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Basement Membrane and Repair of Injury to Peripheral
Nerve: Defining a Potential Role for Macrophages,
Matrix Metalloproteinases, and Tissue Inhibitor
of Metalloproteinases-1

 

By Monique La Fleur, Johnnie L. Underwood, Daniel A. Rappolee, 
and Zena Werb

 

From the Department of Anatomy and Laboratory of Radiobiology and Environmental Health, 
University of California, San Francisco, California 94143-0750

 

Summary

 

Injury to a peripheral nerve is followed by a remodeling process consisting of axonal degenera-
tion and regeneration. It is not known how Schwann cell–derived basement membrane is pre-
served after injury or what role matrix metalloproteinases (MMPs) and their inhibitors play in
axonal degeneration and regeneration. We showed that the MMPs gelatinase B (MMP-9),
stromelysin-1 (MMP-3), and the tissue inhibitor of MMPs (TIMP)-1 were induced in crush
and distal segments of mouse sciatic nerve after injury. TIMP-1 inhibitor activity was present in
excess of proteinase activity in extracts of injured nerve. TIMP-1 protected basement mem-
brane type IV collagen from degradation by exogenous gelatinase B in cryostat sections of
nerve in vitro. In vivo, during the early phase (1 d after crush) and later phase (4 d after crush)
after injury, induction of TNF-

 

a

 

 and TGF-

 

b

 

1 mRNAs, known modulators of TIMP-1 ex-
pression, were paralleled by an upregulation of TIMP-1 and gelatinase B mRNAs. At 4 days
after injury, TIMP-1, gelatinase B, and TNF-

 

a

 

 mRNAs were localized to infiltrating mac-
rophages and Schwann cells in the regions of nerve infiltrated by elicited macrophages. TIMP-1
and cytokine mRNA expression was upregulated in undamaged nerve explants incubated with
medium conditioned by macrophages or containing the cytokines TGF-

 

b

 

1, TNF-

 

a

 

, and IL-1

 

a

 

.
These results show that TIMP-1 may protect basement membrane from uncontrolled degrada-
tion after injury and that cytokines produced by macrophages may participate in the regulation
of TIMP-1 levels during nerve repair.

 

S

 

ince the turn of the century, it has been clear that injury
to peripheral nerves is followed by a remodeling process

that leads to the degeneration and regeneration of axons
(1, 2). Many of the cellular and molecular events in this
process have been identified. After injury, axons in the dis-
tal segment undergo Wallerian degeneration, which in-
volves the removal of axonal and myelin debris. Phagocytic
cells then remove degenerating axons and myelin, and di-
viding Schwann cells remain within the basement mem-
brane (BM)

 

1

 

 tube that surrounded the original nerve fiber (3).
When regenerating axons reenter the peripheral nerve ma-
trix from the proximal segment, Schwann cells ensheathe

and remyelinate them. The regenerating axons proceed to
grow within the intact Schwann cell–derived tubes (4, 5).

The recruitment of macrophages to injured nerve is also
important in both degeneration and regeneration of axons
after injury. Infiltrating macrophages first appear 2 to 3 d
after injury. These phagocytes not only remove axonal and
myelin debris, but participate in the production of mitoge-
nic factors for Schwann cells and fibroblasts (6) and induce
the synthesis of nerve growth factor-

 

b

 

 (NGF-

 

b

 

) by secret-
ing IL-1 (7), thus potentiating the rate of regeneration.
Macrophages also secrete an array of proteinases (8) that
may allow them to penetrate the BM.

In response to injury, axonal degeneration and regenera-
tion lead to remodeling within the nerve and are associated
with the release of proteolytic enzymes and their inhibitors
(9–11). Even in the presence of high levels of degradative
enzymes released after injury, Schwann cell–derived BM and
supporting endoneurial connective tissue is preserved and
not degraded (12). BM plays an important role in the
maintenance of tissue structure and in orderly reconstruc-

 

1

 

Abbreviations used in this paper:

 

 APMA, 4-aminophenylmercuric acetate;
ApoE, apolipoprotein E; BM, basement membrane; CM, conditioned
medium; COL IV, type IV collagen; ECM, extracellular matrix;
GAPDH, glyceraldehyde-6-phosphate dehydrogenase; LH, lactalbumin
hydrolysate; MMP, matrix metalloproteinase; NGF, nerve growth factor;
RT, reverse transcriptase; TIMP, tissue inhibitor of metalloproteinases.
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tion after injury, serving as a scaffold for cellular migration,
arrangement, or attachment (13–15). In fact, regenerating
axons attach and grow preferentially along the inner surface
of the Schwann cell BM, even in the absence of live
Schwann cells (4, 5, 16). In addition, BM helps to maintain
the columnar organization of multiplying Schwann cells
during repair (13). BM not only offers a structural support
for regenerating axons but also provides a favorable sub-
strate for axonal regrowth. Various extracellular matrix
(ECM) components of BM (e.g., laminin, fibronectin, type
IV collagen, and various proteoglycans) and associated neu-
ral adhesion molecules (e.g., N-CAM) have been shown to
have neurite-promoting activity in vitro (5, 17). Therefore,
BM is essential in guiding and promoting axonal regrowth
after injury.

Although there is some evidence for expression of pro-
teinases and their inhibitors in the invasive process of ax-
onal growth in vitro (9, 10, 18) and during the regenerative
phase after injury in vivo (19, 20), we do not know how
BM is preserved during axonal degeneration and regenera-
tion. Matrix metalloproteinases (MMPs) are believed to be
the physiologically relevant mediators of degradation of ECM
components such as laminin and type IV collagen (21, 22).
The MMP family includes interstitial collagenases, gelati-
nases (type IV collagenases), and stromelysins. These en-
zymes are secreted as proenzymes that become activated by
removal of their NH

 

2

 

-terminal domain. The tissue inhibi-
tors of metalloproteinases, TIMP-1, TIMP-2, and TIMP-3,
regulate proteolysis (22) and have different, but overlap-
ping, inhibitory profiles. To ensure controlled tissue re-
modeling and axonal regrowth, MMP and TIMP activities
must be tightly regulated after injury.

Our objectives in this study were to identify major
MMPs and TIMPs involved in repair after peripheral nerve
injury and to determine their temporal relation to events
after injury, the role of macrophages in these processes, and
the possibility that protection of BM from proteolytic deg-
radation is a relevant mechanism during repair of injury to
nerve.

 

Materials and Methods

 

Animals and Surgery.

 

All procedures were performed accord-
ing to protocols approved by the University of California Com-
mittee on Animal Research (San Francisco, CA). Female CF-1
mice (Charles River Labs., Wilmington, MA), 6–12 wk old,
were anesthetized by an intraperitoneal injection of 2% avertin
(0.15 ml/10 g body weight) (Aldrich Chemical Co., Milwaukee,
WI). Sciatic nerves were crushed mid-thigh three times (20 s
each) with watchmaker’s forceps (No. 5) that were dipped in In-
dia ink to mark the crush site. Skin incisions were closed with
metal clips. At various times after injury, animals were killed and
the nerves were removed and cut into three segments, each 6 mm
long. The crush segment included the 1-mm crush lesion and 2.5
mm above and below the lesion, the distal segment included the
region downstream from the crush segment, and the proximal
segment included the region upstream from the crush segment.
The left sciatic nerve (contralateral) served as a control. Nerve
segments were prepared for either protein or RNA analysis.

 

Organ Culture of Sciatic Nerve Segments.

 

For organ culture,
nerve segments (3 cm total) were weighed and placed in 500 

 

m

 

l
DMEM supplemented with 0.2% lactalbumin hydrolysate (LH).
Conditioned medium (CM) was harvested from crush and distal
nerve segments (4 d after crush) and from contralateral nerve after
culture for 24 h. CM was concentrated by 0.02 M quinine sul-
fate–SDS precipitation for reverse zymography (50

 

3

 

) and immu-
noblotting (15

 

3

 

) when required.
To test the effect of growth factors and macrophage-condi-

tioned medium on TIMP-1 expression, segments of sciatic nerve
(3 cm total) from unoperated mice were placed in a 24-well cul-
ture plate (Costar Corp., Cambridge, MA) containing 500 

 

m

 

l of
DMEM supplemented with 0.2% LH (GIBCO BRL, Gaithers-
burg, MD). Macrophage-conditioned medium from lipopolysac-
charide-stimulated (10 

 

m

 

g/ml, 24 h in serum-free DMEM)
mouse peritoneal exudate macrophages (23) or various recombi-
nant growth factors were added at concentrations comparable to
those known to produce a maximal effect: TNF-

 

a

 

 (24), TGF-

 

b

 

1
(25), and IL-1

 

a

 

 (7). Organ cultures were incubated for 12 h at
37

 

8

 

C in an atmosphere of 5% CO

 

2

 

. Nerve segments were re-
moved after incubation, rinsed in PBS, and placed in TRIzol re-
agent (GIBCO BRL) for RNA extraction and subsequent semi-
quantitative reverse transcription (RT)-PCR.

 

Sample Preparation for Protein Analysis.

 

For sample prepara-
tion of nerve extracts for gelatin zymography, nerve segments
(five pieces, 7 mm long) were homogenized in extraction buffer
(1% Triton X-100 in 500 mM Tris-HCl, pH 7.6, containing 200
mM NaCl and 10 mM CaCl

 

2

 

) and incubated on ice for 30 min.
Samples were centrifuged at 12000 

 

g

 

 for 10 min to remove debris.
Protein was assayed in the supernatant by using the Micro BCA
Protein Kit (Pierce, Rockford, IL), and the samples were stored
at 

 

2

 

70

 

8

 

C until use.

 

Zymography.

 

Nerve extracts were analyzed by gelatin zymog-
raphy (26). Some samples were treated with 1 mM 4-aminophe-
nylmercuric acetate (APMA) (Sigma Chemical Co., St. Louis,
MO) for 1 h to partially activate MMPs, as described previously
(27). Briefly, samples were solubilized in nonreducing Laemmli
buffer without heating and separated on nonreducing 10% SDS–
polyacrylamide gels containing 0.1% gelatin. The gels were then
soaked in 2.5% Triton X-100 (two times for 15 min each) and in-
cubated for 18 h in substrate buffer (50 mM Tris-HCl, pH 7.5,
5 mM CaCl

 

2

 

). Gels were stained in 0.5% Coomassie blue R250
(BioRad, Richmond, CA). Gelatinases appear as a clear zone
on a blue background. To demonstrate metalloproteinase activ-
ity, the gel was incubated in substrate buffer with 50 

 

m

 

M 3-(

 

N

 

-
hydroxycarbamoyl)-2(R)-isobutylpropionyl-

 

l

 

-tryptophan meth-
ylamide (GM6001) (28) (gift of R. Galardy, Glycomed Inc.,
Alameda, CA).

Reverse zymography of TIMPs was carried out as described
previously (26). Briefly, concentrated CM (equivalent to 250 

 

m

 

l
for nerve samples and 300 

 

m

 

l for the calvaria control) was sepa-
rated on nonreducing 13.5% SDS–polyacrylamide gels containing
0.1% gelatin and 25% (vol/vol) APMA-activated rabbit skin CM.
After electrophoresis, the gel was treated as described above. In-
hibitory activity in samples of CM appeared as a blue band on a
clear background owing to local protection of gelatin from pro-
teolysis.

 

Gelatinase Assay.

 

For the soluble gelatinase assay, nerve ex-
tracts were prepared from nerve segments (pooled crush and dis-
tal) by homogenization in extraction buffer (50 mM Tris-HCl,
pH 7.4, 30 mM CaCl

 

2

 

, 150 mM NaCl). The samples were cen-
trifuged to remove debris and assayed for protein as described
above. Purified gelatinase B was prepared from the mouse mac-
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rophage cell line P388D1 and activated with APMA before use as
described previously (29). Gelatin-degrading activity in nerve ex-
tracts was determined by using heat-denatured 

 

14

 

C-labeled col-
lagen type I (boiled for 5 min; provided by M.J. Banda, Univer-
sity of California, San Francisco, CA) as a substrate (30). Various
amounts of nerve extract or recombinant human TIMP-1 (0–30 ng)
(gift of D. Carmichael, Synergen, Boulder, CO) were preincubated
at 37

 

8

 

C for 1 h in the presence of 100 ng purified gelatinase B in a
volume of 150 

 

m

 

l, and then 50 

 

m

 

l (100 

 

m

 

g) of 

 

14

 

C-labeled gelatin
was added and the mixture was incubated for 5 h at 37

 

8

 

C. The re-
action was stopped by the addition of 50 

 

m

 

l of 30% (wt/vol) trichlo-
roacetic acid and, after a 5-min centrifugation, solubilized 

 

14

 

C prod-
ucts were measured by liquid scintillation spectrometry. The 

 

K

 

i

 

 of
TIMP-1 inhibition of gelatinase B activity in this assay, determined
by titration of gelatinase B with various amounts of recombinant
TIMP-1, was 0.1 nM, which corresponds to previous findings (30).

 

Western Blotting.

 

Extracts or CM from nerve cultures were
separated on 12% nonreducing SDS–polyacrylamide gels and trans-
ferred electrophoretically to Immobilon-P membranes (Millipore
Corp., Bedford, MA). Prostromelysin-1 and active stromelysin-1
were detected in unconcentrated and 15X concentrated CM, re-
spectively. The membrane was incubated with a mouse anti–human
stromelysin-1 mAb, SL188.2 (1:200; reference 31), followed by a
biotinylated goat anti–mouse IgG (1:3,000; Sigma Chemical Co.)
and horseradish peroxidase–conjugated streptavidin (1:2,000; Am-
ersham Corp., Arlington Heights, IL). Antibodies were diluted in
Tris-buffered saline (20 mM Tris-HCl, pH 7.5, 150 mM NaCl)
containing 0.5% bovine serum albumin and incubated for 1 h
each. Specific bands were detected by enhanced chemilumines-
cence as described by the manufacturer (Amersham Corp.).

 

Enzyme/TIMP Cryosection Assay.

 

This assay was performed
essentially as described previously (32). Briefly, to assess laminin
and type IV collagen (COL IV) degradation in vitro, we placed
10-

 

m

 

m cryosections of uninjured sciatic nerve on sterile, pre-
coated (0.1% gelatin) glass coverslips. Individual coverslips were
placed in a 24-well culture plate (Costar Corp.) containing 250 

 

m

 

l
of DMEM supplemented with 0.2% LH, 1 mM APMA, and ge-
latinase B (0.5 nM) alone or gelatinase B in combination with re-
combinant human TIMP-1 (0.5 nM) for 16 h at 37

 

8

 

C in an at-
mosphere of 5% CO

 

2

 

. Medium with only 1 mM APMA was
used as a control. After incubation, sections were washed in PBS
containing 3 mM EDTA, and laminin and COL IV were local-
ized by immunofluorescence.

 

Oligonucleotide Primers.

 

Primers used in PCR reactions for
apolipoprotein E (ApoE), CSF-1, glyceraldehyde-6-phosphate
dehydrogenase (GAPDH), TNF-

 

a

 

, TGF-

 

b

 

1, stromelysin-1,
TIMP-1, IL-1

 

a

 

 and NGF-

 

b

 

 were described previously (33–35).
The following oligonucleotides were synthesized on a PCR Mate
(Applied Biosystems Inc., Foster City, CA) and used for PCR:
c-fms (36) 5

 

9

 

-primer: AAGAACATATACAGCATCATGCAG
(bp 2713–2737), 3

 

9

 

-primer: CGATGTCCCCTGGCTCA-
CAGCA (bp 2945–2966); p75 low-affinity NGF receptor (37)
5

 

9

 

-primer: CAGAGCCTGCACGACCAGCAGACCCA (bp
1050–1075), 3

 

9

 

-primer: GGCCAGCAGGGCTCGCACTGG-
GCA (bp 1247–1269); gelatinase B (38) 5

 

9

 

-primer: CGCTCAT-
GTACCCGCTGTATAGCTAC (bp 1277–1302), 3

 

9

 

-primer:
TAGAGGCCTCAGAAGAGCCCGCA (bp 1575–1597). Am-
plification products included a diagnostic restriction site for the
validation of PCR products.

 

RNA Isolation, RT-PCR and RNA Blot Analysis.

 

Total RNA
was isolated from nerve segments by using TRIzol reagent
(GIBCO BRL) according to the manufacturer’s specifications and
was quantified by ultraviolet absorbance at 260 nm. Reverse tran-

scription of total RNA (1–5 

 

m

 

g) was performed with oligo dT
primer and Superscript II RT (GIBCO BRL) according to the
manufacturer’s specifications. Before starting the reaction, 2 

 

m

 

l of
each RT mix was removed to a second tube containing 10 

 

m

 

Ci
of 

 

32

 

P-dCTP. The samples were incubated for 1 h at 45

 

8

 

C, fol-
lowed by heating to 95

 

8

 

C for 5 min. The labeled samples of
cDNA were acid precipitated (39), and the radioactivity was
measured by liquid scintillation. Based on these values, the cDNA
in each unlabeled RT mix was equalized by dilution in water.
Semi-quantitative PCR was performed as described previously
(40). Briefly, the cDNA was amplified in the thermocycler (Gene
Amp PCR thermocycler; Perkin-Elmer Corp., Norwalk, CT) in
a final volume of 30 

 

m

 

l containing 50 mM KCl, 10 mM Tris, pH
8.3, 4 mM MgCl

 

2

 

, 0.4 

 

m

 

M 5

 

9

 

 and 3

 

9

 

 primers, and 0.6 U of Taq
polymerase (Perkin-Elmer Corp.). Samples were denatured at
94

 

8

 

C for 3 min and amplified for 25–45 cycles (1 cycle: denatur-
ation at 94

 

8

 

C for 20 s, annealing and extension at 60

 

8

 

C for 30 s)
with a final extension of 5 min at 72

 

8

 

C. Samples were removed
after various numbers of cycles and separated on 3% Nusieve
GTG/1% Seakem ME agarose gels. Amplified products were
quantified by densitometric scanning (Molecular Dynamics, Inc.,
Sunnyvale, CA) of specific bands on negatives of ethidium bro-
mide–stained gels. The results were plotted on a semi-logarithmic
graph, and the amounts of cDNA (for a given set of primers)
present in different samples were compared in the linear portion
of the curve. Water was used as a negative control for contamina-
tion, and some samples were amplified without reverse transcrip-
tion to check for the presence of DNA contaminants.

For RNA blot analysis, samples of RNA were separated on 1%
agarose formaldehyde gels (39) and transferred by downward al-
kaline transfer (Turboblotter; Schleicher & Schuell, Inc., Keene,
NH) to nylon membranes (Hybond N; Amersham Corp.). The
blot was hybridized in QuikHyb hybridization solution (Strat-
agene Inc., La Jolla, CA) and washed according to the manufac-
turer’s instructions. The following random-primed cDNA probes
were used: mouse TIMP-1 full-length cDNA (41) and a partial-
length mouse gelatinase B. The gelatinase B probe was synthe-
sized with RNA from 1-d postcrush nerve by RT-PCR using
the conditions described previously (38), subcloned into pBlue-
script KS, and sequenced. The following primers were used: 5

 

9

 

-
primer: ACCCGAAGCGGACATTGTCATCCAG (bp 510–
534), 3

 

9

 

-primer: GCCAGGTGACGGGCTGCTTGTGGGG (bp
1509–1533). As a control for equal loading, the blot was stripped
and reprobed with a cDNA probe for 28 S RNA. The blot was
then exposed to XAR-5 film (Eastman Kodak Co., Rochester,
NY). For quantification of the signal, the probed blot was ana-
lyzed in a Molecular Dynamics PhosphoImager SF.

 

Immunostaining.

 

All staining procedures were performed cau-
tiously because of the poor adhesion of the lipid-rich nerve sec-
tions to slides. For localization of laminin and COL IV, unfixed
cryosections were blocked in 5% normal sheep serum (1 h at
25

 

8

 

C), and then incubated with either a rabbit anti–mouse COL
IV antibody (1:100; Collaborative Research, Bedford, MA) or a
rabbit anti–mouse laminin antibody (1:100; Collaborative Re-
search). Biotinylated sheep anti–rabbit IgG (1:200; Sigma Chem.
Co.) was used as a secondary antibody, followed by Texas red-
streptavidin (1:1,000; Amersham Corp.).

For immunostaining of fixed tissue, sciatic nerve segments
(contralateral and injured) were immersed in 2% paraformalde-
hyde for 2 h at 25

 

8

 

C and embedded in Tissue-Tek O.C.T. Com-
pound (Miles Inc., Elkhart, IN) or dehydrated in ethanol and em-
bedded in paraffin. Frozen sections (7 

 

m

 

m) or paraffin sections (5

 

m

 

m) were cut and floated onto Superfrost slides (Fisher Scientific,
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Pittsburgh, PA). For antibody staining, serial cryosections were
rehydrated, blocked in 5% normal serum, and incubated for 1 h at
25

 

8

 

C with either macrophage-specific rat mAb F4/80 (42) (1:5;
gift of S. Gordon, University of Oxford, Oxford, England) or
polyclonal rabbit anti–bovine antibody S-100 (1:2,000; Dako
Corp., Carpenteria, CA). Biotinylated secondary antibody, the avi-
din-biotin-peroxidase complex, and the diaminobenzidine-tet-
rahydrochloride substrate kit were obtained from Vector Labs,
Inc. (Burlingame, CA). Polyclonal rabbit anti–bovine neurofila-
ment 200 antibody (NF 200; 1:500, Sigma Chem. Co.) was ap-
plied to deparaffinized sections. Antigen was detected by using
biotinylated sheep anti–rabbit antibody (1:100, Sigma Chem.
Co.) followed by Texas red-streptavidin. Subsequent washes in
PBS were for 10 min after primary and secondary antibodies were
applied. Controls were preimmune serum or normal IgG in the
place of primary antiserum. Sections were photographed on
Kodak Tri-X or Fujicolor 400 film by using a Zeiss Axioskop
photomicroscope.

 

In Situ Hybridization.

 

Fixed cryostat sections (7 

 

m

 

m; see
above) were rehydrated, after fixed in 4% paraformaldehyde for
5 min and treated with proteinase K (2.5 

 

m

 

g/ml in PBS) at 37

 

8

 

C
for 6 min. After acetylation with 0.25% (vol/vol) acetic anhy-
dride in 0.1 M triethanolamine, pH 8, for 10 min, sections were
prehybridized for 1 h at 50

 

8

 

C (50% formamide, 0.3 M NaCl, 20
mM Tris-HCl, pH 8, 1 mM EDTA, 1

 

3

 

 Denhardt’s, 10% wt/vol
dextran sulfate, and 500 

 

m

 

g/ml yeast tRNA). Sense and antisense
digoxigenin-labeled cRNA transcripts from a 770-bp full-length
mouse TIMP-1 cDNA (41); a 920-bp (position 709–1629) frag-
ment of mouse TNF-

 

a

 

 cDNA (43); or a 294-bp (position 805–
1099) fragment of mouse gelatinase B (44) were prepared by
using the digoxigenin-RNA labeling kit according to the man-
ufacturer’s instructions (Boehringer Mannheim Corp., India-
napolis, IN). The cRNA transcripts were diluted in prehybridiza-
tion mix (1 ng/

 

m

 

l) and hybridized on tissue sections overnight at
50

 

8

 

C in a humidified chamber. Sections were washed in 2

 

3

 

 SSC,
pH 7, for 10 min, treated with RNase A (40 

 

m

 

g/ml in 2

 

3

 

 SSC)
for 30 min at 37

 

8

 

C, rinsed in 2

 

3

 

 SSC and washed for 30 min in
50% formamide/2

 

3

 

 SSC at 50

 

8

 

C, followed by washes in 1

 

3

 

SSC and 0.5

 

3

 

 SSC for 20 min each. Digoxigenin was detected
by using alkaline phosphatase-coupled anti–digoxigenin antibody
according to the manufacturer’s instructions (Boehringer Mann-
heim Corp.). Development times varied from 2 to 6 h. After
digoxigenin detection, sections were counterstained for 5 min in
2 

 

m

 

g/ml of Hoechst 33258 (Sigma Chem. Co.) and washed in
PBS before being mounted for microscopy. All in situ hybridiza-
tions were performed with antisense and sense RNA probes to
evaluate background hybridization levels. Sections were photo-
graphed as described above. Because of their high lipid content,
which produced poor adherence to glass slides, partial loss of
nerve cryosections occurred frequently.

 

Results

 

Basement Membranes Are Preserved after Nerve Injury.

 

In nor-
mal uninjured sciatic nerve, COL IV is a major component
of Schwann cell BM. To determine if the integrity of BM
is maintained after injury, we stained longitudinal sections
of injured nerve with an anti-COL IV antibody (Fig. 1). Nor-
mal levels of immunoreactive COL IV were found in the
proximal, crush, and distal segments of nerve at 1, 4, 7, and
10 d after injury (after crush).

To determine when regenerating axons begin to appear

in the distal segment after injury, we examined transverse
sections of nerve 5 mm distal to the crush site by immun-
ostaining axons with an antineurofilament antibody (Fig. 1).
At 1 and 4 d after crush the distal segment showed weak
staining of axonal remnants. Axonal staining became appar-
ent on day 7 with the appearance of scattered, positively
reacting, slender axons. By day 10, the number of regener-
ating axons invading the injured nerve had increased dra-
matically, although they remained of small caliber.

 

MMPs Are Increased after Nerve Injury. The serine pro-
teinases urokinase and tissue-type plasminogen activator are
expressed during axonal growth (10) and regeneration in
vivo (20, 45, 46), and a calcium-dependent proteinase is
released by sympathetic and sensory neurons in culture (9,
18). MMPs, however, are the major contributors to ECM
degradation. Therefore, we examined MMP activity in ex-
tracts of injured sciatic nerve after 1 d and 4 d, when neu-
trophil and macrophage recruitment into wound sites is
maximal (6, 8). Tissue extracts from sham-operated nerve,
contralateral nerve, and the proximal-crush-distal segments
of injured nerve showed gelatinolytic bands migrating at
92, 85, 72, and 66 kD, corresponding to progelatinase B,
active gelatinase B, progelatinase A, and active gelatinase A,
respectively (Fig. 2 A). Because similar activities for the
72-kD gelatinase A were observed in contralateral and
sham-operated nerve and the proximal segment of injured
nerve, we used the contralateral nerve as a control. The ac-
tivity of the 72-kD gelatinase A band was the same in sam-
ples at day 1 and only modestly increased in injured nerve
at day 14. The major gelatinolytic activity at 1 d after crush
in crush and distal segments of nerve was gelatinase B,
which was greater in both segments than in contralateral
nerve. Higher activity was seen 1 d after injury, as com-
pared to day 4, possibly owing to the large influx of neu-
trophils or production by mast or Schwann cells. The ge-
latinolytic bands migrating at 135 kD are likely to be
complexes formed between gelatinase B and neutrophil ge-
latinase-associated lipocalin (NGAL) (47), and bands at
.135 kD are probably aggregates of gelatinase B (48).

MMPs are found in latent proenzyme forms and cleaved
active forms, both of which can be visualized by zymogra-
phy. Activation of the latent proenzyme by organomercu-
rials agents involves proteolysis and a shift to a lower mo-
lecular weight species. To verify which MMPs were in the
proenzyme or active form in injured nerve, we treated
samples with the organomercurial agent APMA for 1 h to
partially activate latent forms before loading them onto the
substrate gel (Fig. 2 A). In the crush and distal segments,
gelatinolytic bands 92 and 72 kD shifted to lower molecu-
lar weight species of 85 and 66 kD, respectively, after
APMA treatment, indicating latency (27). Because of par-
tial activation by APMA treatment, other gelatinolytic
bands generated represent intermediate forms of the proen-
zyme. Incubation of the zymogram with the synthetic
MMP inhibitor GM6001 identified all the gelatinases as
MMPs. Because gelatinase B can arise both from local syn-
thesis and from storage granules in neutrophils, we ana-
lyzed segments for its mRNA. At 1 d and 4 d after injury,
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the increased activity of gelatinase B in the crush and distal
segments was paralleled by an increase in its mRNA (Fig. 2,
B and F), demonstrating local synthesis by cells in crushed
nerve. Gelatinase B mRNA was virtually absent in unin-
jured nerve and was induced 27- and 12-fold at 1 d after
crush and 6.2- and threefold at 4 d after crush in the crush
and distal segments of injured nerve, respectively, com-
pared with contralateral nerve.

Not all MMPs are gelatinolytic. To determine whether
stromelysin-1, which has been found in cultures of NGF-
stimulated PC12 cells and mitogen-stimulated Schwann
cells (49), was present in crushed nerve, we analyzed sam-
ples of medium conditioned by segments of crushed or
contralateral nerve by immunoblotting (Fig. 2 C). Stromel-
ysin-1 protein, migrating as the proenzyme at 55 kD, was
increased in CM from both crush and distal nerve seg-
ments, compared with contralateral nerve. A small amount
of active stromelysin-1 migrating at 45 kD was visualized in
concentrated CM from crush and distal segments, but not
with contralateral nerve. The lower band at 35 kD is an-
other cleavage product of stromelysin-1 (50).

MMP Inhibitory Activity Is Increased after Nerve Injury.
After injury, controlled ECM degradation requires tight
regulation of MMP activity. Regulation of MMPs is ac-

complished in part through binding of their inhibitors,
TIMP-1, TIMP-2, and TIMP-3. Therefore, we examined
extracts of injured nerve to determine if TIMPs were
present and active during nerve repair. With a sensitive en-
zymatic assay based on inhibition of 14C-labeled gelatin
degradation by purified gelatinase B (30, 51), we found that
extracts of injured nerve contained net MMP inhibitory
activity (Fig. 2 D). The inhibitory activity present in 4-d
postcrush nerve extracts was equivalent to 2 ng recombi-
nant TIMP-1/5 mg extractable protein and was comparable
to the inhibitory activity found in extracts of calvaria,
which has high levels of TIMP-1 activity (52). No inhibi-
tory activity was found in extracts of contralateral nerve.

We identified which TIMPs were present in injured
nerve by reverse zymography of medium conditioned for
24 h by segments of 4-d post-crush nerve (Fig. 2 E). The
major inhibitory band at 28 kD secreted by the crushed
nerve segments comigrated with TIMP-1 (30) from the
mouse calvarial CM standard and was increased as com-
pared with contralateral nerve. Small amounts of inhibitor
migrating at 22 kD, which were present in CM from in-
jured nerve but undetectable in CM from contralateral
nerve, comigrated with TIMP-2 (26). The inhibitory band
at 24 kD migrated like TIMP-3 (53).

Figure 1. BM integrity and axonal regeneration after
sciatic nerve injury. For visualization of BM, longitudi-
nal paraffin sections of uninjured contralateral nerve
(A) and injured nerve (proximal, crush, and distal) at 1, 4,
7, and 10 days post-crush were stained with anti-COL
IV antibody (D–F, H–J, L–N, and P–R, respectively).
(B) A preimmune IgG control. Bar (P), 45 mm. For vi-
sualization of axons, transverse paraffin sections of un-
injured contralateral nerve (C) and injured nerve ap-
proximately 5 mm distal to the crush site at 1, 4, 7, and
10 d after crush (G, K, O, and S, respectively), were
stained with anti-neurofilament (ANTI-NF) antibody
and visualized by immunofluorescence. Bar (S), 10 mm.
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Figure 2. MMPs and TIMPs in normal and injured sciatic nerve. (A) Uninjured con-
tralateral nerve, sham-operated nerve, and injured nerve at 1 and 4 d post-crush were dis-
sected and cut into segments as described in Materials and Methods. Tissue extracts (20 mg/
lane) prepared from segments of contralateral nerve and proximal-crush-distal segments of
injured nerve were assayed for gelatin-degrading activity by SDS–substrate gel zymography.
Samples were treated with (1) or without (2) APMA for 1 h to partially activate latent
MMP activity before electrophoresis. After electrophoresis, the gel was cut, and a portion of
the gel was incubated either with (1) or without (2) 50 mM GM6001, an inhibitor of
MMP activity. Clear (white) bands indicate proteolytic activity. Migration of gelatinase A
(gel A) and gelatinase B (gel B) is indicated on the right, and molecular weight markers are
indicated on the left. White arrows next to gelatinolytic bands in the crush segment indicate,
from top to bottom: gelatinase B aggregates, 135-kD gelatinolytic band, progelatinase B, ac-
tive gelatinase B, and progelatinase A. (B, top) Total RNA (100 ng) from the distal segment
of injured nerve at 4 d after crush (open squares) or contralateral uninjured nerve (filled circles)
was reverse transcribed, and equal amounts of cDNA were amplified by PCR. Semi-quanti-
tative RT-PCR analysis of gelatinase B was performed by sequentially removing aliquots
of the reaction mix after various numbers of cycles for each sample. For determination of
the difference in transcript levels, two points (corresponding to equal amounts of input
RNA or cDNA) within the exponential range of the curve were compared. (B, bottom) An
example of the ethidium bromide–stained bands. (C) Segments of uninjured contralateral
and 4-d postcrush nerve were cultured for 24 h, and the serum-free CM was separated on a
nondenaturing SDS–polyacrylamide gel, transferred to membranes, and analyzed by immu-
noblotting with an anti–stromelysin-1 antibody. Prostromelysin-1 was detected in uncon-
centrated medium for all samples. As a positive control to show migration of prostromel-
ysin-1 and active stromelysin-1, CM collected from a 24-h culture of mouse calvaria was
incubated with APMA for 1 h. Equivalent volumes of CM per milligram of wet weight
were loaded per lane. Molecular weight markers are indicated on the left. These experi-
ments were performed on 2–4 nerves. (D) Degradation of 14C-labeled gelatin in solution
was used to show the presence of endogenous MMP inhibitors in nerve extracts from
pooled crush and distal segments of injured nerve. Various amounts of nerve extract (filled
squares, contralateral; filled circles, crush) or recombinant human TIMP-1 (open circles) were in-
cubated with 100 nM purified gelatinase B, followed by the addition of 14C-labeled gelatin



2317 La Fleur et al.

The increased TIMP-1 activity and protein seen in the
crushed nerve were paralleled by increased TIMP-1
mRNA in crush and distal segments (Fig. 2 F). TIMP-1
mRNA was readily detectable in uninjured nerve, and was
induced 12- and 9.5-fold at 1 d after crush, and 14- and
11-fold at 4 d after crush in crush and distal segments of the
injured nerve, respectively, compared with contralateral
nerve. The magnitude of the increase at day 4 is underesti-
mated by normalizing to RNA and is actually closer to a
50-fold increase in the injured nerve because of the 5–10-
fold increase in cell number (and corresponding total
RNA) with Wallerian degeneration.

TIMP-1 Protects Nerve Basement Membrane from Degrada-
tion by Gelatinase B. After injury to nerve, Schwann cell
BM remains intact and serves as a substrate to guide and
stimulate axonal regrowth (4, 17). Because we observed an
increase in both TIMP-1 and MMP activities in injured
nerve, we concluded that TIMP-1 may regulate MMP ac-
tivity in the nerve after injury. To determine if gelatinase B
could degrade nerve BM, we incubated cryosections of un-
injured nerve overnight with 0.5 nM APMA-activated ge-
latinase B, the major MMP upregulated after injury, in the
absence or presence of 0.5 nM recombinant TIMP-1. This
concentration of TIMP-1 (z1.5 ng/ml) was comparable to
that found in extracts of crushed nerve (see above). Nerve
cryosections treated with gelatinase B showed decreased
immunoreactivity with anti-COL IV antibody, but not
with anti-laminin antibody (Fig. 3), as would be expected
from the substrate specificity of this enzyme (54). How-
ever, when the sections were incubated with gelatinase B
in the presence of TIMP-1, the amounts of immunoreac-
tive COL IV and laminin were the same as in control (un-
injured sections incubated without gelatinase B). Thus,
TIMP-1 can protect COL IV in sections of sciatic nerve
from degradation by gelatinase B.

Expression of TIMP-1 and Gelatinase B mRNAs Is Associat-
ed with the Induction of Cytokine mRNA in Injured Nerve and
Shows Distinct Regulation in the Crush Site and Distal Seg-
ment. Because TIMP-1 and gelatinase B activity increase
after nerve injury, we analyzed the kinetics of cytokine
mRNA induction in relation to TIMP-1 and gelatinase B
induction, as well as the influx of macrophages in injured
nerve. mRNA levels were quantified by semi-quantitative
RT-PCR, in the crush and distal segments, to distinguish
between the changes in mRNA levels associated with acute

injury, the arrival of macrophages into the crush site, and
the changes occurring in the degenerating distal segment as
the wave of Wallerian degeneration proceeds. The expres-
sion of GAPDH mRNA, a housekeeping gene, did not
change significantly from day 1 to 10 after injury (Fig. 4).
This marker was therefore useful for normalizing the levels of
mRNA despite a 5–10-fold increase in cell number (55, 56)
and a corresponding increase in total RNA due to Schwann
cell proliferation and macrophage influx. ApoE, a protein
involved in the recycling of lipids and produced by mac-
rophages during nerve degeneration (57, 58), and c-fms, the
CSF-1 receptor expressed constitutively in macrophages
(59), were used as markers for macrophages. ApoE expres-
sion (Fig. 4, A and B) started to increase at day 4 and in-
creased through day 10 in both crush and distal segments.

substrate. After incubation, solubilized 14C-labeled products were determined. Results represent the mean 6 range of two experiments. CM from calvaria
(filled triangles), a rich source of TIMP-1, was used as a positive control. (E) Segments of uninjured contralateral and 4-d postcrush nerve were cultured for
24 h, and MMP inhibitory activity secreted in the serum-free CM was assayed by reverse zymography. CM collected from a 24 h culture of mouse cal-
varia served as a control. CM was concentrated 50-fold by quinine sulfate precipitation. Equivalent volumes of CM per milligram wet weight of nerve
were loaded per lane. Clear (white) areas indicate proteolytic activity, and dark areas indicate MMP inhibitory activity. Molecular weight standards are in-
dicated on the left and migration of TIMP-1 and TIMP-2 standards on the right. (F) Expression of TIMP-1 and gelatinase B mRNA in sciatic nerve at 1
and 4 d after crush. Total RNA (10 mg) from segments of uninjured contralateral nerve and proximal, crush, and distal segments of injured nerve at 1 and 4 d
after crush was prepared for RNA blot analysis. RNA isolated from contalateral nerve at 1 and 4 d after crush was pooled, as was the RNA from the
proximal segment of injured nerve. (Upper panel) The blot was hybridized with the following cDNA probes: TIMP-1, gelatinase B, and 28 S RNA. The
blot was exposed 7 d for TIMP-1 and 10 d for gelatinase B. (Lower panel) Quantification of the mRNA signals shown was obtained by scanning of the
probed blots in a PhosphorImager. The values obtained for TIMP-1 and gelatinase B in contralateral nerve was set equal to 1. Values were normalized
against the value obtained for the 28 S RNA hybridization to correct for differences in loading of the different RNA samples, and are shown as fold in-
duction, which is the ratio of mRNA in crush and distal segments of injured nerve to that of the contralateral nerve.

Figure 3. TIMP-1 protection of nerve BM from degradation by gelati-
nase B. Unfixed cryosections of uninjured sciatic nerve were incubated
overnight in medium and 1 mM APMA without gelatinase B (A and B),
with 0.5 nM gelatinase B (C and D), or with 0.5 nM gelatinase B and
0.5 nM recombinant TIMP-1 (E and F). Sections were then stained with
anti–laminin (LN) antibody (A, C, and E) or anti-COL IV antibody (B,
D, and F) and visualized by immunofluorescence. Bars in A (A and B)
50 mm; (for C–F) 20 mm.
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At the crush site, the increase in c-fms mRNA was bimo-
dal, peaking at day 1 and day 4. The first peak of c-fms
mRNA expression may correspond to the activation of res-
ident macrophages, whereas the second peak may corre-
spond to the influx of inflammatory macrophages. In the
distal segment, c-fms showed only one peak, increasing
from day 4 through day 10, corresponding to the influx of
macrophages during Wallerian degeneration. The increase
in c-fms was delayed about 2 d compared to infiltration of
the crush site. The mRNA for CSF-1, a known chemo-
attractant for macrophages, was detectable but did not

change during the time course, suggesting that this func-
tion may be controlled at the level of its receptor, c-fms
(data not shown).

TIMP-1 and gelatinase B mRNA both displayed bimo-
dal expression patterns at the crush site: TIMP-1 reached a
peak at 7 h, whereas gelatinase B peaked later at day 1, fol-
lowed by a decrease in expression (Fig. 4 C). At day 4 after
crush, TIMP-1 and gelatinase B mRNA levels peaked a
second time. In the distal segment, the mRNA expression
moved distally from the crush site with time (Fig. 4 D).
Gelatinase B mRNA expression peaked at day 2 and then
decreased dramatically thereafter, whereas TIMP-1 mRNA
increased up to day 1 and then maintained this level for 10 d.
Expression of mRNA for another MMP, stromelysin-1,
also increased at 4 d after crush (Table 1).

Transcripts for TNF-a and TGF-b1, known modulators
of TIMP-1 expression, were induced at day 1 in the crush
segment, before macrophage influx (Fig. 4 E). TNF-a
mRNA then dropped to basal levels, whereas TGF-b1 re-
mained high from day 4. In the distal segment, TNF-a
mRNA reached a peak at day 1 and then maintained a
steady level for 10 d, whereas TGF-b1 mRNA peaked at
day 7 and decreased thereafter (Fig. 4 F). The increase in
TNF-a and TGF-b1 mRNAs paralleled the induction of
TIMP-1 and gelatinase B mRNAs. These cytokines are
produced before and after the influx of macrophages in in-
jured nerve.

mRNA for IL-1a, which can induce the synthesis of
TIMP-1 and NGF-b (Table 2), was expressed at day 4 in
the crush and distal segments. The expression of mRNA

Figure 4. Kinetic analysis of the expression of TIMP-1, gelatinase B,
and other injury-related genes by means of semi-quantitative PCR.
mRNA transcripts for ApoE, c-fms, GAPDH, gelatinase B, TIMP-1,
TNF-a, TGF-b1, and NGF-b were identified in the crush and distal seg-
ments of injured sciatic nerve relative to the contralateral nerve by semi-
quantitative PCR as described in the legend to Fig. 2 B. Each point rep-
resents the mean of three independent experiments. Bars, 6 SEM.

Table 1. mRNA Levels in Crush and Distal Segments of 
Sciatic Nerve at 4 D After Crush

mRNA transcript

Crush segment Distal segment

Fold induction

TIMP-1 11.5 6 3.0* 9.6 6 2.3*
Stromelysin-1 5.5 6 1.8* 5.0 6 1.0*
Gelatinase B 5.1 6 1.2* 3.2 6 0.3*
GAPDH 1.6 6 0.2 1.2 6 0.3
CSF-1 1.7 6 0.2 1.9 6 0.2*
TGF-b1 4.1 6 0.3* 4.6 6 0.7*
TNF-a 1.6 6 0.6 6.3 6 1.1*
IL-1a 6.2 6 2.1* 18.3 6 6.7*
NGF-b 3.9 6 1.4* 22.0 6 4.0*
c-fms 2.6 6 0.4* 2.2 6 0.4*
p75NGFR 2.9 6 0.9* 24.0 6 6.2*

RNA expression was monitored by RT-PCR and quantified as de-
scribed in the legend to Fig. 2 B. Values represent fold induction,
which is the ratio of mRNA in injured nerve to that in contralateral
(control) nerve. Values represent the mean 6 SD of the results of three
experiments; those indicated by an asterisk (*) are significantly different
from values in contralateral nerve (P ,0.05, Student’s t test).
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for NGF-b, a trophic factor critical for neuronal survival
and growth (60), was upregulated after injury (Fig. 4, G
and H) and peaked early (between 7 and 24 h) in the crush
segment, with a second, lower peak at day 4. At day 1, be-
fore the influx of macrophages, mast cells may produce
NGF-b mRNA (61), whereas Schwann cells stimulated by
macrophage-derived IL-1a (7) may express NGF-b at day 4.
The mRNA for p75 low-affinity NGF receptor paralleled
the increase of NGF-b mRNA in the distal segment (Table

1). Thus, synthesis of growth factors and cytokines both
before and after the arrival of macrophages in the crushed
nerve is associated with the induction of expression of
TIMP-1, gelatinase B, stromelysin-1, and NGF-b, mole-
cules that are involved in remodeling and nerve regenera-
tion.

TIMP-1, Gelatinase B, and TNF-a mRNAs Are Localized
in Both Macrophages and Schwann Cells after Nerve Injury.
Because the total cellularity of the nerve increases with
Schwann cell proliferation and macrophage influx, the in-
creases in mRNA reported here underestimate the total in-
crease by a factor of 5–10 at day 4. Accordingly, we sought
to localize the cellular sources for TIMP-1 mRNA in sci-
atic nerve at 4 d after crush by in situ hybridization. TIMP-1
mRNA was detected in the crush and distal segments and
colocalized spatially with the distribution of macrophages
(Fig. 5).

Next we examined the distribution of mRNA for cyto-
kines and gelatinase B in relation to TIMP-1 and deter-
mined which cell types were expressing these transcripts.
While TIMP-1 mRNA was abundant in both crush and
distal segments, but barely, if at all, detectable in the proxi-
mal segments and the contralateral nerve, TNF-a mRNA
was detected only in the distal segment (Fig. 6). Gelatinase B
was detected in both crush (not shown) and distal (Fig. 6)
segments. We also found that the localization of TGF-b
mRNA was similar to that of TIMP-1 in both crush and
distal segments in the regions containing the infiltrating
macrophages (data not shown). Hoechst counterstaining
showed all mRNA staining to be cytosolic. By means of
corresponding immunohistochemical staining on serial sec-
tions, we identified both macrophages (F4/80 positive) and

Figure 5. Expression of TIMP-1
mRNA and localization of mac-
rophages to injured sciatic nerve.
(A) Longitudinal cryosection of
4-d postcrush nerve was hybrid-
ized with digoxigenin-labeled an-
tisense RNA probe to TIMP-1.
The proximal, crush, and distal
segments of the injured nerve are
indicated. The bracket indicates
the crush site. The arrow points
to the India ink at the crush site.
TIMP-1 expression is seen at the
crush site and in the distal seg-
ment of injured nerve. The distal
segment of the section has a frag-
mented appearance and loss of
some tissue because of poor ad-
herence of nerve sections to the
slide. (B) Immunohistochemical
staining of macrophages in sec-
tions of injured nerve by means
of a macrophage-specific antibody
F4/80, and a horseradish peroxi-
dase–labeled secondary antibody.
Increased numbers of macrophages
are seen at the crush site and in
the distal segment. Bar, 100 mm.

Table 2. Induction of TIMP-1 mRNA in Uninjured Nerve 
Explants in Culture

mRNA
transcript

Treatment

Macrophage
CM

TNF-a
(0.1 ng/ml)

TGF-b1
(10 ng/ml)

IL-1a
(50 U/ml)

GAPDH 0.9 6 0.2 0.7 6 0.5 0.8 6 0.3 1.3 6 0.4
TIMP-1 9.8 6 2.3 11.0 6 1.4 15.4 6 5.0 19.7 6 4.5
TNF-a 10.3 6 0.4 12.8 6 1.7 11.6 6 1.6 ND
TGF-b 11.1 6 1.9 19.6 6 1.7 20.4 6 2.8 ND
NGF-b 5.2 6 1.1 3.0 6 0.5 5.0 6 1.4 11.0 6 1.6

Uninjured nerve explants were cultured for 12 h with CM (10% vol/
vol) from lipopolysaccharide-stimulated macrophages or recombinant
growth factors. mRNA expression levels were determined by RT-
PCR and quantified as described in the legend to Fig. 2 B. Values are
expressed as fold induction, which is the ratio of transcript levels in du-
plicate mRNA samples from treated cultures to that in untreated cul-
tures; Values represent the mean 6 range of two experiments.
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Figure 6. Localization of TIMP-1, gelatinase B, and TNF-a mRNA in the distal segment of injured nerve by in situ hybridization. Serial longitudinal
cryosections of 4-d post-crush nerve were hybridized with digoxigenin-labeled antisense RNA probes to TIMP-1, gelatinase B, and TNF-a and counter-
stained with Hoechst 33258. (A) Hematoxylin-and-eosin staining of injured nerve. The enclosed areas in A, the crush site (*) and distal segment, are
shown at higher magnification in B and D–S. D, H, L, and P, marked with * show the crush sites. E–G, I–K, M–O, and Q–S are distal segments. (B)
Control showing the crush site hybridized with TIMP-1 sense probe. The black material at the top is the India ink marking the injury site. (C) Section of
contralateral nerve hybridized with TIMP-1 antisense probe. (D) Crush and (E) distal segments hybridized with antisense TIMP-1 probe. (F) Hybridiza-
tion with gelatinase B and (G) TNF-a antisense probes in the distal segment. (H–K) Hoechst nuclear staining (fluorescence) of sections in (D–G). (L–O)
Corresponding staining for macrophages with mAb F4/80 on adjacent sections. (P–S) Corresponding staining for Schwann cells with S-100 antibody on
adjacent sections. Thick arrows indicate cells expressing mRNA, and thin arrows indicate nonexpressing cells. Note that all macrophages express TIMP-1, gelati-
nase B, or TNF-a. Bars (A) 200 mm; (P) (for B–S), 15 mm.
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Schwann cells (S-100 positive) as producers of TIMP-1,
gelatinase B, and TNF-a mRNA at 4 d after crush; how-
ever, not all macrophages or Schwann cells expressed these
transcripts. F4/80 positive cells were numerous in the crush
segment, some displaying a rounded morphology and oth-
ers arranged in strings of rounded cells called foamy mac-
rophages (62). These may represent either infiltrating or
resident macrophages. In the distal segment, macrophages
were mostly rounded or ramified, whereas the few resident
macrophages present in the proximal segment had exten-
sive ramified cytoplasmic extensions. The macrophages and
Schwann cells in the proximal segment did not express
TIMP-1, TNF-a, or gelatinase B mRNAs. Hybridization
with TIMP-1 (Fig. 6 B), gelatinase B, or TNF-a sense
probes (not shown) did not give a signal. These data sug-
gest that the inflammatory macrophages infiltrating into the
crush site and regions of Wallerian degeneration express
TIMP-1, TNF-a, and gelatinase B genes and regulate a
program to induce their expression in Schwann cells.

TIMP-1 and Cytokine Expression Is Induced in Nerve in Re-
sponse to Macrophage-derived Cytokines. The striking codis-
tribution of macrophages and TIMP-1 mRNA led us to
hypothesize that inflammatory macrophages regulate TIMP-1
production in the injured nerve. Upon stimulation, mac-
rophages produce many cytokines and growth factors, in-
cluding TGF-b1, TNF-a, and IL-1a (34), all of which
have been known to induce TIMP-1 expression in fibro-
blasts in culture (25, 63, 64). To determine whether macro-
phage-derived growth factors regulate expression of TIMP-1
during tissue remodeling, we cultured explants of uninjured
nerve (which does not contain infiltrating macrophages) for
12 h with medium conditioned by macrophages or recom-
binant cytokines, and mRNA expression was monitored by
RT-PCR. TNF-a, TGF-b1, and IL-1a induced TIMP-1
mRNA expression at least 10-fold (Table 2). Interestingly,
cytokine production was also upregulated in the nerve in
response to medium conditioned by macrophages. TGF-b1
and TNF-a were clearly autoinductive for their own
mRNAs, in agreement with previous reports (65, 66).
GAPDH mRNA was unaltered by these treatments. NGF-b
mRNA expression increased from three- to fivefold in the
presence of TNF-a and TGF-b1 and up to 11-fold in the
presence of IL-1a, thus confirming previous results (7). These
data suggest a macrophage/cytokine regulatory circuit that
could be responsible for controlling TIMP-1 gene expres-
sion and thus BM remodeling in peripheral nerve after injury.

Discussion

The Integrity of the BM is Maintained by a Balance of MMPs
and TIMP-1. Our study provides a rational explanation
for the remarkable preservation of Schwann cell BM dur-
ing the process of Wallerian degeneration and regeneration
after peripheral nerve injury. ECM-degrading proteinases
and their inhibitors play an active role in BM turnover dur-
ing remodeling and repair after injury (21, 22). Previous
studies have shown the importance of proteinases and their
inhibitors in the regenerative phase after nerve injury in

vivo, but have not addressed how BM can be preserved in
such a proteolytic environment and how it can support ax-
onal regrowth after injury. We have provided evidence
that TIMP-1 protects the BM from uncontrolled degrada-
tion by the MMPs gelatinase B and stromelysin-1 after in-
jury, and that macrophages and Schwann cells may regulate
these events by synthesizing cytokines factors and TIMP-1.

We observed different events in the crush and distal seg-
ments after injury. In the crush site, an immediate acute in-
flammatory response resulted in changes in cell types, bi-
phasic expression of mRNAs, and induction of proteolytic
activity (1 d after crush) in the absence of infiltrating mac-
rophages. This first (early) phase was followed by a second,
delayed increase 2–4 d after crush (late phase) of various
mRNAs and proteolytic activity in parallel with the ingres-
sion of infiltrating macrophages. In the distal segment, we
observed a monophasic response except for gelatinase B,
which correlated with the ingression of infiltrating macro-
phages 2–4 d after crush.

During Wallerian degeneration and regeneration in the
crush and distal segments, COL IV, a major component of
BM, showed normal immunoreactivity, even in the pres-
ence of high levels of gelatinase B and stromelysin-1. Of
the gelatinases found in injured nerve tissue extracts, only
gelatinase B activity increased both at 1 and 4 d after crush,
whereas gelatinase A activity remained unchanged. The
high levels of gelatinase B activity at 1 and 4 d correlated
with neutrophil and macrophage ingression, respectively.
Both cell types are known to release gelatinase B after stim-
ulation in vitro (48, 67). Previous studies also showed in-
creased MMP activity migrating at 92 kD in rat Schwann
cell cultures at 4 d after denervation, suggesting that dener-
vated Schwann cells are a potential source of gelatinase B
(11). This result is borne out by our in situ hybridization
analysis showing increased gelatinase B mRNA expression
in both macrophages and Schwann cells in the crush and
distal segments of sciatic nerve at 4 d after crush, before ax-
onal regeneration. We also showed the induction of an-
other MMP, stromelysin-1, after nerve injury. Stromel-
ysin-1 activity in medium conditioned by 4-d post-crush
nerve was detected in its proenzyme and active forms and
increased as a result of injury. Schwann cells are the likely
source of stromelysin-1 in nerve injury because they pro-
duce this MMP in vitro (49).

Carefully regulated proteolysis of ECM during remodel-
ing and repair depends on the availability of proteinases in
the face of large amounts of proteinase inhibitors. In kera-
toconus corneal injury (68) and in cutaneous burn wounds
(69), proteinases are in excess of inhibitors, and net ECM
degradation does occur. Nerve injury, however, is distinct,
because TIMP-1 was present in vast excess of proteinases in
nerve extracts, and high levels of TIMP-1 mRNA expression
were maintained after injury. In vivo, a localized excess of
TIMP-1 may bind BM and prevent proteolysis, thus limit-
ing degradation to other regions of the injured nerve. To
demonstrate a role for TIMP-1 during nerve repair, we
showed that the addition of TIMP-1 to uninjured nerve
BM in culture protected COL IV from degradation by
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gelatinase B. Stromelysin-1, a proteinase that degrades the
other BM components, fibronectin and proteoglycans
(50, 54), was also upregulated after injury and is known to
be inhibited by TIMP-1 in vivo and in vitro (70). Interest-
ingly, we and others (71) have observed that immunoreac-
tive laminin and COL IV were maintained in vivo for up
to 4 wk after axotomy and for 10 d after crush. Our data
indicate that one important role for TIMP-1 in vivo is the
protection of specific BM components of injured nerve
from degradation by MMPs. Thus, the BM integrity of
Schwann cell tubes can be maintained during nerve repair.

Distinct Regulation of TIMP-1, Gelatinase B and Injury-related
Genes in Crush and Distal Segments of Injured Nerve. Both
MMPs and TIMPs have been shown to be transcriptionally
regulated by growth factors, tumor promoters, and stress
stimuli (22, 25, 72, 73). After nerve injury, the expression
of gelatinase B and TIMP-1 paralleled the induction of the
cytokines TGF-b1 and TNF-a during early and late phases.
Although TIMP-1 and gelatinase B mRNAs were both in-
duced at the same time in the crush segment, TIMP-1 may
inhibit gelatinase B activity locally at the level of the BM.
The early induction of both gelatinase B and TIMP-1 may
be regulated by factors released by resident cell populations,
such as resident macrophages, Schwann cells, fibroblasts,
and mast cells, or by infiltrating cells, such as neutrophils.

At 4 d after crush, TNF-a was localized to macrophages
and Schwann cells. TGF-b1 showed virtually the same pat-
tern of expression (data not shown). Although we did not
identify which cells synthesized TGF-b1 and TNF-a in
the early phase after injury, these cytokines may be pro-
duced by resident macrophages, Schwann cells, or mast
cells in injured peripheral nerve (8, 61, 74). In support of a
role for resident macrophages, we observed an increase in
c-fms, a specific macrophage marker that is upregulated in
activated macrophages (6, 59). This increase occurred
within 1 d of crush injury, before the influx of inflamma-
tory macrophages. That TNF-a and TGF-b1 may initiate
and regulate TIMP-1 expression during the early and late
phases of nerve regeneration is supported by our observa-
tion that the recombinant cytokines IL-1a, TNF-a, and
TGF-b1, as well as medium conditioned by activated mac-
rophages, induced TIMP-1 expression in nerve explants in
culture.

NGF-b mRNA also displays a biphasic induction in the
crush and distal segments after injury (75). As may be the
case for TNF-a, activated mast cells which interact closely
with innervating fibers in vivo and are known to release
NGF-b (61), may be responsible for the first increase in
NGF-b mRNA, whereas the second increase is mediated
by macrophage-derived IL-1 (75). NGF-b expression has
been localized to Schwann cells and fibroblasts in sciatic
nerve (76). Interestingly, we observed the induction of
NGF-b in parallel with a small increase in TNF-a. TNF-a
induces NGF-b in fibroblasts (77) and may regulate levels
of NGF-b in a similar way in Schwann cells and endoneur-
ial fibroblasts of regenerating nerve. In the distal segment,
NGF-b expression increased 4 d after injury, then fell
markedly at the onset of regeneration at day 7, as shown

previously (75). We observed upregulation of stromelysin-1
in parallel with the induction of NGF-b. Interestingly,
NGF-b stimulates the transcription of stromelysin-1 mRNA
in PC12 cells through a NGF-responsive element in the
promoter region of the stromelysin-1 gene (78). A similar
process may modulate stromelysin-1 expression during de-
generation.

The Importance of Macrophages, MMPs, and TIMP-1 during
Wallerian Degeneration. The importance of monocytes/
macrophages in wound healing is well documented. Leibo-
vich and Ross (79) demonstrated that ablation of macro-
phages impairs the progression of dermal wound healing.
In peripheral nerves, regeneration and degeneration do not
occur without an influx of inflammatory macrophages (6).
During Wallerian degeneration, macrophages play a key
role in myelin removal in the later phases of repair.
Schwann cells have been shown to initiate myelin degrada-
tion in vivo before the influx of macrophages, whereas in-
filtrating macrophages degrade the bulk of myelin during
later stages of repair (80). Macrophages also produce an ar-
ray of growth factors and cytokines after nerve injury. Up
until now, our knowledge of the pleiotropic effects of these
factors after nerve injury was limited. It is possible, based
on results from in vitro experiments, that TGF-b1 may
trigger Schwann proliferation in vivo (81), whereas TNF-a
may regulate levels of IL-1 (82) which in turn may stimu-
late the induction of NGF-b in Schwann cells (7). Our re-
sults show that these macrophage-derived cytokines not
only regulate cytokine and growth factor mRNA expres-
sion in nerve, but also may regulate TIMP-1 and MMP ex-
pression. During response to injury, both the infiltrating
macrophages and the resident Schwann cells are stimulated
to express gelatinase B and TIMP-1 mRNAs through this
cytokine circuit. The production of gelatinase B activity
and its inhibitor TIMP-1 in the same cell, implies that any
extracellular proteolysis is restricted to small defined sites
near the cell surface.

What, then, is the importance of MMPs in nerve degen-
eration and regeneration? Gelatinase B can degrade myelin
basic protein (83). Increased proteolytic activity in both
macrophages and Schwann cells may enhance myelin deg-
radation during the degenerative phase, or may be required
to free Schwann cells from their BM connections as they
proliferate and reestablish axonal contact (84). Focal degra-
dation may be necessary to provide access for macrophages
into the Schwann cell tubes. Proteases have also been im-
plicated in the truncation and inactivation of p75 low-
affinity NGF receptor (85), and in the processing of TNF-a
precursor to its secreted form in vitro (86). Additionally, a
Schwann cell–derived proteinase, possibly stromelysin-1,
cleaves fibronectin to generate a proteolytic fragment with
anti-proliferative activity on Schwann cells in culture (49).
It is clear from these findings that MMP activities are not
limited to BM and myelin degradation and may be in-
volved in many other processes.

Our data implicate MMPs and TIMP-1 in the process of
Wallerian degeneration in sciatic nerve after crush injury.
The regulation of these genes is associated with the induc-
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tion of TNF-a and TGF-b1. Although the MMPs, TIMP-1,
and cytokines are produced by macrophages, Schwann
cells, and other cells in the injured nerve, the requirement
for macrophages in this tissue repair process may center on
their ability to regulate these events. These results define a
new role for macrophages in nerve repair, not only as scav-

engers of myelin and axonal debris, but also through pro-
duction of TIMP-1, MMPs, and cytokines. We propose
that in the proteolytic environment of injured nerve,
TIMP-1 helps to preserve Schwann cell BM during Walle-
rian degeneration, thus promoting axonal regrowth in vivo.
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