Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title

PROCEEDINGS OF THE WORKSHOP RECENT DEVELOPMENTS AND APPLICATIONS OF MULTI-CONFIGURATION HARTEE-FOCK METHODS

Permalink

https://escholarship.org/uc/item/9bn6f9bj

Author

Dupuis Ed, M.

Publication Date

1981-05-06
Peer reviewed

RECENT DEVELOPMENTS AND APPLICATIONS OF MULTI-CONFIGURATION HARTREE-FOCK METHODS

Proceedings of the Workshop held at Texas A\&M University College Station, Texas
July 15-17, 1980

NRCC Proceedinga No. 10
February 1981

LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA

PROCEEDINGS
 of the workshop

 RECENT DEVELOPMENTS AND APPLICATIONS

 RECENT DEVELOPMENTS AND APPLICATIONS
 OF MULTI-CONFIGURATION HARTREE-FOCK METHODS
 Sponsored by the
 NATIONAL RESOURCE FOR COMPUTATION IN CHEMISTRY
 Lawrence Berkeley Laboratory,
 Univeraity of Caifornia
 Berkeley, California 94720

Held at
Texss A \& M University July 15-17, 1980

NRCC Proceedings No. 10

Edited by: Michel Dupuis

This work was supported by the Director, Difice of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. W-7405-ENG-48 and under a grant from the National Science Foundation Grant No. CHE-7721305.

CONTENTS

Workshop Participants vii
Foreword xi
Introduction xiii
Session I. Generalized Fock Operator Methods
MCSCF Using the Generalized Fock Operator J. Hinze and A. Golebiewski 1
Quadratically Convergent MCSCF Theoryfor Large Configuration SetsG. Das10
General Valence Bond Theory for
Chemical Reactions: Formulation
of the SOGVB Wavefunction
F. W. Bobrowicz. 14
The Loop-Driven Graphical Unitary
Group Approach Applied to the MCSCF Problem
W. D. Laidig and H. F. Schaefer, III 23
A Novel Single Fock Operator Apprsach to the MCSCF Problem
J. W. McIver, M. Page and R. N. Camp 27
Generalized Molecular Orbital Theory: A Limited MCSCF Theory M. B. Hall 31
Session II. Annihilation of Single Excitations Methods
MCSCF Optimization through Iterative
CI Calculations in the Single Excitation
Space, and MCSCF Wave Functions in theFull Reaction SpaceK. Ruedenberg.51
The Complete Active Space SCF Program Systems
B. 0. Roos and P.E.M. Siegbahn 58
A MCSCF Program Employing the
Generalized Brillouin Theorem
J. H. van Lenthe and P. J. A. Ruttink 62
The Optimization of the Non-Orthogonal Orbitals in a General Valence Bond Wavefunction - The VB-SCF Method J. H. van Lenthe and G. G. Balint-Kurti 65
A Partitioning Technique for MCSCF Theory C. W. Bauschlicher, Jr., P. S. Bagus,
D. R. Yarkony 67
A Multiconfiguration Method for Excited States, and Selection of Optimal Configurations
F. Grein 70
The "Super CI" MCHF Program in ALCHEMY M. Dupuis and B. Liu 71
Session III. Second-Order MCSCF Methods
A Unitary Exponential Operator Approach To MCHF
D. L. Yeager 73
General Quadratically Convergent MCSCF Theory in Terms of Reduced Matrix Elements C.C.J. Roothaan and J. H. Detrich 77
On the Convergence Properties of the DensityMatrix Directed General Second-Order MCSCFAlgorithm
B. H. Lengsfield III and C. W. Bauschlicher, Jr. 112
Recent Developments in Multiconfiguration Wavefunction Optimization
R. Shepard 117
Formal and Numerical ConvergenceComparison of SCI and Exponential MethodsR. Shepard and J. Simons121
MCHF Convergence Using Incomplete
Second-Derivative InformationH.F. King and R.N. Camp123
The Unitary Group Formulation of
MCSCF Theory and Extensions
C.J. Nelin and F.A. Matsen 127
Stability Concition of the MCHF Energy and Choice of the Starting Vectors B. Levy 134
Sessic. IV. Applications of MCHF Methods
Response Functions Associated with
Multiconfigurational Reference States E. Dalgaard 136
MCSCF Reference States for Response Functions
J. Simons 143
Ab Initio Calculation of the Effective Valence Shell Hamiltonian
M. G. Sheppard, H. Sun and K. F. Freed 144
MLSCF For Excited States
C. W. Bauschlicher, Jr., B. H. Lengsfield III and D. R. Yarkony 151
The Projection of Broken Symmetry Wavefunctions
R. L. Martin 154
A Practical Guide to Applications of the MCSCF Method
J. H. Detrich and A. C. Wahl 157

WORKSHOP PARTICIPANTS

Mr. Raymond A. Bair
Caltech
Noyes Lab 127-72
Pasadena, CA 91125
Dr. Charles W. Bauschlicher
1 Case
Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23665
Dr. Frank W. Bobrowicz
Monsanto Research Corporation
Mound Facility P.O. Box 32

Maimisburg, Ohio 45342
Dr.Nickolas Camp
Department of Chemistry
State University of New York
Buffalo, NY $14214 f$ New York
Prof. Esper Dalgaard
Department of Chemistry
Aarhus University 80000 Aarhus C
DENMARK
Dr. Guru Pada Das
Theoretical Chemistry Group Chemistry Division
Argonne National Laboratory
Argonne, IL 60493
Prof. Ernest R. Davidson
Department of Chemistry
BG-10
University of Washington
Seattle, WA 89195 ington
Dr. John Detrich
Science Ápplicatioons, Inc.
1211 West 22nd Street
Oak Brook, IL 60521
Dr. Michel Dutpuis
NRCC, 50D
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Ur. Stepben T: Elbert
Ames Laboratory
Lowa State University
Ames. Iowa 50010
Prof. Walter England Department of Chemistry University of Wisconsin Milwaukee, WI• 53201

Prof. William A. Goddard, III
Department of Chemistry
California Institute of Technology
Pasiadena, CA 91125
Prof. Fritz Grein
Department of Chemistry
University of New Brunswick
P.O. Box 4400

Fredericton, N.B.
E3B 5A3, CANADA
Prof. Michael Hall
Department of Chemistry
Texas A\&M University
College Station, TX 77843
Dr. Larry B. Harding
Theoretical Chemistry Group
Chemistry Division
Argonne National Laboratory
Argonne, IL 60439
Prof. Jurgen Hinze
Fakultat fur Chemie
Universitat Bielefeld
Postfact 8640
1 Universitatstrasse
4800 Bielefeld
WEST GERMANY
Prof. Harey F. King
Department of Chemistry
Acheson Hall
State University of New York at Buffalo
Buffalo, NY 14214

Mr. Bill Laidig
Chemistry Department
University of California
Berkeley, CA 94720
Dr. Byron Lengsfield
Laser and Spectroscopy Branch M.S. 283

NASA Langley Research Center
Hampton, VA 23665
Dr. William A. Lester, Jr. NRCC, 50D
Lawrence Berkeley Laboratory University of California
Berkeley, CA 94720
Dr. Bernard Levy
Laboratoice de Chimie
Ecole Normale Superieure de Jeunes Filles
1 rue Maurice Arnous
92120 Montrouge
FRANCE
Dr. Bowen Liu
IBM Research Laboratory
K34/281
5500 Cottle Road
San Jose, CA 95193
Prof. James W. McIver, Jr.
Department of Chemistry
Acheson Hall
State University of New York at Buffalo
Buffalo, NY 14214
Dr. Richard Martin
Theoretical Chemistry and
Molecular Physics Group
Los Alamos Scientific Laboratory P.O. Box 1663

Los Alamos, NM 87545
Prof. F.A. Matsen
Department of Chemistry
University of Texas
Austin, TX 78712

Dr. Connie Nellin
Department of Chemistry
The University of Texas
Austin, TX 78712
Dr. Bjorn Roos
University of Lund
Physical Chemistry 2
Chemical Center
P.O. Box 740

S-220-07 Lund
SNEDEN
Prof. Clemens C.J. Roothaan
Department of Chemistry
University of Chicago
Chicago, IL 69637
Prof. Klaus Ruedenberg
Ames Laboratory
Iowa State University
Ames, Iowa 50010
Dr. Ron Shepard
Battelle Memorial Institute
505 King Avenue
Columbus, Ohfo 43201
Mr. Maurice Sheppard
Department of Chemistry
University of Chicago
Chicago, IL 60373
Prof. Jack Simons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
Dr. Joop H, van Lenthe
16A Clyde Park
Redland, Br istol BS6-RS
GREAT BRITAIN
Dr. Arnold C. Wahl
Science Applications; Inc.
1211 West 22nd Street
Oak Brook, IL 60521

Prof. David Yarkony
Department of Chemistry Remsen Hall
Johns Hopkins University Baltimore, MD 21218

Dr. Danny Yaegez
Department of Chemistry Texas A\&M University
College Station, TX 77843

FOREWORD

The National Resource for Computation in Chemistry (NRCC) was established to make information on existing and developing computational methodologies available to all segments of the chemistry ccisunity, to make state-of-themart computational facilities (hardware and software) accessible to the chemistry commanity, and to foster research and development of new computational methods for application to chemical problems.

Workshops form an integral part of the NRCC's program. Consultation with key workers in the field led us to the conclusion that a timely workshop for 1980 would be one on "Recent Developments and Applications of Multi-Configuration Hartree-Fock (MCHF) Methods." The NRCC is indebted to Prof. Danny L. Yeager of Texas AdM University, and to Dr. Michel Dupuis of the NRGC for organizing the scientific program. Their efforts and the contributions of the participants resulted in these Proceedings.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. W-7405-ENG-48) and under a grant from the National Science Foundation (Grant No. CHE-7721305).

William A. Lester, Ir. Ditector, NRCC

INTRODUCTION

A workshop entitled "Recent Developments and Applications of Multi-configuration Hartree-Fock (MCFH) Methods" was held at Texae AgM University in Col?ege Station, Texas from July 15 thraugh July 17, 1980. It was sponsored by the National Resnurce for Computation in Chemistry (NRCC).

For many years the independent particle Hartree-Fock (HF) model has been used with immense success to describe molecules generally in th:ir ground state, and near the equilibrium conformation. For melecules far from equilibrium, quantum chemiats have run into the limitations of the HF model, which often does not describe molecular dissuriation properly. For eiectronic excited states of molecules, the HF model h_{6} : not been as useful as for nolecular ground states, because of the increasing importance of electron correlation effects.

The Configuration Interaction (CI) method is one of the techniques used to obtain a quantitative description of electronic correlation. Perturbation Theory (PT) approaches to electron correlation constitute another way of taking electron correlation into account. Advances in CI and PT methods were the subject of a workshop organized by the NRCC in 197B, entitled "Dost Hartree-Fock: Configuration Interaction."

One of the difficulties of the CI method lies in the slow convergence of CI expansions, which often require several thousard configurations. This difficulty is somewhat resolved by optimizing the molacular orbitals used in the construction of a short CI expansion. This is the Mulei-Configuration Hartree-Fock (MCHF) method.

A concensus from the previously mentioned CI workshop was that CI calculations can be most efficiently ano reliably performed if they are based on multiconfigurational reference space. In addition, significant advances have occurred in multiconfiguration time-dependent Hartree-Fock mezhods and effertive hamiltonian methods. For these reasons, the organization of a workshop on the ricled sibject appeared opportune for an exchange of ideas to assess recent progress and to foster exploration of methods which can result in improved algoritbms and computer codes.

The Fock operator npproach developed in the early 1970's, the "Super-CI" approach, and the recently introduced exponeatial unitary transformation approach were analyzed in detail. Several appliçation areas were discussed which can benefit from the availability of MCHF wavefunctinss: $\frac{i}{i}$ excited-state computations, $i($ symmetry breaking problems, and ii \bar{i} time-dependent Hartree-Fock studies, iv potential energy surface calculations.

The feeling emerging from these discusaicns was that the convargence process for grouad and excited state vavefunctions is well understood. The selection of configurations to be included in the MCHF expansion in order to obtain a reliable description of chemical systema, is still a challenging takk confronting theoreticians.

Michel Dupuis
Danny L. Yeager

MCSCE USING THE GENERMIIEED FOCK OPERATOR
 Jurgen Hinze
 Department of Chemistry, Univeraity of 48 Bielefeld, Germany
 A. Goleblewaki
 Institute of Chemistry, Jagellonian University Cracow, Poland

Introduction

It has become abundantly clear that it is necessary in many cases to use a multiconfigurational reference function, if a highly accurate, correlated electronic wavefunction $1 s$ desired, either via configuration interaction celculationt (single and double replacements with respect to a reference) or via perturbation theory. The best method to determine the orbitals required to build the multi-configuiational reference is clearly the multi-configuration selfconsistent field (MCSCF) method inftially conceived by Frenkel ${ }^{1}$ or Hartree ${ }^{2}$ and developed into practical usefulness in the last decades by many. ${ }^{3}$ The value and importance of the MCSCF method for the effective calculation of accurate electronic wavefunctions of ators and molecules cannot be overemphasizert and need not be belaboured here.

We will restrict ourselves here to a concise derivation of the orbitai equations of the MCSCF method and outline the operator formaliss to obtain solutions to these equations. To be sure, there are other procedures to solve the general MCSCF orbital problem; procedures, whlch make use either of the extended Brillouin conditions satisfied by the MCSCF orbitals ${ }^{4}$ or those, which determine the elements of a Unitary matrix, wilich transforms approx. mrbitals into MCSCF orbitals, using a many dimensional Newton Raphson eechnique. These approaches, which are in the general

MCSCF case more efficient computationally than the operator techniques detailed here, will be deacribed by other contributore to these conference proceedings. 5,6

The MCSCF Equations

To derive the MCSCF equations we write the total wavefunction 4 for state I as a superposition of N configuration state functions (CSF's) ¢, as
${ }_{I I}=\Sigma_{J}^{N} \oplus_{J} C_{J I}$
Where the expansion coefficients can be deterrained variationally by solving the secular equation in matrix form

$$
\begin{equation*}
\left(H-1 E_{I}\right) C_{I}=0 \tag{2}
\end{equation*}
$$

The matrix if can be chosen to be the unit matrix, since the CSF's can be constructed to be mutually orthonormal without logs of generality. The CsF's are in general specific minimal linear combinations of slater Determinants (SD's), such as to transform as eigenfunction of the total spin and other symmetry operators commuting with the Hamiltonian. The matrix iHis defined through its elements
$H_{I J}=\left\langle\phi_{I}\right| H\left|\phi_{J}\right\rangle$
where H is the Hamiltonian to be specified below of the system considered.

The $5 D^{\prime \prime} \mathrm{B}$ and thus the CSF' are constructed out of symmetry adapted spin orbitals, which may be chosen to be orthonormal without loosing generality. In general these symmetry and spin orbitals are equivalence restricted, $1 . e$. the same spatial orbital itransforming as an irreducible representation of the symmetry yroup of the system) is used multiplied with either spin function a or a (and multiplied with the appropriate subspecies function in case of a degenerate symuetry specieal.

The spatiai orbitals are in gencial chouen to be linear comilnations of aone basis functions
$\phi_{1}=\varepsilon_{p} x_{p} c_{p 1}$
such that they are orthonormal, i.e.
$\left\langle\theta_{1}\left[\phi_{j}\right\rangle=s_{1 j}\right.$
With the equivalence restricted orbitals chosen orthonormal, the spin orbitals
$v_{i, p}=v_{i \lambda} r(i o)$
where $<($ to $)$ is to represent the subspecies and spin component corresponding to α and B and symmetry species i, will be orthonormal also, 1.e.
$\varepsilon \psi_{i \lambda \rho}\left|\psi_{j \rho \phi}\right\rangle=S_{i j} \delta_{\lambda, i} \delta_{\rho o}$
With this choice the $5 D^{\prime}$'s as well as the

CSF's will turn out to be orthonormal.

It is now convenient to introduce creation and anihilation operators $e_{i \lambda \rho}^{+}$and $a_{1 \lambda \rho}$ respectively corresponding to the spin orbitale $\left.\psi_{i}\right)_{p}$. These operators ${ }^{7}$ are" each others Herraetian conjugate and obey the anticommutation relationa
$a_{i}^{+} a_{j}+a_{j} a_{i}^{4}=\delta_{i j}$
$a_{i}^{+} a_{j}^{+}+a_{j}^{+} a_{i}^{+}=a_{i} a_{j}+a_{j} a_{i}=0$
In terms of these operators we can define reduced density operators
$r_{j}^{1}=E_{\rho} a_{i \lambda \rho}^{+} a_{j \lambda \rho}$
and
$\gamma_{j 1}^{\mathbf{I K}}=\Sigma_{\rho \sigma} a_{1 \lambda \rho}^{+} a_{k u \sigma}^{+} a_{1 \mu \sigma} a_{j \lambda \rho}$
in the space of the spatial orbitals.

We will refrain from referencing symmetry from here on, since ita introduction should be clear, and it would only clutter the notation.

With these definitions we can write the total (apin free) Hamiltonian as
$H=\tau_{i j} h_{i}^{j} \gamma_{j}^{i}+1 / 2 \varepsilon_{i j k i} g_{i k}^{j 1} \gamma_{j l}^{1 k}$
with
$h_{1}^{j}=\left\langle\Phi_{i}\right|-1 / 2 \nabla^{2}+V\left|\Phi_{j}\right\rangle$
and
$g_{i k}^{j 1}=\left\langle\Phi_{i}<\left.\Phi_{k}\right|^{1 / r_{12}} \mid \Phi_{1}>\Phi_{j}\right\rangle$
Corresponding to the density operators we obtain the density matrix elements
$\Gamma_{I j}^{I I}=\left\langle\psi_{I}\right| Y_{j}^{I}\left|v_{I}\right\rangle$
for the MCSCF state function desired, with a similar expression for the elements of the second order reduced density matrix.

These density matrix elements may be expressed in terms of the transition density elements between the configuration state functions
$r_{J j}^{k i}=\left\langle *_{J} \mid r_{j}^{1} \|_{k}\right\rangle$
which are independent of the detailed form of the orbitals. We obtain

and a similar expression for the density matrix elements of higher order.

At times, in particular if wavefunctions for excited states are desired, it may be convenient to optimlze the orbitals in a weighted averaged field for several states, ${ }^{8}$ therefore it is useful to introduce the averaged density matrix elements
$\Gamma_{j}^{1}=\Sigma_{I} \omega_{I} \Gamma_{I j}^{I I}$
where the w's are the weighting coefficienta which may be chosen to suite the problem at hand with the restriction
$\Sigma_{I} \omega_{I}=1$
We will use in the following these mean density matrix elements, which permits us to remain general and supprese the state Index of the final wavefunction desired.

Using these definitions we can express the expectation value of the energy
$\langle E\rangle=\Sigma_{1 j} h_{i}^{j} \Gamma_{j}^{i}+1 / \Sigma \Sigma_{i j k l} g_{i k}^{j l} \Gamma_{j l}^{i k}$
In a form exhibiting the orbital dependence explicitely.

Variation of this expression with respect to a change of the orbitals leads to the MCSCF orbital eguations
$\varepsilon_{j} G_{i, j}\left|\phi_{j}{ }^{\prime}=\Sigma_{j}\right| \phi_{j}{ }^{\prime} E_{j i}$
where the $\varepsilon_{i j}$'s are Lagrange multipliers Introduced to maintain the orthonormality constraints of the orbitals in the variation.

The operators $G_{i j}$ are given as
$G_{i j}=h r_{j}^{1}+\Sigma_{k 1} U_{k}^{1} r_{j 1}^{1 k}$
with
$h=-\$ / 2 \nabla^{2}+V$
and
$\left.U_{k}^{1}=\left\langle\phi_{k}\right| 1 /\left.r_{12}\right|_{1}\right\rangle$
Before we discuss procedures to solve eq. 116: for the determination of the orbitals it is useful to note that
$E_{j i}=\left\langle\phi_{j}\right| \Sigma_{k} G_{i k}\left|\phi_{k}\right\rangle=\left\langle\phi_{j}\right| F\left|\phi_{i}\right\rangle=F_{j i}$
can be thought of as the i, j 'th element of a general abstract Fock operator F in the orbital space.

The necessary and sufficient conditions for eq. (16) to be satisfied are
$\varepsilon_{j i}=\varepsilon_{i j}$
which is the same as demanding that the Matrix F, defined with its elements in eq. (18), be Hermitian.

In fact it is easy to show ${ }^{3 C}$ that
$\varepsilon_{j i}{ }^{-\varepsilon}{ }_{i j}=\left\langle\gamma_{i}^{j_{i j}} \psi\right| i|\psi\rangle-\left\langle\gamma_{j}^{i} \psi\right| i i|\psi\rangle$
and thus eq. \{19\} is equivalent to the extended Brillouin conditions
$\left\langle\left(\gamma_{i}^{j}-\gamma_{j}^{i}\right) \Psi\right| H|\Psi\rangle=0$
satisfied by MCSCF wavefunctions. We have used here the first order reduced density operators defined through eq. (8) ag gen-
eral single excitation operatorg, which they are. 5

Solving the MCSCF equations: The non-linear sacond order differential equations, eq. (16). are generally golved in matrix form, a form obtained by expressing the unknown orbital ϕ_{i} as a innear combination of basis functions X_{p}, eq. (4). Thus starting with a set of m basis functions [$x_{1} \ldots x_{m}$] we obter the orbitals through a linear transformaticni
$\left\{\varphi_{1} \ldots \phi_{n} \phi_{n+1} \ldots \phi_{n}\right\}=\left\{\chi_{1} \ldots \chi_{m}\right\} c$
where $c i s$ the man matrix of the orbital expansion coefficients of eq. (4). In general only the first n orbitals, the active set., participating in the MCSCF function are of interest and can be determined variationally through solving eq.(1S). The m-n orbitals $\left\{\phi_{n+1} \cdots \phi_{m}\right\}$, the empty or virtual set. cannot be determined uniquely without auxilliary conditions. Since these orbitals are not needed in the construction of Ψ, and iransformations among them leave * and therefore the energy invariant, we need not bother about them. All we need to determine are the first n columns of C and thus the orbitals ϕ_{1} through ϕ_{m}, the active orbital set.

To obtain the active orbital set $\left\{\phi_{1} \ldots \boldsymbol{m}_{\mathrm{m}}\right\}_{\text {r }}$ using operator techniques to solve eq. (16), we rewrite eq. (16) in matrix form In the mom space of the basis functions as
$\varepsilon_{j}^{n} \epsilon_{i j} c=\varepsilon_{j}^{n} s c_{j} \varepsilon_{j i}$
for $1=1, \ldots n$, with
$G_{1 j}=h \Gamma_{j}^{i}+\Sigma_{k \lambda}^{n} \omega_{k}^{l} \Gamma_{j l}^{i k}$
The matrices in eqs. $(23,24)$ are defined through their elements, which are molecular integrals over the original basis functions as follows. The overlap matrix 5
$s_{p q}=\left\langle x_{p} \mid x_{q}\right\rangle$
The one particle operator matrix h
$h_{p q}=\left\langle x_{p}\right|-1 / 2 \nabla^{2}+v\left|x_{q}\right\rangle$
and the two partlcle interaction matrix ω_{k}^{1}
$U_{k, p q}^{1}=\left.\Sigma_{r s}^{m}{ }^{m} x_{p}{ }^{c} x_{r}\right|^{1} /_{r_{12}} \mid x_{s}>x_{q}>c_{r k}{ }^{n}{ }_{s l}$
Because of the dependence of ψ on the solution vectors, eq. (23) is non-linear. With the operator techniques, this nonlinear problem is solved using a first order iterative process. Starting with some zero'th order c° the $\boldsymbol{c}^{\prime} s$ are constructed, and for the fixed G's a new C is obtained by solving eq. (23). This new c is used In a second cycle to construct 6 and the solution process is repeated until it converges (hopefully), i.e. the input C is equal to the output C.
We have to focus now on techniques to solve eq. (23) with the $G_{1 j}$ constructed
from some c^{0} and held fixed.
a) The orthogonal gradient method. ${ }^{9}$

Given the G's we can construct the matrix of Lagrange multipliers, i.e. the matrix F of the generalized Fock operator in the orbital space defined as eq. (18)
$F_{j i}=c_{j}^{+} \varepsilon_{k}^{n} G_{i k} c_{k}$
Since $G_{i k}$ is zero for $1>n$ the matrix F has tne structure

1.e. only the first n columns are different from zero, it is essentially an nxm matrix.

For the solution orbitals we shculd have $F=\mathbb{F}^{+}$that is, only the first nxn block should be different from zero.
In order to find a transformation whlch brings us from the initial c° orbital coefficient matrix closer to a solution we require that

$$
\begin{equation*}
\mathbb{U}^{+} \mathbf{F}=\mathbf{F}^{+} \mathbb{U} \tag{29}
\end{equation*}
$$

Eq. (29) is solved immediately by chosing the mxn submatrix of the orthogonal matrix \boldsymbol{U} desired as

$$
\tilde{v}=\mathbb{F}\left(F^{+}(F)^{-1 / 2}\right.
$$

The new orbitals are then obtained frem the transformed orbital coefficient matrix

$$
\begin{equation*}
c=c^{0} w \tag{131}
\end{equation*}
$$

where u has as its first n columns the elements of \mathbb{U} and the Einal n-m columns are chosen to complete it to a full mam orthogonal matrix. This freedom to chose the last n-m columns of u reflects the invariance of the wavefunction ψ to un:tary transformations within the empty orbital set.

To ensure the approach of a minimum of <E> in this process it is important to select the negative square roots of the eigenvalues of $\boldsymbol{H}^{+} \boldsymbol{F}$ when forming $\left(\mathrm{F}^{+} \boldsymbol{E}\right)^{-1 / 2}$. The iterative process can ka controlled, damped or accelerated by a level shifting procedure by adding (in principle) arbitrary constants d_{1} to the diagonal elements of F.

b) Direct diagonalization of E.

Recently Polezzo ${ }^{10}$ has suggested and tested another procedure to obtain \boldsymbol{U} in eq. (31) such that eq. (29) is satisfied for a given \mathbb{F}. He suggests to find directly the singular (or principal) values A of the non-symmetric mom matrix F togeiher with their associated singular right and left eigenvecters w and $w, 11$ such that

$$
\begin{equation*}
w^{+} E=\mathbb{y}=a \tag{32}
\end{equation*}
$$

Then U is given by

$$
\begin{equation*}
\mathrm{v}=\mathbf{w} \mathbf{v}^{+} \tag{33}
\end{equation*}
$$

Polezso gives also a procedure, which he believes to be satisfactory for the determination of a level shifting parameter to speed up convergence of the first order iterative sequence.
c) Generalized Jacobi Diagonalization. 12 If no two CSF's participating in the MCSCE wavefunction differ from each other by less than a double replacement the only non zero elements of the reduced density matrices will be $\Gamma_{1}^{i}, \Gamma_{i j}^{1 j}$ and $\Gamma_{j j}^{1 i}$. With this restriction the HCSCF orbical equation, eq. (16), can be written as
$G_{i i}\left|\phi_{i}\right\rangle=\varepsilon_{j}^{n} \mid \phi_{j}>\varepsilon_{j i}$
with
$G_{i 1}=h \Gamma_{i}^{1}+\Sigma_{j}\left(I_{j} \Gamma_{i j}^{i j}+K_{j} \Gamma_{j j}^{i 1}\right)$
where we have used the standard Coulomb
$I_{j}\left|\phi_{i}\right\rangle=\left\langle\left.\phi_{j}\right|^{1} /_{r_{22}} \mid \phi_{j}\right\rangle\left|\phi_{i}\right\rangle$
and exchange operators
$K_{j}\left|\phi_{1}\right\rangle=\left\langle\left.\phi_{j}\right|^{1} / r_{i 2} \mid \phi_{i}\right\rangle\left|\phi_{j}\right\rangle$
We may now form a set of matrices, corresponding to the set of operators $G_{k k}$ in the space of all the m orbitals which can be constructed from a given basis. The elements of these matrices are defined as
$G_{i j}^{i k}=\left\langle\Phi_{i}\right| G_{k k}\left|\phi_{j}\right\rangle$
for $i, j=1,2, \ldots, n$ and $k=1,2, \ldots, n$. It is frequently possible to reduce the number of matrices since we get for several orbitals k of the active set identical Fock type operators G_{kk}. The necessary and sufficient conditions for orbitals to satigfy the MCSCF equations, eq. (39) are now
$\varepsilon_{j 1}-\varepsilon_{i j}=G_{j i}^{i}-G_{i j}^{j}=0$
An angle of rotation between orbitisls i and j can be calculated such as to satisfy eq. (38). Using the elementary unitary matrix thus obtained all the matrices $G_{k k}$ in the orbital spare can be transformed and the process rek -ated until eq. (36) is satisfied for all i and j. This process is still first order, since the Focklike operator $G_{\mathbf{k k}}$ eq. (35), represented as matrices in the orbital or basis function space are kept constant even though they depend on the orbitals.
d) Expansion of the Orbital Transforming Unitary Matrix
The general MCSCF equation, eq. (16), can be solved by expanding the unitary matrix W, which transforms initial orbitals $\left\{\phi^{\circ}\right\}$ represented by c^{0} into final orbitals [ϕ] represented by \mathbb{C} via
$\left\{\phi_{\mathrm{m}} \ldots \phi_{\mathrm{m}}\right\}=\left\{\phi_{1}^{\circ} \ldots \phi_{\mathrm{m}}^{0}\right\} \mathrm{U}$
or

$$
\begin{equation*}
c=c^{\circ} u \tag{40}
\end{equation*}
$$

as

$$
\begin{equation*}
v=1+v \tag{41}
\end{equation*}
$$

with \mathbf{V} antihermitian (antisymmetric). To solve eq. (16) we may use the conditions, eq. (19) together with eqs. (23,24) and obtain
$\varepsilon_{j 1}-\varepsilon_{i j}=c_{j}^{+} \Sigma_{k}^{n_{i k}} c_{k}-\varepsilon_{i}^{+} \Sigma_{k} \epsilon_{j k} c_{k}=0$
where we have assumed for simplicity ali the orbitals to be real; an assumption which is not necessary.
Substituting now for the c's those obtained from eqs. (40,41)
$\mathscr{C}=c^{0}+\mathbb{C}^{0} v$
and neglecting terms of order w^{2}, we can after some algebra derive a set of linear equations for the determination of the nonredundant elements $V_{i j}$ for 1 sm and $j \leq n$ of the form $3 c$
$\varepsilon_{k l} M_{i j, k l} V_{k l}=-g_{i j}$
with
$g_{1 j}=\varepsilon_{j 1}-\varepsilon_{1 j}$
evaluated as given in eq. (42) with co's.

The matrix elements of M can be obtained in first order, by neglecting tile dependence of the operaiors $G_{i j}$ on the $v^{1} s$ as ${ }^{3 c}$

$$
\begin{align*}
& M_{i j, k l}=\delta_{j l} C_{k}^{+} E_{i}-\delta_{j k} c_{1}^{+} E_{i}+ \\
& +\mathbf{c}_{j}^{+} \epsilon_{11} c_{k}-\boldsymbol{c}_{j}^{+} \mathbf{c}_{1 k} c_{1} \tag{46}\\
& -\delta_{11} \mathbf{c}_{k} \boldsymbol{E}_{j}+\delta_{i k} \mathbf{c}_{\mathbf{i}}^{\mathbf{i}} \mathbf{E}_{j} \\
& -\mathbb{c}_{i}^{+} \epsilon_{j i} \Gamma_{k}+c_{i}^{+} G_{j k} \mathbb{C}_{1}
\end{align*}
$$

evaluated again with $c^{\circ 1} 3$. We have dropped the superscript ${ }^{\circ}$ for simplicity. The \mathbf{E}_{1} vectors are defined as

$$
\begin{equation*}
E_{1}=\varepsilon_{k}^{1} \epsilon_{1 k} c_{k} \tag{47}
\end{equation*}
$$

If one considers also the dependence of the operators $G_{i j}$ on the V's we obtain a second order process with the following additional tems to the matrix elements of M .
$\bar{M}_{i j, k l}=M_{i j, k l}+\Delta_{i j, k l}$
with

$$
\begin{align*}
\Delta_{i j, k l}= & 2 \varepsilon_{m n}\left(c_{j}^{+} \phi_{n m} \Gamma_{m l}^{i n} c_{k}\right. \\
& -c_{j}^{+} Q_{n m} \Gamma_{m k}^{i n} c_{1}-c_{i}^{+} Q_{n m} \Gamma_{m l}^{j n} \alpha_{k} \\
& \left.+c_{i}^{+} \theta_{n m} r_{m k}^{j n} c_{1}\right\} \tag{49}
\end{align*}
$$

where

$$
\begin{align*}
\theta_{\mathrm{nm}, \mathrm{PY}}= & \Sigma_{r \mathrm{~s}} 1 / 2\left\langle\left\langle p<\left.r\right|^{1} / \Sigma_{12} \mid q>S\right\rangle\right. \tag{50}\\
& \left.\left.+\left\langle p<\left.s\right|^{1} / x_{12} \mid q\right\rangle r\right\rangle\right\rangle C_{r n} C_{\mathrm{gm}}
\end{align*}
$$

Discussion:

Obviously the last two procedures, in particular the last, appear computationally much more cumbersome than the processes outilned under a) through c). A large set of linear equations of dimension
$n(n-1) ; 2+n(m-n)$ has to be constructed and scl.ved in order to solve for the orbitals in each SCF iterations.
However, since the most time consuming step, in a general ab-initio MCsCF calculation, is the 4 -index integral transformation, a step of order nm^{4}, which has to be done each iteration. it is clear that the number of SCF iterations should be kept as small as possible. This is achieved when using the method described last, since it should be quadraticaliy convergent. The first order processes remain important for approximation or semi-empirical MCSCF calculations ${ }^{13}$ where 4 -index transformations can be avoided.

Finally a few words of caution appear to be in order to prevent undue enthusiasm In favor of the quadratically convergent MCSCF procedures. For large scale calculations neither nor the integrals needed to construct will fit into the fast store of a computer. In inis case efficient algorithmes remain to be deve-
lopef for the construction of before these procedures can be used effectively. For the solution of the large set of linear equations, eq. (44), a conjugate gradient iterative method should be appropriate. However, as for any quadratically convergent process, the quadratic convergence is reachet only near the final solution. With orbitals still far from their final MCSCF form, it may be expidient to use different approaches, as those based on the extended Brillouin theorem, at least for the first few iterations.

References

1) J. Frenkel, "Wave Mechanics" Vol. 2, "Advanced General Theory" (clarendon, Oxford, 1934) pp. 460-462.
2) D.R. Hartree, H. Hartree and B. Swirles, Philos. Trans. Roy. Soc. London, A 238, 229 (1939).
3a)A. P. Jucys, Adv. Chem. Phys. 14, 191
(1969), review of the atomic MCSCF work done by Jucys (Yutsis, Iutsis) dating back to 1950.
b) G. Das and R.C. Wah1, J. Chem. Phys. 44, B7 (1966): 47, 2934 (1967).
c) J. Hinze, J. Chem. Phys., 59, 6424 (:973)
d) T.L. Gilbert, Phys. Rev. A6. 58o (1972)
e) A.C. Wahl and G.Das in 'Modern Theoret. Chem.", H.F. Schaefer Ed.. औbl. III, Chap. III (Plenum 1976) give a review.
3) B. Levy and G. Berthier, Int. J. Quantum Chem. 2, 307 (1968); (errata) 3, 247 (1969)
4) F. Grein and T.C. Chang, Chem. Phys. Lett. 12, 44 (1971); A. Banerjee and F. Grein, Int. J. Quantum Chem. 10, 123 (1976); P.A. Ruttnik and J.H. van Lenthe, Theor. Chim. Acta 44, 97 (1977); K. Ruedenberg, LM. Cheung and S.T. Elbert, Int. J. Quant. Chem. 16, 1068 (1979).
5) J. Kendrick and I.H. Hiller, Chem. Phys. Lett. 41, 283 (1976); D.L. Yeager and P. Jorgensen, J. Chem. Phys. 71, 755 (1979): C.C.J. Roothaan, J. Vetrich and D.g. Hopper, Int. J. Quantum Chem. S 13, 93 (1979); H.-J. Werner and W. 1 eyer, J. Chem. Phys. 73, 2342 (1980).
6) See for example D.H, ivie, Am, J. Phys. 34, 1150 (1966).
7) K.K. Docken and J. Hinze, J. Chem. Phys. 57, 4928 (1972).
8) A. Golebiewski, J. Hinze and E. Yurtsever, J. Chem. Phys. 70, 1101 (1979).
10)S. Polezzo and P. Fantucei, Mol. Phys. 36, 1835 (1978); 39, 1527 (1980).
11)G.w. Stewart, "Introduction to Natrix Computations" (Acad. Press 1973); G.H. GOisb and C. Reinsch, NumMath. 14, 403 (1970).
12)J. Hinze and E. Yurtsever, J. Chem. Phys. 70, 3188 (1979).
13)C.w. Eaker and J. Hinze, J. Am. Chem. Soc. 96, 4084 (1974).

A QUAdRATICALLY CONVERGENT MESCF THEORY FOR LARGE CONFIGURATION SETS

G. Das

Chemistry Division, Argonne National Lab., Argonne, [11.

Abstract

Sumary A multi-configuratín self-consistent field mathod for large configuration-sets is presented. It. consists in identifying a primary subset containing the predominant configurations and a secondary one containing the rest. The fomalism achieves near-quadratic convergence as well as a significant simplification of the orbital-transfornation mroblem by the introduction of Fock equations and Fack matrices.

I. [ATRODUCTIOM

The MCSCF method ${ }^{1,2}$ has, over the years, been demonstrated to be a powerful tonl for the study ${ }^{\text {fin }} 6$ atomic and molecular interactions. Until recently, however, the applicability of the method remained restricted to a small number of configurations and orbitals and primarily to the lowest states of a given symetry. Customarily this shortcoming is compensated for t_{j} following up the MCSCF step with a large-scale Cl batied on the MCSCF orbitals. However, far problems involving a large number of yalence electrons as in the case of transition metal clusters, it is very likely that the basic MCSCF problem itself contains a fairly large number of configurations ($\boldsymbol{\sim} 500$). Further, for a practical calculation it is also necessary that the corresponding MCSCF process has a fast convergence and applies equally well to the ground and excited states.

The traditional method of solving the MCSCF problem has been along the lines of the HartreeFock theory, i.e., by deriving Fock equations for the orbitais and solving them in consonance with the CI-secular equation. Since this method neglects some important coupling terms (as will be explained later), it can run into convergence problems which are then usually handled by some kind of extrapolation. This is true especially for the excited states for which the iteration-to-iteration changes in the orbitals are strongly coupied to those of the CIcoetficients. Recently a number of authors ${ }^{4-6}$ have developed and implemented methods which take this coupling into account. However, all these methods involve huge Hessian matrices and large four-index transformation of integrals. The dimension of these matrices can be quite large depending upon the basis set and the configuration set sizes. On the other hand in the Fock equation approach the matrices required to be inverted have the same dimension as the basis set and the four-index transfomation inyolves only the occupied orbitals.

In what follows we will present an MCSCF form-
ulation that combines the advantages of the Fock theory approach with the generality and the efficiency of the fully-coupled orbital transformation method.

II. A NEH METHOD OF SOLUTION OF SECULAR EQUATIONS FOR LARGE MATRICES

The following method is ideally s:ited to the solution of secular equations of large Hamiltonian matrices in an MCSCF framework. Let, us break up the configuration set into smaller groups such that the number of configurations in any one of these groups is small enough for a straightforward "in-core". diagonalization. We assume that the first group contains the important configurations of the root of the secular equation being sought as well as those of the lower-lying roots. He also assume that the mixing coefficients for the state in question are approximately known.

Let $\left\{A_{a}{ }^{0}\right.$ \} be these approximate coefficients to be used as a starting point for the following iterative process: For every group we define a secular equation:

where the elements $\left(1,2, \ldots . n_{G}\right)$ denote the nembers of the configuration group G Gand the element " 0 " corresponds to the rest of the configurations. Thus

$$
\begin{equation*}
H_{\text {io }}=\sum_{a \underline{L} G} A_{a}^{(n-1)}\langle a| H|i\rangle \tag{2}
\end{equation*}
$$

where the sumation goes over the configurations outside the group G and A_{a}^{\prime} is given by

$$
\begin{equation*}
A_{a}^{(n-1)}=A_{a}^{(n-1)} / \sum_{b \neq C_{0}}\left[A_{b}^{(n-1)}\right]^{2} \tag{3}
\end{equation*}
$$

The superscript ($n-1$) denotes that the mixing coeffi--ipnts are from the ($n-1$)th iteration. The secular equation coming from the first group of configurations
is solved for the desired root and all the lower ones. The other secular equations are solved only for the lowest root. The process is iterated with each iteration yielding a new set of mixing coefficients for the next one.

II1. RESUHE OF THE 'FOCK' APPROACH TO THE MCSCF PROBLEM

Based on the mixing coefficients obtained by solving the secular equation, Fock equations represent extremum conditions to be satisfied by the occupied orbitals and have the following general expansion form:
with the Lagrangian muttipliers satisfying the condition

$$
\begin{align*}
& \varepsilon_{i j}=E_{j i} \\
& \text { i.e., } \tag{5}
\end{align*}
$$

We have solved these equations in the past by the following iterative process: Given an initial set of vectors $\left\{c_{1}\right\}$ one defines a tran:iformation:

$$
\begin{equation*}
c_{i}^{(0)}=\sum_{j, j j} u_{i j} c^{\langle 0\rangle} \tag{6}
\end{equation*}
$$

such that f_{i}^{*} satisfy the Eqs (5). This is temed the occupiej-space solution. Eq. (4) is now rewritten in the following approximate form:
where, obvious $l y, s c_{i}^{(0)}$, obtained by matrix inversion, lies in the virtual space. This part of the solution is temed the virtual space solution.

The new vectors after the first iteration are, therefore, of the form:

$$
\begin{equation*}
{\underset{i}{c}}_{(1)}=\sum_{j} u_{i j}{\underset{\sim}{c}}_{(0)}^{(0)}+\delta{\underset{i}{i}}_{(0)}^{(0)} \tag{8}
\end{equation*}
$$

These are then orthonormalized and used to celculate new energy and mixing coefficients, whence che rew Fock equations are constructed and solved ylelding new vectors $\mathcal{c}_{c}^{(\alpha)}$ and so on.

IV. DEFICIEMCIES OF THE FOCK EQUATION APPROACH

Although in most cases the above approach would converge to a solution of Eqs. (4) and (5), very often such a solution may not correspond to an energy extremum, since the Fock operators constructed using the new vectors may be very different from the old onas making this solution unacceptable. In other words this leads to an intrinsically non-convergent procest. A modification of the process, first introduced by Das 7 , is to consider changes in the Fock uperator in the step in which the occupfed-space solution is obtained. This modification has been found very successful over the years for the ground state calculations. Except in pathological cases (involving single excitations) the methad leads to convergent solytions with occasional use of 'extrapolations'.

The method, expectedly, suffers from slow convergence, since, firstly, the coupling between the occupied-space and the virtual space corrections is left out. Secondly the changes in the mixing coefficients are not coupled to orbital changes. The latter is particularly important for excited states, since such coupling may be large enough to decide the course of the solution toward the particular state under consideration. For excited states introduction 8_{0} a 11 mited amount of coupling has been shown to lead to considerable fmprovement in the rate of convergence.

V. A REFORMMLATION OF THE MCSCF SChEME

Let us add to the occupied set $\left\{f^{(\dagger}\right\}$ a set of orthonomalized vectors formed out of the normalized vectors:

$$
\begin{equation*}
\underline{V}_{i}=\delta{\underset{i}{i}}_{(0)}^{(0)} /\left\langle{\underset{\sim}{c}}_{i}^{(0)}\right. \tag{9}
\end{equation*}
$$

obtained from the virtual-space solution of the Fock equations as described in 3ec IIl. Let us consider a unitary transformation amongst the expanded set of vectors $\left\{c_{i}^{(0)}\right\}$:

$$
\begin{equation*}
c_{i}^{(1)}=u_{i 1} c_{i}^{(0)}+\sum_{j \neq i} u_{i j} c_{j}^{(0)} \tag{10}
\end{equation*}
$$

Under this transformation the change in the total energy correct, to the second order in \mathbf{u}_{ij} 's (ifj) can be written as
$\delta E=\delta E^{c}+2 \sum_{a, b} \delta A_{a} A_{b}^{0} \delta H_{a b}+\sum_{a, b} \delta A_{a} \delta A_{b}\left(H_{a b}-\delta_{a b}{ }_{0}\right)$
where $\left\{A_{0}^{0}\right\}$ are the mixing coefficients obtained with $\{c$? $\}$ and $\left\{\delta A_{4}\right\}$, $\delta H_{a b}$ are respectiveiy the changes in $\left\{A_{a}\right\}$ and H_{a} under the transformation (10), δE^{C} is the change due to the changes in the vectors alone and is given by

$$
\begin{aligned}
& \delta E^{c}=2 \sum_{i>k} u_{i k} \Delta E_{i k}+\sum_{i f k, j f 1} u_{i k} u_{j 1}\left(G_{i k, j i}+\delta_{i j} F_{i k i}\right) ; \\
& i r_{i k}=c_{k}^{(0)^{+}}\left\langle F_{i}^{(0)} c_{i}^{(0)}+f_{i}^{(0)}\right)-c_{i}^{(0)}\left(F_{k}^{(0)} c_{k}^{(0)}+f_{k}^{(0)}\right)
\end{aligned}
$$

$$
F_{i k j}={\underset{F}{k}}_{(0)^{*}}^{F_{i}^{(0)}{\underset{c}{k}}_{(0)}^{c}, ~ . ~}
$$

$$
G_{i k, j i}=\frac{\partial}{\partial u_{j 1}}\left[{\underset{k}{(0)}}_{\left.E_{i} c_{i}^{(0)}+f_{i}\right]}\right.
$$

In the aocive it is understood that $\mathrm{F}_{\mathrm{f}}=\mathrm{f}_{1} \equiv 0$ if $\left\{c_{i}\right\}$ is a virtual vector. Minimizing (Ii) with respect to the variation $\left\{\delta_{a}\right\}$ subject to the con-
straint straint $\delta A_{0} A^{(1)}=0$.

$$
\delta E=\delta E^{C}-g^{\dagger} M g
$$

where

Thus

$$
\begin{equation*}
s E=\sum_{i \neq k} u_{i k} \Delta \varepsilon_{i k}+\sum_{i j k, j \neq 1} u_{i k} u_{j 1}\left(G_{i k, j}^{\prime} \mid+\delta_{i j} F_{i k 1}\right) \tag{14}
\end{equation*}
$$

where

$$
G_{i k, j 1}^{\prime}=G_{i k, j 1}-g_{i k \sim 2 j 1}^{+}
$$

$g_{i k}=\frac{\partial g}{\partial u_{i k}}$

The transformation coefficients are obtained by varying $\boldsymbol{f} \mathrm{E}$, as given by (12), with respect to u's:

$$
\begin{equation*}
\sum_{j j 1} u_{j T}\left(G_{i k, j 1}+\delta_{i j} F_{i k 1}\right)+\Delta \varepsilon_{i k}=0 \tag{17}
\end{equation*}
$$

Vi. A SIMPLIFICATIDN FOR LARGE CONFIGURATION SETS

For large sets of configurations evaluation of M (Eq. 13) and g (Eq. 16) can be difficult. He present a simplification as follows: As in Sec. II we distinguish two subsets of a given set of configurations, one containing the predominant ones, the other containing the rest. We break up the corrosponding wavefunction accordingly:

$$
\begin{equation*}
\psi=\sum_{a=1}^{n} A_{a} \phi_{a}+\sum_{a=n_{0}+1}^{N} B a_{a} \tag{18}
\end{equation*}
$$

where the first sum goes over the first subset. In the present optimization scheme during the course of an interation the mixing coefficients occurring in the second sum are kept frozen except for normalization. Thus we shall be concerned with the following energy expressici:

$$
\begin{equation*}
\varepsilon=\sum_{a, b=1}^{n} A_{a} A_{b} H_{a b}+2 A_{0} \sum A_{a} K_{a}+A_{0}^{2} E_{0} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{a}=\left\langle\phi_{a}\right| H\left|\phi_{0}\right\rangle \\
& \phi_{0}=a_{0}^{-1} \sum_{a=n_{0}+1}^{N} B_{a} \phi_{a}=a_{0}=\sqrt{\sum_{a}^{\beta_{a}^{2}}} \\
& E_{0}=\left\langle\phi_{0}\right| H\left|\phi_{0}\right\rangle
\end{aligned}
$$

In solving Eq. (17) we obtain M and g only for the configurations of the first subset and for ${ }^{4} 0$.
VII. COMENTS ON THE SECOND order treatment of the MCSCF PROBLEM

In the above we have discussod an MCSCF procedure in which during every iteration we retain in the energy expression all corrections up to tre second order coming from the variations of the orbitals. Barring some pathological cases (usually involving single excitations) where the third and higher order terms dominate aver the first ind second order terms, the process is expected to converge.

The convergence, however, is not guaranteed to correspond to the root desired. For that it is necessary to go step by step from the lowest root of the symmetry to the one under consideration.

The absence of large Hessian matrices in our
theory makes each iterative step short enough such that it is easier and cheaper to monitor the course of the MCSCF iterations than what it would be for a full-blown orbital transformation method ${ }^{4-6}$.

References

1. A, C. Wahl and G. Das in Modern Theorettical Chenistry, Vol. III, Chapter III (Edited by H. F. Schaefer 111, Plenum Pres5, Hew York and Landon).
2. E. Dalgaard and P. Jorgensen, J. Chem, Phys. 68. 3833 (1979).
3. B. R. Brooks, 1/. D. Laidig, P. Saxe and H. F. Schaefer I11, J. Chem. Phys. 72, 3837 (1980).
4. D. L. Yeager and P. Jorgensen, J. Chem. Phys. 71, 755 (1979).
5. E. Dalgaard, Cher. Phys. Lett. 65,559 (1979).
6. C. C. J. Roothadn, J. Detrich and D. G, Hopper, Int. J. Quantum Chem. Symposia 13, 93 (1979).
7. G. Das, J. Chem. Phys. 46, 1568 (1967).
B. G. Das, J. Chen, Phys. 58. 5104 (1973).

FONULATIOM OF THE SOGV WAVEPUNCTIO

Frank W, Bobrowice
Monsanto Research corporation
Mound Facility*
Niamiaburg, Ohilo 45342

SIRHMARY

In tir:s paper we present the folmulation of an MCSCF wavefunction of the GVB (generalized yalence - boms) type designed to deal with the changes occurfing during chenical reactions. As such, this wavefunction which we have labeled SOGVB (strongly orthogonal generalized valence - bond) overcones one of the deficiencies mf the more Eaniliar Perfect-Pairing GVB wavefunction (GVB-PP) while retaintng much of the computational simplicity of the Perfect-Pairing approxisation.

To understand the rationale behind the sogvi approach let us first consider the more well-know GVB-PP wavefuncrion. ${ }^{2}$ In essence, this wavefunction results from a relavation of tha double-occupation restriction placed upon the restricted HartreeFock (RHF) wavefunction. That is, in GVB-PP, we replace an rHf doubly-occupied orbital by a pair of nonorthogonal singlet coupled orbitals. For example, the RHF wavefunction

$$
\begin{equation*}
\psi=A \hat{1}_{1}{ }^{2} \phi_{3} \alpha \beta a=\frac{\phi_{1} \phi_{1}}{\phi_{3}} \tag{1}
\end{equation*}
$$

becomes
$\psi=\frac{1}{\sqrt{2}} A\left(\phi_{11}^{\prime} \phi_{21}^{\prime}+\phi_{21}^{\prime} \phi_{11}^{\prime}\right) \phi_{3} \alpha \beta \alpha=\overline{\phi_{11}^{\prime} \phi_{21}^{\prime}}$.
However, while the rrbitals in each such pair are allowed to be nonorthogonal ve require that they be orchogonal to all other orbitals. Thus, in (2a) we impose the constraints

$$
\begin{equation*}
\left\langle\phi_{1}^{\prime} \mid \phi_{3}\right\rangle=\left\langle\phi_{21}^{\prime} \mid \phi_{3}\right\rangle=0 \tag{2b}
\end{equation*}
$$

if we now express nach nonorthogonal pair in terms of the corresponding orthogonal natural orbitals such that

$$
\begin{align*}
& \theta_{1 i}^{\prime}=\left(\sqrt{\lambda_{1 i}} \phi_{1 i}+\sqrt{\lambda_{2 i}} \phi_{2 i}\right) /\left(\lambda_{1 i}+\lambda_{2 i}\right)^{1 / 2} \\
& \phi_{2 i}^{\prime}=\left(\lambda_{\lambda 1 i}^{-} \phi_{1 i}-\sqrt{\lambda_{2 i}} \phi_{2 i}\right) /\left(\lambda_{1 i}+\lambda_{2 i}\right)^{1 / 2} \tag{3}
\end{align*}
$$

[^0](where . . . represents all ocher orbitals) whereas in the product a carbon p-orbital and the hydrogen orbital must become singlet coupled in order to describe the $\mathrm{C}-\mathrm{H}$ so that
\[

$$
\begin{equation*}
\psi_{e q}=\frac{\phi_{\mathrm{PZ}} \phi_{\mathrm{H}}}{\frac{\phi_{\mathrm{PY}}}{}} \tag{6b}
\end{equation*}
$$

\]

Clearly, regardle is of how the orbitals change, gubPP wavefunceion (6b) which gives a good deacription of $\mathrm{CH}^{2} \Pi$ at equilibrium can never describe the separated atom limit. Conversely, [6a] which describes this limit cannot possibly describe a strong O-H bond (Fig. 1). The only way to properly describe thas reaction is to employ a wavefunction which incorporates beth of these coupling schomes. such as

in which we must solve not only for the optimal orbitals but for the optimal coupling coefficients $\{\bar{c}\}$ as well.

The inabilicy of the GVB-PP wavefunction to deal with chenical reactions gaes beyond the obvious example given above. It also extends to cascs where the coupling betueen product orbitals is the same as that between reactant orbitals. An example of this is scen in the formation of $\mathrm{CH}{ }^{2} \Delta$ from $\mathrm{C}^{1}{ }^{1} \mathrm{D}$ and $H^{1}{ }^{1}$. Since this state arises from the forma tion of a bond berween a hydrogen orbital and one of the carbon sp-pair orbitals the GVB pleture of carbon has two sp-orbitais in place of the RHF $2 \mathrm{~s}^{2}$ orbital) the product wavefunction is

$$
\begin{equation*}
\phi_{e q}=\sqrt{\phi_{S Z}} \omega_{\mathrm{S}} \tag{7a}
\end{equation*}
$$

whereas in the separated-atom wavefunction the hybrid sp-orbitals in C ' D are singlet coupled so that

$$
\begin{equation*}
\psi_{\infty}=\frac{\cdots}{\left\lvert\, \frac{\Phi_{S Z}{ }^{\Phi} s \bar{z}}{}\right.} \tag{Tb}
\end{equation*}
$$

Since in either limit the system can be described by a perfoct-pairing coupling scheme it might be expected that this reaction could be studied using a GVB-PP vave function. However, when GVB-PP calculations are performed we find that this is not the case. Ralher, if we start at the separate-atom limit and move inward we climb a repulsive curve which does not lead to the bound molecular state (Fig. 2). Likewisc, if we start with the golecular state and move outiard we follow a potential curve which does nat tend toward the proper atomic limit. Therefore, while the GVB-PP approximation is adequace at either linit it is quite inappropriate at intermediate internuclear separations. In order to obtain a smoothly varying adiabatic description of this reaction a more flexible wavefunction is clearly required.

Relaxing the constrainta imposed upon the GVB-PP wavefunction while still remaining ulthin the frame work of an independent-particle modol leads to the unrestricted GVI wavefunction. In this approximation all orbitals are allowed to be nonorthogonal and, while retaining the desired ovenill spin multiplicity, these orbltall are coupled in a fully general manner. 4 For example, the three-electron doublet GV wavefunction can be written as

$$
\begin{equation*}
\psi=\xi_{1} \frac{\phi_{1} \phi_{2}}{\phi_{3}}+\xi_{2} \phi_{1} \phi_{3} \tag{8}
\end{equation*}
$$

Unfortunately, because of the computational camplexitfer involved, unrestricted GVB calculations are pratical only for small systems. Furthernore, extending this method through inclusion of closedshell and/or perfect-pair orbitals is nontrivial. However, GVB calculations on small but representative syatens have been performed and from the results it becomes apparent that the full generality of this vavefunction is usually not requried. To illustrate, consider the simple colinear $\mathrm{H}_{2}+\mathrm{D}+$ H + HD reaction. Initially the systen consists of a hydrogen molecule and a deuterium aton whereas in the products we have an HD molecule and a hydrogen atom, since the reactant and product, wavefunctions are

$$
\begin{equation*}
\psi_{R}=\Phi_{H} \Phi_{H^{\prime}} \text { and } \varphi_{\mathrm{F}}=\frac{\Phi_{\mathrm{H}} \Phi_{\mathrm{D}}}{\Phi_{H^{\prime}}} \tag{9a}
\end{equation*}
$$

the GVB wavefunction for this reaction can be widten as

$$
\begin{equation*}
\Psi=\xi_{1} \frac{\phi_{1} \Phi_{2}}{\frac{\phi_{3}}{2}}+\xi_{2} \frac{\phi_{1} \phi_{3}}{\phi_{2}} \tag{9b}
\end{equation*}
$$

From plots of the orbital changes involved in the GVB description of this reaction (Fig. 3) ${ }^{5}$ we see that as the reaction proceeds, orbital $\$ 2$, uhich is initially associated with the H^{*} nucleus, slowly delocalizes in a symetric maner over to the deuteriun nucleus and finally relocalizes there. Simultaneously, orbital ϕ_{3}, which is .itially centered on the deuterim, delocalizes in an antisymmetric maner over to the H^{\prime} center and final:y relocalizes there. The result is that orbitals $\$_{1}$ and ϕ_{2} always remain highly overlapping uhile ϕ_{3} remains nearly orthogonal to both of them. Thus, these orbitals remain essentially strongly orthogonal at all times. Hoever, the couplitig between them does not remain fixed. In fact, the coupling changes drastically and, up through the saddle point, closely resembles what one would expect were the reaction to proceed via a purely localized orbitil mechanism (Fig. 4).

As the above examples have served to illustrate, ${ }^{6}$ in order to deseribe a typlcal chemical reaction it is necessary to allow the orbitals involved in bond breaklng/forming processes to couple, with one another in a completely general manner. However, it is usually not necessary to relax all orthogonality constraints since the orbitals tend to remain strongly orthogonal amisay. Therefore. in the sogve

Fig. 1.

Fig. 2.
$\bigotimes_{H^{\prime}-H} \bigoplus_{0}-\bigoplus_{H^{\prime}} \bigotimes_{H-D}$

Fig. 3.

FIG. 4.
approximation we allow the orbitala to couple in a general manner, but nonethelege group then into strongly orthogonal pairs. For example, the threeelectron doublet SOGVB wavefunction has the form of the unrestricted GVB wavefunction but involves orbitals constrained to be strongly orthogonal

(10a)

$$
\left\langle\phi_{11}^{\prime} \mid \phi_{3}\right\rangle=\left\langle\phi_{21}^{\prime} \mid \phi_{3}\right\rangle=0 .
$$

(10b)

As with the GVB-PP wavefunction, it in computationally convonient to write the sOGVB wavefunction in terms of orthogonal orbitals by expreseing each nonorthogonal pair in terms of orthogonal natural orbitals. This leads to an MC wavefunction in which each orthogonal configuration either containg only one orbital of a pair with that orbital being doublyoccupied or it contains both orbitals of a pair triplet coupled. Far example, substituting (3) into (10a) gives
$\Psi=$

where

$$
\begin{align*}
& A_{1}=\sqrt{E^{\xi} 1_{1} 1_{1}} \\
& A_{2}=\sqrt{2} \quad \xi_{1} \lambda_{21} ; A_{3}=2 \sqrt{A_{11} A_{21}}{ }_{2}^{\xi_{2}} \tag{11b}
\end{align*}
$$

and the two-pair four-electron singlet wavefunction is
subject to the constraint $A_{1} A_{3}=A_{2} A_{4}$. As a consequence, the sogvb energy expression for NG orbitals involving NGP rors 15

$$
\begin{align*}
& E=\underset{i}{2 L_{i}} f_{i} h_{i, i}+\sum_{i, j}^{N G}\left[a_{i, j} J_{i, j}+b_{i, j} K_{i, j}\right] \\
& \text { NGP NG } \\
& +\underset{m}{4 \sum_{i \neq 1 m, 2 m}} \sum_{m i}<\phi_{1 m}\left|K_{i}\right| \phi_{2 m}{ }^{\prime} \\
& +\sum_{n>m}^{N G P}\left[d_{n m}^{(1)}\left(\phi_{1 m}{ }^{\phi} 1 n \mid \phi_{2 n^{\phi} 2 m}\right)\right. \\
& \left.\left.+d_{n m}^{(2)}\left(\phi_{1 m} \phi_{2 n} \mid \phi_{1 n} \phi_{2 m}\right)\right]\right\} \tag{13a}
\end{align*}
$$

Where

$$
\begin{align*}
\boldsymbol{H}_{i, i} & =\left\langle\phi_{i}\right| h\left|\phi_{i}\right\rangle=\left\langle\phi_{j}\right| T+V\left|\phi_{i}\right\rangle \\
J_{i, j} & =\left(\phi_{i} \phi_{i}\left|\phi_{j} \phi_{j}\right\rangle\right. \\
& =\left\langle\phi_{i}(1) \phi_{j}(2)\right| r_{12}-1\left|\phi_{i}(1) \phi_{j}(2)\right\rangle \tag{13b}
\end{align*}
$$

$$
\begin{aligned}
K_{i, j} & =\left\langle\phi_{i} \phi_{j} \mid \phi_{j} \phi_{i}\right\rangle \\
& =\left\langle\phi_{i}(1) \phi_{j}(2)\right| r_{12}^{-1}\left|\phi_{j}(1) \phi_{i}(2)\right\rangle
\end{aligned}
$$

and where the coefficients $|f, a, b, c, d|$ are functions of the configuration coefficients $|A|$ which in turn are functions of the pair and coupling coefficients $\{\lambda, \xi\}$.

Since (13a) contains only diagonal ane-electron terms, inclusion of closed-shell, perfect-paliring, and open-shell multiplet orbitals in the wavefunction is straightforvard. This is of considerable importance since in arost chemical reactions only a few orbitals are actually involved in the bonding process. Howev. - nonparticipating orbitals must also be taken into account since changes in these orbitals can be inportant. To treat all orbitals at a genuralized coupling (GC) level is unnecessary and computationally impractical. By allowing the $50 G \sqrt{3}$ wavefunction to explicitly include these less correlated orbitals we arrive at a wavefunction in which each group of orbitals is treated at an appropriate level of correlation and with an appropriate amount of computational effort. Thus, generalizing (13a) to include NS closed-shell and perfect-pair orbitals and MMultiplet-shell orbitals the energy expression for all N orbitals becomes

$$
\begin{align*}
& \text { NGP NG+NH } \\
& \left.+\underset{m}{4 \Sigma} \underset{i \neq 1 m, 2 m}{i L_{m i}} \quad \stackrel{c}{i m}\left|k_{i}\right| \phi_{2 m}\right\rangle \\
& +\underset{n>m}{N G P}\left[d_{n m}^{(1)}\left(\phi_{1 m} \phi_{1 n} \mid \phi_{2 n} \phi_{2 m}\right)\right. \\
& \left.\left.+d_{n m}^{(2)}\left\{\phi_{1 m_{2 n}} \phi_{2 n} \phi_{2 m}\right)\right]\right\} . \tag{14}
\end{align*}
$$

Having arrived at the general energy expression for the SOGVB wavefunction we can now consider the task of developing the squations for its self-consistent solution. For the present, let us ignore the problim of optimizing the pair and coupling coefficients and concentrate on orbital optimization. From the Variational Principle we know that the orbitals will be self-consistent when the energy is stationary through first-order for any changes in the orbitals provided these changes preserve orbital orthogonality at least through first-order. Allowing the orbitals in (14) to vary according to the prescription

$$
\begin{align*}
& \phi_{i} \Rightarrow \Phi_{i}+\delta_{i} ; \\
& \left\{\left\langle\delta_{i} \mid \phi_{j}\right\rangle+\left\langle\delta_{j} \mid \Phi_{i}\right\rangle+\left\langle\delta_{i} \mid \delta_{j}\right\rangle\right](1)=0 \tag{15a}
\end{align*}
$$

this variational condition is found to be

$$
\begin{equation*}
\delta E^{(1)}=\sum_{i}^{N}\left[\left\langle\delta_{i}\right| F_{i}\left|\epsilon_{i}\right\rangle+\left\langle\delta_{i} \mid R_{i}\right\rangle\right]=0 \tag{115b}
\end{equation*}
$$

where

$$
\begin{align*}
F_{i}= & f_{i} h+\sum_{j}^{N}\left[a_{j, i} J_{j}+b_{j, i} K_{j}\right] \\
& +\sum_{m \in P} \quad{ }^{\operatorname{lm}, 2 m \neq i} \tag{15c}
\end{align*}
$$

and where we define the exchange-like operator ($\left.\Delta_{i} \mid \phi_{j}\right)$ by

$$
\begin{equation*}
\left.\left\langle\phi_{i}\right| \psi_{-} \phi_{j} \mid \phi_{k}\right)\left|\phi_{q}\right\rangle=\left(\phi_{i} \phi_{j}\left|\phi_{k} \phi_{i}\right\rangle\right. \tag{15d}
\end{equation*}
$$

If orbital i is not a $G C$ pair orbital then $R_{i}=0$. If however it corresponds to pair orbital $\phi_{k n}$ then

$$
\left.\left.+d_{n m}^{(3-k)}\left(-\phi_{2 \pi} \mid \Phi_{1 n^{-}}\right)\right]\right) \mid \phi_{(3-k), m^{2}}
$$

IE we define the operator R_{i} by

$$
\begin{equation*}
R_{i}^{\prime}=R_{i}<\phi_{i} \tag{1Ga}
\end{equation*}
$$

then we can write (15b) in the more usual form

$$
\begin{equation*}
0=\stackrel{N}{\underset{i}{i}}\left\langle<\delta_{i}\right| F_{i}^{\prime}\left|\phi_{i}\right\rangle \tag{16b}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{i}^{\prime}=F_{i}+R_{i} \tag{16c}
\end{equation*}
$$

However, we prefer to work with the quantities defined in (15) since these arise directly from (14) whereas those of (16) do not.

Now let us consider the problem of optimizing any one orbltal while keeping all others fixed. If only orbical ϕ_{i} is varked then (15b) becomes

$$
\begin{equation*}
0=\left\langle\delta_{i}\right| F_{i}\left|\phi_{i}\right\rangle+\left\langle\delta_{i} \mid R_{i}\right\rangle \tag{27}
\end{equation*}
$$

However, thls is subject to the constraint that $\left\langle\delta_{i} \mid \psi_{j}\right\rangle=0$ for all ϕ_{j}. Therefore, if only one orbital is varied it can only be changed with respect to the space orthogonal to all orbitals. Keeping this in mind, if we isolate from (14) all terms invalving ϕ_{i} and replace this orbital with the improved orbital

$$
\begin{align*}
& \Delta_{i}^{i}=\left(\phi_{i}+\Delta \phi_{i}\right) /\left(1+\Delta_{i}^{2}\right)^{1 / 2} ; \\
& \Delta_{i}^{2}=\left\langle\Delta \phi_{i} \mid \Delta \Phi_{i}\right\rangle \tag{18a}
\end{align*}
$$

upon expansion through second-order in $\Delta \phi_{i}$ we obtain

$$
\begin{align*}
c_{i}\left(1+\Delta_{i}^{2}\right) & =\left\langle\phi_{i}\right| F_{i}\left|\phi_{i}\right\rangle+\left\langle\phi_{i} \mid R_{i}\right\rangle \\
& +2\left[\left\langle\Delta \phi_{i}\right| F_{i}\left|\phi_{i}\right\rangle+\left\langle\Delta \phi_{i} \mid R_{i}\right\rangle\right] \\
& +\left\langle\Delta \phi_{i}\right| F_{i}+2 a_{i, i} K_{i}\left|\Delta \phi_{i}\right\rangle \tag{18b}
\end{align*}
$$

where for simplicity we have taken $b_{1, i}=0_{4}$ Ex= pressing $\Delta \phi_{i}$ in terms of the basis space $\{x\rangle$ orthogonal to all orbitals

$$
\Delta \phi_{i}=\sum_{k} C_{k i} X_{k}
$$

(18c)
where

$$
\begin{equation*}
\left\langle x_{k} \mid \phi_{j}\right\rangle=0 ; \quad\left\langle\gamma_{k} \mid x_{\ell}\right\rangle=\delta_{k, \ell} \tag{18d}
\end{equation*}
$$

the solution through second-order for the improved orbital in the field of all other ones is obtained by diagonalizing the matrix \underline{x} where

$$
\begin{align*}
& x_{0,0}=\left\langle\phi_{i}\right| F_{i}\left|\phi_{i}\right\rangle+\left\langle\phi_{i} \mid R_{i}\right\rangle \\
& x_{0, k}=x_{k, 0}=\left\langle x_{k}\right| F_{i}\left|\phi_{i}\right\rangle+\left\langle x_{k} \mid R_{i}\right\rangle \tag{18e}\\
& x_{k, i}=\left\langle x_{k}\right| F_{i}\left|x_{i}\right\rangle+2 a_{i, i}\left\langle x_{k}\right| k_{i}\left|x_{i}\right\rangle ; k, i \notin 0
\end{align*}
$$

and choosing the desired root (usually on the basis of either lowest eagenvalue or least change).

If ϕ_{i} is a closed-shell orbical, $R_{i}=0$. Furthermore, if we neglect the second-order self-correction term $2 a_{i, i}\left\langle x_{k}\right| k_{i} \mid x_{i}{ }^{3}$, the X matrix simply becomes a matrix over the Fock operator F_{j}. Since the Fock operators fur all closed-shell orbitals can be made identical, solutions for all such orbitals could then be obtaired through a single diagonalization. Since this offers considerable computational advantage and since experience has show that these terms are relatively unimportant, we normally follow this procedure. For open-shell multiplet orbitals these terms do not appear in the first place. For all other orbitals the Eock operators are different and no real advantage is gained in neglecting these terns.

Examining the terms involved in (1B) we see that far closed-shell and perfect-pair orbitals these equations invalve only tine same operator matrices that are required for a GVB-PP calculation. For the remaining orbitals the only additional matrices required are those over the GC-pair operators ($\$_{1 n} \mid \phi_{2 n-}$). Therefore, only a little more cosputational effort is required here than would be the case for the corresponding GVB-PF calculation.

Equations (1B) provide us with the prescription for iteratively optimizing the orbitals with respect to unoccupied space. There now remains the problen of optimizing them with respect to one another. Since the orbitals must always remain orthogonal the only way to do this is to vary at least two of them simultaneously. If orbitals ϕ_{i} and ϕ_{j} are
simultaneously voried while keeping all others fixed, (15b) becomes

$$
\begin{align*}
0=\left\langle\delta_{i}\right| F_{i}\left|\phi_{i}\right\rangle & +\left\langle\delta_{i} \mid R_{i}\right\rangle \tag{19a}\\
& +\left\langle\delta_{j}\right| F_{j}\left|\phi_{j}\right\rangle+\left\langle\delta_{j} \mid R_{j}\right\rangle
\end{align*}
$$

subject to the condition

$$
\begin{equation*}
\left[\left\langle\delta_{i} \mid \phi_{j}\right\rangle+\left\langle\delta_{j} \mid \phi_{i}\right\rangle+\left\langle\delta_{i} \mid \delta_{j}\right\rangle\right]^{(1)}=0 \tag{19b}
\end{equation*}
$$

through first-arder. To obtain the equation for the optimal mixing between these two orbitals we isolate all terms involving them from (14) and substitute the improved orbitals

$$
\begin{align*}
& \phi_{i}^{!}=\left(\phi_{i}+\Delta \phi_{i}\right) /\left(1+\Delta_{j}^{2}\right)^{1 / 2} \tag{20a}\\
& \phi_{j}^{1}=\left(\phi_{j}+\Delta \phi_{j}\right) / /\left(1+\Delta_{j}^{2}\right)_{i}^{1 / 2}
\end{align*}
$$

Realizing that if

$$
\begin{equation*}
\Delta \Phi_{i}=Y_{i j} \Phi_{j} \tag{20b}
\end{equation*}
$$

then we must have

$$
\begin{equation*}
\Delta \phi_{j}=-\gamma_{i j} \phi_{i} \tag{20c}
\end{equation*}
$$

we expand through second-order in $\gamma_{1 j}$ to obtain

$$
\begin{align*}
E_{i j}\langle 1 & \left.+\gamma_{i j}^{2}\right\rangle \\
= & \left\langle\phi_{i}\right| F_{i}\left|\phi_{i}\right\rangle+\left\langle\phi_{i} \mid R_{i}\right\rangle+\left\langle\phi_{j}\right| F_{j}\left|\phi_{j}\right\rangle+\left\langle\phi_{j} \mid R_{j}\right\rangle \\
& +\gamma_{i j}^{2}\left[\left\langle\phi_{i}\right| F_{j}\left|\phi_{i}\right\rangle+\left\langle\phi_{j}\right| F_{j}\left|\phi_{j}\right\rangle+Q_{i j}\right] \\
& +2 \gamma_{i j}\left[\left\langle\phi_{i}\right| F_{i}+F_{j}\left|\phi_{j}\right\rangle+\left\langle\phi_{j} \mid R_{i}\right\rangle-\left\langle\phi_{i} \mid R_{j}\right\rangle\right] \tag{20d}
\end{align*}
$$

where the second-order correction term $\|_{i j}$ is given by

$$
\begin{equation*}
Y_{i j} Q_{i j}=\left\langle\phi_{i}\right| \Delta F_{i}-\Delta F_{j}\left|\phi_{j}\right\rangle+\left\langle\phi_{j} \mid \Delta R_{i}\right\rangle-\left\langle\phi_{i} \mid \Delta R_{j}\right\rangle \tag{2la}
\end{equation*}
$$

and where ΔF and ΔR are the first-order changes in the corresponding operators. For example, if either orbital is a closed-shell or perfect-pair orbital or if neither is a GC pair orbital

$$
\begin{align*}
Q_{i j}=Q_{i j}^{0} & =2\left(a_{i, i}+a_{j, j}-2 a_{i, j}\right) k_{i, j} \\
& +\left(b_{i, i}+b_{j, j}-2 b_{i, j}\right)\left[d_{i, j}+k_{i, j}\right] \tag{2lb}
\end{align*}
$$

whereas if orbital ϕ_{i} is in GC pair m and orbital ϕ_{j} is a multiplet or unpaired GC orbital

$$
\left.Q_{i j}=Q_{i j}^{2}-2 c_{m j}<\phi_{i m}\left|J_{j}+k_{j}\right| \phi_{2 m}\right\rangle
$$

(21c)

Letting

$$
\begin{align*}
c_{i j}^{(1)} & =\left\langle\phi_{i}\right| F_{i}-F_{j}\left|\phi_{j}\right\rangle-\left\langle\phi_{j} \mid R_{i}\right\rangle-\left\langle\phi_{i} \mid R_{j}\right\rangle \\
c_{i j}^{(2 \mid} & =\left\langle\phi_{j}\right| F_{i}-F_{j}\left|\phi_{j}\right\rangle-\left\langle\phi_{i}\right| F_{i}-F_{j}\left|\phi_{i}\right\rangle \\
& -\left\langle\phi_{i} \mid R_{i}\right\rangle-\left\langle\phi_{j} \mid R_{j}\right\rangle+Q_{i j} \tag{22a}
\end{align*}
$$

mixing coefficient $\gamma_{i j}$ is obtained by solying

$$
\begin{equation*}
D=c_{1 j}^{(1)} 1 Y_{i j}^{2}-11-c_{i j}^{(2)} Y_{i j} \tag{22b}
\end{equation*}
$$

and choosing the appropriate root.

In principle, the orbitals can be iteratively optimized with respect to one another using (22). However, to redefine all affected matrix elements after each such orbital-pair rotation is computationaily unacceptable and experience has shown that by not dolng so the overail orbital changes tend to be too large. To see if there is a simple way to overcome this problem let us now consider simultaneously optimizing all orbitals with respect to one another by taking the 1 mproved orbitals to be

$$
\begin{equation*}
\phi_{1}^{1}=\psi_{i}\left[\bar{\phi}_{i}-\sum_{k<i}<\bar{\phi}_{i} \mid \phi_{k}^{\prime}>\phi_{k}^{\prime}\right] \tag{23a}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{\phi}_{i}=\phi_{i}+\sum_{j \neq i} \gamma_{j i} \phi_{j} \quad ; \quad r_{i j}=-Y_{j i} \tag{23b}
\end{equation*}
$$

Upon substituting these orbitals into (14) and expanding through second-order in $\left\{\gamma_{i j} ; i>j\right\}$ the result is a rather complicated expression involving many two-electron integrals not required in either (22) or (18). All such integrais, however, only appear in tefns involving the product of two different mixing coefficients. If we now content ourselves with a pairwiso mixing scheme by peglegting all such mixed coefficient terms, we Eind that the mixing coefficients can be determined by diagonalizing the matrix 旦 where

$$
\begin{aligned}
& B_{0,0}=0 \\
& B_{0, i j}=B_{i j, 0}=c_{i j}^{(1)} \\
& B_{i j, k l}=0 \text { for } i j \nmid k l \\
& B_{i j, i j}=C_{i j}^{(2)}
\end{aligned}
$$

and where $c_{i j}^{(1)}$ and $\mathrm{D}_{\mathrm{i}}^{(2)}$ are given by (22a\}. While dlagonallzation of this matrix and choosing the appropriate root still. constitute only a pairwise optimization scheme, it has been found to be superlor to simple sequential usage of (22) since each mixing coefficient ls now weighted relative to its importance in lowering the total energy.

Equations (18) and (23) provide us with the prescriptions for optimizing the orbitals to selfconsistency for fiked pait and coupling coefficients. We will now turn our attention to detemining these coefficients. First of all, let us consider any perfect-pair coefficients. [f orbitals $\phi_{1 k}$ and $\Phi_{2 k}$ are perfectly paire-1, the coefficients in (14) which depend upon pair coefficients $\lambda_{1 k}$ and $\lambda_{2 k}$ are

$$
E_{k}\left(\lambda_{1 k}^{2}+\lambda_{2 k}^{2}\right)=\lambda_{1 k}^{2} H_{1 k, 1 k}+\lambda_{2 k}^{2} H_{2 k, 2 k}
$$

(24b)

$$
+2 \lambda_{i k} \lambda_{2 k} H_{1 k, 2 k}
$$

where

$$
\begin{align*}
& H_{i k, i k}= 2 h_{i k, i k}+J_{i k, i k} \\
&+\underset{j \sum_{j \neq}^{N}}{ } \\
& H_{i k, 2 k} f_{j}\left(2 J_{i k, j}-k_{i k, j}\right) \\
& H_{i k, 2 k} H_{2 k, i k}=-\frac{1}{2} k_{i k, 2 k} .
\end{align*}
$$

Therefore, we solve for $\lambda_{1 k}$ and $\lambda_{2 k}$ by diaganalizing this 2×2 H matrix and choosing the roat which minimizes E_{k}. If there is more than one perfect pair involved, the paic coefficients for each paic are optimized iteratively through sequential application of (24) until self-consistency is athieved.

We are now left with the task of optimizing the gC paic and coupling coefficients whach, in turn, define the $\{f, a, b, c, d\}$ energy coefficients involving GC orbitals. In general, the relationship between these coefficients is not straightforward and is most easily established by flest expressing the wavefunction (ignoring all but GC orbitals) as

$$
\begin{aligned}
& f_{i k}=a_{i k, i k}=\lambda_{i k}^{2} /\left(\lambda_{1 k}^{2}+\lambda_{2 k}^{2}\right) ; \quad \vdots=1,2 \\
& b_{1 k, 2 k}=b_{2 k, 1 k}=-\lambda_{1 k} \lambda_{2 k} /\left(\lambda_{1 k}^{2}+\lambda_{2 k}^{2}\right) \\
& a_{i k, j}=a_{j, i k}=\mathbf{2 f}_{\mathbf{j k}}{ }^{\boldsymbol{f}} \mathbf{j} \text { : } \\
& i=1,2 \quad: \quad \oplus_{j} \not \oplus_{1 k}, \Phi_{2 k} \\
& b_{i k, j}=b_{j, i k}=-f_{i k}^{f} \text {; } \\
& i=1,2 \quad i \quad \phi_{j} \neq \phi_{1 k}, \phi_{2 k} . \\
& \text { Isolating these terms in (14) gives }
\end{aligned}
$$

$$
\begin{equation*}
\Psi=\sum_{i} A_{i} \Psi_{i} \tag{25}
\end{equation*}
$$

whre the configuration cot.Eticient: $|A|$ are known functions of the $G C$ pair and coupling coefficients (λ, ξ). Determining the energy expreasion for ψ and rearranging it to the form of (13a) then establishe's the relationship between $\{A\}$ and the coefficients in (13a).

In general, the coefficients $\{A\}$ in (25) are not all linearly independent. Therefore, they cannot be determined simply by diagonalizing the hamiltonian over the configulasions involved. To do this we recast the wavefiriction into the general form

$$
\begin{align*}
\psi= & \stackrel{\text { AGP }}{i}{ }^{\operatorname{NGP}}\left[\lambda_{1,}{ }^{2} 1 i-\lambda_{2 i} \phi_{2 i}^{2}\right. \\
& \left.+\sqrt{\lambda_{1 i}{ }^{2} 2 i}\left(\phi_{1 i} \phi_{2 i}-\phi_{2 i} \phi_{1 i}\right)\right] \phi_{m} \cdots \phi_{n} \\
& \times\left(\Sigma \varepsilon_{j j} x_{j}\right) \tag{26}
\end{align*}
$$

where $\{x\}$ is a set of appropriate orthoronal spin eigenfunctions. Concentrating on pair k, (26) can be written as

$$
\begin{align*}
\Psi & =\left(\lambda_{1 k} \Phi_{1 k, l k}-\lambda_{2 k} \Phi_{2 k, 2 k}\right) E\left(\underline{u},(\underline{k})_{u} \times(\underline{k})_{u}\right. \\
& +2 \sqrt{\lambda_{1 k} \lambda_{2 k}} \oplus_{1 k, 2 k} \sum_{v} E(k \mid)_{v} x(k \mid)_{v} \tag{27a}
\end{align*}
$$

where

$$
\begin{align*}
\phi_{i k, j k}= & A \phi_{i k} \phi_{j k}{ }_{t \& k}^{N G P}\left[\lambda_{1 \ell} \phi_{1 \ell}^{2}-\lambda_{2 \ell}^{2} \phi_{2 \ell}\right. \\
& \left.+\sqrt{\lambda_{1 \ell} \lambda_{2 q}}\left(\phi_{1 \ell} \phi_{2 t}-\phi_{2 k} \phi_{1 \ell}\right)\right] \\
& \times \phi_{m} \cdots \phi_{n} \tag{27b}
\end{align*}
$$

and where $x(k)_{u}\left(x(k)_{u}\right)$ is the $u^{\text {th }}$ spin eigenfunction in which the electronic positions of pair k are sinqlet (triplet) coupied. If we now let

$$
\begin{aligned}
& \Psi_{k, v}^{(i)}=\Phi_{i k, i k} x(k)_{v} ; \quad i=1,2 \\
& \Psi_{k, v}^{(3)}=\Phi_{1 k, 2 k} x\langle k| j_{v}
\end{aligned}
$$

$$
\begin{equation*}
\sigma_{k, v}=2 \sqrt{\lambda_{1 k} \lambda_{2 k}} E(k)_{v} \tag{27c}
\end{equation*}
$$

we can solve for $\lambda_{1 k}, \lambda_{2 k}$ and $\{\xi\langle k|\} \mid$ by taking

$$
\begin{align*}
\psi & =\lambda_{1 k}\left[\begin{array}{cc}
\varepsilon & \left.\xi(\underline{k})_{u} \psi_{k, u}^{(1)}\right]+\lambda_{2 k}\left[-\Sigma \xi(\underline{k})_{u} \psi_{k, u}^{(2)}\right] \\
& +\sum_{v} \sigma_{k, v} \psi_{k, v}^{(3)}
\end{array}, l\right.
\end{align*}
$$

and diagonalizing the hamiltonian antrix over the conEigurations involved. If we then rewrite (27d)
$2 s$

$$
\begin{align*}
\psi & =\sum_{u}^{\Sigma} \xi(\underline{k})_{u}\left[\lambda_{1 k} \psi_{k, u}^{(1)}-\lambda_{2 k^{4}}(2), u\right. \\
& +\sum_{v}^{(2)} \sigma_{k, v} \psi_{k, v}^{(3)} \tag{27e}
\end{align*}
$$

we can determine $\{\xi(\underline{k}), \xi(k \mid)\}$ by diagonalizing the hamiltonian matrix̄ over the indicated configurations. Therefore, by constructing the hamiltonian matrix over the basic configurations of (25) and then by performing a series of contractions and diagonalizations the optimum GC pair and coupling coefficients can be iteratively obtained. in the course of evaluating the required matrix elements the presence of any closed-shell or perfect-pair orbitals in the tatal wavefunction is taken into account by using the modified one-electron operator

$$
h^{\prime}=h+\sum_{i}^{N S} f_{i}\left(2 J_{i}-K_{i}\right)
$$

and the presence of any multiplet-shell orbitals is taken into account by formalizing the matrix element expressions for NG +1 electrons. This leads to terms involving the muledplet-shell exchange operator

$$
K_{N}=\sum_{i}^{N M} k_{i}
$$

Early experience has shown that because of the high degree of correlation existing between the GC orbitals, it is quite advantageous to fully optimize the GC orbitals with respect to one another during each iteration of the Scif cycle. Therefore, we usually ignore terms in (23) which mix the Gr orbitals and perform this mixing during the GC pair and coupling coefficient optimization stage. To do this we deEine the improved orbitals as in (23a, 23b) but with the summations running only over GC orbitals. Upon substituting these orbitals in (25) and expanding through second-order we obtain

$$
\begin{equation*}
\Psi^{J}=\Psi+\sum_{i j} Y_{i j} \Psi_{i j}+\sum_{i j, k \ell} Y_{i j} Y_{k \ell} \|_{i j, k \ell} \tag{29a}
\end{equation*}
$$

If we then define the matrices H and \underline{S} by

$$
\begin{aligned}
& H_{0,0}=\langle\Psi| H|\Psi\rangle \\
& H_{i j, 0}=H_{0, i j}=\langle\Psi| H\left|\Psi_{i j}\right\rangle \\
& H_{i j, k \ell}=\left\langle\Psi_{i j}\right| H\left|\Psi_{k \ell}\right\rangle+\langle\Psi| H\left|\psi_{i j, k \ell}\right\rangle\left(1+\delta_{i j, k i}\right\rangle \\
& S_{0,0}=\langle\Psi \mid \Psi\rangle
\end{aligned}
$$

$$
\begin{align*}
S_{i j, \eta}= & S_{0, i j}=\left\langle\Psi \mid \Psi_{i j}\right\rangle \\
S_{k j, k \ell}= & \left\langle\psi_{i j}\right| H\left|\Psi_{k \ell}\right\rangle \\
& +\left\langle\psi \mid \psi_{i j, k \ell}\right\rangle\left(1+\delta_{i j, k \ell}\right\rangle, \tag{29b}
\end{align*}
$$

the mixing coefficients $\left\{\gamma_{i j} ; i>j\right\}$ can be obtained through second-order in the energy by solving the secular equation

$$
\begin{equation*}
(\underline{H}-\underline{E} \underline{S}) Y=0 . \tag{29c}
\end{equation*}
$$

Once the improved orbitals have been found we redefine all required hamiltonian matrices for them and once again solve (27) for new paix ard coupling coefficients. This process is continueri until selfconsistency within the current GC spare is achieved.

To summarize, the $S C F$ cycle which ve employ to solve for an SOGVB wavefunction consists of the following distinct steps:

1) Optimization of all GC pair and coupling coefficients using equations (27);
2) Optimezation of the cc orbitals with respect to one another usling equations (29);
3) Optimization of all perfect-pair coefficients using eguations \{29);
4) Optimination of orbitals with respect to one another (excluding mixing between $G \mathbb{C}$ orbitals) using equations (23); and
5) Optimization of all orbitals with respect to unoccupied space using equations (18).

Steps 1) and 2) are performed together until selfconsistent. Step 3) is continued until all perfectpair coefficients are aelf-consistent. steps 4) and 5) are performed only once per SCF iteracion (i.e., they are not continued until self-consistent).

REFEREHCES

1. F. W. B brawicz, Fh, D. Thesis, California Institute of Technology, 1974,
2. W. J. Hunt, P. J. Hay, and W. A. Goddaçd III, J. Chem. Phys. 57, 738 (1972).
3. F. H. Bobrowicz and W. A. Goddard III, Modern Theoretical Chenistry, vol. III, Ed. H. F. Schaefer IrI. New York, Plenum Press, 1977.
4. R. C. Ladner and H. A. Goddard III, 3. Chern. Phys 51, 1073 (1969).
5. M. A. Goddard and R. C. Ladner, J. Aroer. Chem. Soc. 93, 6750 (1971).
6. For more examples
a) B. J. Moss, F. W. Babrowicz, and R. A. Goddard III, J. Chem. Phys. 63. 4632 (1975).
b) P. Baybutt, F. W. Bobrowicz, L. R. Kahn, and D. G. Truhlay, J. Chem. Phys. 6e, 4809 (1978).

THE LOOP-DRIVEN GRAPHICAL UNITARY GROUP APPROACH APPLIED TO THE MCSCF PROBLEM

Whlliam D. Laidig and Henry F. Schaefer III
Department of Chemistry and Lawrence Berkeley Laboratory,
University of California
Berkeley, California 94720
and
Department of Chemistry and Instltute for Theoretical Chemiscry
University of Texas
Austin, Texas 78312

LDCUGA Applied to the MCSCF Problem

The unitary group approach (UDA) to the CI problem has proven over che last few years to be an efficient and effective mechod for estimating the correlation energy in molecules. $1-10$ As an outgrowth of this we envisioned a two-step MCSCF procedure based on the ldgUGA formaligm. 11 In one iteration the first atep would be a CI calculstion in which the orbitals were "fixed". This is followed by a computation to determine hou the orbitals should be changed to minimize the total energy. In this second step the orbitals vary but the expansion coeffictents are Erozen. The integrals are rhen transformed to the new orbical basis and we iterate until the changes in the orbitals and the expansion coefficients are suitably small. In computing the orbital changes the two-particle density matrix and the transformed integrals are needed. The ability to generate the two-particle density matrix rapidly is a key feature in our method.

Methods Used for Computing Orbital Changes

Currently we have two operstional methods for computing the changes in the orbitals from one iteration to the next. The first involves the symatrizing of the watix of Lagrange multipliers. 11 In developing this procedure first notice that the CI energy can be expressed in a staple form as

$$
\begin{equation*}
E_{C I}=\sum_{1 j k \ell} G_{i j k \ell}[1 j ; k \ell]+\int_{i j} Q_{i j}\langle i| \hat{h}|j\rangle . \tag{1}
\end{equation*}
$$

If a unitary transformation was applied to the orbital basis to find a "better" set of orbitals, the CI energy in this new basis could then be approximated by
$E=\sum_{i j k \&} \sum_{a b c d} G_{i j k \&} U_{a L} U_{b j} U_{c k}{ }^{U}{ }_{d \&}(a b ; c d)+$

$$
\begin{equation*}
\left.\sum_{i j} \sum_{a b} Q_{i j} u_{a i} U_{b j}<a|\hat{h}| b\right\rangle . \tag{2}
\end{equation*}
$$

This equation is an approximation because the density matriees G and Q depend on the orbital bosis in a complex mannèr. If the unitary transformation W were close to unfty, then this approximation would be fairly good. This observation suggests an iterative procedure to find the MCSCF wave function. If for any CI calculation che transformation u could be found that minimizes the energy through equation (2), then the CI calculation could be repeated in chis new basis (i.e., compute the correct densicy matrix for
chis new basis). This procedure could then be repeated until the transformation tatrix approaches unit, which should also yelld the MCSCE wave function.

The problem then becomes one of finding a procedure that can determine the "best" unitary trangformation for each iteration within this schene. By assuming that U is fairly close to unity, ${ }_{\sim}^{U}$ can be represented as

$$
\begin{equation*}
\underset{\sim}{\mathrm{U}}=\underset{\sim}{1}+{\underset{\sim}{U}}^{(1)} \tag{3}
\end{equation*}
$$

where $U^{(1)}$ is the first-order change in the unitary transformation. When this is subscituted intn equation (2) and all higher terms in $v^{(1)}$ are ignored, then the first order change in the energy can be further approximated as

$$
\begin{align*}
& E^{(2)} \simeq \sum_{i j k \ell} \sum_{a b c d} G_{i j k \ell}\left[U_{a i}^{(1)} \delta_{b j} \delta_{c k} \delta_{d \ell}+\right. \\
& \delta_{a 1} u_{b j}^{(1)} \delta_{c k} \delta_{d \ell}+\delta_{a i} \delta_{b j} v_{c k}^{(1)} \delta_{d \ell}+ \\
& \left.\delta_{a i} \delta_{b j} \delta_{c k} v_{d l}^{(1)}\right][a b ; c d]+\sum_{i j} \sum_{a b} Q_{i j}\left[u_{a i}^{(1)} \delta_{b j}\right. \\
& +\delta_{i j} U_{b j}^{(1)} \mid\langle a| \hat{h}|b\rangle \tag{4}
\end{align*}
$$

which may be simplified to

$$
\begin{gather*}
E^{(1)}=\sum_{i j k \ell r} G_{i j k \ell}\left\langle 4 U_{i r}^{(1)}[r j ; k \ell]+\right. \\
\sum_{i j r} Q_{i j}\left(2 u_{i r}^{(1)}\right)\langle r| \hat{h}|j\rangle . \tag{5}
\end{gather*}
$$

If 4 thes, the two elecrron energy and twice the one election energy is added to both sides of equation (5) the result ts

$$
\begin{gather*}
4 E_{2}+2 E_{1}+E^{(1)}=\sum_{i j k \ell r} G_{i j k \ell}\left(4 U_{i r}(1)\right. \\
\{r j ; k \ell]+\sum_{i j r} Q_{i r}\left(2 U_{i r}^{(1)}\right)\langle r| \hat{h}|j\rangle+ \\
\sum_{i j k \ell} G_{i j k \ell}\left(4 \delta_{i r}\right)(r j: k \ell]+ \\
\sum_{i j r} Q_{i r}\left(2 \delta_{i r}\right)\langle r| \hat{h}|j\rangle \tag{6}
\end{gather*}
$$

where E_{1} and E_{2} are the one and two electron energies respectively. Collecting terms we have

$$
\begin{align*}
K+E^{(l)} \equiv & 4\left[G_{1 j k \ell} U_{i r}\{r j ; k \ell\}+\right. \\
& 2 \sum_{1 j r} Q_{i r} U_{1 r}\langle r| \hat{h}|j\rangle \tag{7}
\end{align*}
$$

where $K \neq 4 E_{2}+2 E_{1}$. Now it is advantageous to nute that the lagtangian marrix X is defined as

$$
\begin{equation*}
x_{i r}=\sum_{j k \ell} 4 G_{i j k \ell}[r j ; k \ell]+\sum_{j} 2 Q_{i j}\langle r| \hat{h}|j\rangle . \tag{8}
\end{equation*}
$$

Wsing this relation equation (7) can be reduced to

$$
\begin{equation*}
K+E^{(1)} \approx \sum_{i r} X_{i r} U_{1 r} \tag{9}
\end{equation*}
$$

One rather direct approach is to flnd the unitary cransformation \mathbb{U} rhat minimizes the above equation. This can be done directly using patr rotations on x. Rewriting equation (9) as

$$
\begin{equation*}
\mathrm{K}+\mathrm{E}^{(1)}=\sum_{i \mathrm{r}} \mathrm{X}_{i r_{i r}}^{\mathrm{U}_{\mathrm{ir}}}+\sum_{\mathrm{i}}\left(\mathrm{XU}_{\sim}^{\mathrm{T}}\right)_{i 1} \tag{10}
\end{equation*}
$$

and expressing the cranspose of $\underset{U}{ }$ as a product of palt rotation marrices

$$
\begin{equation*}
v^{T}=\prod_{i>j, m} \theta_{i j, m} \tag{11}
\end{equation*}
$$

where $\theta_{i j, m}$ is the with pair rotation matrix between orbicals 1 and 1 , an iterative acheme can be devised. For each orbital pair 1 and f a cotation angle θ can be solved for. The largest of these is pleked and the rotation is applied to the Lagrangian matrix. A new set of 0 matrices are calculated and this process is repeated until the angle of rotation is belou some chreshold value.

To find the value of the rotation for each if pair, multiply X by ${ }_{i j}$ and take the trace of the resulting matrix. The difference between the crace before and after cotacion is

$$
\begin{align*}
\operatorname{tr}\left(X_{\sim}\right)-\operatorname{cr}\left(\underset{\sim}{x} \theta_{1 j}\right)= & X_{i 1}+X_{1 j}-X_{1 i} \cos \theta+X_{i, j} \sin \theta- \\
& X_{j j} \cos \theta-x_{j 1} \sin \theta \tag{12}
\end{align*}
$$

Taking the derivative with respect 20θ on both sides of equation (12) and equating to a zero gives

$$
\begin{equation*}
\left(x_{j j}+X_{i 1}\right) \sin \theta+\left(X_{i j}-X_{j i}\right) \cos \theta * 0 \tag{23}
\end{equation*}
$$

Solving for can θ yields

$$
\begin{equation*}
\tan \theta=\frac{x_{11}-x_{i j}}{x_{i 1}+x_{j 1}} \tag{14}
\end{equation*}
$$

These rotations are applied until the transformed Lagrangian is syometric. Such an approach yields acceptable convergence for some calculations, typically when all orbitals are occupied. In systens including virtual orbitala or orbitals of forced double oecupancy, we find that an approach
similar to that used by Hinze ${ }^{12}$ results in Lwproved convergence.

The addicional terme required for this method ara easily obcained and can be expressed as

$$
\begin{align*}
Y_{i j} & =Q_{i j}\langle i| h|j\rangle+\sum_{k \ell}\left(2 G_{i j k \ell}[i] ; k \ell\right] \\
& \left.-G_{i 1 k \ell}[j j ; k \ell]-G_{j j k \ell}[i i ; k \ell]\right) \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
& z_{i j}=Q_{i j}(\langle i| h|i\rangle-\langle j| h|j\rangle)+\langle 1| h|j\rangle \\
&+\sum_{k \ell}\left[2 G_{i j k \ell}([i f i k \ell]-[1 j ; k \ell 1)+\right. \\
& 2\left[i j ; k \ell j\left(Q_{j j}-Q_{i 1}\right)\right.
\end{align*}
$$

The palr interaction (s) can then be solved from the quadratic equation

$$
\begin{align*}
{\left[\zeta\left(x_{j i}-x_{i j}\right)\right.} & \left.+3 z_{i j}\right]^{2}+\left[\left(x_{i 1}-x_{j 1}\right)+4 x_{i j}\right] s \\
& +\left(x_{i j}-x_{j i}\right)=0 \tag{17}
\end{align*}
$$

for the sarallest root. The unicary orbical transformation matrix can then be given by exp [-s]. Of course, the coefficient of the ternas presented here are obtained from approximations. Varying some or all of the terms could further improve convergence.

The computational effort required for each iteration of this MCSCF scheme 15 zoughly the same as with other MCSCF procedures far lange basis sets (i.e., dominated by the integral transformation step).

Generation of the 2 Particle Density Matrix
As stated earlier the fast and efficient generation of the two-particle density matrix is crucial for the orbital optimization stage to be competitive with the CI portion in a twostep MCSCF procedure. From the first step we have a CI vector which containa the expansion coefficients for the configurations. The formula for the rwo-particie densicy matrix is

$$
\begin{equation*}
G_{i j k \ell}=\sum_{I J} c_{I} c_{J} b_{I J}^{1 j k k} \tag{18}
\end{equation*}
$$

where C_{I} and C_{J} are the $C I$ coefficients and $b_{I J}^{i j k l}$ is the coupling coefficient between these two configurations. The coupling coefficients must be generated so G may be computed. These coefficients are exactly the same as chose used in determining the CI energy and are defined by loopa. The simplest method for generating the density matrix is to regenerate these same loops. The only difference here is that once a loop has been generated it is processed differently. This allows the density matrix to be generated via the loop-driven algorithm. The effort required to compite the density uatrix in this manner is only
slightly greater than the effort required to senerate the correaponding diagonalization tape. ${ }^{\text {, }}$ In the diagonalization tape generation step. loop coefficients are combined uith appropriate integrals to form an overall loop value. This loop value 15 then used a number of times, determined by the loop breakdown algorithm, for each diagonalization iteration. In generating the density matrices, this process is reversed. When a loop is generated, the loop breakdown algorithn is used first to determine the cocal loop contribution d. This cocal loop contribution is simply a sum of the products of C_{I} and c_{J} for each separate loop contribution and is given by:

$$
\begin{equation*}
d=\sum_{j}^{\bar{x}_{h}} \sum_{k}^{x_{t}} C_{Y\left(z_{h}+m_{q}+k\right)+j} \cdot C_{Y\left(z_{,}+n^{\prime}{ }_{2}+k\right)+j} \tag{19}
\end{equation*}
$$

where mp and m'p are the weights of each branch of the foop, x is the primary upper walk weight, \ddot{x}_{h} and x_{t} are Ehe number of upper and lower walks respectively, and Y is the indexing array. Once the total loop contribucion has been deternined, its product uith the loop coefficients is added to the proper density matrix elements.

The density matrix elements here play a similar role to that played by integrals in the diagonalization cape generation step. These elementsare stored in the same manner as the mo integrals, and a particular densicy matrix element can be found using fintegral storage offset arrays. 13 The same storage method allows a block of density matrix elements to be computed simultaneously with the loop-drive algorithm.

Ekamples of Typical Calculations

The varlecy of MCSCF computarions we can perform with the LDGUGA system of programs is fairly large. We essentially can choose any set of configurations that can be run by the CI programs. Our distinct rou table (DRT) program, which generates the configuration set, can obrain all single or single and double replacements uith respect to one reference. 5 It can also do this for most tuo reference cases at the present. In addftion, full CI within any subspace can be done and all single and double excitations can be formed from it. Higher than double excitations can also be Included if desired.

A limited amount of selection can be performed wichin the configuration set. One method is to doubly occupy or delete an orbital from the CI portion of the calculation. We can allow any orbital to be forced doubly occupicd, to be partially occupied, or virtual. Tbese "frozen" orbitals (virtual or doubly occupied) may be deleted from the MCSCF entirely or alloved to mix uith the partially occupled space as desired. For open shell systems the inclusion of only the Hartree-Fock interactitig space can be optionally chosen. 5,21

Since our diagonalization tape generation and eigenvalue extraction programs are relatively fast and our MCSCF iterations are dowinated by the Integral transformacion time, we have chosen to use relarively large configuration sets. Our firac published calculations were on the losest triplet of the cyclopropyne molecule. ${ }^{14}$ The
configuration aet consisted of 10,115 singly and doubly-excited configurations with respect to the SCF reference.

Hore recently we have performed a number of calculations on water to investigate the effects of inclusion of higher than doubly excited configurations in CI and MCSCF calculations. 15 The basis set we used was a standard double-zeta basis $5 e \mathrm{t} .{ }^{16} \mathrm{O}(9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s} 2 \mathrm{p}), \mathrm{H}(4 \mathrm{~s} / 2 \mathrm{~s})$, and the geowetry was fixed as the theorerically determined minimim obtained from a previous set of CI calculations including single and double excitations. Using the SCF orbltals, CL calculations including all single (S), all single and double (SD), all single, double, and triple (SDT), and all single, double, triple, and quadruple excitations (SDTQ) were carried out. Aiso full MCSCF calculations were carried out for each of these four configuration sets. These results are displayed in Table 1 .

There are several significant differences between the CI and MCSCF results. Perhaps the greatest differences occur for the MCSCF wave function including only single excications. The CI energy in tern of canonical SCF orbitals is of course identical to the SCF energy, due to Brillouin's theorem. 17 In striking contrast. the HCSCF wave function fncluding all single excitations (MCS) accounts for no less than 52.3% of the costelation energy recovered by the MCSD wave function or about 50% of the full correlation energy attainable uith the present basis set.

Another interesting rea-*it in Table 1 is the fact that triple excitations are roughly five tites more important within the MCSCF function than in the straight CISDT treatment. Spectfically, the energy lovering relative to CJS is 0.0011 harcrees for CISDT, but 0.0058 hartres for MCSDT. This means that triple excitations can be made quite important by the MCSCF procedure. Another vay of saying the same thing is that quadruple excitations are important, and the annihlation (in the Brillouln-Levy-Berthier (BLB) sense ${ }^{18}$) of certain classes of quadruples leads to a noteworthy energy lowering. This argement also explains the very small energy difference between CISD and MCSD as the annihilatiun of the triple excitations is expected to produce slight energy changes. Continuing in the same vein, cuintuple excitations are expected to be vary unimportant, and their anuihilation is accordingly undmportant, as seen in the small differctice betyeen the CISDTQ and MCSBTO energies, namely 0.0006 hartrees.

In the near future we plan to perform various calculations on the ground state of ozone, including MCSCF containing all single and double excitation from one and two reference functions. Also in the works are MCSCF calcularions on methylene with a configuration set including ali excitation uthin the valence space. He are furthermore at work incorporating MCSCF rechniques that ulll converge at a faster rate than our present programs. 19,20

Concliding Remarks

The 'DGUGA has been shown to be readily adaptable t. finding MCSCF vave functiuns and energies. Its main advantages are that it can be
tosed with large configuracion seta and the ane and cto parcicle denalty mitrix generacton can be acsomplished rapidly and efficiently.

Acknouledgmenta

This research was supported by the U.S. Departwent of Energy, the U.S. National Science Foundation, and the Robert A. Heleh Foundation. He chank Drs. Berrard R. Brooks, Paul Saxe, John D. Coddard. Nicholas C. Handy, Russell H. Pitrer. Hichael Dupuis, and Yukio Yamaguchi for their centributions.

References

1. F. A. Matsen, Incern. J. Qusntum Chem. Symp. B. 379 (1974).
2. J. Paldus. T. Chem. Phys. 61, 5321 (1974); [ntern. J. Quantum Chem. Symp. 9, 165 (1975); Phys. Rev. A14. 1620 (1976).
3. 4. Paldus, in Theoretical Chemistry: Advances and Perspectives, Volume 2, editor H. Eyring and D. J. Henderson (Academic, New York, 1976) P. 131.
1. I. Shavitt, Intern. J. Quantum Chem. Syep. 11. 131 (1977): 12, 5 (1978).
2. B. R, Brooks and H. F. Schaefer, J. Chem. Phys. 70, 5092 (1979).
3. P. E. M. Stegbahn, J. Chem. Phys. 70, 5391 (1979).
4. I. Shavitt, Chem. Phys. Lett. 63, 421 (1979).
5. B. R. Brooks, W. D. Laidig, P. Saxe, N. C. Handy, and H,F, Schaefer, Phyaica Scripta 21, 312 (1980).
6. J. Paldus and M. J. Boyle, Physica Scripta, in press. 21. 295 (1980)
7. I. Shavite, Annual Report on "New Methods in Computational Quantum Chemistry and thelr Application on Modern Supercomputers" to NaSd Ames Research Cencer, June 29, 1979.
il. 3. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard and H. F. Schaefer, in Proceedings of the Conference on the Unitary Group for the Evaluation of Energy Matrix Elements, editor Jügen Hinze (Springer-Verlag, Beriin, 1980).
8. J. Hinze, J. Chem. Phys. 59, 6424 (1973).
9. B. R. Brooks, Ph.D. Thesis, Departuent of Chemistry, Unlversity ef California, Berkeley, September, 1979.
10. B. R. Brooks, H. D. Laidig, P. Saxe, and H. F. Schaefer, J. Ciren. Phys. 72, 0000 (I980).
11. H. D. Laidig, P. Saxe, K. F. Schaefer, J. Chem. Phys. in press.
12. S. Huzinaga. J. Chem. Phys. 42. 1293 (1965); T. H. Dunning, J, Chem. Phys. 53, 2823 (1970).
13. L. Brillouin, dec. Sci. Ind. No, 159 (Herrmann, Paris, 1934).
14. K. Ruedenberg, L. M. Cheung and S. T. E:bert, Int. J. Quantum Chen. 16, 1069 (1979).
15. W. J. Hunt, W. A. Goddard [II, T. H. Dunning, Chem. Phys. Letters 6, 147 (1970).
16. D. L. Yeager and P. Jørgensen, J. Chen. Shys. 71. 7 (55 (1979).

Wave function	Number of Configurations	Total Energy	Correlavion Energy	Energy Relative to CI S+D	```Coefficient Co of Reference Configuration```
Sel , vistent-Field (ScF)	1	-76.00 9838	0.0	--	1.0
CI 11 Single Excitations	20	-76.00 98 38	0.0	--	2.0
MK, CF All Single Excitatior a	20	-76.08 3339	0.073502	--	0.39326
CI All S+D	361	-76.15 0015	0.140177	0.000000	0.97874
mCSCF All S+D	361	-76.150269	0.140431	0.000254	0.97726
CI All StD + T	3,203	-76.15 11 56	0.141318	0.001141	0.97819
MCSCF All S+D+T	3.203	-76.15 57 65	0.145927	0.005750	0.90537
C1 A11 $\mathrm{S}+\mathrm{D}+\mathrm{T}+\mathrm{Q}$	17,678	-76.15 7603	0.147765	0.007588	097543
MCSCF All S $+\mathrm{D}+\mathrm{T}+\mathrm{Q}$	17,678	-7S. 157664	0.147826	0.007649	0.96797

A NOVEL SJNGLE FOCK OPERATOR APPROACH TO THE MCSCF PROBLEM
 J. W. Melver Jr., H. Page and R. N. Camp
 Chemistry Department
 State University of New York at Buffalo Buffalo, New York 14214

SUMMARY
An approximately quadratically convergent "Single Fock Operator" method for calculating MCSCF wavefunctions is presented. The traditional closed shell SCF equations emerge as a special case of this scheme. Computer time comparisons are made with the King and Camp method.
INTRODUCTION
The closed shell Hartree Fock problem is traditionally solved by application of the fixed point iterative scheme, ($1,2 \mathrm{~b}$)

$$
\begin{equation*}
F\left(\underline{C}^{\circ}\right) \underline{C}=S \underline{E}, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
G^{\prime} S C^{s}=C^{\dagger} S C=1 \tag{2}
\end{equation*}
$$

until self consistency is obtained, i.e., $\underset{\sim}{F}(\mathbb{C})=$ $F\left(C^{\circ}\right)$. Here the notation $F\left(C^{\circ}\right)$ is meant to imply
that the symmetric Fock matrix is constructed from the square matrix C° of L.C.A.O. coefficients
obtaiced in the previous iteration. The symmetric overlap matrix S and the diagonal matrix of Lagrange multipliers \& have their usual meanings. The above equations are a consequence of the variational principle in the sense that, at convergence, the energy is stationary with respect to all allowed variations of C. Although self con-
sistent solutions to these equations are varia tionally correct, there is no guarantee that the use of these equations recursively from any set of starting orbitals will lead to a converged solution. Al though convergence difficulties have been studied and circumvented, (2) the recursive use of the above equations by and large works very well for the closed shell case.

In disappointing contrast to the closed shell case, the use of the recursion eqn. (1). with eqn. (2) for open shell and MCSCF wavefunctions has shown poor convergence. (3) In these "Single Fock Operator" methods, the prescription for constructing $F\left(C^{\circ}\right)$ is obtained by using projection operators and/or coupling operators to obtain eqns. (1) and (2) which are variationally correct at self consistency. But again there are no assurances of convergence when used recursively.

In this presentation, we will derive a prescription for forming an $F\left(C^{0}\right)$ which leads to quadratic convergence of a variationally correct solution to eqns. (1) and (2) for any wavefunction built up of orthonomal orbitals. By making some simple approximations, a computationally attractive methad emerges, a method which becomes identical to the traditional Hartree-Fock method
in the ciased shell case. Preliminary calculations of a two-determinant MCSCF wavefunction for a distorted ethylene molecule indicate that the method is comparible to the King and Camp method in computational efficiency. ${ }^{(4)}$
THEORY
The new orbital coefficients C are obtained fron the old coefficients by

$$
\begin{equation*}
\underline{C}=\mathbb{C}^{0} \underset{\sim}{U} . \tag{3}
\end{equation*}
$$

where U is as yet an undetermined matrix. A necessary and sufficient conditisen for presurving the orthonormality of the orbitals ts, from (2) and (3),

$$
\begin{equation*}
\underline{C}^{\dagger} S \mathbb{S C}=\underline{U}^{\dagger}\left[\underline{C}^{\circ}{ }_{\sim}^{S} C^{0}\right] \underset{\sim}{U} . \tag{4}
\end{equation*}
$$

Thus orthonomality is preserved if,

$$
\begin{equation*}
\underline{U}^{\dagger} \underline{U}=\underline{I} . \tag{5}
\end{equation*}
$$

At this point one_can proceed by minimizing the expression $E=\langle\psi| \hat{H}|\psi\rangle$ with respect to the elements of \mathbb{C} (or of U) where the constraint conditions are built in using the method of Lagrangian multipliers. This approach however, has not been very successful fur problems other than the closed shell Hartree-Fock case.

We choose not id ded directly with the constrained elements of C or U, but rather we segk an equivalent set of unconstrained (independent) variables. Since the eigenvectors of a real symmetric matrix are orthonomal, we alew the (orthonomal) columns of the matrix $\|$ as being the eigenvectors of a real symetric matrix 0 .
Thus,

$$
\begin{equation*}
\underline{Q} \mathbf{U}=\underset{\sim}{U} . \tag{6}
\end{equation*}
$$

The advantage of this approach is that the orthonomality of the orbitals is retained simply by keeping \underline{q} symetric. The $n(n-1) / 2$ off-diagonal elements of Q may then undergo unconstrained variations and thus form our set of independent variables. The "single Fock matrix" of eqn. (1) is then obtained from eqns. (3) and (6) as,

$$
\begin{equation*}
F\left(C^{\circ}\right)=\underline{E}^{0^{+-1}} \underline{Q}\left(\underline{C}^{0}\right) \underline{E}^{0^{-1}} \tag{7}
\end{equation*}
$$

To find the values of the elements $Q_{i j}$ which lower the energy, we expand the energy in a Taylor series in the $n(n-1) / 2$ of diagonal elements of Q and choose the elements $Q_{i j}$ via an approximate Newton-Raphson procedure.
Thus,
$E=E\langle U(Q)\rangle$.
and in the quadratic approximation,

where

$$
\begin{equation*}
E_{k]} \equiv\left(\partial E^{\prime} / \partial Q_{k}\right)_{0} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i j, k l} \equiv{\left(\partial^{2} E / \partial Q_{i j} \partial Q_{k l}\right)_{0} .} \tag{10}
\end{equation*}
$$

A quadratically convergent scheme would cnnsist of calculating the first and second derivatives with respect to $Q_{i j}$ evaluated at zero and inverting the super-matrix M.

We instead cons fer only the "diagonal" second derivatives. That is, we neglect all terms of the form, $i^{2} E / \partial Q_{i j} \partial Q_{k 1}$, where $i \neq k$ and $j \neq 1$.
This is the "pairwise" or diagonal dominant approximation. Although this destroys the second order convergence properties, it results in enormous computational savings in that eqn. (8) can now be written as
$Q_{i j}^{(\text {optimum })}=-\lambda\left(\partial E / \partial Q_{i j}\right)_{0} /\left(\partial^{2} E / \partial Q_{i j}^{2}\right)_{0}$.
where the variationally determined scaling parameter λ helps overcone the effects of the quadratic and pairwise approximations. We make no assumptions about the diagonal elements of Q except the simplifying one that they are nondegenerate.

The first derivatives, eqn. (9) are relatively straightforward to calculate. The energy expression is an explicit function of the orbital expansion coefficients which in turn depend implicitly on the Q_{ij}. Thus,

$$
\begin{align*}
\frac{\partial E}{\partial Q_{i j}} & =\sum_{k}^{n} \sum_{j}^{n} \frac{\partial E}{\partial C_{k 1}} \frac{\partial C_{k}}{\partial Q_{i j}} \\
& =\operatorname{Tr}\left(\underset{\sim}{\nabla E}+\frac{\partial C}{\partial Q_{i j}}\right) \\
& =r\left(\nabla E^{+} C^{\circ} \frac{\partial J}{\partial Q_{i j}}\right) \tag{12}
\end{align*}
$$

It should be noted that the i th column of จE can be regarded as the gradient of the energy with respect to variations in the coefficients of the ith orbital:

$$
\nabla_{i} E=\left(\begin{array}{c}
\frac{\partial E}{\partial C_{1 i}} \tag{13}\\
\vdots \\
\frac{\partial E}{\partial C_{n i}}
\end{array}\right)
$$

The term $a \underset{\sim}{ } / \partial Q_{i j}$ in eqn. (12) can be evaluated using eqns. (5) and (6) and matrix perturbation theory. Denoting differentiation with respect to a particular $Q_{i j}$ by a prime, eqns. (6)
and (5) can be differentiated to give

and
${\underset{\sim}{U}}^{+}{\underset{\sim}{U}}^{-}+{\underset{\sim}{U}}^{+} \underset{U}{U}=\underset{\sim}{0}$.
Multiplying eqn. (14) on the left by \underline{U}^{\dagger} and letting,

$$
\begin{equation*}
\underline{U}^{-}=\underset{\sim}{U} \text { (spectral expansion). } \tag{16}
\end{equation*}
$$

He have, with the aid of eqns. (5) and (6),
$\underline{U}^{\dagger} \underline{Q}^{-} \underline{U}=\underline{E}^{\prime}+\underline{\underline{V}}-\underline{V}=\underline{0}$.
with

$$
\begin{equation*}
\underline{v}^{+}+\underline{v}=0 \tag{17}
\end{equation*}
$$

hence V must be antisymetric. The diagonal elements of eqn. (17) qive the ε^{*} and the diagonal elements of V (zero here) are qiven by eqn. (18). The off-diaqonal elements of V are obtained from the off-diaqonal eleinents of eqn. (17), i.e.
$V_{k 1}=\left\langle\underline{U}^{\dagger} \underline{\underline{Q}}{ }_{\underline{U}}^{\underline{U}}\right)_{k 1} /\left(\varepsilon_{\underline{1}}-\varepsilon_{k k}\right)$
Since the matrix Q^{*} contains all zero's except for $0_{i j}^{-} Q_{j i}^{-}=1$, Eqn. (19) can be written as,
$V_{k 1}=\left(U_{i k} U_{j 1}+U_{j k} U_{i 1}\right) /\left(\varepsilon_{j 1}-\varepsilon_{k k}\right)$
Using eqns. (12), (16), and (20), the first derivatives can be written as,

$$
\begin{equation*}
\partial E / \partial Q_{i j}=\operatorname{Tr}(R \cdot V) \tag{21}
\end{equation*}
$$

$=\sum_{k} \sum_{1 f k} R_{k 1}\left(U_{i k} U_{j 1}+U_{j k} U_{i j}\right) /\left(\varepsilon_{i l}-\epsilon_{k k}\right)$
where $\underset{\sim}{R}=\underset{E^{\dagger}}{ }$ C. Thus, given $\underset{\sim}{ }$. calculating all of the first derivatives at any value of \underline{Q} requires o(n^{4}) operations. A large class of quadratically convergent methods (such as conjugate gradient or variable metric methods) require only the first derivatives. When using eqn. (a), or as we do, eqn. (11), only the values at $\mathrm{G}_{i j}=0$ are needed. Here $\mathrm{U}_{\mathrm{ij}}=\delta_{\mathrm{ij}}$, anci eqn. (21) becomes
$\left(\frac{\partial E}{\partial Q_{i j}}\right)_{0}=\frac{R_{i j}-R_{j i}}{c_{j j}^{\sigma}-\varepsilon_{i j}^{\delta}}=\frac{R_{i j}-R_{j i}}{\Pi_{j j}-Q_{i j}}$
which requires on1y $O\left(n^{2}\right)$ operations. Note that at convergence, the proper variational conditions
$R_{i j}=R_{j i}=\nabla_{j} E^{\dagger}{\underset{-j}{j}}-\nabla_{-j} E^{\dagger}{\underset{\sim}{i}}^{f}=0$
are satisfied, since the Q_{ij} can be chosen nondegenerate and finite.

To evaluate the second derivatives, it is easiest to freeze all off-diagonal elements of Q except $\mathrm{Q}_{\mathrm{i}, \mathrm{j}}$. The matrix $\underset{\mathrm{U}}{\mathrm{U}}$ is then an identity matrix except.

$$
\begin{align*}
& u_{i j}=u_{j j}=\cos \theta_{i j}, \\
& u_{i j}=-u_{j i}=\sin \theta_{i j} \tag{24}
\end{align*}
$$

and θ_{ij} is determined by the requirement that Q be diagonalized,

$$
\begin{equation*}
\tan 2 \theta_{i j}=\frac{2 Q_{i j}}{C_{j j}-Q_{i j}} \tag{25}
\end{equation*}
$$

Under these conditions, the first derivative is

$$
\begin{align*}
\frac{\partial E_{i j}}{\partial Q_{i j}} & =\frac{\partial E}{\partial \theta_{i j}} \frac{\partial \theta i j}{\partial Q_{i j}} \\
& =\left\langle R_{i j}-R_{j i}\right\rangle \frac{\cos 2 \theta_{i j}}{Q_{j j}-Q_{i j}}, \tag{26}
\end{align*}
$$

while the second derivative becomes

$$
\begin{gather*}
\left(\frac{\partial^{2} E}{\left.\partial Q_{i j}^{2}\right)_{0}}=\frac{\left(\frac{\partial}{\partial Q_{i j}}\left[R_{i j}-R_{j i}\right]\right\rangle_{0}}{\left(Q_{j j}-Q_{i j}\right)^{2}}\right. \\
=\frac{\left(\frac{\partial}{\partial \theta i j}\left[\nabla_{i} E^{+} c_{j}-\nabla_{j} E^{+} c_{i}\right]\right)_{0}}{\left(Q_{j j}-Q_{i j}\right)^{2}} . \tag{27}
\end{gather*}
$$

At this point, matrices \mathcal{F}_{-i} are found which satisfy

$$
\begin{equation*}
\nabla_{i} E=4 F_{i} C_{j} \text {. } \tag{28}
\end{equation*}
$$

Orbitals, which share the same matrix Fi are said to belong to the same "shell" and the

Using eqns. (3), (24) and (28), eqn. (27) for the second derivative becomes
$\left(\frac{\partial^{2} E}{\partial Q_{i j}^{2}}\right)_{0}=$

$$
\begin{equation*}
\frac{C_{j}^{\circ} F_{\alpha} C_{j}-C_{i}^{o+} F_{\alpha} C_{i}^{o}+C_{i}^{o}{ }_{B}^{+} F_{\beta} C_{i}^{o}-C_{j}^{o+} F_{B} C_{j}^{o}+\gamma_{i j}}{\left(0_{j j}-Q_{i j}\right)^{2}} \tag{29}
\end{equation*}
$$

where i is in shell α and j is in shell B, and,

$$
\begin{equation*}
Y_{i j}=\left[C_{i}^{0^{+}} \frac{\partial}{\partial \theta_{i j}}\left(F_{i i}-F_{-B}\right) C_{j}^{0}\right]_{0} . \tag{30}
\end{equation*}
$$

The term $\gamma_{i j}$ has been named the Fack correction term by Goddard et al. (5) If we set this tem equal to zero as a further approximation, eqn. (11) for the optimum value of $Q_{i j}$ becomes $Q_{i j}=A \frac{\left(T_{i j}^{i}-T_{i j}^{j}\right)\left(Q_{j j}-Q_{i i}\right)}{T_{j j}^{i}-T_{i i}^{i}+T_{i j}^{j}-T_{j j}^{j}}$,

CLOSED SHELL CASE

The method outlined above reduces to the
traditional closed shell Hartree Fock method by judiciously choosing the elements $Q_{i j}$ where i and j are in the sme shell. It follows by differenciating the energy expression that.

$$
\nabla_{i} E=4 F^{C]} C_{i} \quad 1=\text { occupied }
$$

and

$$
\nabla_{i} E=0 . \quad i \neq \text { virtual }
$$

where, in the usual notation,

or $E^{C 1}=H+2 \underset{\sim}{f}\left(P^{C 1}\right)-K\left(P^{C 1}\right)$.
where $\underline{P}^{\mathbf{C l}}=\underset{\mathbf{i}}{\mathbf{O C C}} \mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}^{\dagger}$.
If i and j are in the same shell (both occupied or both virtual) then they share a common Fock matrix (F^{Cl} or 0).
$R_{i j}-R_{j i}=C_{i}^{+}(F-F) C_{j}=0$
for all $\theta_{i j}$. Thus $\mathrm{O}_{\mathrm{ij}}^{\text {(optimum) }}$ is indeterminant if i and j are in the same shell. These $Q_{i j}$'s serve omiy to mix orbitals in the same shell and can be assigned arbitrary values. While it is usually convenient tis set them all equal to zero, in the present case we choose them to be
$Q_{i j}=C_{i}^{o+} F^{C l} C_{j}^{o} ; i$ and j in the same shell. (34)
If \mathbf{i} is occupied and \mathbf{j} is virtual, then eqn. (31)

or
$\mathrm{a}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{i}}{ }^{+}{ }^{\mathrm{C}} \mathrm{C}_{\mathrm{C}}^{\mathrm{C}}$.
Exactly the same equation results when i is virtual and j is occupied. Hence in matrix form,

$$
\begin{equation*}
\text { o }^{\text {optimum }}=\underline{C}^{0^{+} F^{C 1}} \mathbb{C}^{\circ} \tag{36}
\end{equation*}
$$

where the diagonal elements of Q are also calculated by Eq. (35).
According to eqn. (7),

$$
F^{\text {optimum }}\left(C^{\circ}\right)=F^{C}\left(C^{D}\right)
$$

and the traditional closed shell Hartree Fock iin thod is recovered.
PRELIHIHARY MCSCF CALCULATIONS
The HONDO program of King et al. ${ }^{(6)}$ was
modified to calculate the best wavefunction of the form
$T=\sigma_{A}\left|\phi_{1} \bar{\phi}_{1} \cdots \phi_{n} \bar{\phi}_{n} \phi_{A} \bar{\phi}_{A}\right|_{4} \sigma_{B}\left|\phi_{1} \bar{\phi}_{2} \cdots \phi_{n} \bar{\phi}_{n} \phi_{B} \bar{\phi}_{B}\right|$.

This is the simplest Generalized Yalence Bond wavefunction ${ }^{(5)}$ for a system of $2(n+1)$ electrons. In this case there are four shells having occupation numbers $1, \sigma_{A}^{2}, \sigma_{B}^{2}$ and $0_{\text {, }}$ the last being the virtuals. The four corresponding Fock matrices are
$F^{P}=\underline{H}+\underline{G}(P)+\sigma_{A}^{2} \underline{G}(A)+a_{B}^{2} \underline{G}(B)$,
$\underline{F}^{A}=\sigma_{A}^{2}[\underline{H}+\underline{G}(P)+G(A)]+\sigma_{A} \sigma_{B} \underline{K}(\underline{B})$.
$\underline{F}^{B}=\sigma_{B}^{2}[\underset{\sim}{H}+\underset{\sim}{G}(P)+G(B)]+\sigma_{A} \sigma_{B} \underline{K}(\underline{A})$,
$F^{V}=0$,
where $G=2 J-K, P=\sum_{i}^{n} C_{i} C_{i}{ }^{+}, A=C_{A} C_{A}{ }^{+}, \quad B=C_{B} C_{B}{ }^{+}$.
Each iteration of the method consists of the following steps

1) Optimization of the coefficients σ_{A} and σ_{B}.
2) Construction of the Fock metrices for the three occupied shells (cf. equations (38)-(40)). from the coefficients. ${\underset{\sim}{C}}^{\circ}$, obtained either from the previous cycle or from the starting orbitals. This has $\mathrm{O}\left(\mathrm{n}^{4}\right)$ operations and is the rate limiting step.
3) Calculation of the matrices,

$$
\begin{align*}
& I^{P}=\left(C^{0}\right)^{+} E^{P} C^{0} \tag{42}\\
& I^{P}=\left(C^{0}\right)^{+} E^{A} C^{0} \tag{43}\\
& T^{B}=\left(C^{0}\right)^{\dagger} F^{B} \underline{C}^{\circ} . \tag{44}
\end{align*}
$$

4) Estimation of $\lambda^{\text {optimum }}$ from information obtained in the previous cycle.
5) Calculation of $Q_{i j}^{o p t i m u m}$ from
$Q_{i j}^{\text {optimum }}=0$, if i and j are in the same shell(45)
$Q_{i j}^{\text {optimum }}=\lambda^{\text {optimum }} \frac{\left(T_{i j}^{i}-T_{i j}^{j}\right)\left(Q_{j j}-Q_{i j}\right)}{T_{j j}^{i} T_{j j}^{j}-T_{i j}^{j}+T_{i j i}^{j}}$,
if i and j are in different shells.
6) Diagonalization of $\underline{q}^{\text {optimum }}$ to obtain $\underline{\underline{U}}$ (cf. equation (6)).
7) Use of equation (3) co obtain the coefficient matrix C .
B) Test for convergence and if not converged return to step 1).

The following table gives a rough indication of the convergence properties of the method. A two-determinant wavefunction for a distorted (C_{1} symmetry) ethylene molecule was calculated in an STO-3G basis. For comparison, an equivalent wavefunction was calculated using the King and Camp method, Bath runs were made on a CDC Cyber 174 computer $\{5.7 \mathrm{usec} /$ floating point multiplication). The starting orbitals were the same.

TABLE 1
This Methad (1.355 secffycle)

Cycle Energy. Au
-110.56805242
-110.57000382
-110.57018313
-110.57024124
-110.57025596
-110.57023561
-110.57026603

- 110.57026909
-110.57027267
-110.57027454
-110.57026760
-110.57027499
-110.57027507
-110.57027512
- 110.57027516
- 110.57027488
- 110.57027523
-110.57027524
-110.57027524
-110.57027524

King and Camp Method (1.730 sec/cycle)

Enersy, du

-110.56805299
-110.56842031
-110.56860177
-110.56985300
-110.56990704
-110.57015071
-110.57017911
-110.57021564

- 110.57021969
-110.57021849
-110.57026074
-110.57027184
-110.57027257
-110.57027422
-110.57027455
-110.57027507
-110.57027518
-110.57027524
-110.57027524
-110.57027524

ACKMOWLEDGEMENTS

We are grateful to Harry King and Oick Stanton for many useful discussions. This wark is supported by $\mathrm{N}=$:- grant CHETgoli38.

REFEREMCES

1. C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
2.a. R. H. Camp and H. F. King (In preparation).
b. R. E. Stenton (In preparition).
2. See A. Golebiewski, J. Hinze and F. Yurtsever, J. Chap. Phys. 70, 1101 (1979) and references contained therein.
3. H. F. King and R. M. Camp (this proceedings).
4. F. W. Bobrowicz and W. A. Goddard III, Modern Theoretical Chemistry 3, 79, Plenum, New York (1977).
5. M. Dupuis, J. Rys and H. F. King, J. Chem. Phys. 65 , 111 (1976) and Q.C.P.E. progran number 338.

gENERALIZED MOLECULAR ORB ITAL THEORY:

A LImited multiconfiguration self-CONSISTENT-FIELD-Theory

Michael B. Hall
Department of Chemistry
Texas Aam University
College Station, TX 77843

The generalized molecular orbital (GMO) approach is a limited type of multiconficturation self-consistent-field (MCSCF) calculation which divides the orbitals of a closed shell molecule into four shells: doubiy occupied, strongly occupied, weakly occupied, and unoccupied. The orbitals within each shell have the same occupation number and are associated with the same Fock operator. Thus, the orbital optimization is ideally suited to solution via a coupling operator. The detemmation of the orbitals is followed by a configuration interaction (CI) calculation within the strongly and weakly occupied shells. Results for BH_{3} show a striking similarity between the GMO's and the natural orbitals (NO's) from an all singles and doubles CI calculation. Although the GMO approach would not be accurate for an entire potential surface, results for spectroscopic constants of N_{2} show that it is suitabie near the equilibrium geometry. In this paper we describe the use of the GMO technique to determine the primary orbital space, but a potentially important application may be in the determination of a secondary orbital space following a more accurate MCSCF determination of the primary space.

INTRODUCTION

The need to go beyond the restricted, singTe-configuration, Hartree-Fock (RHF) approximation ${ }^{1}$ and to include electron correlation is clearly evident. This need exists not only for quantitative accuracy but also for semiquantitative accuracy and, in some cases, even for qualitative results. We are interested
in the electronic structure of rather large, transition-metal systems, especially those with metal-metal bonds and with metal-ligands bonds which involve strong pi acceptor ligands such as dioxygen, nitrosyl, and carbenes. In systenss such as these, two factors conspire to render the RHF approximation a particularly poor one. First, transition metals, especially those of the first transition series, have rather compact valence dorbitals, a factor which leads to small metal-metal or metal-ligans overlap integrals. Second, for the bonds described above the orbitals of the two components have similar energy; thus, there are large ngar degeneracy correlation effects in these systems.

The most direct way to go beyond the RHF wavefunction toward a correct description of the wavefunction is the traditional configuration interaction (CI) calculation. ${ }^{2}$ However, for very large systems the four-index transformation and the large number of configurations n : k e this calculation prohibitively expensive. An alternative solution would be to use fewer configurations in a multiconfiguration self-consistent-field (MCSCF) calculation witere the form of the molecular orbitals (Mi's) is simultameously optimized. However, each orbital active in this optimizecion will now require construction of a separate Fock operator or a partial four-index transformation at each iteration. If the number of active orbitals is large, this calculation may also be too costly. The procedure described in this paper was developed to avoid these two problems. Uur goal is to develop a method which will rapidly detemine a set of optimized primary orbitals, which are suitable for subsequent CI calculations. We will begin by describing the theory, and then some results for calculations of small molecules, which we will compare with the results of more accurate calculations.

THEORY

Shell Structure

For a $2 n$ electron closed-shel? molerule the RHF wavefunction is taken as a single determinant of cuubly ocet:ind M0's,

$$
\begin{equation*}
\Psi=\left|\phi_{1} \bar{\phi}_{1} \cdots \phi_{t} \bar{\phi}_{c} \cdots \phi_{n}{\overline{\phi_{n}}}_{n}\right| \tag{1}
\end{equation*}
$$

In typical applications to molecules the MO^{\prime} 's are expanded in a basis set

$$
\begin{equation*}
\phi_{i}=\sum_{a=1}^{m} c_{i a} x_{a} \tag{2}
\end{equation*}
$$

and the RHF energy is minimized with respect to the C_{ia} 's by the Roothaan procedure. ${ }^{1}$ Because of the expansion in a basis set, one also obtains a number of virtual or unoccupied MO's. Thus, the orbital space for the RHF calculation consists of two shells; the first has n doubly occupied orbitals while the second has m-n unoccupied orbitals. Schematically, we may write this partition as

$$
\begin{equation*}
\left(\phi_{1} \cdots \phi_{n}\right)^{2}\left(\phi_{n+1} \cdots \phi_{m}\right)^{0} \tag{3}
\end{equation*}
$$

One of the reasons that the solution to the RHF problem via the Roothan procedure is computationally attractive is that all of the orbitals are eigenfunctions of the same Fock operator.

With our goal of a simple MCSCF procedure in mind, it occurred to us that to take advantage of the computationally attractive nature of standard MO theory, we should continue to treat the orbitals in groups or shells. All orbitals in each shell should have equal occupation numbers and be associated with the same Fock operator. The previously doubly occupied shell is divided into two shells, one, which remains doubly occupied, and another, which is strongly occupied with variable occupation number. Likewise, the previously :roccupied orbitals are divided into two shells, one, which is weakly occupied with variable occupation number, and another, which remains unoccupied. It
is this shell structure, which can be written as

$$
\begin{equation*}
\left(\phi_{1}--\right)^{2}\left(-\cdots \phi_{n}\right)^{x}\left(\phi_{n+1}-\cdots\right)^{y}\left(-\cdots \phi_{m}\right)^{0} \tag{4}
\end{equation*}
$$

that suggested the name generalized molecular orbital (G\%) theory. As in the RHF case the notation can be extended to open, shells where one would have an additional shell of singly occupied orbitals (for the high spin situation). In subsequent discussion we will refer to these shells by the following letter designations: R for the doubly occupied shell, S for the singly occupied occupied shell, \uparrow for the strongly occupied shell, U for the weakly occupied shell and V for the unoccupied shell. We will use the corresponding lower case letter, r, s, t, u, and v to refer to individual orbitals within their respective shells.

Wàvefunction and Energy

One particularly simple wavefunction which satisfies this orbital partitioning is

$$
\begin{equation*}
\psi=\left(1-k_{T} k_{U} \lambda^{2}\right)^{\frac{1}{2}} \psi_{\mathrm{oo}}+\lambda E E \psi_{\mathrm{tu}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{\infty}=\left|\phi_{1} \bar{\phi}_{1} \cdots \phi_{t} \bar{\phi}_{t} \cdots \phi_{\mathbf{n}} \bar{\phi}_{\mathbf{a}}\right| \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{t u}=\left|\phi_{1} \bar{\Phi}_{1} \cdots \phi_{u} \bar{\phi}_{u} \cdots \phi_{n} \bar{\phi}_{n}\right| . \tag{7}
\end{equation*}
$$

Thus, the wavefunction consists of a dominant single determinant, ψ_{00}, plus all determinants which can be constructed by replacing a pair of orbitals in the T shell with a pair in the U shell, $\psi_{\text {tu }}$. These pair-excited functions are then weighted equally by the variational parameter. λ. The k_{I} numbers refer to the number of orbitals in the I th shell. For this wavefunction the occupation numbers, x and y, will be $2\left(1-k_{f} f\right.$) and $2 \mathrm{k}_{\mathrm{T}^{\lambda^{2}}}$, respectively. For the simple open shell case with k_{S} orbitals each containing
one electron of the same spin, we would add k_{s} singly occupied orbitals to both ψ_{00} and $\psi_{t u}$.

The total electronic energy for this wavefunction can be written as
$E=\underset{I}{E} f_{I} H_{I}+\underset{I}{\Sigma} \underset{J}{ } \cdot\left(a_{I J} J_{I J}+b_{I J} K_{I J}\right)$
where $H_{I}, J_{I J}$, and $K_{I J}$ partial sums are over one-electron, coulomb, and exchange integrals, respectively.

$$
\begin{equation*}
H_{I}=\underset{i}{2} h_{i}, J_{I J}=\underset{i}{\sum} \sum_{j} J_{i j} \text {, and } K_{I J}=\varepsilon \sum_{i j} K_{i j} \tag{9}
\end{equation*}
$$

where the sums over the lower case \mathbf{i} and \mathbf{j} include only orbitals in the shell I and J respectively. The values for $f_{I}, a_{I J}$, and $b_{I J}$ are given in Table I.

TABLE I. GMD Energy Parameters

Type	hel	Shell / Parameter			
		R	S	T	U
${ }_{\text {f }}$ I		1	$\frac{1}{2}$	$\left(1-k u^{\lambda^{2}}\right)$	$\mathrm{k}_{\mathrm{T}} \lambda^{2}$
	R	2	1	$2\left(1-k_{U} \chi^{2}\right)$	$2 k_{T} \lambda^{2}$
${ }^{\text {a }}$ IJ	5		$1 / 2$	$\left(1-k^{\prime} \lambda^{2}\right)$	$\mathrm{k}^{\lambda^{2}}$
	T			$2\left(1-2 k_{U}{ }^{\text {d }}\right.$)	$2\left(k_{T}-1\right) \lambda^{2}$
	U				0
$b_{\text {IJ }}$	R	-1	-1/2	-(1-k ${ }^{\lambda^{2}}{ }^{2}$	$-k^{\lambda^{2}}$
	S		$-\frac{1}{2}$	${ }^{-\frac{1}{2}}\left(1-k_{U} \lambda^{2}\right)$	${ }^{-\frac{2}{2} k} T^{\lambda^{2}}$
	T			$-\left(1-3 k_{U^{\lambda^{2}}}{ }^{2}\right.$	$\gamma \lambda-\left(k_{T}-1\right) \lambda^{2}$
	U				$\mathrm{K}_{\mathrm{T}^{\lambda^{2}}}$
$Y=\left(1-k T^{k} U^{\lambda^{2}}\right)^{\frac{1}{2}}$					

Coupling Operator

Because these coefficients do not depend on the individual orbitals, the wavefunction (equ. 5) and energy (equ. 8) are independent of a unitary transformation of the orbitals within a shell and depend only on the mixing between shells. Since the number of shells is small, the variational solution for the orbital optimization may be performed with a coupling operator, For each occupied shell we can define Fock operators as

$$
\begin{equation*}
F_{I}=f_{I} h+\sum_{J}\left(a_{I U^{J}}{ }_{J}+b_{I J} k_{J}\right) \tag{10}
\end{equation*}
$$

and projection operators as

$$
\begin{equation*}
P_{I}=\underset{\mathbf{i}}{\boldsymbol{i}}\left(\left|\phi_{\mathbf{i}}><\phi_{\mathbf{i}}\right|\right) . \tag{11}
\end{equation*}
$$

The projection operator for the virtual shell can be defined as

$$
\begin{equation*}
P_{V}=\left(1-\sum_{I} P_{I}\right) \tag{12}
\end{equation*}
$$

Following Hirao ${ }^{3}$, we define a generalized coupling operator as

$$
\begin{equation*}
R=\sum_{I}\left(P_{V} F_{I} P_{I}+P_{I} F_{I} P_{V}\right)+\underset{I f}{\Sigma} \sum_{J}\left(\theta_{J I}-\theta_{I J}\right) P_{J}\left(F_{I}-F_{J}\right) P_{I}+\sum_{I} P_{I} F_{I} P_{I} \tag{13}
\end{equation*}
$$

where the sums are over the occupied shells. The molecular orbitals are then obtained from the eigenvalue equation

$$
\begin{equation*}
R\left|\phi_{\mathbf{i}}\right\rangle=\varepsilon_{\mathbf{i}}\left|\phi_{\mathbf{i}}\right\rangle \tag{14}
\end{equation*}
$$

There remains considerable freedom in the R operator. For example, one may add the operator

$$
\begin{equation*}
0=\underset{I}{\Sigma} P_{I} \delta_{I} P_{I} \tag{15}
\end{equation*}
$$

where Ω_{I} is any one-electron operator. This freedom allows us to make the orbitals within each shell canonical over any operator we wish. Presently, we add the following operators to our coupling operator

$$
\begin{equation*}
P_{V} F_{U} P_{V}+\omega\left(P_{U} F_{T} P_{U}+P_{V} F_{T} P_{V}\right) \tag{16}
\end{equation*}
$$

The first tem makes the virtual orbitals canonical over the same operator as the weakly occupied ones. The second term, which is weighted by w, allows us to vary simultaneously the canonicalization of the weakly occupied and
virtual shells from being canonical over $F_{\dot{U}}(\omega=0)$ to being canonical over $F_{U}+F_{T}(\omega=1)$. The latter case corresponds closely to making the U and V shells canonical over just F_{T} because its larger values will dominate those of $F_{U^{*}}$ The coefficient $\left(\theta_{\mathrm{II}}-\theta_{I J}\right)$ is taken as ${ }^{-\theta} \mathrm{IJ}$ for $\mathrm{J}>\mathrm{I}$ and corresponds to a weighting factor for the first derivatives. For the case $\omega=1$ and $\theta_{I J}=1$ the coupling matrix will approach the usual RHF matrix as the configuration weighting parameter, λ, approaches zero.

In the present program all the necessary Fock matrices are formed in a single pass through the atomic integral file. These matrices are then transformed into the GMO basis from the previous cycle, the R matrix is formed, the canonicalization matrices are added, and a level shifting parameter, n, is added successively to all the dtagonal terms of each shell. This final coupting matrix takes the following simple form

R shell	T shell	S shell	U shell	V shell
$F_{\text {R }}$	${ }^{\theta_{R T}}\left(F_{R}-F_{T}\right)$	${ }^{\theta_{R S}}\left(F_{R}-F_{S}\right)$	${ }^{\theta} \mathrm{RU} /\left(F_{R}-F_{U}\right)$	${ }^{\theta} \mathrm{RV}{ }^{\text {F }} \mathrm{R}$
	$F_{T}+n$	$\theta_{T S}\left(F_{T}-F_{S}\right)$	${ }^{\theta} \mathrm{TU}\left(\mathrm{F}_{\mathrm{T}}-\mathrm{F}_{U}\right)$	${ }^{\theta} \mathrm{TV}^{\mathrm{F}} \mathrm{T}$
		$\mathrm{F}_{S}+2 \mathrm{n}$	${ }^{\theta}{ }_{S J}\left(F_{S}-F_{U}\right)$	${ }^{0} S V^{F} \mathrm{~S}$
			$\mathrm{F}_{\mathbf{U}}+4 \mathrm{~F}_{\mathrm{T}}+3 n$	${ }_{0}{ }_{U V} F_{U}$
				$F_{U}+4 F_{T}+4$

This matrix is then diagonalized to form the new GMO's for the next cycle. The value of λ (equ.5) is determined variationally just prior to each orbital cycle. The energy (equ.8) is expressed explicitly in terms of λ.

$$
\begin{equation*}
E=E_{0}+\lambda\left(1-k_{T} k_{U^{\lambda}}{ }^{2}\right)^{\frac{1}{2}} E_{1}+E_{2} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
E_{0}= & 2 H_{R}+2 H_{T}+H_{S}+2 J_{R R}+4 J_{R T}+2 J_{R S}+2 J_{T T}+2 J_{T S} \tag{19}\\
& { }^{+V_{Y} J_{S S}}-K_{R R}-2 K_{R T}-K_{R S}-K_{T T}-K_{T S}-{ }^{\frac{3}{2}} K_{S S} \\
E_{1}= & 2 K_{T U}, \tag{20}
\end{align*}
$$

and

$$
\begin{aligned}
E_{2}= & 2 k_{T}\left(H_{U}+2 J_{R U}+2 J_{T U}+J_{S U}-K_{R U}-K_{T U}-3_{2} K_{S U}+\frac{i_{2} K_{U U}}{}\right) \\
& -2 K_{U}\left(H_{T}+2 J_{R T}+2 J_{T T}+J_{S T}-K_{R T}-K_{T T}-\frac{1}{2} K_{S T}-\frac{1}{2} K_{T T}\right) \\
& -2\left(23_{T U}-K_{T U}\right)
\end{aligned}
$$

A one-dimenional Newton-Raphson iteration is used to find the value of
λ for which $(d E / \alpha \lambda)=0$.

Computational Details

The GMO calculation is usually started from a set of ronverged or partially converged RHF molecular orbitals. The doubly occupied orbitals of this calculation can be partitioned in several ways. One might place all the valence orbitals in the strongly occupied shell while keeping only the atomic cores doubly occupied. In this situation the weakly occupied orbitals should consist of all the antibonding counterparts of the valence shell. Thus, the occupied space in this problem (R, S, T, and U shells) could consist of all those MO's one could construct from a minimal atomic basis set on each atom or of the core, singly, and strongly occupied orbitals plus a weakly occupied correlating orbital for each strongly occupied orbital. Alternatively, one might only be interested in part of the molecule such as the metal-metal bond in a metal dimer complex or a particular metal-ligand bond. In either case the strongly and weakly occupied shells would be confined to the bond of interest and the remaining valence orbitals would be in the doubly occupied shell.

Initially, ω is set to 1.0 , while n is taken to be between 2.0 and 1.0 , and is reduced as the calculation converges to values between 0.8 and 0.4 . One may begin the cycling with all the θ_{13} values equal to 1.0 . However, one rapidly
notices that matrix elements between the doubly and strongly occupied shells and those between the weakly occupied and virtuai shell are not being reduced on each cycle. The reason for this is that the matrix elements in these two blocks are first order in λ, while all other blocks are zero order in λ. Thus, these matrix elements are inherently small and the coupling matrix procedure does not make sufficient changes in the MO's at each cycle to reduce these first derivatives. If one sets $\theta_{R T}=\theta_{U V}=1.0 / \lambda$, all off-diagonal blooks of the coupling matrix will be zero order in λ and tie coupling matrix will converge. When λ is very sma?l, we may multiply the value of $\theta_{\text {RT }}$ and $\theta_{\text {UV }}$ by 2.0 or 3.0 , and for some open shell problems we may set all ${ }_{\text {IS }}$ values to 1.5 or 2.0 .

Comparison t) Second Order Methods
Since we have effectively only one configuration variable, λ, in our wavefunction we will confine this comparison to a second order determination of the orbitals. Given a trial set of orthonormal MO's, ϕ, we may construct an improved set tiva unitary transformation.

$$
\begin{equation*}
\phi^{\prime}=\phi e^{\Delta} \tag{22}
\end{equation*}
$$

where Δ is a skew-symmetic matrix. The optimum values of Δ may be determined by a full matrix Newton-Raphson procedure

$$
\begin{equation*}
A \leq=-g \tag{23}
\end{equation*}
$$

where the independent matrix elements of Δ are written as a vector $\left(\Delta_{i j}=\Delta_{7}\right), g$ is the gradient or first derivative of the energy with respect to $\Delta\left(g_{7}=d E / d \Delta_{7}\right)$, and A is the Hessian or second derivative matrix $\left(d^{2} E / d \Delta_{1} d \Delta_{m}\right)$. By solving these equations exactly, one would complete one iteration of a full second order procedure (neglecting the coupling between our orbitals and our configuration parameter, λ).

We can most easily cumpare this procedure with our coupling matrix technique by making several unjustified assumptions. first, we wili expand e^{Δ} in a power series and retain only the first order term. Thus, equation (22) becomes

$$
\begin{equation*}
\phi^{\prime}=\phi(1+\Delta) . \tag{24}
\end{equation*}
$$

Second, we assume the Hessian matrix is diagonal so that equation (23) can be written as

$$
\begin{equation*}
s_{1}=-g_{1} / A_{11} \tag{25}
\end{equation*}
$$

or returning to matrix netation for Δ we can write equation (25) as

$$
\begin{equation*}
\Delta_{i j}=\frac{-\left(d E / d \Delta_{i j}\right)}{\left(d^{2} E / d \Delta_{i j}^{2}\right)} \tag{26}
\end{equation*}
$$

If we now return to the coupling matrix and assume that the level shift parameters are large and/or that the off-diagonal terms are small, we may diagonalize the matrix by perturbaiton theory. The new vectors would then be expressed as in equation (24) and Δ would be

$$
\begin{equation*}
\Delta_{i j}=\frac{{ }_{\theta}{ }_{I j}\left(F_{i j}^{I}-F_{i j}^{J}\right)}{\left(F_{j j}^{J}-F_{i}^{I}+n\right)} \tag{27}
\end{equation*}
$$

where we have 'ised superscripts to denote the shell Fock operator and subscripts to indicate the particular matrix element. The term $4\left(F_{i J}{ }^{I}-F_{i j}{ }_{j}\right)$ is the negative gradient and the remainder ${ }_{\mathrm{IJ}} / 4\left(F_{j j}^{J}-F_{i j}{ }^{I}+{ }_{n}\right)$ represents an approximation the inverse of the diagonal term of the Hessian. The level-shifting parameter is used to assure a positive second derivative, and is chosen large enough to prevent the interchange of an orbital from one shell with that of another shell (to assure small $\Delta_{i j}$ values). The ${ }^{\theta}{ }_{I J}$ values, which are always greater than 1.0 , can be used to accelerate the convergence by decreasing the estimate of the second derivative.

Although there is no way in which a coupling operator technique may be called truly second order, it is legitimate to view our approach as a heavily weighted gradient technique. The number of cycles of the coupling operator necessary to converge a typical case wiil be much larger than the number for a complete second-order technique. ${ }^{4}$ However, since our effort per cycle is very small, less than three times that for a standard Roothaan RHF cycle, the coupling operator technique may be competitive with other methods. This is particularly true for situations like the GMO approach which have relatively few shells.

Configuration Interaction
We do not expect the GMO wavefunction itself to recover much correlation energy. Our objective in solving for this-wavefunction is to obtain a set of optimized orbitals for use in a traditional Cl calculation. The lowest level of CI , which appears reasonable, is all single and double excitations from orbitals in the T shell to those in the U shell. One may include higher excitations within this occupied space, such as full CI within the active space (T and U shells) or one may introduce excitations into the virtual space by allowing only a certain number of electrons into the V shell.

RESULTS
One of our implicit assumptions is that the form of the optimum orbitals does not depend very strongly on the Cl coefficients in the MCSCF wavefunction. If this assumption is adequate, the GMO wavefunction can be derived from an all paired doubles MCSCF ${ }^{5}$ with equal Cl coefficients. of course, this assumption will not be completely true in many important cases. However, for systems near their equilibrium geometry whose "true" wavefunction is dominated by a single configuration this assumption may be quite accurate.

One way to test part of this assumption is to examine how the energy obtained from the final CI depends on the value of λ which was used in the GMO wavefunction. Previous results for H_{2} indicated that the final Cl energy depended only weakly on the value of λ used to obtain the orbitals ${ }^{6}$. Similar results are also obtained for BH_{3} where the $1 \mathrm{a}_{1}$ is doubly occupied, the $2 a_{1}^{\prime}$ and lé are strongly occupied while the $1 a_{2}, 3 a_{1}^{\prime}$, and $2 e ́$ are weakly occupied. A standard double-zeta Gaussian basis ${ }^{7}$ with polarization functions (d on B, D on H$)^{8}$ was used in these calculations. Figure 1 shows two curves; the upper one is the energy of the GMO wavefunction as a function of λ. The RHF energy corresponds to the point at $\lambda=0$. The lower curve shows the energy obtained after a CI calculation (all singles and doubles from T shell to U shell) with the orbitals obtained from the GMO wavefunction. On this curve $\lambda=0$ corresponds to a singles and doubles CI calculation with the first virtual $1 a_{2}{ }_{2}, 3 a_{1}$ and $2 \dot{e}$ from the RHF calculation. The remaining points then correspond to the use of the weakly occupied GM's. The upper curve, as expected, depends quite strongly on λ, but the lower curve is quite flat beyond $\lambda=0.02$. One is forced to conclude that the final CI energy obtained from the GMO's dnes not depend very strongly on the λ value.

A more direct assessment of the orbitals may be made by comparing the GMO's with the natural orbitals ($N O^{\prime}$ s) obtained by diagonalizing the first order density matrix from an all singles and doubles Cl calculation. In this calculation all of the virtual orbitals, except the core correlating one were used in the active space. Prior to the large CI calculation the virtual GNO's were made canonical over the weakly-occupied Fock operator (ω was set at zero for one iteration). The percentage of each GMO in each NO is shown in Table II. Also shown are the occupation numbers of the NO's and the GMO eigenvalues with a letter designating the shell. As

Fig. 1

TABLE II. Comparison of GMO's and NO's for BH_{3}

640 (set) -
eigenvalue Natural orbital / occupations

$1 e^{\prime}(t)-1.4976$	100%	-	-	-	-	-	-
$2 e^{\prime}(u)-0.0043$	-	100%	-	-	-	-	-
$3 e^{\prime}(v)-0.0031$	-	-	100%	-	-	-	
$4 e^{\prime}(v)-0.0005$	-	-	-	4%	8%	87%	-
$5 e^{\prime}(v)-0.0001$	-	-	-	96%	-	4%	-
$6 e^{\prime}(v)+0.0028$	-	-	-	-	92%	8%	-
$7 e^{\prime}(v)+0.0049$	-	-	-	-	-	-	100%

	$1 a_{2}^{\prime \prime}$	$2 \mathrm{a}_{2}^{\prime \prime}$	$3 \mathrm{a}_{2}^{\prime \prime}$
	0.0098	0.0004	0.0000
$1 \mathrm{a}_{2}^{\prime \prime}(u)-0.0034$	100%	-	-
$2 \mathrm{a}_{2}^{\prime \prime}(v)-0.0009$	-	5%	95%
$3 \mathrm{a}_{2}(v)+0.0017$	-	95%	5%
	$1 e^{\prime \prime}$	$2 \mathrm{e}^{\prime \prime}$	
	0.0033	0.0003	
$1 e^{\prime \prime}(v)-0.0015$	100%	-	
$2 e^{\prime \prime}(v)+0.0027$	-	100%	

$1 a \frac{1}{2}$	
	0.0014
$1 a \frac{1}{2}(v)+0.0004$	100%

expected the strongly occupied GMD's and NO's resemble each other and are not much different from the RHF orbitals. The weakly occupied GPD's, lä ${ }_{2}$, $3{ }_{1}$, and 2é, have almost unit overlap with the most important. natural. orbitals. Even more amazing is the apparent similarity of the virtual GMO's (canonical over the operator for the weakly occupied) to the next most important NO's. In fact the GMO eigenvalues can be used to order the importance of these orbitals within each symmetry. Only as one approaches the more weakly occupied NO's does one notice that they begin to diverge from the GMO's. Similar results have been reported for $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{N}_{2} .{ }^{9}$

The importance of this similarity to the natural orbitals can be seen in Figure 2, where we have plotted the correlation energy obtained against the number of correlating orbitals used in the CI calculation. The three choices for the orbitals are RHF virtual (chosen by eigenvalue), GNJ weakly occupied and virtual (chosen by eigenvalue but canonical over F_{U}) and the NO (chosen by oce .pation number). These are represented on Figure 2 as triangles, circles, and squares, respectively. The well known inferiority of the RHF virtual orbitals is amply illustrated (choosing the RHF orbitals in a different order makes no improvement). What is more striking is how clasely the energy from the GMO's follows the energy from the $N O^{\prime} s$. The two calculations diverge only as the more weakly occupied orbitals are included.

The GMD technique has been used to calculate a number of properties such as ionization potentials of N_{2} and $\mathrm{H}_{2} \mathrm{O},{ }^{9}$ excited state of $\mathrm{r}_{2} \mathrm{H}_{2}$, 10 dissaciation energy of $\mathrm{B}_{2} \mathrm{H}_{6}$, ${ }^{11}$ and the dissociation energy of a $\mathrm{Mo}-\mathrm{Mo}$ triple bond. ${ }^{12}$ Previous results on the spectroscopic constants for $\mathrm{N}_{2}{ }^{10}$ in a large Gaussian basis were only at a very low, inadequate level of CI. Table III presents the results for the equilibrium internuclear distance, dissociation energy, and stretching frequency. The basis set used in our cal-

NUMBER OF CORRELATING ORBITALS

TABLE 1JJ. Spectroscopic Constants for N_{2}

Method	$R_{e}\left(A^{\prime}\right)$	$\mathrm{D}_{\mathrm{e}}(\mathrm{eV})$	${ }_{e}^{\sim}\left(m^{-1}\right)$
		.	
RHF	1.064	4.98	2769.
GMO	1.073	5.73	2645.
GMO-CI	1.103	8.82	2314.
Exp	1.098	9.91	2358.
RHF ${ }^{\text {a }}$	1.067	5.08	2757.
GVB(pp) ${ }^{\text {a }}$	1.094	7.05	2421.
GVB-CI ${ }^{\text {a }}$	1.106	8.93	2330.

${ }^{a}$ Reference 14
culation was a contracted ($4 \mathrm{~s}, 3 \mathrm{l}$) Gaussian basis ${ }^{7}$ augmented with a Slater 3d (exponent 2.81) expanded in two Gaussians. ${ }^{13}$ For the GMO calculation the strongly occupied shell was $3 \sigma_{g}$ and $1 \pi_{u}$ (T shell), while the weakly occupied shell was $3 \sigma_{u}$ and $1 \pi_{g}$ (U shell). The spectroscopic constants were calculated from a five point $(0.9,1.0,1.1,1.2,1.3)$ Dunham analysis. The improvement of the GIO over the HF is small, but when a full CI calculation is performed within the T and U shells (GMO-CI) the improvement is dramatic. The results at the GMO-CI level are nearly identical to those obtained from the GVB orbitals followed by CI in the GVB valence space. ${ }^{14}$ The small observed differences can be attributed to a slight difference in the basis set, which is apparent in the two RHF calculation.

DISCUSSION

The examples provided above and described elsewhere ${ }^{6,9-12}$ show that the use of the GMO procedure to define a primary orbital space produces orbitals and subsequent energies very close to those of more sophisticated techniques. The procdeure is extremely efficient since it requires the construction of only two additionał Fock matrices beyond the number required for the RHF calculation. In all cases we have tried, the coupling operator as described above has converged to the required accuracy.

However, the GMO approach does have some obvious limitations. The present formulation will not be equally accurate over the entire potential surface ; in fact, it will be very poor as one approaches dissociation. The method will work best near the equilibrium geometry, when the wavefunction is dominated by a single configuration. Although we have no direct evidence, we believe that it will be more accurate for compact molecules, where all of the orbitals of the T and U shells are in the same region of geometric space, than for extended systems. In many of our inorganic applications to coordination complexes and cluster compounds, we are dealing with just such compact molecules. For most of the larger systems we are interested only in some part of the molecule such as the metal-metal bond or a particular metal-ligand bond. In these cases the GMO procedure conveniently localizes the portion of interest in the T and U shell, while the remainder of the molecule is described by the doubly occupied R shell.

For small molecules, more accurate MCSCF techniques are available. ${ }^{15}$ Our procedure is not intended to compete with these methods for accuracy in determining the primary orbital space. However, in some situations it might be useful, after determining the primary space by a complete MCSCF, to adapt the GMO
approach to determine a secondary orbital space. This technique could be particularly important in very large basis sets since it would allow one to discard the less important virtual space.

ACKNOWLEDGEMENT

Acknowledgement is made to the National Science Foundation (Grant No. CHE 79-20993) for support of our research. This research was supported in part by the National Resource for Computation in Chemistry under a grant from the National Science Foundation and the Basic Energy Sciences Division of the United States Department of Energy under Contract No. W-7405-ENG-48.

REFERENCES

1. D.R. Hartree, Proc. Cambridge Phil. Soc., 24, 89, 111 (1928); V. Yock, 2. Physik, 61,126 (1930); C.C.J. Roothaan, Rev. Mod. Phys., 23,59 (795), 32,179 (1960).
2. I. Shavitt, "Methods of Electronic Structure Theory"; H.F. Schaefer, III, Ed; Plenum Press (New York, 1977).
3. K. Hirao, J. Chem. Phys. 60, 3215 (1974).
4. E. Dalgaard and P. Jørgensen, J. Chem. Phys. 69; 3833 (1978); D. Yeager and P. Jørgensen, U. Chem. Phys. Zh, 755 (1979).
5. E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966).
6. M.B. Ha11, Chem. Phys. Letters, 61,461 (1979).
7. T.H. Dunning, Jr. J. Chem. Phys. 53, 2823 (1970); S. Huzinaga, ibid. 42, 1293 (1965).
8. T. H. Dunning, Jr. and P.J. Hay, "Methods of Electronic Structure Theory"; H.F. Schaefer, ILI, Ed.; Plenum Press (New York, 1977).
9. M.B. Ha11, Intern. J. Quantum Chem. Symp., 13, 195 (1979).
10. M.B. Hall, Intern. J. Quantum Chem. 14; 613 (1978).
11. T.E. Taylor and M.B. Ha11, J. Am. Chem. Soc. in press.
12. M.B. Ha11, J. Am._Chem. Soc. 102,2104 (1980).
13. R.F.Stewart, J. Chem. Phys. 52, 431 (1970).
14. T.H. Dunning, Jr., D.C. Cartwright, W.J. Hunt, P.J. Hay, and F.W. Bobrowicz, J, Chem. Phys. 64, 4755 (1976).
15. See other authors in this publication especially W.A. Goddard, III, B. Liu, B. Roos, C.C.J. Roothaan, K. Ruedenberg, A.C. Wahl and D.L. Yeager.

1. orbital space and configuration space

A mulciconfiguration ("MC") N-electron wave function is a vector in a function space which we shall call the HC space. It is spanned by a basis of N-electron functions Ψ_{K} known as configuration grate functions ("CSF's"). There exists considerable diversicy as regards the conscruction of the CSF's from orbital products and spin functions. Ulcimately every CSF can be expressed as a Eixed linear combination of Slater determinants. The simplest choice is to have each CSF equal one Slater determinant. A reasonable sophisticated choice is to choose the linear combinations such chat each CSF is an eigenfunction of S^{2}, S_{z} and also belonga to the same irreducible representation as the state which is to be calculated. In our work, we often find an intermediate choice convenient, namely spin adapted antisymmetrized products of orbitals (SAAP's).

In any event I am assuming chat the orbitals from which the CSF'a are constructed do belong to irreducible representations ("irceps") of a molecular symmetry group, i.e., they are of the form ϕ_{1}^{VL}, where u denotes the irreducible repregentation and ψ labels the varfous degenerate partner functions which form a mulcidimensionsl irrep. I furthermore assume that the various orbitals belonging to a given value of v and μ are orthogonal, so that we have in fact

$$
\begin{equation*}
\left\langle\Phi_{i}^{u \mu} \mid \phi_{i}^{v} v^{\prime} \mu^{\prime}\right\rangle=\delta_{i I^{\prime}}, \delta_{v v^{\prime}} \delta_{\mu \mu^{\prime}} \tag{1.1}
\end{equation*}
$$

The CSF's are then functionals of the orbitals, 1.e.,

$$
\begin{equation*}
\psi_{K}=\psi_{K}\left(\cdots \phi_{i}^{v \mu} \ldots\right) \tag{1.2}
\end{equation*}
$$

and 1 furthermore assume thst they are constructed in such a manner that the orthogonalities (1.1) entail the CSF orthogonalities

$$
\begin{equation*}
\left\langle\psi_{K} \mid \psi_{L}\right\rangle=\delta_{K L} . \tag{1.3}
\end{equation*}
$$

SAAP's have this property.
En the multiconfiguration self-consistentfield (MCSCF) approach the orbitals $\phi_{1}^{\text {v/ }}$ are not explicitly given to start with, but tre to be optimally determined through calculation. Consequently, the assumption of a certain configura= tonal basis, such as that given by the Ψ_{K} of Eq. (1.2) does not yet completely specify these configurations, it merely defines a certain formal structure of the configuration space in terms of 10 's yet to be determined. These MOS will be called the configuracion generating orbitals (CGO's). The essential characteristics of the structure of the configuration space are the number of CGO's and the type of configurations formulated in terms of them. A particular cgo may occur in one, in several, or in all configurations. However, since it does not have to occur In all configurations, it is apparent that the number of CCO's, M say, is In^{2} general larger than the minimum number of orbitals that can occur in
any one configuration, namely, $\mathrm{l}_{2} \mathrm{~N}$, where N is the number of electrons. In actual molecular problems the Coos are nearly always divided into two groups: (i) a set of "generalized core" or "closedshell" orbitals, all of which are doubly occupied in every configuration, and (ii) a set of "active" cco's whose occupation numbera are less than two in at least one configuration. Suppose there are $\mathrm{M}^{\prime \prime}$ closed COO and K^{\prime} active $\mathrm{CCO} 0^{\prime} \mathrm{s}$. If it is intended to free all electrons outalde the closed shell completely from the "straight facket of double occupancy," then one intuitively expects the number of active orbitals not to be smaller than the number of electrons occupying then which implies

$$
\begin{equation*}
M^{\prime}+\mathrm{H}^{\prime \prime}=M, \quad \mathrm{M}^{\prime} \geqslant \mathrm{N}-2 \mathrm{M}^{\prime}, \quad \mathrm{M} \xrightarrow[2]{2}\left(\mathrm{~N}+\mathrm{M}^{\prime}\right) \tag{1.4}
\end{equation*}
$$

The choice $M=\frac{1}{2}(N+M ')$ corresponds to having, on the average, exactly one active orbital available for each open-shell electron, a case which may be called the "extended independent particle model" for the oper-shell part. On the ocher hand, the largest configuration space that is possible for a given number of active CGO'sis obtained when the configuration space basis corresponds to all CSF's that can be constructed from the active cGo's with the closed cGo's always remaining doubly occupied. This we shall call the full configuration space generated by the active CGO's (FAS). An imporcant feature of this full configuration space is that it is irvariant against any nonsingular, in particular, orthogonal transformacion among the CGOS. If the active orbitals are those which can be expected to describe a chemical reaction, we call such a space the full reaction space (FRS).

In order to optimally determine the CGO's, it is presumed that they are expressed as innear expanaions in terms of a set of basis orbitals. Since these are the functions through which, ultimately, the wave function becones a spectific function in space, we shall call them the quantitative basis orbitals ($\mathrm{OBO} \mathrm{O}^{\prime}$) . They can be molecular orbitals or atomic orbitals. In the latter case they usually are predetermined fixed superpositions ("contractiona") of primicive atomic orbitals (PAO's), che ultimace building blocks of most molecular calculations. It is of ten convenient to generate from them a basis sec of orthonormal symmetry-adapted QBO's (QBSO's) which we denote by

$$
\begin{equation*}
\hat{\phi}_{1}^{\nu \mu}, \hat{\phi}_{2}^{v \mu}, \hat{\phi}_{3}^{\nu \mu}, \ldots \tag{1.5}
\end{equation*}
$$

Clearly the CGO's quoted in Eq. (1.1) can be expressed in teras of the QBSO's by the expansions

$$
\begin{equation*}
\phi_{j}^{\nu \mu}=\frac{\Sigma}{\Sigma} \hat{\phi}_{\tau}^{\nu \mu_{r j}} \tag{1.6}
\end{equation*}
$$

In order that shere be any variational freedom, there clearly must be more QBO's than CCO's. Let L be the cotal number of $Q B O$'s and let M be the total number of CCO's. More specifically let L_{v}, M_{v} be the cotal number of $\oint_{r}^{v u}$ and $\phi_{j}^{v i L}$ in the vth irrep, $i, e ., r=1,2, \ldots, L_{v}, j=1,2, \ldots, M_{v}$ so that

$$
\begin{equation*}
L=\sum_{v=1}^{I} D_{v} L_{v}, M=\sum_{v=1}^{L} D_{v}^{M} V_{v} \tag{1.7}
\end{equation*}
$$

If there are I irrepa, the vth irrep having the dimension D_{v}. Then we have necessarily

$$
\begin{equation*}
\mathrm{L}_{v} \geq \mathrm{V}^{\prime}, \quad \mathrm{L} \geq \mathrm{M}, \tag{1.8}
\end{equation*}
$$

with the inequality being the usual situation. The sum in Eq. (1.6) thus runs fron 1 to L_{v} and the transformations $\mathbf{F}_{\mathbf{r j}}^{\mathrm{V}}$ are rectangular isometric transformarions. By complementing these isometric matrices in some arbitrary manner to aquare orchogonal matrices, we are introducing ($\mathrm{L}-\mathrm{M}$) additional $\mathrm{HO}^{\prime} \mathrm{s} \varphi_{j}^{\nu \mu}$ that are orthogonal to the CGO's. These will be called virtual Ho's. We shall also use the terms occupied and unoccupied Ho's for the configuration generscing and the virtual MO's, respectively.

The multiconfigurational approximation to the exact wave function, which is our goal, is thus of the form

$$
\begin{equation*}
Y=\sum_{K} C_{K} \Psi_{K} \text {. } \tag{1.9}
\end{equation*}
$$

where the Ψ_{K} are the configurstiona introduced in Eq. (1.2) and

$$
\begin{equation*}
\sum_{K} c_{K}^{2}=1 \tag{1,10}
\end{equation*}
$$

In order to obtain the best possible approximation of this kind, two optimizations are required in the HCSCF approach: (i) The configurationel expansion coefficiente C_{n}. occurring in Eq. (1.9) must be optimized ($\mathrm{MC}-\mathrm{Cl}$ calculations) sad (if) the MO's must be optimized by optimizing the orbital expansion coefficients $F_{r j}^{V / \nu}$ occurring in Eq. (1.r) (mC-SCF celculation). The lateer optimization is the more rroublesome one and requires successive iterations. Consequently, there exist M occupied MO's and (L-M) virtual MO's at each stage of this iterative procesa, and at each stage the occupied orbitals are improved by mixing among each other and by admixtures from the virtual space.

Clearly the MC-CI calculation yields as many elgensrates as there are CSF's and the n-th MC eigenvalue ia therefore an upper bound to the n-th true state of the symmetry in question. In principle then, the arbitals can be cptimized for any one of the states, and it stands to reason that the optimal orbicals will be different for different states. This circunstance entails a n'iber of subrle consequences. For one thing, the optiual HCSCE approximations of different states are constructed from orbitale which are not only mutually (ㄴ.E.; betueen different states) nonorthogonal, but also span slightly different orbical spaces. For another, the different MCSCF states thexselves will be slightly non-orthogonal to each other. Both shortcomings represent no prohibitive probleas however and, these nonorthogonalities notwithstanding, the various energies nonetheless represent upper bounds.

More serious is the fact that, when the orbicals of an upper state are iteratively improved by lowering the energy of that state, then this MC
efgenstate quy change places energywise with a lower atate (usually both states can be readily recognized by their MC mixing coefficienta C_{K}). If
this occurs for example upon lowering the energy of the second state, then continued lowering of the energy of the second scate will obviously result in an oscillacion between the two states. Clearly, in such a case the goal of unrestricted orbital optiwization is incompatible with the requirement that the second MC root be an upper bound. Such difficulties arise from the fact that the MC space does not have sufficient degrees of freeden to accommodate both the optimal groundstate and the optimal excited state so that, when the second state is optimized the approximation to the lower state becomes so poor that its energy rises above what started out to be the secord MC root. The best remedy is, of course, to give the MC space the necesaary flexibility by (1) inciuding in its basis a sufficient number of CSF's (which is atraightforward) and (ii) including a gufficient number of configuration generating orbitals (which may be awkerd), so that both states can be adequately represented in the MC space. An alternative option is to explicicly enforce the orthogonality to the lower statea while optinizing the orbitals of an excited atate. In any avent, these problems must be dealt with regardless of the procedure which is being enployed to achieve the HCSCF optimization.

2. Variational conditions

A. Coefficient Variations and Orbital Variations

It is our ain to find the optimal approximation Ψ, as detemined by the variation principle

$$
\begin{equation*}
\delta\langle\psi| H \mid \psi>=2\langle\delta \psi| H \mid \psi>=0 \tag{2.1a}
\end{equation*}
$$

while

$$
\begin{equation*}
\langle\psi \mid \psi\rangle \equiv 1 \tag{2.1b}
\end{equation*}
$$

where Ψ is a usve function of the type formulated in Eq. (1.9). The variation of ψ can be uricten

$$
\begin{equation*}
\delta \Psi=\delta_{c o e f}{ }^{\Psi+\delta_{o r h}}{ }^{\Psi}, \tag{2.2}
\end{equation*}
$$

where $\delta_{\text {coel }}$ denotes the variation of the coefficients C_{K} and $\delta_{o r b}$ denores the variation of the orbicals $\phi_{1}^{U \nu}$. For a finite number of configurations, ss envisaged here, these two variations are independent and the variational Equation (2.?a) is equivalent to the two separate conditions [i]

$$
\begin{align*}
& \left\langle\delta_{\text {coef }} \psi\right| H|\psi\rangle=0 \tag{2.3a}\\
& <\delta_{\text {orb }} \psi|H| \psi>=0 \tag{2.3b}
\end{align*}
$$

In: the coefficient Equation (2,3a), the orbitals are fixed and optimal and, hence, the configurations Ψ_{K} are Fixed. Consequencly, this equation yields, in familiar manner, the elgenvalue equation

$$
\begin{equation*}
{ }_{\mathrm{L}}<\mathrm{K}|H| \mathrm{L}>\mathrm{C}_{\mathbf{L}}=\mathrm{EC} \mathrm{C}_{\mathrm{K}} \tag{2,4a}
\end{equation*}
$$

where the matrix elements

$$
\begin{equation*}
\langle K| H|L\rangle=\left\langle\Psi_{K}\right| H\left|\Psi_{L}\right\rangle \tag{2.4b}
\end{equation*}
$$

are preanmed to be calculated with the configura= tions constructed from the optimal orbitala.

In the orbital Equation (2.3b), the coefficients C_{k} are presumed to be fixed and optimal. The orbital variation of Ψ is therefore given by

$$
\begin{equation*}
\delta_{o r b}{ }_{K}^{\psi=\Sigma C_{K} \delta_{K}} \tag{2.5}
\end{equation*}
$$

and, since every $\Psi_{K} i_{s}$ multilinear in the orbitals $\phi_{I}^{U \mu}$, the variations $\delta \psi_{K}$ can be expreased in terms of the orbiral variations $\delta \phi_{i}^{V /}$ by means of the following sum of "single orbital variations"

$$
\begin{equation*}
\delta \Psi_{K}=\sum_{V}^{\sum} \sum_{i}^{n_{V}} \sum_{i=1}^{M v} \Psi_{K}\left(\cdots \cdots \phi_{1}^{\nu \mu_{i}} \delta_{1}^{\nu \mu} \cdots \cdots\right) \tag{2.6}
\end{equation*}
$$

Where M^{H} is the number of occupied subitals for the irceducible representation v. The orbital variations in turn, can be expanded in terms of the full L-dimensional orbital basis. Choosing the optimal occupied and corresponding virtual orbitale as that basis, we therefore write

$$
\begin{equation*}
\delta \phi_{i}^{\nu \mu}=\sum_{j=1}^{L v} x_{i j}^{v} \phi_{j}^{\nu \mu} \tag{2,7}
\end{equation*}
$$

where the $X_{i j}^{V}$ are infinitesimal, but not necessarily independent, coefficients. Note that they are independent of $\underline{\perp}$ in order that the group-theoretical-transformation properties remain intact during the orbital variations. Substitution of the expansion (2.7) into Eqs. (2.5) and (2.6) yields

$$
\begin{equation*}
\delta_{o r b} \Psi=\sum \sum_{i} \sum_{j}^{M} x_{i j}^{\nu} \Psi(v i \rightarrow v j) \tag{2,8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(v i \rightarrow v j)=\sum_{K} C_{K} \sum_{\mu} \Psi_{K}\left(* \cdot * \phi_{i}^{v \mu_{n}} \phi_{j}^{v \mu} \cdots\right) \tag{..9}
\end{equation*}
$$

Since the orbitals form an orthonormal set, the fixed coefficients C_{K} satisfy Eq. (1.10), and the side condition (2.Ib) will be satisfied if the orbital vaziations preserve the orthonormality conditions (1,1), To achieve this, the varied orbicals $\left(\phi_{1}^{V \mu}+\sigma \phi_{1}^{V \mu}\right)$ must be related to the sptiral orbitals $\phi_{i}^{\text {vp }}$ by an orthogonal transformation with implies that the infinitesimal coefficier :s $x_{i j}^{U}$ in Eq. (2.7) are antisymmetric in their subscripts:

$$
\begin{equation*}
x_{i j}^{u}=-x_{j i}^{v} \tag{2.10}
\end{equation*}
$$

and that the set of coefficients $x_{\text {Ly }}^{V}$ Biven by $1 \ll$ cepresents a possible set of independent infinitesimal paraneter variationa. In view of this result, the orbital varistion of Ψ of $\mathrm{Eq} .(2.8)$ can be uritten in the form

$$
\begin{equation*}
\delta_{o r b}^{\psi=\sum_{V}^{\sum} \sum_{i=1}^{M} \sum_{j=1+1}^{N v} x_{i j}^{V} \Psi_{1 j}^{v}, ~} \tag{2.11}
\end{equation*}
$$

where the functions $\Psi_{1 j}{ }^{\mathcal{V}}$ are defined by

$$
\begin{equation*}
\Psi_{1 j}^{v}=\Psi\left(v i+v_{j}\right)-\Psi(v j \rightarrow v i) \tag{2.12}
\end{equation*}
$$

for
$f=(1+1),(1+2),(1+3), \ldots, M v=a n$ occupied orbital>1 and

$$
\begin{equation*}
\Psi_{1 j}^{v}=\Psi\left(v_{i} \rightarrow v_{j}\right) \tag{2.13}
\end{equation*}
$$

for

$$
j=\left(H_{v}+1\right),\left(M_{v}+2\right), \ldots, L_{v}=a \text { vircual orbital }
$$

We shail call these functions "singly excited MC functions" or "YC single excitations," and abbreviate them as MCSX ${ }^{7}$. In general, they are neither normalized nor mutually orthogonal nor even necensarily ifnearly independent. They are, however, orthogonsl to the KC Eunction ψ itself, 1.ㄹ..,

$$
\begin{equation*}
\left\langle\Psi_{1 j}^{U} \mid \Psi\right\rangle=0, \quad \text { for all } j>1 \tag{2.14}
\end{equation*}
$$

B. Generalized BLB Theorem and

Slingle Excitation Space
Insertion of $\delta_{\text {orb }} \Psi$ of Eq. (2.11) into the variational condition (2.3b) yields
$\sum_{v}^{\sum \sum=1} \sum_{j=1+1}^{\frac{L}{u}}<\Psi_{i j}^{v}|H| \Psi>x_{i j}^{u}=0$
and, since the $x_{i j}^{v}$ occurring in these equations are independent variational parameters, we obtain

$$
\begin{equation*}
\left\langle\Psi_{1 j}^{v}\right| H|\Psi\rangle=0, \quad \text { for all } 1<1 \tag{2.15}
\end{equation*}
$$

The analogous variational condicions for the case that the Ψ_{K} in Eq. (1.9) are simple Slater determinants were first derived by Levy and Berthier [2]. Since they are generalizarions of an earlier theorem by Brillouin [3] for Hartree-Fock wave functions, we shall refer to these equations as the BLB theorem. Our equations differ from the original BLB equations not only in that they are for general CSF's but, moreover, In that the singly excited MC functions Yij ambody sumacions M.ci the subspecies index $\underline{4}$ shown in Eq. (2.9) as a consequence oit the $\underline{\mu}$ independence of the $x^{\top} s$ in Eq. (2,7). Since the $\Psi_{1 j}^{v}$ are not always mutually independent, the same holds true for Eqs. (2.15).

Equation (2.15) can be given an additional interpretation if one introduces the singleexcitation (SX) space associated with a given HC function Ψ. This $S X$ space is defined as that function space which is spanned by Ψ itself and all single excieation functions (MCSX's) $\psi_{i f}^{v}$ derived from Ψ according ta Eq. (2.12). Eq. (2,15) imples then that the hamiltonian matrix in the SX space is block diagonal, the slement $\langle\psi| H|\psi\rangle$ being one block and all elemenis $\left\langle\Psi_{i j}^{v}\right| H\left|\psi_{1}^{\prime \prime \prime} j^{\prime \prime}\right\rangle$
forming the other block. Since, moreover, \mathcal{I} is orthogonal to all if [if [Eq. (2.14)], it follows from this block diagonality that the MC function ${ }^{4}$ itself is one of the efgenfunctions of the CI problem in the Sx space, when the orbltals are optimal EOT Ψ, regardiess whether the $\psi{ }_{i j}$ are inearly independent of each other or not, and that $\$$ cannot be Improved by admixing any of the MCSX's $\Psi_{i j}^{*}$. If Ψ is the groundstate then all $\Psi_{i j}^{U}$ will lie higher in energy than ψ itself and it can cherefore be inferred that uill be the elgenfunction with the lowest energy eigenvalue in the SX/CI problen. If Ψ is the nth excited state in a given symotry, 1.e., if its energy is the n-th root of the MC-CI problem, then it is possible that the $\Psi_{1 j}^{V}$, generated Erom this ψ contain sufficient admixtures from the lower MC eigenstates so that Ψ can becowe any one of the n lowest eigenfunctions of the SX-CI problem.

The foregoing derivations can be generallzed to yield the variational conditions for those orbitals which simultaneously optimize several states [4].

3. optimization procedure

A. Iterative Orbital Improvement
 for Fixed Coefficients

Let us assume for the moment that the optimal MC coefficients C_{K} of Eq. (1.9) for the grace in question are know, and lec us consider the problea of optimizing the orbitals $\phi_{i}^{\text {UN }}$ uithout changing these fixed values C_{K}. If the orbitals are not optinal, but close to being so, then the solution of the Cl problem in the SX space till yield one $\mathrm{SX}-\mathrm{Cl}$ eigenfunction

$$
\begin{equation*}
\Psi_{s x}=a_{00} \psi+\sum \sum_{i=1}^{v} \sum_{j=1+1}^{v} a_{i j}^{v} \psi_{i j}^{v} \tag{3.1}
\end{equation*}
$$

which is characterized by having a_{00} close to unizy and all $a_{1 j}^{v} \ll 1$. This eigenfunction ta readily found by using an iterative procedure that is effective in determining a single eigenfunction thich is dominated by one component [5]. If other SX-GI eigenvalues lie too close for numerical comfort, the desfred root can be isolated by adding an appropriate negative constant to the $\langle\Psi| H|\Psi\rangle$ diagonal element [6]. Comparing the expansion (3.1) with the expansion of Eq. (2.11) one realizes that the orblcal variation coefficients $X_{i f}^{v}$ are related to the SX-CI goeffictents by the equations

$$
\begin{align*}
& x_{1 j}^{v}=a_{i j}^{v} \text { for } 1<j \\
& x_{1 j}^{v}=-a_{j 1}^{v} \text { for } 1>f \tag{3.2}\\
& \left(x_{11}^{v}\right)^{2}=1-\sum_{f(\nmid 1)}\left(x_{i j}^{v}\right)^{2}
\end{align*}
$$

From this result it gan be inferred that it must be posible to deduce improved approximations to the optimal $\overline{M C}$ orbitals from the CI expanstion of the appropriate elgenfunction of the SX-CI prohlem. Furthermore, iterative expcution of such improvements can be expected to iead to the optimal MC orbitals.

The essential step thich has to be formulated in such an iterative scheme is the explicit method for deducing the improved orbitals from the solution of the SX-CL problem, and a variety of formalisms have been suggested to this end. We shall return to this question further belou.

B. Complete MCSCF Optimization

In general the MC coefficients \bar{C}_{K} are not known in advance, of course, and have to be variationally decermined at the same cifre as the orbitals are detemined, In general the coefficients C_{K} are determined as the expansion coefEi-
cients for the n-th eigenvalue of the MC-CI problern formulated in Eq. (2.4a). The matrix elements in this equation depend however on the molecular orbitala and, hence, an iteerative procedure is required for che simultaneous determination of MC orbitals sud MC coefficients. The wose effective way to aecomplish this is to solve the eigenvalue equation (2.4a) every time an 1mproved eet of molecular orbitals has been found. Hence, each iteration of the overall proced:: consises of two parte: first an improvement of . MC coefficients, and then, usiag these improved coefficients, an improvement of che molecular orbitals. A very rough schematic outline of a total MCSCF program is then as follows:

(1)
 Input

Data and integrals pertaining to quantitative basis orbitals, Initial molecular orbitals in terms of quantitative basis orbitals. Spatial and spin specifications of CSF's. Specification of desired elgenvalue in MC space.

(1i) Initiacing Calculations

Orthonormalization of intrial MO's if needed, Generation of integrals between reference $M 0^{\prime} \mathrm{s}$. Generation of symmetry and spin information. Generation of data relevant so the SX space and integrals between the MCSX's.

(111) Iteration

Calculation of integrals needed between curtent MO's from the integrals between the reference MO 's. Calculation of matrix elements in the MC space and solution of the MC-CI problem. Decermination of a basis in the $S X$ space. Calculation of matrix elements in the SX space and determination of appropriate energy elgenvector for $\mathrm{SX}-\mathrm{Cl}$ problen. Conseruction of improved Mo's.

(iv)
 Convergence Teat

Convergence can be defined in terms of several criteria:
(a) Smallness of the matrix elemencs of Eq. (2.15). This guarantees that there is no more change in the MC expansion coefficients C_{K} within the stipulated accuracy.
(b) Smallness of the difference between the energy of the HC function and the (lower) energy of the SX-CI function. This difference is nearly always monotonically decreasing.
(c) Smallness of the differeace between the energies of MC functions of two successive iterations.
(d) Smailness of the off-diagonal elemencs of the matrix which generates the new (improved) molecular orbitals from the old orbicals.

For a satisfactory MCSCF func-
tion all these criteria should be satisfied to a given accuracy and must therefore be monitored.

C. The Orbital Improvement Step

Far the Implemencarion of the outlined procedure the non-orthogonality and, possibly, innear dependence of the single-excitation functions
$\Psi_{i j}^{N}$ is a complication which has to be taken seriousiy. Concretely it implies that one will first construct an orthonormal basis, in the SX space before performing the SX-CI calculation. Let us call these basis functions $S X_{\tau}{ }^{\nu}$. The transformation from the $\psi_{i f}^{V}$ to the $s X_{+}^{V}$ is non-orthogonal and, in case of innear dependence among the $\psi_{1 j}^{\nu}$, a rectangular matrix.

The most obvious choice fa: the orbital int provement step is to use directly the Eqs. (3.2) to calculate the $x_{i j}^{V}$ from the $a_{i j}^{V}$ and this is in fant the procedure of Grein [7]. The orbitsls generated by adding the correction of Eq. (2.7) to the original orbitals are of course not strictily orthogonal and have to be reorthonormalized in some arbitrary manner. Since the $\mathrm{a}_{1 \mathrm{ij}}^{\mathrm{V}}$ are the expansion coefficients in terms of the nonorthogonal $\psi_{i f}^{v}$ basis, they have to be reconstructed from the CL coefficients in terms of the orthogonal $S X_{T}^{v}$ basis. If a linear dependence exists between the $\psi_{i j}^{U}$, then tise $a_{i j}^{U}$ are ou: not unique and neither are therefore the improved orbicals.

The ALIS formalism, which was developed by our group, is based on the following conjecture: The natural orbitals of the appropriate eigenFunction of the SX-CI problem, generated from sn MC wavefunction with non-optinal orbitals, are cluser approximations to the natural orbitals of the optimal MC wavefunction than the natural or-
bitals of the orisinal $\frac{H C}{\text { uavefunction. This }}$ premipe has ? n d us to the following procedure [4]. First the nacural orbitals $y_{n}^{\nu \mu}$ of the initial MC whefunction are determined in terms of the initial configuration generating orbitals ($\mathrm{CCO}^{\prime} \mathrm{s}$), t.e.,

$$
\begin{equation*}
\varphi_{n}^{\nu \nu}=\sum_{i}^{H} \phi_{i}^{\nu \nu} U_{i n}^{\nu}, \tag{3.3}
\end{equation*}
$$

In order to establish the $M_{v} \times M_{v}$ orthogonal transformation matrices $U^{\mathbf{V}}$. Then the natural orbitals $\tilde{Y}_{\mathrm{n}}^{\mathrm{UN}}$ of the Sx-ci eigenfunction are determined in terms of the quantitacive basis orbitals. Finally, the inverse of Eq. (3,3) is used in order to calculate the new $\operatorname{cCO}^{\prime} s \oint_{f}^{\nu l l}$ from the new natural or-

$$
\begin{equation*}
\dot{\phi}_{i}^{\sim \mu}=\sum_{i=1}^{M} U_{i n}^{V} \bar{Y}_{n}^{V \mu} \tag{3.4}
\end{equation*}
$$

The calculation of bath typea of nacural orbitals is based on the totally symmetric projection of the density matrix, so that the natural orbicals are symuetry adapted. In this procedure, no additional reorthogonalization is required. Horeover, the coefficients $a_{i j}{ }_{i j}$ are not needed: the calcuLation is carried through directly in terms of che orthogonal $\mathrm{SX}_{\mathrm{T}}^{\mathrm{V}}$ basis and is unaffected by possible Inear dependencies among the single excitation functions $\Psi_{i j}^{*}$. The on-y point which requires careful attention to detail is the matching of the new natural orbitals to the old natural orbicals. This matching has been successfully achieved on the basis of s careful analysis described in Ref. [4].

Direct use of the natural orbitals of the SX-CI eigenfunction as improved CGO's, as used by Yarkony et al. [8], is only possible for those spectal MC function for which the matrix U in Eq. (3.3) is the ideneity or, on the other hand, In the case that the MCSCF proceduce is carried out in the full active HC space (which can become very large) since, in this case, the MC function (but not the expansion coefficients) is invariant against or hogonal transformations among the cro's. This has been pursued by B. Roos [9].

A more involved way of using the density kernel to deduce impraved orbitals from the SX-CI eigenfunction has been suggested by Ruttink and van wenthe [10].

n. Remark

The list of roferences given here is far from complete. As regards the past work. Ref. [4] contafis a more exhaustive bibliography. The current work is essentially assoclated with one or the other of the participants in this workshop. I therefore feel that my illustrsous colleagues will be far better able co describe and quate their contributions than 1 would be.

4. the alis implementation

The HCSCF formallim developed by this research group has been implemented within a system of computcr programs called ALIS (denoting "Ames Laboratory, Iowa State University") for performing ab-Initio quantum chemical calcutations. It is portable, dynamic. open-ended and concinually being improved and extended. Lt contains a flexible variety of atomic orbital basis options (currently of atl atoms up to argon) and requires a minimal amount of input information, notably the reference CSF's of the AC space, expansiona of the initial orbitals, specifications of the closed and the active orbitals, specifications of the orbicala which are to be optimized and of the orbitals which are to be kept Erozen, specification of the MC roof to be sought and spectfication of the convergence criteria.

The acomic orbltai bases preferred by chis research group are general contractions of eventempered Gaussian primitives [21] because of the almost unlimited flexibility they offer in the choice of the number of primitives as well as in the number of quantitative basis orbitals, and because of the close relacionships thich have been found to exist between the principal basis orbitals of this type and the molecular HCSCF orbitals [12]. The efficient evaluation of the integrals betueen such general contractions is accomplished by an adaptation of Raffenetci's B[GGMOLI program [10].

The essentials of the iterative MCSCF process have been outlined In ReF. [4]. The CSF's are expressed as superpositions of spin-adapted antisymmetrized products (SAAP's) and the matrix element constiuction is based on the symmetric group. A Eormula file is beling used, and parcicular care is given to the various large matrix transformacions which the mathematical process requires.

A Eair number of detailed problems have to be properly attended to in order to obtain a program which is sturdy enough to hoid up under various types of mathemacical and computational stresses. ALIS has pruved to be scable under a considerable variety of conditions. Experience has shown, however, that it is not particularly desirable for an MCSCF program to be able to optimize any pathological Mc-type ansatz. It is a useful feature that it breaks down when the investigator chooses an MC space uhich is physically unreasonable for the problem whose solucion is sought.

The ALIS system, including a detailed documentation, is available through the NRCC 1ibrary.

5. THE METHOD OF THE FULL OPTIMLZED REACTION SPACE (FORS)

As has been mentioned repeatedly, the choice of the $M C$ space is an essential aspect for useful MCSCF calculations. For number of yaars we have used in our work the FuIl Optimized Reaction Space and found it a very successful approach. Not oníy does it always yield physically reasonable resulcs, but it alea aeems to sacisfy the upper bound requirement. There are five essential elements to
this method: (i) The chaice of the reaction orbitals; (11) The use of the full active space; (i1i) The use of Raffenetti-type quantitative basis orbitals; (iv) The calculation of the initial guess from a minimal set of quantitative basis orbitals; (v) The use of systematic macroiterations to optimize in very large full reaction spaces.

A. Reaction Orbitals and Full Reaction Space

The full reaction spsce (FRS) is the full configuration space of the active configurationgenernting orbitals, then the latter are chosen as retiction orbitals. These are chose orbitals which for physical reasons are principally involved in the electronic rearrangements that occur in a chenical reaction. They are essentially a set of formal conceptual minimal basis set atomic orbitals on the participating atoms or symmetry adepted superposicions of them. In fact, since the full configuration space is being used, only the tizal number of reaction orbitals in each irrep is required for definigg the full reaction apace. When the optimal expansions of the risctira orbitals in terms of the (much larger) set of quantitacive basis orbitals have been found through the MCSCF process, then we have the Full Optimized Reaction. Space (FORS) [13].

B. Raffenetti-type Quantivucive Basis Orbitals and Minital Basis Set Approximgtion

Theae quantitative basis orbitals (QBO' A) are defined in teris of primitive bases (of arbitrary size) of Gaussian atomic orbitals. The QBO's contributed by a specific arom are of three kinds: Principal Q日G's, diffuse 9 O''s and $^{\prime}$ polarization QBO's. The principal QBO's are the Hartree-Fack SCF AO's of the free atom; the diffuse $Q B O^{\prime} s$ are the wost diffuge single primitive $A O^{\prime \prime} s$ occurring in the expansions of the principal $Q B O^{\prime}$ s; the polarization QBO's are standard polarization primitives. The advantages of such bases have been diacussed elsewhere $[11,12]$. They do zequire integral programs for genezal contractions such as BIGCMOLI [1i].

Within the present context it is pertinent that the priricipal QBO's invariably dominate the oxpansions of che reaction orbitals after optimization in the FRS. This circumstance $\frac{\text { not only has }}{\text { not }}$ useful implications for the conceptual. InterpretatIon but, moreover, gives rise to an extremely simple and effective construction of the initial guess for the MCSCF calculation in the FRS [12]. In princtple, this initial orbital set is found by making an MCSCF calculation in the FRS with the quantitative basis orbitals reduced to che minimal set of the principal QBO's. In point of fact, since the number of principal QBO's is equal to the number of reiction orbitals, no orbital optimization is necesgary and a straight ci calculation in che FRS spanned by the principal QBO's suffices. The natural orbitals derived from the resulting ai wavefunction invariably turn out to be excellent approximations to the natural orbitals of the MCSCF function in the FRS when all QBO's sre included. Using them as starting orbitals, one fi ids rich faster convergence for the MCSCF procequre than one Iinds when using SCF Mo's.

C. Oreimization in Large Full Reaction Spaces chroush Macroiterations

When the FRS becomes very large, then one finds that only a relatively small number of dominant configurations determine the orbital opcimization. This is so even though a much larger number of configurations make non-trivial contributions to the energy. In this context it is pertinent that, because of the invariance of the FRS againct traneformacions among the configuration generating orbitais, there exista conaidemble freedon in the orbital choice. An effective standard choice is to use the natural orbitals of the wavefunction itaelf, since it leade to a rapid convergence of the wavefunction in tetan of the natural-orbital-based CSF's. It is therefore well suited to identify a set of dominant configurationa which determite the optimal orbitsls.

This circumstance is the bayis for a relatively simple optiaization method for very large full reaceion spaces, which consists of a sequence of macroiteracions. In each macroiteration the current orbitals are used to generate the CSF's which span the corresponding full resction space. h straight CI calculation in this FRS then yielda the current approximation to the wavefunction in the ERS. Next the natural orbitals of this approximation are deternined as orthogonal tranaformstions of the currenc MO's, and the vavefunction is now expressed in terms of CSF's generated from the natural orbitals. From this expansion set of dominant configurations is aelected which are then used to obtain 1 mp roved orbitals through an KCSCF calculation. The number of dominant configurations is increased from one macroiteratin -- mither. Convergence occurs after two or tn. 'ations. The first macroiteration natural orbitals Etom the CI calcul: ..rms of the principal QBO's as discussed in the preceding section.

A number of appilications of the described method were diacussed in the NRCC report on the Workshop on Post-Hartree-Fock Methods in Quantun Chemistry [14].

ACKNOHLEDGMENTS

In the development of the methods outilned here. I have had the able cooperation of Drs. L. H. Cheung, K. R. Sundberg, M. Gilbert. S. T. Eliert and Mr. M. Schaidt. This work was supported by the U.S. Department of Energy, office of Basic Energy Sciences, Division of Chernical Sciences, UPAS-KC-01-03-01-2. *Operated for the U.S. Department of-Energy by Iowa State University under contract No. W-7405-Eng-82.

references

[^1]3. L. Brillouin, Act. Sci. Ind. No. 159 (Hertmann, Paria, 1934).
4. K, Ruedenberg, L. M. Cheung, S. T, Eibert, Int. J. Quantum Chem. 16. 1069 (1979).
5. I. Shavitt: J. Comp. Phys. 6. 124 (1970).
6. F, Grein and A. Banerjee, Int. J. Quentum Chem. Synp. 9. 147 (1975); A. Banerjee and F. Grein, 5. Chem. Phys. 66, 1054 (1977).
7. F. Grein and T. C. Chang, Chem. Phys, Lett. 12, 44 (1971).
G. D. B. Yarkony, H. F. Schaefer, and C. F. Bender, J. Cher. Phys. 64, 981 (1976): D. R, Yarkony, J. Chem. Ehys. 66, 2045 (1977); R. R. Lucchese and D. R. Yarkony, J. Chem. Rhys. 6B, 2696 (1978).
9. B. O. Roos, P. R. Taylor, E. H. Siegbahn, Chem. Phys. 48, 157 (1980).
10. P. J. A. Ruttink and J. H. van Lentie, Theor. Chim. Acata 44, 97 (1977).
11. R. C. Raffenetti, J. Chem. Phys. 58, 4452 (1973); see also N. W. Schmidt and K. Ruedenberg, J. Chem. Fhys. 71, 3951 (1979).
12. M. W. Schmidt and K. Ruedenberg. In course of publication.
13. K. Ruedenberg and K. R. Sundberg, P. 505 of "Quantum Science" (J. L. Calais, 0. Goscinski, J. Linderberg, Y. Ôhrn, eds.) Plenum Press, N.Y., 1976; L. M. Cheung, K. R. Sundberg, K. Ruedenberg. Int. J. Quantum Chem. 16, 1103 (1979).
14. K. Ruedenberg, p. 46 of "Post-Hartree-Fock: Configuration Interaction", Report on 1978 Workshop, NRCC, Lawrence Berkeley Laboratory.

the complete active space scf program systems

Björn 0. Roos, Chemital Centre, Lund. Sweden
Per E.M. Siegbahn, Institute of Theoretical Physics
Stockholm, Sweden

SUMMARY

A review is given of the complete active space (CAS) SCF method with special emphasis on computational aspects. The CASSCF wave function is formed from a complete distribution of a neiber of active electrons in a set of active orbitals, which constitute a subset of the total occupied space. No selection of configurations is made, and the wave function can subsequentiy comprise a large number of terms: The largest case considered to date is a calculation on the ${ }^{3} d^{\prime \prime}$ state on the HNO molecule, where the wave function consisted of 10416 spinand space-adapted configuration, obtained by distributing 12 electrons among 10 active orbitals. To be able to solve the orbital optimization problem using such large CI expansions, a density matrix formalism is used, and the CI problem is solved using the recent developments of direct CI methods.

Two approaches to the orbital optimization problem have been developed and will be discussed: the Newton-Raphson scheme and the super-CI method. Convergence is nomally achieved in 5-10 iterations with the Newton-Raphson method while the super-CI method usually needs more iterations (typically 10-20). FTuctuations in the necessary numer of interations is, however, large in both methods, and pathological cases can oceur. They usuaily depend on an inappropriate choice of active orbitals.

THE CASSCF METHOD

The complete active space SCF method ${ }^{\mathbf{2 - 4}}$ represents a new way of looking at the MCSCF problem. Traditionally MCSCF calculations are based on wave functions of a very limited size, comprising a small number of pre-selected configurations. This can lead to difficulties in computations of enerqy surfaces (e.g. for chemical reactions), since it rarely occurs that 911 configurations of importance are known in advance for the entire surface. Nomally, however, it is much easier to decide in advance upon an appropriate chaice of occupied orbitals. This is the basic idea of the CASSCF approach. The orbital space is divided into three parts: the inactive subspace (labelled $i, j, k, 1, \ldots$), the active subspace (labelled t, u, v, x, \ldots) and the secondary subspace (labelled a,b,c,d,...). The inactive orbitals are assumed to be doubly occupied in all configurations. The remaining electrons occupy the active orbitals, and the CASSCF wave functions comprises all CSF's which can be generated by distributing the active eiectrons among the active orbitals in all possible ways, consistent with a given overall spin and spatial symmetry of the wave function. There is thus no selection of configurations, but the wave function is complete in the active orbital subspace. Even
thaigh the number of active orbitals nomally is rather limited, such a Cl expansion quickly becones very long. With recently developed Cl methods, however, even expansions of the order of 10^{4} terms can be handed without andy particular computational problems (see below). An important aspect of the CASSCF method is that the length of the CI expansion only affects the time required to solve the secular problem, and not the orbital optimization part. By formulating the problem in terms of firstand second-order density matrices - in the small active subspace - all explicit reference to the individual CSF's is avoided.

the secular prorlem

With the large CI expansions often encountered in CASSCF calculations it is important to have an efficient procedure for solving the secular problem. The special structure of the Cl expansion, which is complete in a small active orbital space, will on the one hand allow certain simplifications which are not possible with other general expansions. On the other hand there are high demands on the method in terms of being able to treat conficurations with many open shells. for this purpose the graphical unitary group approach ${ }^{5,6}$, which is the procedure adopted in the CASSCF CI section, is particularly well suited.

In the granhical unitary group approach Gelfand states are used as the spin adapted confiquration basis. The direct CI coupling coefficients for the one electron integrals are then obtained as a segment product with one segment value for each orbital within the corresponding generator range. A similar simple formala was also recently obtained for the two electron integrals', s . These type of formulas are particularly efficient in the cases of interest here, namely for generation of a large number of coefficients in a small number of orbitals.

In MCSCF procedures the same symbolic formulas are used a large number of times; in every CI iteration in each orbital iteration and for all the points on the potential energy surface. It is therefore important to simplify as much as possible the use of the fommua list rather than its construction. Any diagram evaluation or index evaluation during the process of solving the secular problem should for example be avoided. For large CI-expansions it is further impartant to reduce the size of the formula list as much as possible. The information in the formula list is usually organized with one coupling coefficient for each index, where the index describes the two interacting configurations. By instead grouping together matrix elements which have the same
coupling coefficient for the same integral the formula list can be reduced to essentially half the size and is therefore preferrable in large cases. Further reductions in the size of the formula list would still sonetimes be important but do not seem to be possible without drastic changes in the method or much increased labour during the diagonalization.

In the CASCI part, iterative algorithms will be used, which as the essential 5 tep require the operation of the Hamiltonian on one or a set of trial vectors in each iteration ${ }^{9}$. It should be pointed out that although the CI problem has to be solved in every HCSCF iteration the total number of CI iterations is usually only about twice as many as required in one separate CI calculation. This is simply achieved by starting with the CI trial vector from the iteration before. In cases with very long CI expansions where the CI part dominates the total time is therefore only twice the time as in a Cl calculation withaut orbital optimization.

As indicated above the only information transferred from the CI part to the orbital optimization part is in terms of the first and second order density matrices in the small active space. The number of such matrix elements is usually much smaller than the number of CI coefficients and they are also considerably more convenient to use in the orbital optimization. The density matrices are easily constructed in one pass through the coupling coefficients with the converged CI vector. In cases where there is a strong coupling between the variation of the Cl coefficients and the variation of the orbitals, transition density matrices between the root of interest and closely lying roots should also be constructed at the end of the CI part. From these matrices the coupling elements are easily calculated in the orbital optimization ${ }^{3}$.

THE NEWTON-RAPHSON SCHEME

In the orbital optimization part of the Newton-Raph son approach we look for anitary transformation of the initial orbital set which minimizes the energy. This unitary transformation is conveniently described by an exponential parametrization where the parameter matrix is symmetric ${ }^{10}$. In order to obtain a quadratically convergent orbital optimization scheme both first and second derivatives of the energy with respect to the orbital rotation parameters are needed. Simple formulas for these derivatives are obtained in the form of expectation values of commutators between the Hamiltonian and the generators of the unitary group ${ }^{11,12 \text {. The }}$ disappearence at convergence of the first derivatives is through these formulas expressed as the Erillonin-Levy-Eerthier (BLB) theorem ${ }^{13}$. An important point which is noticed in the explicit expressions for the first derivatives in the CASSCF method is that integrals with at most one index in the large secondary space are required, see equation (14) in Ref. 2. This means that a very limited integral transformation is required to obtain these gradients and this is the basis for fast, although not quadratically convergent methods. To obtain the exact expressions for the
second derivatives integrals with two secondary indices are needed, which require a substantially longer transformation time. With the information from the CI-part in the form of first and second order density matrices in the active space together with the required transformed integrals all derivatives required to set up the Mewton-Raphson equation system can be constructed using the explicit formulas given in Ref. 3. The dimension of the N-R equation system is set by the number of parameters which are of three types; parameters describing rotations between inactive and active orbitals, between inactive and secondary orbitals and finally between active and secondary orbitals. All first derivatives with respect to other types of rotation parameters are identically zero and these parameters are therefore discarded in the equation system. This removes all problems concerned with singularities in the Hessian matrix. A problem which can still occur in the N -R procedure far away from convergence is that the Hessian matrix is not positive definite in which case the obtained rotations would not lead to a minimum for the energy. Before solving the N-R equations all negative and small positive eigenvalues of the Hessian matrix are therefore shifted to a smallest allowed positive value following assentially the procedure described in Ref. 14.

The dominating step in a CASSCF iteration is nomally the integral transformation, at least in cases where the Cl expansion is not very long. As indicated above most of the transformation time goes into calculating the integrals with two external indices which are only needed for the Hessian matrix. Since it has been found that once the Hessian matrix has become positive definite it usually changes only marginally, a strategy, which has been used success?ully to reduce the computation time, is to keep the same Hessian matrix in several iterations. In the cases where comparisons have been made this procedure increased the number of iterations by usually not more than one and gave an overall significant saving in computation time ${ }^{3}$.

We should finally comment on the fact that although the $N-R$ approach is a quadratically convergent orbital optimization procedure this process does not always lead to fast convergence. The rea:ions are twofold. First, the parameter surface may be far from quadratic and second there can be significant coupling between orbital and CI coefficient rotations. The latter effect has been app;oximately corrected for in Ref, 3 with only minor improvement in convergence rate. On the other hand drastic improvement in convergence has been obtained by changing the structure of the active orbital space which apparently sometimes may lead to a more quadratic parameter surface.

THE CASSCF SUPER-CI METHOD

The Super- Cl methad ${ }^{25,16}$ can be regarded as an approximate form of the Newton-Raphson scheme. Instead of obtaining the orbital transformation matrix by solving a set of linear equations, one obtains this matrix by soiving a secular equation, which corresponds to a "super-CI" expansion
including the ground state $|0\rangle$ plus all single excitations (SX-5tates) obtained by operating on 103 with single generators of the unitary group. The interactions between the SX-states and the ground state is then given exactly as the BLB matrix elements (see equations (6) in ref. 4). The necessary and sufficient conditions for a converged solution - the BLB conditions - are consequently in the super-Cl method equivalent to a solution of the SX-state problem, with all coefficients equal to zero.

In Grein's original work ${ }^{25}$, 16 , after solution of the corresponding secular probiem the super-Cl expansion caefficients were used directiy to set up the orbital transformation matrix. In the modified version developed by Ruedenberg et al. ${ }^{17}$ improved orbicals are obtained instead as the natural orbitals of the super-CI wave function. This method is especially attractive in the CASSCF case, as $|0\rangle$ here is invariant to a unitary transformation among the active orbitals. It is thus possible to use the NO's (selecting those with the highest occupation numbers) as trial orbitals for the next iteration, without any forther manipulation. As a result the converged solution will automatically be the natural expansion of the wave function $|0\rangle$.

The BLB matrix elements can be expressed directly as matrix elements of a MCSCF Fock operator ${ }^{\text {ba }}$ (equation (9) in ref. 4). The matrix elements between the $5 x-s t a t e s$ are, however, more complicated and involve the first- second- and thirdorder reduced density matrices for the wave function $10\rangle^{1},^{2}$. Even if these density matrices are defined over the small active subspace only, the direct calculation of the third-order density matrix is cumbersone, and the size of this matrix easily becones prohibitely large. Also, the SX-state matrix elements contain two-electron integrals with two indices outside the active subspace (as is the case also for the Hessian in the NR scheme). An exact solution of the super-CI problem therefore leads to a computationally more complicated procedure than the \mathbb{N} scheme.

The super-CI method then does not seem to be competitive with the quadratically convergent NR approach. As has been shown ${ }^{2}$, 4 it is, however, possible to approximate the density-matrix formulated super-Cl method such that these difficulties dissappear to a large extent. The idea is to replace the Hamiltonian operator with an approximate one-particle Hamiltonian, when calculating the matrix elements between the $s x-s t a t e s$. These matrix elements are then also obtained in tems of matrix elements of the MCSCF operator, and first-and second-order density matrix elements with indices in the small active subspace only*. The calculation of the SX Mamiltonian matrix then becomes almost trivial. The corresponding secular problem is easily solved using the direct CI method in combination with a Davidson algoritm ${ }^{9}$. In a direct CI method the timing is proportional to the number of cycles needed to converge. This number depends critically on the intitial quess of the eigenvector. Since all coefficients in the super-CI wave function approaches zero as convergence is attained, the number of necessary cycles decrease markediy as the CASSCF calculation proceeds. As a consequence
the time used in the orbital optimization step decreases with the number of interations performed. This is also the case for the solution of the CASCI secular problem, as pointed out in a preceeding section. The time needed for the integral transformation of the two-electron integrals, however, remains the same, and therefore becomes more and more dominant part of the calculation.

The super-CI method cannot be expected to have as good convergence properties as the NewtonRaphson approach. It is, however, considerably faster, especially since fewer molecular twoelactron integrals are needed, and therefore often competes favourably with the NR scheme in calculations of energy surfaces were trial vectors obtained from nearby points can be used. Typically between 10 and 20 iterations are needed for convergence to 10^{-6} a.u in the energy and 10^{-4} in the BLB matrix elements, if SCF vectors are used as a starting guess of the molecular orbitals. If CASSCF orbitals of a similar calculation (nearby point on an energy surface, another electronic state, etc.) are used as trial arbitals, the number of iteration is often much less than ten.

convergence problems in casscf

As has already been pointed put in the preceeding sections convergence is normally satisfactory both in the AR and super-CI versions of the CASSCF program system. Pathological case oceur, however, now and then and it might be of interest to give some exampler, which shows that these convergence problem freauently are of a physical origin instead of being a result of the numberical procedure adopted.

In a recent calculation ${ }^{4}$ of the potential curves for the ${ }^{1} \varepsilon_{g},{ }^{3} \Sigma_{U}$ and ${ }^{3} M_{g}$ states of the N_{2} molecule, convergence (to the previously mentioned thresholds) as obtained in $4-6$ iterations for all points on the poiential curves excepr in a small region between 3.5 and 4.0 a. 4. , where 15 iterations were needed. The super-Cl approach was used and tine active subspace comprised nine orbitais, including the weakly occupied $2 \pi_{u}$ orbital. The reason for the problems was a drastic change in the structure of this orbitals. At distances shorter than 3.5 a,u. the $2 \pi_{u}$ orbitals has mainly p-character, describing radial correlation effects, but at longer distances it becomes dominantly 3d (angular correlation of the $2 p$ shell in the nitrogen atom). In the region 3.5-4.0 a.u. the two effects compete and convergence is slowed down considerably. An obvious solution to the proolem is to include both correlation effects at all distances, that is, to add a third n_{u} orbital subspace (or to remove also $2 \pi_{u}$).

Another example of convergence difficulties occurred in a calculation on the ' Γ^{+}state of CN^{+} at large internuclear distance. With the basis set used, and the active subspace chosen, a number of electronic states (including $C+\mathrm{N}^{+}$and $\mathrm{C}^{+}+N$) happaned to be almost degenerate. The program could consequently not decide about the ground state, and the choice could vary from iteration to iteration. As a result large fluctuations of the orbital coefficients occurred in every iteration and a converged result was actually never reached. The experimental energy difference between $\mathrm{C}+\mathrm{N}^{+}$and
and $\mathrm{C}^{+}+\mathrm{N}$ is around 0.3 eV , so there is obviously room for an improvenent of the calculation.

It may also happen that a calculation converges but not to the expected (desired) wave function. If the active subspace includes weakly occupied orbitals which describe dynamical (pair) correlation effects, there is sometimes a choice between different pair correlations, and the result may depend on the starting quess for these orbitals. Such a situation has occurred in calculations on molecules containing transition metal atoms (examples are NiH and CuF_{2}) where weakly occupied orbitals can choose to correlate 3d electron pairs on the metal atom or electron pairs on the ligands, depending on the starting guess.

The difficulties illustrated by the examples given above are of a physical origin and cannot be handled by a improvement of the orbital optimization procedure. They are examples where the energy hypersurface has several close lying local minima, a situation which is often encountered in MCSCF calculations. One solution to these problems would be to increase the active subspace to include dynamical correlation effects in a balanced way (i.e. both radial and angular correlation in N_{2}), but this route is severely limited, since the number of configuations increases drastically with the number of active orbitals. Another solution is to add a fourth subspace (the "correlation space") which is allowed only two hotes or two particies. This space is then used to describe pair correlation effects. In this way the primary (occupied) orbital space can be enlarged considerably and dynamical correlation effects can be included to a large extent. Work along these lines are presently in progress ${ }^{29}$

REFERENCES

1. B.O. Roos, P.R. Taylor and P.E.M. Siegbahn, Chem. Phys. 48, 157 (1980).
2. P.E.M. Siegbahn, A. Heiberg, B.O. Roos and B. Levy, Physica Scripta 21, 323 (1980).
3. P.E.M. Siegbahn, J. Almioff, A. Heiberg and B.O. Roos, Submitted for publication.
4. B.0. Roos, Int.J. Quantum Chem. S14, XXX (1980).
5. J. Paldus, in Theoretical Chemistry: Advances and Perspectives (ed, H. Eyring and D. Henderson), vol. 2, p 131, Academic Press, New York, 1976.
6. I, Shavitt, Intern.J. Quantum Chem. S11, 131 (1977) and S12, 5 (1978).
7. 8. Shavitt and J. Paldus, to be published.
B. J. Paldus and M.J. Boyle, Physica Scripta 21. 295 (198D).
G. E.R. Davidson, J.Comput. Phys., 17, 87 (1975).
1. B. Levy, Int.J. Quantum Chem. 4, 297 (1970).

1t. B. Levy, thesi's CNRS No AO 5271. Paris i971.
12. E. Dalgaard and P. Jörgensen, J.Chem. Phys. 69, 3833 (1978).
13. B. Levy and G. Berthier, Int.J.quantum Chem., 2, 307 (1968).
14. D.L. Yeager and P. Jörgensen, to be published.
15. F. Greill and T. Chang, Chem, Phys, Letters 12, 44 (1971).
16. F. Grein and A. Banerjee, Intern.J. Quantum Chem. S9 (1975) 147; J.Chem.Phys. 66, 1054 (1977).
17. K. Ruedenberg, L.M. Cheung and S.T. Elbert, Int.J. Quantur, Chem. 14, 1069 (1979).
18. J. Hinze, J. Chem. Phy5., 5916424 (1973).
19. J. Almiöf, A. Heiberg, P.E.M. Siegbahn and B.O. Roos, work in progress.

a mcscf program employing the generalizel brillouin theorem

Joop H, van Lenthe*
School of Chemistry, Bristol University, Bristol BSB ITS, U.K, and
Paul J.A. Ruttink
Vakgroep Theoretische Chenie, Rijks Universiteit Utrecht, Utrecht, The Netherlands.

SUNTARY

A program system is described that optimises a multiconfiguration wavefunction in an iterative manner. Each iteration consists of two stages; firstly the determination of the coefficients of the Configuration State Functions (CSF's) in the reference function and secondly the performance of a CI calculation using the reference function and single excitations from it (Brillouin state Interaction (BI) caiculation). Two methods of obtaining a transformation to better orbitals from the result of this BI calculation are implemented, i.e. the first order method ${ }^{2}$ and the density matrix method ${ }^{3-5}$ (employing natural orbitals).

The program is in practice able to handle up tr 60 CSF's and 30 orbitals. It can handle an additional 30 orbitals using perturbation theory.

Convergence of both orbital transformation methods and an exponential method 6 are equally good and linear ($10-15$ iterations for 10^{-8} a.u. accuracy in the energy), so the first order method is to be preferred on account of its simplicity and general applicability. The four index transformati n^{7} in each iteration is the major time consuming step, so iteration times are proportional to n^{5} where n is the number of orbitals.

Applications include calculations of the barrier for the $\mathrm{LiH}+\mathrm{H} \ddagger \mathrm{Li}+\mathrm{H}_{2}$ reaction, ${ }^{2}$ potential energy curves for $\mathrm{O}_{2}{ }^{+4}$ and $\mathrm{CuD} D^{B}$, the ${ }^{1} A^{-}$ excited state of $\mathrm{HO}_{2}^{+4,9}$, dipole moment of cyclopropenelly and of the eis-trans energy difference ${ }^{4}$ and charge distribution ${ }^{11}$ of formic acid.

HETHOD

The iterative optimisation consists of the following steps:

1) The reference function ψ_{0} is detemined for the starting orbital set (ϕ) by a small CI calculation.

$$
\begin{equation*}
r_{0}=\sum_{k} a_{k} \phi_{k} \tag{1}
\end{equation*}
$$

i) All relevant singly excited states (Brillouin state5) are formed.

$$
\begin{equation*}
\psi_{i \mathbf{j}}=\psi_{\mathfrak{a}}(\mathbf{i}+\mathbf{j})-\psi_{0}(\mathbf{j}+\mathbf{i}) \tag{2}
\end{equation*}
$$

These Brillouin states are neither nomalised nor mutually orthooonal. Bu solving the general eiqenvalue oroblem for the set $\left\{\psi, Y_{0},^{\prime \prime} i j\right\}$ we obtain the coefficients b in the Brillouin state Interaction function

$$
\begin{equation*}
{ }_{B I}=b_{u} \psi_{0}+\underset{i \neq j}{\varepsilon} b_{i j}{ }_{i j j} \tag{3}
\end{equation*}
$$

Dutch Ramsay Memorial Fellow
3) The information contained in $\Psi_{B I}$ is used to obtain the transfomation matrix I which transforms the orbital basis to möre optimal orbitals

$$
\begin{equation*}
\Phi^{*}=\phi I \tag{4}
\end{equation*}
$$

The following two methods are implemented:
A. First order method ${ }^{2}$

$$
\begin{align*}
T_{i j} & =b_{0} \tag{5}\\
T_{i j} & =b_{j i}=-b_{i j}
\end{align*}
$$

Since the orbitals $\phi^{\text {- }}$ are only orthonormal to first order, an additional orthonomalisation is needed, taking care that the most important (occupied) orbitals are least spoiled, e.g. using Schmidt.
B. Density matrix method ${ }^{3-5} \quad \mathrm{I}=\mathrm{I}_{B I} \mathrm{I}_{0}{ }^{+}$
where IRI and To are the metrices of the coefficients in the basis $\{\phi\}$ of the natural orbitals of $\psi_{B I}$ and ψ_{0} respectively. This automatically yields a unitary transformation matrix.
He also tried another way to obtain a unitary T directly,
C. Exponential method ${ }^{6} 1=e^{-b}$
where b is the matrix of the Brillouin state coefficients $b_{i j}$.
4] Replace (ϕ] by $\{\phi$ "\} \{and perform a four index transfomation) and start again at 1).

The bij's are used to monitor convergence.
Usually a threshold value of 10^{-4} (for the maximum absolute value of $a b_{i j}$) is used, which corresponds to about $10^{-7}-10^{-6}$ a,u. in the energy.

Perturbation theory

Instead of computing all $b_{i j}$'s by solving the full set of secular equations, one may compute the smaller ones using second order perturbation theory ${ }^{12}$

$$
\begin{equation*}
b_{i j}=\frac{\left\langle\Psi_{0}\right| H\left|\Psi_{i j}\right\rangle}{\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle\left\langle\Psi_{i j} \mid \Psi_{i j}\right\rangle-\left\langle\psi_{i j}\right| H\left|\Psi_{i j}\right\rangle} \tag{8}
\end{equation*}
$$

Treating all excitations to a certain (virtual) orbital this way has the following advantages:
1 . The dimension of the set $\left\{\psi_{0}, \psi_{i j}\right\}$ needed in the BI calculation and the total number of CSF's is reduced.
2. No integrals between the "perturbation orbital" and other virtual orbitals are required.
3. All perturbation orbitals gre equivalent, so only a short s.mbolic matrix element list is needed.

If too large a proportion of the virtual orbitals are treated using perturbation theory convergence is badly affected $\langle c f$. ref. 2\rangle.

According to our experience a good rule of thumb is to treat about half the virtual orbitals in this way.

MCSCF-CI

The set of CSF's, from which the singly excited states (Brillouin states) are formed, may be a useful set to perfonm a CI calculation with, using the converged MCSCF orbitals.

Reasons for this are:

1. The H matrix for this set has already been computed in step 2 of the iteration process 50 the CI only involves an additional diagonalisation.
2. If ψ_{0} contains the nost important double excitations, the MCSCF-CI probably contains the most important single double and triple excitations.
3. The resulting CI function has the same invariance properties under orbital transformation as the reference function ψ_{0}, so the result is independent of the starting orbitals ${ }^{3}$.

The MCSCF-CI has proven to be quite effective for $\mathrm{O}_{2}{ }^{+}$in a $V B$ mode 1^{1+} and for $\mathrm{LiH}_{2}{ }^{3}$.

PROGRAM SYSTEM ${ }^{4}$

The MCSCF program consists of three programs written for the Cyber 73-28 of the Utrecht University computer center.

1. FINDH, a general four index transfomation program which contains various options to localisel 3 , reorder and orthonomalise ${ }^{14}$ the orbitals, in order to provide a proper integral input file for the iteration process. A "frozen core" 15 option, which effectively decreases the dimension of the integral file, is included.
1I. MCCODE, a program that produces a fommula tape, containing all information, which is independent of the actual value of the integrals, e.g. a symbolic matri" element list.

The spin functions are constructed according to the genealogical (Branching Diagram) method ${ }^{15}$. The order of the orbitals can be chosen freely to yield maximal interpretability. Itis has also been explaited to simplify the transformation from CSF's to Brillouin states, by requiring that each single excitation working on a C5F produces just one CSF.

Extensive use is made of bit manipulations (CDC-fortran) to keep the tape as short as possible; e.g. storing coefficient and pos tion of an integral in one 60 bit word and storing the occupation scheme of a CSF in one word.
Ill. Mr.SCF, the actual iterative program that contains it $\overline{t s}$ own specialised four index transformation routines. By a special ordering of orbitals and CSF's, both integral file and H matrix list ․․

Use of symmetry can be made to elimina.e unnecessary single excitations; equivalence restrictions can be applied by a contraction of the Brillouin states ${ }^{17}$ and a fixed linear combination of CSF's in the reference function can be
prescribed.
In order to accelerate convergence extrapolation may be applied. The method of Sack ${ }^{18}$ seems to yield the best results, however, usually only if all $b_{i j}$'s are less than $\approx 5.10^{-3}$

Sçope

In the following we present the limitations of the present MCSCF program. Limits due to fixed dimensions or available space in a computer word are underlined; other limits are approximate.

```
# or!,itals < 60
# variationally treated orbitals < 30
    # CSF's in % < < 60 (255)
    # singly excited (Briliouin) states< 300
    # CSF's (total) < 4095
    # symmetries < .6
```

Equivalence restrictions only for two dimensional irreducible representations. Singlets up to quartets can be treated (0 : 3/2)
\# singly occupied orbitals in a

$$
\begin{aligned}
\text { CSF in } \psi_{0}: & \text { singlets/ } \\
& \text { triplets }<\underline{4} \\
& \text { doublets/ } \\
& \text { quartets }<\underline{5}
\end{aligned}
$$

PERFORMANCE

Convergence

In Figure 1 we give a plot of the convergence behaviour of all three orbital transformation methods in a test calculation on $\mathrm{H}_{2} \mathrm{O}$ using 5 CSF's ${ }^{4}$.

Figure 1. Convergence of various GBT methods. Logarithms of Energy-final energ̣v (a.u.) against no. of iterations.

Convergence in all cases is linear and quite fast (12 iterations for an energy constant to 10^{-8} itartree). There is little difference between the methods. The first order method (A), being the simplest of the three, seems therefore to be the best choice.

The density matrix method (B) suffers from the defect that it cannot optimise functions with singly occupied orbitals like

$$
\begin{equation*}
-\frac{1}{2}\left(\left|\phi_{a} \bar{\phi}_{b}\right|-\left|\bar{\phi}_{a} \phi_{b}\right|\right) \tag{9}
\end{equation*}
$$

in the two orbital function space. The density nhatrices for $\psi_{B I}$ and ${ }^{\prime} g$ are both diagonal, so the matrices $T_{B I}$ anc $T_{0}(e q-6)$ are unit matrices, whatever the value of $b_{i j}$ is.

Timing.
Sore timings (in seconds) for $\mathrm{O}_{2}{ }^{+4}$ (is shells frozen, effectively 24 orbitals) are presented below:

| Stale | MCCODE | MCSCF (per iteration)
 4 |
| :--- | :---: | :---: | :---: |
| indek 2 | tota) | |

The four index transfomation is the time determining step in the MCSCF calculations (a HF calculation on $0{ }^{3} 5_{0}^{-}$in the same basis takes in seconds per iteration). Note the rather large time needed to produce the formula tape (MCCODE).

APPLICATIONS

Applications fall into tho broad categories, viz. patential energy curves for small molecules keeping inner shells frozen and rectifying Hartree Fock deficiencies for rather larger molecules.

In the final category first calculations on $\mathrm{O}_{2}{ }^{+4}$ and CuO ${ }^{8}$ using typically 20-3D orbitals (effectively) and 5-30 CSF's.

The second category contains calculations on the ' A ' state of $\mathrm{HO}_{2}{ }^{+}$and on the charge distributions in cyclopropene ${ }^{10}$ and formic acid ${ }^{4}$. For $\mathrm{HO}_{2}{ }^{+}$a 2 CSF function was needed to solve a near degeneracy problem for the first excited state. The calculations on formic acid were only done in two molecular conformations in an attempt to obtain a better cis-trans energy difference. Early calculations ${ }^{4}$ used a maximum of 38 orbitals and 2-8 CSF's, where 2 CSF's appeared to be enough for a significantimprovement in the energy-difference. Since, however, dipole and quadrupole moments were far from satisfactory larger MCSCF and Cl calculations are presently undertaken ${ }^{11}$ using $10-40$ CSF's and up to 50 orbitals.

REFERENCES

1. 8. Levy and G. Berthier, Int.J. quantum Chem. 2 (1968) 307.
1. F. Grein and T.C. Chang, Chem. Phys.Lett. 12 (1971) 44
A. Banerjee and F. Grein, Int.J.Quantum. Chem.

10 (1976) 123.
3. F.J.A. Ruttink and J.H. V.Lenthe, Theoret.Chim. Acta (Berl.) 44 (1977) 97.
4. J.H. v.Lenthe, Ph. D. thesis (Utrecht, 1979): available upon request.
5. K. Ruedenberg, L.M. Cheung and S.T. Elbert, Int. L . Quantum Chem, 16 (1979) 1069.
6. 8. Levy, Int.J. Quantum Chem. 4 (1970) 297.
7. M, Yoshimine, IBM Technical Report RJ 555, San José (1969)
G. H.F. Dierck sen, Theoret.Chim,Acta (Berl.) 33 (1974) 1.
B. D.H.W. den Boer and E.W. Kaleveld, Chem. Phys. Lett. 69 (1980) 389.
9. J.H. V.Lenthe and P.J.A. Rutt ink, Chem, Phys. Lett. 56 (1978) 20.
10. J.H. V.Lenthe and J.L.M. Smits, Recl, Tray.Chim. Pays-Bas, 99 (1980) 130.
17. J.v.d. Linden and F.B. v, Duijneveldt, private communication (Jtrecht 1980).
12. J. Hinze, J.Chem. Phys. 59 (1973) 6424.
13. V. Magnasco and A. Perico, J.Chem. Phys. 47 (1967). 971.
14. P.O. Löndin, Adv. Quantum Chem. 5 (1970) 1B5.
15. R.P. Hosteny, T.H. Dunning Jr., K. R. Gilman, A. Pipano and I. Shavitt, J.Chem. Phys. 62 (1975) 4764.
16. M. Kotani, A. Amemiya, E. Ishigurn and T. Kimura, Tables of Molecular integrals, Maruzen, Tokyo (1963).
P.J.A. Ruttink, Theoret.Chim. Ar ta (Berl.) 36 (1975) 289.
17. D.R. Yarkony, H.F. Schaefer ard C.F. Bender, J. Chem. Phys. 64 (1976) 981.
18. R.A. Sack as quoted by C.C.J. Ruothaan and P.S. Bagus in: B. Alder. S. Fernbach and M. Rotenberg (eds.), Methods in Computational Physics, Acaciemic Press, New York (1963).

THE OPTIMISATION OF THE NON-ORTHOGOMAL ORBITALS IN: A GENERAL VALENCE-BOND WAVEFUNCTION - THE VB-SCF METHOD.

Joop H. v.Lenthe* and Gabriel G. Balint-Kurti
School of Chemistry, Bristol University, Bristal BS8 ITS, I.K.

SUMAARY

We present an extension of the Generalised Brillouin Theorem ${ }^{1}$ and the corresponding MCSCF method ${ }^{2}$, ${ }^{\text {t: }}$ allow for non-orthogonal orbitals. Essentially the same formalism as in the orthogonal case applies, but care should be taken to use the proper (singly excited) Brillouin states.

Test calculations for OH indicate a good convergence behaviour. Several small valencebond functions have been investigated and the equilibrium distance and the dissociation energy are found to improve - ramatically upon orbital optimisation. Application of valence-bond theory in this manner allows us to use an accurate wavefunction to describe chemical bonding in terms of widely used chemical concepts like hybridisation and mixing of valence-bond structures.

THEORY

Erillou in theorem

The Generalised Brillouin theorem for orthogonal orbitals is well documented. We generalise it here to permit the use of nonorthogonal orbitals in order to show that the same principle still applies. Consider an orbital transformation of the form $\phi_{\hat{j}}=\phi_{i}+b_{i j} \phi j$. For the first derivative of the energy with respect to $b_{i j}$ we obtain ${ }^{1,2}$:

Where $\Psi_{i j}$ is the (singly excited) Brillouin state corresponding to the orbital mixing (see next section). So we get:
$\frac{\mathrm{dE}}{\mathrm{db}_{\mathrm{ij}}}=2 \frac{\langle\psi| H-E\left|\Psi_{i j}\right\rangle}{\langle\psi \mid \psi\rangle}$
The requirement that the energy be stationary yields:

Generalised Brillouin Theorem: $\langle\psi| H-E\left|\psi_{i j}\right\rangle=0$
This Briliouin theorem can be used in exactiy the same way as that for orthogonal orbitals ${ }^{2,3}$ to optimise the non-orthogonal orbitals in a valencebond wavefunction.

[^2]
Brillouin states

The main problean in an optimisation of nonorthogonal orbitals is to avoid dependencies, i.e. to use the correct number of degrees of freedom. To this end we distinguish two cases for mixing two orbitals ϕ_{i} and ϕ_{j}.
A. The orbitals may be varied independently. In this case two separate Brillouin states ${ }_{i j}$ and $\Psi_{j i}$ exist, representing the two available degrees of freedsu:

$$
\begin{align*}
& \Psi_{i j}=\psi(i+j) \tag{4}\\
& \psi_{j i}=\psi(j \rightarrow i)
\end{align*}
$$

B. The orbitals may not be varied independently, i.e. it is possib7e to orthogonalise orbital ϕ_{i} to orbital of without affecting the wavefunction In this case we have only one degree of freedom and should use only one Brillowin state, the $1-3$ usual Brillouin state for orthogonal orbitals

$$
\begin{equation*}
\psi_{i j}=-\psi_{j i}=\psi(i+j)-\psi(j+i) \tag{5}
\end{equation*}
$$

Of course care should be taken not to introduce any orbital mixings that do not change the wavefunction at alf. In the presented formalism this situation is usually easily recognised by the program.

Method

Essentially the same method as described previously ${ }^{3}$ is incorporated in an automated and improved version of the valence-bond program Multibond , allowing for a maximum of 30 orbitals and 1000 slater determinants. The orbital transfomation matrix, used in the iterative optimisation, is detemined by the first order method ${ }^{2.3}$. As many orbitals as possible are orthogonalised in order to impreve convergence and facilitate various matrix-manipulations.

The Brillouin states used may be chosen freely, which makes it easy to impose restrictions on the kind of orbital mixings, that occur. An interesting case is to allow only mixings within each atom in order to detemaine optimal hybrid orbitals (i.e. distorted atomic orbitals on a single center).

APPLICATIOA

He have applied the method to the optimisation of various valence-bond wavefunctions for oH ($\left.{ }^{2} \mathrm{n}\right)$. A double 2 eta + polarisation gaussian basis' $((9,5,1 / 5,1) \rightarrow[4,2,1 / 2,1])$ was used with exponents of 1.0 for the polarisation functions. No equivalence restrictions were applied so the optimised wavefunctions depart slightly from a pure n state.

Two types of orbital optimisation were employed:
A. "intramatomic": only orbitals on the same atom are allowed to mix.
5. "Full": the orbitals are optimised in the complete function space.

Various wavefunctions* have been used. One of them, a basic valence-bond function, is shown in Table I, with its coefficients for an internuclear distance near to the equilibrium distance $(R=1.85$ a.u.; $E=-75.42022$ a.u. $)$.

Table 1. Basic VB functions "Intra-atomic" optimised at 1.85 bohr.
no. Constituent $\begin{array}{ll}\text { Orbital } \\ \text { dtomic states } & \text { occupation }\end{array}$
Coefficient
$10\left({ }^{3} P\right) \& H(2 S) \quad 15^{2} 25^{2} y^{2} x z^{(b)}$
-0.235
$2 \quad 0\left({ }^{(} \mathrm{D}\right) \& H\left({ }^{2} S\right) \quad 1 s^{2} 2 s^{2} y^{2} x \mathrm{zh}^{(b)}$
0.191
$3 \quad 0^{+}\left(2 D^{0}\right) \mathrm{H}^{-}(15) 15^{2} 2 s^{2}\left(z^{2}-y^{2}\right) \times h^{2}$
0.053
$4 \quad 0^{+}\left(-\mathrm{P}^{0}\right) 8 \mathrm{H}^{-}\left({ }^{1} S\right) 1 s^{2} 2 s^{2}\left(z^{2}+y^{2}\right) \times h^{2}$
-0.028
$5 \quad 0^{-}\left(2 p^{0}\right) \propto H^{+} \quad 1 s^{2} 2 s^{2} z^{2} y^{2} x$
0.327
(a) $15,25, x, y, z$ are orbitals on oxygen, h is the Is orbital on hydrogen
(b) The spinfunctions are 2aas-(ab+Ba)a and (ab-ba)a respectively.

Another interesting function is the covalent VBfunction which consists of structures 1 and 2 of Table I. The computed equilibrium distance and dissociation energies for these functions using various optimisations are given in Table 11. Aiso given are the number of iterations needed to converge within 10^{-4} (for $\left|b_{i j}\right|$; see ref. 3) starting from the previous level of optimisation (in brackets) and the overlap between the H orbital and the 02 s -type orbital (S_{sh}) and z-type orbital $\left(S_{z h}\right)$, all at l. 85 bohr.
calculation using all "Intra-atomic" single excitations from a 13 structure $18-5 C F$ function. This yielded a D_{e} of 4.28 eV . It is interesting to note that the covalent VB function, when fully optimised, yields the same energy as the hasic VB function, indicating that allowing the ortitals on different centers to mix can eliminate the need for ionic valence-bond structures.

On inspection of the overlaps in Table II we note that, upon optimisation, the oxygen 25hydrogen is overlap is decreased, while the overlap between the oxygen z orbital and the hydrogen is orbital increases significantly. This is consistent with the interpretation that the oxygen $2 s$ orbital is distor tef to point away from the hydrogen while the oxygen zorbital forms an "sp"hybrid pointing towards it. An examination of the orbital coefficients indicates, that there is a considerable s-p mixing on oxygen, but much less than would be needed to form two equivalent sp hybrids.

REFERENCES

1. B. Levy and G. Berthier, [nt.J.Osantum. Chem. 2 (1968) 307
2. F. Grein and T.C. Chang, Chem, Plivs,Lett. 12 (1971) 44.
J.H. v.Lenthe, Ph. D. thesis (Utrecist, 1979).
3. J.H. v.Lenthe and P.J.A. Ruttink, A NCSCF program empioying the Generalised Brillouin Theorem, these proceedings (1980).
4. G.G. Balint-kurti and R.N. Yardley, 'MUITIBOND (Version A), Ab Initio Multistructure Valence-Bond Calculational System' QCPE 12 (1977) 335.
5. F.B, yan Duijneveldt, IBN Technical Report RJ 945 (1971).
6. B. Rosen (ed.) Selected Spectroscopic data on diatomic molecules (Pergamon, London, 1970).

Table 11. Results for various VB-functions

wavefunction	optimisation	$\binom{\text { no of }}{\text { iterations }}$	R_{e} (bohr)	$\mathrm{D}_{\mathrm{e}}(\mathrm{eV})$	$\mathrm{S}_{\text {sh }}$	$S_{z h}$
Basic	∞ (a)	(-)	2.20	1.73	0.51	0.41
Easic	"Intra-atomic"	(13)	1.87	3.28	0.31	0.54
Basic	"Full"	(9)	1.87	3.43	0.30	0.54
Covalent	"In:+ra-a tomic"	(7)	1.76	1.77	0.27	0.60
Covaient	"Full"	(11)	1.87	3.42	0.28	0.77
Experiment ${ }^{6}$			1.83	4.62		

(a) indicates that the optimised orbitals for the separate atoms are used

Convergence is quite good and the optimisation gives a dramatic improvement in equilibrium geometry and dissociation energy. The best result obtained so far is with a VB-C] (cf. ref.3)
*All wavefunctions were such that the orbitals on the same atom could be mutually orthogonal.

A PARTITIONING TECHNIQUE FOR MULTICONFIGURATION SELF-CONSISTENT-FIELD THEORY

C. W. Bauschlicher, Jr.*

\section*{P. S. Bagus}
IBM Research Laboratory, 5600 Cottle Road, San Jose, California 95193
D. R. Yarkony ${ }^{\mu+\xi}$
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

*Supported under NASA Contract No. NAS1i-14101, NAS1-14472, NAST-15810 while in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23665.
"Partially supported by Air Force Office of Scientific Research (AFOSR-79-0073) and National Science Foundation (CHE-7824153) grants during the course of this research.
${ }^{\dagger}$ Alfred P. Sloan Research Fellow.
${ }^{\text {§ }}$ Contributed by D. R. Yarkony.

ABSTRACT:

The limiting step in many MCSCF procedures is a requisite 4 -index orbital transformation. In this work an extrapolation procedure designed to reduce the number of these transformations is presented. The algorithm is particularly wellsuited to an MCSCF algorithm based on the Generalized Brillouins Theorem and Iterative Natural Orbital procedure, and has Implications for the design of hybrid procedures aiso.

introduction

In recent years Multiconfiguration Self-Con-sistent-Field (MCSCF) procedures based on the generalized Brillouins theorem ${ }^{2}$ (GBT) and the iterative natural orbital ${ }^{3}$ (INO) procedure have been developed independently by severai jroups. ${ }^{4-6}$ Although this approach has proved useful in obtaining compact MCSCF descriptions for ground and excited state wavefunctions, it suffers from at least two deficiencies:
(i) It is not a completely quadratic procedure and consequently, may show poor convergence properties toward the end of an iterative sequence.
(ii) It becomes computationally cumbersome for large MCSCF expansions.
The complete active space (CAS) ${ }^{5}$ approach to MCSCF addresses the latter problem; however, as formulated, it is restri. ted to a full valence wavefunction.

In this work an e? .rapolation procedure based on a partitionin of the orbital space previously used to obtai, convergence for large illconditioned SCF problems is presented. The procedure is effective in reducing the number of iterations (and, hence, the number of N^{b} integral trans formations) required to converge the MCSCF wavefunction. In addition the efficacy of this procedure suggests that a partitioning of the orbital space may provide the basis for a hybrid MCSCF procedure in which first- and second-order algorithms are combined.
in section il the orbital partitioning schente and extrapolation technique are discussed in the
context of the GBT-IND algorithm; section 111 presents the results of representative calculations and section IV discusses the implications for hybrid MCSCF procedures and concludes.
gENERAL CONSIDERATIONS
The general fommulation of an MCSCF procedure based on the GBT-INO approach has been discussed previously by several authors. ${ }^{4}$ Here, we sumarize the results necessary for the present discussion.

The MCSCF conditions are given by

$$
\begin{align*}
& \underset{\sim}{H} C^{I}=E_{1} \stackrel{C}{I}^{I} \tag{1a}\\
& \left\langle\Psi_{i j}^{R}, I\right. \tag{|b}\\
& \left.\left.H\right|^{I}\right\rangle=0
\end{align*}
$$

where

$$
\begin{align*}
& H_{k, \ell}=\left\langle\psi_{k} \mid H \psi_{R}\right\rangle \\
& \Psi I(C, \phi)=\sum_{j=1}^{M} \psi_{J}^{(\phi)} C_{J, I} \tag{2}\\
& \phi=\left\{\phi_{\ell}\right\}_{\ell=1}^{N}
\end{align*}
$$

and $\psi_{i j}^{R, I}$ is the Brillouin single excitation ${ }^{7}$ corresponding to the mixing of inequivalent orbitals ϕ_{i} and ϕ_{j}. In the usuai implementations of the GBT-iNO approach at the $n^{\text {t"I }}$ step of the iterative determination of $\psi^{I}(\mathbf{C}, \phi)$:
(a) the appropriate eigenfunction, ψ_{I}^{SCI}, of the super-CI $(S C I)^{6}$ matrix ($H^{S C I}$), i.e. the root of H in the basis $[\}^{l}, \psi_{i j}^{R}, l^{\prime}$) having the coefficient of Ψ^{I}, c_{0}, maximal, is determined and;
(b) the "net" first-arder density matrix ${ }^{4}$ corresponding to $\psi_{1} \mathrm{SCl}$ is constructed and diagonalized to define $\underset{Z}{U}\{n\}$ and $\phi^{n+1}=n_{2} n_{i f}(n)$.

At this stage an \mathbf{N}^{5} arbital transformation
must be performed to continue the procedure. However, an extrapolatory subiteration is possible based on the following observations:
(i) Convergence of large ill-conditioned SCF problems has been achieved by examining the behavior of the iterative scheme in a reduced orbital subspace consisting of the higher doubly occupied-, partially occupied- and lower virtual-arbitals.
(ii) The natural orbital procedure tends to produce virtual orbitals with the property:

$$
\begin{equation*}
\left\langle\psi_{i j}^{q}, X\right| H\left|\psi^{I}\right\rangle \xrightarrow[j \rightarrow N]{ } 0 \quad \text { (see eq. 1b) } \tag{3}
\end{equation*}
$$

Itii) The terms in ib corresponding to the rotation $\left(\phi_{j}, \phi_{i}\right)$ where ϕ_{j} and ϕ_{i} are partially occupied in ψ are the most difficult to aliminate and, therefore, should be treated to as high an order as possible.

These considerations suggest the following al ternative procedure:
(a) Following the determination of $\Phi(n)$, an L-orbital subset, $\phi^{\prime}(\mathrm{n})$, is selected corresponding to all the occupied orbitals and (in general only) the first virtual orbital of each symmetry.
(b) The MCSCF problem is solved (to any level of approximation desired) in this reduced orbital space using the GBT-INO procedure. Considerable economies over the full H -orbital space (FDS) solution are achieved in this subiteration since the N^{5} transformation can be replaced by an $L \cdot N^{4}$ - and ©by using successively transformed integrals) b^{5} transformations.
(c) Follow ing this subiteration the two orbital subspaces are combined to give $\phi^{\prime \prime}(n)$ and a FOS iteration performed to determine $\phi(n+1)$.

As a result of eq. 3 this procedure has proved effective in reducing the number of iterations required to achieve convergence to the MCSCF wavefunction using the G8T-INO procedure,

In the next section we present preliminary resuits of a study of the effectiveness of this procedure, which is now in routine use. ${ }^{7}$

APPLICATIONS

The procedure described in section II is illustrated in two tables contained in this section. The data was compiled in the course of an MCSCF/SCF study of the low-lying states of MgO which has been reported ilsewhere ${ }^{\prime}$ and where the basis of Slater-type orbitals and confjguration state functions (CSF's) used are described.

In each table iterations are separated by double horizontal lines. An iteration begins with a 4 -index transformation using the orbital set $\phi(n)$ and a determination of $\phi^{\prime}(n+1)$ in the FOS using the GBT-INO procedure. This space is then partitioned into a space dimension L (denoted L) and its orthogonal compliment (denoted L^{\perp}) as described in the prevfous section and GBT-INO procedure is continued in L. The expansion coefficients of $\phi_{1} \varepsilon \mathrm{~L}$ are well-behaved 50 that the use of successively transformed integrals is permitted. Consequently, while the first subiteration involves an $N^{4} \cdot L$ transformation subsequent subitera-
tions involve only L^{5} transformations. A: the end of each subiteration sequence, L and $L^{\mathcal{L}}$ are reunited to give o $(n+1)$ and the process is repeated. Each row in the table is characterized by an ordered pair (i, j) in which i denotes the total number of N^{5} transformations which precede this step and j the number of transformations in L since the last N^{5} transform. One measure of the efficiency of this procedure is to compare the aggregate $\Delta^{2}=1-c_{0}^{2}$ between iterations, i.e. from $(n, 0)$ to $(n+1,0)$ with the extrapolated result given approximately by ($n, 0$) to ($n, 1$). From the tabies it can be seen that the subiterations are effective in reducing Δ^{2}.

CONLLUSIDNS

In th 3 work a partitioning method previously used to achieve convergence of large ill-condition SCF problems is applied to the GBT-INO MCSCF procedure. The resulting scheme appears to represent an efficient method for reducing the number of N^{5} integral transformation required to converge the MCSCF wavefunction. The success of this procedure suggests that in general a partitioning of the orbital space may lead in a more efficient MCSCF algorithm. For examole, one might consider a hybrid scheme in which a secand-order procedure is used in L while a lower (first) order procedure (Fock operator or CAS MCSCF approach, for example) is used in the FOS. Since first-order procedures in general replace the N^{5} orbital th insformation step by an N^{4} construction step, considerable ecomomies could result from such a scheme.

REFERENCES

1. A. Wahi and G. Oas, Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1976) vol. 3.
2. B. Levy and G. Berthier, Int. J. Quantum Chem, 2, 307 (1968).
3.' C. F. Bender and E. R. Davidson, J. Chem. Phys. 70. 2675 (1966).
3. (a) O. R. Yarkony. J. Chem. Phys., 66, 2045 (1977) ; C. H. Bausch1icher, Jr. and D. R. Yarkony, J. Chem. Phys.. 72, 1138 (1980).
(b) L. M. Cheung, S. T. Elbert, and K. Ruedenberg, Int. J. Quantum Chem., 16,1069 (1979). 5. P. Siegbahn, A. Heiberg, B. Roos and B. Levy, Physica Scripta, 21, 323 (1980).
4. F. Gre in and T. C. Chang, Chem. Phys. Letters, 12, 44 (1971).
5. For example, the results reported in C. W. 8auschlicher, D. M. Silver, and D. R, Yarkony, J. Chem, Phys., in press, use this procedure.

Table l: $\operatorname{MgO} \boldsymbol{I}_{\Sigma}{ }_{\Sigma}{ }^{+}$state $R=3.5 b$, energies in hartrees

Iteration	E(HCSCF)	$t(S C I)$	Δ^{2}
00	-274.4492371	-274.4595471	$2.40(2)^{+}$
10	-274.4560762	-274.4609194	5.67(3)
11	-274.4604358	-274.4610953	1,43(3)
12	-274.46\}1132	-274.4611566	
20	-274.4611626	-274.4616116	4.10(4)
21	-274.4613497	-274.4616530	3.78(4)
22	-274.4616383	-274.4616444	
30	-274.4616426	-274.4616703	3.80(5)
31	-274.4616783	-274.4616815	6.0 (6)
40	-274.46161943	-274.4676843	2.0 (6)
41	-274.4616827	-274.46!6854	
42	-274.4616854	-274.4616854	

${ }^{\dagger}$ Megative of characteristic, base 10 , given in parenthesis.

Table 2: $M g O_{2}^{1} \mathrm{~L}^{+}$state, $\mathrm{R}=3$. ub , energies in hartrees
Iteration E(MCSCF) E(SCI) A^{2}

00	-274.3533654	-274.354414	$2.58(3)^{7}$
-10	-274.3546429	-274.3548042	$2.38(4)$
11	-274.3548012	-274.3548345	$5.9(5)$
12	-274.3548476	-274.3548481	
20	-274.3548483	-274.3548632	$1.1(5)$
21	-274.3548599	-274.3548662	$1.0(5)$
22	-274.3548651	-274.3548656	$2.0(6)$

$\dagger_{\text {Negative of characteristic, base } 10 \text {, given in }}$ parenthesis.

A MULTICONFIGURATION Hethod for excited states, and SElection of ortimal configurations

F. Grein
Department of Chemistry University of New Brunswick Fredericton, New Brunawick Canada E3B 5A3

INTRODUCTION

it is assumed that multiconfiguration methods based directly on the satisfaction of the generalized Brillouin theorem (so-called super-CI methods) ${ }^{1}$ have been revieued earlier. It was shown ${ }^{2}$ that such methods converge quadratically when the super CI matrix is diagonalized.

Among the early applications mere all-singleexcitation (ASE) wavefunctions for atoms from He to $F 3,4,5,6$. Such wivefunctions are of the form

$$
\Psi=c_{0} \psi_{0}+\sum_{k=1}^{N} c_{k} l a_{0} b_{0} \ldots k \ldots N_{0} l
$$

Due to the crbital optimization, the N tema in the sumacion consticuts all possible aingle excitations of Ψ_{0}. Ψ_{0} is the "anci Hartree-Fock" wavefunction, or the wavefunction which has maximum interaction with its single excitations. ASE wavefunctions give from 7.6% (for B) to 32.27 (for He) of the correlation energy. Pair excitation wavefonctions of similar structure give vircually identical correlation energies.

mULTICONFIGURATION METHOD FOR EXCITED STATES

In order to use the super-CI technique Eor excited states of the same symutry (higher roots of the eigenvalue probiem) ${ }_{3}$ a level shifting method has been introduced ${ }^{7}$. The super-CI (SCI) wavefunction is formed for the nth root of the MC wavetunction, according to tue equation

$$
\Psi_{S C l, n}=\psi^{(n)}+{ }_{i} \bar{\xi}_{j} x_{i j} \psi^{(n)}(1-j)
$$

Without level shifting, none of the SCI eigenvectorsusu:1ly contain predominanely $\psi(n)$, causing root Elipping between $\mathrm{E}(\mathrm{n})$ and lower roots. This can be previnted by subtracting a root shiffing cons t q from the diagonal element $\langle\psi(n)| H|\psi(n)\rangle$ of the SCI maErip. (q, has to be bigger than the difference $E(n)_{-E}^{*}(\mathcal{l})$.

SELECTION OF OPTIMAL CONFIGURATIONS
The choice of configruations is critical for MC wavefuncrions with a small number of configurations. For., this purpose, a method to select optimal confuguracions has been proposed, and tested on several states of the NH molecule ${ }^{8,9,10}$. I: consists of a series of CI selection steps coupled with the PrSCF iterative procedure. Starting with the Initial orbicals and in initial configurations, all their single and double excitations are generated. A series of diagonalfzationg of Hamflranian matrices of order m+l are performed, and those configurations which give an
energy lowering in excest of a parameter δ are added to the MC wavefunction. © may inftially be 0.005 hartree, but can be lowered as the inter-ation-gelection process is continued. If pocential energy curves or surfaces are of Interest, then the gelection has to be performed at various points. Since the selection step is fast, it was found that this method gave all required configurations in an efficient, systeratic and reliable way.

REFERENCES

1. F. Grein and T. C. Chang, Chem, Phys. Letters, 12, 44 (1971).
2. A. Banerjee and F. Grein, Intern, J. Quant. Chem, , 10, 123 (1976).
3. F. Grein', Intern. J. Quant. Chem. , 5, 165 (1971).
4. F. Grein and T. C. Chang, J. Phys. B:Atom. molec. Phys. 6, L237 (1973).
5. F. Grein and A. Banerjee, Chem. Phys. Letters, 25, 255 (1974).
6. F. Grein and A. Banerjee, Chem. Phys. Letters, 31, 281 (1975).
7. F. Grein'and A. Banerjee, Intern. J. Quant. Chem. Symp., 9, 147 (1975).
8. A. Banerjee and F. Grein, J. Chem. Phys, 66, 1054 (1977).
9. A. Banerjee and F. Grein, J. Chem. Phys., 66, 2589 (1977).
10. A. Banerjee and F. Grein, Chem. Physics, 35, 119 (1978).

Michel Dupuis
National Resource for Computation in C - mistry Lawrence Berkeley Lahoratory Berkeley, CA 94720
8owen Liu
IBM Research Laboratory
5600 Cottle Road
San Jose, CA 95193

Introduction

We will describe a computer code used for the calculation of multiconfiguration Hartree-Fock wavefunctions, available in the ALCHEMYl set of programs. The program represents an implementation of a method based on the generalized Brillouin theorem, also called "Super-CI" method, which has been reviewed earlier. 2 Briefly, the MCHF wavefunction ${ }^{W} M C$ is written as a linear combination of configuration state functions (CSF) ϕ_{k}

$$
\begin{equation*}
\Psi M C=\sum_{k} a_{k} \phi_{k} \tag{1}
\end{equation*}
$$

The singly excited Bri'louin configuration $\Psi_{M C}(i \rightarrow j)$ are constructed according to

$$
\begin{equation*}
\Psi_{M C}(i+j)=\sum_{k} a_{k} \phi_{k}(i+j)-\phi_{k}(j+i) \tag{2}
\end{equation*}
$$

where $\mathbf{i} \mathbf{j}$ indicates that the electron in spin-orbital ithas been promoted to the spin orbital j. The "Super-C!" wavefunction Ψ is written as

$$
\begin{equation*}
\Psi=\Psi_{M C}+\sum_{i>j} C_{i j} \Psi M C(i+j) \tag{3}
\end{equation*}
$$

The spin orbital expansion coefficients are varied until the generalized Brillouin theorem equations are satisfied: i.e.,

$$
\begin{equation*}
\langle\Psi M C| H|M M C(j \rightarrow j)\rangle=0, \tag{4}
\end{equation*}
$$

for all $i \rightarrow j$ pairs. The iterative method uses the natural orbitals of the "Super-Cl" wavefunction as the improved orbitals for the next iteration. Two main steps are involved in using the program: the first step creates the list of configurations and energy formulas for the corresponding Cl prohlem, 3 The second step is the iterat,ive process itself.

Step 1: Eneryy Expression

i. lienerate reference CSF's (nref)
ii. Generate independent singly excited ($-\mathrm{s} \mathrm{x}-\mathrm{l}$ CSF's (nsx)
iii. Generate transformation matrix formulas of -5x- C5F's to create $\Phi_{k}(i \rightarrow j)$
iv. Generate formula tale for energy matrix (nref + nsx)
v. Sort formula tape.

Step 2: Iterative Procedure
i. Initial guess molecular orbitals MO's.
ii. Transform electron repulsion integrals from atonic basis set to molecular basis set.
iii. Construct energy matrix (nref $+n s x$).
iv. Solve (nref x nref) CI to get " a_{k} ".
v. Construct "Super-CI" matrix.
vi. Solve "Super-CI" problem.
vii. New MO's = natural orbitals of "Super-C I" wavefunction.
viii. Back to ii. if not conyerged.

Program Description

i. It is open ended with no restriction on the number of orbitals, the number of electrons, or the number of open shells.
ii. It uses CSF's which are linear combinations of Siater determinants built from an orthonomal set of one-particle symmetry and equivalence resiricted spatial orbitals.
iii. It takes axplicit advantage of $C_{\text {ay }}$, Dowh s_ y as well as $\mathrm{D}_{2} \mathrm{~h}$ and subgrovo symietry.
iv. The selectio, of CSF's can be done by specifying eiectronic couplings, or by partitioning the MO space.
v. There is an option for "Complete CI in Active Space" wavefunction calculations.
vi. The improved molecular orbitals c an be selected by maximum overlap with the arbitals of the previous iteration.
vii. The program generates the Hartree-Fock canonical closed shells, useful for subsequent CI calculations.
viii. Calculations on averaged states can be done.

Program Characteristics

i. The iteration time is almost independent of the number of CSF's. The integral transformation time represents approximately 75\% of the total iteration time.
ii. The typical number of iterations is less than 7 iterations to get

$$
\mid \text { E"Super CI" }- \text { EMC }^{\prime} \mid \leq 10.0^{-7}
$$

A greater number of iterations is indicative of a poor CSF selection.
iii. The practical limit of the program is about 150 CSF's due to time consuming iormula type generation.

Conclusion

The program is routinely used for problems involving up to 100 CSF's and has proven to be converging reliably. Potential energy curves and surfaces have been calculated with CSF's required to describe the proper dissociation behavior for the system, although the CSF selection is not necessarily restricted to that choice. As an example the calculation of the energy curve for $B_{e 2}$ and $M_{g 2}$, using the method of interacting correlated fragments (ICF) ${ }^{5}$ involved a 35 CSF's calculation in an extended basis set of slater atomic orbitals.

Acknowledgment

This research was supported in part by the National Resource for Cemputation in Chemistry under a grant from the National science Foundation (Grart No. CHE-7721305) and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy (Contract Ko. H-7405-ENG-48).

Referenies

L. M. Yoshimine, A. D. McLean, B. Liu, M. Dupuis, and P. S. Bagus, Nat. Resour. Comput. Chem. Software Cat., Vol. 1, Prog. No. OCO3 (ALCHEMY; 1980.
2. See K, Ruedenberg in present volume.
3. E. R. Davidson, NRCC Horkshop Proceedings: "Post Hartree-Fock Configuration Interaction," p. 127, 1978, available from National Technical Information Service, U.S. Department of Commerce, 5285 park Royal Road, Springfield, VA 2216 l.
4. P. Siegbahn, A. Heiberg, B. Roos, and B. Levy, Phys. Script 21, 323, (1980). See also B. Roos in present volume.
5. B. Liu and A, D. McLean, J, Chem. Phys. 72. 3418 (1980)

A UNITARY EXPONENTINL OPERATOR APPROACH TO MILTICONFIGURATIONAL HARTREE FOCK
 Oanny L. Yeager
 Chemistry Department, Texas ARH University College Station, Texas 77843

1. INTRODUCTION

Recently there has been renewed interest in the multiconfigurational Hartree-Fock (HCSCF) technique.' He have recently developed, coded, and studied ${ }^{2-5}$ an approach to MCSCF based on a unitary operator. This unitary operator is written as an exponential of other operators. Explicit in this formulation is the coupling between the orbitals and the state expansion coefficients. By expanding the expectation value of H through second order and applying the variational principle, the Nevton-Raphson equations for orbital and coefficient optimization are derived. ${ }^{2,3,6,7}$ presentation we discuss the theoretical development of this technique and present some results of calculations on Be and O_{2}.

There have been some further recent developments. ${ }^{4,5}$ Without constraining the Newton-Raphson equations when we are far from convergence, the technique may converge to the nearest stationary point or even diverge. By forcing all of the eigenvalues of the Hessian to be positive a down-m hill "walk" (through second order) on the energy hypersurface is assured. For small eigenvalues, the steplength may be reduced. Modes that are predominantly orbital or mixed or configurational are damped differently. These techniques will be discussed in detail.

Finally, it is shown how the two electron integral transformation may be replaced by an approximate orbital transformution introduced directly into the equation that defines the second order MCSCF approach. In this way, the number of two electron integral transformations required to obtain a set of MCSCF orbitals is reduced considerably.

We also note the recent contributions of other workers. ${ }^{8-10}$ These will be discussed in more detail by other workshop participants.
II. THE MULTICONFIGJRAT IONGL HARTREE-FOCK PROCEDURE
A. Unitary transfomations in the state and orbital space.

The multiconfigurational Hartree-Fock (MCSCF) reference state $\mid 0$ may be regarded as a member of the set of states $\{\mid j \geqslant\}$

$$
\begin{align*}
& |0>=\Sigma|_{\phi_{g}}>C_{g 0} \tag{1}\\
& |j>=| \phi_{g}>C_{g j} \tag{2}
\end{align*}
$$

for which the coefficients C form a unitary matrix. The states $\left.\right|_{g}>$ are given as

$$
\begin{equation*}
\left.\log _{g}\right\rangle=\pi_{r_{c g}} a_{r}^{\dagger} \mid \text { vac> } \tag{3}
\end{equation*}
$$

where ${ }_{r a g} a_{r}^{\dagger}$ refer to an ordered product of creation operators. For convenience we consider real orbitals and expansion coefficients.

A unitary transformation of the states $\mid j$. may then be described as ${ }^{6}$

$$
\begin{equation*}
\exp (i \hat{S})|j>=\Sigma| k>(\exp -S)_{k j}=\Sigma \mid k>T_{k j} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{S}=i E S_{k 0}(|k><0|-|0><k|) \tag{5}
\end{equation*}
$$

$T=\exp (-S)$ is a unitary matrix and S a real antisymmetric matrix.

A unitary transformation of the orbitals may similarly be described as ${ }^{7}$

$$
\begin{equation*}
\hat{a}_{r}^{+}=\exp (i \hat{\kappa}) a_{r}^{+} \exp (-i \hat{k}) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\kappa}=i \Sigma \kappa_{r s}\left(a_{r}^{+} a_{s}-a_{s}^{+} a_{r}\right) \tag{7}
\end{equation*}
$$

From Eqs. (6) and (7) we get

$$
\begin{equation*}
a_{r}^{+}=\Sigma a_{s}^{\dagger}(\text { exp-x })_{s r}=\Sigma a_{s}^{\dagger} x_{s r} \tag{8}
\end{equation*}
$$

where $X=\exp (-x)$ is unitary and κ antisymmetric.
The set of excitation operators $\left\{\mathrm{a}_{\mathrm{r}_{5}}^{\dagger}\right.$ \} and $\{|k><0|\}$ may be linearly dependent. The elimination of redundant operators $a_{r}^{\dagger}{ }_{\mathrm{a}}^{\mathrm{s}}$ for a specific referente state has been described in detail in ref. [7].
B. The second order multiconfiguration HartreeFock approach.

We will now determine stationary points on an energy-hypersurface where variation in the orbitals and in the expansion coefficients C is considered
A new reference state $\mid 0_{>}$may then be obtained by means of unitary transformation

$$
\begin{equation*}
\hat{0}\rangle=\exp (\dot{\hat{K}}) \exp (i \hat{s})|0\rangle \tag{9}
\end{equation*}
$$

The total energy then becomes

$$
\begin{align*}
& \left.E(x, S)=<0\left|\exp (-i \hat{S}) \exp (-i \hat{k}) H \exp \left(i_{k}\right) \exp (i \hat{S})\right| 0\right\rangle= \\
& \quad\langle 0| H|0\rangle-i<0|[\hat{S}+\hat{k}, H]| 0\rangle+1,<0|[\hat{S},[H, \hat{S}]]| 0\rangle \\
& \quad+\frac{h}{y}\langle 0|[\hat{k},[H, k]]|0\rangle+\langle 0|[\hat{S},[H, \hat{k}]]|0\rangle+\ldots \tag{10}
\end{align*}
$$

A stationary point on the energy hypersurface is obtained when $S E(\kappa, S)=0$. We get

$$
\begin{gather*}
\delta E(\kappa, S)=-i<0|[\delta \dot{S}+\delta \dot{k}, H]| 0\rangle \\
+\langle 0|[\delta \hat{S}, H, \dot{S}]|O\rangle+\langle O|[\delta \dot{k}, H, \dot{k}]|0\rangle \\
+\langle 0|[\hat{S},[H, \Delta \dot{k}]]|0\rangle+\langle 0|[\delta \hat{S},[H, \dot{k}]]|0\rangle+\ldots \tag{11}
\end{gather*}
$$

where the double commutator is introduced. Neglecting third and higher order terms, Eq. (11) can be written in matrix notation as

$$
\begin{equation*}
-\binom{W}{V}=(A-B)\binom{K}{S} \tag{12}
\end{equation*}
$$

where we have used Eqs. (5) and (7) and introduced the notation $O_{v}^{+}=a_{r}^{+} a_{s}, r>s$ and $R_{n}^{+}=|n><0|$.

$$
\begin{align*}
& W=\langle 0|[Q, H]|0\rangle \tag{13}\\
& V=\langle 0|[R, H]|0\rangle \tag{14}
\end{align*}
$$

$$
\begin{align*}
& A=\binom{\left.\langle O|\left[Q, H, Q^{t}\right]|0\rangle<0\left|\left[[Q, H], R^{\dagger}\right]\right| 0\right\rangle}{\langle O|\left[R,\left[H, Q^{\dagger}\right]\right]|O><0|\left[R, H, R^{\dagger}\right]|O\rangle} \tag{15}\\
& B=\binom{\langle O|[Q, H, Q]|0><0|[[Q, H], R]|0\rangle}{<O|[R,[H, O]]| 0><0|[R, H, R]| 0\rangle} \tag{16}
\end{align*}
$$

Eq. (12) may be rewritten as:

$$
\begin{equation*}
-\binom{K}{S}=(A-B)^{-1}\binom{W}{V} \tag{17}
\end{equation*}
$$

An iterative procedure can now be established to get $6 E=0$. For a given set of orbitais and coefficients the matrices W, V, A and B are calculated from Eqs. (13), (14), (15) and (16). The vectors x and 5 are then evaluated from Eq. (12) and a new coefficient matrix and a new set of orbitals are detemined from Eq. (4) and (8). The procedure is repeated until the numerical value of W and V is smaller than a specific tolerance. The above procedure is a second order procedure ${ }^{5}$ which performs the variation in the orbitals and in the coefficient in a single step. ${ }^{6}$ It will be denoted as the one step second order approach.

A two step second order procedure may be described as follows. After an initial guess of orbitals the matrix T in Eq. (4) is determined from a configuration interaction calculation. He then have

$$
\begin{equation*}
\langle m| H|n\rangle=E_{n} \delta_{m n} \tag{18}
\end{equation*}
$$

and the matrix V becomes equal to zero.
The matrix x that contains the effect of variation in the coefficient matrix through second order may then be determined from a partitioned form of Eq. (19)

$$
\begin{equation*}
-k=\left(A^{\prime}-B^{\prime}-Y\right)^{-1} W \tag{19}
\end{equation*}
$$

where

$$
\begin{gather*}
\left.\left.A^{\prime}=<0 \mid\left[Q, H, Q^{\dagger}\right]\right\} O\right\rangle \tag{20}\\
\left.B^{\prime}=<0|[Q, H, Q]| 0\right\rangle \tag{21}\\
Y=<0\left|\left[[Q, H], R^{+}-R\right]\right| O><0\left|\left[R, H, R^{+}\right]\right| O>-1 \\
\left.x<0\left|\left[R^{+}-R,\left[H, Q^{+}\right]\right]\right| O\right\rangle \tag{22}
\end{gather*}
$$

From Eqs. (8) a new set of orbitals may be derived, a limited CI calculation performed etc. This procedure will be denoted the two step second order approach.

Calculations using these approaches and approximations to these techniques are reported in ref. [2-4].

III. CONSTRAINTS IN THE INITIAL ITERATIONS OF THE MULTICONFIGURATION lIARTREE-FOCK PROCEDURE

Numerical experience has shown that in the first couple of iterations, matrix elements of the Hessian may show a great relative variation as a result of the initial guess of orbita3s. As a consequence, the step length of the iterative procedure may have to be reduced unti? the variation in these matrix elements from one iteration to the next becomes small. We use a mode damping scheme so that we may perfom a controlled waik on the energy hypersurface.

For the one step procedure we consider the spectral representation of the Hessian

$$
\begin{equation*}
(A-B)^{-1}=U \varepsilon^{-1} U^{t} \tag{23}
\end{equation*}
$$

The transformed Eq. (17) becomes

$$
\begin{equation*}
-\binom{\bar{\kappa}}{\bar{S}}=e^{-1}\binom{\bar{W}}{\bar{V}} \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& \binom{\bar{k}}{\bar{s}}=U^{+}\binom{k}{s} \tag{25}\\
& \binom{\bar{W}}{\bar{v}}=u^{\dagger}\binom{W}{v} \tag{26}
\end{align*}
$$

The matrix elements that couple the orbital and the coefficient optimization are in most cases very small and \bar{x} then predominantly refers to the orbital space and $\overline{\mathrm{S}}$ to the coefficient space. We limit the step length that may be taken by restricting the allowed size of matrix elements of \bar{S} and \bar{x}. He use different values for constraints applied for $\overline{\mathbf{S}}$ and $\overrightarrow{\boldsymbol{x}}$ since the amplitudes of the dominant configurations very seldom change more than 10x during the iterative procedure, while the orbitals may be completely changed during the iterative procedure, e.g. If the initial guess of orbitals contains a very diffuse orbital it may become tight as convergence progresses. Humerical experience has shown that it is only for a small e matrix elements that constraints have to be applied. We apply a constraint whenever $\left|E_{p}\right|<0.1$ a.u. then the corresponding $\bar{\kappa}_{p}$ (or \bar{J}_{p}) is replaced by \bar{k}_{p}^{0} (or \bar{S}_{p}^{0}), if $\left|\bar{\kappa}_{p}\right|$ (or $\left|\vec{S}_{p}\right|$) is greater than $\left|\bar{x}_{p}^{0}\right|^{\prime}$ (or $\left.\left|\vec{S}_{p}^{O}\right|\right)$. Note that the sign of $\bar{K}_{p}^{0}\left(\bar{S}_{p}^{0}\right)$ is not changed from $\bar{\kappa}_{p}\left(\bar{S}_{p}\right)$ for positive ε_{p}. However, if a particular mode is predominantly orbital in nature for these calculations we automatically force the mode to have a positive ε_{p} (regardless of the magnitude of $\left.\varepsilon_{p}\right)$ and the sign of ${\overline{\kappa_{p}}}_{p}^{0}\left(\bar{S}_{p}^{0}\right)$ may change when compared to $\bar{\kappa}_{p}\left(\bar{S}_{p}\right)_{+}^{4}$ For en orbital mode with negative $\varepsilon_{p}, \bar{\kappa}_{p}\left(\bar{S}_{p}\right)$ is replaced by $\vec{x}_{p}^{0}\left\langle\bar{S}_{p}^{0}\right\rangle$.

For some cases it may be difficult to distinguish between orbital and configuration modes due to a very degree of coupling between the orbital and coefficient space. The degree of mixing in a particular mode is defined by the number τ that is equal to the sum of the square of the coefficients in U^{+}that relates to the configuration excitation operators R^{\dagger}. In the present calculation, we arbitrarily define a mode to be mixed or configurational if τ is ereater than 0.3. Nore complex criteria to redice the size of the step length may be introduced in even more difficult cases. The above described criteria have, however, proven sufficient to get even the very highly correlated excited states considered so far to converge. For the two step procedure we similarly consider the Hessian matrix

$$
\begin{equation*}
\left(A^{\prime}-8^{\prime}-Y\right)^{-1}=U \varepsilon^{-1} \cdot Y^{\dagger} \tag{27}
\end{equation*}
$$

and the transformed second order equation becomes

$$
\begin{equation*}
\bar{x}=e^{-1} \bar{W} \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{\kappa}=U^{\dagger} \kappa \tag{29}\\
& \bar{W}=U^{\dagger} \boldsymbol{W}
\end{align*}
$$

We constrain the orbital transformation $i f\left|\varepsilon_{p}\right|<$ 0.1 a.u. in which case the corresponding $\vec{\kappa}_{p}$ is replaced by $\vec{\kappa}_{p}^{\prime}$, if $\vec{\kappa}_{p}$ is greater than $\vec{\kappa}_{p}$. Acain, the sign of $\bar{\kappa}_{p}^{0}$ is the same as $\bar{\kappa}_{p}$ unless ε_{p} is negative, in which case $\bar{\kappa}_{p}^{0}$ will have a different sign from $\vec{\kappa}_{p} . \bar{\kappa}_{p}$ is automatically replaced by $\bar{\kappa}_{p}^{0}$ when ϵ_{p} is negative. Constraints cannot is directly be applied in the configuration space, is the correlation coefficients are determined 1 i om a limited configuration irseraction calculation. However, a damping in the correlation coefficient variation may indirectly be introduced by minimizing the coupling between the orbital and the coefficient eptimization (minimize the effect of Y in Eq. (19)). This can e.g. be performed by adding an arbitrary number to the total energy difference $E_{n}-E_{0}$, which appears in the denominator of the matrix Y in Eq. (22). We would however, point out that constraints that are introduced in this fashion do not represent a controlled walk on the energy hypersurface, and we have for that reason not explored that possibility further.

Calculations using this technique are reported in the literature ${ }^{2-5} \mathrm{In}$, for example, a calculation on the second state of ${ }^{1} \Sigma_{g}^{+}$symmetry in C_{2}, a stringent damping of the mixed or configurational modes is important.
iv. A method to reduce the namber of tho electron INTEGRAL TRANSFORMATIONS IN A SECOND OROER MULTICONF IGURAT IO NAL HARTREE-FOCK PROCEDURE

Successive unitary tra:sfomations of the crbitals may be described as

$$
\begin{gather*}
a_{r}^{+}(n+1)=\exp \left(i_{n}^{*}(n)\right) \ldots \exp \left(i_{k}^{*}(2)\right) \exp \left(i_{k}^{*}(1)\right) a_{r}^{+} \\
\exp \left(-i_{k}(1)\right) \exp \left(-i_{k}^{*}(2)\right) \ldots \exp \left(-i_{k}^{\hat{N}_{k}}(n)\right) \tag{31}
\end{gather*}
$$

where $\left\{a_{r}^{t}(n+1)\right\}$ denotes the set of creation operators obtained after the n unitary transformations have been carried out. We . \because arness $\hat{\tilde{a}}_{r}^{\dagger}(n+1)$ in terms of the initial set of creation and anninilation operators by successive application of the relation

$$
\exp \left(i_{\kappa}(2)\right)=\exp \left(i_{\kappa}(1)\right) \exp \left(i_{\kappa}(2)\right) \exp \left(-i_{\kappa}(1)\right) \text { (32) }
$$

etc.
Operators with no tildes refer to the original 10 basis where only an initial two electron intedral transformations has been performed.

Similarly the multiconfigurational reference state obtained after 1 applications of the MCSCF Newton-Raphson equation and two electron transformations can be written as

$$
\begin{align*}
& \mid \dot{0}(n+1)>=\exp \left(i_{k}(1)\right) \exp (i \kappa(2)) \ldots \exp \left(i_{k}(n)\right) \\
& \quad \exp (i \dot{S}(1)) \exp (i \dot{S}(2)) \ldots \exp (i \hat{S}(n)) \mid 0 \\
&=\left.\left.\exp \left(i_{k}(1)\right) \exp (i k(2)) \ldots \exp (i \dot{k}(n))\right) 0^{\prime}(n)\right\rangle \tag{33}
\end{align*}
$$

The Newton-Raphson equations are set ip and evaluated using the original creation and destruction operaiors through first order in $\{\kappa(1), \times(2)$, $\ldots \hat{x}(n))^{5}$ This involves evaluating the Hessian with respect to the updated reference state $\left.\right|^{\prime}(n+1)>$ (but zero order in κ) and W and V are evaluated using $\mid 0^{\prime}(n+1)$). In addition a term first order in κ must be introduced in W and V. Preliminary re is using this technique are extremely encouraging. Numerical examples ${ }^{5}$ (see Table I) for the ${ }^{3} \Sigma_{g}^{-},{ }^{1} G_{G}$, and ${ }^{1} \Sigma_{-}^{+}$states of 0_{2} indicate that an accuracy of 10^{-6} a.u. in the total energy may be obtained by carrying out $2-3$ two electron integral transformations, which is about half the number of transformations required to obtain the same accuracy in the second order MCSCF approach. An accuracy of 10^{-10} a.u. is obtained after one further iteration is carried out with a second order MCSCF scheme.

V. REFERENCES

1. A. C. Wah1 and G. Das in Modern Theoretical Chemistry vol. 3 chap. 3 (Editor H. F. Schaefer III, Plenum Press, New York and London).
2. 2. L. Yeager and P. Jørgensen, J. Chem. Phys. ㄱ, 「; (1979).
1. O. - Yeager and P. Jørgensen Mol. Phys. 39, 587 (1980).
2. P. Albertsen, P. Jdrgensen, and O. L. Yeager, J. Chem. Phys., 1 Sept. 1980.
3. P. Jdrgensen, P. Albertsen, and D. L. Yeager, J. Chem. Phys., 15 June 1980.
4. E. Dalgaard, Chem, Phys. Lett. 65, 559 (1979).
5. E. Nalgaard and P. Jdrgensen, J. Chem. Phys. 68, 3833 (1978).
6. C. C. J. Roothaan, J. Detrich, and D. G. Hopper, Int. J. Quantum Chem. Symposia 13, 93 (1979).
7. B. Lengsfield III, J. Chem. Phys., to be published.
8. R. Shepard and J. Simons, Intern. J. Quantum Chem., 1980 Symposia Issue, to be published; R. Shepard and J. Simons, J. Chem. Phys., to be published.
9. C. Nellin and F. Matsen, to be published.

Table I
Multiconfigurational Hartree-Fock calculation for O_{2}^{*}

*E is the total energy in atomic units. The number in parenthesis is the second order approximate orbital transformation procedure indicates the number of times the second order (exact or approximate) equations have been applied in between each two electron integral transformation.

GENERAL QUADRATICALLY CONVERGENT MCSCF THEORY
 IN TERMS OF REDUCED MATRIX ELEMENTS

CTemans C. J. Roothaan
Departments of Physics and Chomistry
University of Chicago
Chicago. Illinals 65637 and
Mational Resouree for Computation in Chemistry
Lewrence Berkeley Laboratory
University of California
Berkaley, California 9472天
and
John H. Detrich
Science Applications Inc.
1211 W. 22nd Strcet
Oak Brook, Ilifnois 68521

An tmpraved sehame is presented for caleulating muiti-configuration seif-consistent field wave functions of electronic systems for whilit the symmetry group is simply reducible. Our formulation is based on expansion of the orbitals in a basis set, but is otherwise entirely generai. The MCSCF equations are derived from a muiti-state varlation principle. In the algebraic development extensive use is made of shell and term replacament operators, permitting a transparent formal development in which symmetry properties are fully exploited. The resulting scheme is manifestly quadratically convergent in the general casc. Sufficient detail is prosented to provide the assis for efficient computer implementation.

DEDICATION
Ouring the last half century or so our knowledge of electronic structure in atoms and molecules has grown from numble beginnings to an extensive and impressive isdy of data. While mary of these data have come from Ingenlous and pa ngtaking experimental work, other important information has been obtalind from theoretical calculations of steadily increasing sophistication and scope. Preminent among the underpinnings of such calculations for molecules has been -- and still is -- what has been cilled by its inventor. Robert S. Mulliken, the MO-LCAO method: the -lectrons are assigned to molecular orbitals, and each molecular orbital 1s expanded as ifnear combination of atomic orbitals. While this basie iden was already very fruitful in semfemplrical calculations. it also provided the corner stone for what is now galled the a prioul approach, in which an atom or molecule is represented by an all-electron wave function, and the full electronic Hamiltonian is used withrut further approximations. The developments presented in this faper represent In a certain sense the closing chapter of the rormal development of the construction of wave functions by the LCAO principle. Ve consider it a privilege to dedicate this paper to Professor Malliken, in honor of his numarous invaluable contributions to theoreticai molerular strirturo.

I. INTRODUCTION

The deseription of many-electron atom or molecuta by means of upproximate wave functions expressed in terma of Slater geterminants (SD) bulit up from one-electron functions, or spin-orbitals (SO), has ereat appeal. It yields computationally tractable approach white permitting stralghtforward interpretation of the $\mathrm{N}-\mathrm{efectron}$ wave functions in terms of the constituent So's. The conventional HartreeFock self-consistent field (SCF) method for atoms (Hartree, 1957; Froese

Fischer, 1977) uses a gingle SO, or minimally necessary set of SD's to sat isfy symmtry requiremants, and numerically computed orbitals. The SCF concept can also be ralized by introducing finite expansions for the so's in terms of basis set (Roothaan, $1951,196 \mathrm{~J}$). This expansion technique currantly dominates the trastment of molecules, and has also been very succespful in the case of single atoms (Roothasn and Begus, 1963). The prestent paper constitutas further development of zhis expansion technique.

Although the SCF method often yitids good first approxianation for the electronic wave function(s) of an atom or molecule, there are many ingtances when this approximation is Inadequate. Among the many different approaches by which one can obtain wave functions of higlier qual:ty. the multi-configuration self-conslstent fieid (MCSCF) method oceupits a unlque position af the most nitural generalizstion of the SCF method. This mproach proserves the appealing featurs of compact wave functions constructed from relatively smali number of orbitils, providing a simpte basis for understanding and interpreting acomic and molecular phanomena.

In the MCSCF method one constructs term atate functions \{TSF\} as I inear combinatlons of conflauration satut functions (CSFi; the latter are defined $\boldsymbol{a}=$ symmetry adapted ilnear combinations of so's arising from a single configuration of orbitai assignments (Hinze and Roothaza, 1967\}. In the final MCSCF wave function (s) the expansions of both the SO's in terms of basls functions, and of the TSF's in terms of the CSF's, have been optinized, so as co satisfy she varistion principlefor the chomen state of the syatem. 8y contrast, in the mothod of gonfiely ration interaction (CI) only the expansions of the TSF's in ternis of the CSF's aro optinizod, while the so's are usually taken as thi solution of som type of SCF calculation.

In the usual MCSCF formulation the variation principle is epplied to the energy of single state. The idea of apltat-state pariationsl expression was introduced by Docken and Hinze (1972) and refined by Ruedenberg, Cheung, and Elbert (1979): upon closer exaiainatlon, it appears that thit idea is entirely natural in MCSCF thoory. This approach is particulariy useful whenevor a collection of stittos, rícher than alngle stete, is relevant for a physical process; examples are radiative transitions, thermodynamical state functions at finite temperntures, terget states in scattering situintions, etc. Thu variation principle as formulated in this paper is evon more gencral: it rermits also a mixture of different statas of ionization of the same shecies. The determingtion of the opt imal SO and TSF expansion coorificients, which constitute the MLSCF solution, is an algebralc but nonlinear problem, which must be solved by iteration. Many difierent sehemas for obtaining the MCSCF solution have been proposed ard wsud. Theso schemes can be roughly ciassified into four grours. In the first group lagrange multipllarz, whicn are introduced to malatain orthonormallty constraints for the SO's, play dominant role (Vellard, 1966; Cienonti and Velllard, 1966; 0at and Wah1, 1966, 1972; Hinze and Roothean, 1967; Hinze, 1973; Nahl and Des, 1977; Golebiewski, Hinze and Yurtsevor, 1979). In the secone group the generalized Brillouin theoran (Lovy and Berthier, 1968, is the dominant feature, and 15 invoked to formulate the
 1975; Benerjee end Gretn, 1976, 1977; chang and Sehwirtz, 1977; Ruteink and van Lenthe, 1977; Ruedenberg, Cheung and Elbert, 1979\%. In the third group exponentiel transformations of the SO's, or equivalent transformations which produce the same rasults, ere intróduced; this approach leads naturally to Hewton-Raphson type procedure for the determination of the SO's, and assigns subordinate rales to the Lagrange multipliers and the generalized Brillouin theorem (Levy, 1969, i97f, 1973; Polazzo, 1975; Kuptievich and Schramko, 1975; Kenditick and Hillier, 1976; Dalgaird and Jdrgensen, 1978). In the fourth group exponential transformations are introduced for the TSF's as well as for the So's (Dafoard, 1979; Yasgor and Jdrgensen, 1979; Roothaan, Detrich and Hopper, 1979; Lengsfield, 198J; Werner and Meyar, 1989). Thts new TSF transformation replaces the mare usual procedure of solving the TSF secular quation system, which is used in the first three groups. The present paper gives comprehensive and detalled account of the derivation and solution of the MCSCF equations as they arise in this fourth approach.

The simultaneous exponential transformations of SO's and TSf's permit a much more powerful analytlcal framework for the MCSCF process than was hitherto possible. Firstiy, it permits us to formulate the MCSCF
varlational problem gitaightforwardly and concisely in torms of essentilal nop-redundint variables. Hence we need not introduce Lagrange multipliers to malntain constraints on the variables. In fact; orbital energles, as well as the total energy, no longer play a pivotai rale in the Varlational process; they can of course be evaluated for monitoring purposes es the calculation proceseds, just like any other interesting quantity. Secondiy, considering the varlational energy as a Taylor expanston in terms of these essential non-redundant variabies, it is easy to write down explicitly the IInear and the quadratic terms. Truncating this expansion by dropping all higher order terms, the variational problem winch remains is solved simply and directly by tho multi-dimensional Hewton-Raphson procedure. The latter is equivalent to a matrix inversion problem, which replaces the usual combiration of the oigenvalue problem for the TSF's and the pseudoreigenvalue problelus for the SO's. The Nowton-Raphson pracess ytelds only an approximate MCSCF solution because of the truncation, and must therefore be used itoratively, It is however Fiadratically convergent: gonerally about 3-4 iterations should suffice to obtain the converged मicscF solution, which is in sharp contrast with the convargence behavior of the cominon first order methods.

The double exponential transformation effectively disposes of the two most difficult -- and related -- obstacles encountered in triditional MCSCF salculations: the coupling between the SO and TSF optimiz= ations, and the often painfully sjow rate of convergence tor worse, divergence). The couplling between SO and TSF opt(mization has been discussed by Das (1973); Das, Janis and Hahi (1974); Chang and Schwarte (1977): and Dalgard and Jorgensen (1978). The idea of doailng with this coupling by use of an exponentiel transformation for tife TSF variation, analogous ta the exponentlal so vailation, vas introduced by Dalgard (1979) and indepondentiy by Roothaan, Detrich ard Hopper (1979). The conceptuni and computational advantsjes that are realized by expressing the orbital optimizaiton proctas in terms of a unitary transformation written in exponentisi furm were first recognlzed by levy (1969, 197\%, 1973), who used thls approach to derivo eri faproved muttidimensional Newton-Raphson process fur MCSCF orbital optirization. The same process was derivad, without introducing the exponentiaitranyformation explicitly, by Kendrick and Hilifer (1976). Uithin the framework of pasudo-igenvalue problems, the work of Hinze and koothasn \{1967) appears to be the first successful attempt to formulats a multidimensional Newton-Raphson process for orbital optimization.

We regard symmetry conisiderations as integral to the MCSCF method. The SO'm and TSF's are required to have definite symmetry, so that they beiong to irreducible representations of the appropriata atomfc or mofecular space and epin symmetry groups. Consequentiy, instead of Indtuidual S0's, one actually optimizes orbitsl shells, each consisting of a get of so's degenarate by virtue of symmetry. Likewise. Instem of indyuidual TSF's, one optimizes spectroseppic torms consisting of a set of TSF's degenerate due to symmetry. Full axploitation of symmetry reduces the varlational problem to be malued numerically to a problom in terms of no:i-vanishing non-redundant quantities only. Here we aecomplish this with e camprehensive and explicit formal algebra, under the assumption that the applicable symmetry group is simply reducibis (Wigner, 1948, 1941), Thta covers the most important cases sinee it applies to atoms as well as to the vast najority of molacules. The genersiliations necessary to handie the exeeptions are straigitforward, but are not presented in this papar.

In a practical MCSCF calculation the choicm of the set of configurations, as formally defined in termis of So's, is of great importance for the success of such calculation. Currently available experience In this respect has been revlewej by Detrich and Wahi ligeds. There are two specific mathods of selaction which deserve special mention. The first one is the even-replacement MCSCF model (Roothean, Jetrich and Hopper, 1979). 1t permits MCSCf calcuintions at a total cost hardiy mors than what is requirad for an SCF caleulation, and it is consequently the most economical MCSCF model. The second one 15 tis fractionizily saturatay MCSCF model, originated by Ruedenberg and Sundier 3 (1976) under the name full orbitill reaction space MCSCF method, and recently applied by Roos, Taylor and Siegbatin (196s) under the name somplete active space SCF method. This model is characterized by itsomplete conceptuat simplicity, but it lead to very costly calculations.

The chatce of configurations, comblined with our insistence on symmetry requirements for the TSF's and So's, introduces considerabie complexity into the evaluation of matrix elemonts batween TSF's oi the

Coulomb repulaion. This question has been addressed for the sase of atoma In the work of Recah \{1942. 1943). Further work in titis area, and especially che appropriste extension to molecular syminetry groups, should have a high priority in the near future. In this paper we deal with the choice of configurations only to a 1 imitere exteni, primarily Inasfar the it hes bearing on the determination of a set of essential non-riodundant variables.

Dalgaerd's treatment of the double exponential transformation is carried out within the framework of second quantization. In that regime the natural constructs for one- and N-electron wave functions are the SO and SO, retepetively. The explicit connections betwoen SO's and SD*s, and also the Hamiltontan operator, are written down in torms ef creation end annimilation operators. The direct use of CSF's is unntituralt consequently to date alf MCSCF formalisms based on second quatitiasion deal With SD's rather than CSF's, and end up with a numerical veriationa? problem which is not in irreduclble form. If a further symineiry rie duction is desired, it must be imposed a posteriori.

Our present tratement dasis directly with the cSf's; wave function manipulations take place in Hilbert space 《von loumann, l9ç》, and insted of erestion and annihilation operators we use hice ropisceinent operators introduced by Lówdin (1977). Also disíineífve 15 our extensive use of the Trace operation, and of projection opsizsors. Our trisetment leats quite naturally to a numerical varlatianal problem in irreducible form, thereby providing the proper batis for the conatruction of a computer program of maximum generaility, transparoncy and offictency.

It. HILBERT SPACE ALGEBRA

The manipulations required for the optimization of our multi-configuration wave functions can best be expressed as formal operations in Hilbert space (von Neumann, 1955\}. In this section we review the relevant concepts for this, and callect a number of general formulas which will be applied in the following sections to more specific manipulations of orbitals and configurations. In order to state these general facts with minimum complexity, we use in this and the mext section a notation which is simpler, and-carries less information, than what is needed in the following sections.

Let $\mathcal{F}_{i} i, i=1,2, \ldots$ constitute a complete orthonormal base in the Hitbert space of our wave functions. Orthonormality is expressed by

$$
\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j},
$$

while compieteness permits the expanston of an arbitrary function in terms of the base according to

$$
\begin{equation*}
\varphi=\Sigma_{i} \psi_{i} c_{i} \tag{2}
\end{equation*}
$$

Using Eq.(1) we easily find for the expansion coefficients

$$
c_{i}=\left\langle\psi_{i} \mid \psi\right\rangle
$$

Taking now the scalar product of ψ with another arbitrary wave function \$we obtain

$$
\begin{equation*}
\langle\phi \mid \psi\rangle=\Sigma_{i}\left\langle\phi \mid \psi_{i}\right\rangle\left\langle\psi_{i} \mid \psi\right\rangle \quad ; \tag{4}
\end{equation*}
$$

this is convenientiy restated and renamed as the clasure property

$$
\begin{equation*}
\Sigma_{i}\left|\psi_{i}><\psi_{i}\right|=9 \tag{5}
\end{equation*}
$$

wher \mathcal{J} is tha identity operator,
Let now be ilnear operator defined for the entire Hilbert
spaca. Its matrix elements with respect to the base ψ_{i} are given by

$$
\begin{equation*}
A_{i j}=\left\langle\psi_{i}\right| \psi_{i}\left|\psi_{j}\right\rangle \tag{6}
\end{equation*}
$$

Conversely, using the closure property, Eq.(5), we can express the operator in terms of the matrix elements, namely

$$
A=\Sigma_{i j} P_{i j} A_{i}
$$

where we have introduced the replacement operators (Löwdin, 1977)

$$
\begin{equation*}
F_{i j}=\left|\psi_{j}\right\rangle\left\langle\psi_{i}\right| \tag{8}
\end{equation*}
$$

According to Eq.(7) any 1 linear operator \mathcal{H} can be expanded in terms of the replacement operators $\mathscr{S}_{j j}$, With the matrix elements Ai th the expassion coefficients. Hence these replacement operators play an anattosous role with respect to operators as do the basis functions ψ_{i} with respect to wave functions.

The matrix elements of the replacement operators are easily seen to be

$$
\begin{equation*}
P_{i j, 4 \ell}=\left\langle\psi_{i}\right| g_{i j}\left|\psi_{e}\right\rangle=\delta_{i l} \delta_{k j} \tag{9}
\end{equation*}
$$

For the product of two replacement operators we find

$$
\begin{equation*}
\psi_{i j}^{s_{i k}}=\delta_{i l} s_{i j} \tag{10}
\end{equation*}
$$

and consequently for the corresponding commutator

$$
\begin{equation*}
\left[\rho_{i j}, P_{i l}=\rho_{i j} \rho_{i l}-\rho_{i l} \rho_{i j}-\delta_{i l} \rho_{i j}-\delta_{k j} \rho_{i p}\right. \tag{11}
\end{equation*}
$$

For any operator \mathcal{A} there exists Hermitian conjugate operator fo defined by the requirement

$$
\begin{equation*}
\overline{\langle\psi| A^{W}|\phi\rangle}=\langle\phi| f|\psi\rangle \tag{12}
\end{equation*}
$$

where ψ and ϕ are any two functions in Hilbert space. It follows easily that

$$
g_{i j}^{*}=\rho_{j i}
$$

and

$$
\begin{equation*}
A^{*}=\Sigma_{i j} \mathcal{P}_{i j} A_{j i}^{*} \tag{1141}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j}^{*}=\bar{A}_{j i} \tag{15}
\end{equation*}
$$

Given an algebraic expression containing operators and ordinary (complex) numbers, the Hermitian conjugate evoression is obtained by taking the complex conjugate of all numbers, he Hermitian conjugate of all operators, and all operator products in reverse order. Furthermore any equation involving operators remains valid if we substitute for the operators the corresponding matrices, and vice versa.

There are certain types of operators which have special signifidance. They are distinguished according to properties with respect to their Hermitian conjugates andfor their eigenvalues, say λ, namely.

where denotes the null operator. It is easily seen that the Hermitian conjugate of the various operators are of the same type: $z^{*}{ }^{*}$ is Hermidian, x^{*} is anti-Hermitian, etc. Furthermore, it is anti-Hernitian. and iX is Hermitian. Hate also that f is Hermitian, unitary and Ideapotent, while is Hermitian, anti-Hermitian. idempotent and nilpoient.

In a Hilbert space of finite dimension we can always choose the eigenfunction of any Hermitian, anti-Hermitian or unitary operator so that they constitute a complete orthonormal base. In a Hilbert space of Infinite dimension that statement needs to be modified somewhat; this is due to complications caused by the possibility of a continuous range of eigenvalues. On the other hand, in either a finite or an infinite ilbert space, the eigenfunction of an idempotent or nilpotent operator in general cannot be chosen orthogonal. nor do they always span all of - albert space.

The exponential of an anti-Hermitian operator yields a unitary operator, namely

$$
\begin{equation*}
u=e^{x}=\left\{+x+\frac{1}{x} x^{2}+\ldots\right. \tag{21}
\end{equation*}
$$

Conversely, given any unitary operator \mathbb{Z} we can always find an antiHermitian operator X so that Eq.\{2I) is valid. Although these facts are rather well known, for the sake of completeness we present this proofs in Appendix A.

The unitary operators are particularly important for describing transformations within Hilbert space. When all wave functions and operaters are subjected to a transformation by the same unitary operazor u, the transformed wave functions and operators are obtained by the formal definition

$$
\left.\begin{array}{c}
\psi_{i}^{\prime}=u \psi_{i}, \tag{22}\\
A^{\prime}=u u^{\prime},
\end{array}\right\}
$$

It 15 well known that ail relations between wave functions and operators also hold for the corresponding transformed quantities.

The - ole of the matrix elements $U_{i j}$ is twofold. On the or ie hand, wo readily find for the transiornid basis functions and replacenint operators

$$
\left.\begin{array}{c}
\psi_{i}^{\prime}=\Sigma_{j} \psi_{j} U_{j i} \\
\mathcal{P}_{i j}^{\prime}=\sum_{\ell \ell} U_{i}^{\prime} Q_{\ell \ell} U_{E_{j}}
\end{array}\right\}
$$

On the other hand, if we express arbitrary functions and operators, say ψ and P, and also their transforms, ψ^{\prime} and A^{\prime}, in tertis of the origlalal reference base ψ_{i} and operators $F_{i j}$, namely

$$
\left.\begin{array}{l}
\psi=\Sigma_{i} \psi_{i} c_{i} \quad, \tag{24}\\
\psi^{\prime}=\Sigma_{i} \psi_{i} C_{i}^{\prime}, \\
A=\Sigma_{i j} \mathcal{P}_{i j} A_{j i} \quad \\
A^{\prime}=\Sigma_{i j} P_{i j} A_{j i}^{\prime} \quad
\end{array}\right\}
$$

we find easily

$$
\left.\begin{array}{c}
c_{i}^{\prime}=\Sigma_{j} U_{i j} c_{j} \tag{25}\\
A_{i j}^{\prime}=\Sigma_{A l} U_{i A} A_{k i} U_{i j}
\end{array}\right\}
$$

Ens. (23) express transformations of geometrical objects, and are sometimes called active transformations. In contrast. Fqs.(35) express transformations of coordinates, and are sometime: called passivize trans: formations.

An ali-important scalar function of an operator is its trace defined by

$$
\begin{equation*}
\operatorname{Trace}(A)=\sum_{i} A_{i i} \tag{26}
\end{equation*}
$$

We observe that this definition is independent of the basis chosen, as of course it must be if we want to speak of a function nr in operator.

The trace 1s linger function with reapect to both scalars and operators, ramely

$$
\begin{equation*}
\operatorname{Trace}(\sigma A+\beta 8)=\alpha \operatorname{Trace}(\theta)+\beta \operatorname{Trace}(\delta) \quad, \tag{27}
\end{equation*}
$$

where A and B are any two operators, and α and A are scalars. Wiah respect to product of operators, the Trace is Invariant under cyelleal pernutations of the factors in the product. It suffices to atete
since repeated mpplication of Eq. (28) can yteld arbitary cycilcel permutations.

Any Hermitian, anti-Hermitian, or unitary operator can always be brought into diagonal form by choosing an approprlate basis. Since the diagonal elements are then the eigenvalues, we obtain in this case

$$
\begin{equation*}
\text { Trace(A) }=\sum_{i} \lambda_{i} \tag{29}
\end{equation*}
$$

where $A=x_{1}$ fax or $f=u$, and $\lambda_{f}, \lambda_{h}, \ldots$ ere the eigenvalues.
We obtain another interesting use of the trace by writing the genersi matrix element $A_{i j}$ of on operator A in the form

$$
A_{i j}=\operatorname{Trace}\left(A \mathcal{F}_{j j}\right)
$$

Eq. (30) provides the basis for formulating quantum mochanies as trece ligebra (LEwdin, 1977).

If an operator t is both Hermitian and idempotent, it in cialed a projection operator, or pradecter:

$$
\begin{equation*}
\rho^{1}=g=\rho d \tag{31}
\end{equation*}
$$

The ofgenvalues of 9 are restricted to 1 and $\begin{aligned} & \text { of the corresponding eifen- }\end{aligned}$ functions span the imact space and the shadow space of S, respactively. These two subspaces have nulf intersection, and their union conititutes the entire Hilbert space; we say that the projector fofines a decomposition of Hilbert space into two s -mplamentaily subspaces.

It is easily seen that, given any projector 9 , the operator It 9 is also a projector: it yleids the same decomposition of Hilbert space as does ${ }^{T}$, but with the roles of itmage space and shadow space reversed. Thus it is also true that the image spaces of gand f-pare compleamtary! we say therefore that s and $f-y$ are complouentary projeciors. A special ease of sueh complementary pair is providyd by fanct The dimension of the image space, say α, is called the simension of the provector. Because of Eq. (29) we have

$$
\begin{equation*}
d=\operatorname{Trace}(\rho) \quad . \tag{32}
\end{equation*}
$$

Obviously the null operator of is the (ane and only) trivinl projector of dimension $E_{\text {; }}$ projectors of dimension 1 are ealled primitivel ali other projectors are compound.

Two projactors, say and 4, are called orthogonal when their image spaces are orthogonal; this occurs $1 f$ and only if Peqpat. clearlya complementary pair of projectors is also an orthogonal pair, but the converse is not necessarily true, it is useful to generailize ilie notion
 of=1,2,..., which satisfy

$$
\begin{align*}
g_{\mu} & =\Phi_{\alpha} \tag{33}\\
S_{\alpha} \phi_{0} & =\delta_{\alpha \beta} P_{\alpha}
\end{align*}
$$

Given the orthogonal get of projecters jof, it follows aselly that

$$
\begin{equation*}
9=\Sigma_{\alpha} 9 \tag{34}
\end{equation*}
$$

is again aprojector. Conversely Eq.(34) qivea the decomposition of the projector f Into the components of, the latter forming an orthogonel set ef projectors of lesser dimensions. A fundamental theorem of Hilbert space algebra states that nny m-dimensional projector can be decomposid intg in orthogonal primitive proiectors.

We return now to the replacemerit operators Fij intriduced before, Eq.(日). The off-diagonal ones, sij with iff, are nlipotent; they are
 form an orthogonit set of primitive projectors. The closure property, Eq.(5). can now be restated as the decomposition of the identity into primitive projectors, nimely

$$
\begin{equation*}
f=\sum_{i} g_{i i} \tag{35}
\end{equation*}
$$

Essentially ill our wave function mantpulations will be confined to - subspace of Hilbert space. Adopting a sultable basis, this subspace is mpanned by a subset of the basis functions wi, say for ims. The subspace is obviously the fange spact of the projector

$$
\begin{equation*}
\rho-\sum_{i=} S_{i j} \tag{36}
\end{equation*}
$$

For any function ψ in the subspace the operator 9 acts ilke the identity, namely

$$
\begin{equation*}
s_{y}=\psi \tag{37}
\end{equation*}
$$

while for any function outside of the abspace, that is, in the shadow spice, 9 acts like the null operator.

Given a projector we deflne for ans operator the eqsocieted projected operator \boldsymbol{f} by means of

$$
t=\rho \rightarrow \quad:
$$

It is easily seen that this is equivaient to

$$
\left.\begin{array}{lll}
\hat{A}_{i j}=A_{i j} & , \quad i=S & \text { and } \quad j=S \tag{39}\\
\hat{A}_{i j}=v & \quad i \neq S & \text { or } \quad j \neq S
\end{array}\right\}
$$

Given A profector \boldsymbol{g}^{\prime} if an operatis $A_{\text {is }}$ identical with its associated projected operator $\$$, namely

$$
\begin{equation*}
\hat{f}=A \quad . \tag{40}
\end{equation*}
$$

we say that the operator ia internil to the image space of 9 . The cendition (AS) is equivalent to

$$
\begin{equation*}
A P=9 A=A \quad . \tag{41}
\end{equation*}
$$

and also to

$$
A_{i j}=1 \quad, \quad i \neq S \text { or } j \neq S
$$

From Eq. 4 4; follaws the commutation relation for m internal oparator and the projector defining the subspace, namely

$$
\begin{equation*}
(A, \rho]=0 \quad ; \tag{43}
\end{equation*}
$$

it should be noted however that Eq. (43) is not a sufficient condition thet f is internal to the image space of f.

The most important application of projected operators is the following. Let A, A, A,... be set of operators internal to the image
 Then in any operator product in which each general operator is ilanked on both sides by an internal operator. we can replace the getieril oper ators by their associated projected operitors: ior instance

$$
\begin{equation*}
\text { ARA/C }=A \hat{R} \hat{B} \hat{d} C . \tag{44}
\end{equation*}
$$

An interesting corollary of Eq.(44) concerns the trace of product of optrators. Since the trace involves a eyclical product, we have for instance
Trace(ffists - Tracedî̉st ,
because \boldsymbol{t} is flanked by and A. and \mathcal{f} is flanked by 8 and f. A special cise of this type of relation occurs in the evaluation of matpli: elements of such product of operators between wave fulictionr. say ψ
and $\%$, which are confined to the image space of g. In this asse the operator

$$
\begin{equation*}
\theta=|\psi><\phi| \tag{46}
\end{equation*}
$$

is Internal to the image space of hence

An obvious generalization of Eq.(47) is

$$
\langle\phi| \lambda ⿴|\psi\rangle=\langle\phi| \hat{A}|\vec{\beta}| \psi\rangle
$$

which will be particularly uaful tater on.

III. THE MULTI-sTATE VARIATION PRINCIPLZ

Ordinerity one deternines (a) variational wave function(s) for a bound state by demanding that the expectation walue of the energy for that state, expressed in terms of (a) wave functionis with adjustabie parameters, becomes stationary to first order for any parmissible infinitesimal varlations of these parameters. In this sectian we genaral-
 functions which jointly daseribe a finith number of statespof our system (Docken and Hinze, 1972; Ruedenbers, Cheung arid Elbert, 197:1.

Let $W_{i}, i=1,2, \ldots,{ }^{n}$ be the orthonormal set of wave functions to be subjected to the yarlation principio. In case any of the states under consideration is degenerete because of symmetry. the set yi must of course inciude a full sei of degenerate partriers satisiging the appropriate constralnts.

For the variationsl *nergy expression we adopt weighted average of the entergies of the various states given by

$$
\begin{equation*}
E=\Sigma_{i} w_{i}\left\langle w_{i} \mid \mathcal{L}_{1} \psi_{i}\right\rangle \tag{49}
\end{equation*}
$$

where ℓ is the Hamilionian of the system. and tie weights wi are restricted by

$$
\left.\begin{array}{c}
\bar{w}_{i}=w_{i}>g \tag{5A}\\
\Sigma_{i} w_{i}=1
\end{array}\right\}
$$

For degensrate states wexpect of course to choose these welahts identical for the degenerate partners.

The energy must be stationary with respect to all variations we permit for the wiut functions ψ_{i}. Among these varlations we must of course inciude unitary transformations of the set Fi, analogous to what we must fermit for the wave functions of n degenerate state when applying symmetry-breaking perturbation. Hence we must illow the trinsformation

$$
\begin{equation*}
\psi_{i}^{\prime}=e^{x}+i=\Sigma_{j} \psi_{j}\left(e^{x}\right)_{j i} \tag{51}
\end{equation*}
$$

Which teajs to a variation of the energy given by

$$
\begin{equation*}
\delta \Sigma=E^{\prime}-\mathbb{I}=\Sigma_{j j, i \neq j}\left(w_{i}-w_{j}\right)\left(\psi_{i}|f| \psi_{j}\right) X_{j i}+\theta_{i}\left(X_{i j}\right) \tag{52}
\end{equation*}
$$

the last term representing all terms of second and higher order in the parametera $X_{0 j}$.

Assuming first all the welghts to be different, the requirement thet fa must vanish to first order for any permissible choice of the parameters $X_{i j}$ yields

$$
\begin{equation*}
\left.\left\langle\psi_{i} \mid \|_{i}\right\rangle\right\rangle=N \quad, \quad i \psi j \tag{53}
\end{equation*}
$$

The proof of this statement is not quite trivial, since the Xif are not
completely independent: it is presented in Appendix B .
If ${ }^{\text {P }}$ i and F are degenerate partners due to symmetry, one must of course choose whw, and Ea. (53) no longer follows from the viriation pifinciple. However, In this case Eq.(j3) is a consequence of the symmatry congtralnts on the wave functions whteh must be honored by the veriational process.

If y_{i} and ψ_{j} are not degontrate portners du* to symmetry, and wo stil. Choose $w /=w_{j}$, Eq. (53) follows neither from the variation principle nor from symmetry constrainta; however, we can then guarantee Ea, (53) by carrying out an additional unitary transformetion of the wave fuhctions which teaves the varlational energy invariant. Clearly it is only in this last form that the wave functions can be identified with physical states.

Hence having adopted Eq. (49) as the varlational energy expression, we have obtalned the minently reasonable result that the variational condition Implies that the wive functions must satisfy, or may be chosen so as to satisfy the usual secular equation system. it is furthermore interesting to note thet ehis fiect does not depend on the cioice for the magnitudes of the welght factors. On the other hand, the magnitudes of the welght factors will affect the variation tuth respect to parameters other than $X i z$

Finally we note tiat our variation principle reduces to the standard variation principle for a single non-degenerate state for $\boldsymbol{x}=1$, and to the proper symmetry-wighted one for a single degencrate state. chuosing of courso equal wizhts for the differtent pitiners.

IV. CONSTRUCTION OF M-ELECTROM VAVE FUNCTIOMS FROM OME-ELECTRON SPIN-OREITALS

 spin-orbitals (SO), where of course M)N, The S0's bre denoted by fig(a): this notation is explicit with respect to symmetpy chanacteristics and electron coordinates, namely
λ (or $\mu, y_{1} . .$.) designates zymatry geecies;

i lor $j, k, \ldots)$ labels spin-orbitala not distinguishable by mymetry
a (or (. $C . .$.) labels electrons, representing space and spin coordinates.

For any given λ there are definite ranges for and for is way that α and i are cubordinate to λ. The range of $a l$ s the degree of degeneracy d_{2} ordinerily this will encompass spatial as well as spin degeneracy. For given λi, the set of da degenerate 50 s is called a shell: thus the compound Index h_{i} is a shell index. be establish a canonical prder for the so's ky taking then in dictionary dider with respect to the compound index $\lambda i \boldsymbol{c} ;$ in thls arrangement the so's are grouped in shella, and thells oceur grouped by symmery.

In general, matricest referring to sheils have the index structura入imi. A speciai case th that of matrices which are bloclied by symmetry. In those matrices the elements with dfy either vinish or are meaningless; the non-vanishing elements are conveniently indexed by $\lambda_{i f}$ rather than $\lambda i \lambda j$.

It is convenient and customary to require that the so's form an orthonormal get. We adher to this practice, so that

$$
\begin{equation*}
\left\langle\phi_{\lambda i m}(a) \psi_{\mu j j}(a)\right\rangle=\delta_{\lambda i \in, \mu j \mu}=\delta_{\lambda_{j}} \delta_{i j} \delta_{m p} \tag{1541}
\end{equation*}
$$

Clamily, the SO's 申aidat span an M-dimenstonal subspace of the filtert space of one-alectron functions of electron in general. a Cunction In this wubspace will be designated by fla).

Choosing now any M-mambered ordered subset fron our canonical set of $50^{\circ} \mathrm{s}$, we can construct the sorresponding N-eleciron antisymmetrized product or slater determinint (SD) accolding to
where A is the antizymetrizer. Specificeliy, A is the prosector defined by
where dreprasent: the distinet permutations of the electron coordinletes, with orill for aven, and $\mathrm{f}_{\mathrm{m}}^{\mathrm{m}=1}$ for odd permutations.

Note thet we demand that the SD's In Eq. (55) are an propered aubset of the full stt. Ae result the SD's defined by Eq. (55) areindependent; it is easily sean that they are in fact orthunormal. The total number of SD' thet can be constructed in this manner is given by the binomial coefficient ($\boldsymbol{\omega}$); they span the so product, geace. It being understood that only antisyminetrlzed products of so's me considered. In general, function in this epace will be designated by or for The W-fiectron weve functionles for our item or molecule it (aral to be found in this 50 product apace, which is, of course, aubspace of the complet Hilbert space for our problem.

Each SD is at leagt partialiy characterized by its ghell gecypation numbers git, which specify how many SO's of each sholl were used to construct the SD. Obviousiy these occupation numbers must satisfy

$$
\left.\begin{array}{l}
I n_{2 i} \notin d_{\lambda}, \tag{57}\\
\sum_{2 i} n_{2 i} \in N \quad
\end{array}\right\}
$$

Eech distinct solution of Eqs. (57) specifies eonfinurtaion, which is defined as the set of SD's asociated with that solution.

In general a conflguration spang a reducible representation of the syminetry group of the symem. by subjecting the so's of a confleuration Lo suitible unitary transformation, we can decompose this reducitio representation into irreductble conponents. Ths linas combinationg of SD's which regult from this decomposition are called configuration alfote functions, (CSF). Ta do justice ta the symmetry properties wo denote the ESF's by hapa, analogqua to tim for the so'a; here A for E.....) refers to symetry specien, A (or ….) refers to gymaelry subspecies, and p (or G.....) labels CSF's rot distinguishable by symataty. Since the CSF's are obtilned from the SD's by a unitary transformation, they form s new orthonormal base for the so product space, hence

$$
\begin{equation*}
\left\langle\hat{C}_{A P_{A}} \mid \Phi_{I C A}\right\rangle=\delta_{A P A, I}=\delta_{A E} \|_{P_{A}} \delta_{A B} \tag{58}
\end{equation*}
$$

And because the CSF's have definite symmetry properties, they, rather then the SD's, ars the most useful building bloclis for wave functions of actual states.

In the gisndard veraion of alf-sonsistent finid (SCF) theory, the atomic or molecular wave functiontsh for a particular spectroscople term is (are) taken to be aingle CSF (a degenerate set of CSF'si, and the SO'sere to be optimized. In the most commonly used version of multiconfiguration self-cionsigtent field (MCSCF' theory one uses in generial superpositions of CSF's for spectroscople term, and the CSF axparision coefflctents aswell as the Sn's are to be optimized. In the present veraion of MCSCF theory we represent simultancously teypral fatictrcgcoplc tarms by auperpasitions of CSf's. In a practieai HESCf calcuiation one rarely sises all possible CSF's; instead one chooses a falriy IImited set of CSF's guided by physical reasolling, past experience endfor intultion.

From our chosen set of CSF's we construct tern stite functions (TSF) according to

$$
\begin{equation*}
t_{A I A}=\Sigma_{P} \omega_{A P A} C_{A P I} \quad ; \tag{59}
\end{equation*}
$$

for given A, the set of degenerate functions Fur, represents apectroscopic term. Demanding orthonormality for our ft's we obtain

The particulur MCSCF atrategy we want to use requires that we consider at alf times set of TSF's which spans the same space as does the set of ehosen CSF's. In actuality of course only one (or a iow) of these funclions is (ere) used to represant a spectroscopic tern (or terme): the larger set is meeded for carrying out transformitions to achieve successive improvements. Therefore the coefficients CAPI form a squara unitary matrix which is furthermore blocked by eymutery.

Since in the construction of TSF's from CSF's the species label A is preserved, we may permit the number of electrons to be a function of A, sey Wh. Hence our MCSCF model is used to construci in general, from a commonset of SO's. many-fiectron wavo functions representing several spetroscopic terms of different excitation and/or fonization. Thus the species label A now classifies wave functions as to spatial symmetry, spin symatery, and degres of lonization. This furthar generailization of the muiti-state variation principle of the provious section is feasible and profltablesince wive functions with different numbers of electrons are now related through a common set of SO's. The shell accupation numbers for the CSF's are now properly denoted by hap, 26 ; they satisfy of course

$$
\left.\begin{array}{r}
\boldsymbol{H}_{A P,} \lambda i \leqslant d_{\lambda} \\
\Sigma_{\lambda i} N_{A P,} \lambda_{i}=N_{A}
\end{array}\right\}
$$

In the ideal MCSCF fornulation the variation of the SO's is restricted only by orthonormality, In this paper we reatrict ourselves in addition to the mathomatically more tractable expansion reciale for tile S0. \%. Ve dopt set of one-electron basis functions deticied by
 batis functions not diatinguishable by ymmetry, and is subordinate to 2.

In general, beisf functions are only orthogona! if they have different symetrys in fact their seaiar products ure given b_{y}

$$
\begin{equation*}
\left\langle\chi_{\lambda \beta w}(\Delta) \mid \chi_{\mu p p^{(}}(\varepsilon)\right\rangle=d_{\lambda \omega, \beta p} S_{\lambda p \varphi} \tag{61}
\end{equation*}
$$

 impllea, ${ }^{\text {fres blocked by symetry. The overlap matrix is Herialtian. }}$ namely

$$
\begin{equation*}
S_{\lambda_{\mu q}}^{(1)}=S_{\lambda \beta s} \tag{62}
\end{equation*}
$$

Furthermore if the basis functions me linearly independent, as they of course must be, the overlap motrix is also positive definize, that is

$$
\begin{equation*}
\sum_{p ;} \bar{C}_{\lambda_{p}} S_{\lambda \mu p} C_{\lambda_{q}}>\theta \tag{63}
\end{equation*}
$$

for any non-trivial sat of coefficients ε_{λ} (trivial would be $C_{\text {ap }}$ af for allpt.

The SO's are now put forward expansions in terms of the basis set, $n a m e l y$

$$
\begin{equation*}
{H_{\lambda i \sigma}}^{(a)}=\sum_{p} X_{\lambda p w}(a) e_{\lambda p i} \tag{64}
\end{equation*}
$$

orthonormality of the so's yields for the expansion coefficients the conetrainta

$$
\begin{equation*}
\Sigma_{p \beta} e_{\lambda i p}^{i} S_{\lambda p \beta} c_{\lambda_{7 j}}=\delta_{i j} \tag{65}
\end{equation*}
$$

The MCSCF strategy with respect to the SO's is anslogous to that for the TSF's. We require that the SO's fiam and the basis iunctions Xipmopan the same space, and carry out ilnear transformazlotis of the so'sto achieve succestive improvments. Hence the coeriticienis capi are related by unitary transformations in order that Eq. (fir) ire... Insp valid.

V. SHELL STRUCTURE AND FCSCF MODELS

In order to carry out an MESCF calculation on a particular atom or molecule with given one-electron basis set, we still have to supply a certing amount of structural information which remains constant throughout the MESEF verintional process. This structural information consists of the number and symmetry species of the spectroscopic terms, and their wefthts, In the variational energy formula; the number aud all the relevent particulari of the CSF's to be usid for the construetion of the TSF'si and, in Wider sense, all the quantities derived from this which are used and rewain canstant during the ficscf variailonal process. The
apecification of this structural information will be referred to ase the choice of an misff andel. The cholce of appropriate MCSCF models for particular phyisical systems or procesaes in mery axtensive subject, much Wider in acope than for inatance the choice of one-electron bas is functions. In this paper wh touch upon the questions associated with the different modela only insofar as they affect the organization of the formal lagebra to be presented.

To eansiderable extent, different MCSCF models are distinguished from one another by their invariance characteristics with respect to parmitesible so and TSF transformations. Thase permissible transformatons arienttary, and they preserve the exact symmetry -- species and subspecies - - of the $50^{\prime \prime}$ and TSF'e: in the following "transformation" Will always mean Permisibie transformation", unless explicitly sperified otherwise.

In order to disecuss invarimence with raspect to so trensformations luctily, it is usefu: to define, et three different leviels, filly occuplad or gleat fheitat partiaily oceupiad or fractional shells; and unoce upisd, virtual or ingty sholls.

At the firat lavel wh define these categories for a single CSF for a set of degenerate cefinit eleariy this is the dofinition approrifiate for, and familier from, ordinery SCF thaory. Derciting the three categorias by $C_{A P}$, $F_{A p}$ and $E_{a p}$, we have

At the zeeond ievel we define the corresponding eategories for the set of all CSF': -2 and therefore also all TSF's m of the sture specios, say A. This definition 1s appropriate for the nost common luscf fertiulation. The elosed and ampty sheils ars defined as tiocsithici are clesed and empty for all CSF's of specties A; the iractional sliells are the remainder. Thus thell which is closed in scone, and empiy in the other CSF's of epectes A, becomes a fractionaliy ocsupise: sis it at thic present level, Denoting the present categories bu C_{A}, F_{A} and E_{A}. thos ere conveniartily defined in sat-theoreiseal lariguigéhy

$$
\left.\begin{array}{l}
C_{A}=n_{P} C_{A P} \quad \cdot \tag{67}\\
E_{A}=n_{P} E_{A P} \quad \cdot \\
E_{A}=-C_{A} U E_{A} \quad .
\end{array}\right\}
$$

wherem represents complementation, $(\mathbb{}$ represents the union operation. and A_{p} represents the intersistion operation co be repented aver all P.

Ana logoun to the second level. at the third level we define the categories for all CSF', -- ind TSF's -- regardiess of specias. This definition is appropriat for our present most general MCSCF formula$t i o n$. Denoting the present categories by C, F and E, wa have

$$
\left.\begin{array}{l}
C=n_{A} C_{A}=\Pi_{A P} C_{A P} \quad . \\
E=\Pi_{A} E_{A}=\Lambda_{A P} E_{A P} \cdot \\
F=-C_{A} U E_{A} .
\end{array}\right\}
$$

We note that. progressing fron the first through the third level, the ett of closed and empty shells generality decresse in slze, white the fractional set increases, namely

$$
\left.\begin{array}{l}
C_{A P}=C_{A}=C \tag{69}\\
E_{A P}=E_{A}=E \quad . \\
F_{A P}=F_{A}=F \quad .
\end{array}\right\}
$$

In this work we are primarily concerned with the first and third lavels. The third level set of clased shelis. C. is commoniv esilied the core.

At the first level, the CSF's ©ApA are invarlant under all SO transformations entirely within $C_{A P}$ or entirely within Eff, and occm gionally also under some, or perhaps all. So transformations within FAp. The best known ease where the CSF's are Invariant under all So transformations within $F_{A P}$ oceurs when $F_{A P}$ conslsts solely of half-filied shells with all sping paralleit we express this formaliy by

$$
F_{A P}=H
$$

(7も)
An example of thif situation is provided by the 4s3dTs description of the ground state of the chromium atom.

Progressing from the first through the second to the third level. wo note that all CSF't, and consequently all TSF's and the MCSCF energy, will be Invartant under all So transformations entirely ritilin C or entirely within E, and eccastonally also under sone to transformations within F. An obulous oxample of the latter is the half-ahell medel. In this model all participating CSF's have the same set of halfffiliod shellswith parallel spins, that is. Eq. (70) holds for all AP. Cleariy His then subset of Fi we write

$$
F=H * F^{\prime}
$$

Where F' consista of those shalls which are fractional at the third level, but closed or mpty at the first level in the individual TSF's.

So far wo heve described invariance of the MCSCF process due to invarlance of the individual CSF's under SO transfoliustions. Sifice the TSF'F are con*tructed from CSF's by a linear expansion as yet to be optimized, the MCSCF process will alsa exhibit invariance viliten an so transformation leaves the linear manifold of cif's, rathir than the in= dividual CSF' a, Inveriant; we say that such an SO transiormation induces: a IInear transformation of the CSF's amonn thamselves. In generm 1 of course CSf tranpformations induced by 30 iransicimazions do not have this special property.

The most extrome case of this typc of invariance oceurs when we iet the entire SO product apace, or at least its watimal subspaces of the required symetry spectes, participate in the HCSCF process. In this
 ments are equivalent the problem of So optimizetion is trivilaly solved by retaining whatever So's we have in hend, and the MCSCF solution is obtained by carrying out stralghtforward configuration interaction [CIJ calculation. Clearly, since So optimization no longer piays any role whatsoever, this MCSCF model is somewhat of a perversion of the MCSCF concept. In addition to this. for all but very small systems with orly handful of electrons, the model is highly impractical due to an unmanageably large number of CSF's.

A somewhit more practical case of this type of invariance ociurs in the fractional1y maturated MCSCf model (Ruodenberg and Sundberg, ig76: Roos. Taylor and Siegbahn, 198官: given an assignment of So's for the core C and the mpty set E, we ust the SO's of the fractionsl set for construct all possible CSF's of the required symmetry species. In this model the MCSCF process is invariant under all So transiormations within F, as well as under those within C or within E. While the model is at first sight attractive because of its conceptual simplicity. it also suffars from too many CSF's unless on uses only a trandiul of fractional shells. Note thet for $C=E=0$, where O is the null sit. ys obtain the complete SO product space model as a liniting cisce.

At the other end of the spectrum is the evan-replacement MCSCf model. In thls model, the CSF's of a given species and inh lecies. say FAPA for all P. are bullt from an even-replacehcat set of so's; such a sut In turn is eharacterized by the fact that any two St's ara related by en even replacement of SO's. Note tilat we do no denand that the even-replecement rule holds betweten SB's used ror tie construction of CSF's of different spectes or subspecles.

The even-replecement MCSCF model has the following simplifying properifes: 1) there are no fnuariances under SO transformations other zhan thosp arising from transformations within Cor E, or witinin H if applicablut z) the SO's are always natural spin-orbitits: 3) conipared to more general MCSCF modelsi the number of non-vanishing two-fitstron matrix elewenty in drastically reduted. These toherent sioplirictitons rencer this model much mora economical than oshers: in izci celculicious hy this model are comparable In size and complexiay io orintiry sel calculations.

The rationale for the even-replacement MCSCF model follows from two Impertant observations: i) the construction of CSF's from SD's almays foilows the even-replacenent rulo; 2) for a tho-eiectron sysiem, an exict wave function is always expressibie in terms of an (infinite) even-replacement set of SD's. The first observaition is of course a necessary prertquisite for the validity of the model. The second observation, combined with our hope andfor belief that elprtiron correiation is esantially a zum of palr interactions, sucgests that the evenreplacement HCSCF model is eapable of produeing wavh fulictions of high quality, at least for calculation irvoluing only a singlo spectroscopic term. On the surface, thls expectation is contrary to experfence with CI calculations, where aingle replacements have proved to be important. However the findings of CI calculations are not necescarily transfarabie to MCSCF calculations, in which the So's have lean carefuto ly optimized. Ue suggest that calculations in the neai ruture be dosigned in part to throw light on this questiona the relazive reonotyy of the even-replacement madel li too tampting te leave that avanti unckplored.

Broadening our horizon, there is very large variety of Intermadiate possibilitien batween the oven-replacmacort and uh. iractionally saturated MCSCF models. A satisfactory thoorevicil unda.itulailig and appropriate classification of the possible models foes noi eitat ar this time. From a practical point of viow, such an understanding would undoubtedly be very helpful in developing erfective strategies for the selection of CSF's in a wide variety of physical probleme. Conversely, we can expect that the experience which is now accumulating from practical caleulations will help to deepen our understanding of MCSCF mudels.

In enalogy to inveriance under So transformations, the various MCSCF models can be further distinguished according to invariance under TSF transformaticns. For this purpose we divide the TSF's into two sets: the ofeupind tarmi which arepresent in the energy exprission, and the unoccupled tern whiteh ara besent. In practico it is simpler to saj that the occupled and unoccupled terms are both present in the energy expicssion, With non-vanishing und vanisising weights, respectively. It will be shown later on, in connection with the determination of essentiai non-radundant variables, that the MCSCF procgss is irvariant under alj (permisalbie) transformations within TSF subsuts or the sate weight, and barring a numerical accident, under no other \quad 'síl transíormatinis.

V1. TRANSFCRMATIDNS OF OME-ELECTRON AND N-ELECTRON WAVE FUNCTIONS

As discussed before, our MCSCF strategy calls for improved wave
 We need to dafine transformation operators which are specificaliy tailorad to the index structures and arguments of the So's and TSF's. Wo must furthermore define mdditional operators by suriming over subspecies andfor electrons, and discover useful properties of, and reletions between those various operators.

Analogous to the general replecement operator defined by Eq.iBl, we now define the most elementary one-electron operator, the so replacement operator, by

$$
\begin{equation*}
s_{\lambda i a, \mu_{j \mu}}(a)=1 \phi_{\mu j \mu}(a)>\left(\phi_{\lambda i x^{\prime}}(a)\right) \tag{72}
\end{equation*}
$$

Its Hermitian conjugate is given by

$$
\begin{equation*}
P_{\lambda, \alpha, \mu j ;}^{*}(a)=P_{\mu j \beta, \lambda_{i},}(a) \tag{73}
\end{equation*}
$$

When forming the product of two such operators we must distinguish bewesn the caste of the same or different arguments. For the same argument we get. analogous to Eq. (If)

For different arguments no similar formula applies. However in general, for alther the same or different arguments, we have the very userul commutation relation

$$
\begin{align*}
& \text { A one-electron thell replacement operator is defined by } \\
& P_{\lambda i j}(a)=I_{\alpha} P_{\lambda i \omega, \lambda j(a)} \quad:
\end{align*}
$$

its properties follow easily fron Eqs.(72-75), namely

$$
\begin{align*}
& s_{\boldsymbol{L}_{i j}}(a)=P_{2 j i}(a) \tag{77}\\
& S_{\lambda i j}(a) F_{\mu i C}(a)=\delta_{\lambda_{F}} \delta_{i \ell} \Phi_{\lambda / j}(a) \quad . \tag{78}
\end{align*}
$$

Summing over blectron arguments, widefine now also the N-electron sheil replacement operator

$$
\begin{equation*}
S_{\lambda i j}-\Sigma_{a} P_{2 i j}(a)=\Sigma_{a} \Sigma_{a} P_{\lambda i \alpha, \lambda j i n}(a) \tag{aE}
\end{equation*}
$$

When applying the variation principie, the shell replacement oporators permit ui to perform the SO variations in the most lucid manner. In iact, tha onw-elactron operators $\{76\}$ are the basis operators needed to describe the transformetions of the individual So's, while the A-alectron aperators (89) play an analogous role for the iransformitions of the TSF's which are Induced by the SO transformations.

We define the onelectron enti-Hermitian operator

$$
\begin{equation*}
x(a)=\sum_{\lambda i j} P_{\lambda_{i j}(a)} X_{\lambda j i} \tag{83}
\end{equation*}
$$

A now set of SO'\% Is now obtained from the reference so's by the unitary transformation

$$
\begin{equation*}
\psi_{2 i \alpha}^{\prime}(a)=U(a) \phi_{\lambda i \pi}(a)=e^{x(a)} \phi_{\lambda i \alpha}(a) . \tag{84}
\end{equation*}
$$

which can also be stated as matrix transformation or the reference So's. namely

$$
\begin{equation*}
\phi_{\lambda_{i} \alpha^{\prime}}(a)=\sum_{j \lambda_{j}(a)}\left(L_{\lambda_{j} i}=\Sigma_{j} \phi_{\lambda j}(a)\left(e^{x_{\lambda_{j i}}}\right.\right. \tag{841}
\end{equation*}
$$

We note that the matrices U and X refer to shells, and that they are blocked by symmetry: this is prectsely what is needed for a permissible transformation which preserves the symmetry properties of the So's.

From the one-electron anti-Hermitian jperators (83) we now construct a cor responding N-electron operator by means or

$$
\begin{equation*}
x=\Sigma_{a} x(a)=\Sigma_{\lambda i j} P_{\lambda i j} x_{\lambda j i} \tag{85}
\end{equation*}
$$

Because of the commutation relations

$$
\begin{align*}
& I X(a), x(b)]=0 \\
& I M(a), K(b) \geq=0 \tag{85}
\end{align*}
$$

we cen now define an N-alectron unitary operator \boldsymbol{U} by means of

$$
\begin{equation*}
u=\pi_{a} u(a)=\pi_{a} e^{x(a)}=e^{I_{a} x(a)}=e^{x} \tag{87}
\end{equation*}
$$

Let now 5 be any function in 50 product space defined in terms of the roference SO's faida). If we subject all SO's simultaneously to the transformation \{B4), the resuiting transformation In SO product spacs is given by

$$
\begin{equation*}
y^{\prime}+u y=e^{x} \tag{88}
\end{equation*}
$$

we call (B8) the Induced TSF trangformation.
It is remarkable that the anti-Hermitian operators which offect the one-electron and induced H-electron transformations, $X(a)$ and X, ara so simply related: they have the same matrix elements Xaji with respect to their natural basis operators, $\mathcal{P a}_{\mathrm{a}}\left(\mathrm{a}\left(\mathrm{a}\right.\right.$ and $\mathrm{Pa}_{\mathrm{A}} \mathrm{i}$, resplactivejy. There is no corresponding simple relation betwaen u (a) and U. This underscores the supariority of the anti-Hermitian operators over the unltary operators in this context.

We can apply the transformation (8B) to our set of CSF's Apa, or equivalentiy to the TSF's $\mathbf{F}_{\text {ara }}$, to yleld

$$
\left.\begin{array}{l}
\Phi_{A P A}^{\prime}=u \Phi_{A P A}=e^{x_{\Phi_{A P A}}} \quad . \\
\Psi_{A I A}^{\prime}=u \Psi_{A I A}=e^{x} \Psi_{A I A} \quad,
\end{array}\right\}
$$

In general the set of chosen CSF' TAPA does not span the full so product. space. It is too much to expect that under the transformition (89) the CSF's (or TSF'E) would transform among themselves: the CSF (or TSF) manifold is in general not invariant under en so-infuced transformetion. However it is possible that such Invariance occurs for some of the operm ators U^{\prime} in this case the CSF and TSF transformations, and their interconnection, are glven by

The operators K for which the CSF manifold is invariant will later prove to be of particular significance $1 n$ connection with the elimination of non-essential variabies.

In addition to the SO-induced transformation, the TSF's are also transformed by varying the expansions in terms of the CSF's; we call this the direct Isfe transformation. We define, analogous to the sliell replacement operstors, the Nتslectron term replacemont operator

$$
\begin{equation*}
\varphi_{A I J}=\Sigma_{A}\left|\Psi_{A J A}\right\rangle\left\langle\Psi_{A T A}\right| \tag{98}
\end{equation*}
$$

Which has the matrix elements

$$
\begin{equation*}
\varphi_{A T J_{V} \Xi K L}=\left\langle\Psi_{E K A}\right| \varphi_{A I J}\left|\Psi_{\Xi L A}\right\rangle=\delta_{A E} \delta_{I L} \delta_{N J} . \tag{91}
\end{equation*}
$$

furthermare it is enelity seen that

$$
\begin{gather*}
\varphi_{A I J}^{*}=\varphi_{A J I}, \tag{92}\\
\varphi_{A I J} \varphi_{I K L}=\delta_{A E} \delta_{I L} \varphi_{A K J}, \tag{93}\\
\varphi_{A K J} \cdot \varphi_{E K L} I=\delta_{A E}\left(\delta_{Z L} \varphi_{A K J}-\delta_{K J} \varphi_{A I L},\right. \tag{94}
\end{gather*}
$$

$$
y=\Sigma_{A I J} \varphi_{A I J} Y_{A J T}
$$

we obtiln new set of TSF's from the reference TSF's by the permissibie unltary transtormation

$$
\begin{equation*}
\xi_{A X A}^{\prime}=\tau_{A L A}=e^{U_{\Psi_{A I A}}} \tag{96}
\end{equation*}
$$

which can also be gtated as matrix transformation of the reference TSF's, namely

$$
\begin{equation*}
\Sigma_{A I A}^{\prime}=\sum_{J} \Sigma_{A J A} Y_{A J I}-\Sigma_{J} \Psi_{A J A}\left({ }_{2} Y_{A J I}\right. \tag{96}
\end{equation*}
$$

Finelly, we must wite down, the combined TSF transformation which results when both the induced and the direct TSF transformation are pirn formed. The required formula is

$$
\begin{equation*}
{ }_{\Psi_{A I A}^{\prime}}^{\prime}=u V \Psi_{A I A}=e^{x} y_{\Psi_{A I A}} . \tag{97}
\end{equation*}
$$

We observe that in general the operators x and Y ior, equivalentiy, u and (F) do not commute. Hence we cannot eombine the two exponents in Eq. (97). nor can we change the order of the two exponential operators. One clue to remember this order correctily is the notion that ψ is defined with raspect to the reference TSF's, and not with respert to TSF's changed by an So-induced transformation.

VII. MATRIX ELEMENTS OF SYHMETRICAL ONE-AND TVO-ELECTROH OPERATORS

Let fial be anemeletron oparator which ia symmetrical with resper to the symetry group of the systom. Analogous to Eq. (611, the matrix elements of fial with respect to SO'g and basis functions stmplify to

$$
\left.\begin{array}{l}
\left\langle\mu_{\lambda i \mu}(a)\right| f(a)\left|\phi_{\mu j \beta}(a)\right\rangle=\delta_{\lambda \mu, \mu \beta} F_{\lambda i j} \quad . \tag{98}\\
\left\langle x_{\lambda, \alpha}(a)\right| F(a)\left|x_{\mu g}(a)\right\rangle=\delta_{\lambda a, \mu \beta} f_{\lambda p \xi} .
\end{array}\right\}
$$

Here the Kronecker deltas depend only on symmetry; they are aspecial case of what arecalled symmetry factors. The Fici and fage do not depend on the subspecies, and are ealied reduced mat\&ix elemehts.

Similarly, let $f(a, b)=f(d, k)$, $a p t$, be a two-electron operator which is symmetrical with respect to the symmetry group of the system. The most general treatment for the matrix elements of gia, b \} is considerably more complicated then for the one-electron operators $\boldsymbol{\text { lia); }}$ the degree of complexity is a function of the structure of the syinmetry group. We now make the simplifying assumpeion that the group is simply reducible (WIgnar, 194m, 194i). Such a group is characterized by \{J才 inverse elements are in the same class; and (2) when decomposing the product of two irreducible representations into a sum of such representations, no representation in that sum ofcurs more than onca. These two properties are sufficient to gumantee the existence of Clebsch-Gordan cuefi:cients, which is the main reason for the resulting simpliticalions. As mentioned before, the assumption that the group is simply rejucibie covers moms and the vast majority of molecules.

For simply raducible groups the matrix elements of gia,b) with respect to so's and basis functlons simplify to
where now the wama, whix are the symmetry factors, while Gainj, ulpl,
 the cốpílíņfidex, identifies the resulifing symmetry species arising from the decomposition of the product of species λ and μ lor and \boldsymbol{p}. If the symmetry group is not simply redutible, a ganeralization of Eqs.(99) with silightly more elaborate Index structure applies. Since Eqs.(99) aromost frequently applied to electron-Electron interaction, we shall call the two-efectron symmetry ractors electron interaciion coupling confficients; they satisfy the symmetry reitions

Similarly the two-electron reduced matrix eiements satisfy the symet:y relations

Using the defitition of a Hermitian conjugate operator. Eq.(12), we find for tine Hermitian conjugates of the reduced matrix element:
(152)
furthermore, if the operators $J(a)$ and $G(a, b)$ are Hermitifan, that if

$$
\left.\begin{array}{rl}
z^{*}(a) & =\xi(a) \tag{1.83}\\
g^{(1)}(a, b) & =\xi(a, b)
\end{array}\right\}
$$

we have for the reduced matrix elements

We call attention to the facts that the first two Eqs. (102) are an obvious restatement of Eq. $\{15$) for the case of matrices blocked by symmetry, and that in order to establish the last two Eqs.ilig2) one needs to invoke the complex conjugate symmetry of the electron interaction coupling coeffictents expressed in Eg. (IGM),

If gia) and Gia, b) are the one-and two-eleciron orerators of the Hamittenian of ehe system, the reduced nitarix elements Faji, fadep
 electron integrofs oyer Sós and basis functions. respectively; and since the Hamitionlan is Hermitian, they obviousiy satisfy Eqs. (104). These integrals over So's and basis functions are furtheriore relatid by

The ealeulrtion of Faji and Gack, phpiok by means of Eqs.(1B5) is often referrec to as the inteqral transformetion;

Within cur MCSCF modet, We need to evaluate one- and two-electron matrix elements only between wave functlons (ia) which ire confined. for each argument a, to the space spanned by the So's daitia), or equivalently by the hasis functions xaix(a). Hence we can uae ihs maelinury of projected operators developed earlier, tcs.\{36-su\}, for the evaluation of such matrix elements. This relevinis pionciors ill ihis case are the So projectors for ench argument, nitu.
so that
P(a) $(a)=f(a)$.
(107)

The projected one- and two-electron operatory are now defined by

We now make the important observation thet any function 9 in the so p,oduct space is. as far as the argument a is concerned, of the type flals therefore

Another importent observation is thet f（a）commus with any operator which is internal to the so product space．In particular．f（a）commutes with any peplacement operator defined 30° far，or eny algebrale con－ struet thereof；lt sufficus to state

For the cueluation of phistcel propertien from our N－elactron wave functions we nead the total one－and two－electron operators

$$
\begin{equation*}
\mathcal{G}=\left\{\Sigma_{a b, a p b} G(a, b)=\Sigma_{a b, a\rangle b} \xi(a, b) \quad . \quad\right\} \tag{11.}
\end{equation*}
$$

We define the corresponding totill proincted one＝and two－electran operators

$$
\hat{\xi}=\frac{1}{1} \Sigma_{a b, a+b \hat{\xi}(a, b)}=\Sigma_{a} \hat{\tilde{f}}(a) \quad . \quad\left\{\begin{array}{c}
a b, a) b \hat{g}(a, b) \quad . \tag{111}
\end{array}\right\}
$$

Mote that all components of \boldsymbol{f} and \hat{G} ars internel to the so product space．albelt by force of different projectors．Consequently．foliowing Eq－（48），If $\overline{7}$ and aro any wave functions within，and and 3 are any operators internal to the $S 0$ product space，then

Eqs．（112）guarantee that and \hat{G} are projected operators associated with 3 and G ，respectively．The actual projectors which acromilish this correspondence are of no particular interest ior our prestint purposes． and we chose to onit tham．

The projected operatorg can now be expreesed in terms of reduend matrix elements and replacement operator：．Aiter some alyelia ve ind
where we have introduced the two－shell ruplicanent operatar

This operator satisfles the symmetry conditions
and the commutation relation

Using Eqs．（111，113）we can now oxprass the mitrix elaments of \hat{y} and \hat{G} ritween any two functions in so product space in terms of the matrix Tlements of shell replacement operatorsand reduced matrix elements．in particular，for the matrix elements of t and ξ between $C S f$＇s we find
where we have introduced the atructure gonetinnts

These structure constanti express how the CSF's are constructed from the SO's, and are hence constant in given calculation. They satisfy the symantry condtion

Putilng man in EqE. (118), the structure constants reduce tit the usual expreasions known from single conflgurition SCF theory, namely
where the maf, $2 i$ are the shell occupation numbers Introduced before. Eqs.

 They siatiafy the symetry sonditions

Host of the Coulomb and exchange interaction coefficients can be further redueed to simpler quantities by
s. that the only Coulomb and exchange Interaction confficients which newd to be established separately are those with $\lambda_{i} \in F_{A}$ and micFiA. In Eqs. (122). GEA 1 is the coupling index identifying the identical representation of the symmetry group. and $x_{\lambda_{\mu \alpha}}$ is a set of consiants depending on the symetry group only.

The evaluation of the structure constants for Ppa. as well as the frectionilfractional interaction constants for $p=Q$. is a complicated subfect. Powerful tachniques have been developed by Racah to solve this problem for atoms (Racah. 1942. 1943): the specifics of these techniques are intimately connected with the structure and properties of the applit cable symmetry group. To solve this problem In genaral for our riesent HCSCF formalism, we need the arilugue of Racah's algebra for arbitrary simply reducible groups. Such a general solution ls not yet ausilable. 30 that practical MCSCF calculations necesesitate ai present the piecemeal calculation of the required structure constants by sbicifite racher than gencral methods.

The burden of evaluating the structure constants is considerably leas for the even-replacement model than for other hescr mowis. It is easily seen that in the even-replacement madel the ene-vection constants between any two CSF's must vanish:

For the general two-electron constants with pathe simplification is relatively speaking more considerable. Hamely for given Ape, thot is. for part ccular pair of CSF's. there are at most two hon-vanishing constants for tach value of the coupling index a. As a reiult, caleulations with the even-replecement model are gigilficailly mire ecollomical than with other mCSCF models.

It is noteworthy that in formulations based on second quantization It is unnaturai and awkward to formulate the equivalent ol our tworibell replacement operator (114). This is so becauct in 2lis deitnition (114)
the two lectrons must be separately identifiedt in secand quantization it is not possible to keep track of indiuldual electrons. Consequentiy a complete symmetry raduction has not baen achleved to date in any SCF or MCSCF theory baned on elecond quantization.

vili. the varatiomal phocess in terhs of ESSENTIAL NOH-REDUMDANT VAKIABLES

Tha Haglitonian of our gyatem, and its projected equivalent, ere glven by

$$
\left.\begin{array}{rl}
3+3+g & \cdot \tag{1124}\\
3-f+g & ,
\end{array}\right\}
$$

where D_{A} is the togres of degoneracy of specien. A, and the withtit tere constratned by

$$
\left.\begin{array}{ll}
W_{a r}=W_{A I} \geqslant! & \cdot \\
\Sigma_{A X} D_{A} W_{A I}=1 & \cdot
\end{array}\right\}
$$

Note that in general the enerey sum contelns occupled terme with Whr and unoceupiad terms with Whes.
it is useful to introduce the \{Hermitian\} weight operator \boldsymbol{W} defined by

$$
\begin{equation*}
W=\Sigma_{A I} \oplus_{A I Z} W_{A I} \tag{127}
\end{equation*}
$$

Obviousiy the internel to khe SO product space: furthermore is diagonal with respect to the refertnce TSF's Wara. In the spirit of Löwdin's trace algebra (Lowiln. 1977) we etil nowhoxpirss the MCSCF variational energy in the most compact ionat, müly

- Trace(at
(128)

It is to be noted that during the variational process and Sare fixed operators, whiley moves along with tice viation liu the troparators.

Our next objective is to difine cesciniat titn-rcidunciant viriables for our variational process. fiset. oi u. rithlise le no..-.edunaintat if there are no auxlliary conditions for. or constralnes on, eheze variables. A mingle variable is non-essential if it occurs in our energy expressicn with vanishing coefficients. Du: set of varialiles is
 sssential variabies.

We subject the TSF's In the cnerqu expression (l35) to the variation (97), and transfar the trans: orin_tion operitor: firols this wave

This can be rewritton as a trace, in which we carry out one cycilcal move, obtaining

We now use for the exponential transformations of 2 and the well-known expansion in teras of cammatatore. Tine refulk ir

$$
\begin{align*}
& \left.\hat{\boldsymbol{x}}+\mathbb{E}, \boldsymbol{x} \boldsymbol{x}+\frac{1}{2}[\boldsymbol{P} \hat{F}, x], x\right]+\ldots, n \tag{131}
\end{align*}
$$

Inserting in Eq.(131) the expansions for X and V_{6} Equ.(B5,95). we obtain for E^{\prime} a Taylor expansion in terms of the matifix rigments of the transformations, namely
where Eis given by Eq. (127), and

Note that the definitions (135.137) hava been chosen so as to querantee

Since the symmetry group of our systen is asaumed to be simpiy reducible, whenchoose our wave function representations so that all relevant matrices are reali furthermore Hermition, anti-Hermitian and unitary matrices becone symmetric. skew-symmetric and orthogonal, respectively. For more complicated structures, like the two-electron reduced matrix elements, similar statements are mpilicable.

Involing the real skew-symmetry of the transformation matrices, namely

$$
\left.\begin{array}{l}
\bar{X}_{\lambda i j}=X_{\lambda i j}=-X_{\lambda i i} \quad . \tag{139}\\
\Psi_{A T I}=Y_{A I J}=-Y_{A J I} \quad,
\end{array}\right\}
$$

we note that the energy axpression (132) obviously contains redundant varlables. We note further that the stiev-symmetry is the only source of redundancy, since there are no other condifions which Xiji and $\mathrm{Y}_{\mathrm{A}} \mathrm{g}$ have to satisfy to be valid variational varlables. The redundancy is easily removed by collecting the terms in (1321 wilct contain equal and opFosite matix elaments, and retaining as explicit varlatias the lover left eriangular matrix tements $X_{2 i}$ and Yary. Ve designate the sets of compound indices of these variables by S (for shell rotations) and T ffor term rotationsl. so that

$$
\left.\begin{array}{l}
2 i j=S \quad . \quad i>j . \tag{14曹}\\
A I Y=T \quad, \quad x>y .
\end{array}\right\}
$$

It is notewarthy that the formal and explicit reacual of redundancy from the variatlonal parameter set is a direct consequence of having used the anti-Hermitian operators X and Y rather than their unitary equivalents $t 1$ and V. This underscores once more the superiority of the anti-Hermitisn operstors over the unitary operators.

It will be shown in the next gection that the sets of non-redundant variables x_{2}; and $\gamma_{\text {ary }}$ can be partitioned into subsets or essential and non-essential variabies. Denoting the gets of indices of the essential variables by S_{e} and T_{e}, and of the non-essential variabies by S_{m} and T_{n}. we have

$$
\left.\begin{array}{ll}
S=S_{e}+S_{n} & \cdot \tag{141}\\
T=T_{a}+T_{n} & .
\end{array}\right\}
$$

In our energy formulas the sums over variational variables collapse In fact into aums over essential variables only; we shall use for such sums the simplified notation

$$
\begin{aligned}
& E^{\prime}+\varepsilon+\Sigma_{\lambda_{i j}} \varepsilon_{\lambda i j} X_{\lambda j i}+\Sigma_{A L J} \varepsilon_{A L J} Y_{A J I}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\Sigma_{A i j}^{\prime}=\Sigma_{\lambda i j C} S_{e} \cdot \tag{142}\\
\Sigma_{A J J}^{\prime}=\Sigma_{A I J C T_{e}} \cdot
\end{array}\right\}
$$

In terms of the essential non-redundant variables, the new energy can now be written in the farm

$$
\begin{aligned}
& E^{\prime}=\varepsilon-\Sigma_{2 i j}^{\prime} E_{j \dot{j}} x_{i_{i j}}-\Sigma_{A J J}^{\prime} E_{A I J} Y_{A I I}
\end{aligned}
$$

where

$$
\begin{align*}
& \begin{array}{l}
\varepsilon_{\lambda i j}=e_{A i j}-e_{A j i} \quad, \\
\varepsilon_{A I J}=e_{A I J}-e_{A S J} \quad .
\end{array} \tag{144}
\end{align*}
$$

while of course also

$$
\left.\begin{array}{l}
E_{\lambda i j, \mu A R}=E_{E R} R L_{1} \lambda i j \tag{I49}\\
E_{A L J, \equiv K L}=E_{E K i, A J J} \quad .
\end{array}\right\}
$$

Truncating the energy expression (143) by dropping all terms of third ind higher order, the variationit problem is now properig solved when $X_{\lambda i j}$ and $Y_{A I J}$ satiafy

Solving Eqs. (150) for $X_{1} ; i$ and Yary is standard problem in inear
 vector of independent varlables: Eq.i143) defines the energy hypersurface as function of these variables: $\left\{-\xi_{2} ; j, E_{A x y}\right.$; constitutes the vector of first deriveetives of the energy, ziso cilied the gradient; and
 second derivitives, Also called the Hessian. The set of equations (150) has e untque solution if and only if the Hessian is non-singular. Sirice the vector ($X_{\lambda, j}, Y_{A J F}$) contains only essential variables, the Hessian being singularsiftals a pathological casc. The latizer can oceur for a verlety of resions. prominent among which are a poor shoice of so's. CSF's, or TSF expanition coefficients. We shall assume from here on that we me dealing with mormal case, then the Hessian is non-singular. In order to molve Eqs, ([5日) without unnecessary loss of accuracy. we recommend the method known as "Gausian elimination with pivoting".

The solution ($x_{1, j}, \gamma_{A z J}$) of Egs. (15J) now derines the appropriate
 coefficients. Since the entire procests is oniy aceurinte tirough quadratic terms in $X_{a y}$ and Yazs anyway, it suffices to truncate these confficient transformations accordingly, namely

Note that Eqs. (151) conteins full sums over all possible index values; hence the get of matrix elaments $X_{\text {aif }}, Y_{A y}$ to be used here is obin innd by "padding out" the essential non-redundant sot, insering affioitu. values or zeros for the missing ones as appropilate.

The truncation leaves alight discrepancy in the orthonormality of the new coefficienty chipi and Cipr. This will be renedied autcnatieally, however. if these coafficients are ever used for anotiser cycle. since a rigorous prior orthonormalization of both sets of coefficients 1s prerequisitefor valid celculation; we recommend the will-known Sehmidt process for this.

Clearly when

$$
\left.\begin{array}{ll}
x_{2 i j} \rightarrow i & , \quad \lambda i j \in S_{e} . \\
Y_{A I J} \rightarrow I & , \quad A I J \in T_{e} .
\end{array}\right\}
$$

both transformations (151) reduce to the identity, enc the orthonormat input coefficienta $c_{2 p i}$ and Cipy then constitute the converged MCSCr solution. Accordingiy we defiń the sonvergence messure fas the rootrean square of the matelx lements, namely

$$
\delta=N_{Y Y}{ }^{\prime}\left(\Sigma_{i j i}^{\prime} Y_{\lambda i j}^{1}+\Sigma_{A I J}^{\prime} Y_{A Z J}^{1}\right)^{\frac{1}{2}}
$$

$$
\begin{equation*}
\delta<t \tag{154}
\end{equation*}
$$

where t is the convergence threghoid ehosen for the particular calculation.

Since in the normal case the Hessian is non-singular, convergence oceurs if and only if

$$
\left.\begin{array}{lll}
\varepsilon_{\lambda i j} \rightarrow \infty & , & \lambda_{i j} \in S_{e} . \\
\varepsilon_{A L J} \rightarrow \varepsilon & , & \lambda I J \in T_{e} .
\end{array}\right\}
$$

The firat Ea. (i55) is the generalized Briliouin theorem in the context of our MCSCF model, while the second Eq. (155) gignals that the configuration interaction seculer equation system is satisfted by the occupled terms.

[4 . DETERMIMATION OF THE ESSENTIAL NOM-REDUMDAFT VARIABLES

The transformations to which the M-electron wave functions are subjected In any varlational MCSCf process constitute life group, which we eceordingly call the viriationai group. This group is separate and distinct from the symmetry group of the system, which consists of all operators which commute with the Hamilionian. The symmetry group of course guarantess symmetry characteristics -- species and subspecies -- for the wave functions which satisfy the Schrödinger equation. In our MCSCF seheme we take advantage of this by restricting the variational wave functions accordingly, which in turn shrinks the variational proup from what it would be without such an constralnt. We thus obtain the permissible variational group, conststing of transformations which preserve symmetry species and subspectes.

The permissible variational group is actualiy the product of two groups. The so indued transformations M of Eq. (8B) form a group 4 : Bimilarly the direct TSF transformations V of Eq.igif form group V. The products UV of Eq. [97) now form the permissibie variational group, which we shall ecordingly designate by UV. Obviousiy $X_{i, i j}, \lambda i j e s$ and $Y_{\text {AI }} . \operatorname{AIJET}$ are the group parameters of U and V. respectively: together $X_{A}, Y_{A y F}$ are the group parameters of $U V$. Corresponding to each of thirse parameters we define the elenentary rotations

In view of our earifer discussion of MCSCF models, the MCSCF procoss is invariant if the operator U causes the CSf's to be trensformed anong themselves, namely
（157）
Whare the $U_{A P G}$ are the matrix elaments of the trangformation．It is easily seen that the operators U which satisfy Eq．（157）again form a group，which is of course subgroup of U_{i} this subgroup consists of non－essential rotations．and will therefore be designated by U_{m} ．If an elementary rotation $\mathcal{L A l j}^{2}$ satisfies Eq．（L57），the corresponding group parameter $X_{\lambda i j}$ is non－essential：this is expressed by

$$
\begin{equation*}
u_{\lambda i j} \Phi_{A P A}=\sum_{Q} \Psi_{A Q A} U_{\lambda j, A Q P} \quad, \quad \lambda \ddot{j}=S_{M} \tag{158}
\end{equation*}
$$

wher the $U_{\lambda, i, A P}$ are the matrix elements of the transformation．
An imporfant spacial ease of Eq．（157）oceurs when all CSF＇s romain unchanged，namely

$$
u_{A P A}=\Sigma_{A P A}
$$

The operators U which alatsfy Eq．（159）again form a group，which is of course subgroup of $山_{w^{2}}$ we shall designate this subgroup by H_{L} ．The group parameters of $U_{i} w i l l$ be designated by S_{i} ；hence

$$
\begin{equation*}
u_{\lambda i j} \|_{A P A}=\boldsymbol{\Phi}_{A P A} \quad, \quad \lambda_{i j} \in S_{i} \tag{16最}
\end{equation*}
$$

The condition（16F）lends to non－essential uariable becauso if tha CSF＇s are invariant，so are the TSF＇s，and therefore also the energy．The corresponding X_{λ} ij can simply be dropped from the algebra， which is equivalent to putting X_{1} ifelf．For the more general condition （15日）the mrgument is somewhat more complicated．In this case the －ffect of the induced transformation of the CSF＇s by $\psi_{j i j}$ can also be obtalned by a difect TSf transformation of the type \boldsymbol{f} ．The precise matching of these two operations leads to exactly one non－essential linear combination of the applicable $X_{2} j_{j}$ and some or all of the Yaty＇s． It is not necessary，however，to nali doln this linear combination explicitly：it suffices to drop the offending X_{a} ij from the algebra， leaving the Yag＇s as potentlal ossential valiabies isome of them may turn out to be non－essential for other reasons，see beiorl．

We paraphrase our previous conclusions concerning shell structure and Invariamee of the MCSCF process as follais．Rotations \＆ $2 \dot{d}$ which satisfy the condition（158）but not（16日）are alwajs entirely Within the set of fractional shells F．Rotacions $\chi_{\lambda i j}$ thich satisiy the conditions （IGS）are： 111 such rotations within the eere C_{i} ald sueli rotations within the set of empty shells E：and occaslonaliu sone sucli rotintions within the set of fractional shells F．On the otiler hand，rotations between shells belonging to any two different caceesories out oi C，F，E cannot sitisfy the condition（15B），and invartanre of tlie energy under such a rotation would be an extremely rare numerical accident．Barring such an exceptional occurence we summarize our findings by

The conditions（i6i）ialave unresolved the amblguoug case and The resolution of this ambigulty depends on the MCSCF model used． For the half－shell model we have

$$
\begin{array}{lllll}
\lambda i j \subset S_{m} & \text { if } & \lambda i \subset H & \text { and } & \lambda j \subset H \tag{161'}\\
\lambda i j \in S_{z}
\end{array} \quad \text { if }\left\{\begin{array}{lll}
\lambda i=H & \text { and } & \lambda j \in F^{\prime} \\
\lambda i=F^{\prime} & \text { and } & \lambda_{j} \subset H \\
\lambda i \in F^{\prime} & \text { and } & \lambda j \in F^{\prime}
\end{array}\right\}
$$

while for the frimetionally saturated model

$$
\left.\lambda_{i j}=S_{n} \quad \text { if } \quad \lambda_{i}=F \quad \text { and } \quad \lambda_{j}=F \quad \text {, } 1161^{*}\right)
$$

and for the even-replacement model

$$
\lambda_{i j}=S_{e} \quad \text { if } \quad \lambda_{i}=F \quad \text { and } \quad \lambda j=F
$$

We call attention to the fact that the variational variables identified by S_{i}, S_{m} and S are the group parameters of the nestaig groups $L_{\text {is }}$ U_{n} mid U. On the other hand the essential variables identified by $S_{\text {e }}$ in general do not constitute a set of parameters of any group.

With respect to direct TSF transformations, it is shown in Appendix C that the necessary and sufficient condition for a nor-assential rotation V is given by

(162)

The rotations which satisfy Eq. (162) form a group $V_{\text {f }}$, which is of course a subgroup of V. If an elementary rotation ${ }_{\text {Iars }}$ shtisfies Eq. (162), the corresponding group parame ir YaIJ is non-essentialit this is expressed by

$$
\begin{equation*}
\llbracket W_{,} v_{A I J} \rrbracket=\sigma \quad, \quad A B J=T_{m}, \tag{163}
\end{equation*}
$$

Which 15 equivalent to

$$
\begin{equation*}
\left(W_{A I}-W_{A I}\right) Y_{A I J}=\square \quad, \quad A I J=T_{m} . \tag{164}
\end{equation*}
$$

Hence a TSF rotational variable is essentisi if and only if the weights of the two spectroscople terms connected by the rotation are different, as expressed by

$$
\left.\begin{array}{llll}
A I J & =T_{n} & \text { if } & W_{A I}=W_{A J} \tag{165}\\
A I J & =T_{i} & \text { if } & W_{A I} \neq W_{A J}
\end{array}\right\}
$$

It should be notad that T_{m} and T identify the group parameters of V_{n} and V, while the essential variables identifled by T_{e} in general do not constitute a set of parameters of any group.

X. evaluation of the referehce emergy, gradjent and hessian

We now turn to the actual evaluation of the reference energy,
 weights, structure constants and reduced mi.irl: eietaintr. On arcount of

 intermediate quaritities the matris: ifom-m oi the: H..... itullan between TSF's defined by
these matrix elements are obviously reai symmrtrical, nameiy

$$
\bar{H}_{A I J}=H_{A I J}=H_{A J I} .
$$

The reduction of f to the matrix eioments $H_{A J}$ geeds no comment. Far the anelogous reduction of EAst and Eary, INt we usu [a, (94) to eveluete the relevent comutators of er, nameiy

Uaing these resulta we find after some sigebra

$$
\begin{align*}
& A=\Sigma_{A R} D_{A} W_{A} N_{A S I} \quad \\
& F_{A T J}=2 D_{A}\left(W_{A J}-W_{A J}\right) H_{A Z J} \text {. } \tag{171}
\end{align*}
$$

Expresping now the Hamitionian matrix blements between Tsf's in terme of metrix ifements between CSF's we obtail
where heve used the fact that the CAPr form a real orthogonal matrix, While the matrix elements between CSF' are given by

$$
\begin{equation*}
A_{A P Q}=\left\langle\boldsymbol{H}_{A P A} \mid \mathcal{H}_{1} \mathcal{B}_{A A A}\right\rangle: \tag{17L}
\end{equation*}
$$

they are obviousty reat symatrical, namely

$$
\bar{\lambda}_{A P Q}=A_{A P Q}=\lambda_{A Q P}
$$

The Hamiltontan metrix miements between CSF's are now readily
evelueted in terms of structure collstants and rudiced mewiox eiencnts. Using Eqs. (117,119-121,12A,174) wetind tifier soluc oigesig

$$
\begin{gather*}
A_{A P P}=F_{A P}+\frac{1}{2} J_{A P}-\frac{V_{A P}}{A_{A P}} \\
\lambda_{A P}=F_{A P A}+\frac{1}{2} G_{A P A} \quad, \quad O Q Q \tag{177}
\end{gather*}
$$

where

$$
\begin{align*}
& F_{A P}=\Sigma_{\lambda i} M_{A P_{i} A_{i}} F_{A B i} \quad . \tag{178}
\end{align*}
$$

For the zecond group we use siniler proceduret. We tntroduce the metif elementa of the commutator Eisigid between TSF's. namely

$$
\begin{align*}
& \text { - } D_{A}^{-1} \text { Trece(Par thindijur } \tag{183}
\end{align*}
$$

which satisfy

$$
\bar{H}_{1 j i, A E J}-H_{\lambda i j ; A J I}=-H_{j i j, A J I}
$$

The reduction of siaj and EajiAtJ in terms of these matrix elements now

$$
\begin{align*}
& E_{2 i j}-2 \Sigma_{A K} D_{A} W_{A Z} H_{i j ;} A I T \text {. } \tag{185}
\end{align*}
$$

The matificiements of हf, Fiy betwen TSF's are now expressed in terme of the corresponding matrix oiements between CSF's, namely

$$
\begin{equation*}
H_{A j f,} A T J=\Sigma_{A Q} A_{1 i j, A P} C_{A P I} C_{A Q T} \tag{187}
\end{equation*}
$$

where
which satisfy

$$
\bar{X}_{\lambda ; j, A P Q}=K_{A, \ddot{j}, A P Q}=-A_{j, \ddot{j}, A Q P}
$$

To express the matrix elements（18B）in terms of structure con－ stans and reduced matrix elements we evaluate first the cominutator of the Hamiltonian using Egg．（B2．113，1IS，L24），obtaining

Using now Eqs．（117，119－121，124，108，195）we find after some algebra

$$
\begin{align*}
& \alpha_{\lambda i j, A P P}=F_{\lambda i j, A P}+J_{2 i j, A P}=*_{\lambda i j, A P} \quad . \tag{191}\\
& \lambda_{A \dot{j}, A P A}=F_{i j, A P G}+G_{i j, A P Q}, \quad P \perp Q \text {. } \tag{192}
\end{align*}
$$

where

The evaluation cf fadinctien becomplished in similar fashion． Starting from Eq．i19\％），one derives formula for the double commutator
 gators，fusing again the commutation relations（62．1］6）．This formula is rather long，and since it constitutes an intermediates resit，we on ft its explicit presentation．Since raijemid carries no TSF labels，we have now no particular need for the explicit matrix elements of the double commutator between TSF＇s andfor CSF＇s．Hence in this case it is profitable to first carry out the sums over the CSF＇s and TSF＇s directly on the structure constants．

We define weight factors with respect to CSF＇s by

$$
\begin{equation*}
W_{A P A}=\Sigma_{I} w_{A I} C_{A P I} C_{A O I} \tag{198}
\end{equation*}
$$

Which of course satisfy

$$
\begin{equation*}
\bar{W}_{A P Q}=W_{A P Q}=w_{A Q A} \tag{199}
\end{equation*}
$$

Using these weight factors we can now define the net structure constant．

$$
\begin{aligned}
& m_{\lambda i}=I_{A P} D_{A} \omega_{A \rho P} \Pi_{A P_{i} \lambda i} \text {. (er: } \\
& m_{\lambda i j}=\Sigma_{A \rho A, \rho_{+a} D_{A} w_{1 \rho_{Q}} \Pi_{A Q A} \lambda_{i j}} \\
& \text { (ご1) }
\end{aligned}
$$

The final formulas for Eaifatc met now given in terms of these net structure constants and reduced hatifix elements. After a considerable amount of algebra we find
where

$\left.-\left(n_{\lambda_{i}}-n_{j_{j}}+n_{\lambda i}-n_{\lambda_{l}}\right)\left(d_{j i} f_{\lambda_{i} i}-\delta_{i j} F_{\lambda_{j} i}\right)\right]$

(287)

(200)

$$
x\left(G_{\lambda, 2 j, \mu\{\mu,}, x+G_{\lambda i \cdot \lambda j, \mu \ell, \mu, p}\right)
$$

$$
\times\left(G_{\min }, \mu\left\langle\lambda ;, \mu+G_{\lambda j \mu}, \mu\langle\eta ; \infty)\right.\right.
$$

XI. THE CLDBAL MESCF PROCEDURE

At the beginning of an mescf cycle whave in hand, in logical order:

1) one- and two-electron integrala ovor bais functions:
2) approximete expansion coefficients whith define reference sion in terms of basis functions:
3) strueture constants which deseribe the congtruction of CSF'g from SO's:
4) Ifsts of index palis identifying the essential rotations or the 50^{\prime} : and TSF's;
5) approximate expansion coeffieiente which define refarence TSF's in terms of CSF's;
6) the welghts with which the TSF'senter the variational energy exprestion.

The integrals over basis functions, the atructure constants, the Index lists and the wights ramain constant throughout the entire MCSCF procedure, At the end of each MCSCF cycle we will have in hand improved expansion coefficients, both for the SO's and TSF's, together with the convergence measure of, to masess the quality of the new coefficients. When drt, where t is the convergence threshold chosen for the particular caleulation, wey that the converged MCSCF solution has been obtained.

The MCSCF eycie is convenientiy divided Into the following steps:

1) orthonormalization of the input expansion coefficients $C_{\text {api }}$ and $G_{\text {apz }}$. which define the reference So's and TSF's, respectively:
2) calculation of the integrals over SO;s, Fasjand Gaimfiviptimi from the integrals over basis functions, fapg and gapmi, uppi, if respectively:
3) calculation of the reference energy E and the energy derlvetives

4) detormination of thi essentisi rotition matrices $X_{\lambda i j}, \lambda_{i j} S_{e}$. $Y_{A B J} A E f C T_{s}$, and the MCSCF convergence measure of
5a) ifist, terminate the caleulation, aceepting the orthonormalized input coefficients Cipi and CADE as the converged MCSCF solution:

 to the ofd coefficients $E_{\text {ipis }}$. CAPr.
The MCSCF process as deseribed is the multi-dimenstonal generallaation of the Newton-Raphson process, and it is therefore quadratically convergent. This means that if we use input coefíicients which are in error by 6, after one MCSCF cycle the new coefficients are in error by ε^{2}. Hence starting with an error of $1 \mathrm{~g}^{-1}$, We obtain an aceuracy of $10^{-2} 10^{-4} 1 g^{-8} \ldots .$. after one, two, thrie.... iterations. And since this behavior only depends on the quadratic approxiniat ion of our energy surface, maxima. minima or saddle points are attalnabie with equal faclilty.

Ocgastonsily MCSCF procedures involving cubic as well as quadratic terms in the variational variables have been considered, in our opinton this is not a particularly frultful proposition for an MCSCF scheme luying claim to any sort of generality.

It should be mphasized that when choosing an MCSCF model one has to ferret out the non-essential variables xaig and Yasj before proceeding with the numerical calculation. If
left in inaduertently, the Hessian will be singular, aind we aie dfaling with patholegical case. Other pathological situailions. for instance when the Hessian becomes near-singular. invarlatiy are caused by a poor choice of parameters. Whatever the reason may be for a Hesesian which is singular or nearmsingular, the remedy ror such a casiz is to rethink the problem and set it up properly, rathor than to atteript solving an illbehaved set of equations.

It should also be noted that it is not at all necessary that the Hessian be positive definite in order to guarantee a well-behaved and stable MCSCF process. Clearly, the MCSCF process is stable whenever the eigenvalues of the Hessian. positive or negative, do not vanish (within - reasonatle threshold, of coursel.

Finally we like to emphasizo that the procedures we liave laid out permit the construction of general NCSLF program which is equally applicable to atoms as well ms molecules, while at the mame tifi- realizing the maximum possible benefits from the exploitation of sixhmiry.

ACRMOMLEDGEMENTS

The work deseribed in this paper came to fruition during a period of feverish actiuity in this particular area of theoretical chemical physics. We had many frultful discussions with several collemgues and students. In particular we like to thank frof. Waiter England. Dr. Arnold C. Wahl, Dr. Míshel Dupuis, and graduate students Maurice Sheppard and Anthony Haymet, for their helpful comments, criticisms and encouragement. We also express our apprecialion for the admintstrative support by Dr. Darrel G. Hopper at SAl during the tnitial phase, and by Dr. William A. Lester, Jr. at NRCC during the second phase when this wert reached maturity.

APPEmDIX A

First we prove that if X is en anti-Hermitisen operator, then

$$
u=t^{x}
$$

Is unitary. Obyiousiy x satidfies

$$
\left.\begin{array}{l}
x+x=\theta \\
E x, x \equiv=0
\end{array}\right\}
$$

Using now Eqs.(A1.A2) we find

$$
\begin{equation*}
u^{\bullet} u=e^{x^{+}} e^{x}=e^{x^{x}+x}=e^{\sigma} \cdot 1 \tag{A3}
\end{equation*}
$$

that is. \boldsymbol{X} is indeed unitary.
Next we must prove that, if \boldsymbol{U} is unitary operator, we cen find an anti-Hermitian operator \boldsymbol{X} so that Eq.|Ai) is valid. We expand u in the operator base $\Psi_{i j}$ according ta

$$
\begin{equation*}
u=\Sigma_{i j} \rho_{i j} U_{j i} \tag{A4}
\end{equation*}
$$

Using now matrix notation, the matrix U can be diegonalized by another unitary matrix V. Since all eigenvalues of U have unit modulus, this diagonalization can be written in the form

$$
\begin{equation*}
V^{*} U V=e^{i t} \tag{A5}
\end{equation*}
$$

where the matrix is real diagonal. namely

$$
\left.\begin{array}{c}
\Phi_{i j}=\delta_{i j} \psi_{i} \tag{A6}\\
\bar{\psi}_{i}=\phi_{i}
\end{array} \quad\right\}
$$

we can further make the angles ϕ_{i} unique by choosing

$$
\begin{equation*}
r<f_{i}<2 \pi \tag{A}
\end{equation*}
$$

Front Eqs.(A5-A7) follows

$$
\begin{equation*}
u=e^{x} \tag{AB}
\end{equation*}
$$

where

$$
\begin{equation*}
X=i V V^{*} \tag{A9}
\end{equation*}
$$

It is easily e een that X is ant-Hermitian. The operator X which is related to K by Eq.iA1) 15 now given by

$$
\begin{equation*}
x=\Sigma_{i j} \mathscr{P}_{i j} X_{j i} \tag{A1F}
\end{equation*}
$$

APPENDIX B

Starting with tha variation of the energy, Eq. (32), we find after some lgebra

$$
\begin{align*}
& \delta E=\Sigma_{i>j}\left(\omega_{i}-\omega_{j}\right)\left[\left(\Lambda_{i j}+\Lambda_{j i}\right) \operatorname{Re}\left(X_{j i}\right)\right. \\
&\left.+i\left(\ell_{i j}-\ell_{j i}\right) \operatorname{Im}\left(X_{j i}\right)\right]+O_{i}\left(x_{i j}\right) \quad .
\end{align*}
$$

where

$$
\begin{equation*}
h_{i ;}=\left\langle\psi ; \mid h_{i} ; j\right\rangle \tag{B2}
\end{equation*}
$$

 the energy is stationary if and only if

$$
\left.\begin{array}{l}
\left.\boldsymbol{L}_{i j}+\boldsymbol{L}_{j i}=B \quad, \quad i>j \quad, \quad\right\} \tag{83}\\
\boldsymbol{L}_{i j}-\boldsymbol{A}_{j i}=0 \quad, \quad i>j,
\end{array}\right\}
$$

which is equivalent to

$$
\begin{equation*}
h_{i j}-\left\langle\psi_{i}\right| \kappa_{i}\left|\psi_{j}\right\rangle=\sigma \quad, \quad i \neq j \tag{B4}
\end{equation*}
$$

APREMDIX C

From Eqs.\{13. $\%$, which expresses the energy in terms of the operators deseribing the variation. it is clear that the commutation of w and Y, or equivalently of W and V. Eq. (!62), is a sufficient condition that the MCSCF process is invariant for such a variation. That it is also a necessary condition ran be seen as follows.

Upon epplication of a general direct TSF transformation the variation of the energy is given by

$$
\boldsymbol{\delta E}=-2 \Sigma_{A I J C T}\left(W_{A T}-W_{A J}\right) Y_{A J J} H_{A J I}+\cdots
$$

If the MCSCF process is invariant under such a direct TSF transformation, the corresponding non-essential parameters are designated by T_{m}. so that

$$
\begin{equation*}
\Sigma_{A\left[J \subset T_{A}\right.}\left\{W_{A I}-W_{A J}\right) Y_{A I J} H_{A J I}=\xi \tag{C2}
\end{equation*}
$$

We new observe that invariance under a direct TSF transformation Implies that Eq.iC2! must hold regardless of what we have chosen our 50': to be. provided of course that they form a proper orthonormal set.

Thus，except for rare numerical accident，Eq．（c2）must hold for arbitrary choices of thematrix lements $\mathcal{M}_{A r J}$ AfJe T_{n} ．Hence the varia－ tional piarameters must satisfy

$$
\begin{equation*}
\left(W_{A I}-W_{A I}\right) Y_{A I J}=\theta \quad . \quad A L I=T_{A} . \tag{C3}
\end{equation*}
$$

which is easily seen to be equivilent to

$$
\left.\begin{array}{c}
E W_{I} y I=\sigma \\
y=-\Sigma_{A I J=}=T_{M} Y_{A I I}\left(\varphi_{A I I}-\varphi_{A J I}\right),
\end{array}\right\}
$$

（C4）
which，In turn，is aquivalent to Eq．（162）．

REFEREMCES

Banerjee，M．．and F，Greln，2976，1nt，J．Quantum Chem．1月， 123.
Banerjef，A．．and F，Grein，1977．J．Chem．Phys．66，1854．
Chang，T．C．．and W．H．E．Schwartr，1977．Theor．Chlm．Acta 44，45．
Clementi，E．，and A ，Veillard，1966，J．Chem，Phys．44，3a50．
Dalgaard．E．，1979，Cham．Phys．Lett．65． 559.
Dalgard．E．and P．Jfrgensen．197日，J．Chem．Phys．69，3833．
Das，G．，1973，J，Chem．Phys．58，5184．
Das．G．．T．Janls，and A．C．Wah1．1974．J．Chem．Phys．E1．1274．
Das．G．，and A．C．Yah1，1966．J．Chem．Phys．44， 76.
Das．G．．And A．C．Uah1．1972．J．Chem，Phys．56． 1769.
Detrich，J．，and A．C．Wahl，19af，HCHF Worlishop Report，Hational se－ source for Computation in Chemistry．Laverence Lerkeley Laboratorya
Docken．K．K．，and J．Hinze．1972，J．Chem．Phys．57．4928，
Froese fischer．G．．1977．The Harerce－foci：Method for Atcris－－A Numeri－ cal Approach（Wiley，New York）．
Grein，F．．and A．Byrerjee，1975，Int．J．Buaneum Chem．S9． 147.
Grein，f．，and T．C．Chang，1971，Chem．Phys．Lett． $12,44$.
Goleblewski，A．，J．Hinze，and E．Yurtsever，1979．J．Chert．Phys．7D， 1161．
Hartrae．0．R．，1957，The Caleviation of Ntomic Structures ©Wiloy．New Yorkl．
Hinze．J．．1973，J，Chem，Phys．59，6454．
Hinze，J．，and C．C．J．Roothan．19í7，Pregr．Theor．Phys．Suppl．4E， 37.

Kendrick，J．，and 1．H．Hillier，1976．Chem．Phys．Lett．41， 283.
Kuprievich，V．A．，and O．V．Schramino．1975．Irt．J，Ouanium Clicm．9， 15f0．
Lengsfiold，B．H_{+}．111，1989，J．Chem．Phys．73， 382.
Levy，B．，1969，Chem Phys．Lett．A， 17.
Levy．B．．197\％，Int．J．Quantum Chem．E． 297.
Levy，B．，1973．Chem．Phys．Lett．18， 50.
Levy，B．．．and G．Berthter，19G8，lnt．J．Ouantum Chem．2．367：errata 1bid．3， 247 （1969）．
Lewdin，P．－0．，1977．Int．J．Guantum Chem，12．5upfl．1．197．
Polezzo．S．，1975，Theor．Ch1m．Acta 30， 311.
Ratah，G．，1942．Phys．Rev．62．43月．
Rucah，G．，1943，Phys．Rev．63， 367.
haos．B，D．．P．R．Taylor，and P．E．M．Stegbahn，198g．Chem．Phys．4e． 157.

Roothan，C．C．J．，1951，Revs，Mod．Phys．23．6g．
Roothaan．C．C．J．，1960，Revs．Mor，Phys．3i， 179.
Roothaan，C．C．J．，and P．S．Bagus， $19 \mathrm{j}^{\prime}$ ，in Merhods In Computational Phystes，Vol．It，B．Alder．S．Fernbach andi N．Rotenberg，Eds． （Acadenie．Hew Yorki．
Roothazn，C．C．J．．J．Detrich，and D．G．Hopper．1979．Int．J．Duantum Chem．S13． 93.
Ruedenberg，K．，L．M．Cheung，S．T．Elbert，1979，Int．J．Quantum Chem．，16，pio69．
Ru＊denberg，K．，and K．R．Sundberg， 1976 ，in Ouantum Science－－Methods and Structura，J．－L．Calais，O．Goseiniki．J．Linderterg．and Y． Ohrn，Eds．（Plenum，Hew York）．
Ruttink，P．J．A．，and J．H．van Lenthe，197．，Theor．Chim．Acta 44．97．

Velllard. A., 1966, Theor, Chim. Acta 4, 2?.
von Neumann, J., 1955, Mathemetical Foundations of Quantum Mechanics. R. T. Beyer, trans, (frincetnn Universtiy. f.ibic: cer.).

Wahl A. C., and G. Das. 1977, in Method : or flectioois Sturture Theory, H. F. Schatefer, Ill. Ed., Yol, 3 oi llodizn ïluorateril Chemtstry (Plenum. New York).
Werner. $H,-J .$, and W. Meyer, 198!, J, Chem, Ehys, 73, 2342.
Wigner. E. P., ligek, unpublished manuseript, later included in L. C. Biedenharn and H, van Dam, Duantum Theary of Angular Momentum (Academic, New York, 1965). pp. 87-133.
Wigner. E. P., 1941. Am. J. Math. 63. 57.
Yeager, D. L., and P, Jørgensen, 19\%9, J. Chem, Phys. 7t. 755.
on the convergence properties of the density
matrix directed general second-order mescf algoritim
Byron H. Lengsfield, $1 t 1^{\text {*, }}{ }^{\text {t }}$
Laser and Spectroscopy Branch
NASA Langley Research Center, Hampton, VA 23665
Charles W. Bauschlicher, Jr. ${ }^{\dagger}$
Institute fur Computer Applications in Science and Engineering
NASA Langley Research Center, Hampton, VA 23665

The density matrix directed (DHD) second order MCSCF algorithm (see also ref. 2-6) is based on the fact that one can construct the Hessian and the gradient of the energy expression from the unique elements of one and two paiticle densty watrices. With the recent development of the Unitary Group CI method, $7,9,9$ density matrix elements can br obtained even for very large MCSCF problems Wirhour excessive computarional effort. ${ }^{10,1 f}$ Alternatively. one can obtain chese density matrix elemencs by sorcing a conventional CI formula tape, ${ }^{1}$ and this technique has proven to be quite practical for traditional MCSCF problems.

The energy of a general MCSCF wavefunction

$$
\begin{equation*}
v^{I}=\sum_{k}^{N} C k o t \tag{1}
\end{equation*}
$$

can be expressed as follous

$$
\begin{equation*}
E^{1} \cdot \sum_{i=1} \operatorname{lij}_{10}^{l}\{01|h| \phi j\} \tag{2}
\end{equation*}
$$

where
and $S F_{k R}^{i\}}$ are structure factors. Viriations in eqn. (2) klare fntroa'sed by means of exponential unitary transformations ${ }^{12}$ of chr molecular orbitals $\left(\phi_{1}\right)$

[^3]\[

$$
\begin{aligned}
& \tilde{u}_{m 0}=\tilde{r}^{\bar{\Delta}} \times \bar{T}+\tilde{\Delta}+4 \tilde{\Delta}^{2} \\
& \tilde{\Delta}=\left(\begin{array}{cccc}
0 & 0 & \Delta_{13} & \Delta_{14} \\
0 & 0 & \Delta_{23} & \Delta_{24} \\
-s_{13} & -\Delta_{23} & 0 & \Delta_{34} \\
-A_{14} & -\Delta_{24} & -\Delta_{34} & 0
\end{array}\right)
\end{aligned}
$$
\]

$$
\bar{c}=\left(\begin{array}{c}
\tilde{p}_{1} \\
\tilde{p}_{2} \\
\tilde{p}_{3} \\
\tilde{p}_{4}
\end{array}\right) \quad \begin{gathered}
\text { fu:l }=2 \\
\text { part }=2 \\
\cdots i_{1}\left(f_{1}^{2} \tilde{r}_{2}^{2} p_{1}^{2}\right)+c_{2}\left(r_{1}^{2} r_{2}^{2}\left(p_{1} p_{2}\right)\right)
\end{gathered}
$$

$$
\tilde{A}^{2}=\left(\begin{array}{l}
\tilde{0}_{1} \tag{i}\\
\tilde{a}_{2} \\
\tilde{0}_{3} \\
\tilde{0}_{1}
\end{array}\right)
$$

and the $C I$ vectorn ($C^{\text {l }}$).

$$
\begin{aligned}
& \tilde{u}_{c I}=e^{\bar{T}} \cdot T+\vec{r}+4 \vec{r} \\
& \bar{r}=\left(\begin{array}{cccc}
0 & r_{12} & 0 & 0 \\
-r_{12} & 0 & r_{23} & r_{24} \\
0 & -r_{23} & 0 & 0 \\
0 & -r_{24} & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
r^{2}=\left(\begin{array}{cccc}
-r_{12}^{2} & 0 & \left(r_{12} r_{23}\right) & \left(r_{12} r_{24}\right) \tag{j}\\
0 & \left(-r_{12}^{2}-r_{23}^{2}-r_{24}^{2}\right) & 0 & 0 \\
r_{12} r_{23} & 0 & -r_{23}^{2} & -r_{23} r_{24} \\
r_{12} r_{24} & 0 & -r_{23} r_{24} & -r_{24}^{2}
\end{array}\right)-0 .
$$

where \tilde{P}_{i} and $\overline{\mathrm{Q}}_{\mathrm{f}}$ are row generators which define the non-redundant orbital and Cl mixings at first and second order respectively, (i.e... \tilde{p}_{i}
generates the non-zero elements of the $1^{\text {th }}$ raw of \bar{Z} and \ddot{Q}_{i} generates the non-zero elements of the ith cou of n^{2}). The energy expression is then expanded to second order in teres of che nonredundant variables of the generators of the two unitary transformations.

The contributions to gradient and Hessian can be obtained quite simply in termes of the \bar{P} and \dot{Q} row generators.

chelient tems

CREITR Miximes

$$
\begin{align*}
& \text { - - 1 } 14 \times 1 \tag{6}
\end{align*}
$$

C.1. Miximes

KESSIAN Ti:RIS

OBEITAL-ORE:TAL INTEAACTIONS

C. I.-ORBITAL INTERACTIONS

$\bar{P}_{1} \overline{\text { PI }}$ Difki (atoj lol oket)

$$
\therefore \hat{P}_{C I}^{*} \cdot \ddot{F}_{\mathrm{MO}}^{*}=\left(a_{E^{\prime}} / \partial y \partial L\right)
$$

C. I. - C. I. IMTERACTIONS

RECNL THERE IS MLIT OKE 0 TYPE C. I. TERM
OIACOMA ELEMEMT OF THE C. I. - G. I. HESSTAM
$\left\{\left\langle\omega^{J}\right| \tilde{H}\left|\mathrm{C}^{J}\right\rangle-\left\langle\mathrm{c}^{\mathrm{I}}\right| \tilde{H}\left|\mathrm{c}^{\mathrm{I}}\right\rangle\right\}{ }_{\mathrm{C}} \mathrm{tJ}$

$$
\left.\cdots \quad \mid E_{j}-E_{g}\right\} \quad \text { if } \quad \tilde{H} E^{k}=E_{K} t^{k}
$$

The DH-MCSCF algorithm is outlined in Figure 1.

HCSEF AL GORITHR

1. COMFIGURATION GEmEration
2. C. 1. FORHELA GERERATION
3. D. M. sont af the c. L. pormas
4. HESSIAN FORHASA GEMERATIDH
5. MCSCF ITERATIONS
a. OR1HOGGALIzRTIOM of the orbitals
b. integral transformation
c. COMSTRUCTICH ayO Dtatonalization of the hamiliontinn
d. CONSTRUCTIOK OF THE HESSTAK AND Thif GRADIENT, FDLLONEO ay the solut tok of the lineter equations
e. approximate viltany transfogmilon of ihe oreitals

Figure 1.

As noted by Slegbahn, Heilberg. Roos. \& Levy ${ }^{5}$ (see ref, 2), the density matrix elements which involve only core orbitals need not be treated separately and various two electron density matrix elements in which twa of the indices refer to core orbitals may also be grouped togecher. The Fock operator expressions employed by Siegbahn, et al. In the construction of the gradient ray also be used to advantage in tbe construction of the CI-orbital portio of the Hessian. Furthermore, the density matrix elements whose Indices refer only to core orbitals do not contribute co the CI-orbital portion of the Kessian.

Finally we note several advantages obtained by employing the eigenvertors of the limilitonian in this technique. First one need not include all of the Cl vectors in the expanston of the energy to obtain a varlational algorithm. This, of course, allows one to address much larger MCSCF problems. second, the CI-CI portion of the Hessian and the Cl terins in the gradient are diagonal and zero respectively.' This allows the equations for the elements of the unitary generators to be simplified. Finally, redundant varlables are not always easily ident tifted in large MCSCF calculations. However, then the root of the Hamiltonian which is being optimized is an efgenvector of the Hamiltonian, redundant variables generally give rise to zeros in the gradienc and can be easily detected.

There are perhaps two points of primary interest in evaluating the convergence properties of this alogrithm. The firat point being the behavior of this procedure when poor starting orbitais are employed. The second point is concerned with the number of CI vectors which must be included in large problems to obtain a reasonable rate of convergence.

In a latge number of MCSCF problems one does not possess a very good chaice of starting orbitals. This to espectally true if the MCSCF wavefunction contains several configurations which differ from one another by (spin orbital) single excitations. In this case the Hessian may posses very small and even regative eigenvalues. Various means have been proposed to shift the eigenvalues (or alternatively the diagonal elenents) ${ }^{13}$ of the Hessian or to take a step In the direction indicated by the eigenvector which corresponds to the negative eigenvalue of the Hessian. ${ }^{2}$ These technlques often yield disappointing results espectaliy when applied to problems where the MCSCF reference containa CSF's which differ by a single excitation. ${ }^{1}$ Instead, a super CT technique has been found to possess a much larger radius of convergence ${ }^{1}$ as demonstraced in table I. In this method one constructs an augmented Hessian matrix $1,26,15$ in analogy vith the Singles Hamiltonian

Flgure 2.
constructed in Generalized Brillouin Theorem algorithms. It is imporiant to note that a density macrix orlented approach allows this alatrix to be constructed in a much nore efficient namner than the traditional contraction type procedures. ${ }^{16-1 \%}$ This method is particularly attractive as quadiatic convergence is very often obtajned (when all

CI coupling tems are inciuded) in this procedire when a reasonable set of orbitals has been obtalned. Moreover, a simple scheme can be devised to correct the eigenvector of this matrix, when it is not dominated by the MCSCF referance and further increase the radius of convergence attained by this techntque.

In the following tables the results of several MCSCF calculations are presented in which the number CL vectors included in the Hessian has been varied.

TABLE L. Be $0^{a, b} 3$ c.SF SUPER CI ALGORITHM

Iteration	Energy (a, L_{2})	ΔE	Δ^{c}	
$1{ }^{\text {d }}$	-89.424317	-	2.56	E-1
2	-89.466285	$4.20 \mathrm{t}-2$	2.29	E-1
3	-89.495331	$3.90 \mathrm{E-2}$	1.13	E-1
4	-89.503767	$8.44 \mathrm{E-3}$	6.62	E-2
5	-89.505765	2.00 E-3	1.53	E-2
6	-89.506026	2.60 E-4	5.07	E-4
7	-89.506033	7.99 E.6	6.57	E-7
8	-89.506034	$1.13 \mathrm{E-8}$	1.42	E-12

a) core $4 \sigma^{2} \pi^{4}$, core $4 \sigma 5 \sigma \pi^{4}$ and core $4 \sigma^{2} \pi^{3} \pi$
b) Bauachllcher-Yarkony Basis, J. Chem. Phys. 12, 1138 (1980)
c) $\Delta \equiv \sum \Delta_{i j}^{2}$, see eqn. (4)
${ }^{d)}$ Damping performed, the Hessian possessed two negative eigenvalues. SCF starting guess employed.

TABLE II, APPROXIMATE SUPER CI ${ }^{\text {a }}$

Iteration	Energy (a. u)	$\Delta \mathrm{E}$	Δ
1	-89.424317	-	.162
2	-89.462099	$3.78 \mathrm{E}-2$.137
3	-89.487145	$2.50 \mathrm{E}-2$	$8.36 \mathrm{E}-2$
4	-89.497525	$1.04 \mathrm{E}-2$	$2.93 \mathrm{E}-2$
5	-89.501648	$4.12 \mathrm{E}-3$	$1.40 \mathrm{E}-2$
6	-89.503637	$1.99 \mathrm{E}-3$	$8.40 \mathrm{E}-3$
7	-89.504713	$1.08 \mathrm{E}-3$	$5.00 \mathrm{E}-3$
8	-89.505311	$5.98 \mathrm{E}-4$	$2.82 \mathrm{E}-3$
9	-89.505642	$3.31 \mathrm{E}-4$	$1.54 \mathrm{E}-3$
10	-89.505824	$1.82 \mathrm{E}-4$	$8.19 \mathrm{E}-4$

${ }^{\text {a) }}$ The second order CI terms were not included in thia calculation.

The Lmportance of tucluding or excluding a particular CI vector can be placed on a more quantitative basis by weans of the siople percurbation arguments presented belou.

Consider the Neuton-Raphson isnear equations Induced by a tuo CSF, two oritital problem,

$$
\left(\begin{array}{ll}
B & c \tag{12}\\
c & A
\end{array}\right)\binom{n}{Y}=\binom{8}{0}
$$

where B, C and A represent the orb.-orb., Cl-orb., and Cl-CI portions of the Hessian respectively, Δ and γ are the unique elements of the generators of the unitary transformations and g is the orbital gradient (the CI gradient is zero by virture of the fact that the secular is assumed to have been solved on the preceding iteration). We then have, ${ }^{2}$

$$
\begin{align*}
& \left(B=\frac{C^{2}}{A}\right) A=n \tag{13}\\
A & =\left(-\frac{C}{B}-\frac{C^{2}}{A}\right) \\
& =\frac{B}{B}\left(-\frac{1}{C^{2}}\right) \tag{14}\\
& =\frac{E}{A B}\left(1+\frac{C^{2}}{A B}+\cdots\right) \quad .
\end{align*}
$$

(Recall A a $E^{2}-E^{2}$ where 1 is the root being optimized.) This perturbation may be generalized to account far the interaction between a particular CI veccor and all of the orbital mixinge. For the purpases of this study it suffices to consider these interactions a sum of decoupled two by two problems and monitor the largest perturbation term (C^{2} / AB) associated with the last CI vector to be included in the problem, Thege terms are also presented in Tabies III and IV. It is interesting to note that this perturbation term differs from the second-order perturbation expression obtained by Das ${ }^{2 n}$ in that the energy difference appearing in the denominator is welghted a dlagonal element from the orbital section of the Hessian.

The results of a number of MCSCF calculations are summarized in the following tables.

TABLE IIIa. 3 CSF BeÕ CALCULATION WITH ONE CI ROOT EXCLIUDED

TABLE [IIb. BeO 3 CSF HCSCF

Root	largest Perturbation Tera	Sum of Perturbation Contributions
1	.18	.72
2	.31	1.48

TABLE IV. FULL VALENCE ${ }^{1} \mathrm{r}^{+}$State
OF $\mathrm{HgO}^{\mathrm{a}, \mathrm{b}}$

Number of CI Roots		0	30		90	
Iteration	$\Delta \mathrm{E}$	Δ	$\Delta \mathrm{E}$	Δ	$\Delta \mathrm{E}$	Δ
1	-	9.E-5	-	1. E-4	-	2. E-4
2	-3.E-6	6.E-6	-4.E-6	1.E-5	-5.E-6	3. E-6
3	-9.E-7	2.E-6	-5.E-7	2. E-6	-8.E-7	1. E-7
Final Energy	-274.514267		-274.514268		-274.514268	

a) Yoshimine-McLean molecular D2P Slater basis uith a diffuse 3-function (.855) on Mg. $142 \mathrm{CSF}^{\text { }} \mathrm{s}$ in $c_{2 v}$
b)

The maximum perturbation tertu (.43) was obtained from the 22nd eigenvector of the Hamilonian.

The perturbation contributions of the higher eigenvectors of the Haniltonian are often larger than the perturbation estimate of che contribution of many of the lower roota of the Hamilionfan. While the inclusion of a few of the $C I$ vectors in the varitional problem can dramatically affect the convergence characteristic of this MCSCE algorithm far from convergence. One can not expect any substantial advantage from this procedure near convergence for a general (containing single oxeitations) MCSCF wavefunction.

The DHD-MCSCF algorithm provides a simple and efficient means for constructing the Hessian and the gradient of a general MCSCF energy expression. The studies reported in the paper and recent work in MgO and $\mathrm{BeO}^{2 z}$ indicates that this method is capable of providing the convergence behavior needed to perform practical quantum chemical calculations.

References

${ }^{1}$ B. H. Lengsficid, III, J. Chen. Phys. $\mathrm{xX}_{\mathrm{t}} \times \mathrm{xxx}$ (1980).
${ }^{2}$ L. G. Yaffe and W. A. Goddard, III, Phys. Rev. A 13. 1682 (1776).
${ }^{3}$ E. Daalgard and P. Jorgensen, J. Chem. Phys. 69, 3833 (1979).
${ }^{4}$ C. C. J. Roochaan. J. Detrich and D. G. Hopper, Int. J. Quantum. Chem. Symp. 13, 93 (1979).
${ }^{5}$ P. Siegbahn. A. Heilburg, B, Roos and B. Levy, Physica Scripta 21, 323 (2980).
${ }^{5}$ P. Jorgensen and D. Yeager, J, Chem. Phys. 72. 757 (1979).
'J. Paldus and M. J. Boyle, Physica Seripta, 21 295 (1980). and references cherein.
${ }^{3}$ t. Shavitt, Int. J. Quant. Chem, Symp. 11, 131 (1977), 12, 5 (1978).
${ }^{\text {B }}$ B. R. Brooks and H. F. Schaefer, IIL, J. Chem. Phys. 70, 5092 (1979)
${ }^{10}$ B. R. Brooks, H. D. Laidig, F. Saxe, N. C. Handy, and H. F. Schaefer, 11I, Physica Scripta 21, 312 (1980).
${ }^{1 \%}$ B. R. Brooks, W. D. Laldig, P. Saxe, J. D. Goddard, Y, Yzarguchi and H. F. Schaefer, IIT, J. Chem. Phys, 72, 4652 (1980).
${ }^{12}$ K. H. Sando and J. E, Harriman, J, Chern. Phys. 47, 180 (1967).
${ }^{13}$ V. A. Kuprevich and V. E. Klymeno, Int. J. Quantum Chem. 12, 327 (1977).
${ }^{36}$ T. C. Chang and W. H. E. Schwartz, Theor. Chem. Acta 44, 45 (1977).
${ }^{15}$ F. W. Bobrowicz and W. A. Goddard, III, Pp. 79123, Vol. 3, Modem Theorerical Chemistry, ed. H. F. Schaefer, III (Plenum, New York, 1979).
${ }^{3}$ B. Levy and G. Berthier, Int. J. Quantur Chem. 2. 307 (1968).
${ }^{17}$ F. Grein and A. Banarjee, Int. J. Quantul Chem. Sym: 9, 147 (1975).
${ }^{18}$ F. Grein and T. C. Chang, Chem. Phys. Lett. 12, 44 (1971).
${ }^{19}$ P. J. A. Ruttink and J. H. van Lenthe, Theor. Chem. Acta 44, 97 (1977).
${ }^{20}$ L. M. Cheung, T. S. Elbert, and K. Ruedenberg, Inc. J. Quantum Chem. 16, 1069 (1979).
${ }^{21}$ G. Das, J. Chem. Phys, SB, 5104 (1973).
${ }^{22}$ C. H. Bauschlicher, Jr., B. H. Lengsfield, III, D. K. Silver, and D. R. Yarkony, to be published.

RECENT DEVELOPMENTS IN MLLTICONFIGURATION WAVEFUNCTION OPTIMIZATIOH

Ron Shepard
Battelte Columbus Labs
Columbus, Ohio

INTRODUCTION

A formal and numerical comparison of two of the most promising types of multiconfiguration wavefunction optim+zation methods, the super-CI methods and the exponential operator methads, is performed. The super-Cl methods display superior convergence properties when the initial wavefunction is far from correct while the exponential operator methods possess superior convergence characteristics when the initial wavefunction is close to correct. The formal comparison of these approdches suggests hybrid methods which have some of the advantages of both methods. Unitary group methods have been successfully employed in the implementation of a general and efficient multiconfiguration wavefunction optimization program using these exponential operator and hybrid methods and a discussion of this implementation is included.

SUPER-CI METHODS

in the super-CI wavefunction optimization method developed by Grein, the matrix representation of the hamiltonian operator is constructed within the single excitation basis $\{|\mathrm{mc}\rangle,|\mathrm{ij}\rangle\}$ where $|i j\rangle ㅋ ㅗ(i+j-j+i) \mid m q)$.
The super-Cl wavefunction is detemmined from the solution of th? secutar equation:

 $X_{i, i}=-X_{j i}=Y_{(i j)}$ is performert, then the Mt energy of the next iteration may be compared with the current SCI energy:

$$
\begin{aligned}
& E^{\prime}(m c)=E(m c)+2 \sum_{j j}^{j} x_{i j}\left\langle n d H l_{j}\right\rangle+\sum_{D_{j} j} X_{j} X_{k L}\langle\langle j| H \mid k d\rangle
\end{aligned}
$$

It is apparent from the comparison of these two expressions that minimization of E (sci) via the SCI secular problem is equivalent to minimization of the MC energy of the next itaration except for the last second order term and the higher order terms in the $E(m C)$ ' expression. This expression for $E(\mathrm{mc})$. also assumes that any coupling of the mixing coefficient change and the orbital expansion coefficient change may be neglected in the calculation of the optimimum X parameters. A serious limitation of this method is that the individual matrix elements of the H (sci) matrix are difficult tc calculate since they require either summations ovar all configurations within the MC space or the calculation of some 3- and 4-particle density matrix elements. The advantage of the SCI method is that the X parameters are calculated to lower the energy each iteration and not simply to extremize it.
Thus at convergence, not only is the generlized Brillouin theorem (GBT) satisfied indicating an extremum solution, but a change of the orbitals will increase the energy. The first attempt to determine the importance of the neglected second
order terms was perfonmed by Grein and Banerjee'. The inclusion of coupling between the mixing coefficients and crbital expansion coefficients in the SCI equations was first performed by Chang and Schwarz2. They included, this coupling by appending the excited states $\{|n\rangle\}$ where $\left.\langle n| H\left|n^{\prime}\right\rangle=E n S_{n}\right\rangle_{0}$ the single excitation basis and solving the resulting SCI secular problem.

EXPONEMTLAL OPERATOR METHODS

The exponential operator method of Dalgaard and u drgensen ${ }^{3}$ is based on expressing a trial MC wavefunction in terms of a unitary operator
 The orbitals used to construct the MC' are obtained as

$$
\Phi^{\prime}=\Phi\left(e^{-\underline{S}} \text { where } K_{r s}=-K_{s r}=K_{(r s)}\right.
$$

and where the X parameters are to be determined.
The resulting commutator expansion of the energy expression is truncated to include second order terms. Stablifization nf this expression leads to the linear equation B 末 $+\mathrm{H}=0$ where

is an element of the orbital Hessian matrix and $W_{r s}=\left\langle\left[H_{1} \hat{F}_{2}, j\right\rangle\right.$ is a GBT term and a component of the gradient. Explicit coupling of the orbital change and mixing coefficient charge may be included using the exponential operator notation of Yeager and Jorgensen ${ }^{4}$ with the trial MC wavefunction expres-
 Stabtlization of the resulting second order energy expression luads to the linear equations involving the full wavefunction Hessian matlix and gradient
 wh sh may be expressed as the partitioned Hessian expressiun

This partitioned form of the orbital Hessian emphasizes the relationship between the Rayleigh Schroedinger procedure of Das ${ }^{5}$ and of the corrected Hessian of Dalgaard and Jorgensen ${ }^{3}$ to the exponential operator methods.

The advantage of these operator based methods are that only 1- and 2-particle density matrix contributions are required. This is due to the fact that all the terms of the Hessian and gradient are expressed directly as commutators instead of simple products. All second order tems are included so that second order convergence in the GBT terms and the energy is observed. However these Newton Raphson methods converge not only to energy minima but also to saddle points and other types of solutions for which the GBT is satisfied but where the Hessian matrix is not positive definite. These solutions do not necessarily correspond to excited states of the molecular systems although excited state solutions do necessarily possess a
negative eigenvalue of the wavefunction Hessian for each lower state. The desired excited state solutions correspond to those for which their variational energy is minimized. These solutions are characterized by positive definite partitioned orbital Hessian matrices.

DISCUSSION OF COHPARISON

Numerical comparisons of the convergence properties of the SCl method and the exponential operator methods, both with and without the perturbation coriections, reveal that the SCI method possesses superior convergence properties when the initial wavefunction guess is far from correct. This is a result of the energy minimization approach of the SCI iterative procedure compared to the anergy stabilization approach of the exponential operator methods. The local convergence properties of the SCI methods are similar to those of the exponentidl operator methods when the perturbation corrections are negiected. The local convergence properties of the exponential methods are improved when the perturbation corrections are included and second order convergence is observed. The matrix construction step of the exponential methods is more efficient than the matrix construction step of the SCI methods because the former requires only the non-zero contributions of the 1 - and 2-particle reduced density and transition density matrices while the latter requires effort equivalent to the construction of a very large Hamiltonian matrix and subsequent contraction to form the H(sci) matrix.

HYBRIO METHODS

A more detailed investigation of the exponential operator methods and the SisI nethods reveds the relationship between chese solutions and suggests methods which have the desirable properties of both methods. The energy expression of the
$\left.e^{i \hat{\beta}}|m\rangle\right\}$ trial function may be written as

$$
\Delta E=\frac{1}{2}\left(x^{t}, 1\right)\left(\begin{array}{l}
\theta \\
= \\
W^{\top}
\end{array}\right)\binom{X}{1}
$$

and requiring $205 / 3 x=0$ results in the usual linear
 troduced iñto this equation however

$$
\Delta E=\frac{1}{2}(\tilde{X}, 1)\left(\begin{array}{ll}
\underline{\theta} & \underset{\sim}{w} \\
\underline{\sigma}
\end{array}\right)\binom{\tilde{X}}{1}\left(1+|\tilde{X}|^{2}\right)^{-1}
$$

then requiring $2 * /$ aroleads to the eigenvalue problem

$$
\left(\begin{array}{cc}
\frac{3}{w} & w \\
\underline{w} & 0
\end{array}\right)\binom{\tilde{X}}{1}=2 \Delta E\binom{\tilde{y}}{1}
$$

which is an approximation to the SCI eigenvalue problem. The \bar{X} parameters may be expressed as the solution of the linear equation

$$
(B-2 \Delta F) \underline{X}+W=O
$$

where $2 \Delta E$ is the lowes: eigenvalue of the approximate SCI probiem. An identical analys is of the $\left.e^{+\hat{A}_{e}} i^{\hat{S}_{j}} \boldsymbol{\gamma}\right)$ exponential method results in the par-

$$
\text { titioned equation }\left(\underline{B}-2 \Delta E-C(M-2 \Delta E)^{\top} C^{\top}\right) \underline{\underline{K}}+\underline{w}=\underline{Q}
$$

where $\bar{\alpha} \Delta E$ is the eigenvalue of the Chang and Schwarz SCI problem. Since the addition of a constant to the diagonal terms of the Hessian matrix shifts all the eigenvalues by that same constant, it is clear
that the SCI solution is a special case of the mode damping or level shifting techniques of Yeager and Jdrgensen and of Dalgaard and Jorgensen ${ }^{3}$. The expansion of Q in terms of the full second order \underline{X}

$$
\tilde{X}=\underline{X}+2 \Delta E B^{-1} \underline{X}+\theta\left(\Delta E^{2}\right)
$$

shows the ΔE relationship between these two solutions. The improved convergence that is made availabie in the approximate SCI solution results from the fact that there are many solutions to the secular equation. The one that is chosen is the one that lowers the energy. This flexibility is obtained however only with the sacrifice of the local secand order convergence properties. These hybrid methods attempt to exploit the energy minimization characteristlcs of the SCI methods and the local convergence properties of the Newton Raphson methods by 5 witching to the full second order procedures only when convergence can be guaranteed. One method consists of using
$\binom{8 \omega}{W_{0}^{2}}\binom{R_{1}}{i}=24 E\binom{X}{1}$
antill傳 is small,
 reached. Anothér apprnach is to always solve $\left(\underline{Q}-\lambda \underline{X}+\underline{W}=0\right.$ or $\left(\underline{B}-\lambda-\underline{c}(\underline{N}-\lambda)^{-c} \underline{c}^{+}\right) X+\underline{W}=\underline{O}$ treating λ as an enperical parameter to switch from the SCI so'ution ($\mathcal{2} 24 E$) which converges to an energy minima to the full second order solution ($\lambda=0$) which converges to the closest extremum solution. Cur numerical experience ${ }^{\circ}$ shows that the energy may usuelly be obtained from the approximate SCI solution without switcining to the secorsi orjer solution. However the full sacond order convergence is sometimes useful for energy convergence and is almost aitzys necessary for wavefunction convergence (or equivalently for problems where $|\underline{H}|$ is required to be small). These observations are consistant with other researchers (Banerjee and Grein, Chang and Schwarz, Lengsfield) who have reported on the numerical convergence properties of the SCI methods.

MATRIK EEEHENT EVALUATICH

If the $\hat{\Omega}=\Sigma X_{s} \hat{T}_{\text {rsoperator }}$ is expressed in terms of the generators of the unitary group, $\mathcal{T}_{r s}=i\left(e_{r g}-\varepsilon_{d}\right)$, then the matrix elements of the B and C matrices and the bi vector may be expressed directiy in terms of the reduced spatial 1- and 2-particle density matrix elements, $\left\langle e_{i j}\right\rangle$ and $\left\langle e_{i j, k j}\right\rangle$ and the transition density matrices $\langle m c| e_{i j}|n\rangle$ and $\langle m c| e_{i j, k 1}|n\rangle$ along with the molecular 7 - and 2-electron integrals $h_{i j}$ and $\langle i j \mid k 1\rangle$.

$$
\begin{aligned}
B_{p q, r s} & =2 h_{q s}\left\langle e_{p r}\right)+2 h_{p r}\left\langle e_{q s}\right\rangle-2 h_{q}\left\langle e_{p s}\right\rangle-2 h_{p s}\left\langle e_{q r}\right\rangle \\
& +\left(H_{s p}+H_{p s}\right) \delta_{q r}+\left(H_{r q}+H_{q r}\right) \delta_{p s} \\
& -\left(H_{r p}+H_{p r}\right) \delta_{q s}-\left(H_{q s}+H_{s q}\right) \delta_{p r} \\
& \left.-2 \sum_{i j}\langle i j| q r\right)\left\langle e_{p s, i j}\right\rangle-2 \sum_{i j}(q j \mid i r)\left\langle e_{p j, i s}\right\rangle \\
& +2 \sum_{i j}(q j \mid i s)\left\langle e_{p j, i r}\right\rangle+2 \sum_{i j}(i j \mid q s)\left\langle e_{p r, i j}\right\rangle \\
& +2 \sum_{i j}(p j \mid i r)\left\langle e_{q j, i s}\right\rangle+2 \sum_{i j}(i j \mid p r)\left\langle e_{q s, i j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& -2 \sum_{i j}(i j l p s)\left\langle e_{p r, i j}\right\rangle-2 \sum_{i j}(p j \mid i s)\left\langle e_{q j, i r}\right\rangle \\
& +2 \sum_{i j}(i p l j r)\left\langle e_{i q, j s}\right\rangle-2 \sum_{i j}(i s \mid j p)\left\langle e_{i r, j q}\right\rangle \\
& -2 \sum_{i j}(i r \mid j q)\left\langle e_{i s, j p}\right\rangle+2 \sum_{i j}(i q \mid j s)\left\langle e_{i p, j r}\right\rangle \\
& -(Y s q+Y q s) \delta p r-(Y r p+Y p r) S_{s q} \\
& +(Y s p+Y p s) \delta r q+(Y r q+Y q r) \delta s p \\
H_{r s} & =2 H r s-2 H s r-2 Y s r+2 Y r s
\end{aligned}
$$

In these expressions H and Y are the partial sums:

$$
\begin{aligned}
& \text { Hrs }=\sum_{i} h_{i s}\left\langle e_{r i}\right\rangle \\
& Y r s=\sum_{i j k}(s i \mid j k)\left\langle e_{r i, j k}\right\rangle
\end{aligned}
$$

The 巨matrix involves transition density matrix elements:

$$
\begin{aligned}
C_{(r s), n}= & -2\langle m c|\left[H, i T_{r s}\right]|n\rangle \\
= & \underset{i}{2 \sum h}\langle r n| e_{i s}+e_{s i}|n\rangle-2\left[h h_{i s}\langle m c| e_{r i}+e_{i r}|n\rangle\right. \\
& +2 \sum_{i j k}\left(i r|j k\rangle\langle m c| e_{i s, j k}+e_{k j, s i}|n\rangle\right. \\
& -2 \sum_{i j k}(i s \mid j k)\langle m c| e_{r i, j k}+e_{k j, i r}|n\rangle
\end{aligned}
$$

And finally, if a cl calculation is performed at the beginning of each iteration, the matrix takes the simple form:
$M_{n n^{\prime}}=2(E(n)-E(m c)) \delta n, n^{\prime}$
In the implementation of a general wavefunction optimization procedure, no rostrictions should be placed on the density matrix elements appearing in these expressions. in particular, no assumptions such as "full valence CI", "full active snace CI", or "doubly occupied CI" should be trade. In order to use the simplifying features of certain reference spaces when t'ey ar'e criployed however, it is convenient io use the non-zero density matrix contributions to control the construction of the required matrices. It should be mentioned that only \hat{T} operators which may result in non-zero gradient contributions need co be incleded in the optimization procedure. For example, indices p and q which correspond to molecular orbitals of different symmetries produce zero gradient contributions $\left\langle\left[H, i T_{4}\right]\right\rangle$ because the electronic Hamiltonian operator is completely symmetric. The formalism used by Rudenburg in the SCl method7and by Roothaan in the exponential method mphasizes this aspect. For a given MC space, other orbital pairs sometimes result in trivial zero contributions to the gradient and to zero eigenvalues of the wavefunction Hessian matrix. These redundant variables may be removed to reduce the simension of the matrices without affecting either the convergence properties or the final results.

Although the 1 - and 2-particle density matrices and transition density matrices are usually spasse,
we have chosen not to attempt to explicitiy construct them each iteration. Instead, we calculate a contribution to a density matrix element or transition density matrix element, use that contribution with any available integrals, and update the appropriate Hessian or ẹracient natrix elements. When all non-zero density contributions have been exhausted, new integrals are made available, the density contributions are again retrieved, and the process is repeated. This procedure allows the construction of the Hessian and gradient matrix elements to be performed with only one reading of the integral list. Because the unitary group procedures we have used result in very efficient evaluation and very cor:pact sterage of the density contributions, the multiple readings of the resulting short formula tape are only a small part of the wavefunction optimization procedure. Since the total number of formula tape readings required each time the matrices are constructed is equal to the number of blocks of integrals, an attempt is made to minimize the number of blocks of integrals witt dynamic memory allocation using subroutine argutent lists and array offsets. In the case where all the integrals may be made available at one time, only one reading of the formula tape is required.

In the unitary group approach, a density contribution is detemmined by a loop within a Shavitt graph? Each loop is associated with many configuration pairs. The number of configuration pairs is given as the product of the number of upper walks from the loop head and the number of lower walks from the loop tail. The total contribution of a loop to a density matrix element is the sum of all the products of pairs of mixing coefficients which share the loop. In the most favorable cases, there is only one loop which contributes to a density matrix element. Although this loop may be shared by many configuration pairs, the complete contribution may easily be precomputed before using this density contribution in the B and $\underset{\sim}{W}$ construction. Account must also be taken of the operator relations
$e_{i j}=e_{j i}^{+}$and $e_{i j, k 1}=e_{k 1, j j}=e_{j i, 1 k}^{+}=e_{1 k, j i}^{+}$. Since only d unique set of loops are constructed and stored on the formula tape, the appropriate permutations of the indices must be performed to include all possible non-zero density matrix contributions. The \& matrix construction may be broken into two parts

$$
\begin{aligned}
C_{p q, n} & =2\langle m c|\left[H, i \hat{\gamma}_{p q}\right]|n\rangle \\
& =-2 \sum_{a}\left(\sum_{b} U_{3, m c}\langle b|\left[H, i \hat{r}_{p i}\right]|a\rangle\right) u_{a, n} \\
& =-2 \sum_{a} C_{p_{Q}, a} U_{a, n}
\end{aligned}
$$

where the construction of the C_{c}^{\prime} matrix reguires only the current mixing coefficients tor the MC state. Construction of the intemediate f^{\prime} matrix also avoids multiple references to excited state mixing coefficients for each transition density matrix contribution and replaces it by the indicated matrix product which is independent of the formula tape and integral fist lengths. Since the \mathcal{C} matrix construction requires the transition 1- and 2 -particle density matrices, or equivalently the density contributions from the primitive configurations, its construction becomes the dominating matrix construction step as the number of configurations in the MC space is increased.

In our implementation of the unitary group approach, the configuration list is specified by a distinct row table (DRi). The ORT is constructed
automatically by a small interactive program which requires only a limited amount of spatial symmetry and orbital occupation restriction information. The formula tape which corresponds to this URT is then constructed and used by either the CI program or the wavefunction optimization program.

SUMPARY
We have found that the unitary group approach used in our wayefunction optimization programs results in not only efficient matrix element construction but also general and flex ible configuration specification for many molecular systems. Wavefunction optimization procedures using second order methods and hybrid methods consisting of approximate SCI methods and second order methods have been implemented. Wavefunctions corresponding to both ground and excited states of the same symmetry have been obtained and reported using these methods.

REFERENCES

1. A, Elanerjee and F. Grein, Int. J. Quantum Chem. , 10 123(1976)
A. Banerjee and F. Grein, J. Chem. Phys.66, 1050 (1977)
A. Banerjee and F. Grein, Jnt. J. Quantum Chem. Symp. 9, 147 (1975)
2. T. Chang and W Schwarz, Theoret. Chim. Acta 44, 45 (1977)
3. E. Dalgaard and P. Jorgensen. 3. Chem. Phys. 69 (8), 3833 (1978)
4. D. Yeager and P. Jdrgensen, J. Chem. Phys. 71 (2), 755 (1979)
5. G. Das, J. Chem, Phys. 58, 5104 (1973)
6. B. Lengsfield, J. Chem. Phys. $\underline{0}, 0$ (1980)
7. L. Cheung, S. Elbert, and K. Ruendenberg, Int. J. Quantum Chem., 16, 1069 (1979)
8. C. Roothan, J. Detrich, and D. Hopper, Int. J. Quantum Chem. Symp. 13, 93 (1979)
9. 10. Shavitt, Int. J. Quantum Chem. Symp. 12, 5 (1978)
I. Shavitt, Annual Report to NASA Ames Research Center, June 1979
1. R, Shepard and J. Simons, J. Chem. Phys.
B. 0 (0)
F. Shepard and J. Simons, Int. J. Quantum Chem. 0,0 (1980)

FORMAL AND MUMERICAL CONVERGEHCE COMPARISON OF SCI AND EXPONENTIAL HETHODS

Dr. Ronnte Shepard
Battelle liemorial Institute Columbtis, Ohio 43201

and
Prof. Jack Simons University of Utah
Salt Lake City, Utah 84112

FORMAL CDHPARISON

By examining the forms used to describe modifications in the orbital and configuration expansion coefficients, the energy functions which are made stationary, the resultant equations to be solved, and the iterative procedures which are commonly employed in solving such equations; we see the similarities and differences anong the super CI(SCI) and exponential MCSCF rethods.

The SCI method can be viewed as using a trial variational wavefunction written as a linear combination of the current (in the iterative scheme) M wavefunction $X_{0}|0\rangle$ plus single excitations $X_{i j}\left(i^{+} j-j^{+} i\right)\left|0>^{0} \equiv\right| i j$. The SCI secular equation resulting from making the energy of this trial wavefunction stationary yields an eigenvector which
 The modification of the CI expansion coefficients $|0\rangle=\sum c_{g o}\left|\phi_{g}\right\rangle$ is then achieved by performing a CI caldulation using configurations $\mid \varphi_{g}{ }^{\prime}$ involving the "new" MCSCF orbitals. The fact that both orbital and CI expansion coefficient optimization are achieved through solutions of secular problems (which have the well known eigenvalue separation properties) makes the SCI method look promising for use on excited states. Critics would remark that the SC. does not trial coupling between orbital and CI coefficient variatic:. in a balanced or fully coupled manner and that the erl energy expression ignores
 which are second oriar in the orbital variation parameters $X_{i, i}$. This intter fact nakes the SCI method not quadratically chivergent.

The exponential MCSCF method expresses the modification of the orbitals $\langle\exp (i \lambda\rangle)$ and CI coefficients (exp(is)) in terms of exponential unitary transformations. By expanding the MC energy through second order in λ and $\$$ (thereby neglecting third and higher order factors) and making the resultant expression stationary with respect to varfations in λ and S, one arrives at a set of Iinear algebraic equations for the parameters in λ and 5 . This method is quadratically convergent since its energy expression contains all terms in λ and 5 through second order. However, it is not variational since the "energy function" which was made stationary is not an upper bound to the true ground-state energy. The coupling between orbital and configuration mixing coefficient optimization is treated in a balanced or coupled manner in this exponential approach. However, the fundamental assumption that second order in $\lambda i \approx$ equivalent (in an energy sense) to second order in S remains to be tested.

Given the basic working equations of the SCl and exponential MCSCF methods, one next must attempt to find stable iterative procedures for solving these equations. In solving the SCI equations, one is faced with choosing the eigenvectors of the SCI and CI secular equations which are proper for the state of interest and with damping the modifications of the orbitals resulting from the SCI secular problem. One is aiso faced with ortho-
normalizing the MCSCF orbitals on each iteration because the transfomation matrix resulting from the SCI secular equation is not unitary.

Several procedures have been suggested for solving the linear equations obtained in the exponential method. The so called one-step procedure involves solving the coupled linear equations for i and S and then using the A, S values to transform the MC wavefunction. Damping is of ten employed to acceterate the convergence of this process. If the orthogonal compienent μ wavefunctions $\{|n\rangle\}$ are chosen to diagonailize $\left.H_{2}<n|H| m\right\rangle=\delta_{n m} E_{n}$, and the block of the Hessian matrix arising from $<0|[S,[5, H]]| 0\rangle$ becomes diagonal. This then permits the linear equations for λ and s to be decoupled, thereby reducing the dimension of the matrices to be handled. This procedure is still viewed as a one-step approach. In the most comon two-step approach, one obtains the CI expansion coefficients by diagonalizing H within the full MC space $i \mid 0>$, $\mid n>\}$. Then, given $\mid 0 x$, one solves the partitiuned linear equations (which have been partitioned to eliminate S in favor of λ) for the orbital modification parameters λ. The S parameters are not obtained from the linear equations. Such a procedure is called two-step because it involves computing the CI coefficients (from the CI secular problem) and the λ parameters (from the linear equations) in two sequential steps.

Because the SCI achieves both Cl coefficient and orbital optimization via secular problens, one can monitor the state to which one is converging by following the eigenvalues of the SCl and Cl secular equations from one iteration to the next. In the exponential methods, whose working equations are not secular equations, one can also monitor convergence to a specific state by examining the number of negative eigenvalues of the Hessian matrix.

NUMERICAL STUDIES

He have carried out a large number of exponential and SCI liCSCF calculations on grouns and excited states of $\mathrm{Be}, \mathrm{HCH}, \mathrm{HCF}^{-}, \mathrm{HgH}_{2}$, and $\mathrm{C}_{5} \mathrm{H}_{4}$ using MC wavefunctions containing single and double excitations. We have examined the convergence rate of these two methods under several sets of conditions for ground and excited 1 s Be atoms and HCN.

1. By freezing the CI expansion coefficients at their optimal convirged vaiues, we explored their rates of conver jence and ranges of ranvergence for orbital optilization. The latter was achieved by using star ing orbitals which were successively further and firther from the proper converged orbitals.
2. The SCI method as compared to a twostep method in which the coupling matrix elements between orbital and CI coefficient optimization $<0[S,[\lambda, H]] \mid 0$, were neglected and the CI coefficients were determined via a secular problem.
3. The full (including $<0 \mid[S,[, 1, \mid t] \mid 0>$) exponential two-'step and one-step procedures were also compares io the SCI method.
The results of these exploratory calculations together with our recommendations and observations
concerning opeimal implementation of MCSCF wavefunction optimization techniques will be put forth in the second part of this presentation.

MCHF CONVEGGEMCE USIHG INCOHPLETE SECOND-DERIVATIVE INFORMATLON

Harry F. King and R. Hicholas Camp Department of Chemistry
Achesan Hall
SUMY at Buffalo
Buffalo. New York 14214

Orbital optimization is achieved using a generalized conjugate gradient algorithm due to Hestenes, Eq. (5). The R matrix consists of exact first derivatives with respect to orbital rotations. An arbitrary amount of second derivative information can be incorporated into the F natrix. Efficient compitation of R is ciescribed. An application to the nitric oxide dimer is discussed.

INTRODUCTION

He are certainly impressed by the secondorder MCHF methods of Jorgensen, Dalgaard and Yeager ${ }^{1}$ and of Roothaan, Detrich and Hopper, ${ }^{2}$ but somewhat dismayed at the prospect of borking with the full second derivative matrix for large basis sets. Thus Or. Camp and I llecided to try our hiand at writing our own HICHF program in which the Newton-Raphson equation is replaced by one invented by Hestenes. The Hestenes algorithm contains an arbitrary positive definite matrix, but for rapid convergence it should be at least a rough approximation to the inverse second-derivative matrix. We will have more to say about this presently,

We call our MCHF program HONDO eince it is an extension of the single-configuration SCF program with that name. It is a working program but still far from being a rinished product. HONOO presently employs a variational wavefunction corresponding to what 8jorn Roos calls "complete Cl in the active space." The orbital space is partitioned into three subspaces: Nc inactive lalias "core" or "spectator") orbitals with fixed occupation numbers equal to two, N_{a} active orbitals with variable occupation numbers, and N_{v} virtual orbitals with occufation numbers equal to zero. Let there be N spatial orbitais and Netal electrons so that
$N=N_{c}+N_{a}+N_{v}$,
$N_{e}^{\text {total }}=2 N_{c}+N_{e}$.
The CI expansion includes all configurations with a given spin that can be constructed for N_{e} electrons in N_{a} orbitals. In writing the program we have focussed on applications in which N is an order of magnitude greater than N_{a}, e.g, $N 100$ and $N_{a}=2$ to 6. Although we have yet to carry out calculations for such systems, we are thinking specifically of transfition metal complexes. Please keep in mind that the active orbitals constitute a small fraction of the total number of M.O.'s. Thus it is significant that HONDO performs the four-index transformation and computes various density matrices only for the small set of
active orbitals.
In the absence of point group symmetry the number of independent first derivatives with respect to orbital rotations is

$$
\begin{equation*}
N_{f}=N_{c} N_{a}+N_{a} N_{v}+N_{v} N_{c} \tag{3}
\end{equation*}
$$

An upper bound on the value of N_{f} is $\mathrm{N}^{2} / 3$, and a typical value is approximately $\mathrm{N}^{2} / 5$. Thus the number of unique second-derivative matrix elements is about $N^{4} / 50$. The size of the second-derivative matrix is approaching that of the two-electron integral file. He want to work with much less second derivative information than that. An obvious suggestion is to use only the diagonal elements, but there is probably a better tactic than that. We are certainly open to suggestions.

We have further comments to make on three aspects of this work: (1) method of orbital optimization, (2) computation of derivatives with respect to orbital rotations, and (3) some applications to the computation of ground and excited state potential energy ..rfaces.

OREITAL OPIIMIZATION

HONDO employs the exponential operator natation of Bernard Lely. ${ }^{3}$ Let $\$$ be an N-fimensional row vector whose elenents arē real, orthonormal, spatial orbitals. Let λ be a real parameter and A a real N by N, antisymmetric matrix. A unitary transformation on Φ generates a new set of orbitals $\Phi(\lambda)$.
$\Phi(\lambda)=\Phi \underline{\mathbf{U}}(\lambda)=\Phi \exp (\lambda A)$
A "major cycle" in our method consists of a onedimensionai search with fixed A that minimizes the CI energy with respect to the variable lambda. First let us discuss the computation of the optimum lambda value, then we will return to the more interesting matter of detemining the search direction A. The derivative ($\mathrm{dE} / \mathrm{d} \lambda$) at $\lambda=0$ is easily computed from first derivative infonmation computed in the previous major cycle. The program then evaluate $5 E(\lambda)$ and ($\mathrm{dE} / \mathrm{d} \lambda$) at $\lambda=1$. This constitutes a "minor cycle" and involves a fourindex transformation, construction and diagonalization of the CI matrix, and computation of first derivatives at $\lambda=1$. One minor cycle requires about as much CPU time as three to four ordinary closed-shell SCF cycles. Knowing the energy and its first derivative at two points determines a cubic approximation to $E(\lambda)$ from which values of $l_{\text {min }}$ and $E\left(\lambda_{\text {min }}\right)$ are estimated. If A has been well chosen then $\lambda_{\text {min }}$ is sufficiently clnse to unity and the search is teminated after one minor cycle. Otherwise, the C[energy and its derivative are recomputed at the predicted lambda, the results are fitted by a cubic spline, and the process is repeated until convergence of the onedimensional search has been achieved, it is rare,
in practice, that a major cycle requires more than two minor cycles. This one-dimensicnal search plays an importunt role in the theory described below, it is also responsible for the remarkable stability of the convergence algorithem even when the starting orbitals correspond to a second derivative matrix with one or more megative eigenvalues. (This situation has been eprountered starting from on apparently reasonable initial guess.)

The A matrix for the oth major cycle is computed by the following algorithm bised on generalized conjugate gradient method invented by Hestenes ${ }^{4}$ for the solution of large linear systems. ${\underset{\sim}{A}}^{(n)}=F \underbrace{(n)}+b^{(n-1)}{\underset{A}{(n-1)}}_{(n)}^{(n)}$
Like A itself, the R matrix is antisymetric. Element $R_{i j}$ is the first derivative of the CI energy with respect to a rotation of the $i j$-th pair of orbitals. The theory assumes only that F is a positive definite Hermitian matrix. ${ }^{5}$ The first terw; in (5) by itself corresponds to MewtonRaphson when F is exactly the inverse of the matrix of second derivatives. The second tem effectively accumulates information from previous majer cycles and so corrects for errors in secondorde. terms and for third and higher-order effects. Hestenes derives the following expression for the b coefficient:

$$
\begin{equation*}
b^{(n-1)}=o^{(n)} / 0^{(n-1)} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho^{(n)}=\operatorname{tr}\left(\underline{R}^{(n)} \underline{q}^{(n)}\right) . \tag{7}
\end{equation*}
$$

In effect the Newton Raphson equation has been combined with the iterative conjugate gradient method for solving large linear systems in such a way as to eliminate the explicit appearance of the second derivative matrix from the fomalism. To show this, let us set f; the Niewton Raphson equation in N_{f} dimensiunal space. Let x be vector in this space that denotes the prbftals. For example, we can pick a set of reference orbitals and define any others in terms of these by an exponential unitary transformation $\underline{U}=\exp \left(\underline{A}^{-}\right)$. Then x consists of the independent \bar{e} lements of A^{-}, e.g. The elements in the lower triangle. Similarly let \underline{r}_{0} consist of the independent eiements of R evaluated for the reference orbitals. (We are aware that there exist. Unitary matrices that cannot be expressed by the exponential formula with \mathcal{A}^{-}restricted to being real. That problem is easily overcone by adopting a suitable phase convention.) Let $\mu_{\text {M }}$ be the N_{f} by N_{f} matrix of second derivatives with respect to elements of \underline{x}. Expand the CI energy through quadratic terms.
$E(\underline{x})=E_{0}-\underline{r}_{0}^{\dagger} \underline{x}+1 / 2 \underline{x}^{+} \underline{M x}+\ldots$
In this notation the solution of the Newton Raphson equation is $\underline{x}=\underline{h}$ where

$$
\begin{equation*}
\underline{M h} \times \underline{r}_{0} . \tag{9}
\end{equation*}
$$

Equation (5) is based on the generalized conjugate gradient method of Hestenes which yields h as the limit of a finite, converging sequence of vectors $\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots$, n. Each major cycle in our
method generates a new member of the sequence. In effect we redefine M at each step to be the second derivative matrix at the new $\underline{x}^{(n)}$ so as to correct for cubic and higher order terms in (5) as well as for errors associated with non commutivity of rotation operations. The Hestenes algorithm is one of a class of methods for solving large linear systems such as (9). Each of these iterative methods generates the vectors ($\mu^{n} \underline{v}, n=1,2,3, \ldots$) for some generstor v. This is known generally as a "Krylov sequence" or Krylov space. At each step h is approximated by the best vector in the Krylov space according to some criterion. Following Hestenes our criterion is that x minimize the generalized norm of the residual. The residual vector corresponding to (9) is \underline{r}_{0} - Mx .

Here H can be any positive definite matrix. (Dc not confuse H with the arbitrary matrix F introduced above.). A perticular choice of H^{-} discussed by Hestenes and employed by us is H $=\mathrm{H}^{-1}$. This tends to avoid overemphasis of small components of $h-x$ corresponding to large eigenvalues of \boldsymbol{M}. It follows imediately that this is equivalent to minimizing the quadratic approximation to (B) in the Krylov space. Our method replaces this step with minimization of $E(x)$ itself using the one-dimensional search technique already discussed. In the absence of higher order terms this reduces to the Hestenes algorithm. The A matrix in (5) corresponds to the change in \underline{x}

$$
\begin{equation*}
\underline{x}^{(n+1)}=x^{(n)}+\lambda A^{(n)} \tag{11}
\end{equation*}
$$

and $\underline{R}^{(n)}$ corresponds to the residual vector evaluated for the current orbitals $\underline{x}^{(n)}$.

It is, of course, unnecessary to generate the matrix explicitily if there exists an equilvalent, alternative technique for extending the Krylov sequence. This is, in fact, what we do by explicitly computing $r^{(n)}$. Note that if one drops higher order terms from (8) then the negative gradient is just the residual vector.

$$
\begin{equation*}
\underline{r}(\underline{x})=\underline{r}_{0}-\underline{M x} \tag{12}
\end{equation*}
$$

A Newton-Raphson method using the Hestenes algorithm evaluates the right hand side of (12), we cualuate the left hand side. The explicit matrixvector multiplication is several times faster computationally than evaluation of r. On the other hand we completely avoid constructing M and at the same time pick up a small advantage from the fact that we effectively redefine M at each major cycle and so correct for non quadratic effects more frequently.

Hestenes shows that (5) together with (6) minimizes $E(\underline{x})$ in the Krylov space, in particular, it minimizes (10) in the subspace spanned by the two cerms in (5). Our computational experience shows, however, that the CI energy is not always well minimized in this two-dimensional subspace when b is computed by (6). This is almost certainly due to the neglect of cubic and other higher order effects not considered by Hestenes. Thus we have recently replaced (6) with a twodinensfonal search procedure that minimizes the

Cl energy with respect to the coefficients of both terms in (5). This two dimensional search has sometimes resulted in a marked improvement during early MCHF cycles, but is a waste of time in later cycles. A simple test could be coded into the progran to improve efficiency in this respect. This is just one of several illustrations of the need for a general "tuice up" of the program.

Improvement in the selection of the F matrix is of central interest. To date we have Employed only diagonal F matrices whose elements are computed by sinple finite difference formula applied to R matrix elements for consecutive major cycles. This has actually morked reasonably well, but we suspect that certain small second derivative elements should be computed accurately. We want to maintain an exceedingly sparse \mathcal{F} matrix, but we would certainly be willing to incilude a small number of off-diagonal elements if we could only identify the really important ones. We hoped to generate some discussion at this meeting concerning what second derivative information is of greatest importance.

COMPUTATION OF FIRST-ORDER TERMS

The Ci energy is given in terms of integrals over MO's as follows:

$$
\begin{equation*}
E=E_{n u c}+\sum_{i j}\left\{i\left|h_{n}\right| j\right\} P_{i j}+\sum_{i j k \ell}\{i j| | k \ell\rangle P_{i j k \ell}^{(2)} \tag{13}
\end{equation*}
$$

where P and $\underline{p}^{(2)}$ are one and two-particie density matrices respectively. They are related by:
$P_{i j k k}^{(2)}=\frac{1}{2} P_{i j} P_{k \ell}-\frac{1}{8}\left(P_{i k} P_{j \ell}+P_{i \ell} P_{j k}\right)+P_{i j k \ell}$.
$p_{i j k \ell}^{(2)}=p_{j i k \ell}^{(2)}=p_{k \ell i j}^{(2)}=\ldots$
It is important to appreciate that $P_{i j k e}$ is non zero only if all four indices are in the active space. For the problems under consideration it requires a trivial amount of core storage to hold the non zero elements of P^{\prime} and the corresponding two electron integrals. Only those elements in the active-active block of the symetric, oneparticle density matrix are needed since the others are given by:
$P_{i j}=2 \delta_{i j}$ if i and/or j are spectators,
$P_{i j}=0 \quad$ if i and/or j are virtuals.
Let the orbitals vary according to (4) for fixed A and variable A. Consider the CI calculation to be repeated for each λ. He want the values of E and $d E / d \lambda$ at each step during the variation.
$\Phi(\lambda+\varepsilon)=\underline{\Phi}(\lambda)\left[\underline{I}+\varepsilon \underline{A}+0\left(\varepsilon^{2}\right)\right]$

$$
\begin{equation*}
E(\lambda+\varepsilon)=E(\lambda)+2 \varepsilon \sum_{i \sim i j}\left(i^{-}\left|h_{N}\right| j\right) A_{i \sim i} P_{i j}+ \tag{19}
\end{equation*}
$$

Note that first-order variations in the density matrices make no first-order contribution to the enerqy by virtue of having diagonalized the CI
matrix. [t follows immediately that
$\mathrm{dE} / \mathrm{d} \lambda=\operatorname{tr}\left(\underline{A R}^{-}\right)=\frac{1}{2} \operatorname{tr}(\underline{A R})$.
where
$R_{i j}^{\prime}=2 \sum_{j}\left(i^{-}\left|h_{K}\right| j\right) P_{i j}+\underset{j k Q}{4 \sum_{i}}\left(i^{\circ} j| | k Q\right) P_{i j k L}^{(2)},($
$R=\underline{R}^{\prime}-\left(\underline{R}^{\prime}\right)^{\dagger}$.
To evaluatc the R matrix substitute (19) into (21) and separate the resulting expression intc two terms. The first tern concains everything not involving \boldsymbol{P}^{-}contributions. Computationally. evaluation of this first term is in every respect
like the evaluation of a closed-shell Fock matrix. It can be evaluated in an AO basis using point group symmetry ${ }^{6}$ and a PK file, ${ }^{7}$ and then be transformed to an mo basis. For large basis sets this incurs the same $1 / 0$ charges and just slightly less CPU time than for an ordindry SCF cycle.

The second term, i.e. the P^{-}contribution to R^{-}, is evaluated in a mixed 10, AO basis. It reduces to evaluation of the inner product of a pair of H -dimensional vectors.

$$
\begin{equation*}
4 \sum_{j k \ell}(i \sim j| | k i) P_{i j k \ell}^{\prime}=\sum_{\sigma=1, N} B_{\sigma i} C_{0 i} \tag{23}
\end{equation*}
$$

Here C is the MO coefficient inatrix which expresses the MO's, ϕ_{i}, in terms of AO's, x_{0}.

$$
\begin{align*}
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{24}\\
& \Phi=x C \tag{25}
\end{align*}
$$

Evaluation of (23) is performed for each element of \mathbb{R}^{*} in the active-virtual and active-spectator blocks. This is a fasi step. The B matrix has N rows and N_{a} colums.
$B_{o i}=4 \sum_{j} \sum_{k \geqslant l}(a j| | k \varepsilon) P_{i j k e}^{\prime}\left(2-\delta_{k i}\right)$
Evaluation of (26) is not a heavy computation. There are N_{t} terms in the sum. (See Table 1.) The two-electron integral, ($\sigma j|\mid k Q$), is preserved from the penultimate step in an earlier four-index transformation. The number of such $3 / 4$ transformed integrals is $\mathrm{N} \times \mathrm{N}_{\mathrm{t}}$. For small problems these can be held in core, ${ }^{t}$

Ncte that the strategy is to divide the computation into two types of terms. The first involves only one-particle density matrices, and these are evaliated in an A.O. basis. The second involves only active orbitals, and these are evaluated in an mo basis. This organization has also proved useful for the computation of energy derivatives with respect to nuclear displacement, i.e. analytic gradients.

TABLE 1 , DIMENSIONS OF ARRAYS

N_{a}	N_{p}	N_{t}	N_{q}
2	3	6	6
3	6	18	21
4	10	40	55
5	15	75	120
6	21	126	231
7	28	196	406
8	36	288	666

$\mathrm{N}_{\mathrm{a}}=$ number of active orbitals
$N_{D}=$ number of unique pairs
$N_{t}=N_{d} \times N_{p}=$ number of unique triple indices
$\mathrm{N}_{\mathrm{q}}=$ number of inique P^{*} elements
POTENTIAL EMERGY SURFACES FOR A WEAKLY IHTERACTING BIRADICAL SYSTEM

A variety of experimental evidence indicates that nitric oxide forms a dimer in the gas phase with an association energy of about 2 keal per mole of dimer. Its structure has not yet been determined, but the nitrogen-nitrogen separstion is almost certainly unusually long. Yarious features of the electronic structure can be expected to more nearly resemble that of a transition state complex rather than that of a normal covalently bonded molecule. Unlike a transition state complex, however, the dimer is far more accessible to spectroscopic observation." These weak complexes would seem, therefore, to provide interesting test cases for quantum chemical methods.

The ground electronic state of HO is a doublet pi state. Thus there are four nearly degenerate π^{*} orbitals in the dimer for two electrons. Not surprisingly, earlier calculations using single configuration SCF theory yield a qualitatively incorrect description of the dimer stracture. We have recently begun a rather extensive exploration of the ground state potential energy surface using $\mathrm{H}_{\mathrm{e}}=2$ and $\mathrm{N}_{\mathrm{a}}=4$. Less extensive calculations are being carried out for the low-lying excited state surfaces. We wish to discuss some rather puzzling aspects of these results. In particular, this level of theory predicts a completely repulsive ground state surface.

REFERENCES

(I) E. Dalgaard and P. Jorgensen, J. Chem. Phys. 69, 3833 (1978). D. L. Yeager and P : Jorgensen, J. Chem. Phys. 71, 755 (1979\}.
(2) C. C. J. Roothaan, J. Detrich and O. G. Hopper, Int. J. Quant. Chem. Symp. 13, 93 (1979).
(3) B. Levy, Chem. Phys. Letters 4, 17 (1969), 18. 59 (1973): Int. J. Quant. Chem. 4, 297 (1970). J. Douady, Y. Ellinger, R. Subra and B. Levy, J. Chem. Phys. 72, 1452 (1980).
(4) M. R. Hestenes, in Proceedings of Symposia in Applied Math., vol. 6 (Numerical Analysis), pp. 83-102 (McGraw-Hi11, H. Y.. 1956).
(5) Our Eq, (5) is (6:2f) in Ref. A, where our a, F, r correspond to p, K, g. The origital method of conjugate gradients, contained nothing analogous to the F ratrix, but as discussed in Section 8 of Ref. 4, the generalized method is Just the original algorithm applied in a transformed space. Our F is the square of the matrix for the linear transformation.
(6) M. Dupuis and $H_{,}$F. King, Int. J. Quant. Chem. 11, 613 (1977).
(7) R. C. Raffenetti, Chem. Phys. Letters 20, 335 (1973).
(B) C. E. Dinerman and G. E. Exing, J. Chem. Phys. 35, 626 (1970).

THE I'XITARY GROUP FORMTIATION OF MCSCF THEORY AND EXTENSIONS*
C. J. Nelin and F. A. Hatsen

Departments of Chemistry and Physics University of Texas at Austin

Austin, tx 78712
©Supported by the Robert A. Weicin Foundation of Houston, Texas.

I. INTRODUCTION

The unitary group formulation of the many-body probleal is a viahle alternative to the Slater determinant and second quantized foraulation when the Hamilitonian is spin-free. In the unitary group formulation the Hamiltomian ls expressed as a Herritian second-degree polynomial in the infinitesimal generators of $U(0)$, whete A Is the number of spin-free arbitals. Each Irredueibly invariant representation space of $U(0)$ is uniquely characcerized by a partition of a non-negacive integer and the associated Young diagram. Each space is invariant under the Hamiltonian, so the partition is a quantum number. The Paulinallowed spaces are characterfied by Young diagrans containing no more than two calums such that the particle number, N, is given by the number of squares and the $s p i n, S$, is given by one-haif the difference in the lengths of the two colutans. Thus the Pauli-allowed irceducible invariant spaces of $U(\rho)$ are pure spin states and $s p l n$ projection is not required. These spaces are spanned by either Gel'fand states or generator states, ${ }^{2}$ and the matrix elements of the Hamiltonian over either set of basis vectors are evaluated straightforvardly by standard Lie algebraic techniques. 1 The unitary group formulation has been shown to be directly applicable to large CI calculations. 4 Further, the unitary group formulation provides a basis for various many-body theories.

In previous popers we have given the unitary group formulation to single-configuration SCF: ${ }^{5}$ mulciconfiguration SCF, 6^{6} and coupled-clustery" theories. The present paper is a review and an extension of these ideas. Section II contains a revies of the relevant unitary group theory. Seetion III contains a bricf outline of the unitary group foralation of mCSCF theory. In Section IV we crate the effective Hamilconian for a mulciconfigurarional reference (primary) space, a device for enfolding states from the external secondary space into the multiconfigurational primary space. In Section V these two concepts are combined into an MCSCF effective Hamilitonian. We ourline in the appendix 3 est calculation for $12{ }_{2} \mathrm{O}$ with a double zeca basis.

II. THE UNTTARY GROUP FORYULATION

The sroup

$$
\begin{equation*}
u(0)=\{x, y, z, \ldots\}, x^{+}=x^{-1} \tag{2.1}
\end{equation*}
$$

Is the set of 311 unitary trinsformations on set of orthonormal spin-free (freeon) orbitals:

$$
\begin{equation*}
v(\nu):\left\{\mid r^{s}, r=1 t 0 \nu\right\} \tag{2,2}
\end{equation*}
$$

The group elements have an exponential form $x=e^{X}$ where $X^{+}=-X$ (skew Hermitian)

Where X is an elenent of the Lie algebra,

$$
\begin{equation*}
\operatorname{LAU}(\rho)=\{X, Y, 2, \ldots\} \tag{2.4}
\end{equation*}
$$

This nonassociative algebra is closed under the Lic product (commutator).

$$
\begin{equation*}
[X, Y \mid \in \operatorname{LAU}(\rho) \tag{2,5}
\end{equation*}
$$

The Lhe algebri has a basis given by

$$
\begin{align*}
& L_{A U}(\rho):\left\{E_{r s} ;\right.\left.I_{\%}=1 \text { to } 0\right\} \text { uth } \\
& E_{I s}^{\dagger}=E_{S r} \tag{2,6}
\end{align*}
$$

whose elements satisfy the lie prusuct

$$
\begin{equation*}
\left[E_{r s}, E_{t u}\right]=\delta_{\mathbf{A t}_{t}} E_{r u}-\delta_{r u} E_{t s} \tag{2.7}
\end{equation*}
$$

The covering algebre is

$$
\begin{equation*}
\operatorname{CAU}(\rho):\left\{I, E_{r s}, E_{r s} E_{t u}, \ldots\right\} \equiv E(1, t) \tag{2.8}
\end{equation*}
$$

where is the degree of the element in CAU(0) and τ labels the indices.

The unicary group many-electron Hamiltonian, which lies in cau(0), is

$$
\begin{equation*}
H=H^{0}+V \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
H^{0}=\sum_{r}^{\rho} \sum_{s}^{\rho} h_{r s} E_{r s} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\sum_{r} \sum_{s}^{0} \sum_{r}^{0} \sum_{u s t u}\left(E_{r s} E_{t u}-\delta_{s t} E_{r u}\right) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{r s}=\left\langle r_{i}\right| h_{i}\left|s_{i}\right\rangle \tag{2,12}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\text {rstu }}=\left\langle t_{j}\right|\left\langle r_{i}\right| h_{i j}\left|s_{i}\right\rangle\left|u_{j}\right\rangle=v_{\text {turs }} \tag{2.13}
\end{equation*}
$$

The Hilbert space of this Hamiltonian is the represencation space of $U(0)$:

$$
v_{p}=\sum_{[\lambda]} \oplus v_{\rho}[\lambda]
$$

where each $V_{0}{ }^{[\lambda]}$ is invat iant under CAU\{ 0) and where $\{\lambda \mid$ is a partition of the positive integer N,

$$
\begin{equation*}
[1]=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{0}\right] \tag{2,15}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{0} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{p} A_{1}=N \tag{2.17}
\end{equation*}
$$

[1] is graphically represented by a Young diagram Fild, with s boxes where the ith nou has ? poxes. Gach invartant space is spanned by $f_{p}[\lambda]$ Gel'fand states labeled by Gel'fand tableaux constructed by adding integers to $\mathrm{y}[\{\mathrm{\lambda}]$ in nondescending order along rows and in descending order down columns and there exist explicit formulae for the evaluation of satrix elements over Gel'fand staces, where each Gel'fand state can be represented by a Paldus array and a walk on a Shavitt graph (gee Appendix). For the Gel'fand basis represented by

$$
\begin{equation*}
v_{0}{ }^{\{\lambda]}:\left\{|F\rangle, d i m=f_{p}[\lambda]\right\} \tag{2.18}
\end{equation*}
$$

a matrix elemenc, $\langle\boldsymbol{F}| \boldsymbol{H}\left|\mathrm{F}^{\prime}\right\rangle$, has a closed form given as a function of the walks corresponding to $|F\rangle$ and $\mid F^{\prime}>{ }^{\prime}$.4

For large systems it ispon impractical to deal with the full space V_{ρ} il even after 1 imiting the number of allowed excitations. Thus we partition the full space inco a primary (or reference) space and a second (or virtual) space:

$$
\begin{align*}
& V_{F}=V_{P}:\left\{|P\rangle_{;} d i m=d_{P}\right\} \oplus V_{Q}|Q\rangle ; \\
& \mathrm{dim}=\mathrm{d}_{\mathrm{Q}} \text { \} } \tag{2.19}
\end{align*}
$$

For the primary space there is selected a small set of states whith interact strongly uith the zero order ground state. Frequently the primary space is selected ay first dividing the orbitals into three classes-((a) core. Inactive frozen finternal); (b) active, valence, mixed (Internal); and (c) external, empty $=$ and then recaining for the primary space only those states with configurations that employ (a) and (b). This primary space has been called the complete active subspace (CAS). ${ }^{8}$ We will represent this orbital parcleioning by

$$
\begin{align*}
v(\rho)=v_{\text {internal }}: & \{|1\rangle,|j\rangle,|k\rangle,|e\rangle, \ldots ; \\
& \left.d i n=\rho_{1}\right\} \\
\Theta v_{\text {external }}: & \left\{|e\rangle,\left|e^{\prime}\right\rangle,\left|e^{n>}\right\rangle, \ldots ;\right. \\
& \left.d i m=\rho_{e}\right\} \tag{2.20}
\end{align*}
$$

Furchermore,

$$
\begin{align*}
& V_{\text {internal }}= v_{\text {core }}:\left\{|c\rangle,\left|c^{\prime}, \cdot\right| c^{\prime \prime}\right\rangle, \ldots ; \\
&\text { dim } \left.=o_{c}\right\} \\
& O v_{\text {nixed }}:\left\{|m>,| m^{\prime}\right\rangle,\left|m^{n}\right\rangle, \ldots ; \\
&\text { dim } \left.=o_{m}\right\} \tag{2.21}
\end{align*}
$$

where

$$
\begin{equation*}
\rho_{1}=\rho_{1}+\rho_{e}=\rho_{c}+\rho_{m}+\rho_{c} \tag{2,22}
\end{equation*}
$$

An example of thia partitioning is glven for the water molecule in Appendix A.

Within this partitioning scheme we obtaln three distinct classes of single excitations from our primary space, $c+e, m \rightarrow e$, and $c+s$. Furtherwore, we obeain the relatons

$$
\begin{equation*}
E_{c e}|P\rangle=E_{\pi c}|P\rangle=E_{C m}|P\rangle=0 \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{c c^{\prime}}|p\rangle=2 s_{c c^{\prime}}|P\rangle \tag{7-4}
\end{equation*}
$$

(Recall that our primary space rantalned all onfigurations involving eare and nixed (valania) orbitals only and that our core orbitals were all doubly occupied.) Usirs (2.23) and (2.24), ve can calculate nonzero matrix elements for the primary space. 6 For another choice for the primary space, see Appendix B.

ItI. :ICSCF THEORY

In the present section we give the unitary group forvulation of MCSCF theory, which will also serve to introduce section V.

The variacional state is constructed as follows. We apply the state and orbital variation simultaneousiy. However, since $[S, T] \notin 0$, the order of appification is significant. He follow previous work ${ }^{9}$ and apply the atate variation first. The varlational state $|0\rangle$ is then

$$
\begin{equation*}
|0\rangle>\equiv e^{T} e^{s} \mid 0 \tag{3.1}
\end{equation*}
$$

where T and S are orbital and state variation operators, respectively. The energy of this state is

$$
\begin{equation*}
E(\tilde{0})=\langle\tilde{O}| H|\tilde{O}\rangle=\langle 0| e^{-S} e^{\sim T} H e^{T} e^{S}|0\rangle \tag{3.2}
\end{equation*}
$$

where $\#$ wa defined by (2.9). On appiying the Baker-Campbell-Hausdorff expansion, and including only cerms is becond order, (3.2) becomes

$$
\begin{align*}
E(\bar{O}) & =\langle 0| H|0\rangle+\langle 0|[H, T]|0\rangle+\langle 0|[H, S]|0\rangle \\
& +\frac{1}{2}\langle 0|[[H, T], T]|O\rangle+\frac{1}{2}\langle 0|[[H, S], S]|0\rangle \\
& +\langle O|[[H, T], S]|0\rangle \tag{3,3}
\end{align*}
$$

The energy is an extremun when

$$
\begin{align*}
\delta E(\tilde{0}) & =\langle 0|[\mathrm{H}, \delta \mathrm{~T}]] 0\rangle+\langle 0|[\mathrm{H}, \delta \mathrm{~S}]|0\rangle \\
& =\langle 0|[\delta 5, \mathrm{H}, \mathrm{~S}]|0\rangle-\langle 0|[\delta \mathrm{T}, \mathrm{H}, \mathrm{~T}]|0\rangle \\
& -\langle 0|[[\delta \mathrm{T}, \mathrm{H}], \mathrm{S}]|0\rangle-\langle 0|[[\mathrm{T}, \mathrm{H}], \delta S]|0\rangle \\
& =0 \tag{3.4}
\end{align*}
$$

where we have used the symetric double commutator defined by

$$
\begin{equation*}
[A, B, C]=\frac{1}{2}[[A, B \mid, C]+[A,[B, C]] \tag{3,5}
\end{equation*}
$$

Thus to second order the extremum of $E(0)$ (3.4) is defined by the matrix equation

$$
-\left\{\begin{array}{l}
w_{r s} \tag{1,6}\\
v_{K O}
\end{array}\right\}=\left\{\begin{array}{ll}
c_{r s, r^{\prime} s^{\prime}} & c_{r s, K^{\prime}} \\
c_{\mathrm{K}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}} & c_{\mathrm{K}, \mathrm{~K}^{\prime}}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{T}_{\mathrm{r}^{\prime} \mathrm{s}^{\prime}} \\
\mathrm{s}_{\mathrm{K}^{\prime} 0}
\end{array}\right\}
$$

Where, using the orbital classes of Roos et al. ${ }^{8}$

$$
\begin{align*}
& W_{r s}=\left\{\begin{array}{l}
W_{c e} \\
W_{c m} \\
W_{m e}
\end{array}\right\} \tag{3.7}\\
& c_{r s, r^{\prime} s^{\prime}}=\left\{\begin{array}{lll}
c_{c e, c^{\prime} e^{\prime}} & c_{c e, c^{\prime} m^{\prime}} & c_{c e, m^{\prime} e^{\prime}} \\
c_{c m, c^{\prime}} e^{\prime} & c_{c m, c^{\prime} m^{\prime}} & c_{c m, n^{\prime} e^{\prime}} \\
c_{m e, c^{\prime}} e^{\prime} & c_{m e, c^{\prime} m^{\prime}} & c_{m e, m^{\prime} e^{\prime}}
\end{array}\right\} \tag{3,8}\\
& c_{r s, K}=\left\{\begin{array}{l}
c_{c e, k} \\
c_{c m, K} \\
c_{\text {cme }, K}
\end{array}\right\} \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
C_{K, \mathrm{rs}}=\left\{\mathrm{C}_{\mathrm{K}, \mathrm{ce}} \mathrm{c}_{\mathrm{K}, \mathrm{~cm}} C_{\mathrm{K}, \mathrm{me}}\right\} \tag{3.10}
\end{equation*}
$$

The e ements in (3,6) are defined by the equations

$$
\begin{align*}
& \left.\omega_{r s} \equiv<0\left|\left[\varepsilon_{s r}, H\right]\right| 0\right\rangle \tag{3.11}\\
& v_{\mathrm{KO}} \equiv\langle 0|[|0\rangle\langle\mathrm{K}|, \mathrm{H}]|0\rangle \tag{3.12}\\
& \mathrm{C}_{\mathrm{rs}, \mathrm{r}^{\prime \prime} \mathrm{s}^{\prime}} \equiv\langle 0|\left[\mathrm{E}_{\mathrm{sr}}, \mathrm{H}, \mathrm{E}_{\left.\mathrm{r}, \mathrm{~s}^{\prime}\right]|0\rangle}\right. \\
& -<0\left|\left[E_{s r i}, H, E_{g^{\prime} r^{\prime}}\right]\right| 0^{\prime} \tag{3.13}\\
& \left.C_{r s, K^{\prime}} \equiv<0\left|\left[\left[E_{5 r}, H\right],\left|K^{\prime}><0\right|\right]\right| 0\right\rangle \\
& \text { - <o| [[} \left.\left.\mathrm{E}_{\mathrm{sr},}, \mathrm{H}\right],|0\rangle\left\langle\mathrm{K}^{\prime}\right|\right]|0\rangle \tag{3.14}\\
& \mathrm{C}_{\mathrm{K}_{\mathrm{r}} \mathrm{r}^{\prime} \mathrm{s}^{\prime}} \equiv<0| | \mid \mathrm{E}_{\left.\mathrm{r}^{\prime} \mathrm{s}^{\prime}, \mathrm{H}\right],|0><\mathrm{K}| 1|0\rangle} \\
& \text { - <0| } \|\left[E_{\left.s^{\prime} r^{\prime}, H\right],|0\rangle\left\langle K^{\prime}\right]|0\rangle}\right. \tag{3.15}
\end{align*}
$$

and

$$
\begin{align*}
c_{K, K^{\prime}} & \equiv<0\left|\left(|0\rangle<K\left|, H,\left|K^{\prime}><0\right|\right]|0\rangle\right.\right. \\
& \left.-<0\left|\left[|0><K|, H,\left|0><K^{\prime}\right|\right]\right| 0\right\rangle \tag{3.16}
\end{align*}
$$

The explicit expressions for these elements are given elsewhere. 6

We can rewrite equation (3.6) in condensed form:

$$
-\left\{\begin{array}{l}
\mathrm{H} \tag{3.17}\\
v
\end{array}\right\}=\{c\}\left\{\begin{array}{l}
T \\
s
\end{array}\right\}
$$

or

$$
-\left\{\begin{array}{l}
T \tag{3.18}\\
s
\end{array}\right\}=\{c\}^{-1}\left\{\begin{array}{l}
W \\
v
\end{array}\right\}
$$

where the values of T and S will be used to update the orbital coefficients and configuration coefficients, respectively. Calculations are carrled out iteratively until W and V vanish (ar become less than the convergence criterion). That W vanish is equivalent to the Erillouin-Levy Berthier condicion (BLB), 10 When V vanishes, orthogonality of the multiconfigurational states is insured.

Thn nalcuigtione begin with an SCSCF determination of che t isitals and a diagonalization of the zesulting repreaentution of H in the primary space to obtain initial multiconifgurational states. The iteration can be carried out in one or two steps.

One-Step Procedure

a. Compute $\mathbf{w}^{(1)}, \mathbf{v}^{(1)}$, and $c^{(1)}$.
b. Compute $\mathrm{T}^{(1)}$ and $\mathrm{S}^{(1)}$ Erom (3.18).
c. Compute new orbital and configuration coefficients.
d. Repeat steps (a) through (c) until selfconsistency is obtained.

Two-Step Procedure

In a two-step procedure the orbital and state coefficients are obtained separately. This is done by setting $\mathbf{V}=0$. The new state coefficients will be obtained via a Hamiltonian diagonalization. When $V=0$ in (3.6), we obtain

$$
-\left\{\begin{array}{l}
\mathrm{H}_{\mathrm{rs}} \tag{3.19}\\
0
\end{array}\right\}=\left\{\begin{array}{ll}
\mathrm{c}_{\mathrm{rs}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}} & \mathrm{c}_{\mathrm{rs}, \mathrm{~K}^{\prime}} \\
\mathrm{c}_{\mathrm{K}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}} & \mathrm{c}_{\mathrm{K}, \mathrm{~K}^{\prime}}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{T}_{\mathrm{r}^{\prime} \mathrm{s}^{\prime}} \\
\mathrm{s}_{\mathrm{K}^{\prime} 0}
\end{array}\right\}
$$

or

$$
\begin{equation*}
-\left\{\mathrm{H}_{\mathrm{ra}}\right\}=\left\{\mathrm{c}_{\mathrm{rs}, r^{\prime} \mathfrak{o}^{\prime}}\right\}\left\{T_{\mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right\}+\left\{\mathrm{C}_{\mathrm{rs}, \mathrm{~K}^{\prime}}\right\}\left\{\mathrm{s}_{\mathrm{K}^{\prime} 0^{\prime}}\right\} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\left\{\mathrm{c}_{\mathrm{K}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right\}\left[\mathrm{T}_{\mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right\}+\left\{\mathrm{c}_{\mathrm{K}, \mathrm{~K}^{\prime}}\right\}\left\{\mathrm{s}_{\mathrm{K}^{\prime} 0}\right\} \tag{3.21}
\end{equation*}
$$

Then from (3.20) and (3.21) we obtain

$$
\begin{align*}
-\left\{w_{\mathrm{rs}}\right\}= & \left(\left\{c_{\mathrm{rs}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right\}+\left\{c_{\mathrm{r} s, \mathrm{~K}^{\prime}}\right]\left\{c_{\mathrm{K}, \mathrm{~K}^{\prime}}\right\}^{-1}\right. \\
& \left.\left\{c_{\mathrm{K}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right\}\right)\left[\mathrm{T}_{\mathrm{r}^{\prime} \mathbf{s}^{\prime}}\right\} \tag{3.22}
\end{align*}
$$

or

$$
\begin{gather*}
\left(\mathrm{r}_{\mathrm{rs}}\right)=-\left(\left\{\mathrm{c}_{\mathrm{rs}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right\}+\left\{\mathrm{c}_{\mathrm{rs}, \mathrm{~K}^{\prime}}\right\}\left[\mathrm{c}_{\mathrm{KK}}\right)^{-1}\right. \\
\left.\left\{\mathrm{c}_{\mathrm{K}, \mathrm{r}^{\prime} \mathrm{s}^{\prime},}\right)^{-1} \mathrm{iH}_{\mathrm{r}_{s}}\right\} \tag{3.23}
\end{gather*}
$$

Furthermore, now

$$
\begin{equation*}
c_{\mathrm{KK}^{\prime}}=\delta_{\mathrm{K}, \mathrm{~K}^{\prime}}(E(\mathrm{~K})-E(0)) \tag{3.24}
\end{equation*}
$$

as the Hamiltonian is diagonalized between iterations. The steps in the twa-step procedure are
a. Diagonalize H to obtain configuration coefficients.
b. Compute $C_{s}(3.12)-(3.15)$ and $w(3.11)$.
c. Obtain T from (3.17).
d. Compure new orbital coefficients.
e. Repeat steps (a) through (d) until convergence is obtained.

The optimum procedure fin carrying out an mCSCF calculation is a subject of atcive debate. ${ }^{1 l}$
questions in need of further investigation are urbital space selections and hence partitions, as well as cechniques tur dealing wish convergence difficulties. When the orbical space becomes large enough, their quality becromes unimportant; however. the problea becores tov large to handle. Hhat we nronose in the next secelon is to combine MCSCF and effertire Hamiltonian theorios to bring in the contribations of a larger arbital space without draseleatly Increasting the size of the MCSCS caleulation.
1v. THE EFFECTIVE HAMILTONLAN ${ }^{12}$
One technique for the construction of an effective llamiltonian is hy means of an exponential and the Baker-Campbell-Hausdorff (BCH) expansion

$$
\begin{align*}
t t & =\mathrm{He}^{-G} \tag{4.1}\\
& =H+[H, G]+\frac{1}{2!}[[H, G], G]+\ldots \tag{4,2}
\end{align*}
$$

where

$$
G=\left\{\begin{array}{c}
E|P><Q|, \quad|Q><p| \tag{4.3}\\
\operatorname{ar} \\
E \operatorname{CrU}(p)
\end{array}\right.
$$

and require that

$$
\begin{equation*}
[1,, P]=\left[14, d_{1}\right]=0 \tag{4,4}
\end{equation*}
$$

where P and E are projection operators for V_{Y} and V_{0}. eespectively. We can enploy coo methods for the construction of \mathcal{H}; where G is determined either by perturbation or by coupled-cluster (variational) theory.

Percurbarion Theory

1. We pevform a perturbation expansion of \mathbf{H} and G :

$$
\begin{equation*}
\text { H. } \sum_{n=0} H^{(n)} \tag{4,5}
\end{equation*}
$$

and

$$
\begin{equation*}
G=\sum_{n=0} G^{(a)} \tag{4.6}
\end{equation*}
$$

Substituting (4.5) and (4.6) into (4.2) we obtain

$$
\begin{align*}
P^{(0)}= & H^{0}+\left[H^{0}, G^{(0)}\right] \tag{4,7}\\
I^{(1)}= & V+\left[H^{0}, G^{(1)}\right] \tag{4,8}\\
H^{(2)}= & {\left[H^{0}, G^{(2)}\right]+\left[V, G^{(1)}\right] } \\
& +\frac{1}{2}\left[\left[H^{0}, G^{(1)}\right], G^{(1)]}\right], \text { etc.(4,9) }
\end{align*}
$$

2. The explleit form of $G(4.6)$ is defined by the canditions

$$
\begin{equation*}
6^{(0)}=0 \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
P G^{(n)} P=\sigma_{G}^{(n)} p=0 \tag{4,11}
\end{equation*}
$$

We take

$$
\begin{equation*}
G^{(n)}=\sum_{\operatorname{rr} V_{p}} \sum_{Q E V_{q}} G_{P Q}^{(n)}\{|P>Q Q|-|Q><P|\} \tag{4,12}
\end{equation*}
$$

3. The representation of H on V_{P} is chen given by

$$
\begin{align*}
& H_{P P^{*}}^{(0)}=\delta_{P,} P^{\prime} E_{p}^{0} \tag{4.13}\\
& { }_{H_{P P}^{\prime}}^{(1)}=V_{P^{\prime}} \tag{4.14}\\
& \mathcal{H}_{\mathrm{PP}}(2)=\sum_{\mathrm{Q}}\left\{-\mathrm{V}_{\mathrm{QP}} \mathrm{G}_{\mathrm{PQ}}^{(1)}-V_{P Q}{ }^{G_{P^{\prime}}^{(1)}}\right. \\
& -\frac{1}{2}\left(E_{P}^{0}-E_{Q}^{0}\right) G_{P Q}^{(1)} G_{P^{\prime} Q}^{(1)} \\
& \left.-\frac{1}{2}\left(E_{P^{\prime}}^{0}-E_{Q}^{0}\right) G_{P Q}^{(1)} G_{Q^{\prime} Q}^{(1)}\right) \tag{4,15}
\end{align*}
$$

etc.
Using (4.7) and (4.8) we obtain

$$
\begin{equation*}
G_{P Q}^{(1)}=-\frac{V_{Q P}}{\left(E_{P}^{0}-E_{Q}^{0}\right)} \tag{4.16}
\end{equation*}
$$

Thus (4.16) becones

$$
\mathcal{H}_{P P^{\prime}}^{(2)}=\sum_{Q} \frac{1}{2}\left\{\frac{v_{P Q} V_{Q P^{\prime}}}{\left(E_{P}^{0}-E_{Q}^{0}\right)}+\frac{v_{P Q^{\prime}} V_{Q P^{\prime}}}{\left(E_{P^{\prime}}^{0}-E_{Q}^{0}\right)}\right\}
$$

Higher order terms are obtained in a similar manner.

Coupled Cluster Theory

For the complete active space decomposition

$$
\begin{equation*}
V_{P}:\left\{\left|\geqslant, F_{P} \dagger\right|>\right\}, E_{P} \dagger \equiv E_{m h} E_{w^{\prime}} h^{\prime \cdots} \tag{4,18}
\end{equation*}
$$

where $h, h^{\prime \prime}$.. are active orbitals which are occupied in |>, the highest wright (single reference) state and

$$
\begin{equation*}
V_{Q}:\left\{F_{Q} \dagger \mid>\right\}, E_{Q^{\prime}} \equiv E_{e c} \ldots E_{\text {me }} \cdots E_{h c} \cdot E_{e m} \cdot E_{\text {eh }} \tag{4.19}
\end{equation*}
$$

and where care is taken to generate a set of linearly independent states. The effective Hamiltonian is defiued

$$
\begin{equation*}
y|K\rangle=E_{K}|K\rangle \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
|K\rangle-\sum_{P} K_{P} F_{P}^{+} \mid>E V_{P} \tag{4,21}
\end{equation*}
$$

Is a multiconfigurational reference state. Then

$$
\begin{equation*}
\left.-P H\left|K>=E_{K}\right| K\right\rangle \text { and } Q-H|K\rangle=0 \tag{4.22}
\end{equation*}
$$

In (4.1) we take

$$
\begin{equation*}
G=\sum_{Q} G_{Q} F_{Q}^{+} \tag{4.23}
\end{equation*}
$$

where G includes one-, two-,...particle clusters. Then by (4.2) and (4.23)

$$
\begin{equation*}
\langle | F_{Q}(H+[G, G]+\ldots) \sum K_{P} F_{P}^{\dagger}| \rangle=0 \tag{4.24}
\end{equation*}
$$

which is solved iteratively with $\psi^{(0)}=\mathrm{H} \rightarrow \mathrm{K}_{\mathrm{P}}^{(c)} \Rightarrow \mathrm{G}^{(1)}$ $\Rightarrow W^{(2)} \Rightarrow K_{p}^{(1)} \Rightarrow G^{(2)}$ etc. The matrix elements of the resulting products of eenerators over the highest weight state are evaluated algebraically ${ }^{2}$.

v. MCSCF-EH THEORY

We propose to combine the MCSCF and effective Hamilconian approaches. In principle this procedure uill provide the best definition of the primary space, thereby reducing the size of the $H_{P Q}$ teras and reducing the number to be included in the effective Hatailitonian.

He take the same varlational state as before,

$$
\begin{equation*}
|\tilde{o}\rangle=e^{T} e^{s}|0\rangle \tag{5.1}
\end{equation*}
$$

where now we compute its energy using an effective Hamiltonian

$$
\begin{align*}
E(\tilde{0}) & =\langle 0| e^{-S} e^{-T} H e^{T} e^{S}|0\rangle \tag{5.2}\\
& =\langle 0| e^{-S} e^{-T} e^{-G} H e^{G} e^{T} e^{S}|0\rangle \tag{5.3}\\
& =\langle 0| H|0\rangle+\langle 0|[H, G]|0\rangle+\langle 0|[H, S]|0\rangle \\
& +\langle 0|[H, T]|0\rangle+\frac{1}{2}\langle 0|[[H, G], G]|0\rangle \\
& +\frac{1}{2}\langle 0|[[H, S], S]|0\rangle+\frac{1}{2}\langle 0|[\mid[H, T], T]|0\rangle \\
& +\langle 0|[[H, G], S]|0\rangle+\langle 0|[(H, G], T]|0\rangle \\
& +\langle 0|[[H, T], S]|0\rangle \tag{5.4}
\end{align*}
$$

The most general treatment would be to solve for G as a third variatlonal parameter (along with T and S). This would Increase the size and complexity of equation (3.17). Although this completely variational procedure would be bounded, it appears to be too cumbersome, and so we choose to use a predetermined G (from elther perturbation or coupled cluster theory). An extret.um of the energy then occurs when

$$
\begin{align*}
\delta E(\tilde{0}) & =0=\langle 0| \mid(H+[H, G]), \delta S]|0\rangle \\
& +\langle 0| \mid(H+[H, G]), \delta T]|0\rangle-\langle 0|[\delta S, H, S| | 0\rangle \\
& -\langle 0|[\delta T, H, T| | 0\rangle+\langle 0|[|H, T|, \delta S]|0\rangle \\
& +\langle 0|[\{H, S T \mid S]|0\rangle \tag{5.5}
\end{align*}
$$

or, in matrix form,

$$
-\left\{\begin{array}{c}
w+W^{\prime} \tag{5.6}\\
v+v^{\prime}
\end{array}\right\}=\{c\}\left\{\begin{array}{l}
T \\
s
\end{array}\right\}
$$

where C, W, and v are deflned by (3.21)-(3.25) and the new terms are

$$
\begin{align*}
& \mathbf{W}^{\prime}=\langle 0]\left[\mathrm{E}_{\mathbf{S r}},[\mathrm{H}, \mathrm{G}]\right]|0\rangle \tag{5.7}\\
& \mathrm{v}^{\prime}=\langle 0|[|0\rangle\langle K|,[\mathrm{H}, \mathrm{G}]\}|0\rangle \tag{5,8}
\end{align*}
$$

We nuw reach convergence when

$$
\begin{equation*}
\langle 0|\left[E_{s r},(H \div[H, G])\right]|0\rangle \rightarrow 0 \tag{5.9}
\end{equation*}
$$

and

$$
\begin{align*}
\langle 0|[|0\rangle\langle K|,(H & +[H, G])]|0\rangle=<K \mid(H \\
& +[H, G])|0\rangle=0 \tag{5.10}
\end{align*}
$$

Equation (5.9) is simply a BLB condition for our truncated effective Hamiltonian (i.e., If = $=H+[H, G]$), and (5.10) insures that the states determined dagonalize the effective Hamiltonian. This process is to be carried out self-consistenty Since the procedure yields a new set of MCSCF orbicals and primary space basis vectors, we must conpute an updated effective Haniltonian (i,e., update the $\mathrm{G}^{\dagger} \mathrm{s}$) each iteration. As with conventional MCSCF there are both "one" step (5.6) and "two" step forms. Within the two-step procedures there are two classes:
a. Uncoupled. Ne (1) perform a conventional HCSCF calculation to obtain orbitale (section 3) and then with those orbitals (2) calculate an effective Hatilitonian (section 4) to obtain configuration coefficienta. We repeat steps (1) and (2) until we reach self-consistency.
b. Goupled. He now set $V+V^{\prime}=0$; then equation (5.6) becones

$$
\begin{gather*}
\left\{T_{\mathrm{rs}}\right]=-\left(\left(\mathrm{C}_{\mathrm{rs}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right)+\left(\mathrm{C}_{\mathrm{rs}, \mathrm{R}^{\prime}}\right\}\left\{\mathrm{C}_{\mathrm{KR}^{\prime}}\right\}^{-1}\right. \\
\left.\left(\mathrm{C}_{\mathrm{K}, \mathrm{r}^{\prime} \mathrm{s}^{\prime}}\right)\right)^{-1}\left[\left(\mathrm{H}+\mathrm{H}^{\prime}\right)_{\mathrm{rg}}\right\} \tag{5.11}
\end{gather*}
$$

Then we (1) obtain orbital coefficiente from (5.11) and (2) obtain configuration coefficients from an effective Hamilconian calculation, We repeat steps (1) and (2) until we reach self-consistency.

A self-consistent mCSCF effective Hamiltonian is a unique object and provides the optimum condensation of the quantum mechanical information content of the system which tan be encapsulated within a given primary space and should provide a valid basis for chenical interpretation.
appendix A $-\mathrm{H}_{2} \mathrm{O}$
He propose to test our procedures on $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{2 \mathrm{v}}\right.$ symuetry) using a double zeta basis and a 361 dimensional V_{F} composed of ell single and double excitations (of $1_{A_{1}}$ symuetry) from the closed shell singlet ground state. We propose to partition the orbitals on the basis of their SCF energies and obtain an 11 dimensional V_{P} :

Basis: double zeta $0(9 s 5 p / 4 s 2 p) H(4 s / 2 s)$ SCF Ground State: $\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}$ $\left(1 b_{i}\right)^{2}$; symuetry-singlet A_{l}.

Full Space: All singie and double excications. Dimension $=361$ configurations. Symetry $=$ singlet A_{1}.

SCF Orbital Energies:

$1=1 a_{1}$	-20.559	$3=1 b_{2}$	-0.717	$8=2 h_{1}$	0.966
$2=2 a_{1}-1.361$	$4=3 a_{1}$	-0.567	$9=6 a_{1}$	0.891	
	$5=1 b_{1}$	-0.506	$10=2 b_{2}$	0.915	
		$6=8 a_{1}$	0.218	$11=7 a_{1}$	1.223
	$7=4 b_{2}$	0.310	$12=3 b_{2}$	1.233	
			$13=5 a_{1}$	1.675	
				$4 a_{1}$	43.335

Orbital Partitions:

$v_{\text {core }}:\{|1\rangle, \mid 2>\}$
$V_{\text {mixed }}:\{|3\rangle,|4\rangle,|5\rangle,|6\rangle,|7\rangle\}$
$\left.v_{\text {empty }}:\{|83| 9\rangle,,|10\rangle,|11\rangle,|12\rangle,|13\rangle, \mid 14>\right\}$
Configuration Space Parcition:
V_{p} ditmension $=11 \quad V_{0}$ dimension $=350$
(Primary Space) (Secondary Space)

SHAVITT GMAPM

APPENDIX B - THE PALR-PRIMARY SPACE

The pair-primary space extends the number of active orbitals hut is of smaller dimension than the corresponding complete active primary space, This space is based on the concept of gominals (sece for example Linderberg or Coscinski ${ }^{13}$), and it mizy sovide a better surface for a dissociating molecule or a transition state. The difference betwen the tuo formulations can be illustrated by a fourelectron, four-orbital nonsymetric space;

Orbital Partition
$V_{\text {mixed }}:\{|1\rangle,|2\rangle,|3\rangle\}$
$V_{\text {emply: }}\{|4\rangle$]

Configuration Space Partition

Complete Active Space (CAS) - V_{P} dimension $=6$

Pair Space (PS) - V_{P} dimenston $=3$

The form of the PS-MCSCF equations is gimpler than those for CAS-MCSCF. For PS calculations CUCA is no longer necessary, as the resulting MCSCF equations depend only on the welghts (occupation numbers) of the Gel'fand states. (For detalis see Hatsen and Nelin. ${ }^{14}$)

The use of the pair-primaty space Is applicable to certain (symmetrical) symmetry states. The extension to non-singlet states is under consideration.

REFERENCES

1. See for example F.A. Matsen: Int. J. Quantum Chem. 58, 379 (1974), and 10, 525 (1976); Adv. Quantum Chem. 2, 223 (1978).
2. F.A. Matsen, Proceedlngs of 1979 ConEerence on the Unitary Group and Applications to Ab Initio quantum Mechanies (in press).
3. See for example M. Moshinsky, J. Math. Phys. 4, 436 (1963); J. Paldus, J. Chem. Phys. 61, 5321 (1974) ; L.C. Biedenharn, J. Math. Phys. $\underset{4}{4}$, 436 (1963).
4. See for example J. Paldus, in "Theoretical Chemistry: Advances and Perspectives," vol. 2 , ed. H. Eyring and D.J. Henderson (Academic Press, New York, 1976), Pp. 131-290; I. Shavitt Int. J. Quantum Chem. S11, 131 (1977) and S12, 5 (1978); B.R. Brooks and H.F. Schaefer, J, Chem. Phys. 70, 5092 (1979): B.O. Roos and P.F.M, Siegbahn, Int. J. Quantum Chem. 17, 485 (1980).
5. F.A. Matsen and C.J. Nelin, Int. J. Quantum Chem. 15. 751 (1979).
6. F.A. Matsen and C.J. Nelin, Int. J. Quantum Chem. (submited for publication).
7. F.A. Matsen, Int. J. Quantum Chem. S13, 305 (1980) .
8. B.O. Roos, P.R. Taylor, and P.E.M. Siegbahn, Cbem. Phys. 48, 157 (1980); B.0. Roos, Int. J. ?uantum Chem. (In press).
9. See for example E. Dalgaard and P. Jórgensen, J. Chem. Phys. 69, 3833 (1978); D.L. Yeager and P. Jdrgensen, Mol. Phys. (submitted for publica-
tion); C.C.J. Roothaan, J. Detrich, and t.C. Hopper, Int. J. Quantum Chem. S73, 93 (1979); K. Ruedenberg, L.M. Cheung, and S.T. Fibart, lnt. J. Quantum Chem. 16, 1069 (1979); R. Shopard and 3. Simons (submitted for publlcation); D. L. Yeager and P. Jprgensen, J. Chem. Phvs. 71, 755 (1979).
10. B. Levy and C . Berthier, Int. 1. Quantum Chem. 2, 307 (1968), and 3, 247 (1969).
11. See for example P. Jórgensen, f. Albertson, and D.L. Yaager, J. Chem. Phys. (submitted for publication); R, Shepard and J. Simons (submitted for publication).
12. See for example M. Karplus and P. Rossky, J. Chem. Phys. (submited for publication): J. Clzek, J. Chem. Phys. 45, 4256 (1966); K.R. Roby, Int. J. Quantum Chem. 6, 101 (1972) F, Harris, Int. J. Quantum Chem. S11, 403 (1977); H. Morkhutst, Int. J. Quantum Chem. S11, 421 (1977): J. Paldus and J. Cizek, Adv. Quantum Chem: 9, 105 (1975); I. Lindgren, Inc. J. Quantum Chem. S12, 33 (1978): B.H. Brandow, Adv. Quantum Chem. 10. 187 (1977); B.H. Brandow, Int. J. Quantum Chem. 15, 207 (1979); R.J. Bartlett and D.M. Silver, Int. J. Quantum Chem. S9, 183 (2975); R.J. Bartlett and G.D. Purvis, Int. J. Quantum Chen. 14, 561 (1978); M.G. Sheppard, K. F. Freed, M. Herman, and D.L. Yeager, Chem. Phys. Letters, 61, 577 (1979).
13. J. Linderberg, IsraeliJ. of Chem. (in press); O. Goscinski, "Horizons of Quantum Chemistry," ed. K. Fukui and B. Pullman (D. Reide1, Molland, 1980), Pp.
14. F.A. Matsen and C.J. Nelin (to be submited).

Stability condition of the mche energy and choice of the starting vectors B. LEVY

Laboratoire de chimie, ENSJF, 1 , rue Maurice Arnoux ,
92120 Montrouge, Francs.

An approximate stability condition of the MCHF energy is durived, It leads to a criterium for the choice of the starting vectors.

1. Second derivatives
if the matrix of the 40 components in a fixed
basis is written in an exponencial form

$$
c=\exp (x),
$$

then the useful second derivatives of the qotal energy with respect to the $X_{i j}$'s matrix elementr are ${ }^{4-4}$

$$
\begin{aligned}
& E^{\prime \prime(d i r)_{\alpha \beta, \gamma \delta}=\leqslant \psi_{0}\left|\left(\beta^{\prime} \alpha-\alpha \beta\right) H\left(\gamma^{\prime} \delta-\delta^{\prime} \gamma\right)\right| \psi_{0}>}
\end{aligned}
$$

Where $\alpha^{*}, \beta^{\prime \prime}, \gamma^{\prime}, \delta^{n}$ are creation operators, α, B, Y, δ are annihilation operators, []. means the anti-commutation, ψ_{0} is the eigenfunction of the $C L$ corresponding to the state under consideration and the $\Psi_{K} ' s(K \neq 0)$ are the remaining eigenfunctions.
The first term, $E^{\prime \prime}$ (dir) as, Y^{\prime}, is obtained by differentiating the MO's alone and the second one comes from the Cl cocfficients.

2. Stability condition

to is seen on chese expressions that for a diagonal second derivative ($\alpha=\gamma, \delta=\delta$) the second term is alvays negative. Therefore, a necessary condition for the stability of the energy is

$$
E^{\prime(d i r)}{ }_{a B, a B^{\prime} \mid E^{\prime(\text { ind })}}^{a B, a \beta^{\prime}}
$$

We incroduce now the following hypotheses
i) t, has a teading component ${ }_{j}$. This allows one to intruduce the following notation

- i,j,k ... are the indices used for the core orbitals (never substicuted)
-t.u,... for the active orbitals occupied in ${ }_{0}$
- $t_{1} u^{*} v^{*}$... for the active orbitals not occupied ill
- a,b, e ... for vircual arbicals
ii) The most important components of ψ_{0} are
obtained by closed shell double substitutions of type $\mathrm{E} \mathbf{\mathrm { t }} \rightarrow \mathrm{t}^{\mathbf{E}}$. Thus

$$
\begin{gather*}
\psi_{0} \| a_{0} \phi_{0}+\sum_{t} a_{t t} * \phi_{t t^{*}} \tag{2}\\
\left|a_{0}\right| \gg\left|a_{t t^{*}}\right|
\end{gather*}
$$

iii) All the waveiuncrions tide a leading component like Ψ_{0} (no near " degeneracy).

It appears from these hypotheses that the contributions of the diagonal matrix elements of H to second derivatives of type ($\mathrm{t}^{*} \mathrm{~A}$. ta) are smallet than the the contributions of the off diagonal matrix elements of H that have a cofactor of type $a_{0}{ }^{\text {a }} t^{* *}$.

Thus
where K is an exchange integral and K_{t} is the exchange operator for the orbital f_{t}.
Then, using

$$
\begin{aligned}
& a_{t t} \neq K_{t t} / E_{0}-E_{t t} . \\
& a_{0}+1
\end{aligned}
$$

we find for che stability condition

$$
\begin{equation*}
k_{t t^{\prime}}\left(k_{t t^{-n}} k_{a t}\right)=2\left|\left(k_{t}\right)_{t a}\right|^{2} \tag{3}
\end{equation*}
$$

3. Discussion

The last above condition, Eq.(3) is satisfied if the orbital φ_{a} is sufficiently different from $\varphi_{t^{*}}$ Indecd, if φ_{a} looks like $\varphi_{t^{*}}{ }^{\text {one }}$

$$
k_{t t^{*}}=k_{a t}=\left|\left(K_{t}\right){ }_{t a}\right|
$$

and the condition is not satisfied.
Starting vectors satisfying Eq. (3) can be easily constructed : $\varphi_{r^{*}}$ is obtained by using the same combinations of basis ao's as in φ_{c}, vith appropriate changes of sign) and then project:-: in the space complementary to $\mathcal{F}_{\mathbf{t}}$. Then φ_{a} is obtained by Schmidt orthogonalization with respect to φ_{t} and $\varphi_{t}{ }^{\ddagger}$ in example of such a procedure is given in Table I for an MC HF calculation of CH_{4} in a double ζ basis vere $\Psi_{0} \quad$ is exactly given by Eq. (2). The first two lines give the SCF vectors of F_{2} symmetry Hhich were leading to a near unstability ($E^{\prime \prime} \sim 10^{-2}$) due to the contribution of $E^{\prime \prime}(i n d)$. The last two lines give the statting vectors of F_{2} symmetry obtained by projection as described just above : these vectors lead to convergence in 5 iterations with a single calculation of $E^{\prime \prime}$ (at the first iteration) and the final vectors are differing from these starting vectors in decimal places that arebelow the ones given in the Table.

Table I. SCF and MCHF mo's on CH_{4} in a double $;$ basis.

It is concluded that
i) it is easy to obtain starting vectors satisfying Eq. (3) for which neglecting E"(ind) will result in no hidden unstability and consequently will alluw quadratic convergence ;
ii) The Eq.(3) also provides a cheoretical expl nation of the character of the M's that are generally out coming from MC HF calculations.

Refererices

I. B. L.ēvy, tnt. J. Quant.Chem. . 4 , 297 (1970)
2. B. Lēvy, Chem. Phys. Lett., 18 , 59 (1973)
3. D.L. Yeager and P. Jörgensen, to be published
4. E. Dalgard and P. Jörgensen, J. Chem. Phys., 69,3833 (1978)

RESPONSE FUNCTIONS ASSOCIATED WITH MUITICOMFIGURATIONAL REFERENCE StatES

Esper Dalgaard
Department of Chemistry
Aachus University
DK-8000 harhus C, Denmark

sumpary

The linear and quadratic response of an atomic or molecular system to an external perturbation is studrod within the framework of time dependent multiconfigurational Hartree-Fock theory. A cime dependent reference state is set up as $|\psi\rangle=\exp (i \Lambda) \exp (i \kappa) \mid 0>\exp (-i \varepsilon t)$, where A and κ are Hermitian operators, which generate unitary transformations of orbitals and expansion coefficients, respectively, in the MCHF ground state, $|0\rangle=$ $\Sigma \mid \phi_{\mathrm{g}}>\mathrm{C} \mathrm{go}^{\text {. When the variation in time of } \Lambda \text { and } k}$ is derived from Frenkel's variation principle, the response functions are consistent with Ehrenfest's theorem $\frac{d}{d t}\langle\psi| O$! $\left.\psi\right\rangle=\langle\psi| \partial O / \partial t|\psi\rangle-\langle\psi|[O, H]|\psi\rangle$ for arbitrary one electron operators. whe to this feature the dipnle length and velocity expressions for the oscillator strengths of electronic transitions till give the same result apart from basis set cruncation errors. The emphasis is on linear response, buc quadratic response functions are defined and a method for their calculation within uchf theary is described.

t. IStroduction

Descriptions of the dynamic response properties of many electron sustems in terms of the ine dependent Hartree- and h. rtree-Fock theories occurced in the literature almost as early in the history of quantum mechanics, as the corresponding ground state approximations. Over the years, the random phase approxination, which is equivalent to the time dependent Hartree-Fock approact, has remained a popular tool for estimatyes of the frequency dependent pnlatizabilities. Formally, this method has the atractive features of gauge invariance ${ }^{3}$ and variacional derivation ${ }^{4}$ from a bounded functional, and for closed shell syscems for which the Hartree-firk state is stable, the results are generally quite satisfactory for the lowest lying transitions and the corresponding oscillator strengths.

Deficiencies in the time dependent HartreeFock approximacion are nimerous, however, particularly vith regard to the continuous part of photoabsotption spectra ${ }^{5}$ and to the lacking selfconsistency of the polarization propagator. ${ }^{6,7}$ The method fails completely if the Hartree-fock state is unstable ${ }^{B}$, and this is probably the most serious problem in the moleculax applications. Naturally, many improvements have been developed to include carcelation effects. Most of these treat the electron interaction in a perturbative wanner. ${ }^{9}$

The purpose of this contribution is to re-
port on a recently formulated generalization of the time dependent Hartree-Fock approximation, which is based on a multíconfigurational representation of ground state 10,11 ;
$|0\rangle=\sum_{g=1}^{N} \mid \phi_{g}>g_{g o}$
where $\left|\phi_{\mathbf{g}}\right\rangle$ denotes a single decerminant or a symmetry projected single deierminant. Improved optimization procedures 12,13 as wnll as encouraging numerical results from relatively large scale MCHF calculations ${ }^{14}$ of static molecular properties indicate that dynamic response functions might be calculated effectively in terms of tís variables of MCHF theory. Initial numerical results seem to justify such expectations. ${ }^{10}$

Our aim is to analyze the response of the system to an adiabati-ally switched on perturbation of the form ($1>0$):
$W(t)=V \exp (-i[\omega+i n] t)+V^{+} \exp (-i[-\omega+i n] t)$
As on ansatz for a cime dependent reference state we incroduce the expression
$|\psi\rangle=u \mid 0>\exp (-i \varepsilon t)$
The state vector $|\psi\rangle$ till also be of the multiconfigurational form if the unitary operator U is constructed as
$U=\exp (i \Lambda) \exp (i \kappa)$
where Λ an ${ }^{3} K$ are Hernician operators, which generate transfimations of orbitals and expansion coefficients C_{go} respectively:
$\exp (i \kappa)|0\rangle=\left\{\left|\Phi_{g} \times<\phi_{g}\right| \exp (i k)|0\rangle\right.$
$\exp (i \Lambda)\left|\phi_{g}\right\rangle=\left|\tilde{\Phi}_{g}(t)\right\rangle$
Explicit expressions for Λ and k will be given later. Presently, we take $\Lambda=\Lambda(t), k=\alpha(t)$, and $\varepsilon=E(t)$ to be the basic variables of the theory, Frenkel's variation principle as modified by langhoff, Epstein, and Karplus, ${ }^{15}$
$\operatorname{Re}\langle\delta \psi| \mathrm{i} \frac{\mathrm{d}}{\mathrm{dt}}-\mathrm{H}-\mathrm{H}|\dot{\psi}\rangle=0$
yields the following requirement on the operator U,
$\left.2 I \pi<\delta U^{+} \dot{U}\right\rangle+\delta\left\langle U^{+}(H+W) U\right\rangle=0$
The phase function $\mathrm{E}(\mathrm{t})$ shall not concern us here since it does not enter the calculation of response functions. Equation (8) does nut in gen, al corre-
spond to a minimization of a positive seni-definite measure of the error introduced by the ansatz for $|\psi\rangle,{ }^{4}$ but this variasion methad is convenient to employ in practice. It reduces to the ordinary Rayleigh-Ritz val iation principle in the static limic, an aspece thich ensures that the dynamic polarizabilities wil' equal the static polarizabilities at zero-frequency as obtained from coupled mCHF calculations. ${ }^{13,16}$

In the next section we discuss the formal spectral representations of linear and quadratic response functions, while the remining parts of the paper is devored to their calculations in the MCHF framework.

II. ELEments of response theory

Response theory is a standard topic in quantum mechanics and statistical mechanics. An account on the subject, which is particularly useful for our purpose, has reen uritten by
Zubarey. ${ }^{17}$ Assume for the moment that $\mid 0>$ is the exact unperturbed reference state and $|\psi\rangle$ the corresponding solution to the time dependent Schrödinger equation in the presence of the perturbacion given by equation (2). The result, which we shall need is then that the expectation value ar time t of an arbitrary Hermitian operator R takes the form
$\langle\psi| R|\psi\rangle-\langle 0| R|0\rangle=$
$2 \operatorname{Re} \int \mathrm{~d} s \ll \mathrm{R}(\mathrm{t}) ; \mathrm{V}(\mathrm{s}) \geqslant>\exp (-\mathrm{iEs})$
$+2 \operatorname{Re} \iint d_{s d}{ }^{\prime} \ll R(c) ; V(s) ; V\left(s^{\prime}\right) \gg \exp \left(-i E\left(s+s^{\prime}\right)\right)$
$+2 \operatorname{Re} \iint d s d s^{\prime} \ll R(t) ; V(s) ; V^{+}\left(s^{\prime}\right) \gg \exp \left(-i E s-i E \cdot s^{\prime}\right)$
+...
where the integrations over the time variables $s, 5^{\prime}$ are from $-\infty$ to $+\infty$. Several definitions have been introduced here. First, $R(t)$ and $V(s)$ are operators in the interaction representation, i.e. $R(t)=\exp (i H t) \operatorname{Rexp}(-i H t)$, and $E=\omega+i \eta$ while $E^{\prime}=-\omega+i \eta$. The quantities in the double brackets are the linear and quadratic response functions or propagators in terms of cime variables. ${ }^{17,18}$ zubarev defines the retarded two-cime propagators or Green's functions as
$\ll R(t) ; V(s) \gg=-i<0|[R(t), V(s)]| 0>0(t-s)$
and it seems natural to extend this soncept to include quadratic response functions. Thus, we define the three cime propagators as
$\ll \mathrm{R}(\mathrm{c}) ; \mathrm{V}(\mathrm{s}) ; \mathrm{V}^{+}\left(\mathrm{s}^{\prime}\right) \gg=$
$-<0\left|\left[[R(t), V(s)], V^{+}\left(s^{\prime}\right)\right]\right| 0>0(t-s) 0\left(s-s^{\prime}\right)$
In equations (10) and (11), 0 denotes the Heaviside step function, $\varphi(\tau)=1$ for $\tau>0$ and zero for $\tau<0$. It is generally most convenient tipemploy the Fourier transforms of the propagators ${ }^{18}$, and since these are functions of time differences only, the transforms are obtained as
$\langle<R ; V\rangle\rangle_{E}=$
(12)
$\int d \tau \exp (i E \tau) \ll R(0) ; N(-T) \gg$
and
$\left.\left\langle<\mathrm{R} ; \mathrm{V}_{\mathrm{i}} \mathrm{V}^{+}\right\rangle\right\rangle_{\mathrm{EE},}=$
$\iint d T d \tau^{\prime} \exp \left(i E T+i E^{\prime} \tau^{\prime}\right) \ll R(0) ; V(-\tau) ; V^{+}\left(-\tau^{\prime}\right) \gg$
The functions <<; >>, and <<; ;>> ${ }^{\text {p }}$, are analytic in the upper half of the complex platie. Introducing formally a conplete set of states $\{|m\rangle$, which are eigenstates of H , we find that the spectral representations may be written

$$
\begin{equation*}
\langle\langle R ; V\rangle\rangle_{E}= \tag{14}
\end{equation*}
$$

$\sum\left\{\frac{\langle 0| R|m><m| V|O\rangle}{E-E_{m}+E_{0}}-\frac{<0|V|_{m><m}|R| O>}{E+E_{m}-E_{0}}\right\}$
and
$\left\langle\left\langle R ; v ; V^{+}\right\rangle\right\rangle_{E E}=$
$\sum \frac{\langle 0| R|m\rangle\langle m| V\left|m^{\prime}\right\rangle\left\langle m^{\prime}\right| v^{+}|0\rangle}{\left(E+E-E_{m}+E_{0}\right)\left(E^{\prime}-E_{m^{\prime}}+E_{0}\right)}$
$+\left[\frac{\langle 0| V^{+}|m><m| V\left|m^{\prime}><m^{1}\right| R|O\rangle}{\left(E+E^{\prime}+E_{\omega},-E_{0}\right)\left(E^{+}+E_{m}-E_{0}\right)}\right.$
$-\left[\frac{\left.\left.\langle 0| V\right|_{m><m}|R| m^{\prime}><m^{\prime}\left|v^{+}\right| 0\right\rangle}{\left(E+E+E_{m} E_{m^{\prime}}\right)\left(E^{\prime}-E_{m^{\prime}} \prime^{+E_{0}}\right)}\right.$
$-\sum \frac{\left.<0\left|v^{+}\right| m><m|R| m^{\prime}>c^{\prime}|V| 0\right\rangle}{\left(E+E^{\prime}+E_{m}-E_{m}\right)\left(E^{+}+E_{m}-E_{0}\right)}$
Somewhat simpler expressions can be established for the special cases $\langle\langle R, V, V\rangle\rangle$ and $\langle\langle V, V, V\rangle\rangle$; these will not be delt with here.

It is apporent that the poles and residues of the linear response functions provide transition energies and transition monents Eor rransitiuns involving the ground state directly. In addition, the quadratic response functions furnish us with cransition amplitudes between two excited states. Such amplitudes are pgeded for the description of two-photon processes , which are of mach interest within the field of laser spectroscopy, and also for calculations of radigtive lifetimes, except far the lowest excited state ${ }^{20}$. There is therefore ample motivation for extending current efforts in the theory of propagators co include che quadratic ones.

Most approximate calculations of propagdtors have been based on the equation of motion
$E \ll R ; V>{ }_{E}=$
$\langle O|[R, V]|0\rangle+\langle\langle[R, H] ; V\rangle\rangle_{E}$
A similar equation connects the linear and quadratic response functions
$\left.\left(E+E^{\prime}\right) \ll R_{i} V_{i} V^{+}>\right\rangle_{E E^{\prime}}=$
$\left\langle\left\langle[R, V] ; V^{+}\right\rangle\right\rangle_{E^{\prime}}+\left\langle\left\langle[R, H] ; V_{;} V^{+}\right\rangle\right\rangle_{E E^{\prime}}$
Formally, we may express the connection between the two types of propagators as a moment expansion
$\left\langle\left\langle R ; V ; V^{+}\right\rangle\right\rangle E E^{\prime}=\sum_{n=0}^{\infty} \frac{\left.\left\langle\sim \lambda_{n} ; V^{+}\right\rangle\right\rangle E}{\left(E+E^{\prime}\right)^{n+1}}$
where $A_{n}=(-)^{n}\left[\hat{(H)}{ }^{n} n_{1} V\right]$. Here \hat{H} denotes che guperoperator which on an arbitrary operator has the effect $\hat{H} X=[H, X]$. Equation (18) suggests approximation schemes for the quadrafjc response functions in cerras of Pade approximants ${ }^{21}$, but thia aspect will not be pursued here.

Introducing the Fourier transforms of the propagacors into equation (9), we find chat
$\langle\psi| \mathrm{R}|\psi\rangle=\langle 0| \mathrm{R}|0\rangle$
$+2 \operatorname{Rel}\left[\left\langle\left\langle\mathrm{R}_{\mathrm{i}} \mathrm{V}\right\rangle\right\rangle_{\mathrm{E}} \exp (-\mathrm{iEt})\right.$
$+\langle\langle R ; V ; V\rangle\rangle_{E E} \exp (-i 2 E E)$
$+\left\langle\left\langle R ; V ; V^{+}>\right\rangle_{E E} \exp (2 n t)\right] * \ldots$
where $E m \omega+i n$ and E^{\prime} w $-\omega+i n$.
In the time dependent multiconfigurational Hartree-Fock formalism, the response functions vill be expressed in cerns of the operztors A and k in equation (4) as calculated from equation (8). As shown previously ${ }^{11}$, a perturbation expansion of the type
$A=A(1)+\Lambda(2)+\ldots$
$K=\kappa(1)+K(2)+\ldots$
derives from equation (8) only if the unperturbed reference atate $|0\rangle$ is fully optimized so that the generalized Brillouin theores
$\langle 0|[\delta A+C K, H]|0\rangle=0$
is valid. Then we Eind Erom équations (3) and (4) that
$\langle\psi| R|\psi\rangle=\langle 0| R|0\rangle$
$+i<0 \mid[R, \Lambda(2)+K(1 ;]|0\rangle$
$+i<0|[R, A(2)+K(2)]| 0\rangle$
$-<0 \mid[[R, A(1)], k(:!]|0\rangle$
$-1<0 \mid f[R, A(1)], A(1)]\} O$
$-1<0|[[R, k(1)], k(2)]| 0\rangle$

+ . . .

The next section is devoted to the equations from which A and k are calculated. The resulting MCHF propagators are in subsequent sections identified by a comparison of equations (19) and (22).*

III, TIME DEPENDENT MCHF EQUATIONS
Consider now again equations (3), (i), and (8). The objective of this section is to deduce the perturbation expansion indicated by equation (20) From equation (8). We assume that our unperturbed reference state has been fully optimized as discussed by professor Yeager at this symposium.

Following a suggestion by Linderberg and

Ohrn ${ }^{7}$, ve first exprests the operators A and K as linear combinations of Hermitian operacors A_{j} and K',
$A=\sum a_{j} A_{j} ; \kappa=\sum b_{j} k_{j}$
with real coefficients a_{i} and b_{j}. For orbital transformations we need the set ${ }^{j}$
$\left\{A_{j}\right]=\left\{\left(a_{r}^{+} a_{s}+a_{s}^{+}{ }_{r}\right) i \quad i\left(a_{r}^{+} s^{-a_{s}^{+} z_{r}}\right)\right\}$
Where \mathbf{a}^{*} denote electron creation operators ceferring cor an orthonormal spin orbital beeis set ($\left.\phi_{r}(\xi) \mid r=1, \ldots, i, H\right\}$. Transformations of expansion coefficient. $\left\{C_{g o}\right.$ \} in equation (1) are geaerated by the elements of ${ }^{g o}$ the set

$$
\begin{equation*}
\left\{\kappa_{j}\right\}=\left\{\left|\phi_{g}><\phi_{g},\left|+\left|\phi_{g},>\phi_{g}\right| ; i\right| \phi_{g}><\phi_{g}\right|-i\left|\phi_{g},><\phi_{g}\right|\right\} \tag{25}
\end{equation*}
$$

Detailed deacriptions of how to carcy out these transformationt in practice have been provided previously.

A general infinitesimal change in the unitary operator U is given by ${ }^{7}$
$\delta U=i(X+\tilde{X}) U$
where X and \widetilde{K} are given by the equations
$x=\int_{0}^{L} d s \exp (i s A) d A \exp (-i s A)$
$K=\int_{0}^{1} \mathrm{ds} \exp (\mathrm{iak}) \delta k \operatorname{tap}(-\mathrm{isk})$
and
$\widetilde{K}=\exp (i A) K \exp (-i g \Lambda)$
The operator \widetilde{K} has the same form an K but is expressed in terms of the cransformed orbitals. It vill prove convenient shortly to employ variations δA auch that $x=A_{j}$. In order to find such variacions, we first de ine the superoperator $\hat{\Lambda} X=[\Lambda, X]$ so that equation (27) reads

$$
\begin{align*}
x & =\int_{0}^{1} d s \exp (i s \hat{A}) \delta A \tag{30}\\
& =\sum_{n^{m} 0}^{\infty} \frac{(i)^{n}}{(n+1)!}(\hat{A})^{n} \delta \Lambda
\end{align*}
$$

The numbers (i) ${ }^{n} /(n+1)$: are the coefficients for che Maclaurin expansion of the function $f(x)=$ (exp(ix)-i)/ix. Let $d_{\text {d }}$ denote the Maclaurin coefficients for the Feciprocal function $1 / f(x)$ and take δA to be
$\delta A=\sum_{n=0}^{\infty} d_{n}(\hat{A})^{n} A_{j}$
This sum is convergent if all, eigenvalues, θ_{j}, of A ie in the interval $0<\theta_{j}<2 \pi$, a requirement which can always be fulfilled since those eigenvalues in comection with orbital eransfomations always occur as exp $\left(i 0_{i}\right)$. Eor chis choice of 5 . we obtoin $x=A_{i}$ as detiged. Similarly, we may choose S_{k} such that $\widetilde{K}=\widetilde{k}_{j}=\exp (i A) \kappa_{j} \exp (-i A)$.

Employing equations (26), ... (31) in equation (8) we conclude that Frenkel's variation principle in the present context becones equivalent to the equations
$\langle\psi| \Lambda_{j}|\dot{\psi}\rangle+\langle\dot{\psi}| \Lambda_{j}|\psi\rangle=$
$-i\langle\psi|\left[\Lambda_{j}, H+W\right]|\psi\rangle$
(all j)
$\langle\psi| \tilde{k}_{j}|\psi\rangle+\langle\psi| \tilde{\kappa}_{j}|\psi\rangle=$
$-i\langle\psi|\left[\tilde{\kappa}_{j}, H+W\right]|\psi\rangle$
(all j)
An interesting observation can be made here, namely that when equations (32) and (33) have been solved for A agi κ then the generalized Ehrenfest's theorem ${ }^{2}$
$\frac{d}{d t}\langle\psi| 0|\psi\rangle=\langle\psi| \frac{\partial O}{\partial t}|\psi\rangle-i\langle\psi|(0, H+W)|\psi\rangle$
will hold for any operator, which is a linear combination of the generators $\hat{A}_{\text {j }}$ and $\widetilde{\widetilde{k}}_{\text {. }}$. This result will be used in the next sectiod to demonstrate the equivalence of the dipole length and velocicy expressions for oscillator strengths within time dependent MCHE theory.

So far, we haye assumed that the set $\left\{\begin{array}{c} \\ A\end{array}\right\}$ contains all the M^{2} generators, $a^{+} \mathrm{a}_{\mathrm{s}}$, of the $\mathrm{J}^{\text {d }}$ unitary group $\mathbf{U}(\mathbb{M})$ of all possible ${ }^{5}$ ditary transformations of the spin orbital basis set, but this set is often highly redundant. If there is a subsec of generators $\left\{\Lambda_{\}}^{\prime}\right\} C\left\{\Lambda_{j}\right\}$ which are generators of a subgroup of $U(M)$ and $\mathbf{j}_{\text {if }}$
$\Lambda_{j}^{\prime}\left|\phi_{g}\right\rangle=\sum_{\varepsilon^{\prime}=1}^{N}\left|\phi_{g},><\Phi_{g},\left|A_{j}\right| \phi_{B}\right\rangle$
then chis subset, $\{A \cdot\}$. may without loss of generalicy be onitted in the representation of A as given by equation (23). Such generators provide no additional flexibility in the ansatz for $|\psi\rangle$. The set $\left\{\kappa_{j}\right\}$ given by equation (25) is also redundant. A nonrddundant set of generators for unitary transformations of expansion coefficients, C_{go}, in equation (1) is conveniently expressed go' terms of a set of states $\{|n\rangle\}$ which spans the orthogonal complement of the reference state $|0\rangle$ within the subspace spanned by the manifold $\left\{\phi_{g}\right\rangle, g=1, \ldots$,
N]. This set may be chosen to be $\mathrm{N}]$. This ser may be chosen to be
$\left\{x_{j}\right\}=\{|n><0|+|0><n| ; i|n><0|-i|0><n|\}$
Elimination of redundant variables is essential for the following, sinct otherwise equations (32) and (33) would not provide a unique solution for the variables $\left\{\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}\right.$ \} which are included in our ansatz for $|\psi\rangle$. for ${ }^{2}$ a more detailed description of the identification of the redundant variables, 12 he 13 reader is referred to recent publicarions.

Finally, we are prepared to set up equation systems for the calculation of linear and quadratic response properties. Using equation (20) in (32) and (33), and collecting tems of the same order in the external perturbation, we obtain a set of first order equations as

$$
\begin{align*}
& \left.\left.i\left\langle\left[\Lambda_{j}, \dot{S}, 1\right)+\dot{i}(1)\right]\right\rangle-\left\langle\left[\Lambda_{j}, H\right], A(1)+k(1)\right]\right\rangle= \\
& -i\left\langle\left[\Lambda_{j}, W\right]\right\rangle \tag{37}
\end{align*}
$$

$\left.i<\left[\kappa_{j}, \mathcal{R}(1)+\dot{k}(1)\right]\right\rangle-\left\langle\left[\kappa_{j},\{H, N(1)+\kappa(1)]\right]\right\rangle$
$=-i\left\langle\left[\kappa_{j}, W\right]\right\rangle$
While the second order equations become
$i\left\langle\left[\Lambda_{j}, \dot{A}(2)+\dot{K}(2)\right]>-<\left[\left[\Lambda_{j}, H\right], A(2)+K(2)\right\}\right\rangle=$
$\left\langle\left[\left[\Lambda_{j}, W\right], \Lambda(1)+\kappa(1)\right]\right\rangle$
$\left.+\alpha\left(\Lambda_{j}, A(1), \dot{A}(1)\right)+\left(\Lambda_{j}, k(1), \dot{k}(1)\right)\right\rangle$
$+\left\langle\left[\left[\Lambda_{\mathrm{j}}, \dot{x}(1)\right], k(1)\right]+\left[\left[\Lambda_{\mathrm{j}}, \Lambda(1)\right], \dot{k}(1)\right]\right\rangle$
$+\frac{i}{2}\left\langle\left[\left[\left[\Lambda_{j}, H\right], \Lambda(1)\right], \Lambda(1)+2 \kappa(1)\right]\right\rangle$
$+\frac{i}{2}\left\langle\left[\left[\left[\Lambda_{j}, H\right], k(1)\right], k(1)\right]\right\rangle$
and
$i\left\langle\left[\kappa_{j}, \dot{\lambda}(2)+\dot{x}(2)\right]\right\rangle-\left\langle\left[\kappa_{j},[H, \Lambda(2)+\kappa(2)]\right]\right\rangle=$
$\left\langle\left[\kappa_{j},[w, \Lambda(1)+k(1)]\right]\right\rangle+\left\langle\left[\left[\kappa_{j}, \dot{A}(1)\right], k(1)\right]\right\rangle$
$+\mid\left\langle\left[\kappa_{j},[\dot{\Lambda}(1), \Lambda(1)]\right]\right\rangle$
$+\frac{i}{2}\left\langle\left[\kappa_{j},[[H, \Lambda(1)], \Lambda(1)+2 \alpha\langle 1\rangle]\right\rangle\right.$
In these equations a "." is used to designate the derivative u ith respect to time and we have introduced the abbreviacion
$\left(\Lambda_{j}, \Lambda, \dot{A}\right)=\backslash\left[\left[\Lambda_{j}, \Lambda\right], \dot{\Lambda}\right]+1\left[\left[\Lambda_{j}, \dot{\Lambda}\right], \Lambda\right]$
All expectation values are with respect to the unperturbed reference state $|0\rangle$.

The non-linear orbital relaxation effects which are included in the time dependent MCHF formalism appear explicicly in the equations for the quadratic or second order part of the operators Λ and k. These terms, i.e. the last four parts of equation (38) and the liast three parts of equations (39) are spurious in the sense that they would vanish identically, if A and k were linear combinations of true excitation operators. A detailed analysis of those terms vill be published elsewhere. Tvo special cases of equations (38) and (39) may be of incerest. If the operator A everywhere is replaced by the unit operator, the present method becomes equivalent to the configuration inceraction approach and the non-inear response tembs are obtained from
$\left.i\left\langle\left[\kappa_{j}, \dot{x}(2)\right]\right\rangle-\left\langle\kappa_{j},[H, k(2)]\right]\right\rangle=$
$\left\langle\left[\kappa_{j},\left[W_{*} k(1)\right]\right]\right\rangle$
On the other hand, if k is replaced by the unit operator and the reference state $\mid 0>$ is chosen to be the Hartree-Fock state chen the random ph se approximation is recovered. In this case equation (38) becones
$\left.i\left\langle\left[\Lambda_{\mathrm{j}}, \dot{\lambda}(2)\right]\right\rangle-\left\langle\left[\Lambda_{\mathrm{j}}, H\right], \Lambda(2)\right]\right\rangle=$
$<\left[\left[\Lambda_{\mathrm{j}}, W\right], \Lambda(1)\right]+\frac{i}{2}\left\langle\left[\left[\left(\Lambda_{\mathrm{j}}, \mathrm{H}\right], \Lambda(1)\right], \Lambda(1)\right]\right\rangle$
since the expectation value of the product of any three particle-hole excitations or deexcitacions will vanish. Equation (41) is equivalent to the
the non-linear time dependanc Hartree-Fock equations recently described by Tillieu and Groenendael ${ }^{23}$, using effective one particle operators and Lagrangian multipliers.

IV. HCHE RESPOHSE FUNCTIONS

Turning now to the problem of solving equacions (37), (38), and (39) for A and k ue first observe that a unique solution requires a boundary condition. Since the perturbation operator vanishea when t tends to minus infiaity the appropriate boundary candition is
$\lim _{x \rightarrow \infty}|\psi\rangle\langle\psi|=|0\rangle<0 \mid$
or equivalently
$\lim _{t \rightarrow \infty} \Lambda=\lim _{t \rightarrow-\infty} k=0$
The form of the perturbation operator $W(t)$ and the linear nature of equations (37) allou ua to conclude that the time dependence of the firct order operators $A(1)$ and c(1) will be
$A(1)=\alpha(1 ; E) \exp (-i E t)+\alpha^{+}(1 ; E) \exp \left(-i E^{\prime} c\right)$
$\kappa(1)=3(1 ; E) \exp (-i E t)+B^{+}(1 ; E) \exp \left(-i E^{\prime} t\right)$
where $E=w+i n$ and $E^{+}=-\omega+i n$. The following expansions apply for the frequency dependent operators a and B
$a(1 ; E)=\sum a_{j}{ }^{1}(E) M_{j}$
$B(1 ; E)=\sum b_{j}{ }^{1}(E) K_{j}$
We find then that equations (37) becone replaced by the requirement
$E<\left[\Lambda_{j} \cdot \alpha(1)+B(1)\right]>-\left\langle\left[\left\{\Lambda_{j}, H\right], \alpha(1)+\beta(1)\right]>=\right.$
$\left.-i<\left[\Lambda_{j}, V\right\rangle\right\rangle$
$E<\left[\kappa_{j}, \alpha(1)+B(1)\right]>-\alpha\left[\kappa_{j},[H, a(1)+B(1)]\right]>=$
$-i<\left[\kappa_{j}, v\right]>$
When the expanaions for $\alpha(1)$ and $B(1)$ in terns of the getterators Λ_{j} and $k{ }_{j}$ are introduced in (46) and (47), a linear dystem df equations is obtained for the variables $a_{j}(E)$ and $b_{j}{ }^{L}(E)$. Standard wethods may be enpldyed to invert the coefficient matrix for this systen for each energy value, but if the spectral representation of the response functions is desired, it is most convenient to enploy a set of macrix transformations sugsested by Lioderberg and Ohrn for a generalized candom phase approximation ${ }^{7}$.

We assume in the following that the operators $\alpha(1 ; E)$ and $B(L ; E)$ have been deternined. A compact formula for the HCHF linear response functions can then be inferred from equations (19) and (22):
$\left.\langle<R ; V>\rangle_{E}=i<[R, \alpha(1 ; E)+\beta(1 ; E)]\right\rangle$
Equation (46) may be viewed as a direct consequence of the generalized Ehrenfert's theorem, equation (34), which in the present scheme is vsiid for all
one-electron operators (even if soare of the generators a^{+}, are redundant and therefore omicted in the antale for $|\psi\rangle)$. Thus, it holds that ${ }^{11}$
$\left.\left.E \ll R ; V\rangle\rangle_{E}-\ll[R, H] ; V\right\rangle\right\rangle_{E}=\langle[R, V]\rangle$
if R is a one-alectron operator. Suppose nou that an operator P is related to R through the Heisenberg equation
ip = [R,H]
as, e.g., the dipole moment and lingar monentun operators, Since
$\left.\left\langle<[R, H]_{i} V\right\rangle\right\rangle_{E}=\langle\langle R ;[H, V]\rangle\rangle_{E}$
for the exact propagators, and also for che approximate ones obtained in the HCHF schene, we have a sequence of identities
$E^{2}\langle<R ; R>\rangle=i E \ll P_{E} ; R \gg$
$-\langle\langle P ; P\rangle\rangle+i\langle[P, R]\rangle$
According to equation (14) the linear reaponse hava poles of first order ac transition energies w_{1} E.E. The ogeillator strength for the transition $10 \rightarrow 95$ is in the dipole length formlation
$f(L \mid 0+S)=\frac{2}{3}\left(E_{J}-E_{0}\right)|<0| \underline{R}|j>|^{2}$
while the dipole velocity formalation reade
$f(V ; 0 \rightarrow J)=\frac{2}{3}\left(E_{j}-E_{0}\right)^{-1}|<0| \underline{P}|J>|^{2}$
Atomic unita are uned here, and R and \underline{P} denote the dipole monent and linear momentum yector operators, respectively. The residue at ω_{J} of the propagator

$\left\langle<R_{x} ; R_{x}>\right\rangle_{E}+\left\langle\left\langle R_{y} i R_{y}>\right\rangle_{E}+\left\langle<R_{x} ; R_{z}>\right\rangle_{E}\right.$
equals the square of the transition moment $\langle\alpha| \underline{R}|\mathrm{~J}\rangle$. Therefore we see that
$f(L ; 0-j)=\frac{2}{3}{ }^{\omega} J^{2} \operatorname{Res}[S p \ll \underline{R} ; \underline{R} \gg E]$
$=\frac{2}{3} \omega_{J}{ }^{-1} \operatorname{Res}\left[E^{2} S p<\left\langle R ; E_{E}\right\rangle{ }_{E}\right]$
$\left.=\frac{2}{3} \omega_{J}^{-1} \operatorname{Res}[S p \ll \underline{P} ; \underline{P}>\rangle_{E}\right] \equiv f(V ; 0 \rightarrow J)$
All residuen above are evaluated at che pole H_{J}. It follows that apart from a possible violation of equation (50) due to the finite orbital basis the two exprestions for the oscillator screngths are equivalent in MCHF theory. In fact, all the various formulations are equivalent in the present scheme ${ }^{24}$ and the Thomas-Reiche-Kuhn sum rule If $(0 \rightarrow j)=\left\langle N_{0}\right\rangle$ holds as wellill. These features of time dependent NCHF are actractive, but it should be pointed out that Kobe 25 recentiy has demonstrated, on the basis of gauge invariance, that it is the length form of the interaction between charged particles and radiation, which must be used, when the unperturbed Hamiltonian is chosen in the usual manner.

Changing now the topic to the quadratic response functions, we consider again equations (38) and (39). The right hand sides of these equations
contain che ancillatory factors exp(-i2Et), enp $\left(-i\left(E+E^{\top}\right) t\right)$, and $\exp (-i 2 E \cdot t)$, where as in equation (44) $E=\omega+i \eta$ and $E^{\prime}=-w+i n$. The operators $\Lambda(2)$ and $K(2)$ must therefore have the form
$\Lambda(2)=\alpha(2 ; E) \exp (-i 2 E t)+\alpha^{+}(2 ; E) \exp \left(-i 2 E^{\prime} c\right)$

- Y(E, $\left.E^{\prime}\right) \exp \left(-i\left(E+E^{\prime}\right) \varepsilon\right)$
and
$K(2)=E(2 ; E) \exp (-i 2 E t)+E^{+}(2 ; E) \exp (-i 2 E ' t)$
- $\mu\left(E, E^{\prime}\right) \exp \left(-i\left(E+E^{\prime}\right) t\right)$

The operators $a(2)$ and $B(2)$ should satisfy the equations

$2 E\left\langle\left[\kappa_{j}, \alpha(2)+B(2)\right]\right\rangle-\left\langle\left[\kappa_{j},(H, a(2)+B(2)]\right]\right\rangle=G_{j}(E)$ while ine operators y and u should be a solution to the system
$\left\langle E+E^{\prime}\right)\left\langle\left[\Lambda_{j}, \gamma+\mu\right\}\right\rangle-\left\langle\left[\left[{ }_{j}, H\right], \gamma+\mu\right]\right\rangle-F_{j}\left(E, E^{\prime}\right)$
$\left(E+E^{\prime}\right)\left\langle\left[\kappa_{j}, \gamma+\mu\right]\right\rangle-\left\langle\left[\kappa_{j},[H, Y+\mu]\right)\right\rangle=G_{j}\left(E, E^{\prime}\right)$
The faur functionals $F_{i}(E), G_{i}(E), F_{i}\left(E, E^{\prime}\right)$ and $G_{i}\left(E, E^{\prime}\right)$ are identified by introducing equations (2) and (44) in the right hand sides of (38) and (39). We shall not need the explicit expressions for these functionals in the presenc discussion but we note that they can relatively easily be calculated from che ryo electron transition densicy matrix elements $\left\langle\phi_{g}\right| a_{r}{ }^{+} a_{r}, a_{s}, a_{s} \mid \phi_{g}$ " ${ }^{\prime}$ and the first order variables $a{ }_{j}{ }^{8}(E)$ and $b{ }^{1}{ }^{1}(E)$. When expansions analogous to those applied for a(1) and B(1) are incroduced in (59) and (60), ve get equation systems of the same form as the first order equations and the same computer code may be used for their solution.

Finally, we compare equations (22) and (19) in order to obtain expressions for the quadratic response functions
$\langle\langle R ; V ; V\rangle\rangle_{\omega+i n, \omega+i n}=[\langle\{R, \alpha(2)+B(2)]\rangle$
$-1<[[R, a(1)], a(1)+2 B(1)]\rangle-\frac{1}{2}\langle\{[Q, E(1)], B(1)]\rangle$
and
2Re<<R;V; $\left.\left.V^{+}\right\rangle\right\rangle_{w+i n,-w+i n}=$
$\left\langle\left\langle R_{i} V_{i} V^{+}>\right\rangle_{\omega+i n,-\omega+i n}+\left\langle<R_{;} V^{+} ; V>\right\rangle_{-\omega+i n, \omega+i \eta}\right.$
$=\left[\langle[R, Y+\mu]\rangle-\left\langle[R, \alpha(1)], B^{+}(1]\right]\right\rangle$
$\left.\left.-<\left[R, \alpha^{+}(1)\right], B(1)\right]\right\rangle$
$-\left\langle\left(R, \alpha(1), \alpha^{+}(1)\right)\right\rangle-\left\langle\left(R, B(1), B^{+}(1)\right)\right\rangle$
Equation (62) indicates that it may at times be more convenient to use an alternative to the forms (21) and (15), namely
$G\left(R V V^{*} ; E E^{\prime}\right)=\mid\left\langle\left\langle R ; V_{i} V^{*}\right\rangle\right\rangle_{E E}+\left\{\left\langle\left\langle R ; V^{*} ; V\right\rangle\right\rangle E{ }_{E}\right.$

The definition (11) appears to be a natural extenaion of 7ubarev's retarded Green's functions and it also seems to give the simplest spectral representation for a non-linear responsf function. On the other hand, the function $\left\langle\left\langle R ; V ; V^{*}\right\rangle>E\right.$, has a singularity for $E+E^{1} \cdot E_{m}, E_{m}$ where both EE_{m} and $m^{\prime \prime}$ denote excited states, 别ile all such singularities are absent in the function $G\left(\mathrm{RVO}^{+}\right.$; $\left.E E^{\prime}\right)$. A more complete deacription of the calculation of quadratic responee functions within the time dependent MCHF theory will be published elsewherc.

v. DISCUSSION

Multiconfigurational Hartree-Fock methods have enjoyed an increasing popularity during the last decade as natural means of including correlation eftects, when describing the electronic scructure of acoas and molecules ${ }^{26}$. The present symposiun is a manifestation of this fact.

Several authors have found the MCHF method useful for the generation of an orbital basis set, which improves the convergence of a configuration interaction expanaion. Such calculations are generally directed toward highly accurate descriptions of a few lou lying states and to a lesser extent tovard the dynasic response functions, albeit mainly for economic reasons. This study has been incited by the propagator methods as developed for quantum chenistryl8 and ax the same time by the difficulties that those methods encounter, when an explicit ground state representative is abandoned.6,7 I would like to advocate the vieu that well defined propagator approximations emerge in a natural way within the time dependent MCHF framevork. Recent numerical results for oscillator strengths and excitation energies for the O_{2} mole $\frac{\mathrm{p}}{7}$ cule obtained by Albertsen, Yeager and Jorgensen ${ }^{2}$ support this view. These authors employ an HCHF propagator formalism, which is equivalent to the presepf formulation for the linear response functions ${ }^{10}$.

So tar, no computations have been made for the quadratic response functions as defined here. However, the rapid development of laser spectroscopy in the non-linear domain calls for theoretical descriptions of second ordep processes. If seems that the functions $\left\langle\left\langle R_{i} V_{i} V^{+}\right\rangle>{ }^{+}\right.$, or $G\left(R V^{+} ; E^{\prime}\right)$ given by equations (11) and (5), respectively, will be useful tools for such descriptions.

ACK:OLLEDCMENT

1 would like to express my sincere gratitude to the organizers of this uorkshop on MCHF methods, and in particular to professor D. Yeager, for making my participation possible and enjoyable.

references

1. D.R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1927); P.A.M. Dirac, Proc. Camb. PhiT. Soc. 26, 376 (1930).
2. P. Jørgensen, Ann. Rev. Phys. Chem. 26, 359 (1975), and references therein.
3. G, Eaym and L. Kadanoff, Phys. Rev. 124, 287 (1961).
4. A.D. Melachlan, Mol. Fhys. B, 39 (1964);
```
    F., Dilgaard, Inc. J. Quantum Chers. 17, 449 (1980).
    5. C. Wendin, J. Phys. B: Atom. lolec. Phys. 6,
        42 (1973).
    6. J. Linderberg, P. Jorgensen, J. Oddershede
        and M. Ratner, J. Chen. Phys. 56, 6213 (1972).
    7. 3. Linderberg and Y. Ohrn, Int. J. Quantum
        Chem. 12, 161 (1977), 15, 343 (1979).
B. D.J. Thoules, The Quantum Nechanics of NanyRody Systems (Academic, Kew Yark, 1961); J. Cizek and J. Paldus, J. Chem. Phys. 47, 3976 (1967): P. Jゆrgensen and J. Linderberg, Int. J. Quantum Chem. 4 , SB7 (1970).
9. J. Oddershede and P. Jergensen, J. Chem. Phys 66, 154: (1977).
10. D.L. Yeager and \(P\). Jorgensen, Chem. Phys. Letters, 65, 77 (1979).
11. E. Dalgaard, J. Chem. Phys. 72, 816 (1980).
12. D.J. Rove and G. Rosensteel, Int. J. Theoret. Phys. 15,501 (1976); J. Kendrick and 1. TH. Hillier, Chem. Phys. Letcers 41,283 (1976); E. Dalgaard, Chea. Phys. Lecters 65, 559 (1979). C.C.J. Roothaan. J. Dettich and D.G. Hopper, Int. J. Quantum Chem. Symp. 13. 93 (1979).
13. E. Dalgaard and P. Jorgensen, J. Chem. Phys. 69. 3833 (1978).
14. B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Physics 48, 157 (1980).
15. J. Frenkel, Have Mechanics, Advanced General Theory (Clarendon, Oxford, 2935); P.H. Langhoff, S.T. Epstein, and H. Karplus, Rev. Hod. Phys. 44, 602 (L972).
16. M. Jasztinski and A.J. Sadlej, Inc. J. Quantum Chera. LL, 233 (1977); W.J. Stevens and F.P. Biliingsley II, Phys. Rev. BA, 22.5 (1973).
17. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, Plenum, New York 1974) p. 161.
18. J. Linderberg and Y. Ohrn, Propagators in Quantum Chemistry (Academic, London, 1973).
L9. See e.g. J.I. Steinfeld, MoLecules and Radiation, An Latroduction to Nodern Molecular speccoscapy (Harper and Row, New York, 1974) ch. 13.
20. J. Oddershede, Auv. Quantum Chem. 11, 275 (2978).
21. O. Coscinski and B. Lukman, Cliem. Phys. Lett. 7, 573 (1970).
22. P. Ehrenfest, 2. Phys. 45, 455 (1927).
23. F. Sutet, J. Tillieu, and A. von Lroenendac1, Int. J. Quantum Chem. 17, 531 (1980).
```

24. N.F. Hansen, Int. J. Quantum Chem. Symp. 4, 473 (1971).
25. D.f. Kobe, Int. J. Quantura Chem. Symp. 12. 73 (1978).
26. C.F. Fischer, The Hartree-Fock method for acoms (Wiley, filw York, 1977); A. C. Wahi and G. Das, in Modern theoretical chemistry Vol. 3, ed. H. F. Echaefer IIt (Plenum. New York, 1977 ch. 3.
27. P. Albertsen, P. Jфrgensen and D.L. Yeager, to be published in Int. J. Quantum Chem. Symp. (1980).

h icscf reference states for response functions

Prof. Jack Simons
Department df Chemistry
University of Utah
Salt Lake City, Utah 84112

GREEN'S FUNCTIONS

Until quite recently Green's function (GF) and other response function developments have been restricted to single configuration SCF or first-order Rayleigh-Schrödinger perturbation theory reference wavefunctions. Following the lead of Yeager and Jorgerisen, David Chuljian and the author have been able to formulate one-particle of theory for an MCSCF reference function $\mid 0 \%$. The choice of ionization operator manifold $p^{+}, p^{+}|n><0|$, where $\{\mid n>\}$ is the MC orthogonal complement space, gives rise to quite tractable expressions for the elements of the GF matrix. By choosing the MC space to include all single and double excitations out of one of the dominant configurations of $\mid 0$, we are able to significantly simplify the transition density matrix elements which appear in our working equations. In fact, we have been able to link this HC based GF program to our unitary group HCSCF programs quite easily.
ENERGY GRADIENTS
The fact that a converged MCSCF wavefunction |0> obeys the Generalized Brillou in Theorem makes such wavefunctions especially attractive for use in calculating tow the energy E yaries, when the molecule's nuclei are moved from \vec{k}_{a} to ${\overrightarrow{R_{a}}}_{a}+\vec{a}_{a}$. By collecting the $3 N-6(:)$ nuclear displacement vectors ${ }_{a}{ }_{a}$ (whose lengths are to be determined) into a single vector $\vec{\alpha}$, one can express the Hamiltonian at
$\vec{k}+\vec{a}$ in terms of orbitals centered at $\vec{k}: \quad H_{\vec{a}}=$ $H+\vec{a} \cdot \vec{H}^{(l)}+\vec{a} \cdot \vec{H}^{(2)} \cdot \vec{a}$. Here $\vec{H}^{(1)}$ contains both the Hellmann-Feymman factors $\left.\sum_{i, j}\left\langle\phi_{i}\right| \frac{\partial}{\partial R_{a}}\left|\vec{r}-\vec{k}_{a}\right|^{-1} \right\rvert\, \phi_{j}>i^{+} j$ and the atomic basis function derivative terms $\left.\frac{\partial}{\partial R_{r}}<X_{a} \| \vec{r}-\left.R_{b}\right|^{-1} \right\rvert\, X_{c}>$. Likewise, $H^{(2)}$ contains both kifids of second derivative terms, but neither $\mathbf{H}^{(1)}$ nor $\vec{H}^{(2)}$ contain any effects of MCSCF orbital vari* ation or CI coefficient variation. These latter effects are treated via the $\exp (i \lambda)$ and $\exp (i s)$ operdtors. The resultant energy expression, when made stationary with respect to variations in λ and S, gives rise to the following_expression (through second order in \vec{a}): $\left.E=E^{0}+\vec{a},<0 \mid \vec{H}(\}\right)\left.\right|_{0} ^{2}+$ $\vec{a} \cdot<0|\vec{H}(2)| 0\rangle, \vec{a}-\frac{b}{2}(\vec{a} \cdot \vec{F}, \vec{a} \cdot \vec{G})(A-B)^{-1}\langle\vec{F} \cdot \vec{a}, \vec{G} \cdot \vec{a})$, where $A-B$ is the MCSCF Hessian matrix (at \vec{R}) and F and G are Generalized Britlouin-like matrix elements involving the Hamiltonian derivative $\overrightarrow{\vec{j}}(\hat{i}): \vec{F}_{i, j}=$ $\left.<0\left|\left[i^{+} j, \vec{H}^{(1)}\right]\right| 0\right\rangle, G_{n}=<0\left|\left[|n><0|, \vec{H}^{(1)}\right]\right| 0>$. This quadriatic form in \vec{a} can then be used to find stationary points where $\partial E / \partial \vec{a}=0$. It should be noticed that the orbital and CI expansion coefficients' responses to the nuclear displacement \vec{a} are computed in a coupled MCSCF method; we do not resort to using single conffiguration coupled SCF to estimate the orbital changes λ.

Maurice G. Sheppard, Hosung Sun, and Karl F. Freed
The James Franck Institute and The Departmert of Chemistry The University of Chicago, Chicago, lllinois 60637

ABSTRACT

The study of molecular electronic structure has been divided into two separate and often acrimonious branches, $a b$ initio and semiempirical theories. He have shown that the clue to providing a rigorous theoretical basis for understanding and systematically improving semiempirical methods of electronic structure lies in the study of the structure and properties of the effective valence shell Hamiltonian, \mathcal{K}^{v}. I \mathcal{X}^{v} can be calculated by pureIy ab initio methods, and its eigenvalues, associated with the valence states of interest, are exactIy equivalent to those generated by the solution of the full molecular electronic Schrödinger equation. The resul-s of our recent calculations of \mathcal{X}^{V} are of interest both as novel ab initio formalism and For the insights they provide into the hidden underlying assumptions of semiempirical theories. The pursuit of this wark naturally leads into the use of multiconfigurational self-consistent-field (MCSCF) methods to provide input for $\mathcal{K}^{\mathbb{V}}$ calculations. introduction

Given a set of orbitals which is partitioned into core, valence, and excited orbitals, it is possible to define an effective valence shell Hamiltonian, \mathcal{K}^{\vee}, which is an exact transformation of the original schrödinger equation for the states of interest (the valence states). ${ }^{2}$ The orbital space is assumed to be large enough to accurately describe the valence states which in zeroth order are represented in terms of linear superpositions of configuration functions containing a full core and a partially occupied set of valence orbitals. The resulting \mathcal{X}^{v} has the following properties: $11 \mathcal{X}^{V}$ contains explicit reference only to the designated valence shell orbitals. Hevertheless, the eigenvalues of $\mathcal{K}^{\mathbf{v}}$ are exactly identical to the corresponding valence state energies (i.e., potential energy surfaces) which result from the solution of the full molecular electronic Schrödinger equation within the given orbital basis. (2) The exact eigenval-
ues of \mathcal{X}^{v} are obtained from a full valence space configuration interaction (CI) calculation, so \mathcal{X} is the quantity which is mimicked through parametrizations of the model Hamiltonians, \mathcal{X}_{N}^{V}, of semiempirical valence methods. ${ }^{2}$ Many semiempirical $\mathcal{H}^{\mathbf{W}}$ s are fit directly to a form which ignores the valeñice $C \mid$ because of the added expense. (3) in addition to the usual one- and two- electron effective operators (\mathcal{X}_{i}^{v} and $\left.\mathcal{X}_{i j}^{v}\right), \mathcal{X}^{v}$ also contains three-, four-,, N_{v}-electron effective operators $\left(\mathcal{X}_{i j k}^{v}, \mathcal{X}_{i j k i}^{v}, \ldots\right)$ which have no counterparts in semiempirical theories. Here N_{v} is the number of valence electrons. (4) \mathcal{X}^{v} uses the same set of orbitals to describe all valence states of a system
including all charge states. ${ }^{3-5}$ The frozen nature of the valence orbitals in the calculation of \mathcal{X}^{v} significantly differs from conventional ab initio methods where the orbitals vary with the state and charge of the system. However, the same integrals of the effective many-electron operators of \mathbb{X}^{v} may be used for all of these valence states since X^{\vee} is formally exact. We have numerically verified this fact, as described below, by using one set of orbitals to calculate all valence excitation energies and ionization potentials of the fluorine atom from F^{+7} through F^{-}with an average deviation from experiment of 0.27 eV .

In this paper we present a survey of our $\mathcal{H C}$ calculations for the fluorine atom and for the $\mathbf{C H}$ molecule preceded by a brief discussion of the theory of $\mathcal{X}^{\mathbf{v}}$. A discussion is also given of several calculations which are planned or in progress that require the use of multiconfigurational self-con-sistent-field (HCSCF) methods to generate a reasonable set of valence orbitals. Since the calculations for fluorine and CH involve third order quasidegenerate perturbation theory we are able to address questions of convergence and to analyze the effects of three- and (the never-before-calculated) four-electron effective integrals. Our calculations for CH provide the first ab initio test of the fundamental transferability hypothesis of semiempirical methods. ${ }^{6}$
theory

Definitions

In order to define $\mathcal{X}^{\mathbf{v}}$ for an N electron system, it is necessary to first describe the subspace of the full N -electron Hilbert space within which \mathcal{K}^{y} exists. This subspace is called the valence space and is spanned by the set of all N -electron symmetry adapted Slater determinants which have all core orbitals fully occupied with $\mathrm{N}_{c}=\mathrm{N}-\mathrm{N}_{v}$ core electrons and the remaining N_{v} valence electrons distributed amongst the valence shell orbitals in all unique ways. The basis of orthogona! complement space, or excited space, incorporates all other possible configurations. These are characterized by having at least one vacancy in a core orbital and/or at least une occupied excited orbital.

Emphasizing this partitioning of the full N electron Hilbert space, the Schrödinger equation in matrix form is represented by

$$
\left(\begin{array}{c:c}
H_{p p} & H_{P Q} \tag{1}\\
\hdashline H_{Q P} & H_{Q Q}
\end{array}\right)\binom{c_{p}}{\hdashline c_{Q}}=E\binom{c_{P}}{\hdashline c_{Q}}
$$

where C_{p} and C_{0} are coefficient vectors in the valence (P) and excited (Q) spaces, respectively. Using
the well known transformation described by Löwdin 7 produces a representation of the exact \mathcal{Z}^{ν} which is defined on the valence space and which has the matrix representation,

$$
\begin{equation*}
\mathcal{X}^{\nu} c_{\mathrm{P}}=\left[\mathrm{H}_{\mathrm{PP}}+\mathrm{H}_{\mathrm{PQ}}\left(\mathrm{E} \mathbf{1}_{\mathrm{QQ}}-\mathrm{H}_{\mathrm{QQ}}\right)^{-1} \mathrm{H}_{\mathrm{QP}}\right] \mathrm{c}_{\mathrm{P}}=E C_{\mathrm{P}} . \tag{2}
\end{equation*}
$$

Since all configurations in the valence space have a full core and no reference to any excited orbital, they are totally specified by their valence shell configuration. Therefore, $\mathcal{X} v$ makes explicit reference only to valence orbitals. It can be shown that \mathcal{K}^{\vee} of (2) has off-diagonal matrix elements between configurations which differ by more than two valence spin orbitals. $1-4$ in operator language, these two observations mean that $X v$ must have the form

$$
\begin{aligned}
& \mathcal{X}^{\gamma}=E_{c}+\sum_{i=1}^{N_{v}} \mathcal{X}_{i}^{\gamma}+\frac{1}{21} \sum_{i=1}^{N_{1}} \sum_{j=1}^{N} X_{i j}^{r} \\
& +\frac{1}{31} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} H_{i j k}^{\gamma} \\
& +\frac{1}{4!} \sum_{i=1}^{N_{r}} \sum_{j=1}^{N_{w}} \sum_{k=1}^{N_{k}} \sum_{\ell_{i=1}^{\prime}}^{N_{k}^{\prime \prime}} \mathcal{X}_{i j k \ell}^{N}+\ldots
\end{aligned}
$$

where E_{c} is the correlated energy of the bare care, and $\mathcal{X}_{i}^{v}, \mathcal{H}_{i}^{v}, \mathcal{X}_{i j \mathrm{j}}^{\mathrm{v}}, \ldots$, are effective one-, twon, three-, \ldots up to N_{v}-electron operators.

Relationship to Semiempirical Hodel Hamiltonians

The similarity between equation (2) and the general form of the complete valence shell CI interpretation of semiempirical methods is striking. The general isea of these methods is to postulate the existence of a model Hamiltonian, \mathcal{H}_{4}^{V}, which is defined on the valence space and has eigenvalues which are the valence state energies. From this description it is obvious that \mathcal{X}^{v} is the object which is being mimicked by semiempirical $\boldsymbol{X}_{M^{\prime}}{ }^{\mathbf{s}}$. in semiempirical theories it is further assumed that \mathcal{X}_{M}^{V} is composed of effective one- and sometimes two-electron operators; however, three-and higher-electron operators are always ignored. Semiempirical theories then consider the individual integrals of the effective one- and two-electron operators between valence orbitals to be parameters that may be "adjusted" to Include correlation effects and to reproduce the valence state energies. The parametrization scheme for these effective integrals incorporates empirical data based on the particular hrand of chemical intuition used by the method's inventor at the time of its conception. With each scheme is associated a different acronym, and consequentiy the entire collection of semiemplrical methods appears as alphabet soup to the uninitiated.

In an effort to understand the theoretical basis of semiempirical theories, we have colculated, from first principles, both the valence state energies
and the integrals of the effective one-, two; threeand four-electron operitors of \mathcal{K}^{ν} between the valence orbitals. By analogy with semiempirical theories, we designate these integrals as true parameters. Our calculations are designed to address the following questions: (1) How well can we calculate the valence state energies; and, does \mathcal{H}^{V} have the potential to be a viable ab initio method? (2) How do the true parameters compare with semiempirical parameters? Especially, how large are the nonclassical many-electron effective integrals which arc ignored in semiempirical methods? (3) Are the one-center true parameters really transferable between molecular systems with similar environments as is assumed in semiempirical theories? (4) What is the effect of many-electron effective operators on the calculation of excitation energies and ionization potentials?

Perturbation Expansion for \mathcal{H}^{v}

The energy-dependent representation of \mathcal{X}^{v} in equation (2) has several nice properties which are discussed elsewhere ${ }^{1-3}$; However, it suffers from the drawback that individual configuration-incependent true parameters cannot be directly calculated. This is particularly important for making comparisons with semiempirical methods. Hence, Iwata and Freed introduced an energy-Independent generalized perturbation expansion couched in the language of second quantization. ${ }^{3}$ With subsequent modifications, ${ }^{4}$ which significantly improve the convergence properties of the expansion, it is possible to derive formulas for the individual true parameters. These true parameters have the following physically appealing properties ${ }^{3,4}$: (1) The true parameters are independent of the valence electron configuration. (2) The true parameters are independent of the number of valence electrons. This parallels the use of semiempirical paraneters which are independent of the molecular environment and the net (or locat) charge of the system. (3) The true parameters can be evaluated within a theory which utilizes matrix energy denominators, thus eliminating the necessity of tedious resumation of dominant terms through all orders in perturbation theory. Properties (1) and (2) mean that after the true parameters are calculated once for a given set of valence orbitals, they can then be used to evaluate the energies of all valence 5 tates of all charge states of the system.

Using the simplest form of our generalized quasi-degenerate many-body perturbation theory (GQDHBPT) in which the energy denominators are taken to be strictly diagonal, our expansion reduces to a symmetrized version of $\operatorname{Brandow's~diagramnatic~per-~}$ turbation theory. ${ }^{8}$ All of our calculations to date use this form. In second order our methad is equivalent to a θ_{k}-type calculation of Gershgorn and Shavitt, ${ }^{9}$ and in thrid order the off-diagonal elements of $H_{Q Q}$ in equation (1) are kept in lowest order of perturbation theory.

The explicit details of third order GQDHBPT and the calculation of \mathcal{K}^{\vee} will he presented elsewhere with emphasis on the formal theory of GQDMBPT,

TABLE 1. Selected effective integrals (true parameters) for fluorine in av. Atomje basis orbitals are obtained from ground state RHF calculations for the indicated ion. \&oth second and third order results are presented to indicate convergence. MINDO/3 values are from Reference 13 and the empirical values are in Reference 12 . s, x, y, z are thorthand notation for $2 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{x}}, 2 \mathrm{p}_{\mathrm{y}},{ }^{2} \mathrm{p}_{z}$.

True Parameter	F		F^{+}		F^{+}		F^{+3}		F^{+7}		Empir~ ical	Minool3
	2nd	3 rd	2nd	3rd	2nd	3rd	2nd	3rd	2nd	3rd		
E_{c}	-2054.97	-2055.05	-2054.97	-2055.05	-2054.98	-2055.05	-2054.98	-2055.05	-2055.00	-2055.05	-2057.11	
<s\| $X_{i}^{v_{i}}$ s>	- 185.57	- 185.00	- 385.24	- 185.40	- 184.98	- 185.12	- 184.91	- 184.98	- 184.92	- 184.92	- 185.19	-129.86
<x\| $\mathcal{X}_{i}^{v} \mid$ x>	- 169.28	- 173.54	- 169.33	- 171.64	- 169.91	- 170.96	- 170.37	- 170.82	- 170.79	- 170.79	- 171.19	-105.83
$\langle s x\| \mathcal{H}_{i j}^{\mathrm{V}}{ }^{\text {c }}$ sx>	31.85	33.76	31.50	32.62	31.45	32.02	34.54	31.80	31.72	31.68	31.63	17.25
$\langle s x\| \mathcal{H}_{i j}^{V}\|x s\rangle$	5.82	6.00	5.73	5.80	5.70	5.70	5.71	5.68	5.69	5.65	5.56	4.83
$\langle x y\| \mathcal{X}^{\prime}{ }_{i j} \mid$ xy>	31.86	35.46	31.61	33.79	31.62	33.01	32.19	32.77	32.69	32.67	32.66	14.91
	1.40	1.49	1.42	1.48	1.46	1.48	1.50	1.49	1.51	1.49	1.41	0.90
	-2.03	-3.19	-1.86	-2.63	-1.76	-2.27	-1.77	-2.08	-1.90	-2.00	-1.90	
<sxy\| $\mathcal{H}_{i j k} \mid{ }_{\text {syx }}{ }^{\text {c }}$	0.06	0.09	0.07	0.08	0.08	0.07	0.07	0.07	0.06	0.06	0.06	
< $5 x y \mid \mathcal{H}_{i j k}^{v}$ \|xsy>	-0.30	-0.38	-0.26	-0.30	-0.24	-0.25	-0.23	-0.23	-0.17	-0.24	-0.23	
	-2.63	-4.50	-2.44	-3.75	-2.36	-3.29	-2.45	-3.07	-3.00	-3.08	-2.79	
	-0.10	-0.15	-0.10	-0.14	-0.09	-0.14	-0.10	-0.14	-0.14	-0.18	-0.13	
		0.37		0.30		0.25		0.21		-0.02	-0.07	
$\left.<z y x s\left\|\chi_{i j k \ell}^{y}\right\| y z s x\right\rangle$		-0. 02		-0.02		-0.02		-0.02		-0.03	-0.04	
<zyxs \| $\mathcal{H}_{i j k l}^{v} \mid z s y x>$		0.01		0.00		-0.01		-0.01		-0.01	0.01	
		-0.02		-0.01		0.01		0.01		0.04	0.04	

a. $\langle u v w| \mathcal{H}_{i j k}^{v}|x y z\rangle=\iiint \int_{i} r_{i} r_{j} d r_{k} u^{ \pm}(i) v^{*}(j) w^{*}(k) \mathcal{X}_{j j k}^{y}\{x(i) y(j) z(k)-x(k) y(j) z(1)]$

convergence properties of the expansion, calculational difficulties in third order, and special techniques used in computer algorithms. Io

TABLE 2. Average deviation from experiment of all calculated valence excitation energies and ionization potentials for all charge states of fluorine. Atomic Orbital Base

F	0.86	0.41	6.90
F^{+}	0.72	0.39	5.75
F^{++}	0.69	0.56	5.16
F^{+3}	0.74	0.68	4.99
F^{+7}	0.59	0.27	4.96

*without threesand four-electron true parameters.

CALCULATION FOR THE FLUORINE ATOM

In addition to the questions raised in the last section, our calculations for fluorine are also designed to be a stringent test of the convergence properties of the perturbation expansion. The calculation begins with the choice of a primitive basis which for fluorine consists of 5s4p2d Slater type functions (STF's) and is unchanged throughout all calculations. Quantum numbers and exponents for the basis set are reported in reference (11). We determine five different sets of atomic orbitals from restricted Hart-ee"Fock (RMF) calculations for the ground states of $F, \mathrm{~F}^{+}, \mathrm{F}^{++}, \mathrm{F}^{+3}$, and F^{+7} all using the same primitive basis. Each of these is used in a different third order approximate calculation of X^{v} . The 25 and $2 p$ atomic orbitals are designated as the valence shell orbitals. The zeroth order Hamiltonian, H_{o}, for the perturbation expansion ($H=H_{0}+V$) is chosen to be the N-electron operator which is the diagonal portion of the Fock operator constructed from the $\langle 1 s)^{2}$ configuration for each atomic orbital basis. Note that only for the orbitals obtained from the $\mathrm{F}^{\boldsymbol{+ 7}}$ RHF calculation is the $(1 s)^{2}$ fock operator truly diagonal. The diagonal elements of the (1s) ${ }^{2}$ Fock operator are the "bare core" orbital energies.

Values for selected ab initio true parameters through third orfer are presented in Table 1 along with a uniquely determined empirical set of true parameters ${ }^{l 2}$ and one example of a set of semiempirical parameters. ${ }^{13}$ Besause there are 46 valence state energies to be reported for each calculation we list, in Table 2, just the atomic orbital basis and the average deviation from experiment for all known excitation energies and ionization potentials. 14 A more thorough report will be made elsewhere.

From Table 1, there are several important observations. (1) Some of the three-electron true parameters are as large as 3 eV ! (2) There is approximately an order of magnitude reduction in the size of the four-electron true parameters relative to the
three-electron ones. (3) Notice the conspicuous absence of three- and four- electron semiempirical parameters. (4) There is a large discrepancy between the ab Initio true parameters and the semiempirical MINDO/3 parameters. (5) The empirical true parameters represent the theoretical limit of 12 infinite order complete basis function calculations. A comparison of the ab initio and empirical true parameters shows that convergence is better for atomic orbitals that are determined from RHF calculations in which the subshell is not more than half full. This is also demonstrated in Table 2; and can be explained on the basis of the structure of 10 the theoretical expressions for the true parameters. This fact is more evident with different choices of H. 15 Finally from Table 2, the effect of ignoring three-electron true parameters are important for deseribing intrashell and intrasubshell correlations (in this case $2 s+2 p$ and $2 p+2 p$).5,11

CALCULATION of $\mathbb{X}^{\boldsymbol{v}}$ for CH

We have performed two distinct types of calculations for CH ; the first is used to test the aplicability of ab initio effectlve Hamiltonian methods for calculating the valence properties of molecules, while the second is designed to investigate the degree of transferabillty for the true parameters of \mathbb{K}^{v}. The primitive basis set for both calculations is a 453pld STF basis on carbon with a 2slp STF basis on hydrogen. Both calculations are performed at the ground state equilibrium internuclear separation of 2.124 au . The valence 5 hell orbitals for each \mathbb{K}^{v} calculation are taken to be the $2 a, 3 a_{3} \quad l \pi_{x}, 1 \pi_{y}$, and 40 molecular orbitals obtained from a RHF calculation for the ${ }^{2}$ п ground state of the neutral molecule.

Direct Calculation

The first CH calculation is straightforward and follows very similar procedures to those used in the fluarine calculation, except that we report the results from only one molecular orbital basis and we use an average bare core orbital energy in H_{o} for the valence shell orbitals. The second and chird arder $\mathcal{X} v$ results for valen.e shell ionization potentials and excitation energies are presented in Table 3. Since we did not have access to an HCSCF wavefunction, special pains are taken to determine the 4σ vi cual orbital from a $\mathrm{y}^{\mathrm{N}-1}$ potential. This is necessary to insure that the 40 orbital has the character of a valence shell orbital. Otherwise, nonconvergence of the \mathcal{K}^{V} expansion becomes a problem. 10 Averaging of the valence shell orbital energies is also important for convergence of the $\mathcal{H V}^{\mathrm{V}}$ expansion for CH .

Constrained Calculation

As a preliminary investigation of transferability, we compare the one-center two-electron effective incegrals, generated for the valence shell of a pure carbon atom, with the corresponding effective integrals extracted from a calculation for CH. In order to make a valid comparison, it is important that the valence space for the pure carbon atom and the carbon in CH be as similar as possible.

TABLE 3. Excitation energies, ionization potential, and electron affinity of $C H$ in eV. Calculations are at Internuclear separation of 2.124 du. The ${ }^{2} \Pi$ ground $s t a t e$ energy of CH is in au.

State	Direct		Constrained		$\mathrm{Cl}^{\text {a }}$	Experi- mental
	2nd	3 rd	2nd	3rd		
$\mathrm{CH}\left({ }^{2} \mathrm{C}\right){ }^{\mathrm{c}}$	-38.4642	-38.4014	-38.4515	-38.3983	-38.4103	-38.490
${ }^{4} \Sigma^{-}$	0.673	0.479	0.778	0.491	0.67	0.742
2_{Δ}	2.946	3.084	3.119	3.105	2.93	2.88
${ }^{2} \Sigma^{-}$	3.445	3.211	3.530	3.224	3.28	3.19
$2_{\Sigma}{ }^{+}$	4.433	4.080	4.644	4.055	4.02	3.94
$2^{\text {II }}$	7.668	6.379	7.988	6.408		7.31

$\overline{\mathrm{CH}^{+}\left(\Sigma^{+}\right)}$						
3_{π}	1.535	0.845	1.302	1.147	1.14	
I_{π}	3.529	2.821	3.336	3.105	3.18	
$3_{2}+$	13.482	12.383	13.417	12.461	11.65 (2)	
$\mathrm{CH}^{-}\left({ }^{3} \Sigma^{-}\right)$						
${ }^{1} \Delta$	1.054	1.578	1.141	1.542		0.845
1. P. ${ }^{\text {d }}$	10.488	10.411	9.972	10.586		10.64
E. A. ${ }^{\text {e }}$	0.937	0.820	0.241	- 0.376		1.238
D. E. ${ }^{\text {f }}$	3.884	2.690	3.539	2.621		3.65

a. CI data for CH is from ref. 16 and CH^{+}is from ref. 17. b. Ref. i8. c. Ground state energy for $\mathbf{C H}$.
d. Sonization potential. e. Electron affinity. f. Dissociation energy (using pure carbon calculation).

TABLE 4. One-center two-electron effective integrals from pure carbon calculation and corresponding effective integrals from consi:ained CH calculation in e^{1}.

Integral		Pure Carbon Calculated	Pure Carbon Empirical		$\mathrm{H}_{\pi}^{\mathrm{b}}$
css\| $\mathcal{H}_{\text {ij }}{ }_{\text {l }}$	ss>	10.42	17.47	18.34	
${ }^{s x}\left\|\mathcal{X}_{i j}^{V}\right\|$	5x>	18.96	18.20	18.94	19.33
$<s x \mid \mathcal{X}_{i j}^{\mathrm{V}}{ }_{\mathrm{ij}}$	x5 ${ }^{\text {P }}$	3.20	3.10	3.68	3.15
<ss\| $\mathcal{X}_{i j}^{Y} 1$	x ${ }^{\text {P }}$	3.34	2.48	3.89	3.08
<xx\| $\mathcal{H}_{1 j}^{y}{ }^{\text {d }}$	xx>	20.98	19.93	21.22	22.25
$<x y \mid \mathcal{H}_{i j}{ }^{\text {j }}$ l	$x{ }^{>}>$	19.32	18.17	19.64	20.32
$<x y \mid \mathcal{H}_{i j}{ }^{\text {l }}$	$\mathbf{y x}>$	0.58	0.52	0.63	0.65
$\langle x \times\| \mathcal{H}_{i j}^{V}{ }^{\prime}$	yy>	1.08	1.23	0.99	1.27

a. From ref. 12.
b. There are two columns for the constrained $L H$ zolculation because the atom 2 p orbitals are split by linear symmetry into a and π orbitals.

This arduous task is accomplished as described beJow. Atomic orbitals are determined from RHF calculations separately for the pure carbon 3 P ground state and for hydrogen. The carbon atomic orbitals are used for an \mathcal{H} carbon atom calculation. Then an unorthodox RHF calculation for the 2Π ground state of CH is carried out sitch that the valence shell orbitals of $\mathrm{CH}\left(20,3 i, 1 \pi_{x}, 1 \Pi_{y}\right.$, and 40$)$ are constrained to be representable by the basis which is the union of the C and H atomic valence bases. This set of molecular orbitals is fed into the approximate \mathcal{K}^{Y} calculation for CH . This restriction on the valence space produces orbitals which are less than optimal, therefore the rate of convergence for this constrained ealcuiation is slower. Valence excitation energies and lonization potentials are reported in Table 3 with those from the direct calculation.

The \mathcal{K}^{\vee} for $C H$ is then back transformed to the nonorthogonal atomic valence orbitais to enable a comparison between the carbon atom two-electron true parameters and the corresponding one-center two-electron effective integrals of CH. (See Table 4) included in the table are the carbon atom true pirameters. There are two columns associated with the constrained CH calculations in Table 4 because the atomic porbitals are split by symetry into o and π orbitals.

Results

Unlike the case for fluorine atom, there is not sufficient experimentai data to determine a set of empirital parameters for CH as a check for the \mathcal{H}^{v} true parameters individually. ${ }^{12}$ The same trends for the true parameters, noticed in fluorine, are present in CH siso. Calculated values for the vertical excitation energies and ionization potentials from both calculations are compared with the Ci results of Lie, Hinze, and Liu for CH 16 and
Green et al for $\mathrm{CH}^{+} \quad 17_{\text {in }}$ Table 3. Also in Table 3 are the experimental adiabatic quantities of which we are aware. ${ }^{18}$

Table 3 indicates that our \mathcal{H}^{V} calculations are in excellent agreement with conventional $C 1$ results, and hence we conclude that \mathcal{H}^{v} can be applied with accuracy to molecular systems. Table 3 also demonstrates, as expected, that the constrained calculation is not as well converged in second order; and consequently, at least a third order treatment is required to make accurate predictions.

From Tabie 4 we see that the idea of transferability is not inconsistent with our calculations. However, there remains much work to be done before this aspect nit \mathcal{H}^{v} is more fully understood and can be utillzed.

THE FUPURE

In contrast to the relative insensitivity of the \mathcal{K}^{v} expansion to the choice of atomic orbital basis in first row atoms like fluorine, molecules and larger atoms (i.e., transition metals) require a more accurate zeroth order description of the orbitals. To insure convergence of the \mathcal{H}^{\vee} expansion for these systems, especially polyatomic molecules
and molecules at large internuclear separations, it will be necessary to begin with an MCSCF procedure to determine the valence (and excited) molecular orbitals.

Some of the work, which is planned but remains to be started andfor finished in the continuing saga of \mathcal{H}^{v}, involves a series of third order \mathbb{K}^{*} calculations for NH and OH as well as CH. ${ }^{19}$ A series of third order \mathcal{K}^{\vee} calculations will be presented for selected first and second row atoms. ${ }^{20}$ Thought has been given to an \mathbb{K}^{v} calculation for a heavier diatomic like CN, CO, or F_{2}.

One planned project is to calculate a set of potentiol curves for the valence states of $\mathrm{CH}^{2}{ }^{21}$ This constitutes a stringent test of the usefuliness of our ab Initio $\mathcal{H}^{\mathbf{v}}$ method for molecules as both a direct first principles calculation and as a source of insight into the fundamental basis of semiemplrical theories. The calculation will provide the first ab initio investigation of the bond length dependence of two-center semiempirical-iike effec. tive integrals. Obviously a calculation of this type must begin with MLSCF wavefunctions.

Another large project is the calculation of $\mathcal{X}^{\mathbf{V}}$ for the π shell of butadiene. This calculation has been delayed since Iwara and Freed finished their benchmark investigation for ethylene. ${ }^{22}$ Westhaus has since published \mathcal{K}^{\vee} ethylene calculations using a differ unt formalism. ${ }^{23}$ with ihe knowledge obtained from calculations on fi;st and second row atomic and atomic hydride systems, and the experience gained through implementation of the third order expansion, we now have the technology to undertake the calculation of \mathcal{H}^{v} for butadiene. This will be the first ab initio test of semiempirical π-Hamiltonian theories for a ssitem with an extended π valence shell using f'. The orbitais are by necessity determined fror a three conifiguration valerce HCSCF calculation. Mci:ivated by analogy with the semiemper 24 ical mul iconfigura'ional work of Eaker and Hinze. ${ }^{24}$ a set of well localized π orbitals can be obtained. These localized ortitals will facilitate the investigation of semicmpirical assumptions concerning model π-Hamittonians.

Preliminary calculations for titanium have recently been reported. ${ }^{25}$ Transition metals ire particularly interesting for three reasons. (1) Semiempirical theories have been unsuccessful tor these systems, (2) little experimental data is available, and (3) not much ab initio work has been done on their correlation energies, especially for excited states. We plan to continue our work on titanium and also to investigate iron since it resides at the other end of the first transition metal series.

SUMMARY

To reiterate, our calculations show that \boldsymbol{X}^{v} is an accurate and novel ab initlo method for small systems. It is particularly interesting and exciting since one calculation of the effective integrals yields all valence state energies of all charge
states accurately.

The calculation for atoms already provides a first principies check of the one-center integrals of semiempirical theories. The large discrepancy noted in Table 1 is explained by an averaging of effective three- and four-electron integrals into the one- and two-electron semiempricial paraneters in analogy with the way that two-electron integral $\frac{2}{2}$ are averaged into the one-electron Fock operator. 26

Finally, our calculation for CH shows that \mathcal{H} can be applicd accurarely to molecules. It provides test of transferability and will generate an ab inifio bond length dependence for two-center effective integrals which can be compared with semiempirical theories.

REFERENCES

1. K. F. Freed, in Modern Theoretical Chemistry, Vol. 7, ed. G. A. Segal (Plenum, New York, 1977).
2. K. F. Freed, Chem. Phys. Lett. 13, 181 (1972); 15. 331 (1972): 24, 275 (1974); J. Chem. Phys. 60, $\overline{1765}$ (1974); Chem. Phys. 3, 463 (1974); 4, 80 (1974).
3. S. Iwata and K. F. Freed, J. Chem. Phys, 65, 1071 (3976). Erratum, 66, 1765 (1977).
4. M. G. Sheppard, K. F. Freed, M. F. Herman, and D. L. Yeager, Chem. Phys. Lett. 6\}, 577 (1979).
5. D. L. Yeager, H. Sun, K. F. Freed, and M. F. Herman. Chem. Phys. Lett. 57, 490 (1978).
6. R. C. Parr, The Quantum Theory of Molecular Eleetronic Siructure Tenjamin, New York, 7963li M. J. 5. Dewar, The Molecular Orbital Theory of Orqanic Chemistry (McGraw-Hill. New York, I969); J. A. Pople and D. L, Beveridge, Approximate Molecular Orbital Theory (HeGraw Hill, New York; 1970).
7. P. O. Lowdin, J. Mol. Spectrosc. 14, 112 (1964); J. Math, Phys. 3. 969 (1962).
8. 8. H. Brandow, Rev. Hod. Phys. 39, 771 (1967); Adv. Quantum Chem. 10. 187 (1977); Tnt. J. Quantum Chern. 15. 207 (1979).
1. 2. Gershgorn and I. Shavitt, int, J. Quantum Chem. 2, 751 (1968).
1. H. G. Sheppard and K. F. Freed, "Third Order \mathcal{H}^{V} : Theory and Calculation" to be published.
2. H. Gun, K. F. Freed, M. F. Herman and D. L. Yeager, J. Chem. Phys. 72, 415ε (1980).
3. D. L. Yeager, M. G. Sheppard, and K, F. Freed, J. A. C. S. 102, 1270 (1980).
4. R. C. Eingham, H. J. S. Dewar, and D. H. Lo, J. A. C. S. 97, 1285 (1975).
5. C. Moore, Ed., Acomic Energy Levels, Natl. Stand. Ref. Data Ser. Nacl. Bur, 5tand. No. 35 (1971); S. Bashkin and J. O. Stoner. Atomic Energy Levels and Grotrian Diagrams. Vol. I (North-Holland, Anster= dam, 1975).
6. M. G. Sheppard and K. F. Freed "Third Order \mathcal{H}^{\forall} : Application to Flugrine" to be published.
7. G. C. Lie, J. Hinze, and B. Liu, J. Chem. Phys. 57, 625 (1972); 59, 1872 (1973).
8. S. Green, P. S. Bagus. 8. Liu, A. D. McLean, and M. Yoshtmine, Phys. Rev. A, 5, 1614 (1972).
9. G. Herzberg and J. W. C. Johns, Astrophys. J. 158, 399 (1969); A. Kasdan, E. Herbst, and W. C. Lineberger, Chem. Phys. Leit. 31, 78 (1975); ref. cited in P. E. Cade and W. H. Huo, J. Chem. Phys. 47. 614 (1967); ref. cited in ref. 16 and 17.
10. H. Sun, K, F. Herman, M. G. Sheppard, and K, F. Freed, zo be published.
11. M, G. Sheppard and K. F. Freed, to be pubIt shed.

21, H. Sun and K. F. Freed, to be published.
22. S. Iwata and K. F. Freed, J. Chem, Phys. 61, 1500 (1974); Chem. Phys. Lett. 28. 176 (1974).
23. P. Westhaus, E. G. Bradford, and D. Hall, J. Chem. Phys. 62, 1607 (1975): P. Westhaus and E. G. Bradford, J. Chem. Phys. 63, 5416 (1975); 64, 4276 (1976): P, Westhaus and Hoghtaderi, Quantum Theory Research Group, Notes 80, 81, Oklahoma State University, Hov. 1978; ${ }^{\text {U. Chem. Phys. 72, } 4174 \text { (1980). }}$
24. C. W. Eaker and J. Hinze, J. A. C. 5. 96, 40 . 4 (1974).
25. Y. S. Lee, H. Sun, M. G. Sheppard, and K. F. Freed, J. Chem. Phys. in press.
26. K. F. Freed and H, 5un, Israel J. Chem. 19, 99 (1980).

ACKNOWLEDGEMENT

This work was supported in part by the National Science Foundation Grant NSF CHE 77-24652.

MCSCF FOR EXCITED STATES

Charles W. Bauschlicher, Jr.*
 Institute for Computer Applications in Science and Engineering NASA Langley Research Cen* - \boldsymbol{r}, Hampton, VA 23665

Byron H. Lengsfield III ${ }^{\dagger}$.
Laser and Spectroscopy Branch
NASA Langley Research Center, Hampton, VA 23665

David R. Yarkony ${ }^{\ddagger}$
Department of Chemistry, Johins Hopkins University Baltimore, MD 21218

Two basic types of configuration interaction (CI) calculatims are routinely used in accurate ab initio celcuia:ions. They are the first Order CI ${ }^{1}$ (FOCI) and the all single and double exctitation CI, CI(SD). In both cases the orbitals are initially optimized using a 1 imited MCSCF. Recent advances in MCSCF Theory ${ }^{2}$ now permit MCSCF calculation containing $200 \mathrm{CSF}^{\prime}$ s to be performed with litile effort in excess of the previous stiall HCSCF calculations. Thus, it 15 now possible to optimize the orbitals for a FOCI, by performing a full valence HCSCF (FUMCSCE). If the FOCI is too large and a POLCI ${ }^{3}$ (a POLCI is best viewed as a FOCI with CSF selection) is to be used or a CI (SD) is to be run, the FVMCSCF can be employed to identify the dominant configurations in the wavefunction. FVMCSCF calculations are performed at varlous points on the surface, the natural orbitals (No's) obtained and FVCI repeated in the no basis. The union of all important configurstions is then used in a small mCSCF. This MCSCF is followed by either the POLCI or CI(SD), using the orbitals obtained in the small MCSLF. By performing the FWMCSCF, one simplifies the procedure for dentifying the important CSF's which should be included in the MCSCF.

Litmited mCSCF calculations followed by CI calculations are a standard treatment for the lowest state in each symmetry. One exception would be when transition monents are desired. In this case a common set of orbitals would be used, but even in this case the separate MCSCF orbital optimization followed by ci is usualiy performed to calibrate the common orbital get. In principle one could use the same techniques on the higher state.; of a given symmetry, but in practice new problems urise. As one optimizes an upper root, the doscription of the lower root is degraded. Thit can lead to a flipping of these two states and the loss of the upper bound to the desire root.

[^4]Hinze ${ }^{4}$ has proposed optimizing the orbitals based on che averaged field of the states of interest. He also noted that one must compensate for the prorer description of the orbitals by adding additional CSF's. The addition of CSF's to the MCSCF greatly increased the size of the CI (SD) and can quickly make the problem intractable. If the configuration 1ist is not increased, it seems unlikely the states treated by averaged Eield method will be as accurate as those state for which an independent optimization of the orbitals is performed. Averaging all states of interest would encounter problems if all states but one vere well described by one set of orbitals. The average fleid technique would treat one state more pcourly than the rest. While the averaged field technique avolds the probletn of variational collapse, it way not treat all states equivalently for a configuration 11st small entugh to allow a CI(SD). Ideally, one would like co perform an Independent varfational calculation on each state. Grein ${ }^{5}$ hss noted if variational collapse begins to occur, a strall CI would indicate which CSF's are needed to keep the lower coots in place. While in principle the MCSCF could become prohibitively large, in practice this does not appear to be a probletu. We find for ionic systems such as $\mathrm{BeO}, \mathrm{MgO}$, and CaO that FNHCSCE - FOCI calculations yield poor separations between the low-lying states and instead a 11mited MCSCF followed by CI (SD) was eraployed. The addition of the C5F's needed to prevent variational collapse can make the CI(SD) prohibitively large. Also for a FVMCSCF - FOCI if an upper root collapsed, the addition cf the CSF's needed to prevent ise variational collapse would represent a redefinition of the valence space, Liu ${ }^{6}$ has found that in sone cases the addition of extra arbitals to the valence space in a MCSCF - FOCI calculation can actually yield poorer results and therefore should be avoided.

Our general procedure is to perform a FVHCSCF at several representative points on the surface. The important and marginally important configurations are included in a small MCSCF. Those CSF's with a coefficient smaller than 0.1 at all points are dropped and the final CSF list is chosen. This final list is used in an MCSCF and followed by a CI(SD). If one is only considering the lowest root, repeating th: FVCI in terms of $\mathrm{NO}^{\prime} \mathrm{s}$ can simplify the indentification of the important CSF, but for several roots this is not advisable. In Be0, for example, In the wo basis the $1^{1} \Sigma^{+}$state would be described by

$$
\begin{align*}
& 1 \sigma^{2} 2 \sigma^{2} 3 \sigma^{2} 4 \sigma^{2} \tag{1}\\
& 1 \pi^{2} \tag{2}\\
& 10^{2} 2 \sigma^{2} 3 \sigma^{2} 5 \sigma^{2} \tag{3}\\
& 1 \sigma^{2} 2 \sigma^{2} \\
& 1 \sigma^{2}
\end{align*} \frac{4 \sigma^{2}}{} \quad 1 \pi^{2} 2 \pi^{2} .
$$

but the second and third roots would be nominally described as

$$
\begin{align*}
& 10^{2} 2 \sigma^{2} 3 \sigma^{2} 40 \quad 50 \quad 1 \pi^{4} \tag{4}\\
& 1 \sigma^{2} 2 \sigma^{2} \quad 3 \sigma^{2} 4 \sigma^{2} \quad 1 \pi^{3} 2 \pi \tag{5}
\end{align*}
$$

Starting from (1), (4) and (5) provides a good description of the fitst and second roots, but starting from (1), (2) and (3) for the first toot would necessitate adding ocher CSF's to describe the second root.

The cases where it is impossible to perfonn separate optimizations on higher roots fall inco two categories: 1) the FVMCSCE calculation collapses and in 2) the 1imited HCSCF undergoes variational collapse. In the former ve do not add any addicional configurations. In the case of CaD ${ }^{1} \Sigma^{+}$states, we overcone this collapae by performing a FVMCSCF (where $80,90,100,3 \pi$ and 4π are valeace orbitals) on the lovest ${ }^{\mathbf{1}} \Sigma^{+}$state, obtained the natural orbitals, then used these $N O^{\prime} s$ in FVMCSCF for the $2^{\mathbf{1}} \Sigma^{+}$with the go orbital frozen to be the 80 No. The important $\operatorname{CSF}^{\prime}$ a from both roots included in an MCSCF calculation, and the orbitals optimized for the lat root. The aecond root orbitals are then opilizized with the 8a orbital to be the 80 orbital of the ground state. The second case where the linited MCSCF collapses, arises when the roots are close and the marginal CSF's of the first root are important in preventing root flipping. If the number of CSF's to be added is too large, we freeze an orbital (or orbitals) to he an orbital obtained in limited MCSCF calculation of the ground state. Since we have performed the FVMCSCF calculations we have some measure of the severity of these constraints.

We have noced that if the marginally important CSF's are added to the MCSCF, the energy of che limited MCSCF is within a few milit-hartrees of the FVMCSCF. Fur Mgo the number of CSF's need to approach the FWUCSCF is less than $15 \mathrm{CSF}^{\prime}$ s for all the lou lying states. In order to minimize the uncertalinty in our calcuiations we avoid CSF seleccion whenever posstble and if forced to select we keep the cumulative ${ }^{7}$ selection threshold an order of magnitude smaller than the accuracy we seek (1 milli-hartree accuracy). For this reason we choose to inclade only the important CSF's in the mCSCF = CL. Calculations for MgO using an STO basis set show that this procedure yields Re's and Te's in excellent agreement with experiment.

He shouid note a fev technical aspects of our procedure. The FVMCSCF is made possible by using a second-order MCSCF procedure. Instead of solving the simultaneous equaticns, we employ a SuperCI technique with a procedure for damping the efgenvector far from convergence. In our implimation a variable number of $C I$ roots can be included in the Hessian. We find that far from con-
vergence including all lower roots improves convergence and only near convergence ari all roots coupled in and quadratic convergence observed. The inclusion of all lower CI vectors is an toportant aspect of the second order MCSCF treatment of exeited states. This is to be contrasted to the traditlonal generalized Brillouin theorem MCSCF where one often needs to shift the dlagonal elements of the Super - CI Hamiltontan in order to prevent root flipping. In the case of higher roots of lonic molecules the lower state orbitals or the orbitais of a non-variational SCF do not always provide a good set of starting orbitals. In these situations the use of damping, can be very important. In gome cases, the roots filpped as the higher root orbitals were optimized. However, convergence was obtained in these canes by freezing orbitals in the lower root for a few iteration and the eliminating the conatraint. In the cases where the apparent variational collapse was a result of a poor el ice of starting orbitals, thia procedure works ues However one must be careful that this procedure does not lead to a local minime. We should also note that we have found corresponding orbitale very useful in cosparing two aets of orbitals. For example, by computing the corresponding orbicals between the lowest root and a root jus: is it undergoes variational collapse, it becomes trivial to observe which orbital or orbitala differ in the two statea.

The prosedure discuased in this paper are based on the asaumption thet MCSCF calculations containing more than a few hundred CSF's are not routinely posaible, however Schaefer ${ }^{10}$ has recently reported on MCSCF including wore than $10,000 \operatorname{CSF}^{\prime}$ s Since Schaefer is using a first order methad to optimize the orbitals, it is not clear that reasonable convergence will be obtained for a CI (SD) usIng a general MCSCF reference. Second order MCSCF techniques ${ }^{2}$ have been shown to provide excellent convergence for a general $1 i$ st of CSF's and this method in principle could be used to treat problems including large numbers of CSF's. However, the amounc of work needed to construct the Hessian and solve the simultaneoua equations could become prohibitively large. If these techniques lead to the ability to routinely perform very large MCSCF calculations, the need to perform a separate CI calculation ulll be eliminated for most calculations. However, the procedurea described will still be useful in decermining the list of reference configuractons and an inftial set of orbitals for the larger MCSCE:

REFERENCES

${ }^{1}$ H. F. Schaefer, III, R. H. Klemm, and F. E. Harr1s, Phys. Rev, 181, 137 (1969).
Z. H. Lengsfield, J. Cheru. Phys, in press. While much work has been performed on second order MCSCF cheory, this appears to be one of the tew completely general second-order MCSCF procedure.
${ }^{3}$ P. J. Hay and T. H. Dunning, J..., J. Chern. Phvs. 64, 5077(1976).
${ }^{4}$ K. K. Docken und J. H1nze, J. Chem. Phys. 59, 6424(1973).
${ }^{5}$ A. Banerjee and F. Grein, J. Chen. Phys. 66, 1054(1977).
${ }^{6}$ b. Liu Private Commanicationi
${ }^{7}$ R. C. Raffenetti, K. Hsu, and I. Shavitt, Theor. Chim. Acta 45, 33(1977).
${ }^{8}$ C. W. Bauschlicher, B. H. Lengafield, D. M. Silver, D. R. Yarkony, unpublished work.
 483(1961), R. L. Martin and E. R. Davidson, Phys. Rev. Al6, 1341 (1977).
10 B. R. Brooks, H. D. Laidig, P. Saxe, and H. F. Schaefer, J. Chem. Phys. 723837 (1980).

the projection of broken symmetry wavefunctions
 Richard L. Martin
 Theoretical Div* sfor, MS-569
 Los Alamos Scientific l.aboratory
 Los Alamos, NM 97545

I. INTRODUCTION

There are a number of problems for which the simplest qualitatively acceptable wavefunction is written as a innear combination of nonorthogonal Slater determinants; i.e. In valence bond (VB) form. For example, Jackels and Davidson ${ }^{1}$ showed that certain portions of the NO_{2} potential energy surface are preferably described as "resonance" corbinations of the two valence bond structures.

thich arise as broken (spatial) symmetry solutions te the Hartree-Fock equacions. The princtpal adventage of a nonorthogonal expansion of this form is that all of the polarization, or left-right correlation effects, impilicit in the broken symuetry deteminant are included in the uavefunction; a CL expansion based on symaetry restricted orbitals requires high order excitations in order to span the same space. On che other hand, if the VB structures need to be "dressed" with additional correlations, a nonorthogonal expansion quickly becomes impractical. A coupromise MCSCF/CI expansion fur NO_{2} has been auggested by Engelbrecht and Liu, ${ }^{2}$ and is discussed elsewhere in these prnceedings. In the present contribution, ${ }^{3}$ the encouraging results of an application of the valence bond model to the low-lying excited states of pyrazine and para-benzoquinone are presented, and the features of the correspondlan otbital transformation of Amos and Hall' which make these "projected hroken symmerry," or "projected spatiallyuncestricted Hartree-Fock," calculations passible for large systems are outlined. ${ }^{5}$

II. CORRESPONDING ORAITALS

Let the orthonormal set of n occupied spin otbitols which define the left-hand determinant, Ψ_{L}, be denoted by $\left\{\psi^{\ell} 1\right.$, and those defining the right-hand determinant ψ^{0}, by $\left\{\psi^{\ell}\right\}$. These tuo sets need not be related, but for he applications considered here they are connerted hy a symmetry operation. in NO_{2}. e.g.,

$$
\psi_{1}^{r}=\hat{\sigma}_{y z} \nu_{i}^{2},
$$

where $\hat{d}_{x z}$ is the reflection operator which sends one oxygen tinto the ocher. The problems associated with evaluation of the Hamiltanian between the two determinants arise hecause the two sets are not mutually orthngonal. Nos and Hall, ${ }^{4}$ hovever, showed that it is possible to generate two new sets of orbitats, defined by the unitary transtormations

$$
\left(\phi_{1}^{2}, \phi_{2}^{\ell}, \ldots \phi_{n}^{l}\right)=\left(\psi_{1}^{2}, \psi_{2}^{2}, \ldots \psi_{n}^{2}\right) \underline{U} .
$$

and

$$
\left(\phi_{1}^{r}, \phi_{2}^{r}, \ldots \phi_{n}^{r}\right)=\left(\psi_{1}^{r}, \psi_{2}^{r}, \ldots \psi_{n}^{r}\right) \underline{v},
$$

such that the transformed overlap matrlk

$$
S_{i j}^{*}=\left(\phi_{i}^{q}, \phi_{i}^{r}\right)=\delta_{1 j} d_{i}
$$

is diagonal. The matrices \underline{U} and \underline{V} are determined by solving the eigenvalue equations

$$
\begin{aligned}
& \underline{S S}^{+} u_{i}=d_{i}^{2} u_{i} \\
& \underline{S}^{+} \underline{S}_{i}=d_{i}^{2} v_{i}
\end{aligned}
$$

with

$$
\begin{aligned}
& \underline{v}=\left(u_{1}, u_{2}, \ldots u_{n}\right) \\
& \underline{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right) .
\end{aligned}
$$

In this basis, the determinantal overlap is stmply

$$
S_{L R}=\left(\Psi_{L}, \psi_{R}\right)=\prod_{i}^{p_{q}} d_{i}
$$

and the Hamiltonian matrix element is

$$
\begin{align*}
H_{L R} & =\left(\psi_{L}, H \psi_{R}\right) \\
& =\sum_{i}^{p+q} D^{-i} h_{i i} \\
& +\frac{1}{2}\left\{\sum_{i j}^{p+q} D^{-i, j_{j}}-\sum_{i j}^{p} D^{-i j_{K}}{ }_{i j}-\sum_{i j}^{q} D^{-i j_{K_{i j}}}\right\} \tag{1}
\end{align*}
$$

where p and q refer to the number of a and E spinarbitals, respectively, and

$$
\begin{aligned}
& D^{-1}=\prod_{k \neq 1}^{p+q} d_{k}
\end{aligned}
$$

$$
\begin{aligned}
& h_{i i}^{\prime}=\int \Phi_{i}^{\ell}(1) h \phi_{i}^{r}(1) d T_{1} . \\
& I_{i, j}=\iint \phi_{i}^{2}(1)_{\phi_{i}}^{r}(1) \frac{1}{\bar{r}_{12}} v_{j}^{2}(2) \phi_{j}^{r}(2) d \tau_{1} d \tau_{2} \\
& p_{i j}^{*}=\iint \phi_{i}^{2}(1) \phi_{j}^{2}(1) \frac{1}{r_{12}} \nu_{j}^{r}(2) \phi_{i}^{r}(2) d \tau_{i} d \tau_{2}
\end{aligned}
$$

In practice, Eq. (1) is evaluated from appropriately defined transition density matrices and the original one- and two-electron integral list. The tithe requited for the entire procedure is roughly equivalent to that needed for an SCF Iferation.

Before discussing the results, it is important to point out that the corresponding orbitals also aid in the interpretation of the wavefunction. ${ }^{6}$ Because they maximize the overlap between pairs, they bring the two orbital sets into maximum justaposicion without changing either wavefunction, thus permitting a straightforward analygis of what really differs between Ψ_{L} and Ψ_{R}. This is illuscrated in Table I, where the eigenvalues d_{i}^{2} are presented for the corresponding orbitals associaied with the mirror image ${ }^{2} A$ ' broken symmetry solutions in NO_{2}. Notice that only two orbital pairs have $d_{i}^{2}<0.99$. The $9 a^{\prime} B$ set describes the "unpaired" a electron. One pariner is a coubination of p_{y} and p_{z} functions strongly localized on the left oxygen, the other nember is its ${ }^{\prime}$ mirror fmage. In terms of the original broken symetry canonical molecular orbitals, it is predominantly the open shell 9 a orbital (88z), with some admixture of 8a* (7\%), and 7a* (5z). The oniy other orbital to markedly differ betucen Ψ_{L} and ψ_{R} is the $2 a^{-"}$ orbital, an anti-bonding cowbination of $O_{p x}$ orbitals. tt is certataly not surpetising that a π orbital is the most responsive (polarizable) to the localization of the a electron.

Table t also contains an amalysis of che ${ }^{3}{ }^{\prime \prime}$ broken symmetry determinant in c_{2}, a mixture of ${ }^{3} A_{2}\left(n_{-}-\pi \hbar\right)$ and ${ }^{B_{1}}\left(n_{+}-\pi^{*}\right)$. If differs from NO_{2} in two najor respects. First of all, the localization is not so strong. The unpaired o electron has substantial anplitude on the carbon center. Secondly, the polarization effects are limited to the σ space. The open shell π orbital is nearly a symerty function.

Table i. Corcespondeng Orbital Overlap Integrale ${ }^{\text {a }}$ In MO_{2} ($\left.^{2} \mathrm{~A}^{\mathrm{A}}\right)$ and $\mathrm{CO}_{2}\left({ }^{3} n^{\prime \prime}\right)$

Ortstal	$\mathrm{NO}_{2}\left({ }^{2} A\right)$		$\mathrm{CO}_{2}\left({ }^{3}{ }^{\text {a }}\right.$)	
		\ldots		8
(1a', 1a')	1.0000	1.0000	1.0000	1.0000
(2a', 2a')	1.0000	1.00000	1.0000	1.0000
(39'.3a')	1.0000	1.0000	1.0000	1.0000
(4a', 4a')	1.0000	1.0000	1.0000	0.5999
(5a', $5 a^{\prime}$)	0.9799	0.9999	1.0000	0.5798
($65^{\prime \prime}, 60^{\prime}$)	0.9999	0.9999	0.9999	0.9298
(7a ${ }^{\text {, } 7 \mathrm{~s} \text { ') }}$	0.9994	0.9955	0.9985	0.9920
(Ba'8a')	0.9977	0.9941	0.9972	0.5086
(9a',9a')	0.9903	0.0470	0.7164	
(10a'.10n')	0.9886			
(1a", la")	0.9997	0.9992	0.9999	0.5959
($2 a^{\prime \prime}, 2 a^{\prime \prime}$)	0.8597	0.8597	0.9099	0.9973
(32", ${ }^{\text {(2) }}$)			0.9992	
The calculationa were pertorned with the bases of ref +2 at $\mathrm{C}_{2 \mathrm{y}}$ geonerries: $\mathrm{HO}_{2}, \overline{\mathrm{x}}=2.45 \mathrm{~s}_{0}, \mathrm{O}=100^{\circ} ; \mathrm{CO}_{2}, \mathrm{x}=$ $2.39 a_{0}, 0=128^{4}$.				

These examples should demonstrate that an analysis of this sort has advantages for defining a suitable one-election basis for further ci. ${ }^{7}$ In much the same spirit, Martin, Davidson, and Eggers ${ }^{8}$ have compared SCF wavefunctions in the absence and presence of a perturbing electric field in order to define an appropriate CI basis Similarly, a corresponding orbital comparison of the symatry restricted Hartree-Fock (SRHF) decerminant with the braken symetry wavefunction should be of assistance in determining an active space for an MCSCF calculation.

tII. localized excitations in pyrazine and paraBENZOQUINONE

Table II sumizizes a recent theoretical study ${ }^{3}$ of the $1,3(n \rightarrow \pi k)$ excited states and the ${ }^{2}$, ionic states of para-benzoquinone (PBQ), $0=>0$. The SCF calculations wete performed at the experiwental geometry, and, aside fron silght differences atributable to the larger (double zeta) Gaussian basis set uaed in the present work, reinforce the earlier conslusions of Jonkman." The "anomalous" correlation energes associated with the symmetry restricted $\triangle S C F$ results (SRHF, colum 1) are removed by the broken symetry wavefunctions (colunn 2). The $n+\pi$ excitation energies are nou roughly correct, and the ionization potential is underestimated by ${ }^{2} \mathrm{eV}$, an amount typical of an oxygen lone pair corralation energy. The g-u splittinga in the VB approximation are of the order of a few hundred vavenumoers, nearly an order of magnitude smaller than the SRHF results, and in general qualitative agreement with the experimental observations. ${ }^{10}$ Note that the gerade coupling of the excitations lies lover in each case.

Table if Exatitacion mangion in PM (ew) ${ }^{4}$

Trasation		$\operatorname{scfe}^{(c)}{ }_{20}$)	S_{5}	vi	Eupt.
${ }^{3} \mathbf{n}=1{ }^{1}$	$4.2{ }^{4}$	1.91	*6. 62×10^{-3}	1.90	$2.32{ }^{\text {b }}$
	-1000 m^{-1}			-2500 ${ }^{-1}$	$11 \mathrm{c}^{-1}$
${ }^{1}\left(\mathrm{n}=\mathrm{C}^{\prime}\right)^{1}$	4,0)	2.16	4.35×10^{-3}	2.14	1.69
	+1100 ks^{-1}			$\cdot 100 \mathrm{~m}^{-1}$	$-\operatorname{skcec}^{-1}$
${ }^{2}(\mathrm{n})$	11.30	6.98	47.77×10^{-3}	8.88	9.999
	*2100cs ${ }^{-1}$			+650cm ${ }^{-1}$	$+2400 \mathrm{~cm}^{-1}$
*A1] eatculations verie prriformed at the expertmental geometry with ond the wisond ta the pativ aplititing in ca^{-1}.					

The interretion between the localized excitations is larger in pyrazine, 以 cause the distance between the nitrogen lone pairs is smaller, and the overlap between them larger. Although the systen is thus closer to a "delocalized" (MO) limit, Hadt and Coddard ${ }^{12}$ discovered that the SCF equations scill prefer broken symmetry solutions for the ${ }^{1,3}(n+\pi *)$ and ${ }^{2} n$ states. Table III shows that the VB model accurately predicts the excitation energy to the lowest singlet and tripler but it consistently underestimates the experimental splitings by about 0.5 eV . The CI excitation energies of Wadt and Goddard, ${ }^{11}$ estimated from independent σ and π space calculations in the SRHF one-electron basis, fall roughly half-way between the vB model and experiment. It is interesting to note that the SRHF splittings in this case are in good agreement with experiment; the net effect of the broken symetry is simply to depress the center of gravity of the excitation energy by $1-2 \mathrm{oV}$. Jackeis and Davidson ${ }^{1}$ observed similar behavior for the two lowest electronic states of NO_{2}.

In sumary, the VB approximation appears to provide reasonably accurate excitation energles and splittings for only a modest increase in computational effort. If more accurate studies are required, the natural orbitals of the VB wavefunction should provide a good one:-election basis for more sophisticated CI calculations. The coupling of the localized excitations with nuclear distortions of blu symmetry have been examined for the ${ }^{3}(n \times \pi k)$ states of PBQ and the ${ }^{1}(n-\pi \pi k)$ states of pyrazine and will be reporced elsewhere. ${ }^{12}$

The author is indebred to E. R. Davidson, D. A. Kleier, and W. R. Wadt for many helpful discussions. This work wis performed under the auspices of the Deparment of Energy.
table ift. Eacitation Energies in pyrazine (ev) ${ }^{0}$

Franstion	$\operatorname{SCF}\left(\mathrm{O}_{2 h}\right)$	$507\left(\mathrm{C}_{2 v}\right) 5_{14}$	VB	Expt.
$3_{(0+2)}$	4.60	$3.60=.197$	3.24	J. 2^{6}
	6.28		4.21	$4.7{ }^{\text {c }}$
${ }_{(0+)^{*}}{ }^{1}{ }^{14}$	5.36	$4.25 \quad . .159$	3.82	$3.8{ }^{6}$
${ }^{1} \mathrm{~T}_{2 \mathrm{~g}}$	7.18		4.84	25.58
$2(0)$	11.32	9.27 .227	日.81	$9.63{ }^{\text {e }}$
	13.55		10.00	$11.35^{\text {e }}$

All calculationn were performed at the expertatintal geapatry with a double-xets qualicy Gasilag basis set (are ref. ti). The excitation asargion are relotive co a ${ }^{\boldsymbol{d}^{\prime}}{ }_{\mathbf{g}}$ ground acate ciergy of $-262.58320 \mathrm{a} . \mathrm{u}$.
${ }^{6}$ K. K. Innti, J. P. Iyme, and I. G. Ross, J. Mol. Spectrose. 22, 125 (1967); C. Yridh, L. Aabriak, B. D. Jonsitin, and E. tindholm, Int. J
 Chriatophoros, J. G. Carter, and D. L. HoCorkle, J. Chem. Pbus. 58, 2110 (1973).

d. H. Cordas and W. A. Hocequ, private commbitiration ta L. R. Unde, quoted ia tef, 12
 (1*70); Maiv, Chme deta. 55, 255 (1972).

References

1. C. F. Jackels and E. R. Uovidson, J. Chem. Phys. 69, 2908 (1976).
2. L. Engeibrecht and B. Liv, to be published.
3. R. L. Martin, submitted to J. Chem. Phys.
4. A. T. Amos and G. G. Hall, Proc. R. Soc. A263, 483 (1961).
5. This transformation has also been used recently to simplify the calculation of transition moments becween nonorthogonal deteminants: R. Bair and W. A. Goddard III, Phys, Rev. A, xxx (1980), B. Lengsfeld, private commication.
6. R. L. Martin and E. R. Davidson, Phys, Rev. A 16, 1341 (1977), and references theretr.
7. L. E. Nitzche and E. R. Davidson, Chem. Phys. Letters 58, 171 (1979).
8. R. L. Martin, E. R. Davidson, and D. F. Eggers, Chen. Phys, 38 341 (1979).
9. H. E. Jonkman, G. Van der Velde, and H. C. Nieumpoort, SRC Atlas Symp. No. 4, Oxford, 1974: H. T. Jonkman, Broken Orbital Symetry in Excited and Lonized States of Molecules. Ph.D. Thesis, University of Gronigen. 1975.
10. J. Goodman and L. E. Brus, J. Chem. Phys. 69, 1604 (1979); G. Ter Horst and J. Komandeur, Chem. Phys. 44, 287 (1979); and references therein.
11. W. R. Wadt and W. A. Goddard, J. Ann. Chem, Sos. 97. 2034 (1975); W. A. Wadt, W. A. Goddard, and T. H. Dunning, J. Chem. Phys. 65, 438 (1976).
12. D. A. Kleter, R. L. Marcin, and W. R. Wade, manuscripi in prepartion.

A PRACTICAL GUIDE TO APPLICATIONS OF THE MCSCF METHOD

John H. Detrich and Arnold C. Wahl

Science Applications, Inc.
Oak Brook, [11inois 60521

1. INTRODUCTION

The considerable virtues of the MCSCF method are now well recognized and need not be exherted here. Also the formal analysis and its receni development underlying MCSCF technology is well covered in the
major papers of this workshop and in the literature ${ }^{1-21}$ and will not be repeated. Rather, this paper will concentrate on the practical application of the MCSCF method with specific attention to three important and somewhat subjective questions:

1) the choice of configurations
2) the choice of initial orbitals, and
3) the design of the basis set.

We will begin with an inventory of MCSCF calculations intended to illustrate various choices made on specific systems and to assess how extensively the MCSCF method has been applied (Table I). We shali summarize the choices made in regard to the above three questions in MCSCF caiculations made since 1966. These questions have often been downplayed or oriy vaguely discussed in published work even though they must be faced and are essential to the success and in fact mere execution of any MCSCF calculation. We hope that a guide to this practical experience will prove useful in implementing the new generation of MCSCF technology now under development in various laboratories.

Table I is not intended to be complete however we believe that it is representative of practical MCSCF applications performed during the past one and one half decades. He welcome comments and criticism drawing our attention to calculations and novel ideas we may have missed.

II. APPLICATIONS INVENTORY

It is valuable as a guide and background for current workers to inventory the MCSCF calculations performed to date on various systems using the several MCSCF strategies. In Table 1 we have arranged these calculations in chronological order to track progress and indicated some characteristies of the computations performed. These are:

1) how were the MCSCF configurations chosen.
2) how many configurations were included in the MCSCF proces.
3) how many configurations were included in the CI step.
4) was a potential curve or surface generated.
5) were properties generated.
6)

were excited states handled.

We see from this table that since the first molecular MCSCF calculations there has been a steady evolution and improvement and the method has been applied to excited states, electron affinities, extended to heavy diatomics, and polyatomics , orbital and mixing coefficients have been coupled, more and more configurations have been included in the MCSCF process, and the method has been joined with a larger CI step using the generated MCSCF orbitals (MCSCF/CI) .

An evaluation of each calculation reported will not be made in this paper however it should be pointed out that many of the calculations cited achieved chemical accuracy, some did not, and others were model test calculations. The reader is encouraged to assess for himself from the literature the merits of various approaches.

All of the above represents progress however it is not clear what the most effective thrust of MCSCF technology should be. With this in mind, we will proceed to our discussion.

III. CHOICE OF CONFIGURATIONS

Among the major advantages of the MCSCF method are the possibility of relatively short confinurations list and the resulting chemical interpretability. In Table I the criteria used for the selection of configurations for inclusion in the MCSCF process is indicated. This selection process has ranged from one of trial and error to schemes which incorporate the physics of molecular formation and excitation. Below we give a brief description with key references for each configuration selection scheme:

T\&E: Trial and Error: configurations are tried in the MCSCF list and retained if tiicy produce a lowering of the energy or significant mixing.

INTU: Intuition: configurations are selected on some chemical or physical basis specific to the particular system under study.

CI-SORT: A CI is performed and configurations with mixing coefficients larger than some threshold are included in the MCSCF list. New MCSCF orbitals are qenerated and sort can be repeated. Usualiy only a few CI iterations are required.
LR-10-A: Left-right in-out, and angular correlation of an electron pair: 3 MCSCF orbitals are chosen to provide these three types of correlation for each electron pairs treated. Often used in selection schemes which follow.

PD: Proper Dissociation: the minimum number of configurations required to dissociate the molecule to Hartree-Fock fragments are included. This concept was introauced in the OVC and GVB methods. It would seem foolish not to include these contigurations in any MCSCF iist.

ODC: Optimized Double Configurations: Proper Dissociation when only 2 configurations are required. 1

OVC: Optimized Valence Configurations: This scherre involves a "base" function which accounts for proper dissociation. In addition there are MECE (Molecular Extra Correlation Energy) configurations which vanish in the dissociated atoms. These include: Interatomic doubles, splitshell charge transfer, and valence charge redistribution terms, The OVC selection scheme has been the most widely applied, 6,22

ICF: Interacting correlated fragments: "designed for weakiy interacting systems" - so far Be_{2} and Mg_{2} and He_{2}. A series of wave functions with increasing levels of correlation. "balanced" inclusion of inter and intrafragment correlation: in the $8 e_{2}$ calculation this is $2 s^{2}+2 p^{2}$ for Be atom and in the Mg_{2} calculation this is $3 \mathrm{~s}^{2} \rightarrow 3 \mathrm{p}^{2}$; for He atom in He_{2} it is $1 \mathrm{~s}^{2}+2 \mathrm{~s}^{2}$ or $2 p^{2}, 23$

FRS: Full Reaction Space. Preceded the CAS model, and is very nearly equivalent to it. The FRS model seems to be mare flexible in that open-shell orbitals in the dominant configuration need not be included in the reaction (or active) orbital spece. 24
CAS: or CASSCF: Complete Active Space SCF method: Basically, specification of the CSF list involves only sya setry specification and orbital lists for inactive (or core) orbitals and active orbitals. The active orbitals generate all possible occupancies and spin-couplings in construction of the CSF list. 25

SRFV: Symmetry Restricted Full Valence: Not completely clear. Apparently includes only molecular orbitals (symetry restricted) which can be manufactured from the valence shells of the constituent atams. 21
PE: Pair excitations. Consists of including configurations generated by replacing each doubly and each singly occupied arbital in the reference configuration, one at a time, by another orbital. 5

INTER: Interatomic excitations only: involves double excitation with each electron coming from separate fragments or atoms. Also referred to as dispersion excitations. 26

INTRA: Interatomic excitations only: involves simultaneous excitation from same fragment or atom. Accounts for changes in atomic correlation which is intiportant for high accuracy and long range potentials. 26

INTER-

GVB: Generalized Valence Bond. In its origi nal fom, this approach deals with the atomic orbital distortions describing bond formation between constituent atoms in the molecule, hence it has mare in comsn with umrestricted Hartree-Fock type appraaches than MCSCF. However, the GYB wave function can be re-expressed as a superposition of configurations and handled by MiSCF methods. This approach has relatively recently been adopted for computational conveniance and brings GVB into the MCSCF mainstream, 28
CI-SEL: Starting with mbasic MC configuration functions (CF) (Proper dissociation, curve crossings, etc.) all singly and double excited CFs are generated, and for each one the $\{m+1$) dimensional Hamiltonian matrix is diagonalized. CFs giving an energy lowering in excess of some threshold are added to the MC list. New MCSCF mixing coefficients and orbitals are generated, and new selections are performed, until the MC list stabilizes. For excited states of a given symmetry, occasional selections for the next. lower root are performed and important CFs are also added to the MC list. 13

ASE: All Single Excitations. Applied to atoms, and consists of including configurations generated by repiacing single orbitals in the reference configuration by a (correlation) orbital. 29

MO-ORDER: Molecular Orbital Order. Assigns rough molecular orbital energies to orbitals on the basis of intiition and experience, then selects configurations with particularly low energy sums. Appears well-adapted to handle neardegeneracy and valence effects. 30

CMC: Complete Multi-Configuration. all double excitations from the reference configuration with singlet spin paring. There appear to be two distinct varients, depending on whether localized or symmetry adopted orbitals are used. 31
BMC: Bond Multi-Configuration. Double excitations to correlate orbital pairs for a single bond, i.e., intrabond correlation, 31

BDMC: Bond and Dispersion Multi-Configuration. Adds to BMC double excitations one each from differing bond pairs, i.e., crossbond correlation. 31

There is much to be learned from the work listed in Table I and the concepts discussed above. Among the most obvious lessons are:

1) Changes in the correlation energy of a properly chosen core can be neglected.
2) It is reasonable as a starting point for the MCSCF/CI procedure to select configurations to actount for the Molecular Extra Correlation Energy (include proper dissociation).
3) Often additiona? configurations must be included to describe significant changes in the intra-atomic correlation energy.
4) High accuracy (better than, 1 ev) requires many more configurations than those prescribed by simple rules. The MCSCF/CI procedure appears to be an effective method for achieving such higher accuracy.
5) Molecular properties can often be affected by configurations which do little to the potential curve or surface.
6) Sometimes even qualitatively correct results cannot be obtained with simple configuration selection rules.
7) What is learned about configuration choice from the first member of an isovalent series can be used efficiently in subsequent members.
8) It is difficult to apply simple configuration selection rules to polyatomic systems.

IV. BASIS SETS FOR MCSCF CALCULATIONS

Most of the art of basis set de'ign developed for single configuration SCF calculations is directly applicable to MCSCF calculations. The reason for this is that effective correlating orbitals span the same space as the orbital they are meant to correlate. Thus basis sets of double zeta quality ${ }^{32}$ with polarization functions are usually adequate. Obvious attention however, must be given to proper design and testing of basis sets for excited states, ions, and weak interactions. For weak interactions the basis set expansion errors in the dissociated atoms must be significantly smaller than the magnitude of the interactions. For heavy atoms this requires basis sets better than double zeta quality. With the expansion method there are often special cases and surprises.

Finally, since it seems to be perennially forgotten, good basis sets are essential for achieving reliable and accurate results. CI or MCSCF procedures, no matter how extensive, cannot compensate for expansion errors in any predictable way.

v. CHOICE OF INITIAL ORBITALS

No single decision is as crucial to the successful convergence of both the SCF and MCSCF processes as the choice of starting orbitals. Many schemes have been tried which include:

1) the use of virtual SCF orbitais,
2) orbitals obtained by maximizing coupling integral between dominant and excited configurations,
3) orbitals obtained by maximizing overlap of correlating orbitals with correlated orbitals.
4) orbitais based on intuition,
5) the concept of in-out, left-right, and angular correlation, and
6) other ideas.

Some of these have been done manually and others automatically programmed. Experience has shown that it is well worth the effort to start the 33 MCSCF process with the converged SCF orbitals. ${ }^{33}$ Also starting guesses can be aided by converged calculations on other states of the same system or other met. ers of an isovalent series. None of the above schemes is fool proof and the construction of initial orbitals in the MCSCF process is clearly an area needing significant attention.

VI. CONVERGENCE AND TIMING

One of the major adyantages of the new MCSCF technology which has been emerging over the past several years is anticipated increases in the efficiency of convergence of the MCSCF process. In order to evaluate and document these performances, some sort of standard test case is required to monitor convergence behavior. Not only is the number of configurations important but also the time required for each interaction and the starting orbitals used. in Table 11 we suggest a list of parameters which should be included in convergence assessment and would be useful to have in the literature. Sample values are given for CN^{-}and CO_{2}^{-}using the CDC 6600 version ${ }^{34}$ of the BISON-MC ${ }^{35}$ code.
VII. FUTURE GOALS

Consideralie attention is being given by several groups to the efficient formalism, implementation, and convergence properties of the MCSCF procedure. We can realistically anticipate continuing improvements and success in these areas. However, it is our belief that more attention is needed in the threez areas which have formed the focus of this paper. Specifically:

1) Systematic configuration selection rules should be developed and explored. Idealiy successful rules should be amenable to automation and be incorporated as user option into the computer program.
2) Systematic initial orbital selection rules should be developed and explored. These aiso should be incorporated into the computer program.
3) Despite our successes, basis set uncertainties for new situations or molecular environments remaln a limitation on accuracy, reliability, and level of confidence. Much greater effort should be given to the development of numerical or semi-numerical procedures for molecules thus eliminating basis set anxiety.

We trope that in this brief contribution to the NRCC-MCSCF workshop that we have drawn your attention to not only past work, but also to several important challenges facing computational chemistry in this new decade.
ACKMOHLEDGFMENTS
We are graieful to our col?eagues for their assistance in assemblin! Table J.

REFEPENCES
i. G. Das and A. C. Wahl, J. Chem. Phys. 44, 87 (1966).
2. J. Hinze and C. C. J. .octhaan, Progr. Theor. Phys. Supp1. 40, 37 (1907).
3. B. Levy and G, Berthier, Int. J. Quantum Chem. 2, 307 (1968),
4. B. Levy, Chem, Phys. Lett. 4, 17 (1969).
5. F. Grein and T. C. Chang, Chem.Phys : Lett.
12. 12, 44 (1971).
6. G. Das and A. C. Waht, J. Chem. Phys. 56, 1769 (1972).
7. K. K. Docken and J. Hinze, J.Chem. Phys. 57, 4928 (1972).
8. G. Das, J, Chem. Phys. 58, 5104 (1973).
9. J. Hinze, J. Chem. Phys. 59, 6424 (1973\}.
10. G. Das, T. Janis and A. C. Waht, J. Chem. Phys. 61, 1274 (1974).
11. F. Grein and A. Banerjee, Int. J. Quantum Chem. 59, 147 (1975).
12. A. Banerjee and F. Grein, Int. J. Qualitum Chem. 10, 123 (1976).
13 A, 8 anerjee and F. Grein, J. Chem. Phys. 66, 1054 (1977).
14. T. C. Chang and H. H. E. Schwartz, Theor.Chim. Acta 44, 45 (1977).
15. P. J. A. Ruttink and J. H. van Lenthe, Theor. Chim. Acta 44, 97 (1977).
16. E. Dalgeard and P. Jgrgensen, J. Chem. Phys. 69, 3833 (1978).
17. E. Dalgaard, Chem. Phys. Lett. 65, 559 (1979)

18 D. L. Yeager and P. Jprgensen, J. Chem. Phys. 71, 755 (1979).
19. C. C. U. Rooth aam J. Detrich and D. G. Hopper, Int, J. Quantum Chem. 513, 93 (1979).
20. K. Ruedenberg, L. M. Cheung and S. T. Elbert, Int. J. Quantum Chem .16, 1069 (1979)
21. B. H. Lengsfield IIl, J. Chem, Phys. 73, 382 (1980).
22. A. C. Wah1 and G. Das, Advances in Quantum Chem. , 5, 261 (1970):
also see calculations on OH and CO iisted in table I and lethods of Electronics Structure Theory page 51,(Plenum 1977.)
23. B. Liu and A. D. Mclean, J. Cherr. Phys. 72, 3418 (1980).
24. K. Ruedenberg and K. R. Sundberg, Quantum Science-Methocis and Structure, J. L. Calais, 0 . Goscinski, d. Linderberg and Y. ährn, Eds. (Plenum, New York, 1976.)
25. B. O. Roos, P. R. Taylor and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).
26. See Calculations on He_{2}, ArH and Be, listed in table I.
27. A. C. Wahl, E. S. Sachs ani \therefore Detrich, Int. J. Quantum Chem. (in press).
28. W. J. Hunt, P. J. Hay and H. A. Goddard
LII., J. Cherm. Phys. 57, 738 (1972).
29. F. Grein, Int. J. Quantum Chem. 5, 165 (1971).
30. W. B. England, Chem. Phys. (in press).
31. (1) A. Veillard, Theoret.Chim. Acta 1, 133 (1967).
(2) 8. Levy, Int. J. Quantum Chem. 4, 2:7 (1970).
B. Levy, Chem. Phys. Lett. 18,59 (1973)
32. By double zeta quality we mean 2 or more functions for each loop of the orbital. For liaussians this means two or more contracted basis functions.
33. There are notable cases where this is not true, for example 0_{0}. However, usually the single Hartree-Fock configuration is the dominant one in the CI expansion and it is well worth the effort of converging it first.
34. The BISON-MC MCSCF code was linked to POLYATOM by Allan Hinds and installed on the CDC6600 by Richard Hosteny.
35. G. Das and A. C. Wahl, ANL Report (1972)
table i. a directory of atomic and moletular mcscf and mcscf/ci calculations

Atom or Molecule	Configuration Choice Criteria	Number of MCSCF Configurations	Number of MCSCF/CI Configurations	Potential Curve or Surface	Properties	Excited States	References
N		2				No	D.R. Hartree, H. Hartree and B. Swirles, Phil. Trans. Roy. Soc. (London) A238, 229 (1939).
He		6				No	J. Vizbaraite, J. Sirancs, V. Kaveckis and A. Jucys, Opt.i Spectroscopiya, 1,277 (1956).
Li		5				Ho	P. Jucys, J. Vizbaraite, J. Batarunas and V. Keveckis, Lietuvos TSR Mokslu, Akad. Darbai, Ser. $\mathrm{B} 2,3$ (1958).
Be		10				No	
H_{2}	PO	2		Yes	No	No	E.R. Davidson and L. L. Jones, J. Chem. Phys. 371918 (1962).
H_{2}	ODC OVC	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	No	G. Das and A. C. Wah1. J. Chem. Phys. 44, 87 (1966).
Li_{2}	$\begin{aligned} & \text { ODC } \\ & \text { OVC } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		Yes	Yes	Ho	G. Das and A. C. Wah1, J. Chem. Phys. 44,87 (1966).
F_{2}	ODC	2		Yes	Yes	No	G. Das and A. C. Wah1, J. Chem. Phys. 44, 87 (1966).
$\mathrm{Be}-0$ isoelectronic series	$25^{2}+2 p^{2}$	2			No	No	E. Clementi and A, Veillard J. Chem. Phys. 44, 3050 (1966).
Li_{2}	OVC	7		Yes	Yes	No	G. Das, J, Chem. Phys. 46, 1568 (1967).
$\begin{aligned} & \mathrm{He}, \mathrm{H}^{-}, \mathrm{Li}^{+}, \mathrm{Be} \\ & \mathrm{~N}^{5+}, \mathrm{B}^{3+}, \end{aligned}$	$+ \text {, INTU }$	$\begin{gathered} 10,10,9,9,9,9, \\ 9,9 \end{gathered}$			Vartous	No	N. Sabelli and J. Hinze J. Chem. Phys. 50, 684 (1969).
H_{2}	ODC	2		Yes	Yes	Yes	W. T. Lemke, P. G. Lykos, and A. C. Wahl, J. Tnem, Phys. 5l, 5635 (1969).
F_{2}	OVC	6		Yes	Yes	No	G. Das and A. C. Wehl, J. Chem. Phys. 56, 3532 (1972): Phys. Rev. Letts. 2月, 440 (1970).

Atom or Molecule	Configuration Choice Criteria	Number of NCSCF Configurations	Number of MCSCF/CI Configurations	Potential Curve or Surface	Properties	Excited States	References
He_{2}	INTER INTRA	$\begin{array}{r} 9 \\ 20 \end{array}$		Van der Haals	No	No	P. Bertoncini and A. C. Wah1, Phys. Rev. Letts 25, 991 (1970).
$\mathrm{H}_{2} \mathrm{CO}_{2}$	CMC BDAC			No	No	No	B. Levy, Int. J. Quant, Chem. 4, 297 (1970).
HaLi	$\begin{aligned} & \text { BMC } \\ & \text { OVC } \end{aligned}$	4		Yes	Yes	No	P. J. Bertoncini, G. Das, and A. C. Wahl, J. Chem. Phys. 52. 5112 (1971).
LiHe	INTER INTRA	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		Van der Hals	Ho	No	G. Oas and A. C. Wah?, Phys. Rev. A4, 825 (1971).
$\mathrm{He}, \mathrm{Li}, \mathrm{Be}$	ASE \& PE	3,5			Ho	Mo	F. Grein and T. C. Chang, Chem. Phys. Letter5, 12, 44 (1971).
LiH	INTER	15,5,4,5		Yes	Various	Yes (Weighted avg. ref)	K. K. Docken and J. Hinze, J. Chem. Phys. 57, 4928, 4936 (1972).
He, Be	ASE \& PE	2-7			No	Yes	T. C. Chang and F. Grein, J. Chem, Phys., 57, 5270 (1972).
B	CAS	28,17,26,12	.		05c. Strengths	Yes	$\begin{aligned} & \text { L. Sibincic, Phys. Rev.A5, } \\ & 1150(1972) \text {. } \end{aligned}$
N	Intu, te	9,5			Fine structure	No	J. Detrich. Phys. Rev. AS, 2014 (1972).
0_{2}^{-}	OVC-INTRA		1	No	Electron affinity	No	W. T. Lemke, G. Das, and A. C. Wahl, Chem. Phys. Lett. 14, 310 (1972).
0_{2}^{-}	PD	8		Yes	No	Yes	M. Krauss, D. Neumann, A. C. Wahl, G. Das, \& W. Lemke, Phys. Rev :i2, 69 (1973).
HH	OvC	8		Yes	Yes	No	W. J. Stevens. J. Chem. Phys. 58, 1264 (1973).
CH	OVC	8		Yes	yes	No	P. Julienne and M. Krauss, Molecules in the Environment, J. Wiley Page 354 (1973).
	CMC			No	No	No	B. Levy, Chem. Phys, Lett. 1859 (1973)
$\mathrm{C}_{2} \mathrm{H}_{4}$	BMC						182 59 (1973).
$\mathrm{C}_{2} \mathrm{H}_{6}$	BDMC						
$\mathrm{H}_{2} \mathrm{O}$	OVC	8		Ves	No	Yes	R. P. Hosteny, A. R. Hinds, A. C. Wahl \& M. Krauss, Chem. Phys. Lettr. 23, 9 (1973)
Li, Be, B, C	INTRA	1-8		No	Polarizabilities	No	A. J. Stevens \& F. P. Billingsly, Il Phys. Rev. A82,236 (1973).
Be-F	ASE	3-4			No	No	F. Grein and T. C. Chang, J. Phys. B. Atom, Molec. Phys. 6, L237 (1973).

Atom or Molecule	Configuration Choice Criteria	Number of MLSCF Configurations	Number of MCSCF/CI Configurations	Potential Curve or Surface	Properties	Excited States	References
CH	InTU	8	4147	Yes	various	No	G. C. Lie. J, Hinze and B. Liu, J. Chem. Phys. $59,1872,1897(1973)$.
$\begin{aligned} & \mathrm{CN} \\ & \text { A10 } \end{aligned}$	OUC OVC	$\begin{aligned} & 17 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	G. Das \& A. C, Wahl, J. Chem. Phys. 61 12/4 (1974).
ArH	$\begin{aligned} & \text { INTER } \\ & \text { OT } \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \end{aligned}$		Van der Naals	$\begin{aligned} & \text { Cross } \\ & \text { Section } \end{aligned}$	Ho	A. F. Wagner, G. Das and A. C. Wah1. J. Chem. Phys. 60, 1885 (1974).
Ne_{2}	INTER	9		Van der Wals	Yes	No	W. J. Stevens, A. C. Wahl, H.A. Gardner and A. M. Karo, J. Chem. Piys. 60, 2195 (1974)
OH	OVC	14		Yes	Yes	No	W. J. Stevens, G. Das, and A. C. Waht, D. Meumann ana M. Krauss, J. Chem, Phys. 61, 3686 (1974).
FH	ove	8		Yes	Yes	No	D. Neumam and it. frauss, Mol. Phys. 27917 (1974).
CO	OVC	7		Yes	Yes	No	F. P. Billings ley and M. Krauss J. Chem. Phys. 60, 4130 (1974).
co	OVC	9		Yes	Yes	to	F. P. Billingsley and M. Kraus 5 , J. Chem. Phys. 50,4130 (1974).
NO^{+}	OVC	9		Yes	Yes	No	F. P. Billingsyey and M. Krauss, J. Chem. Phys. 60, 2767 (1974).
He-F	ASE \& PE	2-4			Ho	No	F. Grein and A. Banerjee, Chem. Phys. Lett. 25, 255 (1974).
Be	INTU	2-5			No	Yes	F. Grein and A. Banerjee, Chem. Phys. Letters, 31, 281 (1975).
Li, ${ }^{\text {B }}$	tnTu	2-8			No	Yes	F. Grein and A. Banerjee, Int. J. Quartum, Chem, Symp. 9, 147 (1975).
0	INTU, TE	10			Fine structure	No	J. Detrich, Phys. Rev. All, 1498 (1975).
NO_{2}	ove	18	99	Yes	Yes	Yes	G. D. Gillespie, A. V. Khan. A. C. . 'hl, R. P. Hos teny, and M. Kraus 5, J. Chem, Phys. 63, 3425 (1975).
VH	OVC	4		Yes	Yes	Yes	G. A. Henderson, G. Das, and A. C. Wahl, J. Chem, Phys. 63, 2805, (1975).
$\mathrm{Li}_{2} \mathrm{H}$	IMTU	8	30	Yes	Ho	Yes	W. B. England, N. H. Sabelli, and A. C. Wah1, J. Chem. Phys. 63. 4596 (1975).

Atom or Molecule	Configuration Choice Criteria	Number of MCSCF Configurations	Number of MCSCF/CI Configurations	Potential Curve or Surface	Properties	Excited States	References
CO_{2}	CI-SORT	5	200	110	Yes	Yes	W. B. England, B. J. Rosenberg, P. J. Fortune, and A. C. Wahl, J. Chem. Phys. 65, 694 (1976).
HgH	INTER INTRA	7		Yes	Yes	Yes	G. Das, and A. C. Wah1, J. Chem. Phys. 64, 4672 (1976).
$\mathrm{H}_{2}{ }^{+}$	CI-SORT	17	99	Yes		Yes	P. J. Fortune, 3. J. Rosenberg, and A. C. Wah1, J. Chem. Phys. f5, 2201 (1976).
OH	nor	17	61	Yes	Yes	No	J. O. Arnold, E, E. Whiting, and L. F. Sharbough J. Chem. Phys. 64, 3251 (1976).
NH	Cl-SEL	14		Yes	Yes	Yes	A. Banerjee and F. Grein, J. Chem. Phys. 66, 1054, 2569 (1977).
Na_{2} +	ovc	8		Yes			H. J. Stevens, M. M. Hessel, P. J. Bertoncini and A. C. Wahl, J. Chem. Phys. 66, 1477 (1977).
$\mathrm{NO}_{2}, \mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}^{-}$	CI-SDRT	15	99	Hio			G. Das, A. F. Wagner, and A. C. Wah1, J. Chem. Phys - 68, 4917 (1978).
ClO	OVC	61	825	Yes	Yes	No	J. $0:$ Arnold, E. E. Whiting and S. R. Langoff, J. Chem. Phys. 66, 4459 (1977).
LiH_{2}	INTU, TE	3.4	168	Yes	No	Na	P. J. A. Ruttink and J. H. . a Lengthe, Theoret. Chem. Acta 44, 97 (1977).
Li_{2}	OVC			Yes			M. L. 01son and O. O. Konowalow, Chem. Phys, 21, 393 (1977) ibid. , 22, 29 (1977); D. D. Konowalow and M. L. Olson, J. Chem. Phys. 67. 590 (1977); 71, 450 (1979).
I_{2}	OVC-INTRA			Yes		Yes	G. Das and A. C. Hahl, J. Chem, Phys. 69, 53 (1978).
LiH_{2}	OVC	10		Yes	$\begin{aligned} & \text { Cross } \\ & \text { Section } \end{aligned}$	No	A. F. Wagner, A. C. Wahl A. H. Karo, and R. Kreijci J. Chem. Phys. 69, 3756 (1978).
HD_{2}^{+}	InTU, TE	2		Yes	No	No	J.H. van Lenthe and P.J.A Ruttink Chem. Phys. Lett. 56, 20 (1978).
0_{2}^{-}	OVC + INTRA	76		Yes		Yes	G. Das, A. C. Wahl, H. T. Lemke and W. C. Stwal ley J. Chem. Phys. 68, 4252 (1978).
$\mathrm{HeH}, \mathrm{NeH}, \mathrm{ArH}$ $\mathrm{KrH}, \mathrm{XeH}$	INTER INTRA INTSR-INTRA			Van der Waals	Cross Section	No	G. Das, A. F. Hagner, and A. C. Wah1, J. Chem. Phys. 68, 4917 (1978).
NH	CI-SEL	9,13		Yes	Yes	Yes	A. Banerjee and F.Grein, Chem.「hys. 35, 119 (1978).

Atom or Molecule	Configuration Choice Criteria	Number of MCSCF Configurations	Number of MCSCF/CI Configurations	Potential Curve or Surface	Properties	Excited States	References \}
CaO	INTU	2		Yes	No	No	C. W. Bauschlicher and D. R. Yarkony, J. Chem. Phys. 68, 3990 (1978).
KOH	MO Order	7	1465	Yes	Yes	No	W. England, J. Chem. Phys. 68, 4898 (1978).
$\mathrm{C}_{2} \mathrm{H}_{4}$	FRS			Yes	No	No	L. J. Cheung, K. R. Sundberg, and K. Ruedenberg J. An. Chem. Soc. 100, 8024 (1978), Int. J. Quantüm Chem. 36, 1103 (1979).
$\mathrm{C}_{3} \mathrm{H}_{6}$							S. Kato and k. Morokuma, Chem. fhys. Lett. 65,19 (1979).
H_{2}	OVC	20		Yes			D. Neumann and M. Krauss, Mr' Phys. 37, 1661 (1979).
0_{2}^{+}	PD	12	3854	No	Transition Moments	No	K. Tanka and M. Yoshimine, J. Chem. Phys. 70, 1626 (1979).
Sio	lintu	45	2500	Yes	No	No	S. R. Langhoff and J. O. Arnold J. Chem, Phys. 70, 852 (1979).
CF	GvB	2-8		Yes	Yes	No	T. H. Dunning, Jr., W. P. White R. M. Pitzer, and C. W. Mathews, J. Niol. Spect. 75, 297 (1979).
CO_{2}	Ci_{I}-Sort	15	3573	No	Yes	Yes	W. B. England and W. C. Ermler, J. Chem. Phys. 70, 1711 (1979).
Na_{2}	OVC	12		Yes	Yes	Yes	D. D. Konowalow, M. E. Rosenkrantz, and M. L. 01san, J. Chem. Phys. 72, 2612 (1980).
$\mathrm{C}_{3} \mathrm{H}_{4}$	INTU, TE	10	2047	No	Yes	No	J. H, van Lenthe and J. L. M. Smits, Recueil, J. Roy, Retherlands Chem. Soc. 99, 130 (1980).
CuO	PD	2		Yes	Yes	No	D. H. W. den Boer and E. W. Keleveld, Chem. Phys. Lett. 69, 389 (1980).
Q_{2}	CAS			No	No	Yes	D. L. Yeager and P. Jorgensen, Mol. Phys. 39, 587 (1980).
Be		\checkmark		No	No	Yes	D. L. Yeager and P. Jorgensm, Mol. Phys. 39, 487 (1980).
Be0		1,3		No	No	Yes	C. W. Bauschlicher, Jr. and D. R. Yarkony, J. Chem. Phys. 72, 1138 (1980).
Li_{2}	GVB	2		No	No	Y 2 s	B. H. Lengsfield 11I, J. Chem. Phys. 73, 382 (1980 ;.

Atom or Molecule	Configuration Choice Criteria	Number of MCSCF ronfigurations	Number of MCSCF/CI Configurations	Potential Curve or Surface	Properties Exa	Excited States	References
Li_{4}		4		No	No	Yes	B. H. Lengsfield III, J. Chem. Phys. 73, 392 (1980).
Be 0	SRFV (CAS)	81		No	No	res	B. H. Lengsfield III, J. Chem. Phys. 73, 382 (1980)/
CaO	MO Order	8	6102	Yes	Yes	Yes	W, B. England, Chem. Phys. in press).
$B e_{2}$	CAS	1832	11688	Yes	No	No	Blomberg, Siegbahn and Roos (pre-print).
Be		106	1148		No	Yes	R. Shepard \& J. Simons (preprint).
$\mathrm{C}_{5} \mathrm{H}_{4}$	IHTU	2		Yes	No	No	R. Shepard and 3 , Simons (preprint).
$\mathrm{C}_{3} \mathrm{H}_{2}$	CI-SCRT	6,4	100	Yes	No	No	R. Shepard, A. Banerjee and J. Simons (pre-print).
N_{2}	CAS	726,948,950		Yes	No	Yes	B. Roos (pre-print).
CCO	GVB	16	2523	Yes	No	Yes	S. P. Halch, J. Chem. Phys. 72, 5679 (1980).
$\mathrm{OH}+\mathrm{H}_{2}$	GVB	6	4560	Yes	No	No	5. P. Hialch and T. H. Dunning Jr., J. Chem. 72, 1303 (1980).
$\mathrm{Ln}, \mathrm{Cd}, \mathrm{Hg}$	LR-10.A				Polarizabilities	S Yes	M. E. Rosenkrantz, W, J. Stevens M. Krauss and D. Konowalow, J. Chem. Phys. 722525 (1980).
Be_{2}	ICF			Yes	No	No	B. Liu and A. D. Mclean, J. Chem. Phys. 72, 3418 (1980).
$\mathrm{H}_{2} \mathrm{O}$	CAS	1380			Yarious	Yes	B. Roos (pre-print).
Pb0	OVC	9		Yes			H. Basch, M. Krauss, W. J. Stevens (to be published).
CN	DCE	17	41	Yes		No	A. C. Wahl, E. S, Sachs and J. Detrich, Int. J. Quantum, Chem. (1980).
CN^{-}	OCE	15	26	Yes	Electron Affinity	No	A. C. Wahl, E. S. Sachs, and J. Detrich, int. J. Quantum Chem. (1980).

TABLE II

SYSTEM	$\begin{gathered} \text { BASIS } \\ -\mathrm{SET} \\ \hline \end{gathered}$	*ORBS	*CONFGS	$\begin{aligned} & \text { ITERATION TIMES } \\ & \text { CPU } \end{aligned}$	\#ITERATIORS	YHRESHOLO VECTORS	$\begin{aligned} & \text { TOTAL } \\ & \text { NCSCF } \\ & \text { CBIL } \end{aligned}$	MACHINE	CODE
CH^{-}	$\begin{aligned} & \text { 4s 2pld } \\ & \text { tdiffuse } \end{aligned}$	9	15	$20 \quad 25$	23	10^{-5}	530600	CDC 6600	BISON-MC
CO_{2}^{-}	3520	15	19	$34 \quad 16$	12	10^{-5}	$434 \quad 207$	$\operatorname{cac} 6600$	BISON-MC

[^0]: *Mound Facility, Miatnisburg, Ohio, Is operated by Monsanto Research Corporation, a subsidiary of Monsanto Company for the U. S. Department of Energy under Contract \%o. DE-AC04-76-DP00053.

[^1]: 1. J. Frenke1, Have Mechanics, Advanced General Theory (Clarendon, oxford, 1934), P. 460 .
 2. B. Levy and G. gerthier, Int. J. Quantun Chem. 2, 307 (1968); 3, 247 (1969); B. Levy, Chem. Phys. Lett. 4, 17 (1969); Int. J. Quantum Chem. 4, 297 (1970).
[^2]: Outch Ramsay Memorial Fellow.

[^3]: *a contriburion by B. H. Lengsfield. III. NRC-NASA Research Associate, 1978-1980. Present address: IBM, 5600 Cottle Road, San Jose, CA 95193.
 $\dagger_{\text {Hork was supported under NASA Contracts No. NAS } 1-~}^{\text {w }}$ 15810 and NAS1-14472 while in residence at tCaSE, NASA Langley Rezeerch Center, Hampon, VA 23665.

[^4]: *a contribution by C. W. Hauschlicher, Jr. Work was supported under Dasa Contraces No. NaSl-14101 and NaSl-14472 while in residence at ICASE, NASA Langley Rescarch Center, Hampton, VA 23665
 ${ }^{\dagger}$ NRC-NASA Research Associate, 1978-1980. Present address: : an, 5 foll Cottle Road, San Jose, CA 95193.
 *alfed P. Sloan Research Fellow. horl: was supported be the ilir forme office of schentific Research (AFUSR-79-0073) and the National Science Fourdation (CHE-7824153) during the course of this re: .srch.

