
UC Irvine
ICS Technical Reports

Title
Tools for efficient analysis of concurrent software systems

Permalink
https://escholarship.org/uc/item/9bm893zv

Authors
Razouk, Rami R.
Hirschberg, Daniel S.

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bm893zv
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S. C.)

Tools for Efficient Analysis of Concurrent Software Systerm

Rami R. Razouk
Daniel S. Hirschberg

ABSTRACT

The ever increasing use of distributed ~omputing as a method of providing ad
ded computing power and reliability has sparked interest in methods to model and
analyze concurrent hardware/ software systems. Efficient automated analysis tools are
needed to aid designers of such systems. The Distributed Systems Project at UCI has
been developing a suite of tools (dubbed the P-NUT system) which supports efficient
analysis of models of concurrent software. This paper presents the principles which
guide the development of P-NUT tools and discusses the development of one of the tools:
the Reachability Graph Builder (RGB). The P-NUT approach to tool development has
resulted in the production of a highly efficient tool for constructing reachability graphs.
The careful design of data structures and associated algorithms has significantly enlarged
the class of models which can be analyzed.

Technical Report #85-15

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

June 1985

e Copyright - 1985

Tools for Efficient Analysis of Chncurrent Software SysterrB

Rami R. Razoukt
Daniel S. Hirschberg

Information and Computer Science Department
University of California, Irvine

Arpanet addresses: razouk@uci, dan@uci

Abstract

The ever increasing use of distributed computing as a
method of providing added computing power and reliability has
sparked interest in methods to model and analyze concurrent
hardware/ software systems. Efficient automated analysis tools are
needed to aid designers of such systems. The Distributed Systems
Project at UCI has been developing a suite of tools (dubbed the
P-NUT system) which supports efficient analysis of models of
concurrent software. This paper presents the principles which
guide the development of P-NUT tools and discusses the
development of one of the tools: the Reachability Graph Builder
(RGB). The P-NUT approach to tool development has resulted in
the production of a highly efficient tool for constructing
reachability graphs. The careful design of data structures and
associated algorithms has significantly enlarged the class of models
which can be analyzed.

1. Introduction

The increasing availability of low-cost processors, coupled with ever-increasing
demands for .processing power and reliability, have sparked interest in the design of
distributed systems. The qesign of software for such systems requires great care. In
addition to the well-understood problems inherent in the design of sequential software,
distributed software is subject to timing, synchronization and resource contention
errors. These errors are difficult to isolate and are often uncovered at late stages of the
development process, resulting in added development costs.

t This research has been supported in part by a MICRO grant co-sponsored by
Hughes Aircraft Co. and the University of California, and by a grant from the National
Science Foundation (grant # DOR 84-06756).

1

One approach to solving these problems is to construct models of the software at
various stages of the development process, and to analyze the models in an effort to
gain a better understanding of system behavior. Models are usually abstract
representations of the actual system, and generally omit details which are either
irrelevant to the questions being investigated, or are not known. Models derived from
early drafts of requirement specifications can be considered early prototypes which can
be used to clarify customer needs. Models constructed during the design process can
be used to investigate performance and correctness issues long before actual hardware
or software is constructed. In general, models are intended to provide designers with
early feedback on the impact of certain design decisions.

The Distributed Systems Project at UCI has been investigating new techniques,
based on Petri Net models, for analyzing distributed systems with an eye on both
correctness and performance issues. One result of the research has been the
development of a suite of highly efficient tools which can aid a designer in verifying
that some key system requirements are met. This paper outlines the suite of tools
which have been developed (the P-NUT system) and then focuses attention on one of
the tools: the Reachability Graph Builder. Section 2 of the paper briefly reviews Petri
Nets and discusses existing analysis methods which have been shown useful. Section 3
describes the overall design philosophy of the P-NUT system and briefly describes
existing tools. Section 4 demonstrates the impact of the overall design philosophy on
the design of a reachability graph builder. Section 5 presents some performance data
on the reachability graph builder which shows that relatively large and complex models
can be effectively analyzed.

2. Petri Net :Models

Petri Net models have long been proposed as useful tools for investigating issues
of timing, synchronization and resource contention. Since a detailed introduction to
Petri Nets is beyond the scope of this paper, the reader is referred to [Peterson J. 81]
for an excellent introduction to the subject. In the discussion below, we assume that
the reader has some familiarity with Petri Nets.

Petri Net models require the designer to describe each component of a system in
terms of conditions (places) and even ts (transitions). Each possible event in a system
component is given a set of_ pre-conditions which must hold before the event can occur
(a transition can fire). Any time the pre-conditions of an event hold, the event can
occur. Each possible event is also given a set of post-conditions: conditions which must
hold immediately after the occurrence of the event. Petri Net models can be
represented graphically with places drawn as circles and transitions drawn as bars (or
rectangles). Pre- and post-conditions are drawn as arcs between places and transitions.

Petri Net models are particularly well suited to modelling concurrency and
resource contention in both hardware and software systems. All transitions whose
pre-conditions are not mutually exclusive, can potentially fire at the same instant
(although each firing is an atomic action). Resource con ten ti on can easily be modeled

2

by constructing transitions whose pre-conditions require the availability of the same
resource and whose post-conditions show the resource as being unavailable. In such
cases only one of the con tending transitions can fire. The simplicity of Petri Net
models makes them analyzable and understandable.

One field where Petri Net models have been used extensively is that of
communications protocols. In that field, Petri Nets have been shown to be useful in
proofs of correctness [Symons F. 80, Berthelot G. 82, Berthomieu B. 83) and
performance analysis [Molloy M. 82, Ramchandani C. 7 4, Ramamoorthy C. 80, Holliday
and Vernon 85, Razouk and Phelps 84].

As an example of the use of Petri Nets to describe communication protocols,
Figure I shows the textual description of a Petri Net model of the alternating bit
protocol [Bartlett et.al. 69). This model assumes a communication medium of capacity
one. Line 3 of the description shows that if the sender is ready, and the sender flag has
the value i (zero or one), then the sender can enter the sending state, retain a flag i,
and enqueue a message with sequence number i. Line 25 shows that if the receiver is
waiting, and it receives a message with a number which matches its flag, it changes its
flag (increments it by one, modulo 2), enters the sending_positive_ack state, and
enqueues an acknowledgment packet with the same number as the message received.
Line 26 shows the receiver action when packets are received with numbers which do
not match the expected number (duplicate packets).

Petri Net models have been the subject of much theoretical work which has
resulted in the development of well understood analysis methods. Among these
methods are:

Invariant analysis. Techniques have been developed to automatically (and efficiently
[Martinez and Silva 81)) derive a set of equations describing invariant properties
of Petri Net markings (token distributions). This type of analysis cannot be
used in isolation to prove properties related to state transitions. and sequences of
state transitions.

Exhaustive state exploration (reachability graphs). This common analysis method is
based on constructing all possible successor states of the initial state. Although
the analysis can be completely automated, the complexity of the analysis limits
the class of nets which can be effectively analyzed. A reachability graph, since it
contains all state transitions, can be used to prove properties related to
sequences of state transitions.

Formal verification by i'nduction. Keller [Keller R. 76] showed how induction can be
used to verify properties of concurrent programs. This early work has had a
strong influence on subsequent work on Petri Nets. This type of verification
requires a good deal of creativity on the part of the individual constructing the
model. Inductive proofs are more powerful than the Invariant Analysis
discussed above since they can be applied to Petri Nets which have been

3

/* Sender model * /
1. for i = 0 to 1
2. {
3. S_ready,S_ftag[i) ... S_sending,S_ftag[i),QJn[i)
4. S_wait_ack,S_ftag[i),S_ack[i) ... S_ready,S_ftag[i+ 1 % 2)
5. S_wait_ack,S_ftag[ij,S_ack[i+l % 2) ... S_sending,S_ftag[ij,QJn[iJ
6. S_wait_ack,S_ftag[ij,read_RS_Q ... S_sending,S_ftag(i],QJD[i)
7. }
8. S_sending,SR_Q_sent

/* Sender-to-Receiver Queue model * /
9. for i = 0 to 1
10. {
11. QJD[i]
12. QJD[i),filled_8R_slot
13. QJD[i],free_8R_slot
14. filled_8R_slot,read_8R_Q,slotJD[i)
15. }

/* Receiver-to-Sender Queue model * /
16. for i = 0 to 1
17. {

... S_wait_ack, read_RS_Q

... SR_Q..,iSent

... SR_Q_sen t,filled_8R_slot

... slotJD[i],filled_8R_slot,SR_Q_sent
· ... free_8R_slot,RJD(i)

18. Q_ack[iJ ... RS_Q_sent
19. Q_ack[z'],filled_RS_slot ... RS_Q_sent,filled_RS...iSlot
20. Q_ack[t'],free_RS_slot ... slot_ack[ij,filled_RS_slot,RS_Q_sent
21. filled_RS_slot,read_RS_Q,slot_ack(i] ... free_RS_slot,S_ack(i)
22. }

/* Receiver model * /
23. for i = 0 to 1
24. {

/* Queue message * /
/* Good ack * /
/*Bad ack * /
/*Timeout * /

/*Wait for ack * /

/* lose packet * /
/* Queue OVFL * /
/*Transmit*/
/* Give to Receiver * /

/* lose packet * /
/* Queue OVFL * /
/* Transmit * /
/* Give to Sender * /

25. R_waiting,R_ftag[i'),RJD[i]
26. R_waiting,R_flag[z'j,RJD[i+l % 2)

... R_ftag[i+l % 2],R_sending_pack,Q_ack[i)
-+ R_flag(iJ,R_sending_nack,Q_ack[i+l % 2]

/* Positive Ack * /
/* Negative Ack * /

27. }
28. R_sending_nack,RS_Q_sent
29. R_sending_pack,RS_Q_sent
30. R_ready

/* Initial State * /

... R_waiting, read_8R_Q

... R_ready

... read_8R_Q,R_waiting

31. < S_ready, R_ready, S_ftagO, R_ftagO, free_8R_slot, free_RS..,iSlot>

/* Wait for message * /
/* Ready to receive * /
/* Receive next message * /

Figure 1. Petri net model of alternating-bit protocol

4

extended with predicates and actions (Predicate/ Action Nets).

Simulation. Since it is sometimes impractical to prove a Petri Net model to be totally
correct with respect to some specification, it is desirable to exercise the model
under some controlled test conditions. Simulation environments based on Petri
Net related models [Vernon M. 82) have been constructed.

Performance analysi·s. Petri Net models which have been extended to include timing
information (e.g. processing delays, timeouts) have been used to derive
performance measures[Ramchandani C. 74, Ramamoorthy C. 80, Molloy M. 81,
Razouk and Phelps 84, Holliday and Vernon 85].

Each analysis method attempts to answer important questions about the
correctness of the model or about expected performance. Each technique has strengths
and weaknesses. No single model and analysis method is ideal for use under all
circumstances. Therefore, the use of Petri nets in the design of complex distributed
systems requires a variety of tools which can be mixed and matched to achieve the
overall goal of ensuring that the designs being modeled meet the overall system
requirements.

3. Philosophy.

The suite of tools under development at UCI has been dubbed P-NUT (for
Petri-Net UTilities). A few simple guiding principles have been used during the
development of the P-NUT system. None of these principles are particularly new or
innovative. The discussion below is simply a clarification of some of the overall
concepts which resulted in certain specific design decisions.

1. Tools should be built in small pieces which can be mixed and matched. Each
tool has a small, well-defined, function. Algorithms and Data Structures can be
tuned to minimize space and time requirements (worst-case or average-case).
The tuning of data structures and algorithms is particularly important in this
type of software since many of the analysis methods involve solving problems
that are known to be NP-complete, and hence require exponential time. Careful
implementation will have a significant impact on the size of the problems which
can be eff ect~vely an~lyzed.

2. Tools should take advantage of designer's understanding of the design.
Building the most general tool will cost in terms of execution efficiency.

3. Tools should have i'nter faces whz'ch are simple (!or debugging) and flexible
(enhancements to one tool should not cause others to change). The interfaces
between the tools should rely on a few standard forms which are consumed and
produced by every tool. The adoption of standard forms leads to the ability to
interface tools which may not have been intended (during their design) to be
interfaced.

5

4. Tools are to be developed in an environment which will enhance portability.
Portability issues should be addressed by selecting appropriate implementation
languages and operating systems which are known to be widely used by
researchers in the field. All software should be in the public domain.

The current tools available in P-NUT are:

Translator (timed or untimed). This tool processes textual descriptions such as that
shown in Figure 1. The output of the tool is a standard form of Petri Net which
carries sufficient information to support efficient processing by other tools (such
as the number of places and transitions). The tool alleviates the need for other
tools to interface with the user in a user-friendly manner. The translator
accepts Petri Nets which have been extended through the addition of time
delays, firing probabilities (to model probabilistic events), enabling predicates
and firing actions. Any and all of these extensions can be omitted from any
particular model.

Unti'med Reachability Graph Builder (RG B). This tool constructs reachability graphs,
ignoring user-specified timing information, predicates and actions. The result is
a time-independent graph which can be used to verify properties which hold
independent of specific timing delays.

Timed RG B. This tool implements the performance analysis described in [Razouk and
Phelps 84]. Unlike the untimed RGB, it takes into account timing constraints
and firing probabilities. This tool ignores predicates and actions.

Reachability Graph Analyzer. This is one of the most innovative tools in P-NUT. It
allows designers to ask questions about reachable states and possible sequences
of events. By automatically searching the reachability graph, the tool can
answer the user's questions.

Reachability Graph Pretty-Printer. This tool displays reachability graphs on a simple
computer terminal.

Currently under development are a set of tools which focus on performance and
which provide more flexible user interfaces. Among these tools are:

Simulator (Animator). This tool is intended to support fully interpreted Petri Nets:
Petri Nets which may have predicates, actions and timing delays. The simulator
is in its early development and is being developed on a SUN-2 workstation using
a high-resolution bit-mapped graphics input/output device.

Interactive Graphics Petri Net Editor. Each net that is in tended to be used in the
Animator will have a graphical representation. The Editor will enable easy and
rapid modification of that representation. This tool is also in its early stages of
development.

6

For the remainder of this paper the focus of attention will be on one particular
tool, the RGB.

4. The Reachability Graph Builder

Focus

Consistent with the philosophy outlined above, the Reachability Graph Builder
(RGB) focuses on only one task: constructing the graph containing all states reachable
from the initial state of the model. It has not been burdened with the additional tasks
of displaying, perusing or analyzing the graph. It also does not allow for editing of the
net. As a result, some a-priori knowledge of the net is assumed, most important of
which are the numbers of places and transitions, which are assumed to be fixed.
Fixed-sized vectors can then be used to represent transitions in place of linked lists.
This leads to a speed-up in processing and a reduction in storage space. The
alternative is the use of linked lists which, while providing flexibility, are slower to
process and waste storage for links. This storage is minimized in the case of simple (no
weighted arcs) Petri Nets by storing bit-maps of the input and output sets of each
transition. The major variable in this tool is the size of the reachability graph.

The RGB has several key tasks which are time consuming: I) identifying firable
transitions in each state, 2) calculating successors and detecting duplicates, and 3)
detecting unbounded graphs. These tasks have been optimized as follows.

1. Identifying firable transitions in each state. The token requirements for firing,
and the current token population, are stored as vectors of integers. A transition
is firable if the result of subtracting the token requirement from the current
token population is non-negative. The detection is accomplished by comparing
the current token population with the input vector. In the worst case, when the
transition is firable, this involves n comparisons (where n is the number of
places). In the case of safe nets, where each place never holds more than one
token, the vector of integers can be compressed to become a vector of bits.
Detecting firability is implemented by Boolean manipulation of the bit vectors
(requiring 2 Boolean operations). In the worst case, only 2n/WORDSIZE
Boolean operations are needed. (In the slightly more general case, where each
place is known not to hold more than 2**k tokens, only k bits are needed to
store the related integer.)

2. Calculating successors and detecting duplicates. For the integer case, successors
are generated by subtracting the input tokens and adding the output tokens of
the transition to the current token population. This can be done using only n
arithmetic operations, since the input and output token vectors can be
precombined to a "net difference" vector. In the bit-vector case, the successor
vector can be obtained by exclusive-or (modulo 2 addition and subtraction) of
the current token population vector with the bit vectors representing the input
and output tokens of the transition. This can be accomplished using only

7

n/WORDSIZE Boolean operations, since the exclusive-or of the input/output
transition token vectors can be precomputed.

Once successors have been detected, a major difficulty is determination of
whether the newly-generated state is new or was previously encountered. This
is accomplished using a straightforward hashing scheme, in which states are
hashed into a large table with linear probe used for collision resolution. As a
result, duplicate detection is accomplished using (on the average) less than two
vector comparisons (involving 2n arithmetic comparisons). For the bit-vector
case, less than 2n/WORDSIZE compares are needed on the average.

3. Detecting unbounded graphs. This is the most time-consuming portion of the
program. For safe nets and nets which are known to be bounded, this phase is
unnecessary and is omitted. Otherwise, we must ensure that any new state
(multiset of positioned tokens) is not a superset of one of its ancestor states. If a
new state should be a superset of an ancestor then that state is precluded from
generating any successors and is denoted as an "infinite" state.

The graph is expanded in a breadth-first manner. That is, there is a set of
states (called the frontier) for which successors have not yet been determined.
The successors of all of the members of the frontier are determined and, only
then, the successors are checked to determine if they can potentially lead to an
infinite number of other states. This avoids the problem of repeatedly checking
ancestors of states that are successors of more than one state in the frontier.

Taking advantage of designer's knowledge

The RGB has been built to take advantage of the designer's knowledge of the
model. For example, if the model is known to be bounded, then checks for infinite
graphs are not necessary. This leads to immense savings in processing time. If the
model is known to be bounded by some small number (such as 127), then vectors of
integers can be packed into vectors of bytes which consume less storage. If the model is
known to be safe, then vectors of integers are compacted into vectors of bits. The
calculation of successor states can be accomplished using Boolean operations on bit
vectors. Savings in time and space have been achieved in this area. The above savings
were further enhanced by h~ving different tools for each of these cases. These tools are
generated from a single version of the software by conditionally compiling different code
sub-segments that interact with the different data structures. As a result, each tool
can run at full speed without need of checking user-defined information.

Simple and flexible interface

The RGB expects as input a canonical representation of the Petri Net. This
representation has been designed to accommodate various extensions to normal Petri
Nets. Among these extension are: 1) enabling times and firing times which model
timing delays, 2) firing probabilities to model probabilistic events, 3) enabling

8

predicates, and 4) firing actions. The interface between the Petri Net translator which
generates the canonical form and the RGB has been built in a way which allows each
tool to pick and choose the parts of the Petri Net which are relevant to that tool. For
example, the RG B ignores all timing information. It is expected that this approach will
ease incorporation of new Petri Net extensions without necessitating any updating of
existing tools. The price being paid is a loss of efficiency both in time and space during
the storage and retrieval of the Petri Net. Since the tools being built are computation
intensive {time growing exponentially with the size of the net), it is expected that the
processing delay for loading the net will be insignificant even for large nets (time
growing linearly with the size of the net).

The output of the RGB is also simple ASCII text which can be stored in a file,
passed on to the reachability graph analyzer or to the pretty-printer. UNIX's:f:
capabilities for piping are particularly useful in routing the output of the RGB to the
desired post-processing tool. The selection of a standard form for reachability graphs
has simplified the task of incorporating new tools into the P-NUT system. For
example, the pretty printer and reachability graph analyzer which were originally
intended to process only un-timed reachability graphs have now been extended to
process the output of the Timed Reachability Graph Builder.

Portability

The tools have been developed on a V AXt 11/750 running 4.2bsd UNIX. The
tools are highly portable since they use no special features of 4.2bsd UNIX other than
the memory allocation routines. Any version of UNIX with a standard C compiler and
with memory allocation routines can execute these tools after recompilation. The tools
have also been ported to a VAX 11/780 (University of Wisconsin, Madison) running 4.2
UNIX and a VAX 11/750 running LOCUS (UCLA). In both cases they 'executed
without recompilation.

5. Performance

Figures 2 and 3 show some· results obtained by analyzing a set of problems. All
performance measurements were completed on a lightly loaded VAX 11/750 with
4MBytes of main memory. The same example was analyzed under different
assumptions about _the model to highlight the time and space savings offered by each
version of the RG B. The example used was the classical dining philosophers problem
with varying number of philosophers. Table I shows the user time/ system time/ Main
Memory requirement for each run. The time measurements increase only slightly when
the system is loaded, although the elapsed time increases dramatically under such
conditions. The example protocol shown in Figure I (594 states) could be analyzed
using RG B in 6.2 CPU seconds.

:f: UNIX is a Trademark of the Bell System

t VAX is a registered trademark of Digital Equipment Corporation.

9

CPU Time (sec)

10° +-~~OJF-+-f-H+H~-+~......+-H~H-~-+-~~H-tf+Hf------l~f-1-+-H-+~
101

0 Known to be safe

a Known to be bounded at 127

fl. Known to be bounded

105
#States

Figure 2. CPU Time Consumption as a Function of the Number of States

Gmclusions

The most significant benefit gained from the development of P-NUT in general,
and the RG B in particular, is that the class of models generally considered analyzable
has been expanded through the careful design of simple tools. The RG B has been used
to build graphs as large as 20,000 states in less than 7 minutes of CPU time. The
efficiency of the ~GB, in_ addition to new tools which present analysis results in
understandable terms, have allowed us to analyze significant problems. To date, the
tools have been used to analyze some classical problems (e.g., the dining philosophers)
and some simple communications protocols (e.g., the alternating-bit protocol), and to
analyze CCITT standard protocols (X.21). Current work is exploring the use of the
tools in verifying even more complex communications protocols such as TCP /IP and
X.25, and in analyzing the performance of some pipelined processors such as Intel's
iAPX286.

10

Main Memory (kB)

0 Known to be safe

a Known to be bounded at 127

l::t. Known to be bounded

105
#States

Figure 3. Main Memory Consumption as a Function of Number of States

Number of dining philosophers

RGB Version Measure 3 4 5 6 7 8 9

All Reachable States 26 80 242 728 2186 6560 19682

User time 1.0 1.7 3.4 7.8 25.5 160.6 318.1
Safe System time 0.5 0.8 1.3 2.6 6.4 20.0 67.4

Main Mem. (kB) 78 126 157 442 674 794 1898

User time 1.1 2.0 4.7 13.8 53.1 271.6 -
Bound= 127 System time 0.7 0.7 1.2 3.3 7.8 28.2 -

Main Mem. (kB) 84 138 177 524 877 1316 -
User time 1.5 2.4 5.2 13.9 53.1 267.7 -

Bounded System time 1.0 1.2 1.7 3.1 8.3 24.8 -
Main Mem. (kB) 139 171 224 580 1423 2978 -

Table I. Performance Data for the RG B

11

References

(Bartlett et.al 69) Bartlett, K.A., R.A. Scantlebury, and P.T.A. Wilkinson, "Note on Reliable Full
Duplex Transmission Over Half-Duplex Links," CACM, vol. 12, no. 5, pp. 260-261,
May 1969.

[Berthelot G. 82] Berthelot, G. and Richard Terrat, "Petri Net Theory for the Correctness of Protocols,"
Protocol Specification, Testing and Verification, North Holland Pub. Co., (1982).

[Berthomieu B. 83) Berthomieu, B. and Menasche, M. "An Enumerative Approach for Analyzing Time
Petri Nets," Proceedings of the 1983 IFIP Congress, Paris (Sept. 1983).

[Keller R. 76) Keller,R. "Formal Verification of Parallel Programs," CACM, Vol. 19, No. 7, July 1976.

[Holliday and Vernon 85) Holliday, M., and M. Vernon, "A Generalized Timed Petri Net Model for
Performance Analysis," Technical Report #593, Computer Sciences Dept., University
of Wisconsin-Madison, May 1985.

[Martinez and Silva 81) Martinez, .J. and M. Silva, "A Simple and Fast Algorithm to Obtain All
Invariants of a Generalized Petri Net", Proceedings of the Second European Workshop

on Application and Theory of Petri Nets, September 1981.

[Molloy, M. 82) Molloy, M., "Performance Modeling Using Stochastic Petri Nets," IEEE Trans. on

Computers, vol. C-31, pp. 913-917, Sept. 1982.

(Morgan and Razouk 85) Morgan, E.T, and R. R. Razouk, "Computer-Aided Analysis of Concurrent
Systems," To Appear in the Proceedings of the 5th International Work.~hop on

Protocol Specification Verification and Testing, Toulouse, FRANCE, June 1985.

(Peterson J. 81) Peterson, J., Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.,
Englewood Cliffs, N.J. (1981).

(Ramchandani C. 74) Ramchandani, C. "Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets," Ph.D. Thesis, Project MAC Report No. MAC-TR-120, MIT (1974).

(Ramamoorthy C. 80] Ramamoorthy C.V. and G.S. Ho, "Performance Evaluation of Asynchronous
Conc~rrency Systems using Petri Nets," IEEE Transaction on Software Engineering,

SE-6, 5 (September 1980), 440-449.

[Razouk R. 84) Razouk, R.R. "The Derivation of Performance Expressions for Communication Protocols
from Timed Petri Net Models," Proceedings of the ACM SIGCOMM'84 Symposium

on Communications Architectures and Protocols, June 1984.

!Razouk and Phelps 84J Razouk, R.R. and C. Phelps "Performance Analysis Using Timed Petri Nets,"
Proceedings of the 4th International Workshop on Protocol Specification, Testing, and

Verification, June 1984.

12

[Sifakis J. 77] Sifakis, J. "Petri Nets for Performance Evaluation," Measuring, Afodelt"ng and Evaluating

Computer Systems, Proceedings of the 3rd Symposium, IFIP Working Group 7.3, H.

Beilner and E. Gelenbe (eds.), North Holland, 1977, pp. 75-93.

[Symons F. 80) Symons, F.J.W., "Verification of Communication Protocols using Numerical Petri Nets,"

Australian Telecommunication Research, 14,1 (1980) 34-38.

[Vernon, M 82) "The UCLA Graph Model of Behavior: Support For Performance-Oriented Design,"

Methodologies for Computer System Design, W.K. Giloi and B.D. Shriver (Editors),
Elsvier Science Publishers B.V. (North Hollad), pp 47-65.

13

	20141030161452769_0001
	20141030161452769_0002
	20141030161452769_0003
	20141030161452769_0004
	20141030161452769_0005
	20141030161452769_0006
	20141030161452769_0007
	20141030161452769_0008
	20141030161452769_0009
	20141030161452769_0010
	20141030161452769_0011
	20141030161452769_0012
	20141030161452769_0013
	20141030161452769_0014

