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Abstract

Surface properties of electrode materials play a critical role in the function 

of batteries. Therefore, surface modifications, such as coatings, have been

widely used to improve the battery performance. Understanding how 

these coatings function to improve battery performance is crucial for both 

scientific research and application. In this study we correlate the 
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electrochemical performance of coated and uncoated LiNi0.5Mn1.5O4 

electrodes with ensemble-averaged soft X-ray absorption spectroscopy 

and spatially resolved electron energy loss spectroscopy to illustrate the 

mechanism of how ultrathin layer Al2O3 coatings improve the cycle life of 

LiNi0.5Mn1.5O4. Mn2+ evolution on the surface is clearly observed in the 

uncoated sample, which results from the reaction between the electrolytic 

solution and the surfaces of LiNi0.5Mn1.5O4 particles, and also possibly 

atomic structure reconstructions and oxygen loss from the surface region 

in LiNi0.5Mn1.5O4. The coating has been found to effectively suppress the 

Mn2+ evolution, and improves the battery performance by decelerating the

impedance buildup from the surface passivation. This study demonstrates 

the importance of combining ensemble-averaged techniques (e.g., XAS) 

with localized  techniques (e.g., STEM-EELS), as the latter may yield 

unrepresentative information due to the limited number of studied 

particles, and sheds light on the design of future coating processes and 

materials.

 

1. Introduction

Lithium ion batteries have been widely recognized as the most important 

energy storage devices and power sources for portable electronics. 

Nowadays, with the development of new-generation electronic devices 

and more importantly, electric vehicles, performance requirements have 

become more stringent, especially in terms of energy density and cycle 

life. In this respect, further improvement and precise understanding of 

batteries are highly desired and urgently needed. Since the total energy of
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a battery is dependent both upon cell voltage and capacity, increasing the 

output voltage is an important method to enhance the energy of batteries.

According to Goodenough, the spinel LiNi0.5Mn1.5O4 is electroactive at the 

upper voltage limit of compatibility with organic carbonate electrolytic 

solutions. Since the potential profile is nearly flat in spite of the two-

electron change in Ni redox state, which is highly desirable for power 

management, LiNi0.5Mn1.5O4 is considered one of the most promising high 

voltage cathode materials for lithium ion batteries. 

Surface properties are critical to the functioning of battery materials in 

many aspects, as solid electrolyte interfaces (SEI) and cathode electrolyte 

interfaces (CEI) influence cyclability and rate capability. Surface coatings 

have been recognized as an effective method to control and optimize the 

surface properties of both cathode and anode materials in batteries and 

are widely utilized in both academic research and industry applications. 

However, the quality of surface coatings depends critically on the 

properties of the coating and active materials, as well as the processes 

used. The effect of many types of surface coatings on LiNi0.5Mn1.5O4, used 

to ameliorate the side reactions during the high voltage operation, 

including materials such as Au, Ag, Bi2O3, BiOF, ZnO, ZrO2, ZrP2O7, AlF3, 

conductive carbon, polyimide, graphene-oxide, and coating processes 

such as wet chemistry, sputtering, evaporation, and atomic layer 

deposition (ALD), have led to varying results. In addition, much of the 

previous work only demonstrated improved cycling and/or rate 

performance with limited in-depth exploration of the mechanism of the 
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improvement; thus the knowledge to guide future work is unclear. The few

existing mechanistic studies mainly focused on one charge-discharge 

cycle whereas the cumulative effect during long-term cycling has rarely 

been considered. It is important to investigate the function of coating 

materials and coating processes in order to better understand the 

mechanism of improved battery performance by surface modification and 

provide insights for the further advancement of high performance 

batteries. 

Here, we report our investigations on the surface properties of 

LiNi0.5Mn1.5O4 and reveal how ultrathin layers of Al2O3 coated by ALD 

improved the cycling stability. We have correlated the battery 

performance shown in the electrochemical measurements with results 

from ensemble-averaged XAS and spatially resolved STEM-EELS. The 

analysis provides insights into the evolution of Mn2+ on the surface of 

LiNi0.5Mn1.5O4 and the function of metal oxide coating in suppressing this 

undesired surface reaction, which leads to impedance buildup. The 

discovery in our work provides guidelines for prospective studies on the 

possibility of improving battery performance through surface property 

tuning and ultrathin coatings down to the atomic scale. More importantly, 

since many materials have similar surface phenomena such as chemical 

evolution and surface reconstruction, the research methodology and 

mechanism illustrated in this work provides insightful information that can 

be beneficial to studies on other electrode materials. 

4



2. Results and discussion

2.1 Pre-cycling characterization

LiNi0.5Mn1.5O4 particles can be synthesized via various methods, with co-

precipitation and solid-state reactions the most relevant choices for 

industrial applications. Here we synthesized LiNi0.5Mn1.5O4 particles using a 

solid-state reaction as reported in our previous work. Figure 1a shows the

scanning electron microscope image of the as-synthesized LiNi0.5Mn1.5O4 

particles. The particles had polyhedral shapes with sizes ranging from 

around 1 μm to 2 μm. The X-ray diffraction (XRD) pattern of the as-

synthesized LiNi0.5Mn1.5O4 particles is presented in the inset of Figure 1a. 

All the peaks can be indexed according to the reported pattern for cubic 

structured spinel LiNi0.5Mn1.5O4. 

As illustrated in the schematic diagram, Al2O3 was coated on pre-

fabricated electrodes through 10 cycles of ALD using the same process as 

reported in our previous work,  with a growth rate of about 0.12 nm per 

cycle. ALD is known as the most favorable thin film technology for 

continuous and pin-hole free thin film deposition with precise thickness 

control. The self-limiting surface reaction leads to conformal coverage 

even on high aspect ratio structures. The particles here reflect the 

particles in the LiNi0.5Mn1.5O4 electrode. The scheme shows that all the 

surface area that would be exposed to electrolyte is covered by an Al2O3 

film, while the conductive pathway inside the electrode is not blocked by 

the Al2O3 film. Figure 1b shows the energy dispersive X-ray (EDX) 
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mapping of the electrode surface where the evidence for the existence of 

Al is obviously seen, demonstrating successful coating of the samples. To 

confirm that the ALD process does not alter the oxidation states of 

transition metals on the surface, Mn and Ni oxidation states were probed 

by soft XAS for both coated and uncoated samples before cycling (Figure 

1c and 1d). The total electron yield (TEY) mode, which has a depth 

sensitivity of 5-10 nm in this configuration, was used to obtain the data. 

The spectra are essentially identical, indicating no change to the Ni and 

Mn oxidation states after coating. The data are consistent with oxidation 

states of Mn and Ni that are primarily +4 and +2, respectively, as 

expected. 

2.2 Electrochemical characterization of coated and uncoated 

LiNi0.5Mn1.5O4 electrodes

To explore the mechanism of the enhanced cycling stability of 

LiNi0.5Mn1.5O4, we looked into the changes of transition metal oxidation 

states after cycling, since the oxidation and reduction of transition metals 

are fundamental processes during cell operation. Before taking the XAS 

measurements, both the coated and uncoated electrodes were cycled at 

C/5 between 3.5-5.0 V for 35 cycles in CR2032 size coin cells with lithium 

metal as the counter electrodes. Representative charge-discharge curves 

are plotted in Figure 2a and 2c. The coated and uncoated electrodes 

were prepared from the same batch of material and underwent the same 

charging profile, so the difference in cycling stability can be attributed to 

the coating process. In both cases, a small amount of capacity near 4V 
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suggests that some Mn3+ was present in the as-made material, although 

most of the redox activity took place at about 4.7V, as is typical for 

LiNi0.5Mn1.5O4. Here it’s clearly seen that after only 35 cycles at C/5, the 

uncoated samples show a capacity loss while the coated ones showed 

much better capacity retention and coulombic efficiency after the first 

cycle (~98.8% vs. 98.2%, Figure S1). The difference is more obvious 

when the cells are cycled at C/2; see the representative profiles in Figure 

2b and 2d. With the increased rate (C/2 compared with C/5), the 

differences in polarization for both charge and discharge processes 

between the two types of electrodes are clearly observed. Moreover, the 

increase in overpotential became more evident for the uncoated electrode

as the cycling progressed, compared to the coated electrode. Further 

evidence for this is the voltage gap between the charge and discharge 

profiles at 60 mAh/g in Figure 2b and 2d. These are plotted in Figure 

2e. It is clear that there is a much larger gap for the cells containing the 

uncoated samples compared to those with the coated ones and that the 

polarization rises more rapidly with cycle number. The rise in overpotential

caused an apparent capacity decay when the cell was cycled, due to the 

limited voltage window, and suggests that there was a rise in impedance. 

To verify this, EIS were measured before cycling (shown in Figure S2) and 

after set numbers of cycles at C/5 at 4.7V for cells in the charged state; 

see Figure 2f. The plots in the figure correspond to 1st cycle, 10th cycle, 25th

cycle and 35th cycle, respectively. An increase in charge transfer 

resistance during cycling can be clearly seen but the increase in uncoated 

sample is obviously larger than the coated one. Compared to the data for 
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the cell with the coated sample, the larger semicircle radius seen in the 

high frequency part of the Nyquist plot of the cell with the uncoated 

sample suggests that there is higher charge transfer resistance for the 

latter. The results here are also consistent with our previous EIS study on 

the cells cycled at C/2.  The charge transfer resistance is related to surface

properties of the electrodes and an increase is associated with 

deterioration of battery performance. The impedance and overpotential 

data demonstrate that an ultrathin surface modification with Al2O3 can 

effectively suppress the increase in impedance of the batteries, and hence

improve the battery performance. To obtain further insights related to the 

above phenomena, the surface properties of the electrodes were 

examined, as described below.

2.3 Post-cycling characterization

Because of the low penetration depth of soft X-rays, XAS can be an 

excellent tool for studying surface phenomena. The transition metal L-

edge XAS measures the electric dipole allowed electron transition from 2p 

to unfilled 3d orbitals. In this case, L-edge X-ray absorption spectra are 

ideal for studying the transition metal 3d states to examine their redox 

states. The L-edge spectra of Ni and Mn for both coated and uncoated 

samples after 35 cycles at C/5 are presented in Figure 3a and 3b. The 

spectra of the pristine samples are also provided for comparison. 

From the Ni L-edge spectra in total electron yield (TEY) mode, which 

probes about 5 nm deep from the surface, there is clear evidence for the 
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oxidation of Ni from Ni2+ to Ni2+x state after charging and reduction back to

Ni2+ after discharging. The ratio of the intensities of the two peaks in the Ni

L3 region changed, with the higher frequency peak increasing upon 

oxidation and vice versa. This corresponds to the main reaction of 

LiNi0.5Mn1.5O4, whose primary capacity comes from the Ni2+/ Ni2+x redox 

couple. The results may be complicated by possible surface reactions of 

the nickel; in nickel-containing layered oxides, surface Ni is often found to 

be in a lower oxidation state than that in the bulk at the top of charge. A 

comparison of the Ni L3 peak ratios in the spectra of the coated and 

uncoated LiNi0.5Mn1.5O4 electrodes in the charged state shows a slightly 

higher Ni oxidation state in the former compared to the latter, judging 

from the peak at 854 eV(pointed out with arrows in Figure 3a). This 

suggests that the ALD coating provides some protection against the 

surface reconstruction phenomenon that leads to lower average oxidation 

states of transition metals on particle surfaces.

More interesting results are revealed in the spectra for the Mn L-edges. 

There is little difference between the coated and uncoated samples in the 

charged states. The spectra of the charged electrodes also look very 

similar to that of the electrodes in the pristine state, consistent with the 

fact that most of the Mn in LiNi0.5Mn1.5O4 is not electroactive. However, the 

Mn L-edge spectra obtained on electrodes in the discharged state show 

distinct differences between the coated and uncoated samples, with far 

less Mn2+ appearing in the former, judging from the relative intensities at 

640 eV(pointed out with arrows in Figure 3b). As a reference for 
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Mn2+octahedrally coordinated to oxygen, the Mn L-edge spectrum for 

LiMnPO4 is also shown. The results indicate that Mn2+ is formed during the 

discharge process and is re-oxidized during charge. With the ALD coating, 

the Mn2+ evolution is effectively suppressed. This is also consistent with 

the differences in coulombic efficiencies observed between the coated and

uncoated samples, where the ALD coated samples showed slightly higher 

coulombic efficiency than the uncoated ones (~98.8% vs. ~98.2%, Figure

S1). 

In the literature, different LiNi0.5Mn1.5O4/electrolyte interface reactions have

been reported by different groups with various measurements, including 

XPS, XAS, neutron reflectometry, optical fluorescence spectroscopy and so

on. Several Mn-related products were discovered and reported, such as 

MnF2, Mn2+ oxalates and carbonates, and Mn2+/3+ complexes with β-

diketonate ligands, although the exact reaction process is still unclear and 

under investigation. Qiao et al. have reported that Mn dissolution in 

LiNi0.5Mn1.5O4 is correlated with electrolyte/electrode interactions rather 

than Mn3+ disproportion. Jarry et al. also reported the formation of Mn 

containing species via reactions between the electrolyte and surfaces of 

LiNi0.5Mn1.5O4 particles. The results here support the analysis that the main 

reason for the Mn2+ evolution is the reaction with electrolyte, rather than 

Mn3+ disproportion, as the Mn3+ plateau did not change much in the 

charge-discharge curves of the uncoated samples whereas the Mn2+ 

evolution is obvious. In the coated electrodes, all the surfaces exposed to 

electrolyte are covered with Al2O3, since it is known that the ALD 
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precursors can diffuse through the pores in the electrodes and conformally

coat them. This inhibits direct contact between LiNi0.5Mn1.5O4 and 

electrolyte suppressing the side reactions that form Mn2+. As a result, the 

coated samples show much less Mn2+ evolution than the uncoated ones. In

full cells with graphite anodes, Mn was found to deposit onto the anode 

causing deterioration of the performance, especially capacity decay and 

impedance buildup,. Also, the Mn reduction and deposition on the anode 

leads to reduced coulomb efficiency. Thus, adding a conformal coating 

layer via ALD can be an effective strategy to enhance battery 

performance.

Besides Mn2+ formation and dissolution, it has also been reported that the 

transition metal ions in the surface region can migrate into the tetrahedral

Li sites and empty octahedral sites upon cycling, resulting in the formation

of Mn3O4-like and rock-salt structures on the surface, accompanied by loss 

of surface oxygen. Mn2+ occupancy of the tetrahedral Li sites would lead to

a Mn3O4-like spinel structure in LiNi0.5Mn1.5O4. The formation of the Mn3O4-

like and rock-salt structures on the surface is also related to the 

densification of the atomic structure and the buildup of charge transfer 

resistance. 

As surface reconstruction is intrinsic to LiNi0.5Mn1.5O4, as evidenced in 

literature, it will not be prevented by surface modifications such as 

coating, but surface modification can slow down the surface 

reconstruction. Since surface Mn3O4 is highly correlated to Mn2+ 
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dissolution, we believe less Mn dissolution can induce less Mn migration in 

the lattice during cycling, which can lead to a protection against the 

evolution of further structural transformation and buildup of resistance. 

Further in-depth study will be needed to gain advanced knowledge on this 

phenomenon, and to guide future study surface modification strategies 

such as the fine tuning of coating thickness. 

This also coincides with X-ray Photoelectron Spectroscopy (XPS) and Time-

of-Flight Secondary Ion Mass Spectrometry (TOFSIMS) results in the recent

literature showing that coatings can lead to thinner cathode-electrolyte 

interface layers. The obvious differences between the coated and 

uncoated electrodes seen in the XAS measurements implies that the 

increased impedance comes from surface reactions of the LiNi0.5Mn1.5O4, 

and that the ultrathin layer of Al2O3 on electrode surfaces can effectively 

suppress this phenomenon to a large extent. We note here that there 

should be an optimized thickness of the coating layer especially when the 

coating material is an insulator such as Al2O3. Thicker coatings might be 

more effective for surface modification but may also increase the electron 

transfer resistance and have a negative effect on the power performance 

of the batteries. The ability to exert good control over the thicknesses of 

the conformal coatings, even down to the atomic level, however, makes 

ALD an ideal process for fabricating protected electrodes .

XAS results are ensemble-averaged and show signals from numerous 

particles in the electrodes. To obtain detailed information on individual 
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particles, STEM imaging was performed. We investigated the surface Mn 

oxidation states of LiNi0.5Mn1.5O4 particles in the discharged state after 

cycling, using STEM-EELS. The EELS line scan profiles are shown in the 

STEM images for particles from both coated and uncoated samples in the 

right side of Figure 4a and 4b, with the first 9 spectra from the very 

surface presented on the left side. The step sizes for the EELS scans are 

1.5 nm. The scan direction is from surface to bulk, as indicated by the 

purple arrows in the figures. Note that while the ALD coating did not cover 

every surface of every particle, it was possible to obtain consistent results 

from several particles selected from the coated sample. 

The onset energy shifted to higher energy in both coated and uncoated 

samples, showing that there is some variation of Mn oxidation state from 

surface to bulk present in both samples. Pairs of individual spectra from 

the two different electrodes at the 2nd to 10th depth are also presented in 

Figure S3a to S3i, with four representative comparisons (2nd, 3rd first and

last two spectra from the 10 spectra) also shown in Figure 4c. We note 

here the spectra from the 1st step (in black in the figures) were omitted 

from the comparison, since the spectrum from the surface of uncoated 

sample did not show any signal from Mn, which may be due to CEI 

formation on the surface blocking the signal. The pairwise comparison 

shows that the differences between the two samples are more obvious at 

the surface and less noticeable when going into the bulk. This indicates 

the average oxidation state of Mn in the coated sample is higher than 

uncoated at the very surfaces of the particles. Upon scanning deeper from 
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the surface, the difference in the oxidation states of Mn became less 

pronounced. 

The results from the EELS measurements imply that the function of 

coating on LiNi0.5Mn1.5O4 is to suppress the surface reaction that causes 

Mn2+ to form, but it does not entirely eliminate this phenomenon. This is 

also in agreement with the electrochemical data where an increase of the 

overpotential and charge transfer resistance was still observed in the cells 

with the coated electrodes, albeit to a lesser degree than in the ones with 

uncoated electrodes. 

3. Conclusion

We studied the mechanism of the effect of ultrathin surface coatings on 

spinel LiNi0.5Mn1.5O4. Complementary measurements including nanoscale 

STEM-EELS on the surface at the particle level, ensemble-averaged 

synchrotron X-ray absorption spectroscopy (XAS) at the electrode level, 

and EIS and galvanostatic cycling at the cell level were combined in this 

study. The XAS results showed clear evidence that the ALD coating 

effectively suppresses the formation of Mn2+ on the surface of the 

electrodes, which occurs because of the reaction with electrolyte on 

surfaces of the LiNi0.5Mn1.5O4
 particles. The spatially resolved STEM-EELS 

showed that Mn2+ evolution occurs on the surfaces of both coated and 

uncoated LiNi0.5Mn1.5O4 particles, but to a much lesser degree for the 

former. The ALD coating partially protects particle surfaces by avoiding 

direct contact of LiNi0.5Mn1.5O4 and electrolyte, and decelerates the 
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impedance buildup, resulting in less apparent capacity fading. The 

electrochemical data acquired at the cell level is consistent with the XAS 

observations at the electrode level and the EELS results at the particle 

level. Our findings also suggest that an optimization of coating thickness 

as well as coating material and coating process should be carefully studied

in order to maximize the improvement achieved by surface modification of

the battery materials. The results reported here can provide guidance for 

the development of strategies to improve battery performance by surface 

modification of cathodes.

4. Experimental Section 

Material synthesis

A solid-state reaction was used to synthesize LiNi0.5Mn1.5O4 particles. 

Typically, nickel acetate (Ni(Ac)2•4H2O) and manganese acetate 

(Mn(Ac)2•4H2O) were mixed at a molar ratio of Ni : Mn = 1 : 3 and hand 

milled in a mortar. After heating at 500 ºC for 5 hours, lithium acetate 

(LiAc•2H2O) was added to the mixture with a molar ratio of Li : Ni : Mn = 

2.1 : 1 : 3 (5% excess Li source was added in order to make up for the 

volatilization of Li during calcination), and the mixture was heated to 500 

ºC for 5 hours once more. We note here the amount of lithium acetate 

added in this step was critical. In addition, since the top portion of the 

mixture experienced more Li source volatilization, the total amount of 

precursors used in each round was fine-tuned to minimize the influence 

from Li source volatilization. The details can be found in the supporting 

information. After adding lithium acetate, the mixture was milled again 
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and sintered at 950 ºC for 10 hours followed by annealing at 700 ºC for 10 

hours. The product was naturally cooled in air.

ALD process

ALD was performed on pre-fabricated electrodes using a home-made 

system. Pneumatic valves were used to control the pulse of the precursors

and a tube furnace was used as reaction chamber. A programmable logic 

controller controlled the valves. Trimethylaluminum (TMA) and H2O were 

used as precursors. 10 cycles of ALD were performed at the temperature 

of 90 ºC and pressure of 6x10-1 torr. Here one cycle of ALD refers to the 

deposition of H2O and TMA each for one time. The electrodes were 

prepared using a traditional slurry casting method on Al current collectors.

The weight ratio in the electrodes was active material : poly(vinylidene 

fluoride) : carbon black = 8 : 1 : 1. The active material loading was about 

3.5 mg/cm2. After the ALD process, the electrodes were used directly 

without further annealing.

Electrochemical measurements

CR 2032 coin cells were assembled with Li metal as counter electrodes. A 

1.2 M solution of LiPF6 in ethylene carbonate (EC) and dimethyl carbonate 

(DMC) (3:7) was used as the electrolytic solution. The batteries were 

cycled in the voltage range of 3.5 V ~ 5 V. After a constant current charge,

the batteries were charged at constant voltage of 5 V for either 30 min or 

until the current decreased to less than 0.01 mA, whichever came first. 1C 

rate is defined as 140 mA/g for this work. Electrochemical impedance 
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spectra (EIS) were collected in a two-electrode configuration with AC 

voltage at 5 mV amplitude and a frequency range of 100 kHz to 10 mHz. 

The batteries were fully charged and then rested overnight to reach 

equilibrium before the impedance test.

XRD

XRD measurements were performed on a Rigaku Ultima IV X-ray 

diffractometer with Cu as X-ray tube target. The operating voltage is 40 kV

and current is 44 mA. The scan rate was 4 degree/min. 

Synchrotron XAS

Batteries were disassembled in an argon filled glovebox after 35 cycles in 

either the charged or discharged state, as noted in the text and figures. 

Electrodes were rinsed with DMC and dried in the glovebox before being 

sealed into airtight bottles and transferred for the XAS measurements. 

XAS measurements were performed on the 31-pole wiggler beamline 10-1 

at Stanford Synchrotron Radiation Light Source using a ring current of 350 

mA and a 1000 l/mm spherical grating monochromator with 20 μm 

entrance and exit slits, providing ~1011 ph/s at 0.2 eV resolution in a 1 

mm2 beam spot. All samples were attached to an aluminum holder using 

conductive carbon tape. Data were collected under high vacuum of 10-9 

torr in a single load at room temperature. The sample drain current was 

collected for total electron yield (TEY). All spectra were normalized by the 

current from freshly evaporated gold on a fine grid positioned upstream of 

the main chamber.
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STEM-EELS measurements

The electrodes were in the fully discharged state when the batteries were 

opened up in the glovebox and rinsed with DMC. The particles were 

scratched off the electrodes and washed with NMP to remove the PVDF 

binder. The samples were dried at 50 ºC under vacuum before taking the 

EELS measurements. STEM-EELS measurements were performed with a 

JEOL JEM-2100F TEM equipped with an electron energy loss spectrometer 

(GIF Quantum SE). The electron’s accelerating voltage was 200 kV. The 

line scanning direction from surface to bulk had a step size of 1.5 nm.  

Supporting Information 
Supporting Information is available from the Wiley Online Library or from 
the author.
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Scheme Schematic diagram showing ALD on pre-fabricated electrodes
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Figure 1. (a) SEM image and (inset) XRD pattern of the as-synthesized 

LiNi0.5Mn1.5O4 particles before ALD coating. (b) EDX mapping of Al, Ni and 

Mn on the surface of the electrode after ALD coating. The mapping area is 

shown in the upper-left. XAS results of (c) Mn and (d) Ni of both coated 

and uncoated electrodes before cycling.
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Figure 2. Representative charge-discharge curves of (a,b) uncoated and 

(c,d) coated LiNi0.5Mn1.5O4 at C/5 and C/2 (1C = 140mA/g). (e) Comparison 

of voltage gap at 60 mAh/g of coated and uncoated electrodes at C/2. (f) 

Comparison of Nyquist plots for coated and uncoated electrodes in the 

charged state from 1st cycle, 10th cycle, 25th cycle and 35th cycle, 

respectively  
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Figure 3. (a) Ni L-edge XAS/TEY spectra for uncoated and coated 

electrodes. (b) Mn L-edge XAS/TEY spectra for uncoated and coated 

electrodes. All spectra were collected from electrodes at the 35th cycle, in 

either the fully charged or fully discharged state, as noted in the figures. 

The electrodes in the charged state were taken out from batteries after 

constant voltage charge step and the ones at discharged state were taken 

from batteries after constant current discharge to 3.5 V.
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Figure 4. Mn L-edge spectra taken with EELS for particles from coated (a) 

and uncoated (b) electrodes after the 100th cycle. The STEM images 

showing the EELS scanning pathway were shown on the right side of the 

spectra. The step size in EELS scan was 1.5 nm and the first ten spectra 

from the surface of the particles were shown in (a) and (b). (c) Comparison

of Mn L-edge spectra taken at the 2nd, 3rd, 9th and 10th steps shown in 

Figure 4a (denoted as LNMO+ALD), and Figure 4b (denoted as uncoated 

LNMO). The detailed comparisons of spectra taken at each depth were 

shown in Figure S3.  
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Atomic Layer Deposition is employed in ultrathin coating for high 
voltage cathode LiNi0.5Mn1.5O4 in lithium ion batteries. Atomic insight into 
the enhanced stability of the uncoated electrodes is revealed by XAS and 
STEM-EELS study. The coating has been found to effectively suppress the 
Mn2+ evolution, and improves the battery performance by decelerating the
impedance buildup from the surface passivation.

Keyword  lithium ion batteries, high voltage cathode, LiNi0.5Mn1.5O4, 
surface modification, Mn2+ evolution
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Fine-tuning of LiNi0.5Mn1.5O4 synthesis method

The amount of lithium acetate added in the second round of 500ºC heating

will affect the quality of the final product. Since some of the nickel acetate 

and manganese acetate sticks to the wall of the crucible after heating, 

when adding Li source to the mixture, the amount is carefully calculated 

based on the actual amount of Ni and Mn sources taken out of the 

crucible, where anything stuck on the wall was excluded. In addition, since

the top portion of the mixture experiences more Li source volatilization, 

the total amount of precursors used in each round was adjusted until the 

influence from Li source volatilization was minimized. 

Figure S1
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Figure S1. Coulombic efficiency of coated and uncoated samples cycled 

at C/5.

We note here we have tested more than 10 cells and the ones shown here 

are the ones used for XAS measurement. The mean values of first cycle 

coulombic efficiency between coated and uncoated samples are similar, 

86.80% (coated) vs. 86.05% (uncoated). The slight difference may be due 

to the side reaction between electrolyte and LiNi0.5Mn1.5O4 ,where in the 

uncoated samples the reaction is more severe and leads to a slightly lower

first cycle coulombic efficiency. 

EIS measured before cycling 

Figure S2 Comparison of EIS before cycling 

EIS data on cells measured before cycling is shown in Figure S2. The cell 

containing the ALD coated sample showed a slightly larger charge transfer

resistance which might be caused by the added Al2O3 layer.

EELS profiles at each depth of scanning
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Figure S3

Figure S3. Comparison of EELS profiles for coated and uncoated samples 

shown in Figure 4a and 4b at each depth from surface (a) along the 

scanning path to bulk (i). Each color corresponds to the respective color in 

Figure 4a and 4b. Step size is 1.5 nm. 
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