → a; Xo(A) = x(a).

This assignment may go in either directions in computation.

For the line production rule r2, we choose m = 3 for simplicity.

r2 : A → (A1, A2, A3);

gi(Xo(A)) = fi(Xo(A1), Xo(A2), Xo(A3)), i = 1, 2, ..., n(2).

As illustrated in Fig. 4 (bottom-left corner), S is the bounding rectangle for A1, A2, A3 and

shares with them the two vanish points and 4 orientations. Given Xo(A), the three rectangles

A1, A2, A3 have only 4 degrees of freedom for the two intervals, all the other 3× 8− 4 = 20

attributes are decided by the above attribute equations. One can derive the constraint

equations for the other rules in a similar way.

III. Probability models and Bayesian formulation

Let I be an input image, our goal is to compute a parsing graph G whose terminal nodes,

i.e. all rectangles, compose a 2D planar configuration C = C(G) where each rectangle

is described as four line segments. Besides these line segments, there are other structures

(object boundaries) in I. We call them free sketches and denote by Cfree. Together we have

a primal sketch representation which generates the image I.

Csk = (C(G), Cfree).

In a Bayesian framework, our objective is to maximize a posterior probability,

G∗ = arg max p(I|Csk)p(G)p(Cfree). (12)

15

The prior model p(G) is the fifth component in the grammar G. Cfree is the nuisance

variables whose prior model p(Cfree) follows the primal sketch model. Now we present p(G)

and likelihood p(I|Csk) in the following two subsections.

A. Prior model p(G) for the parsing graph

A parsing graph G is a series of production rules γ1, ..., γk. Let ∆N(G) and ∆T (G)

be the sets of non-terminal nodes and terminal nodes respectively in the parsing graph

G. Each non-terminal node A in G has two types of variables `(A) and Xo(A). `(A) ∈

{line, mesh, nest, rect, cube} = Ω` is a “switch” variable for selecting one of the 5 rules.

We denote the probabilities for the five rules as q` which are summed to one:
∑

`∈Ω`
q` = 1.

At the root S, we have a variable m for the number of objects and a prior model p(m).

Removing the attributes, we denote the parsing tree by

T = (m, {`(A) : A ∈ ∆N(G)}).

The parsing graph is augmented with attributes

G = (T, Xo(T)), Xo(T) = {Xo(A) : A ∈ ∆N(G)}.

The prior model for the parsing tree T follows the SCFG, and it can be written in an

exponential form,

p(T) = p(m)
∏

A∈∆N (G)

q` =
1

Z0

exp{−Eo(T)} (13)

Eo(T) = λom +
∑

A∈∆N (G)

λ`(A). (14)

In the above equation, λo > 0 is a constant penalizing the complexity m, λ` = − log q`.

For a given tree T and therefore the configuration C, we introduce soft constraints on the

attributes for the spatial relationships. This leads to some typical Markov model through a

16

maximum entropy principle,

p(Xo(T)) =
1

Z(T)
exp{−E(Xo(T))} (15)

E(Xo(T)) =
∑

A∈∆N (G)

[φ`(A)(Xo(Ai)) +
∑

B∈Child(A)

ψ`(A)(Xo(A), Xo(B))]. (16)

The potential functions φ() and ψ() usually takes quadratic forms to enforce some regular-

ities, such as the aligned rectangles in a group are evenly spaced. So we have the following

potential functions for the rectangle group, A, in Figure 4 (row 3 left):

φline(Xo(A)) = (d(τ1, τ2)− d(τ3, τ4))
2,

3∑
i=1

ψline(Xo(A), Ai) =
3∑

i=1

(|θ3i − θ3|2 + |θ4i − θ4|2),

where, d() is a function to compute the distance between two neighboring rectangles in the

line group. In addition, we may also relax the hard constraints for some attributes.

Integrating the SCFG and Markov model together, we have a joint probability on the

parsing graphs.

p(G) =
1

Z(G)
exp{−Eo(T)− E(Xo(T)}, (17)

where the two energy terms are defined in eqns.(14) and (16) respectively. Note that p(G)

is not simply the product of p(T) and p(Xo(T)) as it may look like. The partition function

Z(T) in p(Xo(T)) is a function of T, and Z(G) 6= Zo · Z(T). The new partition function

Z(G) depends only on the grammar and is summed over all possible parsing graphs in G.

Z(G) =
∑
G

exp{−Eo(T)− E(Xo(T)}.

This is a crucial property of this prior model. Because of a common Z for different parsing

graphs, we no longer need to worry about the partition function or ratio when we switch

between different configurations in inference.

17

One interpretation for p(G) is to minimize a Kullback-Leibler divergence between p(G)

and the SCFG model p(T), i.e.

p∗(G) = arg min
∑
G

p(G) log
p(G)

p(T)
(18)

under the same soft constraints which were used for deriving the Markov model p(Xo(T))

through maximum entropy.

Solving the constrained optimization problem above by Lagrange multipliers, we get p(G)

in equation (17). This prior model integrates the SCFG model and Markov random field

model. There is a similar formulation to the constrained stochastic models in natural lan-

guage [11] where people integrates SCFG with bi-gram statistics. A more advanced form is

derived in a most recent work [2] where we may even allow the neighborhoods of the MRF

to be variables.

B. Likelihood model p(I|Csk)

We adopt the primal sketch model for p(I|Csk), and refer to two previous papers [5], [6] for

this model and algorithm. The reconstruction (synthesis) of images using a configuration is

shown in the experiment section (See Figs.11 and 12). In the following we briefly introduce

the model for the paper to be self-contained.

C(G) is a set of rectangles in the image plane. Fig.5 shows a rectangle in a lattice. A

lattice is denoted by Λ and is divided into two disjoint parts: the sketchable part for the

shaded pixels around the rectangles and the non-sketchable part for the remaining part.

Λ = Λsk ∪ Λnsk, Λsk ∩ Λnsk = ∅.

Λ includes pixels which are 2 ∼ 5 pixels away from the rectangle boundaries. The rectangles

are divided into short segments of 5-11 pixels long for lines and corners. Therefore Λsk is

divided into N image primitives (patches) of 5× 7 pixels along these segments.

Λsk = ∪N
k=1Λsk,k. (19)

18

image primitives

Fig. 5. Partition of image lattice Λ into two parts. The shaded pixels Λsk around the rectangles and the

remaining part Λnsk. The rectangles are divided into small edge and corner segments. Therefore Λsk is

divided into many image primitives.

For example, Fig.5 shows two image primitives: one for line segment and one for a corner.

The primal sketch model collects all these primitives in a primitive dictionary represented

(clustered) in parametric form,

∆sk = {Bt(u, v; x, y, τ, σ, Θ) : ∀x, y, τ, σ, θ, t}.

t indexes the type of primitives, such as edges, bars, corners, crosses etc. (u, v) are the

coordinates of the patch centered at (x, y) with scale σ and orientation τ . Θ denotes the

parameters for the intensity profiles perpendicular to each line segment. A corner will have

two profiles. The intensity profiles along the line segment in a primitive are assumed to be

the same.

Therefore there are two types of profiles as Fig. 6 shows: one is a step edge at various scales

(due to blurring effects) and the other is a ridge (bar). The step edge profile is specified with

five parameters: Θ = (u1, u2, w1, w12, w2), which denotes the left intensity, the right intensity,

the width of the left intensity (from the leftmost to the left second derivative extrema), the

blurring scale, and the width of the right intensity respectively as shown in Figure 5. The

19

(a) Edge profile (b) Ridge profile

Fig. 6. The parametric representation of an edge profile (a) and a ridge profile. From Guo, Zhu and Wu,

2005.

ridge profile is represented by seven parameters: Θ = (u1, u2, u3, w1, w12, w2, w23, w3). More

detailed description is referred to [6]. Using the above edge/ridge model, the 1D intensity

function of the profile for the rectangle boundaries could be fully obtained.

Therefore we obtain a generative model for the sketchable part of the image.

I(x, y) = Btk(x− xk, y − yk; τk, σk, Θk) + n(x, y), (x, y) ∈ Λsk,k, ∀k = 1, 2, ..., N. (20)

The residue is assumed to be iid Gaussian noise n(x, y) ∼ G(0, σ2
o). This model is sparser

than the traditional wavelet representation as each pixel is represented by only one primitive.

As it is mentioned previously, rectangles are only part of the sketchable structures in

the images, though they are the most popular structures in the man-made scenes. The

remaining structures are represented as free sketches which are object boundaries that cannot

be grouped into rectangles. These free sketches are also divided into short line segments and

therefore represented by image primitives in the same way as the rectangles.

The non-sketchable part is textures without prominent structures and the textures fill in

the gaps in a way similar to image inpainting. Λnsk is divided into a number of M = 3 ∼ 5

20

disjoint homogeneous texture regions by clustering the filter responses,

Λnsk = ∪M
m=1Λnsk,m.

Each texture region is characterized by the histograms of some Gabor filter responses

h(IΛnsk,m
) = hm, m = 1, 2, ..., M.

The probability model for the textures are the FRAME model [22] with the Lagrange pa-

rameters (vector) βm as the learned potentials. These textures use the sketchable part Λsk

as the boundary condition in calculating the filter responses.

In summary, we have the following primal sketch model for the likelihood.

p(I|Csk) =
1

Z
exp{−

N∑

k=1

∑

(x,y)∈Λsk,k

(I(x, y)−Bk(x, y))2

2σ2
o

−
M∑

m=1

〈βm, h(IΛnsk,m
)〉} (21)

The above likelihood is based on the concept of primitives not rectangles, therefore the

recognition of rectangle or bigger structures (cube, mesh etc.) only affects the likelihood

locally. In other words, our parsing graph is build on the primal sketch representation. This

is important in designing effective inference algorithm in the next section.

One may argue for a region based representation by assuming homogeneous intensities

within each rectangles. We find that the primal sketch has the following advantages over

a region based representation: (1) The intensity inside a rectangle can be rather complex

to model, such as shading effects, textures and surface markings. (2) The rectangles are

occluding each other. One has to infer a partial order relation between the rectangles (i.e.

a layer representation) so that the region based model can be applied properly. This needs

extra computation. (3) Besides all the regions covered by the rectangles, one still needs to

model the background. Thus the detection of a rectangle must be associated with fitting the

likelihood for the rectangle region. In comparison, the primal sketch model largely reduces

the computation.

21

IV. Inference algorithm

Our objective is to compute a parsing graph G by maximizing the posterior probability

formulated in the previous section. The computation algorithm should achieve two difficult

goals: (i) Constructing the parsing graph, whose structure is not pre-determined but con-

structed “on-the-fly” from the input image and primal sketch representation. (ii) Estimating

and passing the attributes in the parsing graph.

There are several ways to infer the optimal parsing graph and Data-Drive Markov Chain

Monte Carlo (DDMCMC) has been used in [20], [16]. In this paper, our domain is limited to

rectangle scenes, and the parsing graph is not too big (usually ∼ 20 nodes). Thus, the best

first search algorithm in artificial intelligence can be directly applied to compute the parsing

graph by maximizing the posterior probability in a steepest ascent way. This algorithm is,

in spirit, very similar to DDMCMC.

Our algorithm consists of three phases. In phase I, we compute a primal sketch repre-

sentation, and initialize the configuration to the free sketches. Then a number of rectangle

proposals are generated from the sketch by a bottom-up detection algorithm. In phase II,

we adopt a simplified generative model by assuming independent rectangles (only r5 and r1

are considered). Thus we recognize a number of rectangles proposed in phase I to initialize

rule r5 in the parsing graph. The algorithm in phase II is very much like matching pursuit

[10]. Finally phase III constructs the parsing graph with bottom-up/top-down mechanisms.

A. Phase I: primal sketch and bottom-up rectangle detection

We start with edge detection and edge tracing to get a number of long contours. Then we

compute a primal sketch representation Csk using the likelihood model in eqn. 21. We seg-

ment each long contour into a number of n straight line segments by polygon-approximation.

In man-made scenes, the majority line segments are aligned with one of three principal di-

22

rections and each group of parallel lines intersect at a vanish point due to perspective pro-

jection. We define all lines ending at a vanish point to be a parallel line group. A rectangle

has two pairs of parallel lines which belongs to two separate parallel line groups. We run the

vanishing point estimation algorithm [19] to group all the line segments into three groups

corresponding to the principal directions. With these three line groups, we generate the

rectangle hypotheses like RANSAC [3]. We exhaustively choose two lines candidates from

each set as shown in Fig.7.(a), and run some simple compatibility tests on their positions to

see whether two pairs of lines delineate a valid rectangle. For example, the two pairs of line

segments should not intersect each other as shown in Fig.7.(b). This will eliminate some

obviously bad fitted hypothesis.

independent rectangles

line segments grouped in three sets by vanish points

(a) (b)

examples of incompatible hypotheses

Fig. 7. Bottom-up rectangle detection. The n line segments are grouped into three sets according to their

vanish points. Each rectangle consists of 2 pairs of nearly parallel line segments (represented by a small

circle).

This yields an excessive number of bottom-up rectangle candidates denoted by

Φ = {π1,, πL}.

These candidates may conflict with each other. For example, two candidate rectangles may

share two or more edge segments and only one of them should appear. We mark this

conflicting relation among all the candidates. Thus if one candidate is accepted in the later

23

stage, those conflicting candidates will be down graded or eliminated.

B. Phase II: pursuing independent rectangles to initialize the parsing graph

The computation in phase I results in a free sketch configuration Csk = Cfree, C(G) = ∅,

and a set of rectangle candidates Φ. In phase II, we shall initialize the terminal nodes of the

parsing graph.

We adopt a simplified model which use only two rules r1 and r5. This model assumes the

scene consists of a number of independent rectangles selected from Φ which explain away

some line segments and the remaining lines are free sketches. A similar model has been used

on signal decomposition with wavelets and sparse coding, thus our method for selecting the

rectangles is similar to the matching pursuit algorithm [10].

Rectangle Pursuit: initialize the terminal nodes of G

Input candidate set Φ = {π1, π2, ..., πM} from phase I.

1. Initialize parsing graph G ← ∅, m = 0.

2. Compute weight ωi for πi ∈ Φ, i = 1, ..., |Φ|, thus obtain

{(πi, ωi) : i = 1, 2, ..., |Φ|}.

3. Select a rectangle π+ with highest weight in Φ,

ω(π+) = max{ω(π) : π ∈ Φ}.

4. Create a non-terminal node A+ in graph G,

G ← G ∪ {A+},

Φ ← Φ \ {π+},m ← m + 1.

C(G) ← C(G) ∪ {π+}.

5. Update the weights ω(π) for π ∈ Φ if π overlaps with π+

6. Repeat 3-5 until ω(π+) ≤ δ0.

Output a set of independent rectangles G = {A1, A2, ..., Am}.

24

In the following, we calculate the weight ω(π) for each rectangle π ∈ Φ and the weight

change.

A rectangle π ∈ Φ is represented by a number of short line segments and corners (primi-

tives) denoted by L(π) some of which are detected in Cfree and the remaining are missing,

which are the missing edges or gaps between primitives in Cfree. Thus we define two sets

L(π) = Lon(π) ∪ Loff(π), with Lon(π) = L(π) ∩ Cfree.

Suppose at step m, the current representation includes a number of rectangles in C(G) and

a free sketch Cfree.

G, Csk = (C(G), Cfree).

Steps 3-4 in the above pursuit algorithm select π+, then the new representation will be

G′ = G ∪ {A+}, C(G′) = C(G) ∪ L(π+), C ′
free = Cfree \ Lon(π+), C ′

sk = (C(G′), C ′
free)

The weight of π+ will be the change (or equally the log-ratio) of log-posterior probabilities

in eqn. (12),

ω(b+) = log[
p(I|C ′

sk)

p(I|Csk)
· p(G′)

p(G)
· p(C ′

free)

p(Cfree)
] (22)

Choosing a rectangle π+ with largest weight ω(π+) > 0 is to increase the posterior probability

in a greedy fashion. The weight can be interpreted in three terms and are computed easily.

The first term log
p(I|C′sk)

p(I|Csk)
measures the changes of the log-likelihood on a small domain

covered by the primitives in Loff(π+). Pixels in this domain belongs to Λnsk before and are

in Λrmsk after adding π+. The likelihood does not change for any other pixels. The second

term log p(G′)
p(G)

= −λo penalizes the model complexity of rectangles (see eqn 14). The third

term log
p(C′free)
p(Cfree)

awards the reduction of complexity in the free sketch.

The above weights are computed independently for each π ∈ Φ. After adding π+, in step

5 we should update the weight ω(π) ∈ Ω if π overlaps with π+, i.e.

L(π) ∩ L(π+) 6= ∅.

25

Because the update of Cfree and C(G) in step 4 changes the first and third terms in calculating

ω(π) in eqn 22. This update of weight involves only a local computation on L(π) ∩ L(π+).

When we detect the rectangles in phase I, we have computed the overlapping information.

Such weight update was used in wavelet pursuit where it is interpreted as “lateral inhibition”

in neuroscience. It is a typical step in generative models.

C. Phase III: Bottom-up and top-down construction of parsing graph

The algorithm for constructing the parsing graph adopts a similar greedy method as in

phase II. In phase III, we include the four other production rules r2, r3, r4, r6 and use the

top-down mechanism for computing rectangles which may be missed in bottom-up detection.

We start with an illustration of the algorithm for the kitchen scene.

In Fig. 8, the four rectangles (in red) are detected and accepted in the bottom-up phases

I-II. They generate a number of candidates for larger groups using the production rules, and

three of these candidates are shown as non-terminal nodes A, B, and C respectively. We

denote each candidate by

Π = (rΠ, A(1), ..., A(nΠ), B(1), ..., B(kΠ)).

In the above notation, rΠ is the production rule for the group. It represents a type of spatial

layout or relationship of its components. For example, A,B, C in Fig. 8 use the mesh r3,

cube r6, and nesting r4 rules respectively. In Π, A(i), i = 1, 2, ..., nΠ are the existing non-

terminal nodes in G which satisfy the constraint equations of rule r. A(i) can be either a

non-terminal rectangle accepted by rule r5 in phase II or the bounding box of a non-terminal

node with three rules r2, r3, r4. The cube object does not have a natural bounding box. We

call A(i), i = 1, 2, ..., nΠ the bottom-up nodes for Π and they are illustrated by the upward

arrows in Fig. 8. In contrast, B(j), j = 1, 2, ..., kΠ are the top-down non-terminal nodes

predicted by rule rΠ, and they are shown by the blue rectangles in Fig. 8 with downward

26

top-down
proposals

bottom-up
proposals

rule
r3

rule
r6

rule
r4

A CB

S

Fig. 8. Bottom-up detection of rectangles (red) instantiates some non-terminal nodes (rule r5) in upward

arrows. They in turn activate graph grammar rules r3, r6, r4 for grouping larger structures in nodes A,B,C

respectively. These rules generate top-down prediction of rectangles (blue). The predictions are validated

from the image.

arrows. Some of the top-down rectangles may have already existed in the candidate set Φ

but have not been accepted in Phase II or simply do not participate the bottom proposal of

Π. Such nodes bear both upward and downward arrows.

Fig. 9 shows the five candidate sets for the five rules. Ψi is the candidate set of rule ri

for i = 2, 3, 4, 6 respectively. Each candidate Π ∈ Ψi is shown by an ellipse containing a

number of circles A(1), i = 1, ..., nΠ (with red upward arrows) and B(j), j = 1, ..., kΠ (with

blue downward arrows). These candidates are weighted in a similar way as the rectangles in

27

r2

r6

r4

r3

r5

Fig. 9. Four sets of proposed candidates Ψ2, Ψ3, Ψ4,Ψ6 for production rules r2, r3, r4, r6 respectively and

the candidate set Φ for the instantiation rule r5. Each circle represents a rectangle π or a bounding box of

for an non-terminal node. The size of the circle represents its weight ω(π). Each ellipses in Ψ2, Ψ3,Ψ4, Ψ6

stands for a candidate Π which consists of a few circles. A circle may participate in more than one candidate.

Φ by the log-posterior probability ratio.

Ψi = {(Πj, ωj) : i = 1, 2, ...Ni}, i = 2, 3, 4, 6.

Φ = {(πi, ωi) : i = 1, 2, ..., M} for rule r5 has been discussed in Phase II. Now Φ also contains

top-down candidates shown by the circles with downward arrows. They are generated by

other rules. A non-terminal nodes A in graph G may participate in more than one group

candidates Π’s, just as a line segment may be part of multiple rectangle candidates π’s. This

creates overlaps between the candidates and need to be resolved in a generative model.

At each step the parsing algorithm will choose one candidate with largest weight from

the five candidate sets and add a new non-terminal node to the parsing graph. If the

candidate is π ∈ φ, it means accepting a new rectangle. Otherwise the candidate is a larger

structure Π, then it creates a non-terminal node of type r by grouping the existing nodes

A(i), i = 1, 2, ..., nΠ and inserts the top-down rectangles B(j), j = 1, ..., kΠ into the candidate

set Φ.

The key part of the algorithm is to generate proposals π’s and Π’s and maintain the five

28

weighted candidate sets Φ, Ψi, i = 2, 3, 4, 6 at each step. We summarize the algorithm in the

following.

The algorithm for constructing the parsing graph G

Input G = {A1, ..., Am} from phase II and Φ = {(πi, ωi) : i = 1, ..., M −m} from phase I.

1. For rule ri, i = 2, 3, 4, 6.

Create candidate set Ψi = Proposal(G, ri).

Compute the weight ω(Π) for Π ∈ Ψi.

2. Select a candidate with the heaviest weight, create a new node A+ with bounding box.

ω+(A+) = max{ω(A) : A ∈ Φ ∪Ψ2 ∪Ψ3 ∪Ψ4 ∪Ψ6}.

3. Insert A+ to the parsing graph G G ← G ∪ {A+}.

4. Set the parent node of A+ to a non-terminal node which proposed A+ in top-down

or to the root S if A+ was not proposed in top-down.

5. If A+ = π ∈ Φ is a single rectangle, then

Add the rectangle to the configuration: C(G) ← C(G) ∪ {π+}.

6. else A+ = Π = (rΠ, A(1), ..., A(nΠ), B(1), ..., B(kΠ)), then

Set A+ as the parent node of A1(Π), ..., An(Π)

Insert top-down candidates B(1), ..., B(kΠ) in Φ with parent nodes A+.

7. Augment the candidate sets Ψi, i = 2, 3, 4, 6 with the new node A+.

8. Compute weights for the new candidates and update ω(Π) if Π overlap with A+.

9. Repeat 2-8 until ω+ is smaller than a threshold δ1.

Output a parsing graph G.

Fig. 10 shows a snapshot of one iteration of the algorithm on the kitchen scene. Fig. 10.(b)

is a subset of rectangle candidates Φ detected in phase I. We show a subset for clarity.

At the end of phase II, we obtain a parsing graph G = {A1, A2, ..., A21} whose config-

uration C(G) is shown in (c). By calling the function Proposal(G, ri), we obtain the

29

candidate sets Ψi, i = 2, 3, 4, 6. The candidate sets are shown in (d-f). For each can-

didate Π = (rΠ, A(1), ..., A(nΠ), B(1), ..., B(kΠ))), A(i), i = 1, 2, ..., nΠ are shown in red and

B(j), j = 1, 2, ..., kπ are shown in blue.

(a) edge map

(d) candidate sets for rule 2 and 3

(b) bottom-up rectangle candidates (c) current configuration C(G)

(e) candidate set for rule 6 (f) candidates for rule 4

C(G)

6

6

Fig. 10. A kitchen scene as running example. (a) is the edge map, (b) is a subset of Φ for rectangle

candidates detected in phase I. We show a subset for clarity. (c) is the configuration C(G) with a number

of accepted rectangles in phase II. (d-f) are candidates in Ψ2, Ψ3, Ψ4, Ψ6 respectively. They are proposed

based on the current node in G (i.e. shown in (b)).

The function Proposal(G, ri) for generating candidates from the current nodes G = {Ai :

i = 1, 2, ..., m} using ri is not so hard, because the set |G| is relatively small (m < 50) in

almost all examples. Each Ai has a bounding box (except the cubes) with 8 parameters

for the two vanish points and 4 orientation. We can simply test any two node Ai, Aj by

the constraint equations of ri. It is worth mentioning that each A ∈ G alone creates a

candidate Π for each rule r2, r3, r4, r6 with n(Π) = 1. In such cases, the top-down proposals

B(j), j = 1, ..., kΠ are created using both the constraint equations of ri and the edge maps. For

30

example, based on one rectangle A8 – the top of the kitchen table in Fig.10.(c), it proposes

two rectangles by the cube rule r6 in Fig.10.(f). The parameters of those two rectangles are

decided by the constraint equations of r6 and the edges in the images.

The algorithm for constructing the hierarchical parsing graph is in the spirit similar to the

DDMCMC algorithm[20], [16], except that we adopt a deterministic strategy in this paper

in generating the candidates and accepting the proposal. As the acceptance is not reversible,

it likely get local optimal solutions.

V. Experiments

We test our algorithm on a number of scenes with rectangle structures and six results are

shown in Figs.11 and 12. In these two figures, the first row shows the input images, the

second row shows the edge detection results, the third row are the detected and grouped

rectangles in the final configurations, and the fourth row are the reconstructed images based

on the rectangle results in the third row. We can see that the reconstructed images miss some

structures. Then we add the generic sketches (curves) in the edges, and final reconstructions

are shown in the last row.

The image reconstruction proceeds in the following way. Firstly, for the sketchable parts,

we reconstruct by the image primitives after fitting some parameters for the intensity profiles.

For the rest area Λnsk, we follow [5] to divide Λnsk into homogeneous texture regions by k-

mean clustering method and then synthesizing each texture region by sampling the Julesz

ensemble so that the synthesize image has histograms matched with the observed histograms

of filter responses. More specifically, we compute the histograms of the derivative filters

within a local window (e.g. 7×7 pixels). For example, we use 7 filters and 7 bins are used

for each histogram, then totally we have a 49-dimensional feature vector at each pixel. We

then cluster these feature vectors into different regions.

In the computed configurations, some rectangles are missing due to the strong occlusion.

31

For instance, some rectangles on the floor in the kitchen scene are missing due to the occlusion

caused by the table on the floor. In addition, the results clearly shows that high level

knowledge introduced by the graph grammar largely improves the results. For example, in

the building scene at the third column in Fig. 11, the windows become very weak on the left

side of the image. By grouping them into a line rectangle group, the algorithm can recover

these weak windows, which will not appear using the likelihood model alone.

During our experiments, the Phase I is the most time-consuming stage and takes about 2

minutes on a 640x480 image since we have to try a lot of combinations to generate all the

rectangle proposals and build up their occlusion relations. The Phase II and III are very

fast and take about 1 minute totally.

VI. Discussion

In this paper, we study an attributed grammar for image parsing on man-made scene.

The paper makes two main contributions to the vision literature. Firstly, it uses attributed

grammar to incorporate prior knowledge. With more powerful class of grammars, we should

rejuvenate the syntactic pattern recognition research originally pursued in the 70s-80s [4].

Such grammar representations are long desired for high level vision, especially scene under-

standing and parsing. Secondly, it integrates top-down/bottom-up procedure for computing

the parsing graph with grammars.

For future work, we shall study the following three aspects: (i) The image parsing is only

for generic image interpretation in the current work. In ongoing projects, we are extending

this framework to recognizing object categories, especially functional objects where objects

within each category exhibit wide range structural variabilities. The extended grammar

will have many more production rules. (ii) At the current work, we manually set some

probabilities and parameters in the energy function. These parameters should be learned

automatically when we have large number of manually parsed training examples, i.e. through

32

(a)

(b)

(c)

(d)

(e)

Fig. 11. Some experimental results. (a) Input image. (b) Edge map. (c) Computed rectangle configura-

tions. (d) Reconstructed image from the primal sketch model using the rectangle configurations only. (e)

Reconstructed images after adding some background sketches to the configurations.

supervised learning. We are currently collecting a large manually parsed image dataset for

learning grammars. In experiments, we observe that the stoping threshold ∆0 and ∆1 in

33

(a)

(b)

(c)

(d)

(e)

Fig. 12. More experimental results. (a) Input image. (b) Edge map. (c) Computed rectangle configura-

tions. (d) Reconstructed image from the primal sketch model using the rectangle configurations only. (e)

Reconstructed images after adding some background sketches to the configurations.

34

phase II and phase III have to be decided by minimizing the detection errors (missing rate

and false alarm) and cannot be decided by the posterior probability alone. They are manually

tuned in the experiment.

Acknowledgements

This work was supported in part by NSF grant IIS-0413214 and an ONR grant N00014-

05-01-0543.

References

[1] S. Baumann, “A simplified attribute graph grammar for high level music recognition”, Third Int’l Conf.

on Document Analysis and Recognition, 1995.

[2] H. Chen, Z.J. Xu, and S.C. Zhu, ”Composite templates for cloth modeling and sketching,” Technical

Report, Dept. of Statistics, UCLA, 2005.

[3] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm for model fitting with applica-

tions to image analysis and automated cartography”, Comm. of the ACM, Vol 24, pp 381-395, 1981.

[4] K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice Hall, 1981.

[5] C.E Guo, S.C. Zhu and Y.N. Wu, “A mathematical theory of primal sketch and sketchability”, Proc.

Int’l Conf. Computer Vision, 2003.

[6] C.E. Guo, S.C. Zhu and Y.N. Wu, ”Primal sketch: integrating texture and structure”, Computer Vision

and Image Understanding the Special Issue on Generative Model Based Vision, Accepted 2005.

[7] K. Huang, W. Hong and Y. Ma, “Symmetry-based photo editing”, IEEE Workshop on Higher-Level

Knowledge in 3D Modeling & Motion Analysis, Nice, 2003.

[8] D. Lagunovsky and S. Ablameyko, “Straight-line-based primitive extraction in grey-scale object recog-

nition”, Pattern Recognition Letters, 20(10):10051014, October 1999.

[9] C. Lin and R. Nevatia, “Building detection and description from a single intensity image”, Computer

Vision and Image Understanding, 72(2):101121, 1998.

[10] S. Mallat, and Z. Zhang, “Matching pursuit with time-frequency dictionaries”, IEEE Trans. on Signal

Processing, vol. 41, no. 12, 3397-3415, 1993.

[11] K. Mark and M. Miller and U. Grenander, “Constrained stochastic language models”, Image Models

35

and Their Speech Model Cousins (S. E. Levinson and L. Shepp, eds, Minneapolis, IMA Volumes in

Mathematics and its Applications, 1994.

[12] J. Rekers and A. Schürr, “Defining and parsing visual languages with layered graph grammars”, J.

Visual Language and Computing, Sept. 1996.

[13] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, ”Shock graphs and shape matching,”

IJCV, 35(1), 13-32, 1999.

[14] J.M. Siskind, J. Sherman, I. Pollak, M.P. Harper, C.A. Bouman, “Spatial random tree grammars for

modeling hierarchal structure in images”, Technical Report, 2004

[15] W.-B. Tao, J.-W. Tian, and J. Liu, “A new approach to extract rectangle building from aerial urban

images”, Int’l Conference on Signal Processing, 143146, 2002.

[16] Z.W. Tu, X.R. Chen, A.L. Yuille, and S.C. Zhu, ”Image parsing: unifying segmentation, detection and

recognition,” Int’l J. of Computer Vision, 63(2), 113-140, 2005.

[17] F.C You and K.S. Fu, “A syntactic approach to shape recognition using attributed grammars”, IEEE

Trans. on SMC, vol. 9, pp. 334-345, 1979.

[18] F.C You and K.S. Fu, “Attributed grammar: A tool for combining syntatic and statistical approaches

to pattern recognition”, IEEE Trans. on SMC, vol. 10, pp. 873-885, 1980.

[19] W. Zhang and J. Kosecka, “Extraction, matching and pose recovery based on dominant rectangular

structures”, IEEE Workshop on Higher-Level Knowledge in 3D Modeling & Motion Analysis, Nice, 2003.

[20] S.C. Zhu, R. Zhang, and Z. W. Tu. “Integrating top-down/bottom-up for object recognition by DDM-

CMC”, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000.

[21] S.C. Zhu and A.L. Yuille, ”FORMS: A Flexible Object Recognition and Modeling System,” 20(3),

pp.187-212, 1996.

[22] S. C. Zhu, Y. N. Wu, and D. Mumford,“Minimax entropy principle and its application to texture

modeling”,Neural Computation, 9:16271660, 1997.

[23] Y. Zhu, B. Carragher, F. Mouche, and C. Potter, “Automatic particle detection through efficient hough

transforms”, IEEE Transactions on Medical Imaging, 22(9): 10531062, September 2003.

