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Abstract 

Attention is a complex multilevel system subserved by at least 
three interacting attentional networks in the brain. This paper 
describes a multilevel computational model of attentional 
networks, developed in both the symbolic architecture of 
ACT-R and the connectionist framework of leabra. We 
evaluated the model using the Attentional Networks Test and 
the simulation results fitted the empirical data well. We argue 
that developing multilevel computational models helps to link 
findings at different levels. 

Introduction 
Suppose a student S was asked to solve the equation “2x + 3 
= 9” (Figure 1A), and he used 2 seconds to produce the 
answer “x = 3”. Both cognitive scientists X and Y were 
interested in understanding how S did it. Scientist X 
recorded S’s detailed verbal protocol (Figure 1B), based on 
which, and other relevant behavioral measures, X 
hypothesized the possible knowledge structures underlying 
S’s problem solving and developed a symbolic 
computational model that simulated the process (Figure 1C). 
On the other hand, scientist Y adopted sophisticated brain 
imaging techniques such as electroencephalograph (EEG) 
and functional Magnetic Resonance Imaging (fMRI) and 
acquired a high-resolution recording of S’s brain dynamics 
during problem solving (Figure 1D). Based on some well-
established neural computing principles, Y then developed a 
biologically realistic connectionist model to simulate the 
brain activities underlying S’s performance (Figure 1E). 
Though both models fitted the data well, the two models are 
clearly different. While the symbolic model offers a 
description of the process with psychological plausibility 
and high behavioral relevance, the connectionist model 
emphasizes the process’ biological realism and brain 
foundations. One question is, do we, cognitive scientists 
who endeavor to discover unified theories of cognition, 
have justifiable reasons to prefer one to another? 

This question and similar others have led to a long 
debate in the rather brief history of cognitive science (e.g., 
Churchland & Sejnowski, 1992; Newell, 1990; Rumelhart 
& McClelland, 1986). Recently a BBS (Behavioral and 
Brain Sciences) target article was dedicated to this issue 
(Anderson & Lebiere, 2003). The authors adopted a set of 
12 criteria, which they called “The Newell Test”, to 
systematically compared and contrasted ACT-R, a rule-
based cognitive architecture (Anderson & Lebiere, 1998), 

and the connectionist modeling framework. Their 
conclusion was that both frameworks had great strengths as 
well as serious limitations as candidates of the unified 
theory of cognition.  
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Figure 1. A hypothetical equation-solving problem is 
presented in A. Verbal protocol and brain imaging data 
are presented in B and D. Sketches of a symbolic model 
and a connectionist model of task are presented in C 
and E. 

 
This is hardly surprising given the inherent complexity 

of the human mind itself. It has long been recognized that 
the mind is a multilevel construct and can be analyzed at 
different levels. Marr, for example, distinguished and 
separated among computational theory, representation and 
algorithm, and hardware implementation (Marr, 1982). 
Similar distinctions were made by Newell among different 
bands of cognitive functions (Newell, 1990). Newell argued 
that different bands utilize different basic operators, which 
have different time scales. More importantly, different 
bands form a hierarchy. Multiple lower lever basic operators 
can be combined to form higher level basic operators. In 
other words, lower level operators can be summarized up at 
higher level though this summarization may not be linear. 
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Single level analyses have been the dominant 
methodology in cognitive science. Experimental psychology 
and symbolic modeling, for example, largely depend on 
controlled experiments and behavioral observation. Recent 
advances in cognitive neuroscience allow us to directly 
observe, with high temporal-spatial resolutions, how an 
active brain functions during cognitive performance (Posner 
& Raichle, 1994). As a result, biologically realistic neural 
networks modeling has flourished (O'Reilly & Munakata, 
2000). Efforts have also been made to probe the function of 
mind at lower molecular levels (e.g., Bellugi & George, 
2001; Squire & Kandel, 2000). While all these levels of 
analyses tell us important aspects of the mind, neither of 
them alone is adequate to describe the whole picture. The 
human mind is a complex entity and may leave shadows at 
different levels when it works (Penrose, 1996). However, in 
order to achieve a unified theory all of the pieces have to be 
somehow linked together. 

One approach would be to develop so called “hybrid 
systems”, which typically combine symbolic and 
subsymbolic components together (e.g., Sun & Alexandre, 
1997). We, for example, have developed a hybrid model of 
human abductive reasoning by combining a Soar component 
(a symbolic architecture) for hypothesis generation and a 
connectionist component for hypothesis evaluation 
(Johnson, Zhang, & Wang, 1997). Although hybrid systems 
take advantage of both types of components and can become 
quite powerful, they often bear little true psychological and 
neurophysiological significance due to the fact they are 
artificially assembled systems. While it is well agreed that 
human cognition involves mechanisms and operations at, 
among others, both psychological and neuronal networks 
levels, simply piecing them together is ad hoc and trivializes 
the problem (see also Wang, Johnson, & Zhang, 2003) 

In this paper we argue that we need a multilevel 
modeling approach. That is, we need to develop well-fitted 
computational models at multiple levels for any given 
cognitive phenomenon. Because the mind manifests itself at 
multiple levels, each level is real and tells a unique story of 
the mind on its own. When we develop models for a specific 
phenomenon at multiple levels, we would be able to 
compare them, contrast them, and more importantly, 
mutually justify them.  By doing so, we expect that a more 
complete picture of the mind might emerge. 

This paper is organized as follows. We first briefly 
review findings on human attentional networks and 
introduce the Attentional Network Test (ANT) (Fan, 
MaCandliss, Sommer, Raz, & Posner, 2002). We then 
demonstrate the multilevel modeling approach by reporting 
and cross-validating two computational models for the same 
ANT task, one developed in ACT-R, and the other in leabra, 
a biologically realistic connectionist modeling framework 
(O'Reilly & Munakata, 2000). While both models fitted data 
well they emphasized different levels of explanations. 
Finally the implications of this practice are discussed. 

Human Attentional Networks 
Although “everyone knows what attention is” (James, 
1890), how attention works remains one of the most 
challenging questions in science (Parasuraman, 2000; 
Pashler, 1998). Recent advances in cognitive psychology 
and cognitive neuroscience have suggested that there exist 
multiple attentional networks in the brain, each of which 
subserves different types of attention (Fan et al., 2002; 
Posner & Dehaene, 2000; Posner & Petersen, 1990). At 
least three attentional networks, for alerting, orienting, and 
executive control, have been distinguished at both cognitive 
and neuroanatomical levels (see Figure 2A). Specifically, 
alerting involves a change in the internal state to become 
ready for any incoming task-related events. Neuroimaging 
evidence has revealed that the alerting network consists of 
some frontal and parietal areas particularly of the right 
hemisphere. Orienting, closely related to the conventional 
selective visuo-spatial attention, involves selectively 
focusing on one or a few items out of many candidate 
inputs. Evidence has shown that the orienting network 
includes parts of the superior and inferior parietal lobe, 
frontal eye fields and such subcortical areas as the superior 
colliculus of the midbrain and the pulvinar and reticular 
nucleus of the thalamus. Finally, executive control of 
attention is related to monitoring and resolving conflicts. 
Executive control is often needed in higher level mental 
operations including planning, decision making, error 
detection, novel or not well-learned responses, and 
overcoming habitual actions. Converging evidence from 
neuroimaging and neuropathology studies has suggested 
that the executive control network consists of the midline 
frontal areas (anterior cingulate cortex), lateral prefrontal 
cortex, and the basal ganglia. 

The ANT paradigm was recently developed to 
simultaneously measure the performance of the three 
attentional networks and evaluate their interrelationships 
(Fan et al., 2002). It is essentially a combination of a spatial 
cueing task (Posner, 1980) and a flanker task (Eriksen & 
Eriksen, 1974), as illustrated in Figure 2B. The stimulus 
consists of a row of 5 horizontal arrows and the participants’ 
task is to report the pointing direction (left or right) of the 
center arrow (the target) by pressing a key. The four arrows 
surrounding the target, with two on each side, are called the 
flankers. These flanker arrows point either in the same 
direction as that of the target (the congruent condition), or in 
the opposite direction (the incongruent condition). An 
additional condition (the neutral condition) is also included 
in which the flankers are four straight lines with no 
arrowheads. To introduce an orienting component, the row 
can be presented at two locations, either above a fixation 
point (top) or below it (bottom). To introduce an alerting 
component, the row may be preceded by a cue (the cued 
condition) or may not (the no-cue condition). In addition, 
when there is a cue, this cue may be presented at the center 
fixation location (the center-cue condition), at the top or 
bottom location where the stimulus row is to appear (the 
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Figure 2. Human attentional networks (A) and the ANT task (B) 
 
spatial-cue condition), or at both top and bottom locations 
(the double-cue condition). Note that while a spatial-cue 
precisely predicts where the stimulus is to appear, in both 
the center-cue condition and the double-cue condition the 
participant cannot infer that information from the cue. 

 Fan et al. (2002) tested 40 normal adult participants 
using the ANT paradigm. Their reaction time (RT) results 
are shown in Figure 3A. They then proposed the following 
formula as a measure of the efficiency of each of the three 
attentional networks: 
· Alerting efficiency  = RT(no-cue) – RT(double-cue), 
· Orienting efficiency = RT(center-cue) – RT(spatial-cue),  
· Conflict efficiency = RT(incongruent) – RT(congruent), 
which resulted in the efficiency measures of 47 ± 18 ms, 51 
± 21 ms, 84 ± 25 ms, for alerting, orienting, and executive 
control, respectively.  

Fan et al. (2001) also reported an fMRI study using the 
ANT paradigm. Their results were consistent with the 
general findings shown in Figure 2A. 

Multilevel Computational Modeling of Human 
Attentional Networks 

While both the behavioral and neuroimaging studies using 
the ANT paradigm revealed important psychological and 
neurophysiological characteristics of human attentional 
networks, there exists a gap between these two levels of 
analyses. In particular, how do these different attentional 
neural networks work together to generate psychologically 
meaningful behavior? It has been well agreed that the link 
between neural activities and psychological performance is 
nontrivial and must be taken into account seriously to avoid 
“neo-phrenology”. Developing well-principled and 
constrained computational models help in the regard (Cohen 
& Tong, 2001). 

Traditional computational modeling approaches to 
human attention have typically adopted various 

connectionist modeling techniques (e.g., Cohen, Dunbar, & 
McClelland, 1990). While it has been fruitful, this practice 
fails to account for the manifestations of attention at 
symbolic/cognitive levels. As we illustrated earlier, 
attention, as an essential aspect of human cognition, is a 
complex multilevel construct. In order to understand the 
computational mechanisms of attention at different levels 
and the links among them, we need multilevel models.  

We have developed a multilevel model for the ANT 
task. One sub-model was developed in the symbolic 
modeling framework of ACT-R and focused on the 
psychological aspects of the task. The other was developed 
in the connectionist modeling framework of leabra and 
emphasized the neurophysiological aspects of the task. A 
preliminary cross-validation of two models is discussed. 

ANT on ACT-R 
ACT-R is a production rule based cognitive modeling 
architecture developed by John Anderson and colleagues 
over a period of nearly two decades (see Anderson & 
Lebiere, 1998). In essence, ACT-R explains human 
cognition by proposing a model of the knowledge structures 
and knowledge deployment that underlie cognition. 
Although ACT-R consists of a nontrivial subsymbolic 
component for computations involving activation and 
association, it is fundamentally a symbolic modeling 
framework in that it relies extensively on various symbolic 
structures for knowledge representation. For example, ACT-
R makes a fundamental distinction between declarative and 
procedural knowledge. Declarative knowledge corresponds 
to things people are aware of and can usually describe to 
others and is represented in ACT-R by chunks. Procedural 
knowledge is knowledge that people display in behavior but 
are not conscious of and is represented by production rules 
(condition-actions pairs). Both chunks and production rules 
are fundamental symbolic structures in ACT-R and are 
regarded as the atomic components of thought in the sense 
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A) Experimental Results B) ACT-R model Results C) Leabra model Results 
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Figure 3. Experimental (A, based on Fan et al. (2002)) and modeling results (B and C). 

 
 
that they are as far down as one can go in the symbolic 
decomposition of cognition. In ACT-R, on average every 
fifty (50) milliseconds, one production rule is chosen to fire, 
a few declarative chunks are processed, and cognition 
advances one step. Therefore, it is claimed that ACT-R 
captures the symbolic grain size of cognition. 

We developed a computational model for the ANT task 
in the framework of ACT-R (Wang, Fan, & Johnson, 2004). 
Our purpose is two-fold. First, we want to explore how 
different types of attention work together in a single 
framework to produce the cognitive performance. Second, 
such a model offers a solid testbed for us to cross-validate 
those models based on various connectionist modeling 
results and neuroimaging data.  

We started by analyzing the major functional 
components in the ANT task. We distinguished six major 
stages in a typical ANT trial: fixation and cue expectation; 
cue or stimulus judgment; cue processing; stimulus 
expectation; stimulus processing; and response. We then 
mapped these functional components onto 36 ACT-R 
production rules. With these rules our model could perform 
the ANT task and interact with the same experimental 
environment that human participants interact.  

We evaluated the performance of the model by using the 
model as a “simulated subject” to perform the ANT 
experiment. The RT results of 100 “simulated subjects” are 
presented in Figure 3B. A correlation analysis shows very 
high correlations (0.99 for RTs and 0.97 for error rates) 
between the simulation and experimental results. We then 
followed the same procedure discussed early to estimate the 
effects of the three attentional networks based on the 
simulated RT data, resulting in the efficiency measures of 
55 ± 7.4 ms, 45 ± 7.0 ms, 86 ± 7.4 ms, for alerting, 
orienting, and executive control, respectively. A close match 
between the two sets of data is apparent, with a notable 
exception that the simulated standard deviations are 
consistently smaller than the empirical ones. The reason is 
that we did not add any between-subject variance in our 
model. As a result, these simulated variances actually 
reflected those within-subject variations in performing the 
ANT task. Overall these results suggest that the model 
captured well the various attentional effects that the ANT 
task was designed to measure. 

The concept of production rule is fundamental to our 
model of attention. One of the key features of the model is 
that it mapped the effects of attentional networks to 
production rules. Rules fire in sequence and operate at a rate 
of about 40-50 ms per production rule. As argued by ACT-
R, production rules define the atomic components of 
thought at the symbolic level. When we examined the 
efficiency measures of attentional networks reported in Fan 
et al (2002) it seemed that they (51 ms, 47 ms, and 84 ms, 
for alerting, orienting, and executive control, respectively) 
fell well into the range of a few rule firings time period. 
Perhaps all we need is about one (for alerting and orienting) 
or two (for executive control) additional production rules to 
explain symbolically the work of attentional networks. This 
is indeed what our model demonstrated. 

ANT on Leabra 
Leabra (local, error-driven and associative, biologically 
realistic algorithm) is a connectionist modeling framework 
proposed recently by O’Reilly and Munakata (2000). There 
are at least three features that distinguish it from other 
connectionist modeling frameworks. First, it has sound 
neurological foundations. It is biologically realistic in 
multiple aspects.  Its neurons compute based on membrane 
potentials and ion channels.  Its neuronal connections are 
often bi-directional and cannot change signs (i.e., changing 
from an excitatory link to an inhibitory link, and vice versa). 
It uses biologically inspired learning rules such as Hebbian 
learning for unsupervised learning and the generalized 
recirculation algorithm (but not the biologically unrealistic 
backpropagation) for error-driven learning. Second, leabra 
is a coherently integrated framework. Many distinctions in 
traditional neural network modeling, including supervised 
vs unsurprised learning, feedforward vs recurrent networks, 
and pattern recognition vs self-organization maps, are all 
unified in a single coherent framework, based on well-
supported biological principles. Third, partly due to its 
biological realism, it is now possible, for example, to 
designate a specific neural network to simulate a specific 
area of brain, and flexibly connect the multiple such 
networks, each of which can have its own properties such as 
the average activation level and the connection density, to 
simulate various brain pathways. As a result, it offers great 
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flexibility to build a hierarchy of neural networks and link 
network activities to higher-level symbols.  

A connection model of the ANT task was developed in 
the framework of leabra. The structure of the model is 
shown in Figure 4. This model contains modules for all the 
three attentional networks. In addition, it contains modules 
for perception (visual input and primary visual cortex), 
object recognition (object pathway), and response (output). 
The networks are connected in such a way that they 
conform to the known functional an anatomical constraints 
as much as possible (Farah, 2000; O'Reilly & Munakata, 
2000).  

The model works as follows. When a cue comes on, the 
primary visual cortex module is activated, which in turn 
triggers the alerting network. This cue-induced alerting 
affects later stimulus processing because the alerting 
network will remain excited for a while which will activate 
the orienting network in general causing it to become ready 
for the incoming stimulus. In addition, when the cue is a 
spatial one (i.e., a cue that indicates where the target 
stimulus is to appear), it will further make the corresponding 
sub-region of the orienting network even more excited. This 
occurs because the orienting network adopts a retinotopy-
based spatial representation of the environment. This extra 
excitation in the sub-region of the orienting network will 
facilitate the corresponding stimulus processing in the 
object pathway network, due to the connections between 
them. This accounts for the orienting effect. Finally, note 
that it is the object pathway network that is responsible for 
the arrow direction detection. When the incongruent 
stimulus (e.g., a left arrow flanked by four right arrows) is 
presented, the object pathway network may propose 
different responses, which compete for the final expression 
in the output network. The executive control network then 
activates making the center arrow defeating the flankers. 
This is where the executive control attention plays a role. 

 

Visual Input

Primary
Visual Cortex

Object
Pathway

Orienting
Network

Alerting
Network

Executive
Control Network

Output

 
Figure 4. A leabra model of ANT. 

 
The performance of the model was evaluated by using it 

to perform the ANT task. Stimuli are presented to the model 
in a similar way as to a human. Depending on the 
conditions, a cue, which can be either a center cue or a 
spatial cue, may be presented for a fixed time period before 
the stimulus presentation (note that the double cue condition 
was not simulated here since the current version of model 

were not equipped with enough neurons). The number of 
cycles the output module takes to produce a stable response 
after the stimulus presentation serves as a measure of the 
reaction time. The simulation results are shown in Figure 
3C. A regression analysis showed that 

RT(ms) = 12 * RT(cycle)   
with a R-square of 0.99. It is clear that the model fits the 
behavioral data reasonably well. 

Discussion 
Human attention is a multi-component multilevel construct. 
Both behavioral and neuroimging studies using the ANT 
paradigm revealed important aspects of the function of 
human attentional networks. Multilevel computational 
modeling helps to probe how these multiple components 
work together and manifest themselves at multiple levels. 

The multilevel model we reported in this paper consisted 
of a sub-model developed in the framework of ACT-R and 
the other in the framework of leabra. While the former sub-
model focused on the symbolic knowledge structure of 
cognitive performance and psychological plausibility, the 
latter focused on the subsymbolic neural information 
processing and biological realism. However, since both 
models simulated the same ANT task and fitted the 
empirical data well, the combined multilevel model offered 
a real possibility to cross-validate the models and probe the 
computational link among different levels. 

First of all, the model illustrated interesting relationships 
between production rules and underlying neural 
computation. As demonstrated in the ACT-R model, rules 
are fundamental units of psychological reality and typically 
proceed serially. However, the underlying neural networks 
process information in parallel. The parallelism of neural 
computation and the serial nature of rule firing can be 
mapped against each other along the time line. Since both 
types of models decompose the cognitive performance into 
sub-units that occur at tens of millisecond scales, the 
mapping may be able to tell how rules are implemented in 
neural level computation. Based on the models, for 
example, we can map one ACT-R rule (40 ms in the current 
model) to about three leabra cycles (about 12 ms per cycle). 
Though such a simple and linear mapping should not be 
taken literally, it does provide a vivid footnote about how 
parallel neural computing is summarized psychologically by 
serial rule firings. It illustrates that we may not be able to 
find a “rule center” in the brain. Instead, rules can be 
implemented anywhere in the brain – they are simply 
pattern matching. For example, there is a symbolic rule that 
summarizes the conflict monitoring and detection operation 
typically subserved by the anterior cingulate cortex. The 
general neural priming underlying alerting in the alerting 
networks is summarized by another task switch rule.  

Our model also demonstrates how functionally identical 
operations can be implemented by different mechanisms at 
different levels. One interesting finding from Fan et al. 
(2002) is the small but reliable difference in RT (about 11 
ms) between the center-cue and the double-cue conditions. 
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A convenient explanation is that in the double-cue condition 
due to diffused attention both stimulus locations had been 
primed a little, which saved a little time when the stimulus 
appeared later. While it is easy to model priming and 
diffused attention in a connectionist model (e.g., our leabra 
model), how it is implemented at a symbolic rule level 
raises a challenge. Our ACT-R model adopted a mechanism 
in which several symbolic and psychologically meaningful 
move-attention operations were carried out sequentially. 
The simulated RT difference was 19 ± 8 ms. 

The multilevel model for human attentional networks we 
reported in this paper has allowed us to compare/contrast 
the computational mechanisms at different levels and to 
probe the important computational links between 
psychologically meaningful mental operations and neural 
activities. It also enjoys potentially significant prediction 
power in that the model at one level can lead to nontrivial 
predictions about the operations at another level. However, 
we recognize that for this approach to work models at each 
level have to be independently and/or mutually validated. 
Further analyses and more detailed alignments of our 
current model remain to be done. 
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