
UC Berkeley
UC Berkeley Previously Published Works

Title
Islands in closed and open universes

Permalink
https://escholarship.org/uc/item/9bp2845j

Journal
Physical Review D, 105(8)

ISSN
2470-0010

Authors
Bousso, Raphael
Wildenhain, Elizabeth

Publication Date
2022-04-15

DOI
10.1103/physrevd.105.086012
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bp2845j
https://escholarship.org
http://www.cdlib.org/


Islands in closed and open universes

Raphael Bousso1,2,* and Elizabeth Wildenhain 1,†

1Center for Theoretical Physics and Department of Physics, University of California,
Berkeley, California 94720, USA

2Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 10 March 2022; accepted 14 March 2022; published 14 April 2022)

We show that spatial curvature has a significant effect on the existence of entanglement islands in
cosmology. We consider a homogeneous, isotropic universe with thermal radiation purified by a reference
spacetime. Arbitrarily small positive curvature guarantees that the entire universe is an island. Proper
subsets of the time-symmetric slice of a closed or open universe can be islands, but only if the cosmological
constant is negative and sufficiently large in magnitude.

DOI: 10.1103/PhysRevD.105.086012

I. INTRODUCTION

Consider the cloud of Hawking radiation resulting from
the complete evaporation of black hole formed from
collapse. If the initial and final quantum states are related
by a unitary scattering matrix, then the von Neumann
entropy SðtÞ of the Hawking radiation emitted by the
intermediate time t should follow the Page curve. That is,
SðtÞ must be the smaller of the coarse-grained radiation
entropy and the Bekenstein-Hawking entropy of the remain-
ing black hole at the time t. The quantum extremal surface
(QES) prescription for computing SðtÞ [1–5] reproduces this
result [6,7]. The QES formula can be viewed as an
application of the gravitational path integral, in a saddle
point approximation. Thus, the Page curve—and thus, in
particular, the unitarity of the scattering process—can be
derived from semiclassical gravity.
The key insight enabling this breakthrough was the

recognition that an entanglement island contributes to the
QES formula after the Page time, i.e., during the era when
the coarse-grained radiation entropy exceeds the black hole
entropy. An island is a portion of the semiclassical
spacetime that is topologically disconnected from the
reference system or boundary region whose entropy is
being computed.
The QES derivation of the Page curve comes on the heels

of significant indirect evidence for the unitarity of black

hole evaporation, most prominently via the AdS=CFT
duality [8]. But the QES formula manages to capture a
highly nontrivial aspect of quantum gravity just from a
semiclassical analysis. It is vital, therefore, to study its
implications in cosmological spacetimes, where we have no
other handle on quantum gravity.
A first objective is to understand whether islands can

appear in cosmology. For an evaporating black hole, islands
appear naturally when the QES formula is applied to the
Hawking radiation. In cosmology, however, it is not clear
a priori what process or setup should be considered: what
would give rise to the large amounts of entanglement
necessary for the formation of an island? What is the
relevant reference system (the analog of the Hawking
radiation)?
One approach to this problem is not to require a natural

dynamical origin for the entanglement. Instead, one can
consider a simple cosmological solution and make assump-
tions about the entanglement structure that favor the
existence of islands. If islands are absent even under
favorable assumptions, this already constitutes an interest-
ing finding.
In this spirit, Hartman et al. [9] searched for islands in a

radiation-dominated, spatially flat Friedman-Robertson-
Walker (FRW) spacetime M, entangled with a second
nongravitating reference spacetime MR, in a thermofield-
double-like state. Instead of first specifying a reference
system analogous to the Hawking radiation, Ref. [9]
specified spherically symmetric candidate regions I on a
Cauchy slice ΣM of M and asked whether there exists a
reference region R on a Cauchy slice ΣR of MR such that I
is an island of R. (See [10–12] for other work on
cosmological islands and thermofield-doubled universes.)
Hartman et al. found that no islands exist unless the

cosmological constant is negative, Λ < 0. A flat FRW
universe with Λ < 0 expands and then collapses, on a
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characteristic timescale of order tΛ ∼ jΛj−1=2. Islands are
located in a narrow time band, of order the thermal
timescale β ≪ tΛ, before and after the turnaround time,
and they must be very large with a proper radius ≫ tΛ.

A. Outline and summary

Reference [9] considered only spatially flat FRW uni-
verses. In this paper, we will relax this assumption and
search for islands in spatially closed and open FRW
cosmologies. We will show that a small amount of spatial
curvature can have a significant effect. Arbitrarily small
positive curvature guarantees that the entire spacetime is an
island. It also allows for a new class of islands consisting of
more than half (but not all) of the universe. A small—but
not arbitrarily small—amount of negative curvature elim-
inates cosmological islands entirely at a fixed Λ < 0. Our
results are summarized in Table I.
In Sec. II we briefly review the QES prescription and its

special case, the island formula. We discuss three necessary
conditions that an island I must satisfy [9] regardless of the
reference system R: SðIÞ > Að∂IÞ=4GN , I is quantum
normal, and G is quantum normal, where G is the comple-
ment of I on a Cauchy slice ΣM of M. We derive a fourth
necessary condition that applies only ifM is closed andG is
nonempty: SðGÞ > Að∂IÞ=4GN . Next, we introduce the
specific setting we will study: a spatially closed or open
FRW universes with a cosmological constant and radiation.
The radiation is entangled with and purified by radiation in
an analogous reference spacetime, in a thermofield double
(TFD)-like state. Finally, we discuss the mode in which our
results will be presented: for each class of universe, a
physically intuitive analysis of island candidates on the
time-reflection symmetric Cauchy slice of M (if present) is
followed by a graphical presentation of the validity of the
four conditions in the full spacetime solution.
In Sec. III, we search for islands in closed FRW solutions

(positive spatial curvature). In Sec. III A, we consider the
simplest case where the cosmological constant Λ vanishes.
We find that the conditions 1 and 4 discussed in Sec. II are
mutually exclusive at the turnaround time, so no proper
subset of a time-symmetric slice of M is a viable island
candidate. This conclusion persists when we analyze the

full spacetime. However, we find that M itself is an island,
if R contains more than half of ΣR.
In Sec. III B, we consider closed universes with negative

cosmological constant. The entire universe M is again
found to be an island for sufficiently large R. For a proper
subset of a time-symmetric slice ofM, we find that the four
conditions can be simultaneously satisfied only if the
spatial curvature is sufficiently weak (and dynamically
irrelevant) at the turnaround time. A check of the full
solution indicates that islands only appear near the turn-
around time. In this case we find explicit examples of
islands that are a proper subset of the time-symmetric slice
of M, with R being the analogous region on ΣR; see Fig. 1.
We also find examples of regions that satisfy all three
necessary conditions of Ref. [9] but which are not islands
for any choice of R, because they fail to satisfy condition 4.
In Sec. III C, we examine closed universes with positive

cosmological constant. M itself is again an island if R
contains more than half of ΣR. We find that no proper
subset of the time-symmetric Cauchy slice of M can be an
island, as conditions 1 and 4 are mutually incompatible.
A check of the full solution confirms that no proper subset
of any other Cauchy slice can be an island.
In Sec. IV, we turn to solutions with negative spatial

curvature (open FRW). If Λ ≥ 0, then there are no islands.
If Λ < 0, then we find islands exist if the spatial curvature
radius is at least comparable to the minimum island size in
the spatially flat case; see Fig. 2. This is easy to understand
geometrically: for I to be an island, one must have
SðIÞ > Að∂IÞ=4GN . The entropy is extensive. In flat space,
volume grows faster than area, so this condition becomes
satisfied at large radius. But in a hyperbolic geometry, a
volume and area approach a fixed ratio for radii greater than
the curvature radius. Therefore, the condition does not
become automatically satisfied for sufficiently large radius.

B. Relevance to the observed Universe

Our primary motivation is to examine whether islands
can exist in a larger class of cosmological models, regard-
less of whether they describe our own Universe. But it is

FIG. 1. Penrose diagram of a closed recollapsing universe. The
entire universe can always be an island. For a proper subset I to
be an island, it must lie near the turnaround slice, with boundary
within a certain angular range. This range is nonvanishing only if
the cosmological constant is negative and sufficiently large.

TABLE I. Summary of Results.

Case Island Location(s)

Closed, Λ > 0 I ¼ M
Closed, Λ ¼ 0 I ¼ M
Closed, Λ < 0 I ¼ M; and if tΛ=tC ≲ ðlP=tCÞ1=2 ≪ 1,

then also I ⊊ ΣM, with comoving radius
χ ∈ ðχ�; π − χ�Þ, near turnaround

Open, Λ ≥ 0 None
Open, Λ < 0 I ⊊ ΣM, with χ > χ�, near turnaround,

if tΛ=tC ≲ ðlP=tCÞ1=2 ≪ 1
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interesting to ask whether we could live on an island. Let us
briefly discuss the extent to which our analysis constrains
this question.
Like Ref. [9], we consider only universes with radiation

and a cosmological constant Λ of arbitrary sign. The visible
Universe has Λ > 0 [13,14], so only the Λ > 0 case is
directly relevant to the question of whether we live on an
island. However, in a theory with multiple vacua, the
Universe may decay to regions with Λ ¼ 0 or Λ < 0 in
the future. Thus, results for Λ ≤ 0 could still be relevant for
future regions in our own Universe.
The observed Universe went through a long era between

radiation and vacuum domination, when the pressure was
negligible. The matter-dominated era is not explicitly
modeled here. But since matter and radiation both have
extensive entropy, we do not expect qualitatively different
results. We anticipate a reduction in the allowed size range
for matter islands compared to radiation islands.
The visible Universe is consistent with exact spatial

flatness [15]. However, observational constraints only put
a lower bound on the curvature radius; they do not rule out
spatial curvature on a scale somewhat larger than the visible
Universe. This is significant, sincewe show that an arbitrarily
small (hence locally unobservable) amount of positive
curvature allows for islands in a Universe with Λ > 0.
Indeed, exact spatial flatness requires infinite fine-

tuning. Moreover, approximate spatial flatness is a dynami-
cal repeller during matter and radiation domination. Hence,
even the approximate spatial flatness of the visible Universe
dictated by observational constraints would require a
tremendous fine-tuning of initial conditions, unless it is
the result of a dynamical process such as slow-roll inflation.
(We are not aware of any other viable candidate process.)
This is a period of accelerated expansion driven, for
example, by a scalar field with a slowly varying positive
potential [16]. Inflation will not make space exactly flat.
The visible Universe is anisotropic and inhomogeneous

at scales below 100 Mpc, whereas the FRW approximation
we use assumes exact spatial homogeneity and isotropy.
However, this should not affect any conclusions about
cosmological islands. A necessary condition for I to be
an island is that its matter entropy must exceed the

Bekenstein-Hawking entropy of its boundary ∂I. This
can only happen for regions much larger than the horizon
scale, for which the FRW description is a good approxi-
mation. (Of course, black hole islands could exist if a small
black hole forms and evaporates.)
A failure of homogeneity and isotropy at scales much

larger than the visible Universe is expected in plausible
cosmological models [17]. This may lead to additional
classes of islands. For example, if our Universe descended
from a metastable vacuum with larger Λ, its homogeneity
and isotropy on slices of constant density is a consequence
of the symmetries of the dominant instanton mediating
false vacuum decay [18]. But on scales that include the
parent vacuum and other baby universes, the spacetime
admits no preferred slicing on which it would appear
homogeneous; it is not an FRW solution. In a complex
multiverse, such as the spacetime that would arise in the
landscape of string theory, even the number of noncompact
dimensions could change over large scales. It is interesting
to ask whether there are new classes of islands in such
models, especially islands associated to “hat” regions with
Λ ¼ 0 [19–22]. This is an interesting possibility [23] whose
general study we leave to future work.

II. PRELIMINARIES

A. Quantum extremal surface prescription

The all-orders [5], quantum-corrected [4], covariant [3],
Ryu-Takayanagi [1,2] prescription (QES prescription)
computes the entropy of a nongravitating system R in
terms of a dual spacetime with gravity, M, whose state and
geometry are computed semiclassically:

SðRÞ ¼ Sgen½EWðRÞ�: ð2:1Þ

The bold-face notation [24] distinguishes the (presumably
correct) entropy computed by the QES formula from the
von Neumann entropy SðRÞ computed directly from the
semiclassical state. Here EWðRÞ is the entanglement wedge
and Sgen is its generalized entropy. We will now briefly
summarize their definitions.
For a partial Cauchy surface X ⊂ ΣM,

SgenðXÞ ¼
Area½∂X�
4GNℏ

þ SðXÞ; ð2:2Þ

where SðXÞ is the von Neumann entropy of the density
operator of the quantum field theory state reduced to X.
Both terms are cutoff dependent, but their sum is well-
defined (see the appendix in Ref. [25] for a detailed
discussion).
EWðRÞ is a spacetime region whose generalized entropy

is “extremal” (really, stationary) with respect to small shape
deformations of its boundary surface in M, subject to
certain homology and global minimality conditions.

FIG. 2. Penrose diagram of an open universe. A sufficiently
large region I at the turnaround time is an island, if the
cosmological constant is negative and large enough for curvature
not to dominate below the critical radius χ3.
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(Settings with highly incompressible quantum states
require a more precise definition [26]. In doubly holo-
graphic settings, the appropriate homology rule must be
chosen with care [27]. Neither subtlety will arise here. The
entanglement wedge is, in general, state dependent; it is
related through a choice of code subspace to the recon-
structible wedge [28,29], which is not. We implicitly
assume a small code subspace in this paper, so that we
can neglect this distinction.)
Now let us specialize to the case where R ⊂ ΣR is a

partial Cauchy surface in a nongravitating spacetime MR
distinct from M. Then the definition of EWðRÞ reduces to
the “island rule” [30]:
(1) EWðRÞ ¼ I ∪ R, where I ⊂ ΣM and I is compact1;
(2) SgenðI ∪ RÞ is stationary under any local variations

of the boundary surface ∂I;
(3) Among all such regions globally, I yields the

smallest SgenðI ∪ RÞ.
Note that I ¼ ∅ is allowed.
For example, suppose that MR is coupled to M, and that

R contains the Hawking radiation emitted by an evaporat-
ing black hole prior to the time t [6,7]. (R could also be a
weakly gravitating distant region containing the radiation
[31].) In the semiclassical approximation, the radiation is
thermal [32]. Its entropy SðRðtÞÞ increases monotonically,
implying information loss [33]. However, after the Page
time, the entanglement wedge EWðRÞ includes an island
I ≠ ∅ that purifies the radiation [6,7]. The island is the
black hole interior slightly before the most recent radiation
in R was emitted. Thus, Sgen½EWðRÞ� is dominated by the
area term A½∂I�=4GN , which decreases as the black hole
shrinks.

B. Four necessary conditions for islands

A nonempty island I must satisfy four conditions that do
not depend on R. We will begin by deriving the first three,
following Ref. [9]. Since I ≠ ∅, we have

SðRÞ > SgenðI ∪ RÞ ¼ Að∂IÞ
4GN

þ SðI ∪ RÞ

≥
Að∂IÞ
4GN

þ SðRÞ − SðIÞ ð2:3Þ

by subadditivity of the von Neumann entropy; hence

SðIÞ > Að∂IÞ
4GN

ðCondition 1Þ: ð2:4Þ

By assumption, I ∪ R is quantum extremal, i.e.,
SgenðI ∪ RÞ is stationary under shape deformations of ∂I.

The area contribution to this variation does not change
when we consider SgenðIÞ instead, and, by strong sub-
additivity, the shape derivative of the von Neumann entropy
in the past or future directions outward from I can only
increase when R is dropped [25]. Hence it must be non-
negative:

I is quantum normal ðCondition 2Þ: ð2:5Þ

We will take the global quantum state on ΣM ∪ ΣR to be
pure. (This can always be arranged by adding a purifying
auxiliary system to MR.) Hence G ∪ Q is also quantum
extremal, where G≡ ΣMnI and Q≡ ΣRnR. The above
argument implies that

G is quantum normal ðCondition 3Þ: ð2:6Þ

M always satisfies extremality. However, it satisfies the
homology condition only if its Cauchy surfaces are closed.
For a proper subset I ⊊ ΣM to be an island, in this case, it
must be a better candidate than the whole of M:

SgenðM ∪ RÞ > SgenðI ∪ RÞ: ð2:7Þ

SinceM is spatially closed, SgenðM ∪ RÞ ¼ SðM ∪ RÞ, and
Eq. (2.7) implies

SðI ∪ RÞ þ Að∂IÞ
4GN

< SðM ∪ RÞ ≤ SðGÞ þ SðI ∪ RÞ ð2:8Þ

by subadditivity of the von Neumann entropy. Hence we
find a fourth condition:

for spatially closedM and I ⊊ ΣM∶ SðGÞ > Að∂IÞ
4GN

ðCondition 4Þ: ð2:9Þ

C. Thermofield-doubled FRW universes

In the next two sections, we shall search for islands in
cosmological spacetimes. We will consider a spatially
homogeneous and isotropic universe M in four dimensions
with positive or negative spatial curvature, thermal radia-
tion, and arbitrary cosmological constant Λ. The metric is

ds2 ¼ −dt2 þ aðtÞ2ðdχ2 þ f2ðχÞdΩ2Þ; ð2:10Þ

where aðtÞ is the scale factor. The function fðχÞ depends on
the curvature: fðχÞ ¼ sinhðχÞ; χ, or sinðχÞ for open, flat,
and closed universes, respectively. Another convenient
coordinate system uses conformal time η, defined via

dη ¼ dt
aðtÞ : ð2:11Þ

In these coordinates, the FRW metric takes the form

1More precisely, the homology rule requires that in the
conformally compactified spacetime, the boundary of the image
of I does not intersect with the conformal boundary of M.
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ds2 ¼ a2ðηÞð−dη2 þ dχ2 þ f2ðχÞdΩ2Þ: ð2:12Þ

The scale factor aðtÞ obeys the Friedmann equation:�
_a
a

�
2

¼ 8πGNρr
3

þ Λ
3
−

k
a2

; ð2:13Þ

where ρr is the energy density of radiation and Λ is the
cosmological constant.
We will mainly be interested in universes with an initial

curvature singularity (a big bang). Solutions with a big
crunch but no big bang are trivially related by time reversal.
Radiation redshifts as ρr ∝ a−4, so its energy density will
dominate near the big bang, i.e., at sufficiently early times.
The cosmological constant will come to dominate the

evolution within a time of order

tΛ ≡ ffiffiffiffiffiffiffiffiffiffiffi
3=jΛj

p
ð2:14Þ

after the big bang if the universe reaches this age.
At the time

tC ≡
�
8πGNρra4

3

�
1=2

; ð2:15Þ

after the big bang, the curvature term in the Friedmann
equation begins to dominate over the radiation term. If the
universe reaches this age, and if tC < tΛ, then a curvature-
dominated era begins at tC and ends at tΛ. For recollapsing
solutions, the same sequence happens in reverse after the
turnaround time.
Solutions without a singularity arise only if the cosmo-

logical constant and curvature are both positive and the
radiation density at the turnaround time is sufficiently
small. Then the above definitions can be still be made,
but they do not have the stated physical interpretation.
Moreover, tC and tΛ do not fix a solution uniquely. Hence
we will use a different parametrization of solutions in
Sec. III C.
It will be convenient to express the Friedmann equation

in terms of tC and tΛ:�
_a
a

�
2

¼ t2C
a4

� 1

t2Λ
−

k
a2

: ð2:16Þ

The� corresponds to the sign of Λ.
Throughout this paper we shall assume that the effective

number of light fields is of order unity. (It is easy to
generalize to a larger number of fields, and strictly it is
necessary to do so in order to justify neglecting the
contribution of gravitons to the entropy. But increasing
the number of radiation species does not lead to new regimes
in our analysis, while it does complicate the formulas.) Then
the physical entropy density of the thermal radiation is

s ∼ ρ3=4r ; ð2:17Þ

and the comoving entropy density is

sc ≡ sa3 ∼
�
tC
lP

�
3=2

; ð2:18Þ

where lP ≡ G1=2
N is the Planck length.

Following Ref. [9], we purify the thermal radiation by
invoking a second, nongravitating spacetime MR and
constructing a thermofield double. MR is defined up to
conformal transformations; here we choose

ds2R=l
2 ¼ −dη2R þ dχ2R þ f2ðχRÞdΩ2

R; ð2:19Þ

where l is an arbitrary fixed length scale. The thermofield
double is first constructed using two copies of MR:

jTFDi ∝
X
n

e−βEn jni�1jni2; ð2:20Þ

then a conformal transformation by a2 is applied to trans-
form one copy to M. Here β ¼ l=ðaTÞ, where T is the
radiation temperature in the physical spacetime M at scale
factor a. Our convention for the respective time orientations
is opposite to that of Ref. [34]; see Refs. [9] for further
details.
We note an important property of the thermofield double

which will be useful below. For regions I ⊂ ΣM and R ⊂ ΣR
with equal coordinate position, the renormalized2 entropy
of I ∪ R is small and increases when I and R are separated
in time at a fixed comoving size. It also increases if the size
of either I or R is increased or decreased at a fixed time:

SðI ∪ RÞ ≈ scjΔVcj; ð2:21Þ

where ΔVc ¼ VR
c − VI

c, and Vc denotes a comoving
volume [i.e., VR

c ¼ VðRÞ=l3 and VI
c ¼ VðIÞ=a3]. The

sharp transition in Eq. (2.21) when I and R coincide is
smoothed on the thermal scale β [9].

D. General analysis and restriction
to time-symmetric slices

For each class of universes, we will search for spherical3

islands by checking the four necessary conditions laid out
in Sec. II B. This check is performed using solutions for the

2The entropy of bounded regions in quantum field theory has
universal short-distance divergences that can be stripped off so
long as the characteristic wavelength of excitations is greater than
the Planck scale. In this paper, we only consider regions that are
under semiclassical control, ða=lÞβ ≫ lP.

3If I is a spherical island of the region R, then one expects that
deformations of R will still have an island that is a small
deformation of I. Area is “expensive” so generally I will deviate
less from spherical symmetry than R. Our analysis does not rule
out the existence of different classes of islands that are not
approximately spherical.
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full spacetime, and the results are displayed in plots
showing where each condition is satisfied.
The solutions for the full spacetime are relatively

complicated. In order to develop some intuition, we
precede each full analysis by searching for islands only
on time-symmetric slices. Ultimately, this where we expect
to find islands, because quantum extremality is difficult to
satisfy when the universe is expanding or contracting.
Quantum extremality requires that the classical expan-

sion is compensated by the time derivative of the renor-
malized entropy at fixed χ. This is possible if the classical
expansion is itself very small, of order G, i.e., in a small
time interval around the turn-around time. In the spatially
flat case, the size of this interval is of order β [9]. The same
conclusion applies to open and closed universes: as we
shall see below, curvature is dynamically negligible at the
turnaround time in all cases where we find islands at
that time.
On time-symmetric slices, the necessary conditions

of Sec. II B take a special form. The scale factor at the
turnaround time, a0, is found by setting _a ¼ 0 in Eq. (2.16).
Then the conditions become

scVcðχÞ ≥
a20AcðχÞ
4l2P

ðCondition 1Þ; ð2:22Þ

∂
∂χ Sgen½IðχÞ� ≥ 0 ðCondition 2Þ; ð2:23Þ

−
∂
∂χ Sgen½GðχÞ� ≥ 0 ðCondition 3Þ; ð2:24Þ

scðV tot
c − VcðχÞÞ ≥

a20AcðχÞ
4l2P

ðCondition 4Þ; ð2:25Þ

for a spherical island candidate of radius χ. Here V tot
c is the

comoving volume of the entire closed universe at the
turnaround time, and

Sgen ¼ scVcðχÞ þ
AðχÞ
4GN

: ð2:26Þ

In the next two sections, we will analyze the closed and
open cases, respectively. We will examine whether the
necessary conditions can be satisfied, and if so, we will
check whether they are sufficient.

III. CLOSED UNIVERSES

In this section, we consider solutions with positive
spatial curvature (closed FRW). In such a geometry,
the coming volume and area functions on the unit three-
sphere are

Vc ¼ πð2χ − sin 2χÞ; ð3:1Þ

Ac ¼ 4πsin2χ: ð3:2Þ

A. Positive curvature, zero cosmological constant

The first closed universe we consider is the simplest: one
with Λ ¼ 0. We begin our search for islands by restricting
our attention to the time-symmetric slice. We consider
spherically symmetric regions, IðχÞ, which extend from the
origin to the sphere at χ at the turnaround time. For Λ ¼ 0
and k ¼ 1, the scale factor at the turnaround time satisfies

0 ¼ t2C
a40

−
1

a20
ð3:3Þ

by Eq. (2.16). Hence

a0 ¼ tC: ð3:4Þ

Since the universe is closed, we can consider either the
entire universe M, or a proper subset IðχÞ, χ < π, of its
time-symmetric slice, as an island candidate. We begin by
ruling out the latter, by showing that conditions 1 and 4 are
mutually incompatible.
Condition 1 is that the radiation entropy in I exceed the

Bekenstein-Hawking entropy of the boundary. Using the
time-symmetric version of condition 1, Eqs. (2.22) and
(2.18), this becomes

�
tC
lP

�
3=2

Vc ≳ t2CAcðχÞ
l2P

; ð3:5Þ

which is equivalent to

VcðχÞ
AcðχÞ

≳
�
tC
lP

�
1=2

: ð3:6Þ

The ratio of comoving volume to area is of order χ for
small χ and grows monotonically, diverging as χ → π. We
are only interested in the semiclassical regime,

tC
lP

≫ 1: ð3:7Þ

Thus condition 1 requires π − χ ≪ 1; that is, the island
must be nearly the whole universe. In this regime,

Vc

Ac
≈

2π2

4πðπ − χÞ2 ¼
π

2ðπ − χÞ2 ð3:8Þ

and condition 1 becomes

π − χ ≲
�
lP
tC

�
1=4

; ð3:9Þ

Condition 4 requires that the radiation entropy in G,
the complement of I in M, should also exceed the
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Bekenstein-Hawking entropy of its boundary. Hence G
must also consist of nearly the entire time-symmetric slice.
But this contradicts the definition of G: G and I cannot be
mutual complements and both consist of nearly all of ΣM.
Since the necessary conditions 1 and 4 cannot be simulta-
neously satisfied, no proper subset of the time-symmetric
slice can be an island.
To check that the restriction to the time-symmetric slice

did not miss viable island candidates, we examine the full
solution. The scale factor is

aðηÞ ¼ tC cosðηÞ; ð3:10Þ

with the turnaround time set at η ¼ 0. Figure 3 shows
the regions in which the four conditions are satisfied. As
expected, there is no region of four-way overlap. Therefore,
no proper subset of a closed universe with Λ ¼ 0 can be an
island.
Next, we turn to M itself as an island candidate. M

trivially satisfies all necessary conditions, since it has no
boundary. But forM to be an island, it must beat the empty
set; we require SðR ∪ MÞ < SðRÞ. Since SðR ∪ MÞ≈
sc½VcðΣRÞ − VcðRÞ�, M is an island of R if and only if
R is more than half of ΣR.

B. Positive curvature, negative cosmological constant

Now we consider closed universes with Λ < 0. As
before, we begin with a restriction to time-symmetric
slices. If tΛ ≫ tC, then Λ is insignificant at the turnaround
time. Then Λ never plays a dynamical role, and we expect
the results to be the same as the Λ ¼ 0 case. Thus, we will
consider the regime

tΛ ≲ tC: ð3:11Þ

By Eq. (2.16), the scale factor satisfies

0 ¼ t2C
a40

−
1

t2Λ
−

1

a20
ð3:12Þ

at the turnaround time, so with Eq. (3.11) we find

a0 ∼
ffiffiffiffiffiffiffiffiffi
tΛtC

p
: ð3:13Þ

Consider first a proper subset of the universe as the
island candidate: IðχÞwith χ < π. Condition 1 was given in
Eq. (2.22). Substituting the above expression for a0 we find

VcðχÞ
AcðχÞ

> α ∼
�
tΛ
tC

��
tC
lP

�
1=2

; ð3:14Þ

where we have defined the combination of parameters α for
later convenience.
Condition 4 yields the same inequality with χ → π − χ.

Since Vc=Ac is monotonic in χ, conditions 1 and 4 can be
satisfied simultaneously only if

α <
Vcðπ=2Þ
Acðπ=2Þ

¼ π

4
: ð3:15Þ

Hence we require

tΛ
tC

≲
�
lP
tC

�
1=2

≪ 1; ð3:16Þ

Condition 1

Condition 2

Condition 3

Condition 4

FIG. 3. Regions satisfying the four island conditions are shown for a closed universe with Λ ¼ 0. The radiation temperature is β−1 at
the turnaround time t ¼ η ¼ 0. Chosen for display is tC ¼ 170tP. Top and bottom cutoffs are chosen so as to eliminate artifacts of the
Planck regime near the big bang and big crunch. The lack of four-way overlap shows that no region satisfies all four conditions, so there
cannot be any islands.
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where the second inequality is the condition for a classical
solution. Note that this conclusion disallows tΛ ∼ tC and
hence is stronger than Eq. (3.11).
In the regime characterized by Eq. (3.16), solving

Eq. (3.14) as an equality yields a critical value χ1 < π
such that the inequality (3.14) will be satisfied for all
χ > χ1. Hence, conditions 1 and 4 will be simultaneously
satisfied for

χ1 < χ < π − χ1: ð3:17Þ

In the limit as α ≪ 1, one finds χ1 ∼ α.
We turn to conditions 2 and 3. Condition 2 is the

requirement that the island be quantum normal. Using
the time-symmetric version of condition 2, Eq. (2.23), and
Eqs. (2.18), (3.1), (3.2), and (3.13) we find

cotðχÞ≳ −α−1: ð3:18Þ

Note that the cotangent monotonically decreases in
the range χ ∈ ð0; πÞ and becomes negative for χ > π=2.
In the regime where conditions 1 and 4 can be satisfied, the
magnitude of the right-hand side is at least of order unity by
Eq. (3.15). Hence, the above condition corresponds to

0 < χ < π − χ2; ð3:19Þ

where

χ2 <
π

2
and

π

2
− χ2 ∼Oð1Þ: ð3:20Þ

Condition 3 mandates that G (the complement of I) be
quantum normal; by symmetry, this results in the condition

χ2 < χ < π: ð3:21Þ

Hence, assuming that conditions 1 and 4 are satisfied, then
conditions 2 and 3 will be simultaneously satisfied for

χ2 < χ < π − χ2: ð3:22Þ

In the regime where α ≪ 1, Eq. (3.18) implies χ2 ∼ α.
To summarize, for a subset of the time-symmetric slice to

be an island, we require that

χ� < χ < π − χ�; ð3:23Þ

where

χ� ≡maxfχ1; χ2g: ð3:24Þ

Importantly, for the conditions 1 and 4 to be simultaneously
satisfied, i.e., for the range (3.17) to be nonempty, we found
that Eq. (3.16) must be satisfied: α < π=4. This means that

curvature must be dynamically negligible at the turn-
around time.
Near the critical value α ¼ π=4, χ1 will be close to π=2

whereas π=2 − χ2 ∼Oð1Þ, so χ� ¼ χ1; that is, conditions 1
and 4 are the more stringent. For α ≪ 1, χ1 and χ2 are both
of order α. A careful analysis keeping O(1) factors shows
that χ� ¼ χ1 for all α, meaning that conditions 1 and 4 are
always more stringent than 2 and 3 at the turnaround time.
Thus, to be an island, a subset of the time-symmetric slice
must obey

χ1 < χ < π − χ1: ð3:25Þ

Next we examine the full spacetime. The scale factor is

aðtÞ ¼ tΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2C

t2Λ

s
cos

�
2t
tΛ

�
− 1

�vuut ; ð3:26Þ

with the turnaround time set to t ¼ 0. Figure 4 shows a
check of the four conditions with tC ≫ tΛ. As expected
from the time-symmetric analysis, the four conditions
overlap only in a region centered on the equator with
temporal width of order β around the turnaround time. (It is
worth noting that far from the turnaround time, conditions 1
and 4 are not always more stringent that conditions 2
and 3.) A check of the full solution with tC ∼ tΛ confirms
that there are no islands in that regime.
While we have only verified four necessary conditions, it

is easy to check that at the turnaround time, IðχÞ in the
range χ1 < χ < π − χ1 is indeed an island of a region R of
equal size and location on ΣR.
Since we found that curvature must be dynamically

negligible at the turnaround time for an island IðχÞ to exist,
we should be able to make contact with Ref. [9], which
found that on the time-symmetric slice of a flat FRW
universe with Λ < 0, any IðrÞ with proper area radius
r≳ t3=2Λ =l1=2P is an island. Indeed, in a closed universe, the
proper area radius of the minimum island at the turnaround
time is

r¼ a0 sinχ�∼a0χ�∼ ðtCtΛÞ1=2
tΛ
tC

�
tC
lP

�
1=2

¼ t3=2Λ

l1=2P

: ð3:27Þ

As expected the curvature timescale drops out, and we
recover the flat FRW result.
However, there is an important difference: in a flat

universe there is no maximum island size. In a closed
universe, there is, and it is not the trivial upper bound
χ ¼ π, because condition 4 becomes violated already for
smaller values of χ. For χR > χ1, at t ¼ 0, the favored
island becomes the entire universe M. This is sensible:
though curvature has no dynamical effect on the evolution
of the universe at the turnaround time, it does affect the
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kinematics (the topology of space), and the island rule is
sensitive to both.
As before, M itself trivially satisfies conditions 1–3,

meaning it is a viable island candidate. Let us check when
M is in fact an island for some region R ⊂ ΣR. As in the
Λ ¼ 0 case, R must be more than half of ΣR for R ∪ M to
have less entropy than R, i.e., forM to be preferred over the
empty set. Now, however, M must also compete with its
own subsets. M wins if and only if condition 4 is violated,
i.e., if

χR > π − χ1: ð3:28Þ

Since χ1 < π=2, this is the only relevant condition.

C. Positive curvature, positive cosmological constant

Let us examine the case where both the cosmological
constant and the curvature are positive. As before, we start
by finding the scale factor at the turnaround time. In this
case, it will be more convenient to work with the Friedmann
equation in terms of ρr, Eq. (2.13). Setting k ¼ þ1 and
_a ¼ 0 implies that the scale factor at the turnaround time is

a0 ¼
�
8πGNρr

3
þ Λ

3

�
−1=2

: ð3:29Þ

First let us consider islands that are a proper subset of the
closed universe, i.e., IðχÞ with χ < π. Using the fact that
s ∼ ρ3=4r and so sc ∼ ρ3=4r a3, condition 1 becomes

VcðχÞ
AcðχÞ

≥
1

4ρ3=4r a0l2P
; ð3:30Þ

and condition 4 yields the same inequality with (χ → π − χ).
As before, the fact that Vc=Ac is monotonic in χ implies that
an island candidate can satisfy conditions 1 and 4 simulta-
neously only if

1

4ρ3=4r a0l2P
<

Vcðπ=2Þ
Acðπ=2Þ

¼ π

4
: ð3:31Þ

First consider the case where the radiation density
dominates at turnaround, GNρr ≫ Λ. In this regime,

a0 ∼
1ffiffiffiffiffiffiffiffiffiffiffi
GNρr

p ¼ 1

ρ1=2r lP
; ð3:32Þ

and Eq. (3.31) becomes

1

ρ1=4r

≲ lP: ð3:33Þ

But the semiclassical regime requires a0 ≫ lP and hence

1

ρ1=4r

≫ lP: ð3:34Þ

Since these equations are mutually incompatible, condi-
tions 1 and 4 cannot be simultaneously satisfied.
Next, consider the opposite regime where vacuum

energy dominates at turnaround, Λ ≫ GNρr. Then

a0 ∼
1ffiffiffiffi
Λ

p ∼ tΛ; ð3:35Þ

and Eq. (3.31) becomes

Condition 1

Condition 2

Condition 3

Condition 4

FIG. 4. Island conditions in a closed universe with Λ < 0, tC ≫ tΛ. Chosen for display is tC ¼ 25000tP, tΛ ¼ 400tP. All conditions
overlap in a region centered on the equator with a temporal width of order β around the turnaround time. We verify explicitly that any
region at t ¼ 0 whose only boundary lies in this overlap is an island.
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ffiffiffiffiffiffiffiffiffiffiffi
Λ

ρrGN

s �
1ffiffiffiffiffiffiffi

GN
p

ρ1=4r

�
≲ 1: ð3:36Þ

The first factor is large by assumption, and the second is
large since ρr cannot approach the Planck density. Hence,
this inequality cannot be satisfied for Λ ≫ GNρr in the
semiclassical regime. It is easy to verify that the problem
persists in the intermediate regime Λ ∼GNρr. Thus we
have shown (within the parameters of our model) that no
proper subset of a time-symmetric slice of a closed universe
with positive cosmological constant can be an island.
Next we examine the full spacetime. The scale factor can

take one of three forms:

aðtÞ¼ tΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1−cosh

�
2t
tΛ

�
þ2tC

tΛ
sinh

�
2t
tΛ

��s
ðexpansionÞ;

ð3:37Þ

aðtÞ ¼ tΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1− cosh

�
2t
tΛ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4t2C
t2Λ

s �vuut ðrecollapseÞ;

ð3:38Þ

aðtÞ¼ tΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ 1−ξt2Λ

1þξt2Λ
cosh

�
2t
tΛ

��s
ðbounceÞ; ð3:39Þ

where ξ≡ 8πGNρrð0Þ=3. Equation (3.37) describes a
universe with a big bang at t ¼ 0which expands eternally if
tC=tΛ > 1=2 or recollapses if tC=tΛ < 1=2. Equation (3.38)
is the same solution as Eq. (3.37) but defined only for
tC=tΛ < 1=2 with the turnaround time set to t ¼ 0.

Equation (3.39) describes a universe that bounces (the
scale factor reaches a minimum) at t ¼ 0.
The expanding solution has no turnaround time, and a

check of the four conditions (Fig. 5) confirms that there is
no region of four-way overlap in its regime (tC ≳ tΛ). The
recollapsing solution appears qualitatively like the Λ ¼ 0
case and similarly disallows islands. The bounce solution
also has no region of four-way overlap (Fig. 6).
As in the Λ ≤ 0 cases, the entire closed universe M

satisfies all necessary conditions.M will be an island when
R is more than half of ΣR.

IV. OPEN UNIVERSES

Next we search for islands in universes with negative
spatial curvature (open FRW). As before, we start with
time-symmetric slices. By Eq. (2.16), none exist for Λ ≥ 0,
so we shall take Λ < 0.
The comoving volume and area of a spherical region of

coordinate radius χ are

VcðχÞ ¼ πðsinhð2χÞ − 2χÞ; ð4:1Þ

AcðχÞ ¼ 4πsinh2ðχÞ: ð4:2Þ

Hence

Vc

Ac
≤
1

2
: ð4:3Þ

We begin by ruling out islands in the regime tΛ=tC ≳ 1.
The scale factor at the turnaround time will be

a ∼ tΛ: ð4:4Þ

Using Eqs. (2.18) and (2.22), condition 1 becomes

Condition 1

Condition 2

Condition 3

Condition 4

FIG. 5. Island conditions in a closed universe with Λ > 0, tC ≫ tΛ. Chosen for display is tC ¼ 1000tP, tΛ ¼ 20tP. Such a universe
expands eternally and thus has no time-symmetric slice. There is no region in which all four conditions are satisfied, meaning there
cannot be islands.
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VcðχÞ
AcðχÞ

≳
�
tΛ
tC

�
2
�
tC
lP

�
1=2

: ð4:5Þ

The semiclassical regime requires that tC=lP ≫ 1, and we
are currently working in the regime tΛ=tC ≳ 1, so the rhs is
large. This conflicts with Eq. (4.3), so condition 1 cannot be
satisfied.
Now consider the complementary regime, tΛ=tC ≪ 1.

The scale factor at the turnaround time is

a0 ∼
ffiffiffiffiffiffiffiffiffi
tΛtC

p
; ð4:6Þ

and condition 1 becomes

VcðχÞ
AcðχÞ

≥ γ ∼
�
tΛ
tC

��
tC
lP

�
1=2

: ð4:7Þ

By Eq. (4.3), this condition can be satisfied only if γ < 1=2.
This implies �

tΛ
tC

�
≲
�
lP
tC

�
1=2

≪ 1; ð4:8Þ

where the second inequality is required for a semiclassical
solution. Solving (4.7) as an equality yields a critical
value χ3 such that condition 1 is satisfied for all χ > χ3.
Therefore, condition 1 can be satisfied for a spherical island
candidate with large enough χ at the turnaround time if tΛ is
early enough.
Since it is possible to satisfy condition 1, we move on to

conditions 2 and 3, Eqs. (2.23) and (2.24). (Condition 4
only applies to subsets of closed universes.) Applying the
quantum-normalcy conditions to I and its complement G
yields, respectively,

coth χ ≳ −γ−1 ðCondition 2Þ; ð4:9Þ

coth χ ≲ γ−1 ðCondition 3Þ: ð4:10Þ

Condition 2 is satisfied for any χ. Condition 3 can only be
satisfied if γ < 1, but we already obtained the stronger
restriction γ < 1=2 from condition 1.
Solving (4.10) as an equality yields a critical radius χ4,

such that all χ > χ4 satisfy condition 3. Thus, to be an
island, the region must satisfy

χ� < χ < π − χ�; ð4:11Þ

where

χ� ≡maxfχ3; χ4g: ð4:12Þ

As in Sec. III B, a careful analysis keeping Oð1Þ factors
indicates that χ3 > χ4 for all γ < 1=2 at turnaround. Thus,
condition 1 is always more stringent than condition 3 at the
turnaround time.
Having completed our analysis of the time-symmetric

slice, we check the full spacetime. The forms of the scale
factor are

ðΛ ¼ 0Þ aðηÞ ¼ tC sinh η; ð4:13Þ

ðΛ>0Þ aðtÞ¼tΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
t
tΛ

��
2tC
tΛ

cosh

�
t
tΛ

�
þsinh

�
t
tΛ

��s
;

ð4:14Þ

Condition 1

Condition 2

Condition 3

Condition 4

FIG. 6. Regions satisfying the four island conditions for a closed universe with Λ > 0 that bounces at t ¼ 0. The radiation temperature
is β−1 at the turnaround time t ¼ 0. Chosen for display is ξ ¼ 0.084t−2P , tΛ ¼ 10tP. There is no region of four-way overlap, so there
cannot be islands.
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ðΛ<0Þ aðtÞ¼ tΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4t2C

t2Λ

s
cos

�
2t
tΛ

�
þ1

�vuut : ð4:15Þ

Equations (4.13) and (4.14) describe universes that expand
eternally and thus have no time-symmetric slice. As
expected, these two cases disallow islands. Universes
described by Eq. (4.15) do recollapse, and in the regime
tC ≫ tΛ all three conditions overlap only for large enough χ
in a region with width of order β around the turnaround
time (Fig. 7). Checking the regime tΛ ≳ tC confirms that no
islands are possible in that case.
To summarize, in an open universe with Λ < 0, spherical

regions with χ > χ3 satisfy all necessary island conditions
if γ < 1=2, where γ is given in Eq. (4.7). This corresponds
to a universe in which curvature never dominates since

tΛ=tC ≪ 1; in fact, curvature cannot dominate even on the
scale of the minimum island size. It is easy to verify that
these candidates are in fact islands at t ¼ 0, if R is chosen to
be the matching region on ΣR.
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