
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Novel Data Structure and Anomaly Detection for Time Series Data

Permalink
https://escholarship.org/uc/item/9bp3q1df

Author
Tafazoli, Sadaf

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bp3q1df
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

A Novel Data Structure and Anomaly Detection for Time Series Data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Sadaf Tafazoli

December 2023

Dissertation Committee:

Dr. Eamonn Keogh
Dr. Jiasi Chen
Dr. Vagelis Papalexakis
Dr. Tamar Shinar

Copyright by
Sadaf Tafazoli

2023

The Dissertation of Sadaf Tafazoli is approved:

 Committee Chairperson

University of California, Riverside

 iv

ABSTRACT OF THE DISSERTATION

A Novel Data Structure and Anomaly Detection for Time Series Data

by

Sadaf Tafazoli

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2023

Dr. Eamonn Keogh, Chairperson

Time series data is one of the most extensively examined forms of data. According to

a recent KDnuggets poll, 48% of analysts have engaged in time series data analysis

within the past few years. This places time series data analysis second, surpassed only

by relational (table) data analysis and preceding the analysis of text, images, spatial,

and social network data [49]. The Matrix Profile is a data structure that enhances time

series analysis by recording the Euclidean distance between each subsequence and its

nearest neighbor. Leveraging the Matrix Profile, analysts can uncover numerous

valuable insights about time series data, such as anomaly detection, chain discovery,

motif discovery, and more. However, the Matrix Profile is limited to representing the

relationship between the subsequence’s shapes. It is known that, for some domains,

useful information is conserved not in the subsequence’s shapes, but in the

subsequence’s features. In recent years a new set of features for time series called

catch22 has revolutionized feature-based mining of time series. Combining these two

ideas seems to offer many possibilities for novel data mining applications, however,

there are two difficulties in attempting this. A direct application of the Matrix Profile

 v

with the catch22 features would be prohibitively slow. Less obviously, as we will

demonstrate, in almost all domains, using all twenty-two of the catch22 features

produces poor results, and we must somehow select the subset appropriate for the

domain. In this work we introduce novel data structure to solve both problems and

demonstrate that, for most domains, the proposed C22MP is a state-of-the-art anomaly

detector.

Additionally, in this work, we illustrate how we can detect anomalies in

multidimensional time series by framing the problem as K of N anomaly detection. The

primary challenge in multidimensional time series anomaly detection appears to be

that, in any N-dimensional time series, anomalies typically manifest themselves only

in K of the time series, where K < N. This leads to a chicken-and-egg problem. If we

knew which K time series exhibited the anomaly, it would be easy to discover its

location. However, we do not know this in advance, and the search space is of size 2N

and not obviously amiable to greedy search. In this work we show a novel, simple

algorithm that allows us to quickly find the best K of N anomaly subset for any value

of K. Moreover, we show a simple metric that can rank the top anomaly subsets for all

values of K from 1 to N. While our methods are mostly agnostic to the anomaly scoring

model, for concreteness we use the Matrix Profile, and show that we can discover

multi-dimensional anomalies that would escape detection by all current rival methods.

 vi

Table of Contents

1. Introduction ... 1

1.1 A novel data structure for time series data ... 1
1.2 Discovering Multi-Dimensional Time Series Anomalies with K of N Anomaly
Detection .. 3

2. C22MP: The Marriage of catch22 and the Matrix Profile creates a Fast, Efficient
and Interpretable Anomaly Detector ... 7

2.1 Motivation .. 7
2.2 Background and Related Work .. 10

2.2.1 The Problem we are Solving .. 10

2.2.2 Related Work ... 11
2.3 Definition and Notation ... 14
2.4 The C22MP ... 20

2.4.1 The leftC22MP .. 20
2.4.2 Fast computation of leftC22MP .. 23
2.4.3 Setting the Feature Weights for C22MP ... 26

2.5 Empirical Evaluation ... 33
2.5.1 How Should we Evaluate TSAD Algorithms? .. 33
2.5.2 A Visual Intuition for leftC22MP ... 36
2.5.3 The Hexagon ML/UCR dataset ... 37
2.5.4 Sensitivity to Subsequent Length ... 39
2.5.5 Why is C22MP so Robust? ... 39

2.5.6 Case Study on Medical Data .. 41
2.5.7 Learning a Threshold ... 42
2.5.8 Case Study on Mouse Motion Capture .. 45
2.5.9 Case Study with Human in the Loop ... 47
2.5.10 How Fast is ORR? ... 50

2.6 Conclusion and Future Work ... 51
3. Discovering Multi-Dimensional Time Series Anomalies with K of N Anomaly
Detection ... 52

3.1 Motivation .. 54

3.2 Related Work ... 54
3.3 Definitions and Notation .. 55
3.4 Algorithms ... 64

3.4.1 KDA Detection Algorithm ... 64

 vii

3.4.2 Fast KDA Algorithm.. 69
3.4.3 Robustness to Noise ... 70

3.4.4 Online KDAs Detection ... 71
3.5 Empirical Evaluation ... 71

3.5.1 Preamble: Metric of Success .. 72

3.5.2 Comparison to MSCRED .. 73
3.5.3 Comparison to Isolation Forest|AE-LSTM|Prophet 75
3.5.4 Comparison to MGAB ... 77
3.5.5 NeurIPS Benchmark .. 78
3.5.6 Sensitivity to Additional Dimensions .. 80
3.5.7 Timing Results ... 81

3.5.8 Selecting the Right K ... 82
3.6 Conclusions and Future Work ... 84

4. Conclusions ... 86
Bibliography ... 89

 viii

Fig 1 Eight instances from the 50words dataset clustered using Euclidean distance (left)
and catch22 (right). At least for these two classes, catch22 is better able to represent
the conserved class-specific structure. .. 3
Fig 2 A set of N time series, which are slightly noisy sine waves. At one location, we
have embedded anomalies in time series 1 and 2. .. 4
Fig 3 If K = N, then by simply summing the individual time series anomaly scores and
finding the maximum (indicated by the red dot) we correctly predict the true anomalous
region. ... 5
Fig 4 top) The time series we encountered in Fig 2 . bottom) The anomaly scores for
increasing large sets of time series, that include the two anomalous examples. Note that
by the time we have seen 75 examples, the predicted location of the anomaly has
moved, and is now a false positive. .. 5
Fig 5 left) A snippet of the data used in the experiments in Fig 6. right) A whitefly
(Bemisia tabaci) shown approximately to scale with the font used in the main body of
this paper. .. 8
Fig 6 top) Forty minutes of normal insect behavior that ends with a visually obvious
anomaly. bottom) Three TSAD algorithms, including the one proposed in this work,
evaluated on this dataset. Only C22MP correctly peaks at the right place (extreme right).
... 9
Fig 7 Our running example has a local burst of noise, which may be an anomaly,
depending on the context. ... 15
Fig 8 C22 Feature profiles for the running example introduced in Fig 7. 17
Fig 9 Top-1 leftC22MP computed on our running example. 22
Fig 10 A comparison of the output of the top-1 brute-force and the ORR algorithm on
a small toy dataset. .. 25
Fig 11 Instances from the 50words dataset clustered using the full set of catch22
features (left) and a subset of catch22 features (right). The full set produces a
reasonable clustering, but incorrectly considers a red object to be an outlier (cf. Fig 1).
... 26
Fig 12 A sequence of figures from [51] suggests that we can reproduce almost all the
diversity of fishes, using just a handful of “prototype” fish, and small number of linear
(bottom row) and non-linear (top row) distortions. For example, the figure in bottom
left shows that we can take a known fish, here the Olfer's Hatchetfish (left), and apply
a simple geometric transformation to obtain another fish that really exists, here the
Diaphanous Hatchetfish (right). .. 31
Fig 13 Two datasets with about 14 cycles shown. Both are periodic, but Melbourne has
almost no temporal variability, the rigidity of the 9 to 5 business cycles acts to keep
the days in synch. In contrast, the gait cycle shows the natural variability of walking in
an indoor environment with obstacles, doorways, changes of direction etc. 31
Fig 14 The two datasets shown in Fig 13 with the same amount of warping added to
each’s middle section. The addition of warping looks natural on the gait data but is
visually jarring for the Melbourne pedestrian dataset. This domain induced distinction
offers a clue as to how we can learn the best set of features for each domain. 32
Fig 15 An excerpt from the SWAT-FIT401 dataset. The ground truth anomaly is
highlighted in red. Unsurprisingly leftC22MP can easily find this anomaly. The constant
region that forms the anomaly actually has a value of exactly zero, we added a constant
to it to make the variability of the normal data clearer. .. 34

 ix

Fig 16 The performance of leftC22MP on datasets that appeared in twenty different
papers in the last two decades. .. 37
Fig 17 The m value suggested by DAMP for InternalBleeding dataset is 181. Therefore,
the range of the m would be from 45 to 723. C22MP is able to detect the correct location
of the anomaly for almost all window length in this range. .. 39
Fig 18 A) An electrical demand dataset for a single device, a freezer. B) The (rather
obvious) anomaly caused by a stuck temperature sensor. C) A random section of the
training data. ... 40
Fig 19 The leftC22MP can easily find the Stuck-Bimetallic-Strip anomaly. DAMP just
finds it, and Telemanom fails. ... 41
Fig 20 Comparing the distribution of the highest value across different type of
anomalies. ... 44
Fig 21 Examples of the CCT data with different type of anomalies. The cases observed
to be difficult for leftC22MP in Fig 20 are also very difficult to detect by visual
inspection. ... 45
Fig 22 center) A trace from the right paw of a healthy mouse, with its companion
C22MP. top and bottom) Screenshots of the video with markers labeled and tracked by
the DeepLabCut motion capture tool [41]. ... 47
Fig 23 Using C22full, the top-1 anomaly for DISTORTEDTkeepForthMARS is a false
positive. The algorithm seems to have been confused by wandering baseline. 47
Fig 24 A screen capture of a video showing adding warping distortion to
DISTORTEDTkeepForthMARS data. .. 48
Fig 25 top) Top anomaly for DISTORTEDTkeepForthMARS using C22subset is a true
positive. bottom) A zoom-in of the top anomaly for DISTORTEDTkeepForthMARS
using C22subset. .. 49
Fig 26 A comparison of ORR and the brute-force approach to compute the leftC22MP.
The blue curve shows just the time to do the C22 feature extraction. 50
Fig 27 A toy three-dimensional time series that we will use as a running example. P =
pressure, F = flowrate, V = viscosity. ... 58
Fig 28 In this multi-dimensional time series we have three anomalies at index 205, 520
and 800 respectively. The anomaly marked by green is a 2DA, the second anomaly
marked in blue is a 3DA and finally the anomaly marked by red is a 1DA anomaly. 58
Fig 29 Matrix Profiles for the three time series in our running examples. Notice how
the “bumps” reflect the anomalies in Fig 28. .. 60
Fig 30 S The toy data’s 2S has three 𝑴𝑴𝑷s (𝟑! 𝟑 − 𝟐! 𝟐! = 𝟑). Note that we only have
peaks in the locations where anomalies are present on at least two dimensions.
Moreover, 𝑴𝑴𝑷{𝑴𝑷(𝑷), 	𝑴𝑷(𝑽)}and 𝑴𝑴𝑷{𝑴𝑷(𝑭), 	𝑴𝑷(𝑽)} give us a partial
view of 2DA’s location. .. 62
Fig 31 The two-dimensional-profile (2DP) of the 2S of our toy example. Notice that
2DP has peaks only where data has 2DA and there is no peak at index 800 where data
has 1DA. .. 63
Fig 32 The all-KD-profile for the toy dataset. The peaks in each KDP represent the
location of KDAs. .. 66
Fig 33 Four (out of thirty) sample time series from MSCRED dataset. 74
Fig 34 Four sample time series (out of twenty-two) selected from the photovoltaic (PV)
systems dataset. Sixteen days are used. .. 76
Fig 35 Four sample time series (out of ten) selected from the MGAB dataset. Only
4,500 datapoints (out of 97,600) are shown. ... 77

 x

Fig 36 One example of the multi-dimensional time series in NeurIPs benchmark. Three
type of anomalies is injected in this data: Global anomaly in first dimension,
Contextual anomaly in second and Shapelet anomaly in the third dimension. 78
Fig 37 A screen captured from [35].Right) we repeated the benchmark experiment for
TSADIS and brush our result (pink line) onto the author’s original plot. As we can see
TSADIS outperform all the rival algorithms (Autoencoder(AE), recurrent neural
networks with long short-term memory units (LSTM-RNN), Generative adversarial
network(GAN), Autoregression (AR), Isolation forest (IForest), One-class SVM
(OCSVM), Gradient boosting regression (GBRT), Matrix profile (MP), ∆IForest,
∆OCSVM are subsequence clustering). .. 79
Fig 38 Three sample time series (out of ten) selected from the created dataset. Only
3,000 datapoints (out of 10,000) are shown. These examples are at noise level
𝟏. 𝟓 × 𝒔𝒕𝒅. .. 82
Fig 39 Our predicted number of anomalies (red dots) for datasets with a known ground
truth number of anomalies that ranged from 1 to 10. ... 83
Fig 40 Testing our algorithms ability to predict the true number of time series that are
involved in a five-dimensional anomaly in the ten-dimensional datasets, for increasing
levels of noise. .. 84

Table 1 Brute Force Computation of leftC22MP. .. 21
Table 2 Computation of feature profiles. .. 22
Table 3 ORR: Early-Abandoning Computation of leftC22MP 24
Table 4 Pseudocode for feature search with labeled data ... 28
Table 5 Pseudocode for feature search with feature profiles. 30
Table 6 A comparison of 14 algorithms on the HEX/UCR dataset 38
Table 7 A comparison of four TSAD algorithms on CCT data. The best performing
algorithms are highlighted in bold .. 42
Table 8 The result of LeftC23MP on CCT data for the task two. 44
Table 9 Brute-Force Algorithm to compute KDPs ... 65
Table 10 Algorithm to compute Query KDPs .. 67
Table 11 TSADIS: Fast KDP Algorithm .. 70
Table 12 The results of TSADIS on the MSCRED dataset. 74
Table 13 The results of TSADIS on the photovoltaic dataset. 76
Table 14 The results of TSADIS on the MGAB dataset. ... 77
Table 15 The results of the increasing dimension test .. 81

 1

1. Introduction

The Matrix Profile (MP) has emerged as one of the most promising general tools for

time series data mining [74]. The MP is a data structure that annotates a time series by

recording each subsequence’s distance to its nearest neighbor. Typically, the z-

normalized Euclidean distance is used, although a handful of other shape-based

measures have been proposed. It has been shown that Matrix Profile allows for

discovery of many regularities and structure in the original time series, including

motifs, anomalies (discords), evolving patterns (chains), regimes, etc. However, the

Matrix Profile has an important and underappreciated limitation: it is limited to

representing the relationships between shapes of subsequences. For some domains

useful information is conserved not in the subsequence’s shapes, but in the

subsequence’s features. In this thesis, we introduce a novel data structure, expounded

upon in Chapter 1, that adeptly captures both subsequence shapes and features.

In addition, there has been significant progress in univariate time series anomaly

detection. The state-of-the-art algorithms can detect anomalies that are so subtle that

they would defy discovery by careful human inspection [66]. However, efforts to

generalize these successes to multi-dimensional time series have not seen similar

progress. In this thesis, Chapter 2 presents our innovative algorithm designed for the

detection of anomalies within multi-dimensional time series. Subsequently, we provide

detailed insights into each method and elaborate on the motivations driving each

project.

1.1 A novel data structure for time series data

In parallel to the explosion of interest in the MP there has been a significant

breakthrough in time series feature extraction. The issue with feature extraction for

 2

time series was its ad-hoc nature. There are several thousands of named time series

features in the literature, naturally including many subsets that are highly redundant.

Thus, any practitioner hoping to use a feature-based approach was required to find a

set of non-redundant features that were appropriate for both the domain and the task-

at-hand. In [27] the authors provided a limited features set of twenty-two features, the

eponymous catch22 (C22), to make this task easier. These twenty-two features were

discovered by an incredibly ambitious brute-force search through a massive set of

4,791 candidate features, evaluated on an enormous and diverse set of 147,000 time

series datasets. It is no exaggeration to claim that catch22 has revolutionized feature-

based mining of time series. There is a real sense in which it has democratized and

deskilled time series data analytics. For example, allowing biologists to study the

motion of trees in the wind without the need of data mining specialists [27].

Note that the Matrix Profile and catch22 are complementary ideas. The MP allows us

to reason about the relationships between subsequences. For example, “These two

subsequences are alike” (motifs) or “this subsequence is different to all others”

(discords). Whereas C22 simply summarizes each individual subsequence’s properties

in a useful and intuitive way. As such, combing these two ideas into a single framework

seems to offer many possibilities for novel data mining applications. The utility of

doing this is predicated on the assumption that there can be semantic structure in time

series that is better conserved in features than in shapes. In fact, this is the case. In Fig

1, we demonstrate this by clustering exemplars from two classes of the 50words dataset

[14].

 3

Fig 1 Eight instances from the 50words dataset clustered using Euclidean distance (left) and
catch22 (right). At least for these two classes, catch22 is better able to represent the conserved
class-specific structure.

However, there are two difficulties in attempting to unify these two ideas. A direct

application of the Matrix Profile with the catch22 features would be intractable. The

scalability of the SOTA Matrix Profile algorithm, SCRIMP[74], is due to its

exploiting several unique properties of the Euclidean distance function. It does not

appear that catch22 features are similarly amiable to such optimizations.

Less obviously, in almost all domains, using all twenty-two of the catch22 features

will produce poor results. While some subset of the features will be sensitive to

however an anomaly may reveal itself, it is very likely that there will also be some

features that are very sensitive to irrelevant natural variations in the data, and the

inclusion of these features will cause false alarms. In this work we introduce a novel

representation and algorithm, C22MP (Catch22 Matrix Profile) and ORR (Observed

Repudiation of Regularity), to solve both problems.

1.2 Discovering Multi-Dimensional Time Series Anomalies with K of N Anomaly
Detection

In the last few years, there has been significant progress in univariate time series

anomaly detection. The state-of-the-art algorithms can detect anomalies that are so

subtle that they would defy discovery by careful human inspection [66]. However,

Euclidean Distance catch22 Distance

 4

efforts to generalize these successes to multi-dimensional time series have not seen

similar progress. The main problem appears to be that in any N-dimensional time

series, the anomaly will generally only manifest itself on K of the time series with K <

N (typically K ≪ N), and the inevitable small amounts of noise on the remaining N-K

dimensions will tend to swamp the signal provided by the anomalous time series.

To make this concrete, consider the following simple example. We created a dataset

that contains N time series, all of which are simply slightly noisy sine waves. As shown

in Fig 2, we modeled a fault which induced a spike in one time series, and an unusual

shape in the other, and did not affect the rest of the data. Can we detect this anomalous

region?

Fig 2 A set of N time series, which are slightly noisy sine waves. At one location, we have
embedded anomalies in time series 1 and 2.

Given the success of anomaly scoring algorithms for the univariate case, the obvious

solution to discover the anomalous region is to simply compute the anomaly scores for

each time series individually, then combine those scores, in this case by adding them

(although as we shall see, there are other ways). As shown in Fig 3. bottom, if N = 2,

that is, we only consider these two-time series, then the problem is trivial.

::

1

2

N

 5

Fig 3 If K = N, then by simply summing the individual time series anomaly scores and finding
the maximum (indicated by the red dot) we correctly predict the true anomalous region.

However, suppose that, in addition to the two above time series, we consider the others

that do not contain any anomaly. Would the summed anomaly curve still reveal the

correct location of the anomaly? In Fig 4 we test this question.

Fig 4 top) The time series we encountered in Fig 2 . bottom) The anomaly scores for increasing
large sets of time series, that include the two anomalous examples. Note that by the time we
have seen 75 examples, the predicted location of the anomaly has moved, and is now a false
positive.

If we have, say, N = 40, the anomaly curve has flattened out somewhat but we can still

just about detect a peak at the right place. However, by the time we have N = 75, the

AnomalyScore(1) + AnomalyScore(2)

1

2

::

1

2

N

2

80

40

 6

anomaly location has changed to the wrong location by the cumulative effect of small

amounts of noise in the N-K normal time series.

The fact that this approach does not fail until N is 75 is a testament to the robustness

of the underlying anomaly scoring function, here we are using the Matrix Profile [70].

However, this is a very contrived problem with short time series. For longer time series,

or for real-world time series, the swamping effect will occur much earlier. In this work,

we introduce a novel method to address these challenges.

 7

2. C22MP: The Marriage of catch22 and the Matrix Profile creates a Fast,
Efficient and Interpretable Anomaly Detector

In this chapter, we introduce a novel representation and algorithm, C22MP (Catch22

Matrix Profile) and ORR (Observed Repudiation of Regularity), designed to detect

anomalies that may be preserved in either the shape or features of subsequences. We

will demonstrate that our algorithm is orders of magnitude faster than a direct

application of C22 to long time series, and we will introduce a framework to allow us

to discover an appropriate subset of features for the domain. While the C22MP can be

applied to diverse problems, in this work we will confine our attention to just anomaly

detection (discord discovery in the language of the MP [74]), reserving further

generalizations to future work. We will demonstrate that the C22MP can find subtle

anomalies that no other SOTA algorithm can discover.

This chapter is organized as follows: in Section 2.1 we motivate the need for a feature-

based anomaly detector before discussing related work in Section 2.2. Section 2.3

introduces the necessary definitions and notations. In Section 2.4 we first introduce

algorithms to compute the C22MP without regard to the weights, then we introduce four

strategies to set the weights under different assumptions/conditions. Finally, in Section

2.5, we conduct an extensive empirical evaluation before offering conclusions in

Section 2.6.

2.1 Motivation

With hundreds of proposed algorithms for Time Series Anomaly Detection (TSAD), it

is reasonable to question the need for yet another one. Most of the existing TSAD

algorithms found in literature only focus on the shapes of subsequences. This is evident

 8

in approaches such as Matrix Profile and related techniques[39][74], and appears to be

the case for most deep learning approaches as well[27]. (Although many deep learning

methods are opaque, even to the researchers that introduced them). Reasoning about

changes in shape clearly works very well for some data types: gait, heartbeats, gestures,

daily traffic patterns, etc. But many datasets may have richer and more complex

behaviors, such as the insect behavior shown in Fig 5.

Fig 5 left) A snippet of the data used in the experiments in Fig 6. right) A whitefly (Bemisia
tabaci) shown approximately to scale with the font used in the main body of this paper.

The insect data is clearly not random but the conservation of behavior is much more

complex than simple repetition of shape, one could almost argue for a complex

“grammar” of atomic behaviors.

The data is collected by gluing a tiny gold wire (about 1/100th the thickness of a human

hair) to the insect and recording changes in electrical properties as it feeds on a plant.

In Fig 6 we show a section of normal insect behavior that ends with a very obvious

anomaly. A laboratory door was inadvertently opened, and the resulting breeze lifted

the tethered insect off the plant.

The
35,290 35,630

Whitefly EPG

 9

Fig 6 top) Forty minutes of normal insect behavior that ends with a visually obvious anomaly.
bottom) Three TSAD algorithms, including the one proposed in this work, evaluated on this
dataset. Only C22MP correctly peaks at the right place (extreme right).

While the Matrix Profile [39][74] and Telemanom (a SOTA deep learning approach)

[27] are unable to detect this anomaly, our proposed feature-based method, C22MP,

strongly peaks the moment it encounters the anomaly. As we will show in Section 2.5,

there are many other domains/situations for which a feature-based approach is more

suitable. It is important to note that we are not proposing feature-based methods could

replace shape-based approaches, instead, we are suggesting that they can complement

them.

On a side note, it worth providing a preview of some timing results here. Our proposed

C22MP took a total of 5.5 minutes, about 7.2 times faster than real time (Telemanom

took a total of 14.6 minutes). This scalability is important, Wu & Keogh have argued

that progress in TSAD algorithms has been hampered by the community’s insistence

on confining their attention to tiny datasets1 [66][66].

1 The two most cited datasets for evaluating TSAD algorithms are tiny: NY-Taxi (length 10,320) and Yahoo! Webscope (mean

length 1,415) [66].

0 250,000

C22MP

Matrix Profile (DAMP)
Telemanom

Whitefly EPGTrain | Test Split
Insect loses contact with plant

 10

2.2 Background and Related Work

2.2.1 The Problem we are Solving

Prior to discussing related work, we wish to clarify exactly what problem we are

attempting to solve here. A complete anomaly detection system can be described as

consisting of two components:

1. Point to the K locations that are most likely to contain a subsequence that will

be considered anomalous.

2. Make K decisions on whether to sound an alarm.

In certain TSAD systems, these two tasks are inseparably entwined. Nevertheless, we

strongly believe that they should be completely divorced. The reason is that task ‘2’

can potentially avail of additional knowledge and context. For example, in some

manufacturing scenarios, it is common to get false alarms at 12am, 8am and 4pm.

These are caused by the minor disruptions of operator shift changes. If a user knows

this, she can have a higher threshold for anomalies around these times. Moreover, the

binary nature of task ‘2’ is often a false dichotomy. Instead of triggering a single

possible action, i.e. (red-alert), in practice we may want a hierarchical response

(beep, log, alertmanager, alertengineer,…, red-alert). Finally, echoing the

caution expressed by Wu and Keogh [66] and other recent papers, if we are not careful

evaluating the results of task ‘2’ only can yield a highly deceptive notion of our actual

performance.

With that context, here we are solving task ‘1’, pointing to the K locations most likely

to contain an anomaly. Note that this ability can be used by other downstream

algorithms such as attention focusing and summarization.

 11

2.2.2 Related Work

Anomaly detection methods vary depending on the type of data being analyzed. In the

case of non-temporal data, such as spatial data, anomalies can be detected by measuring

the deviation of abnormal points from the rest of the data or by clustering the dataset

and identifying points in less dense regions as anomalies. Spatial data is assumed to

consist of independent data points. On the other hand, time-series data is different

because the data points are not completely independent, and the latest data points in

the sequence influence their following timestamps. Consider the following example to

understand the limitations of point-wise analysis in detecting anomalies. Let us say we

have a time series that records the temperature of an equipment, with values as follows:

40, 44, 41, 44, 42, 43, 44, 44, 95, 97, 96, 97, 98, 98, 96, 99. If we analyze these values

independently, most anomaly detection methods would fail to detect the significant

step change from 44 to 95 in the data. Instead, they would simply detect two equally

distributed clusters. However, by incorporating the temporal dependencies of samples

in a time series, anomaly detection models can capture the context and shape of regular

patterns in the data and identify any anomalies. As a result, many techniques define

anomalies as the subsequences that are maximally far from their nearest neighbor(s),

or the time series discord[39][68][74].

For instance, in [39] the Discord Aware Matrix Profile (DAMP) is introduced. This

fast throughput algorithm (exceeding 300,000Hz) is simple and only requires a single

parameter. Unlike Matrix Profile [74], DAMP is not confused by repeated anomalies

(twin-freaks) and can handle concept drift in time series. However, this algorithm is

limited to detecting shape-based anomalies only.

 12

There are several other machine learning methods[30][42][67], which try to detect

shape-based anomalies using clustering methods on time series subsequence. For

instance, in [42], K-Means is used to cluster subsequences of time series extracted by

a moving window. In these methods to detect anomalies, the desired number of

clusters, k, is defined, and the K-Means algorithm is executed until convergence,

producing k centroids. The distance between each subsequence and its nearest centroid

is then computed to identify anomalies. Any subsequence that exceeds a predefined

threshold from its nearest centroid is classified as an anomaly. In their work, Keogh

and Lin [25] have demonstrated that using sub-sequences of time-series data for

clustering algorithms is meaningless. They found that the cluster centers obtained

through multiple runs of the K-means algorithm on the same dataset are no more

similar to each other than those of a random walk dataset. This means that the resulting

centroids of a dataset could be those of a random walk, and it would be impossible to

differentiate between them. Keogh and Lin also tried other algorithms such as

hierarchical clustering, but they received the same results. They tested various distance

measures, including Manhattan, L-infinity, and Mahalanobis distance, and applied K-

means with k=3 and w=128 on the CBF dataset. They found that the resulting centroids

were sinus waves that were completely different from the instances in the CBF dataset.

Many authors have attempted to analyze this behavior mathematically, and others have

tried to solve this problem, or at least show time series patterns that would work with

Subsequence time-series Clustering (STSC). However, these problems generally

remain unsolved.

In contrast to such shape-based methods, deep learning approaches typically “model

complex nonlinear feature interactions” [1][27][44]. Although these models can

 13

identify feature-based anomalies, the features themselves are generally opaque to the

user, and overfitting remains a significant challenge. Additionally, these models

involve a substantial number of hyperparameters that must be managed, including:

• The number of hidden layers in the network (depth of the network)

• The number of nodes in each layer (width of the network)

• The length of the window,

• The learning rate

• The optimization function

If Convolutional Neural Networks are used, another set of parameters must also be

handled, such as:

• The architecture of the CNN, such as using Batch Normalization, Dropout, or

Max Pooling layers

• The number of kernels in each convolution layer

• The size of the kernel

• The depth of the Convolution Layer

Given the complexity and possibility of overfitting (especially when the number of

samples in the data is limited), we adopt a more straightforward approach to detect

feature-based anomalies.

Our work exploits the success of the catch22 feature set for time series [1][39]. This

set of features was discovered through a brute-force search through thousands of

candidate features, averaged over hundreds of datasets from diverse domains, using

classification accuracy as an objective function. These features are designed to be a

 14

complete and (largely) independent universal feature set. Since its introduction there

has been a flurry of activity in using catch22 for tasks such as time series classification

and clustering. However, to the best of our knowledge, there are only a handful of

efforts to exploit catch22 for anomaly detection [1]. In every case, they simply use

catch22 features as inputs to deep learning algorithms. However, this means that we

inherit the complexity, opaqueness, and sloth of deep learning algorithms. In contrast,

we propose to directly use the catch22 features to produce a simple, transparent and

fast algorithm.

The field of TSAD (Time Series Anomaly Detection) is highly active [27][39][66][74],

with numerous methods proposed [27][51][52][64]. However, reviewing all of these

different techniques is beyond the scope of this paper. Interested readers are directed

to [66] and its references for a more comprehensive review.

2.3 Definition and Notation

Below we introduce all the necessary notations and definitions to frame our

contributions. We begin by defining the key terms used in this work. The data we are

addressing is time series.

Definition 1: A time series T is a sequence of real-valued numbers 𝑡!: 𝑇	 =

	[𝑡", 𝑡#, . . . , 𝑡$] where n is the length of T.

Fig 7 demonstrates this notation on a running example dataset toy dataset we use as a

running example. This dataset has a local distortion (in this case, noise) which may be

an anomaly, depending on the context.

 15

Fig 7 Our running example has a local burst of noise, which may be an anomaly, depending
on the context.

We are interested in local subsequences of the times series.

Definition 2: A subsequence 𝑇!,& of a time series T is a continuous subset of data

points from T of length 𝑚 starting at position i. 𝑇!,& 	= 	 [𝑡! , 𝑡!'", . . . , 𝑡!'&("], 1	 ≤

	𝑖	 ≤ 	𝑛	– 	𝑚	 + 	1.

The length of the subsequence is typically set by the user based on domain knowledge.

For example, for human or animal activities there is a cycle of a daily pattern so a

subsequence of twenty-four hours (the circadian rhythm) might be appropriate.

In our proposed algorithm we need to calculate all-pairs-similarity of all subsequences

of a given time series. The notion of all-subsequences set is purely for notational

purposes. In our implementation, we do not actually extract the subsequences in this

form as it would require significant time and space overhead. We define an all-

subsequences set of a given time series as a set that contains all possible subsequences

from the time series:

Definition 3: An all-subsequences set A of a time series T is an ordered set of all

possible subsequences of T obtained by sliding a window of length m across 𝑇:	𝐴	 =

{𝑇",&, 𝑇#,&, . . . , 𝑇$(&'",&}, where 𝑚 is the user defined subsequence length. We use

𝐴[𝑖] to denote 𝑇!,&.

We consider two subsequences to be similar if they have similar features; more

specifically if they have similar catch22 features. We calculate the catch22 features of

each subsequence in the all-subsequences set and generate the feature profiles:

Time Series T

 16

Definition 4: The feature profiles 𝐹𝑃 ∈ 	ℝ($(&'")×## is an array containing the

catch22 features of all the subsequences in an all-subsequences set. We use 𝐹𝑃[𝑖, :]

to denote the subsequence 𝑇!,&′𝑠 features. Each column in the FP array corresponds

to one of the twenty-two features’ profile.

Fig 8 illustrates this concept, with each row representing the feature profile

corresponding to one of the catch22 features computed with a sliding window of length

m = 80. Note that:

• Some of the features (i.e., ‘1’ and ‘2’) seem to be invariant to the burst of noise.

• Some features increase in the presence of the distortion.

• Other features decrease in the presence of the distortion.

• Some features (i.e., ‘3’ and ‘16’) have variability that seems unconnected to the

presence of the distortion.

The subset of features that are sensitive or invariant to a given distortion depends both

on the type of distortion and the data itself. This observation correctly suggests that the

choice of the subset of features to use will be critical for the success of any TSAD

algorithm based on C22 features.

 17

Fig 8 C22 Feature profiles for the running example introduced in Fig 7.

If we take any subsequence 𝑇!,& as a query, calculate its feature-based distance from

all subsequences in the time series T and store the distances in an array in order, we

obtain a distance profile.

Definition 5: Distance profile 𝐷! for time series T refers to an ordered array of

feature-based distances between the query subsequence 𝑇!,& and all subsequences

of T. Formally, 𝐷! = 𝑑!,", 𝑑!,#, … , 𝑑!,$(&'",where 𝑑!,, 	(1 ≤ 𝑖, 𝑗 ≤ 𝑛 −𝑚 + 1) is the

feature-based distance between 𝑇!,& and 𝑇,,&.

For the distance profile 𝐷! of query 𝑇!,&, the 𝑖-. position represents the feature-based

distance between the query and itself, so the value must be 0. The values before and

 18

after position 𝑖 are also close to 0, because the corresponding subsequences have

overlap with query. Our algorithm neglects these matches of the query and itself, and

instead focuses on non-self match.

Definition 6: Non-self match: Given a time series T containing a subsequence 𝑇/,&

of length m starting at position p and a matching subsequence 𝑇0,& starting at q,

𝑇/,& is a non-self match to 𝑇0,& with distance 𝑑/,0 if |	𝑝	– 	𝑞| 	≥ 	𝑚. A non-self

matching set Mp of 𝑇/,&, contains all such non-self matching subsequences.

While the word discord has become something of a synonym for anomaly in recent

years, for clarity, we reserve the word discord for its original meaning [39][74]. For

our proposed variant, the subsequences with the feature vector whose distance to its

nearest neighbor feature vector is maximum, we use discordia (the Latin origin of

discord). We can now define time series discordia.

Definition 7: Time series discordia: Given a time series T, the subsequence 𝑇1,& of

length m beginning at position r is said to be a discordia of T if the feature-based

distance between 𝑇1,& and its nearest non-self match is maximum. That is, ∀

subsequences 𝑇2,& of T, non-self matching set Mr of 𝑇1,&, and non-self matching set

Mc of 𝑇2,&, 𝑚𝑖𝑛(𝑑1,3!) 	> 	𝑚𝑖𝑛(𝑑2,3").

Intuitively the difference between time series discord and time series discordia is that

a discord is a subsequence that is unique in its shape, and a discordia is a subsequence

that is unique in its features.

Exploiting the closeness of the concepts of "discord" and "discordia," we adopt the

idea of Matrix Profile to locate time series discordia. It has been shown that Matrix

Profile is one of the most effective ways to find discords [74]. The Matrix Profile (MP)

 19

is a data structure that annotates a time series by recording each subsequence’s Z-

normalized Euclidean distance to its nearest neighbor.

Note that our framing of our contributions as a variant of the Matrix Profile is very

deliberate. There is a large and growing body of literature on the MP and a diverse

community that uses and extends the MP for diverse tasks [6][39][45][74]. Such users

will find our contributions familiar and initiative and should be able to “plug” our

algorithm into their frameworks with ease. We introduce the Catch22 Matrix Profile

(C22MP) a data structure that annotates a time series by recording each subsequence’s

feature-based distance to its nearest neighbor.

Definition 8: A C22MP of a time series T is a vector storing the feature-based

distance between each subsequence and its nearest non-self match. Formally,

𝐶##𝑀𝑃 = [𝑚𝑖𝑛(𝐷"),𝑚𝑖𝑛(𝐷#), … ,𝑚𝑖𝑛(𝐷$(&'")], where 𝐷! (1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1)

is the distance profile of query 𝑇!,& in time series T. It is easy to see that the highest

value of the C22MP is the time series discordia.

As we will explain below, we can compute a special C22MP which only looks to the

past. We call it the leftC22MP.

Definition 9: A leftC22MP of a time series T is a vector that stores the feature-based

distance between each subsequence and the nearest non-self match appearing before

that subsequence. Formally, given a query subsequence 𝑇!,&, let 𝐷!4 =

𝑑!,", 𝑑!,#, … , 𝑑!,!(&'" be a special distance profile that records only the distance

between the query subsequence and all subsequences that occur before the query,

then we have 𝐶##𝑀𝑃4 = [𝑚𝑖𝑛(𝐷"4),𝑚𝑖𝑛(𝐷#4), … ,𝑚𝑖𝑛(𝐷$(&'"4)].

 20

As mentioned earlier, in almost all domains, using all twenty-two of the catch22

features will produce poor results. To address this issue we can use a weight vector that

indicates the importance of each feature for the given domain:

Definition 10: A weight vector, w is a list representing the importance of each

feature, where the sum of the total weights is equal to one. Formally, ∑ 𝑤!##
!5" =

1,𝑤! ∈ (0,1).

Note that the weight vector can be real-valued. However, in many cases we may

just want to use f equal-weight features, typically with f ≪ 22. In this case we simply

set the weight of each desired feature to 1/f.

In Section 2.4.3, we will present several different methods to set these weights,

depending on the user’s access to labeled data, domain expertise or ability to obtain

feedback from a user.

2.4 The C22MP

With the essential notations and definitions established, we are now in a position to

explain how to calculate and accelerate the computation of the C22MP, and how to set

the feature weights.

2.4.1 The leftC22MP

In Table 1, we outline a brute force algorithm to compute the leftC22MP, assuming the

feature weight vector w has already been determined and the user has chosen m. For

clarity we only show the top-1 case. The generalization to the top-K case is trivial.

In line 1 we use the subroutine in Table 2 to obtain the feature profiles of the time

series T. We scan all possible subsequences in test data in line 4. For each subsequence,

we search to the left for its nearest neighbor. To consider the worst-case scenario, in

 21

line 5, we initialize the candidate subsequence to its leftmost nearest neighbor to

infinity in line 5, we set the distance of the candidate subsequence to its leftmost nearest

neighbor to infinity. In lines 6 to 10, we iterate through all the subsequences that are

before the candidate subsequence to check which one of them has the lowest distance

to the candidate subsequence.

Table 1 Brute Force Computation of leftC22MP.
Function: Brute_Force_Left_C22MP(T, m, w, s_idx)
Input:
 T: Time series
 m: Subsequence length
 w: Feature’s importance weights
 s_idx: Location of split point between training and test data
Output:
 left_c22mp: leftC22MP

1 FP = get_feature_profies(T, m, w) //get feature profiles (def. 4)

2 left_c22mp = zeros((len(T)-m+1,))

3 //Scan all subsequences in test data and calculate left_c22mp (def. 9)

4 for i in range(s_idx, len(T) – m + 1):

5 lbsf = inf

6 for j in range(i-1-exclude_zone, -1, -1):

7 d = distance(FP[i], FP[j])

8 if d < lbsf:

9 lbsf = d

10 left_c22mp[i] = lbsf

11 return left_c22mp

We skip the subsequences in the exclusion zone to avoid trivial matches[74]. Finally,

in line 10 we use the distance of the candidate subsequence and its leftmost nearest

neighbor (which is saved in lbsf) to fill the left_c22mp array. Fig 9 demonstrate the

output of this algorithm on the running example introduced in Fig 7.

 22

Fig 9 Top-1 leftC22MP computed on our running example.

To calculate the feature profiles, we use the subroutine in Table 2 as follows: we iterate

through all possible subsequences of length m in T and calculate their catch22 features

in lines 3 to 6. Also, we apply the weights to each feature value respectively. If a feature

has a weight of zero, it means the feature is not used, so to speed up the feature profiles’

computation we can omit this feature. Finally, in line 7 we scale the feature profiles to

make them unitless and commensurate.

Table 2 Computation of feature profiles.
Function: get_feature_profies(T, m, w)
Input:
 T: Time series
 m: Subsequence length
 w: Feature’s importance weights
Output:
 FP: weighted feature profiles
𝟏 FP = zeros((len(T)-m+1,))
𝟐 //calculate the catch22 features for each subsequence (def. 4)
𝟑 for i in range(len(T)-m+1):
𝟒 subsequence = T[i:i+m] //get the subsequent (def .2)
𝟓 //pass w to apply weights while calculating catch22 features (def. 10)
𝟔 FP[i] = cal_catch22_feature(subsequence, w)
𝟕 FP = scale(FP) // scale feature profiles
𝟖 return FP

We noted that in Table 2, in line 7 that we scale the feature profiles to make them

unitless and commensurate. We use min-max normalization to rescale the range of all

the features in the range of [0,1]. Note with this scaling for offline analysis, we can

guarantee that the scaled sample will be in the desired range, however, that is not true

for online prediction. It is possible that new incoming data will be outside the bounds

Brute-Force le,C22MP

Time Series T

m

 23

of the minimum and maximum values, therefore the new scaled data will exceed the

range of 0 and 1. Consequently, when using ORR in an online setting, we need to check

for these observations prior to making predictions and either remove them from the

dataset or limit them to the pre-defined maximum or minimum values.

2.4.2 Fast computation of leftC22MP

In The brute force algorithm shown in Table 1 correctly computes the leftC22MP but is

too slow to be practical for large datasets. Here we will show how to accelerate its

computation. The key insight is that, to extract the top-K discordia, we only need to

have exact values for the K largest values in the leftC22MP. For all other values, it

suffices to know any upper bound that is less than the top-K value.

For example, suppose we are computing the discordia value for the jth subsequence,

and further suppose, that for a previously seen subsequence at i, we have recorded the

best-so-far discordia value of 4.5. As we begin to compute the value of the jth

subsequence, we must start by initializing a variable to infinity, and then we need to

update its value every time we encounter a closer match than previously encountered.

Thus, the value of the variable will monotonically decrease: ∞, 7.2, 5.3, 4.2, 2.9, 2.6.

2.2,… However, once we encountered the value of 4.2, we could have admissibly

abandoned our search, as its value is less than our current best-so-far of 4.5.

The utility of this early abandoning idea depends on how quickly we find any neighbor

that is closer than our best-so-far. In the best case, it could be after examining a single

neighbor, but in the worst case it could require a search through all the data. Nearest

neighbor searches can often be accelerated by indexing, however it would be

essentially impossible to build an index in real time on a fast moving stream. However,

 24

there is a simple strategy we can use to accelerate our early-abandoning search. Instead

of a search forward from time zero to now (present time), we can search backward

from now to time zero. The reason why this can be expected to be more efficient is

simply that there is generally significant autocorrelation in the feature profiles, and

much less correlation between current feature vectors and feature vectors in the distant

past. This is because almost all systems slowly drift over time.

This means that all things being equal, the more recent data will be more likely to be

similar to current data.

In Table 3, we formalize these observations with the ORR (Observed Repudiation of

Regularity) algorithm.

Table 3 ORR: Early-Abandoning Computation of leftC22MP
Function: OOR(T, m, w, s_idx)
Input:
 T: Time series
 m: Subsequence length
 w: Feature’s importance weights
 s_idx: Location of split point between training and test data
Output:
 a_left_c22mp: approximate leftC22MP
1 FP = get_feature_profies(T, m, w) //get feature profiles (def. 4)
2 left_c22mp = zeros((len(T)-m+1,))
3 bsf = 0 // The current best discordia score
4 //Scan all subsequences in test data and calculate approximate left_c22mp
5 for i in range(s_idx, len(T) – m + 1):
6 lbsf = inf
7 for j in range(i-1-exclude_zone, -1, -1):
8 d = distance(FP[i], FP[j])
9 if d < lbsf:
10 lbsf = d
11 if d < bsf and j > 0:
12 Break
13 elif d >= bsf and j > 0:
14 continue
15 elif d >= bsf and j == 0:
16 bsf = lbsf
17 a_left_c22mp[i] = lbsf
18 return a_left_c22mp

 25

In line 1 we obtain the feature profiles of the given time series T. In lines 5 to 17 we

iterate through all possible subsequences in test data and find their approximate left

nearest neighbor as follows: for each subsequence (skipping the exclusion zone, as per

Definition 6) we go back till we find a neighbor that has a distance less than best-so-

far. We use that distance to fill the a_left_c22mp. If we go back so far that we reach

the beginning, this means that we have a new best discordia. In that case we not only

use the nearest neighbor distance to fill the a_left_c22mp but we also use it to update

the best-so-far.

Fig 10 provides visual evidence of the correctness of ORR.

Fig 10 A comparison of the output of the top-1 brute-force and the ORR algorithm on a small
toy dataset.

Note that while the output of the brute force algorithm and our swifter ORR algorithm

can diverge, the following properties are true:

• The two outputs exactly agree at the location of the maximum of the brute force

algorithm.

• No value in leftC22MP is greater than the maximum of the brute force

algorithm.

These properties combined mean that, just as with the brute force algorithm, we can

report the K highest values of the output of the ORR algorithm as the top-K anomalous

regions.

Brute-Force le,C22MP
ORR le,C22MP

Time Series T

Maximum of Brute-Force le,C22MP m

 26

As we will show in Section 2.5.10, the early-abandoning algorithm is several orders of

magnitude faster than brute-force search and allows us to address datasets with billions

of datapoints.

2.4.3 Setting the Feature Weights for C22MP

The ORR algorithm introduced in Table 3 allows the efficient discovery of discordia,

but if we use all twenty-two of the C22 features we may be doomed to poor

performance. In particular, we may be condemned to reporting many false positives if

we use features that are irrelevant to the anomaly detection task. To see this, we can

revisit the example shown in Fig 1 To enhance the flow of the introduction, we

originally presented the better clustering simply as catch22. However, as made clear in

Fig 11.right, this clustering was obtained by using a subset of catch22 features. Had

we used all the features, we would have obtained the clustering shown in Fig 11.left.

Note that this clustering is still better than using Euclidean distance, but it becomes

evident that a judicious selection of features can greatly benefit catch22.

Fig 11 Instances from the 50words dataset clustered using the full set of catch22 features
(left) and a subset of catch22 features (right). The full set produces a reasonable clustering,
but incorrectly considers a red object to be an outlier (cf. Fig 1).

catch22FULL Distance catch22SUBSET Distance

 27

While this suggests that a good choice of features weights will improve the sensitivity

and specificity of the leftC22MP, we think it is very unlikely that there exists a single

best strategy to find such weights. An anomaly detection algorithm can be deployed in

diverse settings, spanning the space of no-labeled-data vs. copious-labeled-data, no-

domain-knowledge vs. rich-domain-knowledge etc. Instead, in this section we will

consider a handful of techniques to discover the appropriate weights for the C22

features.

2.4.3.1 Hand Coded Subsets of Features

In certain instances, practitioners can leverage their domain expertise to manually

design a suitable subset of features. For example, suppose that we know that for our

domain it is possible that the typical patterns might be observed flipped upside down,

and that this is not to be considered anomalous. However, if the patterns are ever

observed flipped left-to-right, that is indicative of an anomaly.

Knowing this, we can use features that are not sensitive to data appearing flipped

upside down. These include features {5, 6, 7, 8, 9}. However, we want to avoid using

features that are sensitive data appearing flipped upside down, these include features

{1, 2, 5, 21}. In order to help such practitioners, we have created a detailed key of all

the invariances of catch22 [12]2. This is an attractive solution for users that have both

a familiarity with c22 features and a strong initiative understanding of their domain of

interest. Since such users may be rare, below we consider other possibilities.

2 This contrived example is not as implausible as it may seem. Suppose we are monitoring the accelerometer time series from a

smartphone in a user’s pocket. If the user takes a call, and then returns the phone to her pocket upside down, the Y-axis time
series will flip upside down, but will not be flipped backwards.

 28

2.4.3.2 Feature Search with Copious Training Data

In a handful of situations, we may have copious training data to learn an appropriate

feature weighting. Here we must ward off a possible confusion. There are papers in the

literature that claim to be doing anomaly detection, but are arguably doing

classification, with “anomaly” simply being the rarer class. One could critique such

efforts by noting that if we have examples of the anomaly in advance, this is simply

classification or pattern matching. The normal definition of anomaly suggests an

unknown/unexpected pattern, precluding the possibility we have examples in our

training data.

However, here we are not suggesting we learn the anomaly patterns, we are simply

learning which features are sensitive to disturbances in the domain of interest. We

propose to learn these features by treating the training data as a classification problem

and optimizing the classification error-rate by a simple greedy forward search. Table 4

demonstrate the pseudocode for this idea.

Table 4 Pseudocode for feature search with labeled data
Function: feature_search(T, y)
Input:
 T: a set of normal and anomaly time series
 y: labels for each sample
Output:
 w: Feature’s importance weights
𝟏 transfomed_T = []
𝟐 for t in T:
𝟑 transformed_T.append(cal_catch22_features(t))
𝟒 model = Classifier()
𝟓 model.fit(transfomed_T, y)
𝟔 w = model.feature_importances
𝟕 return FP

In lines 1 to 3 we iterate through all samples in the labeled data and calculate the

catch22 features for each time series. We create a classification model in line 4, then

 29

train this model to classify normal and anomaly samples in line 5. Finally, we extract

the feature importance learned through classification in line 6. Note we can use any

explainable classification model in this method. For example, we can use a Decision

Tree Classifier, in which the feature importance scores are estimated by calculating

Gini gain (the amount of Gini impurity that was eliminated at each branch of the

decision tree) or a logistic regression model in which the feature importance scores are

estimated by using the learned coefficient value for each feature [50].

We can also use the leave-one-out mechanism with any classification model. Where in

each iteration we use one of the twenty-two features to classify the samples.

Subsequently, we select the feature set that yields the highest classification accuracy.

2.4.3.3 Feature Search by Feature Profiles

In scenarios where we have limited labeled anomalies (maybe just one or two anomaly

samples), the method presented in section 2.4.3.2 would not be suitable. In such cases,

an alternative approach is to analyze the feature profiles in order to learn the weight of

each feature. Intuitively, we expect to see a feature in the feature set if its feature profile

“responds” to the anomaly of our interest. For example, in our toy example in Fig 7,

we do not expect to have features 1 and 2 in the feature set, as their feature profiles

seem to vary independently of the anomaly. This suggests that we can use regression

analysis to learn the feature set. We create a regression model to estimate the

relationships between the time series (dependent variable) and feature profiles

(independent variables), then we extract the learned relationships (the coefficients).

The coefficients can be used as the feature importance score. In general, feature

 30

importance refers to how useful a feature is at predicting the target variable, which, for

our case, is the time series and the anomaly within it. Table 5 formalizes this idea.

Table 5 Pseudocode for feature search with feature profiles.
Function: feature_search(T, FP)
Input:
 T: Time series
 FP: feature profiles
Output:
 w: Feature’s importance weights
𝟏 model = Regression()
𝟐 model.fit(FP, T)
𝟑 w = abs(model.coefficients)
𝟒 return w

In line 1 we create a linear regression model. To learn the relationship between the

time series and its feature profiles, we fit the model to the time series and its feature

profiles in line 2. Finally, we extract the coefficient learned during regression as feature

importance in line 3. Similar to using a classification model to learn feature’s weights,

we can use any explainable regression model in this approach such as linear regression

or a Decision Tree Regressor [38].

2.4.3.4 Human in the Loop Feature Search

In Section 2.4.3.1, we proposed to use domain expert’s knowledge to choose features.

In such cases, we assume that the user has detailed domain knowledge that will help

them choose the right features. For example, in the Oil&Gas production domain,

conservation laws (i.e., conservation of mass, energy) constrain the values that can be

seen in normal telemetry, and features can be chosen to be sensitive to deviations from

these [3]. In this section we propose to exploit less formal and explicit human

knowledge. Our only assumption is that a user could recognize an anomaly if she saw

one. Given that assumption, could we generate artificial, but plausible anomalies?

 31

If so, our difficulties are over, we could simply revert to one of the feature learning

algorithms in the Section 2.4.3.2 and 2.4.3.3.

Here we are inspired by an observation by Sir D'Arcy Thompson. Fig 12 shows some

images from his 1917 book On Growth and Form [51], which shows it is possible to

reproduce almost all the morphological diversity of fishes, with just a few samples and

a small set of geometric transformations.

Fig 12 A sequence of figures from [51] suggests that we can reproduce almost all the diversity
of fishes, using just a handful of “prototype” fish, and small number of linear (bottom row)
and non-linear (top row) distortions. For example, the figure in bottom left shows that we can
take a known fish, here the Olfer's Hatchetfish (left), and apply a simple geometric
transformation to obtain another fish that really exists, here the Diaphanous Hatchetfish
(right).

We believe that we can similarly create plausible synthetic anomalies [35][53].

Consider the two datasets shown in Fig 13.

Fig 13 Two datasets with about 14 cycles shown. Both are periodic, but Melbourne has almost
no temporal variability, the rigidity of the 9 to 5 business cycles acts to keep the days in synch.
In contrast, the gait cycle shows the natural variability of walking in an indoor environment
with obstacles, doorways, changes of direction etc.

0 350

0 6000

Melbourne
Pedestrian
Traffic

Gait
(elderly)

 32

Assuming that we are seeing normal data, how should we weigh features that are

sensitive to time warping of the data? This is a difficult question, even if we know

which features are sensitive to such distortions (recall we have built a dictionary to

help build such intuitions [12]). Moreover, the question depends on the user’s task and

domain knowledge, which may be intuitive and hard to elicit and represent. However,

consider Fig 14, where we added the same amount of warping to the middle section of

each time series.

Fig 14 The two datasets shown in Fig 13 with the same amount of warping added to each’s
middle section. The addition of warping looks natural on the gait data but is visually jarring
for the Melbourne pedestrian dataset. This domain induced distinction offers a clue as to how
we can learn the best set of features for each domain.

For the Melbourne Pedestrian dataset, there are a lot of variabilities, but it is mostly

manifest in local changes in amplitude (especially weekends vs. weekdays). Adding

this amount of time warping creates a visually obvious anomaly. In contrast, for the

Gait dataset, the added warping is subsumed within the existing natural variability.

This example exemplifies our human-in-the-loop approach. For each distortion of

interest (including noise, spike, warping, linear scaling etc. [11][12][65][71]), we

show the user four randomly chosen snippets from their dataset. The plot has an

interactive slider that allows the user to increase or decrease the amount of distortion.

The user is invited to move the slider to indicate the maximum amount of distortion

she would accept before declaring at least one of the four snippets an anomaly.

0 350

0 6000

Melbourne
Pedestrian
Traffic

Gait
(elderly)

“Warping” added

“Warping” added

 33

Once the user has annotated the data in this way, we can simply avail of the feature

search algorithm discussed in the previous section to learn the appropriate features.

There are several research efforts on time series generation, almost all of which use

deep learning [2][72]. However, we found that for each distortion we could make high-

quality examples with just a few lines of code (see [12]). In [12], we show a video of

a typical interaction with a user. Note that the entire process only takes a few minutes.

2.5 Empirical Evaluation

To make certain that our experiments are reproducible, we have built a website [12]

that contains all the data/code used in this work. All experiments were conducted on

an Intel® Core i7-9700 CPU at 3.00GHz with 32 GB of main memory, unless

otherwise stated.

2.5.1 How Should we Evaluate TSAD Algorithms?

A recent series of papers from various research groups have cast significant doubt on

both the common TSAD benchmarks and evaluation metrics [66]. While we have

neither the space nor the inclination to weigh in on this debate, we need to at least

briefly explain some of the issues to justify how we do our evaluation.

Consider Fig 15, which shows an excerpt of one dimension (FIT401) of the 51-

dimensional SWAT benchmark [20]. This is one of the most cited and used

benchmarks in the literature, appearing in at least 200 papers [7][16][36][57]. We ran

the fixed weigh leftC22MP algorithm on this dataset. Unsurprisingly, it strongly peaks

at both the transition from normal data to the anomaly, and from the anomaly to normal

data.

 34

Fig 15 An excerpt from the SWAT-FIT401 dataset. The ground truth anomaly is highlighted
in red. Unsurprisingly leftC22MP can easily find this anomaly. The constant region that forms
the anomaly actually has a value of exactly zero, we added a constant to it to make the
variability of the normal data clearer.

This example highlights the problems the community has noted:

1. Many benchmark problems are much too simple to warrant claims of a successful

algorithm. Note that while we did use leftC22MP to find the anomaly, we could

have found it with a single line of MATLAB [66]: isAnomaly = (FIT401==0);

2. We would argue that here that detecting this anomaly should count as a single

binary success. However almost all papers reason like this: The anomaly is marked

as 35,800 datapoints long in a dataset of 449,921 datapoints, so we should report

detecting this with four significant digits! In our view, this is misleading spurious

precision; it implies precise measurements supported by thousands of independent

datapoints, not a single “blip”. We think this argument to be forceful, but to our

surprise, some have pushed back at it3. We have found the following analogy to be

fruitful (with apologies for the graphic imagery).

3 In blog forums, private conversations, openreview.net etc.

le#C22MP

200000 300000

SWAT-FIT401
(excerpt)

 35

Suppose we suspect that John, a 100 kg peace worker was killed by a landmine.

Two forensic anthropologists are sent to investigate. Alice finds a large skull

fragment, does a DNA test, and concludes that John is dead. Bob finds a leg and

a hand, which in total weight 15 kg, does a DNA test, and concludes that John is

15% dead.

We believe that this story is a perfect analogy for the example in Fig 15. Once we

have seen the value of the time series plunge to zero, this sensor is unambiguously

“dead”. Any scoring function that continues to reward you for finding additional

sections of constant region time series is just like suggesting that Alice would be

surer that John is dead is she later found a toe fragment. Likewise, if Bob reweights

his fragments with a more sensitive scale and then reports John is 15.49% dead,

we would think him quite naïve. With this understanding, the dozens of papers that

report four significant digits on this dataset do seem somewhat naïve. In [16] the

authors summarize the results of twenty-seven approaches to SWAT, that appeared

in eight unique papers. Sixteen of the approach are reported with four significant

digits, and the rest with three significant digits. It is hard to reconcile such precision

with even a casual inspection of this dataset.

3. Problem ‘2’ above is compounded by poor labeling. The begin⸺end locations for

this anomaly are given as 227900⸺263700. The fact that these are multiples of

100 should tell us that these are the rough guesses by the annotator. In fact, careful

visual inspection strongly suggests that these labels have an uncertainty greater

than ±100. This uncertainty would not change the binary success we advocate for

but would change at least two of the four significant digits that most papers

report[16].

 36

In summary, we have sympathy for the claims that both the common benchmarks and

the evaluation metrics [66] are flawed.

Given these issues, how should we evaluate? We agree with the claim in [45] that one

of the best ways to understand a TSAD’s strengths and limitations is to directly plot

the scoring function next to the time series, as we did in Fig 15 above. In this next

section, we will do exactly that, on an ambitious scale. In addition, in subsequent

sections, we will use datasets and metrics that are free of the flaws discussed above.

2.5.2 A Visual Intuition for leftC22MP

With the caveats in the last section in mind, in Fig 16, we show the performance of

leftC22MP on datasets collected from twenty different papers. Clearly, we do not have

the space to discuss, or even cite, all twenty papers. However, in [12] we have a

document that gives detailed provenances for all datasets and shows larger figures.

These results strongly hint at the generality and effectiveness of leftC22MP, the top

discordia peak at the ground truth locations. Nevertheless, they are informal and

anecdotal evidence. Moreover, they only show that leftC22MP is expressive enough to

represent the anomalies, not that we can learn an appropriate set of feature weights to

discover them. In the following sections, we will provide more rigorous evaluation.

 37

Fig 16 The performance of leftC22MP on datasets that appeared in twenty different papers in
the last two decades.

2.5.3 The Hexagon ML/UCR dataset

While there are many benchmark datasets proposed in the literature, most of them do

not allow comparisons among published results. The problem is that the metric for

computing a success can vary greatly from paper to paper, making the published results

incommensurate [17][18][35][47][72]. The HEXagon ML/UCR dataset is different in

that the 250 datasets come with a concrete and well-reasoned metric of success. For

example, different TSAD algorithms may tend to peak at the beginning, or the middle,

or the end of an anomaly. These differences are generally inconsequential but

combined with a brittle scoring function could make a good algorithm score poorly.

 38

The HEX/UCR scoring function allows a little slop (±100) in the scoring boundaries

to make this issue moot.

In addition, the HEX/UCR datasets are unusual in having detailed provenance, largely

freeing them from the flaws noted in [66]. Many of the datasets are completely natural,

the remainder are anomaly-free datasets that have had exactly one anomaly seamlessly

added in a domain-specific way. The datasets come from diverse domains, including

medicine, industry, biology and meteorology. Table 6 shows a comparison of our

proposed method with rival approaches. The results highlighted in blue are results that

we copied from other works. All other results we computed ourselves.

Table 6 A comparison of 14 algorithms on the HEX/UCR dataset
Method Score Method Score

leftC22MP 0.568 {{{ DAMP + leftC22MP }}} {0.692}

DAMP (leftMP)[39] 0.556 USAD [5] 0.276

AE[5] 0.236 Telemanom [27] 0.468{4}

LSTM-VAE [46] 0.198 SCRIMP (full MP) [74] 0.416

RRCF [48] 0.030 MERLIN (generalized MP) [48] 0.440

MDI [48] 0.470 NORMA [9] 0.474

TranAD [48] 0.190 GANF [48] 0.240

Our proposed algorithm outperforms all rival approaches. It is slightly better than

DAMP, which is regarded as SOTA [39]. The approach labeled {DAMP + leftC22MP}

is not a true algorithm. It is a post-hoc ensemble where we pick the better of the two

algorithms after seeing the labels. The ensemble’s exceptionally high score tells us that

the two algorithms in question have largely uncorrelated errors and suggests a future

research direction in combining TSAD algorithms.

4 Telemanom runs out of memory on the larger datasets. This score is extrapolated from the shorter/easier datasets, thus

optimistic Error! Reference source not found..

 39

While the format of these datasets and the scoring function allows comparison of

accuracy across papers, it does not allow comparison of timing results. However, even

if we assume that all the datasets are sampled at 250Hz, C22MP can comfortably

process all datasets at least an order of magnitude faster than real time.

2.5.4 Sensitivity to Subsequent Length

In the previous section we showed that leftC22MP can score very well on the

HEX/UCR datasets, if we use the simple heuristic suggested by DAMP to set the value

of m. Nevertheless, it is natural to ask how sensitive the algorithm is to that parameter.

In Fig 17, we consider the InternalBleeding dataset (chosen because it is one of the

shortest datasets from UCR/HEX, and well can plot it in its entirety), and we test every

parameter from ¼ to 4 of the DAMP suggested value. This plot suggests that

the leftC22MP algorithm is not particularly sensitive to the setting of m.

much touted in recent years, yet none seem to do particularly well. We believe dataset

shown in Fig 18.A can cast light on why this was the case.

Fig 17 The m value suggested by DAMP for InternalBleeding dataset is 181. Therefore, the
range of the m would be from 45 to 723. C22MP is able to detect the correct location of the
anomaly for almost all window length in this range.

2.5.5 Why is C22MP so Robust?

The results in the previous section may appear a little surprising; deep learning

approaches have been much touted in recent years, yet none seem to do particularly

well. We believe dataset shown in Fig 18.A can cast light on why this was the case.

W
in

do
w

 L
en

gt
h

Indices

 40

Fig 18 A) An electrical demand dataset for a single device, a freezer. B) The (rather obvious)
anomaly caused by a stuck temperature sensor. C) A random section of the training data.

In Fig 18.B we zoom-in to the sole anomaly in this dataset. It does not appear to be

particularly challenging, yet all deep learning approaches we tried fail to discover it.

An examination of the training, a snippet is shown in Fig 18.C tells us why this is the

case.

• The period of the data (the compressor on/off cycles) can vary based on the

room temperature, which varies both daily and seasonally. Many published

algorithms seem to work well with strict periodicity (like the Melbourne dataset

shown in Fig 13) but cannot handle variable periodicity.

• The dataset (both the train and test) is replete with variations that are

inconsequential. For example, very short off-cycles caused by the freezer being

opened, or electrical spikes. These two simple events can appear in arbitrary

arrangements that all look essentially the same in the feature space, but very

different in a shape space.

• The training data is 100,000, not a large dataset by modern standards, but this

size strains many deep learning approaches.

In Fig 19, we compare three approaches on this problem. As the figure shows, the

leftC22MP easily finds this anomaly but Telemanom dramatically fails. As Telemanom

is nondeterministic, we ran it five times; the best run had 32 false positives. Moreover,

32 hours: Freezer Electrical Demand

Freezer Opened 46.3 minute cycleElectrical Spike 22.2 minute cycle

0 0.5 1 1.5 2 2.5

285 days: Freezer Electrical Demand Stuck Bimetallic Strip
Jun 18 22:29 to Jun 19 03:31

B

C

A

 41

the total time required for a single run is 3.04 hours, which contrasts poorly with the

7.25 minutes required for leftC22MP. Here DAMP, using the subsequence length

selection tool suggest in the original paper [39], did just find the anomaly, but it would

have failed at a slightly different length.

Fig 19 The leftC22MP can easily find the Stuck-Bimetallic-Strip anomaly. DAMP just finds it,
and Telemanom fails.

To test the correctness of our explanations of Telemanom’s (and more generally, most

deep learning approaches) poor performance that we posited above, we built a proxy

for the dataset with perfect square-waves, and tested algorithms on it as we introduced

synthetic spikes and variable periodicity etc. The results (expounded in [12] for

brevity) support our observations and suggest research directions for advocates of deep

learning TSAD algorithms.

2.5.6 Case Study on Medical Data

The catch22 features are very expressive, but not completely so. Several papers have

needed to augment the features with some domain-specific feature(s)[1] [37]. Here we

give an example of where we had to do this, to create C23, with C23 = [C22 ∪ Max(T)].

We consider the task of anomaly detection in telemetry of CCT, Contraction in Cardiac

Tissue (related to, but distinct from the more familiar ECGs). A recent paper [43]

introduced a sophisticated data generator that takes real data and introduces into it

highly plausible anomalies of amplitude, duration, morphology or timing. These

285 days: Freezer
Electrical Demand

0 100000 200000
Telemanom

le#C22MP
Matrix Profile
(DAMP)

Anomaly

 42

anomalies are very interesting: Some are visually apparent; but some, for example,

‘Fast Pulse Decay’, are difficult to see even if you know where the anomaly is.

Moreover, some anomalies are caused not by the addition of a new pattern or

disturbance, but by the omission of an expected pattern (Pause and Missing Pulse).

In Table 7 we show the results of comparing our approach with two bespoke deep

learning algorithms. To be fair to deep learning algorithms (which have many sensitive

parameters and can be difficult to reproduce), we copied the results from [43] and used

identical settings for our experiments (also averaging over 100 runs).

Table 7 A comparison of four TSAD algorithms on CCT data. The best performing
algorithms are highlighted in bold

Anomaly Type Autoencoder LSTM leftC22MP leftC23MP
Lower Amplitude 0.55 0.83 0.41 0.90
Higher Amplitude 0.71 0.99 0.18 0.95
Missing Pulse 0.63 0.91 0.97 0.97
Slow Pulse Decay 0.67 0.95 1.00 1.00

Fast Pulse Decay 0.61 0.88 0.98 0.98
Early/Anticipated Pulse 0.51 0.77 0.99 0.99
Pause/Block 0.61 0.90 1.00 1.00
Average Accuracy 0.61 0.89 0.79 0.97

In order to “stress test” our approach, we did not do any feature selection here, we

simply used all 22, and all 23 features. These results are very promising. Note that we

are beating two domain-informed deep learning approaches that are heavily

customized for the task-at-hand, with our simple generic approach.

2.5.7 Learning a Threshold

Recall that in Section 2.2.1 we explained that TSAD algorithms can be seen as having

two parts:

1. Identify the location that is most likely to contain a subsequence that will be

considered anomalous.

 43

2. Make a decision as to whether to actually sound an alarm.

We further explained why we focus our evaluation on the first part. Nevertheless, for

completeness we will show how we can address the second task and make a binary

decision flag the subsequence as anomalous or not. For this purpose, we simply need

to learn a threshold on the training data.

To test the effectiveness of ORR on this second task, we conducted an experiment

using the CCT data generator that was introduced in Section 2.5.6. We generated one

hundred different datasets using different seeds, each of which consisted of eight

columns. The first column contained only normal CCT data, while the remaining

columns contained one specific type of anomaly: 'Slow Pulse Decay', 'Fast Pulse

Decay', 'Early/Anticipate Pulse', 'Missing Pulse', 'Pause/Block', 'Higher Amplitude',

and 'Lower Amplitude', respectively. We used the data in the first column (the normal

time series) as training data. To learn the threshold, we calculated the leftC23MP of the

training data across one hundred trials. Since the training data only contains normal

CCT, the maximum value of the leftC23MPs can be used as decision threshold. Any

sample with an anomaly score higher than the threshold is considered an anomaly. In

this experiment we aimed to stress test the effectiveness of C23MP and its ability in

detecting different type of anomalies. To achieve this, we used the smallest and largest

decision thresholds (with an additional epsilon value) obtained from one hundred trials

for all the datasets as the threshold. The results of this experiment are presented in

Table 8.

 44

Table 8 The result of LeftC23MP on CCT data for the task two.
Anomaly Type leftC23MP

Threshold = 1.12
leftC23MP

Threshold = 1.44
Lower Amplitude 0.69 0.02
Higher Amplitude 0.83 0.01

Missing Pulse 0.99 1.0
Slow Pulse Decay 1.00 1.0
Fast Pulse Decay 0.92 1.0

Early/Anticipated Pulse 0.76 0.38
Pause/Block 1.00 1.0

Average Accuracy 0.88 0.62

Table 8 shows that ORR has an average accuracy of 0.88 when threshold 1.12 is

selected. However, the accuracy varies depending on the type of anomaly. Specifically,

we can see that ORR performs poorly in detecting ‘Lower Amplitude’, ‘Higher

Amplitude’ and ‘Early/Anticipated Pulse’ anomalies, but well in detecting other

anomalies. To investigate this further, we analyzed the highest values of leftC23MPs

for each type of anomaly across the one hundred trials, as shown in Fig 20.

Fig 20 Comparing the distribution of the highest value across different type of anomalies.

0.88 0.62

 45

We find that different types of anomalies have distinct clusters of high values, and the

chosen threshold effectively separates normal from anomalous samples for the cases

that we have high accuracy. Interestingly, we observed that for the cases in which ORR

performs poorly, the distribution of high values is very similar to that of the normal

case. This suggests that the anomalies in these cases may be subtle Fig 21. Shows

examples of the CCT data with different type of anomalies. As we can see in the

‘Lower Amplitude’ and ‘Higher Amplitude’ only one single sample is distorted and

for the ‘Early/Anticipated Pulse’ there is no distortion in the pattern only we have and

early pulse.

Fig 21 Examples of the CCT data with different type of anomalies. The cases observed to be
difficult for leftC22MP in Fig 20 are also very difficult to detect by visual inspection.

2.5.8 Case Study on Mouse Motion Capture

Researchers at Biology department of UCR are building a mouse model to understand

factors that influence the onset of Parkinson’s disease. As Fig 22 shows, one tool used

to study the effect of cognitive decline is a treadmill roller, and the researchers have

many hours of such data.

Lower amplitude

Higher amplitude

Missing pulse

Slow pulse decay

Fast pulse decay

Early/an?cipated pulse

Pause/block

 46

The biologists are interested in finding two types of anomalies here. First, there are

simple feature extraction issues. For example, sometimes the motion capture tool

(DeepLabCut [41]) is unable to find the mouse’s paw as it is occluded by its tail (type

B in Fig 22). Such anomalies can then be either manually corrected or excluded from

analysis. More interestingly, however, there may be behavioral anomalies induced by

gene knockouts or medications.

To test our ability to find both type of anomalies, the biologists used visual inspection

to provide a short snippet of anomaly-free data, and a much longer region that

terminated with an area dense with both quotidian and behavioral anomalies, which

they carefully annotated.

After learning the feature weights using the snippet of positive-only data and our

human-in-the-loop tool, we discovered the anomalies shown in Fig 22.center. While

most anomalies were simple feature extraction issues, two anomalies surprised us. The

first anomaly, type D (Fig 22.top.right), depicted a mouse grasping the treadmill and

“riding” it around for a complete cycle. The second anomaly, type C, occurred when

the mouse quickly “double-tapped” while walking on the roller, this locomotive

“stutter” is likely due to a side effect of an induced pathology. This finding is

particularly interesting because it is challenging to detect this anomaly with the naked

eye. We invite the reader to examine [12] for more details and to view a video of the

experiment.

 47

Fig 22 center) A trace from the right paw of a healthy mouse, with its companion C22MP. top
and bottom) Screenshots of the video with markers labeled and tracked by the DeepLabCut
motion capture tool [41].

2.5.9 Case Study with Human in the Loop

In this section we evaluate the utility of using the “human annotation of synthetically

distorted data” idea we introduced in Section 2.4.3.4 Consider the

DISTORTEDTkeepForthMARS example from the UCR-Hexagon archive [66]. This

dataset is of length 8,184, with the first 4,000 datapoints acting as a (positive only)

training set. As shown in Fig 23, if we run top-1 anomaly detection on this with all

twenty-two features, the best anomaly is a false positive.

Fig 23 Using C22full, the top-1 anomaly for DISTORTEDTkeepForthMARS is a false
positive. The algorithm seems to have been confused by wandering baseline.

le*C22MPsubset

DISTORTEDTkeepForthMARS
Top-1 anomaly - FP

1.0

-1.0
0

 48

Moreover, note that the Matrix Profile (using the leftMP, as recommended in [66]) also

fails here.

We extracted the training data and used the ideas in Section 2.4.3.4 to create two classes

of data: normal (sampled from original data), and (synthetic) anomalous (note during

this process, we are learning the constraints that distinguish anomalous and normal

behavior). We only considered the distortions of warping, spike, noise. The entire

human-annotation session only took about one minute, and a complete video of the

process is archived at [12]. Fig 24 shows a screenshot of this tool. Here the user can

simply select the type of distortion (in this example warping), then adjust the amount

of distortion they would like to be added to the data using the slider. In this example,

we can see the original data in gray (dashed lines) and synthetically distorted samples

in red. shows some sample data, both before and after the surgical intervention.

Fig 24 A screen capture of a video showing adding warping distortion to
DISTORTEDTkeepForthMARS data.

 49

We then used the algorithm outlined in Section 2.4.3.3 to learn a feature set for this

problem, the algorithm suggested using features {22, 10, 14, 12}. As shown in Fig 22,

this feature set does find the sole true positive.

We repeated the same process with other UCR-Hexagon datasets, to see if learned

feature sets differed from dataset to dataset. This is the case. For example, for

DISTORTEDCIMIS44AirTemperature2 we learned the feature set {14,15,17,7,10},

and this small feature set succeeded where C22full had failed.

We will not evaluate all the UCR-Hexagon datasets this way. It would clearly not be

fair to rival methods to compare against an algorithm that is availing of human help.

However, these examples speak to the expressiveness of the weighted C22MP, and the

relative ease of setting for good weight.

Fig 25 top) Top anomaly for DISTORTEDTkeepForthMARS using C22subset is a true
positive. bottom) A zoom-in of the top anomaly for DISTORTEDTkeepForthMARS using
C22subset.

 50

2.5.10 How Fast is ORR?

The previous experiments suggested that we can compute the leftC22MP efficiently.

Here we will more formally test this. We created a random walk time series of

increasing lengths and compared the time for ORR to the time for the brute force

approach. We choose random walk because it is the worst case for us, the lack of

significant anomalies means that the early-abandoning technique is not as efficient as

in a dataset that has anomalies.

Fig 26 A comparison of ORR and the brute-force approach to compute the leftC22MP. The
blue curve shows just the time to do the C22 feature extraction.

As the Fig 26 shows, ORR is extremely fast. By the time we consider 64,000

datapoints, it is ~185 times faster than brute force. Its throughput is about 880 Hz,

which is faster than the arrival rate of almost all accelerometers/medical telemetry, etc.

In the plot, it is difficult to tease apart the line for ORR, and the line for just the feature

profile extraction step. In fact, about 2/3rds of the time needed for ORR is in the feature

extraction step. This suggests that it may be worth further optimizing that step. We first

use the original authors MATLAB code [39], and found that with some simple

optimizations, we could make it two orders of magnitude faster (our faster code is

freely available [12]), we suspect further optimizations are possible.

Brute Force

ORR
Feature
Profiles

Time Series Length

14,000

0

(~3.8 hours)

 51

2.6 Conclusion and Future Work

We have introduced a novel representation, C22MP, and demonstrated that it provides

state-of-the-art results for anomaly detection. It produces the highest published scores

on the HEX/UCR benchmark, and it has been deployed in biomedical labs to aid

research. Moreover, while C22MP is a generic TSAD technique, we have shown on the

CCT dataset that it is able to beat domain specialized algorithms.

Here we confined our attention to just anomaly detection. In future work we plan to

generalize the C22MP to some of the other MP primitives, including motifs, chains and

snippets. This will not be trivial. Anomaly detection requires only the discovery of the

highest values in the C22MP, and that is amiable to early-abandoning search. The other

primitives require finding the lowest values in the C22MP, a much more difficult task

to accelerate.

 52

3. Discovering Multi-Dimensional Time Series Anomalies with K of N Anomaly
Detection

In this chapter, we introduce an approach to tackle the problem introduced in section

1.2. An apparent solution for solving anomaly detection, when anomalies are only

preserved in a subset of the problem, would be to search through all combinations of

anomaly scores to find the subset that maximizes the anomaly score. However, it is

clear that we must penalize subsets for their cardinality. In the example above, any

anomaly score that we add to the correct two scores will slightly increase the

maximum. In addition, it is important to realize that the nature of the problem precludes

a greedy or dynamic programming search. In particular, under any reasonable anomaly

score aggregation function, the highest scoring subset of size K is not necessarily a

superset of the highest scoring subset of size K-1.

In this work we make the following contributions:

• We show that there are at least three different anomaly scoring aggregation

functions that may be useful, depending on the circumstances.

• We demonstrate a novel search algorithm, TSADIS (Time Series Anomaly

Detection through Incremental Search) that can discover the best K of N

solutions, for all values of K from 1 to N, in just O(𝑁 × 𝐿𝑜𝑔𝑁) time. In contrast,

a brute-force algorithm would take O(2N).

• In many circumstances a user may wish to browse all K subsets, of size 1 to N.

However, the user (which may be a person or an algorithm) may insist on

selecting just one subset, the most natural subset that reflects the anomaly.

Thus, we introduce a function that can rank and compare different sized

subsets.

 53

The rest of this chapter is organized as follows. In Section 3.1 we review our

motivations and assumptions before considering related work. In Section 3.3 we

introduce the necessary definitions and notations, then introduce our algorithms in

Section 3.4. Section 3.5 contains an extensive empirical evaluation.

 54

3.1 Motivation

Our work is predicated on the assumption that an anomaly will generally not exhibit

itself on all the time series that monitor that system (at least not initially). Consider the

following examples:

• A distillation column may be monitored by 1,000+ sensors. However, the

overall system can be envisaged as being comprised of multiple subsystems.

These subsystems may correspond to different physical regions in the column

(i.e., trays at different levels), to different physical devices (i.e., pumps or

valves), or to different logical processes (i.e., heat recovery or drainage). These

subsystems may be weakly or strongly coupled [24].

In an ICU setting there may be as many as thirty sensors monitoring a patient’s health.

But most serious issues only manifest themselves on a subset of these time series, at

least initially. For example, cardiac tamponade may present itself only on respiration

and blood pressure. Hyperglycemia typically presents itself on respiration and

glucometer.

3.2 Related Work

The topic of time series anomaly detection has seen a dramatic explosion of interest in

recent years, as such it is a difficult area to survey in limited space. We refer the

interested reader to [4][5][9][27][59][62] and the references therein.

There are two important points that we have gathered from our survey of the literature.

The first is mostly due to a single paper [66], that forcefully suggests some of the

apparent success of recently proposed algorithms may be questionable, due to severe

problems with the commonly used benchmarks in this area. The second issue is noted

 55

in [15], which claims that a flaw in the most common evaluation metrics means that a

“random guess method can outperform state-of-the-art detectors5”. We do not weigh

in on these issues, other than to state that we have not assumed the correctness of

previous work, and have made an effort to avoid these issues in our work.

We have chosen to extend time series discords [59][70], to the K of N case, rather than

one of the many other possibilities. The reason for this is that there is an increasing

evidence that discords remain competitive with the state-of-the-art. Among the

hundreds of time series anomaly detection algorithms proposed in the last two decades,

only time series discords could claim to have been adopted by more than one hundred

independent teams to actually solve a real-world problem. For example, a group of

climatologists at France’s UMR Espace-Dev laboratory use discords to find anomalies

in climate data [55]. A team of researchers at NASA’s JLP lab have applied discord

discovery to planetary data, noting that “(discords) detect Saturn bow shock transitions

well” [13]. There are several other time series anomaly detection algorithms that are

well cited [10][22], but most of the citations are from rival methods comparing these

algorithms on a handful of benchmarks [66].

3.3 Definitions and Notation

Here we introduce the necessary definitions and terminology, beginning with the

definition of a time series:

Definition 1: A time series 𝑇 ∈ ℝ6 is a sequence of real-valued numbers 𝑡! ∈

ℝ:	𝑇 = [𝑡", 𝑡#, … , 𝑡6], C is the length of 𝑇.

5 At the time of writing this paper in on arxiv.org and is not peer reviewed. However, its claims seem irrefutable, and, in any case,

we have independently confirmed them.

 56

Typically we are not interested in global properties of a time series but rather shapes

of small regions called subsequences:

Definition 2: A subsequence 𝑇!,& is a contiguous subset of values from 𝑇 starting

at index 𝑖 with length 𝑚.

We can take any subsequence from a time series and compute its distance to all

subsequences. We call an ordered vector of such distances a distance profile:

Definition 3: A distance profile 𝐷! for time series 𝑇 refers to an ordered array of

distances between a given query subsequence 𝑇!,& and all subsequences in time

series 𝑇.

As noted above, we are assuming that the distance is measured using the Euclidean

distance between the z-normalized subsequences. This distance can be computed very

efficiently using the MASS algorithm [58]. For a distance profile 𝐷! of query 𝑇!,& the

𝑖-. position represents the distance between the query and itself, so the value must be

0. The values before and after position 𝑖 are also close to 0, because the corresponding

subsequences have overlap with query. We need our algorithm to ignore these trivial

matches of the query and itself, and instead focus on non-self matches:

Definition 4: Non-self match: Given a time series T containing a subsequence 𝑇/,&

of length m starting at position p and a matching subsequence 𝑇0,& starting at q,

𝑇/,& is a non-self match to 𝑇0,& with distance 𝑑/,0 if |	𝑝	– 	𝑞| 	≥ 	𝑚.

As we noted, our ideas and algorithms for combining individual anomaly scores

into a multi-dimensional anomaly score are agnostic to the choice of individual

anomaly scoring technique. However, for concreteness, and because there is increasing

evidence that it is among the state-of-the-art, we will explicitly ground our ideas with

 57

time series discords. We can use the definition of non-self match to help define time

series discord:

Definition 5: Time series discord: Given a time series 𝑇, the subsequence 𝑇7,& of

length m beginning at position d is said to be a discord of 𝑇 if 𝑇7,& has the largest

distance to its nearest non-self match. That is, ∀ subsequences 𝑇8,& of 𝑇 if MD

represents all non-self matching subsequences of 𝑇7,&, and ME represents all non-

self matching subsequence of 𝑇8,&, 𝑚𝑖𝑛(𝑑7,3#) 	> 	𝑚𝑖𝑛(𝑑8,3$).

Although there are many ways to locate time series discords, the most effective

methods exploit a proposed data structure called the Matrix Profile [70]:

Definition 6: A Matrix Profile (MP) of a time series 𝑇 is a vector storing the z-

normalized Euclidean distance between each subsequence and its nearest non-self

match. Formally, MP= [𝑚𝑖𝑛(𝐷"),𝑚𝑖𝑛(𝐷#), … ,𝑚𝑖𝑛(𝐷6(&'")], where 𝐷! (1 ≤ 𝑖 ≤

𝐶 −𝑚 + 1) is the distance profile of query 𝑇!,& in time series T. The highest value

of the MP is the time series discord.

We generalize the Matrix Profile to multi-dimensional time series, which we define as:

Definition 7: A multi-dimensional time series 𝑇	 ∈ 	ℝ9×6 is a set of co-evolving

time series 𝑇(!) ∈ ℝ6:	𝑇 = [𝑇("), 𝑇(#), . . . , 𝑇(9)]: where N is the dimension of 𝑇 and

𝐶 is the length of 𝑇.

Fig 27 illustrates this notation with a toy dataset. Suppose we have a three-dimensional

time series.

 58

Fig 27 A toy three-dimensional time series that we will use as a running example. P = pressure,
F = flowrate, V = viscosity.

We are interested in multi-dimensional time series that have anomalies that may be

present on a subset of dimensions; thus, we call such anomalies a K-dimensional

anomaly:

Definition 8: A K-dimensional-anomaly (KDA) is an anomaly that is manifest on

at least K time series.

The toy dataset in Fig 28 has three anomalies each occurring at a unique time. The

anomaly marked in green is a 2-dimensional-anomaly (2DA) since it is present on at

least two time series. The anomaly marked with blue is a 3-dimensional-anomaly

(3DA) and finally the anomaly marked with red is a 1-dimensional-anomaly (1DA).

Notice that any 𝑖DA will also be a 𝑖-1DA. For example, a 3DA is also a 2DA and 1DA,

and a 2DA is also 1DA.

Fig 28 In this multi-dimensional time series we have three anomalies at index 205, 520 and
800 respectively. The anomaly marked by green is a 2DA, the second anomaly marked in blue
is a 3DA and finally the anomaly marked by red is a 1DA anomaly.

We are ultimately interested in detecting the natural anomalies in a dataset:

Definition 9: Natural anomaly: for a given timestamp 𝑡 and the list of the KDAs at

𝑡, 𝑖DA is a natural anomaly if 𝑖 is equal to anomalies’ natural dimension.

 59

The natural dimension of an anomaly is the maximum number of the time series that

the anomaly is presented on. In our running example the natural dimension of the

anomaly marked in green is two. The natural dimension of the anomalies marked in

blue/red is three/one respectively.

Why are we interested in defining and finding the natural anomaly? It might be

imagined that it is sufficient to simply declare that there was an anomaly at time 𝑡.

However, anomaly detection is more actionable if we know which sensors are

involved. For example, in petrochemical processing, a distillation column may be

monitored by 1,000 sensors, and these may be spread over a 10,000 m2 plant. If an

anomaly is detected, the plant manager may need to dispatch a response team. Knowing

which subsystem is experiencing failure could help her to quickly direct her team to

the right location [19][61].

It is important to note that our natural anomaly definition makes no claim about

causality or redundancy. For example, an over-pressurized boiler may produce an

anomaly in a pressurePa time series, and that, in turn, may cause anomalies in both the

temperatureFahrenheit and temperatureCelsius time series6. We would expect the natural

anomaly to discover an anomaly featuring these three traces. The task of discovering

the direction of causality and the redundancy the two temperature measurements, is

something for a downstream algorithm.

We will show in Section 3.4 how we can score KDAs. In Section 3.5 we show how we

can distinguish the natural anomalies from other KDAs by comparing their scores.

6 The example may seem frivolous. However, we have seen petrochemical datasets that record temperatures in both Kelvin and

Fahrenheit. Moreover, because of rounding policies the correlation between these two time series was not 1.0

 60

We have now defined the task-at-hand, to discover K-dimensional-anomalies and

natural anomalies. We propose to do this by computing a Matrix Profile for each time

series, and then “reasoning” about combinations of these MPs to see which

combination is most likely to contain the anomaly.

The calculated Matrix Profiles for each time series in the T can be saved in an array

called all-matrix-profiles (MPs):

Definition 10: All-matrix-profiles (𝑀𝑃𝑠): Given a multi-dimensional time series

𝑇	 ∈ 	ℝ9×6 , all-matrix-profile MPs ∈ 	ℝ9×6 is an array containing the Matrix

Profiles of all N time series in T. Formally, 𝑀𝑃𝑠(!) ∈ ℝ6:	𝑀𝑃𝑠 =

[𝑀𝑃("), 𝑀𝑃(#), . . . , 𝑀𝑃(9)]:.

Fig 29 illustrates the MPs for the toy dataset we are using as our running example.

Fig 29 Matrix Profiles for the three time series in our running examples. Notice how the
“bumps” reflect the anomalies in Fig 28.

Similar remarks apply to many other domains. In many cases, the majority of the data

In an N-dimensional time series, an anomaly may present on 1 or 2 … or K time series

(K≤N). Since we do not know in advance on which set of time series an anomaly is

preserved, we need to (in principle) extract all the possible anomaly-score sets:

Definition 11: Anomaly-score set (𝑆): given an all-matrix-profiles 𝑀𝑃𝑠 ∈ ℝ9×2

there are 2N-1 possible combinations of the anomaly scores in 𝑀𝑃𝑠. Any possible

combination of anomaly scores in 𝑀𝑃𝑠 is an anomaly-score set.

 61

We group all the anomaly-score sets of the same size in a list called K-dimensional-

anomaly-score:

Definition 12: K-dimensional-anomaly-score (KS): given an all-matrix-profile

𝑀𝑃𝑠 ∈ ℝ9×2there are 9!
(9(<)!<!

 possible combination of anomaly-scores set of size

K. The KS is a list of sets, the sets that contain all anomaly-scores with size K, where

K > 0. Formally,

											1𝑆 = [{𝑀𝑃(")}, … , {𝑀𝑃($)}]

												2𝑆 = [{𝑀𝑃("), 𝑀𝑃(%)}, {𝑀𝑃("), 𝑀𝑃(&)}, {𝑀𝑃(%), 𝑀𝑃(&)}, . . . {𝑀𝑃($'"), 𝑀𝑃($)}]

												3𝑆 = [{𝑀𝑃("), 𝑀𝑃(%), 𝑀𝑃(&)}, {𝑀𝑃("), 𝑀𝑃(%), 𝑀𝑃(()}, . . . {𝑀𝑃("), 𝑀𝑃($'"), 𝑀𝑃($)}]

 …

											𝑁𝑆 = [{𝑀𝑃("), 𝑀𝑃(%), 𝑀𝑃(&), 𝑀𝑃((), . . . , 𝑀𝑃($'"), 𝑀𝑃($)}]

Using the toy dataset as an example, the K-dimensional-anomaly-scores are as follows:

									1𝑆 = [{𝑀𝑃(=)}, {𝑀𝑃(>)}, {𝑀𝑃(?)}]

									2𝑆 = [{𝑀𝑃(=), 𝑀𝑃(>)}, {𝑀𝑃(=), 𝑀𝑃(?)}, {𝑀𝑃(>), 𝑀𝑃(?)}]

									3𝑆 = [{𝑀𝑃(=), 𝑀𝑃(>), 𝑀𝑃(?)}]

To be clear, these are all the possible subsets of anomaly-scores, upon which an

anomaly could manifest itself. Thus, if we wish to discover an anomaly that is present

on, say, two dimensions, it must be one of the sets listed in 2S above.

The reader will appreciate that the K-dimensional-anomaly-score contains all the data

we need to locate anomalies that are preserved on at least K time series.

While one could imagine many ways to mine a K-dimensional-anomaly-score and

locate the appropriate KDA, we take a direct approach. We aggregate the anomaly-

 62

score sets (𝑆) by taking the min value at each timestamp to generate the Min Matrix

Profiles (𝑀𝑀𝑃):

Definition 13: Min Matrix Profile (𝑀𝑀𝑃): given an anomaly-score set S ∈ 	ℝ<×6 ,

𝑀𝑀𝑃 is a vector storing the aggregated anomaly score of Matrix Profiles in 𝑆

obtained by taking the min value at each timestamp. Formally, 𝑀𝑀𝑃	 = 	min
,∈<

𝑆!,, ,

𝑗 = 	1, . . . , 𝐾, where 1 ≤ 𝑖 ≤ 𝐶. The min method acts as an 𝐴𝑁𝐷 operator, so we

would get a high value if and only if all Matrix Profiles have a high value at the

given timestamp.

The high values (i.e., peaks) in the 𝑀𝑀𝑃s indicate the location of KDAs. Note that for

a given KS, we have 9!
(9(<)!<!

 𝑀𝑀𝑃s. Fig 30 illustrates this concept.

Fig 30 S The toy data’s 2S has three 𝑴𝑴𝑷s (𝟑!
(𝟑$𝟐)!𝟐!

= 𝟑). Note that we only have peaks in
the locations where anomalies are present on at least two dimensions. Moreover,
𝑴𝑴𝑷{𝑴𝑷(𝑷),	𝑴𝑷(𝑽)}and 𝑴𝑴𝑷{𝑴𝑷(𝑭),	𝑴𝑷(𝑽)} give us a partial view of 2DA’s location.

Each 𝑀𝑀𝑃 gives us a partial view of the KDAs’ location. In order to find all possible

KDAs we take max function over all 𝑀𝑀𝑃s at each timestamp and generate a single

vector to show the location of anomalies for that KS. We call this vector KD-profile:

Definition 14: KD-profile (KDP): given the list of the 𝑀𝑀𝑃s of a KS, KDP is a

vector storing the aggregated anomaly score of the	𝑀𝑀𝑃s obtained by taking the

max value at each timestamp. Formally,

 𝐾𝐷𝑃𝑠	 = 	max
,∈<

𝑀𝑀𝑃𝑠!,, , 𝑗 = 	1, . . . , 𝐾, where 1 ≤ 𝑖 ≤ 𝐶.

 63

The max method acts somewhat like an 𝑂𝑅 operator, so we will get a high value if any

of the 𝑀𝑀𝑃s has a high value in the given timestamp. Fig 31 illustrates this notation.

Fig 31 The two-dimensional-profile (2DP) of the 2S of our toy example. Notice that 2DP has
peaks only where data has 2DA and there is no peak at index 800 where data has 1DA.

The calculated KD-profiles for all K-dimensional-anomaly-scores are saved in an array

called all-KD-profiles (KDPs):

Definition 15: All-KD-profiles KDPs ∈ 	ℝ9×6 is an array, containing KD-profiles

of the K-dimensional-anomaly-scores for	𝐾 = (1, 2, . . . , 𝑁).

Given the above definitions, we are now in a position to formalize our two problem

statements.

Problem Statement 1: Given an N-dimensional time series T, a user selected

subsequence length m, and selected scoring method, find the most significant KDAs

for K= 1, K = 2, … , K = N. The output is a list L of length N, where each element of

the list consists of a triple containing: the location (timestamp/index) of the KDA, the

set indicating which time series are contributing to the KDA, and the last value is the

significance score of the KDA.

We can refer to the three elements of the ith list item with Li.location, Li.set, and Li.significance.

It is important to recognize that, in general, the elements of the list do not have to be

nested. For example, we may have L1.set ={pressure}, and L2.set ={flow-rate | viscosity}.

The fact that we do not require the nesting property is important to allow full

expressiveness of representation, but it unfortunately does preclude certain search

 64

mechanisms for efficiently computing L, including branch and bound or dynamic

programming.

Depending on the downstream application, a user can explore all N elements in the list

L, or they can ask for only the natural anomalies in L:

Problem Statement 2: Given the list L of KDAs, return the most natural anomaly.

Recall the example used in Fig 3. The true anomaly is L2.set ={1|2}. If we measure

maximum 2DA’ score on any two dimensions only in this dataset, the score of 8.33

reflects the embedded anomaly on {1|2}. Suppose we insisted on finding any anomaly

on only one dimension. In this case maximum 1DA’ score reflects time series {2} with

a lower score of just 6.9. In the other direction, suppose we insisted on finding any

anomaly on only three dimensions. In this case the set returned is {74|18|20}, and we

know from our creation of the data that these time series are spurious. Critically,

however, note that the 3DA’s score has decreased to 0.

Thus, our definition of KDA’s score allows a simple and obvious direction of detecting

the “natural anomalies”.

3.4 Algorithms

In this section, we introduce the algorithm to address the problem statements described

above.

3.4.1 KDA Detection Algorithm

In the previous section we defined what we wish to compute. Here we discuss

algorithms to actually compute these definitions. For concreteness, we begin with the

brute-force algorithm to compute the KDPs as shown in Table 9.

 65

Table 9 Brute-Force Algorithm to compute KDPs
Function: Brute_Force_KDP (T, m)
Input:
 T: {Array-like} of shape (n_samples, n_time_series)
 Multi-dimensional Time series
 m: int
 Subsequence length
Output:
 KDPs: {Array-like} of shape {n_samples, n_time_series}
 All-kd-profiles
1 N = T.shape[1] // get the number of time series in T
2 // calculating all-matrix-profile (def. 10)
3 MPs=empty_like(T)
4 For i, ts in enumerate(T):
5 MPs[:,i] = matrix_profile(ts, m)
6 // get all possible set of combination of time series
7 C = get_combinatiosn(N)
8 // get all the K-dimensional-anomaly-scores (def. 12)
9 A = defaultdict(list)
10 For this_set in C:
11 k= len(this_set) // get the size of the set
12 S = MPs[:,this_set] // get the anomaly-score set (def. 11)
13 A[k].append(S)
14 // get all-KD-profiles (def. 15)
15 KDPs = []
16 For k, v in A.items():
17 MMPs = [] // calculate the MMPs (def. 10)
18 For S in v:
19 MMP = min(S, axis = 1)
20 MMPs.append(MMP)
21 KDPs.append(max(MMPs, axis = 1))
22 Return KDPs

In line 1 we obtain N, the number of time series in multi-dimensional time series T.

Note that number of time series is equivalent to the maximum possible dimensions that

an anomaly can manifest itself on. We iterate through all the time series in T and

calculate their Matrix Profile to make the all-matrix-profile array in 4 to 5. A list

containing all the possible combinations for a list with size N is calculated in line 7.

We use this list to query all the possible anomaly-score sets from the all-matrix-profile

array. We save the anomaly-score sets with respect to their sizes in a dictionary in line

10 to 13. Then we iterate through each K-dimensional-anomaly-score to generate its

 66

KD-profile in lines 15 to 22. When calculating KDPs we also save the indices of time

series contributing to each KD-profile.

Once we calculate the KDPs, the detection of KDAs is trivial. The peaks on each KDP

indicate the location of a KDA. Fig 32 shows an example of the output of this algorithm

on the toy example. Note that they are sorted from top to bottom. The top figure shows

the 1DP, notice that it is the most “busy reflecting the fact that it shows all anomalies

that appear on even a single dimension.

The second from the top figure shows the 2DP, note that it is less “busy”, as there are

(generally) fewer anomalies that appear on (at least) two dimensions, and so on.

Fig 32 The all-KD-profile for the toy dataset. The peaks in each KDP represent the location of
KDAs.

The information in the KDPs array can be seen as an index that can be used by

downstream algorithms to interpret results and rank KDAs.

For example, it can be used to answer questions like “What is the most significant

anomaly that appears on exactly three dimensions?”. In Table 10 we will present a

simple explicit algorithm to allow the user to answer such questions.

 67

Table 10 Algorithm to compute Query KDPs
Function: Query_KDP (KDPs, KDP_idx, method, th)
Input:
 KDPs: {Array-like} of shape {n_samples, n_time_series}
 All-kd-profiles
 KDP_idx: {Array-like} of shape {n_samples, n_time_series}
 indexes of the time series contributing to KDPs
 method: {‘min’, ‘sum, ‘mean’}, default= ‘sum’
 method to score anomalies
 k: int Number of the dimensions of the anomaly
 th: Threshold to detect anomaly, default =0
Output:
 KDA: tuple
 a triple (X,Y,S)containing:
 X: int The timestamp/index of the KDA
 Y: array of int The name/index of time series
 S: float Significant of KDA
1 N = KDPs.shape[1] // get the number of the time series
2 //get the location of the KDA that are on exactly K dimensions
3 if k < N-1:
4 x = set(where(KDPs[:,k]>th)-set(where(KDPs[:,k+1]>th))
5 x = list(x)
6 else:
7 x = where(KDPs[:,k])
8 y = KDP_idx[x,:k+1] //get time series’ contributing to KDA
9 s = KDP[x,:k+1] // get anomaly score from each dimension
10 // get the scores for each candidate KDA
11 if method == ‘min’
12 score = s[:,k]
13 if method == ‘sum’
14 score = sum(s[:,:k+1],axis=1)
15 if method == ‘mean’
16 score = mean(s[:,:k+1], axis=1)
17 top = argmax(score)//get the idx of the KDA with highest score
18 most_significant_kda = (x[top], y[top], score[top])
19 return most_significant_kda

The number of the time series is extracted in line 1. Lines 3 to 7 extract the

indices/timestamps of the KDAs that are preserved only on the K time series. The

indices of the time series that contributed to the KDAs are extracted in line 8 using

KDP_idx array. KDP_idx contains the indices of each time series that contributed to

KDPs. The anomaly scores from each KDP are saved in array s. This information is

 68

used in lines 11 to 16 to calculate the KDA’s score using a user selected scoring method.

Line 17 shows how the index of the most significant KDA is obtained. Finally, the

location (timestamp/index) of the most significant KDA, the set contributing to it, and

its significance score are returned.

For example, if we want to query the KDPs array shown in Fig 32 with “What is the

most significant anomaly that appears on just two dimensions?”, the output would be

(200, {0,1}, 4.53). Note that in these examples we envision the queries coming directly

from an end-user, however, these queries may also come from a downstream algorithm.

Depending on the downstream application different scoring methods can be used. In

this work we introduce three different scoring methods: min, sum, mean. In sum the

scores from each KDP contributing to the KDA are summed together. We can

normalize the sum score for a given anomaly by dividing it by the amount of

dimensions that given anomaly has. This is the exact approach of the mean method.

With the mean method we penalize a subset for their cardinality. Finally, in the min

method, the score for each KDA is equivalent to the anomaly score on the

corresponding KDP. For example, the min score for a 2DA is the value of the peak on

2DP where that 2DA was located. We call this the min method since it reads the scores

from the Min Matrix Profiles building up the KDP.

The reader will appreciate that the algorithm in Table 3 is only O(𝑛) where n is the

length of the timeseries, however Table 1 requires O(𝑛 × 29) memory and O(𝑛 × 29)

time. This memory requirement is inconsequent, but the time requirement is intractable

for all but the smallest time series. In the next section we will show how we can exploit

sorting to dramatically improve the scalability of this algorithm.

 69

3.4.2 Fast KDA Algorithm

In the previous section, we used the brute force algorithm to detect KDAs. As we will

later show, it is extremely effective at detecting K of N anomalies, but there is a

problem: it is simply too slow to compute. For example, if we have twenty time series

with a length of 1,000, it takes about fifteen minutes. This may be tenable, but with

just fifty time series of that same length it takes several millennia [63].

However, we have a simple way to make it faster. It is based upon the following

observations. We do not actually need to enumerate and score every combination of

MPs. That approach does solve the task-at-hand but produces spurious information and

requires many redundant calculations. Instead, we can exploit the independence of

values at each time point. Consider a single time point 𝑖	on the time series. We can

look at the values of all the Matrix Profiles at location	𝑖 and sort them into a list. Then

the value of the 1DP at the 𝑖th location is just the largest value in our sorted list, the

value of the 2DP at the 𝑖th location is the second largest value in our sorted list, and so

on. Table 11 formalizes this idea.

 70

Table 11 TSADIS: Fast KDP Algorithm
Function: Fast_KDP (T, m)
Input:
 T: {Array-like} of shape (n_samples, n_time_series)
 Multi-dimensional Time series
 m: int Subsequence length
Output:
 KDPs: {Array-like} of shape {n_samples, n_time_series}
 kd-profiles
 KDP_idx: {Array-like} of shape {n_samples, n_time_series}
 The indexes of the time series contributing to KDPs
1 // calculating all-matrix-profile (def. 9)
2 MPs=empty_like(T)
3 For i, ts in enumerate(T):
4 mp = matrix_profile(ts, m)
5 MPs[:,i]=mp
6 // get all-kd-profiles (def. 15)
7 KDPs, KDP_idx = sort(MPs, axis= 1, order = descending)
8 return KDPs, KDP_idx

In lines 2 to 5 we iterate through every time series and calculate their Matrix Profile.

We sort the values in the MPs across the y-axis in descending order. We also save the

indices that sort the KDPs in an array of the same size as KDPs.

3.4.3 Robustness to Noise

In real-world applications, multi-dimensional time series data often contains noise (see

Fig 34). When noise becomes significant, it may effect anomaly detection models. We

have based our algorithm on the Matrix Profile, which is a vector recording the smallest

z-normalized Euclidean distance of each subsequence of a time series to all other

subsequences. Therefore, if data is noisy, all the distances will generally become

higher. We can remove this added base value to all distances in Matrix Profile before

calculating the KDPs to suppress the high anomaly score caused by the noise. We

estimate this base value by calculating the 75th percentile of the distances in Matrix

 71

Profile. This is a very intuitive parameter. We could also achieve essentially the same

result just by smoothing the time series, before computing the Matrix Profile.

3.4.4 Online KDAs Detection

We have demonstrated the ability to detect KDAs in the previous section, however, we

assumed that the entire time series was available. Here, we show how to detect KDAs

online without that assumption. When working with streaming data, we need to take

the new incoming single data point and compare its subsequence with the rest of the

time series, compute the distance profile for this subsequence and update the existing

Matrix Profile. This can be accomplished using the algorithm introduced by [70],which

maintains the Matrix Profile in an incremental fashion by taking the existing data T

and calculating Matrix Profile MP. When a new data point, t, arrives it appends t to T

and compares the new subsequence with all extant subsequences and updates the

historical values. Further, it determines which of the existing subsequences is the

nearest neighbor to the new subsequence and appends this information to the Matrix

Profile, which continues as additional data stream in. Note that incremental Matrix

Profile is different from batch Matrix Profile since it does not waste time re-computing

any past pairwise distances, it only computes new distances and updates the appropriate

arrays where necessary, making the algorithm very fast. This algorithm can be used to

keep track of the extreme values of an incrementally-growing Matrix Profile and report

a new discord when there is a new maximum value. This implies the ability to extract

KDAs in streaming data by using incremental Matrix Profile for generating KDPs.

3.5 Empirical Evaluation

We have designed all experiments such that they are easily reproducible. To this end,

we have built a webpage [63] that contains all datasets, code and random number seeds

 72

used in this work. This philosophy extends to all the expository examples in the

previous sections. In our comparisons to other systems, unless otherwise stated, we

take numbers directly from the original papers, rather than reimplement the

approaches. This is not laziness on our part. Many of these approaches are very

complex, and it would be difficult to ensure that we have reimplemented them to the

authors’ satisfaction. This ensures that we are comparing to the best possible

implementation, on data that the authors think suits their approach.

3.5.1 Preamble: Metric of Success

Several recent papers have suggested that many techniques to evaluate anomaly

detection algorithms are flawed [66] .For example, Kim et. al. show that a commonly

used scoring metric would highly rank an algorithm that simply randomly guesses [54].

Keogh argues that many papers report results with unwarranted and misleading

precision [56].For example, suppose in a year of data, all of Xmas day is an anomaly

because the sensor was turned off for maintenance. The correct way to report successes

here would be binary, either 0/1 or 1/1. However, many papers report successes based

on the sampling rate, something like 1440/1440. Or the algorithm may miss one

datapoint, allowing the author to report 0.9993. There is a huge difference between the

intellectually honest 0/1 and 0.9993. The latter implies an incredible precision that is

just not warranted. The problem is compounded by the fact that in most cases it is

impossible to say exactly where an anomaly begins or ends.

With this background in mind, we have taken great care to design a scoring function

that produces sensible output, with only appropriate precision reported, and for which

a random guess would score very poorly.

 73

• If the ground truth for the anomaly is given as a region Ti : Tj, we score a

prediction correct if it is anywhere within the range Ti-m : Tj+m. The reason for

the “bracketing” of the region is that for some algorithm’s prediction P, the

location of the most anomalous region, P may be reporting the beginning, or

the end, or the middle of a subsequence. Our scoring function will not penalize

for this trivial detail.

• If an algorithm predicts that a set of K time series has an anomaly at location

P, we count as a success each time that a prediction was true. For example, if

we predict there was an anomaly at time P on time series {2,5,9}, and we

examine the ground truth to discover that only {2,9} really had anomalies at P,

we report our success as 2/3.

We believe that this metric of success is fair and intuitive. However, we note that the

excellent results of TSADIS below is also apparent with other common metrics of

success.

3.5.2 Comparison to MSCRED

Perhaps the most cited recent paper on multi-dimensional time series anomaly

detection in recent years is [73]. Here the authors introduce a Multi-Scale

Convolutional Recurrent Encoder-Decoder (MSCRED) and demonstrate its

effectiveness on the dataset shown in Fig 33.

 74

Fig 33 Four (out of thirty) sample time series from MSCRED dataset.

This dataset is designed to be challenging, with sinusoidal waves that differ in phase

and frequency, and with “shock wave like” anomalies at different scales modeling three

different types of root causes randomly inserted. Some of the anomalies are obvious,

but some (see T24 in the above) are very subtle.

To evaluate TSADIS on this dataset we ask the following question of the data: Find

the Top-5 anomalies in Three Dimensions. Table 12 summarizes the results.

Table 12 The results of TSADIS on the MSCRED dataset.
ID Ground Truth TSADIS Prediction TSADIS Score Default Rate

A 11810, {24,15,28} 11744, {24,28,15} 3/3 0.012

B 12760, {21,26,5} 12715, {26,21,5} 3/3 0.012
C 14540, {3,16,2} 14418, {16,2,3} 3/3 0.012
D 17790, {9,5,20} 17682, {12,20,5} 2/3 0.012
E 18620, {25,14,8} 18546, {8,25,14} 3/3 0.012

These results are almost perfect, with a single error made on the case “D”. The original

authors use a different metric of success, average recall over five runs, obtaining 0.8.

If we use that metric of success, we score 0.93.

Beyond the significant improvement in effectiveness, there are several other reasons

to prefer TSADIS over MSCRED. The MSCRED approach required significant

 75

training data to achieve its results. In contrast, we can use TSADIS with zero training

data. If we do so, our performance drops a little to 0.86, but we still beat MSCRED.

MSCRED is a very complicated approach, featuring a fully convolutional encoder, an

attention based ConvLSTM, a temporal attention mechanism, a mini-batch stochastic

gradient descent and several other elements. It is difficult to be sure how many

parameters must be tuned here, but it seems to be at least twelve. Moreover, because

the output of the algorithm is stochastic, it takes significant effort to understand the

effects of the parameters on the performance. In contrast, TSADIS only requires the

setting of a single parameter, m. Here we set m to 250, which was, by visual inspection,

a “whole” number approximately equal to the average period length. However, for

examples B and C, we could have set m to any value between 150 and 650, a huge

range, and still have obtained perfect results. The other examples have a slightly

smaller range, but are still robust to m. In fairness, this robustness to the choice of m is

a property of the Matrix Profile [59][70]that we inherit.

3.5.3 Comparison to Isolation Forest|AE-LSTM|Prophet

Another recent paper considers a real-world multi-dimensional time series dataset of

photovoltaic (PV) systems [29], and compares three state-of-the-art approaches:

AutoEncoder Long Short-Term Memory (AE-LSTM), Facebook-Prophet, and

Isolation Forest. Examples of the data are shown in Fig 34.

 76

Fig 34 Four sample time series (out of twenty-two) selected from the photovoltaic (PV)
systems dataset. Sixteen days are used.

The authors of this study actually solve an easier problem than the more general task

we consider. They essentially ask: For a given single-dimensional time series,

assuming we know it has an anomaly, can we detect where it is? Of the three

approaches compared, only AE-LSTM obtained a perfect score. In contrast, we ask the

more difficult multi-dimensional questions. Find the Top-1 anomalies in K dimensions.

There is an objective ground truth provided only for the cases K is 1, 2, and 6, Table

13summarizes the results.

Table 13 The results of TSADIS on the photovoltaic dataset.
ID Ground Truth TSADIS Prediction TSADIS Score Default Rate

A 465, {0,4,11,16,18,19} 470, {0,4,11,16,18,19} 6/6 0.054

B 1140, {0,11} 1171, {0,11} 2/2 0.054
C 1320,{20} 1333,{20} 1/1 0.054

Here we achieved perfect results, again completely ignoring the training data that the

three other methods relied upon. In this dataset dawn to dusk is about 60 datapoints, so

we set m = 60. However, if we had set m to any value in the range 50 to 130, we would

still have gotten perfect results.

 77

3.5.4 Comparison to MGAB

In a recent work [62],the authors note some frustration with the community confining

their interest to datasets containing anomalies that are readily apparent to the naked

eye. This observation is an independent confirmation of the “triviality” argument of

claims of Wu and Keogh [66]. However, the authors of [62], explicitly take action to

redress the problem, by creating a dataset where the “anomalies are for the human eye

very hard to distinguish from the normal (chaotic) behavior”. Fig 35 suggests that they

were successful.

Fig 35 Four sample time series (out of ten) selected from the MGAB dataset. Only 4,500
datapoints (out of 97,600) are shown.

As with the previous example, the authors consider an easier problem than the more

general task we consider, asking, for a given single-dimensional time series, can we

detect where it is? We again will ask the harder multi-dimensional questions. Find the

Top-1 anomalies in K dimensions. We do this for K = 4 and K = 5. Table 14 summarizes

the results.

Table 14 The results of TSADIS on the MGAB dataset.
ID Ground Truth TSADIS Prediction TSADIS Score Default Rate

A 84614, {0,1,2,5,6} 84697, {2,5,1,0,6} 5/5 0.082

B 49765, {2,3,7,8} 49802, {8,7,3,2} 4/4 0.082

Here we achieved perfect results. In the original paper, the authors compare to five

anomaly detection methods (DNN-AE, LSTM-ED, NuPIC, LSTM-AD, TCN-AE

 78

[62]). As explained above, results are not exactly commensurate, however it is

interesting to note that all five methods used training data, yet none was able to obtain

perfect results. In our experiments we do include the training data (or rather, we make

no effort to exclude it), but we in no way delineated it or labeled it as training data. Yet

we were able to obtain perfect results.

3.5.5 NeurIPS Benchmark

One of the most frequently cited recent papers on time series anomaly detection in

recent years is [35]. Here the authors revisit time series anomaly definitions and

benchmark the synthetic criterion and the existing algorithms with a behavior-driven

taxonomy. They propose five types of anomalies: global (point), Contextual, Shapelet,

Seasonal and Trend. Following the new taxonomy, they generate 35 synthetic datasets.

Specifically, they adopt sinusoidal wave to generate 20 univariate sequential data with

different ratio of anomalies, where each dataset only includes one kind of anomaly.

Then, they also generate fifteen multivariate sequential data which combine different

kinds of anomalies into single dataset. Fig 36 shows one example of the multivariant

datasets in this benchmark.

Fig 36 One example of the multi-dimensional time series in NeurIPs benchmark. Three type
of anomalies is injected in this data: Global anomaly in first dimension, Contextual anomaly
in second and Shapelet anomaly in the third dimension.

 79

They benchmark nine state-of-the-art anomaly detection algorithms on these fifteen

multivariant datasets using the F1 score. Fig 37 (left) is a screengrab from their paper

that shows this result.

We repeated the same experiment for TSADIS and brush our result (pink line) onto the

author’s original plot, taking every care to make sure the experiments are

commensurate. As you can see in Fig 37 (right) TSADIS outperforms all other rival

methods.

Fig 37 A screen captured from [35].Right) we repeated the benchmark experiment for TSADIS
and brush our result (pink line) onto the author’s original plot. As we can see TSADIS
outperform all the rival algorithms (Autoencoder(AE), recurrent neural networks with long
short-term memory units (LSTM-RNN), Generative adversarial network(GAN),
Autoregression (AR), Isolation forest (IForest), One-class SVM (OCSVM), Gradient boosting
regression (GBRT), Matrix profile (MP), ∆IForest, ∆OCSVM are subsequence clustering).

The original paper was a little vague on some details of how they evaluated the

algorithms. Thus, to produce this result, we used some reasonable and typical

assumptions about how to calculate the F1 score. However, under any assumptions, we

are still highly competitive. The interested reader can read [63] for more details.

Note that one of the algorithms in this benchmark is MP, referring to Matrix Profile.

Our Matrix Profile-based result is much better. Normally, one might attribute this to a

 80

suboptimal choice of subsequence length, however, that’s not the case here, since the

authors explain that they search for the best subsequence size and only report the best

result. The other reason, that seems to be more likely, is that the combination method

that they used is naïve. We reviewed their code and realized they use the approach

suggested in [69] to, first, generate the multi-dimensional matrix profiles and then

combine them by addition. Therefore, it seems the excellent result we achieve is solely

due to the novel approach we use to combine Matrix Profiles, providing more evidence

for the utility of our ideas.

To summarize this section, in Fig 37 (right) we show that TSADIS outperforms ten

state-of-the-art rival methods. Moreover, we did not choose (and possibly cherry-pick)

the data that was used, and we did not implement (and possibly badly implement) the

ten rival methods. As such, this experiment offers forceful evidence that TSADIS

produces state-of-the-art results for multi-dimension anomaly detection.

3.5.6 Sensitivity to Additional Dimensions

In the experiments on benchmark datasets, we used all the available dimensions. It is

natural to ask what would have happened if there were even more dimensions that did

not have anomalies. At some point these additional dimensions will surely confuse our

algorithm, but for how many spurious dimensions could we allow and still produce

useful results?

To test this, we repeated the experiments on MSCRED, photovoltaic and MGAB

datasets, with an increasing number of additional dimensions, until our results got

worse. It is important that the extra dimensions come from the same domain, as our

algorithm could survive the addition of thousands of dimensions that contain pure

random noise. For MGAB, we used the authors’ original data generator. For

 81

photovoltaic, we did not have additional data, so we used sine waves with a one-day

period and the same noise level as the original data. For MSCRED, we used a technique

similar to what the original authors used to generate the dataset. Table 15shows the

results.

Table 15 The results of the increasing dimension test
Dataset #Dim added before failure Failure case Default Rate at failure Dataset

Photovoltaic 38 {20} 0.019 Photovoltaic

MGAB 11 {0,1,2,5,6} 0.039 MGAB
MSCRED 4 {24,15,28} 0.011 MSCRED

Note that the default rate decreases as we add dimensions, as there are more regions to

make an incorrect prediction. In general, these results suggest that our algorithm is

robust to spurious dimensions.

3.5.7 Timing Results

We have the luxury of being able to tersely summarize the time overhead for our

algorithm. The time taken is dominated by the time needed to compute the Matrix

Profiles, but this must be done by any approach that uses the Matrix Profiles. Thus, the

only question is, how much overhead does our K of N approach incur? The answer, for

all experiments in this work, is less than 5% (Concretely, for MSCRED it is 0.17%, for

MGAB 0.03%, and for photovoltaic is 3.7%). Moreover, because we have based our

algorithm on the Matrix Profile, we can take advantage of an active community that is

constantly accelerating the Matrix Profile. For example, [39] allows the Matrix Profile

to be computed on datasets with billions of datapoints on commodity desktop

machines.

 82

3.5.8 Selecting the Right K

In the experiments above, we evaluated our algorithm’s accuracy, given that the user

requested the correct value for K. Here we will evaluate our algorithms to predict the

correct K.

As shown in Fig 38 we created a dataset that comprises of sine waves. We can add a

simple anomaly to a time series, by taking the absolute value of a single period, and

we can add noise to the time, which we measure in terms of a standard deviation of the

original time series.

FIG1example, which is shown in Fig 38.

Fig 38 Three sample time series (out of ten) selected from the created dataset. Only 3,000
datapoints (out of 10,000) are shown. These examples are at noise level 𝟏. 𝟓 × 𝒔𝒕𝒅.

We performed the following experiment. We created ten different ten-dimensional

datasets, varying the number of dimensions that contained an anomaly from one to ten.

We then tested to see if we could recover the correct number of anomalies, by plotting

the KDA’s score (using the sum function) for all possible values of K from 0 to 10.

In order to count our prediction as correct, we insist that our algorithm must correctly

predict:

• How many anomalies there are (what is true K?)

• On which of the ten time series there is an anomaly.

• The location of the anomaly.

 83

Fig 39 shows the predicted number of anomalies for each case, when we have a noise

level of 0.1 × 𝑠𝑡𝑑.

Fig 39 Our predicted number of anomalies (red dots) for datasets with a known ground truth
number of anomalies that ranged from 1 to 10.

Given our success here, we can now ask how well we would do in the face of increasing

noise levels. We repeated the experiment above, just for the case where the ground

truth value of K was five. We did this ten times, and we successfully predicted K = 5

in each of the ten runs.

As shown in Fig 40, we repeated the entire process for increasing amounts of noise,

until we had at least one failure. As it happens, for noise level 1.5 × 𝑠𝑡𝑑 we had two

failures out of the ten runs.

 84

Fig 40 Testing our algorithms ability to predict the true number of time series that are involved
in a five-dimensional anomaly in the ten-dimensional datasets, for increasing levels of noise.

In Fig 40.inset we show examples of the noise level at each setting. The reader will

appreciate that the amount of noise our algorithm can tolerate before failure (shown in

green), is considerable. To be fair, we are inheriting this robustness from the Matrix

Profile, which is robust to noise [70].

3.6 Conclusions and Future Work

We have shown that at least one state-of-the-art anomaly detection algorithm, the

Matrix Profile, will generally fail if it is forced to consider all N dimensions of a N-

dimensional time series. By casting the problem as a K of N anomaly detection we both

improve the accuracy of anomaly detection and attribute the anomaly to the correct set

of responsible time series. We compare the results of our algorithm on three

datasets/approaches, showing, in each case, that we could match or improve upon the

original author’s approach despite framing the problem in a way that makes it more

difficult for ourselves, for example, by completely ignoring the training data. We have

 85

made all code/data available to allow the community to confirm, exploit and expand

our findings. We also compared TSADIS with nine state-of-the-art anomaly detection

algorithms benchmarked by NeurIPS Benchmark, demonstrating that our proposed

solution outperforms all rival methods.

 86

4. Conclusions

In this thesis, we introduced C22MP, a novel data structure that presents numerous

opportunities for innovative data mining applications. We introduced the concept of

"discordia" and elucidated its distinctions from "discord" in time series analysis. We

explained that a time series discordia is a subsequence uniquely characterized by its

features, as opposed to a time series discord, which pertains to subsequences with

distinctive shapes. We demonstrated that C22MP enables us not only to detect time

series discords but also to identify time series discordia.

Additionally, we introduced the ORR algorithm, a fast, efficient, and interpretable

method for generating a C22MP profile and detecting discordia within a time series.

Notably, the ORR algorithm has found its initial application in biomedical research

labs, aiding in the detection and comprehension of factors influencing the onset of

Parkinson's disease.

We evaluated the accuracy and performance of C22MP in detecting anomalies using

twenty datasets from twenty different papers. Furthermore, we employed the UCR

hexagon benchmark dataset, which includes 250 datasets, to compare the ORR

algorithm with twelve state-of-the-art anomaly detection methods. Our results

demonstrated that our proposed algorithm outperforms all rival approaches. We also

discussed the potential for using C22MP to detect other Matrix Profile primitives,

including motifs, chains, and snippets.

In Chapter one, we addressed the primary challenges of detecting anomalies in multi-

dimensional time series. These challenges arise from the fact that in an N-dimensional

time series, anomalies typically manifest in only K of the time series, where K is less

than N. We discussed if we had prior knowledge of which K time series exhibit

 87

anomalies, their locations could be easily determined. However, lacking this prior

knowledge, the search space becomes of size 2N, rendering a greedy search approach

unfeasible. In Chapter three, we introduced TSADIS, a novel and straightforward

algorithm that resolves this issue by enabling the rapid identification of the best K of

N anomaly subset for any K value. Moreover, we presented a simple metric capable of

ranking the top anomaly subsets for all K values ranging from 1 to N. While our

methods are adaptable to various anomaly scoring models, we illustrated their

effectiveness using the Matrix Profile as a concrete example.

We present a comprehensive evaluation of our algorithm's performance across three

datasets/approaches. In each instance, we demonstrate our ability to either match or

surpass the original author's approach, even though we intentionally made the task

more challenging for ourselves. For example, we achieved better results by entirely

disregarding the training data.

We conducted a comparison between TSADIS and nine state-of-the-art anomaly

detection algorithms, as benchmarked by NeurIPS Benchmark. The results clearly

indicate that our proposed solution outperforms all competing methods. We also

acknowledged the limitations of TSADIS in detecting anomalies resulting from

decorrelation between time series and proposed a potential solution to address this

issue. In future work, our aim is to further develop this idea to generalize TSADIS for

capturing such types of anomalies.

The possibilities for future research are extensive, and we anticipate that researchers

from diverse communities will uncover additional uses and properties of ORR and

TSADIS beyond our initial scope. To foster community engagement and the expansion

 88

of our ideas, we have made all code and supplemental materials readily accessible

[12][63].

 89

Bibliography

[1] Agrahari R, et. al. Assessing Feature Representations for Instance-Based Cross-

Domain Anomaly Detection in Cloud Services Univariate Time Series Data. IoT.

2022 Jan 29;3(1):123-44.

[2] Alzantot M, Chakraborty S, Srivastava M. Sensegen: A deep learning architecture

for synthetic sensor data generation. In2017 IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops) 2017

Mar 13 (pp. 188-193). IEEE.

[3] Aminifar F et. al. A review of power system protection and asset management with

machine learning techniques. Energy Systems. 2022 Nov;13(4):855-92.

[4] Aubet FX, Zügner D, Gasthaus J. Monte Carlo EM for deep time series anomaly

detection. arXiv preprint arXiv:2112.14436. 2021 Dec 29.

[5] Audibert J, Marti S, Guyard F, Zuluaga MA. From Univariate to Multivariate Time

Series Anomaly Detection with Non-Local Information. InInternational Workshop

on Advanced Analytics and Learning on Temporal Data 2021 Sep 13 (pp. 186-194).

Springer, Cham.

[6] Audibert J, Michiardi P, Guyard F, Marti S, Zuluaga MA. Do Deep Neural

Networks Contribute to Multivariate Time Series Anomaly Detection?. arXiv

preprint arXiv:2204.01637. 2022 Apr 4.

[7] Audibert J, Michiardi P, Guyard F, Marti S, Zuluaga MA. Usad: Unsupervised

anomaly detection on multivariate time series. InProceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining 2020

Aug 23 (pp. 3395-3404).

[8] Bhatnagar A, Kassianik P, Liu C, Lan T, Yang W, Cassius R, Sahoo D, Arpit D,

 90

Subramanian S, Woo G, Saha A. Merlion: A machine learning library for time

series. arXiv preprint arXiv:2109.09265. 2021 Sep 20.

[9] Boniol P, Linardi M, Roncallo F, Palpanas T, Meftah M, Remy E. Unsupervised

and scalable subsequence anomaly detection in large data series. The VLDB

Journal. 2021 Nov;30(6):909-31.

[10] Bontemps L, Cao VL, McDermott J, Le-Khac NA. Collective anomaly detection

based on long short-term memory recurrent neural networks. InFuture Data and

Security Engineering: Third International Conference, FDSE 2016, Can Tho City,

Vietnam, November 23-25, 2016, Proceedings 3 2016 (pp. 141-152). Springer

International Publishing.

[11] Brophy E, Wang Z, She Q, Ward T. Generative adversarial networks in time

series: A survey and taxonomy. arXiv preprint arXiv:2107.11098. 2021 Jul 23.

[12] C22MP(2022) Supporting webpage: sites.google.com/view/c22mp/home

[13] Daigavane A, Wagstaff KL, Doran G, Cochrane CJ, Jackman CM, Rymer A.

Unsupervised detection of Saturn magnetic field boundary crossings from plasma

spectrometer data. Computers & Geosciences. 2022 Apr 1;161:105040. [11]Dau

HA et. al. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica.

2019 Nov 8;6(6):1293-305. URL

www.cs.ucr.edu/~eamonn/time_series_data_2018.

[14] Dau HA et. al. The UCR time series archive. IEEE/CAA Journal of Automatica

Sinica. 2019 Nov 8;6(6):1293-305. URL

www.cs.ucr.edu/~eamonn/time_series_data_2018.

[15] Doshi K, Abudalou S, Yilmaz Y. TiSAT: time series anomaly transformer.

arXiv preprint arXiv:2203.05167. 2022 Mar 10.

 91

[16] Fährmann D, Damer N, Kirchbuchner F, Kuijper A. Lightweight long short-

term memory variational auto-encoder for multivariate time series anomaly

detection in industrial control systems. Sensors. 2022 Apr 9;22(8):2886.

[17] Fengming Z, Shufang L, Zhimin G, Bo W, Shiming T, Mingming P. Anomaly

detection in smart grid based on encoder-decoder framework with recurrent neural

network. The journal of china universities of Posts and Telecommunications. 2017

Dec 1;24(6):67-73.

[18] Geiger A, Liu D, Alnegheimish S, Cuesta-Infante A, Veeramachaneni K.

Tadgan: Time series anomaly detection using generative adversarial networks.

In2020 IEEE International Conference on Big Data (Big Data) 2020 Dec 10 (pp. 33-

43). IEEE.

[19] Goel P, Datta A, Mannan MS. Industrial alarm systems: Challenges and

opportunities. Journal of Loss Prevention in the Process Industries. 2017 Nov

1;50:23-36.

[20] Goh J, Adepu S, Junejo KN, Mathur A. A dataset to support research in the

design of secure water treatment systems. Intl. conference on critical information

infrastructures security 2016 (pp. 88-99). Springer.

[21] Goswami M, Challu C, Callot L, Minorics L, Kan A. Unsupervised Model

Selection for Time-series Anomaly Detection. arXiv preprint arXiv:2210.01078.

2022 Oct 3.

[22] Guo Y, Liao W, Wang Q, Yu L, Ji T, Li P. Multidimensional time series

anomaly detection: A gru-based gaussian mixture variational autoencoder

approach. InAsian Conference on Machine Learning 2018 Nov 4 (pp. 97-112).

PMLR.

 92

[23] Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal

of machine learning research. 2003;3(Mar):1157-82.

[24] Haimes YY. Modeling and managing interdependent complex systems of

systems. John Wiley & Sons; 2018 Oct 2.

[25] Huang H, Baddour N. Bearing vibration data collected under time-varying

rotational speed conditions. Data in brief. 2018; 21:1745-9.

[26] Huet A, Navarro JM, Rossi D. Local Evaluation of Time Series Anomaly

Detection Algorithms. In Proceedings of the 28th ACM SIGKDD 2022 (pp. 635-

645).

[27] Hundman K, Constantinou V, Laporte C, Colwell I, Soderstrom T. Detecting

spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proc of

24th ACM SIGKDD 2018 (pp. 387-95).

[28] Hwang WS, Yun JH, Kim J, Min BG. Do you know existing accuracy metrics

overrate time-series anomaly detections? In Proceedings of the 37th ACM/SIGAPP

SAC 2022 (pp. 403-412).

[29] Ibrahim M, Alsheikh A, Awaysheh FM, Alshehri MD. Machine learning

schemes for anomaly detection in solar power plants. Energies. 2022 Feb

1;15(3):1082.

[30] Idé T. Why does subsequence time-series clustering produce sine waves?.

InKnowledge Discovery in Databases: PKDD 2006: 10th European Conference on

Principles and Practice of Knowledge Discovery in Databases Berlin, Germany,

September 18-22, 2006 Proceedings 10 2006 (pp. 211-222). Springer Berlin

Heidelberg.

[31] Jackson TD, et. al. The motion of trees in the wind: a data synthesis.

 93

Biogeosciences. 2021 Jul 6;18(13):4059-72.

[32] Keogh E. (2022) Irrational Exuberance Why we should not believe 95% of

papers on Time Series Anomaly Detection. SIGKDD 2021 Keynote.

www.youtube.com/watch?v=Vg1p3DouX8w&.

[33] Keogh E, Lin J. Clustering of time-series subsequences is meaningless:

implications for previous and future research. Knowledge and information systems.

2005 Aug;8:154-77.

[34] Kim S, Choi K, Choi HS, Lee B, Yoon S. Towards a rigorous evaluation of time-

series anomaly detection. In Proceedings of the AAAI 2022 Jun 28 (Vol. 36, No. 7,

pp. 7194-7201).

[35] Lai KH, Zha D, Xu J, Zhao Y, Wang G, Hu X. Revisiting time series outlier

detection: Definitions and benchmarks. In 35th Conference on NeurIPS Datasets and

Benchmarks Track. 2021.

[36] Li D, Chen D, Jin B, Shi L, Goh J, Ng SK. MAD-GAN: Multivariate anomaly

detection for time series data with generative adversarial networks. InArtificial

Neural Networks and Machine Learning–ICANN 2019: Text and Time Series: 28th

International Conference on Artificial Neural Networks, Munich, Germany,

September 17–19, 2019, Proceedings, Part IV 2019 Sep 9 (pp. 703-716). Cham:

Springer International Publishing.

[37] Liu HY, Gao ZZ, Wang ZH, Deng YH. Time Series Classification with Shapelet

and Canonical Features. Applied Sciences. 2022 Aug 30;12(17):8685.

[38] Loh WY. Classification and regression trees. Wiley interdisciplinary reviews:

data mining and knowledge discovery. 2011 Jan;1(1):14-23.

 94

[39] Lu Y, Wu R, Mueen A, Zuluaga MA, Keogh E. Matrix profile XXIV: scaling

time series anomaly detection to trillions of datapoints and ultra-fast arriving data

streams. InProceedings of the 28th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining 2022 Aug 14 (pp. 1173-1182).

[40] Lubba CH, Sethi SS, Knaute P, Schultz SR, Fulcher BD, Jones NS (2019)

catch22: CAnonical Time-series CHaracteristics. Data Min Knowl Disc 33(6):1821-

1852.

[41] Lauer J, Zhou M, Ye S, Menegas W, Nath T, Rahman MM, Di Santo V,

Soberanes D, Feng G, Murthy VN, Lauder G. Multi-animal pose estimation and

tracking with DeepLabCut. BioRxiv. 2021 Jan 1.

[42] MacQueen J. Classification and analysis of multivariate observations. In5th

Berkeley Symp. Math. Statist. Probability 1967 Jun 21 (pp. 281-297). Los Angeles

LA USA: University of California.

[43] Marimon X, Traserra S, Jiménez M, Ospina A, Benítez R. Detection of

abnormal cardiac response patterns in cardiac tissue using deep learning.

Mathematics. 2022 Aug 5;10(15):2786.

[44] Munir M, Siddiqui SA, Dengel A, Ahmed S. DeepAnT: A deep learning

approach for unsupervised anomaly detection in time series. Ieee Access. 2018 Dec

19;7:1991-2005.

[45] Nakamura T, Imamura M, Mercer R, Keogh E. Merlin: Parameter-free

discovery of arbitrary length anomalies in massive time series archives. In2020

IEEE ICDM 2020 Nov 17 (pp. 1190-1195).

[46] Park D, Hoshi Y, Kemp CC. A multimodal anomaly detector for robot-assisted

feeding using an lstm-based variational autoencoder. IEEE Robotics and

 95

Automation Letters. 2018 Feb 2;3(3):1544-51.

[47] Ren H, Xu B, Wang Y, Yi C, Huang C, Kou X, Xing T, Yang M, Tong J, Zhang

Q. Time-series anomaly detection service at microsoft. InProceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data mining

2019 Jul 25 (pp. 3009-3017).

[48] Rewicki F, Denzler J, Niebling J. Is it worth it? An experimental comparison of

six deep-and classical machine learning methods for unsupervised anomaly

detection in time series. arXiv preprint arXiv:2212.11080. 2022 Dec 21.

[49] Piatetsky-Shapiro G. Data types/sources analyzed.

[50] Saarela M, Jauhiainen S. Comparison of feature importance measures as

explanations for classification models. SN Applied Sciences. 2021 Feb;3:1-2.

[51] Thompson, D. W., 1917. On Growth and Form. Cambridge University Press.

[52] Tuli S, Casale G, Jennings NR. Tranad: Deep transformer networks for anomaly

detection in multivariate time series data. arXiv preprint arXiv:2201.07284. 2022

Jan 18.

[53] Turowski M, et. al. Modeling and generating synthetic anomalies for energy and

power time series. In Proceedings of the 13th ACM e-Energy 2022 (pp. 471-484).

[54] Keogh E. Irrational Exuberance Why we should not believe 95% of papers on

Time Series Anomaly Detection. SIGKDD workshop talk (2022).

https://www.youtube.com/watch?v=Vg1p3DouX8w

[55] Khansa HE, Gervet C, Brouillet A. Prominent discord discovery with matrix

profile: application to climate data insight. In10th international conference of

advanced computer science & information technology (ACSIT 2022) May 2022

(pp. 21-22).

 96

[56] Kim S, Choi K, Choi HS, Lee B, Yoon S. Towards a rigorous evaluation of

time-series anomaly detection. InProceedings of the AAAI Conference on

Artificial Intelligence 2022 Jun 28 (Vol. 36, No. 7, pp. 7194-7201).

[57] Kravchik M, Shabtai A. Efficient cyber attack detection in industrial control

systems using lightweight neural networks and pca. IEEE Transactions on

Dependable and Secure Computing. 2021 Jan 8;19(4):2179-97.

[58] Mueen A, Viswanathan K, Gupta CK, Keogh E. The fastest similarity search

algorithm for time series subsequences under Euclidean distance. url: www cs unm

edu/∼ mueen. FastestSimilaritySearch html (Accessed 24 May 2016). 2015.

[59] Nakamura T, Imamura M, Mercer R, Keogh E. Merlin: Parameter-free

discovery of arbitrary length anomalies in massive time series archives. In2020

IEEE international conference on data mining (ICDM) 2020 Nov 17 (pp. 1190-

1195). IEEE.

[60] Park JY, Wilson E, Parker A, Nagy Z. The good, the bad, and the ugly: Data-

driven load profile discord identification in a large building portfolio. Energy and

Buildings. 2020 May 15;215:109892.

[61] Sanchez-Pi N, Leme LA, Garcia AC. Intelligent agents for alarm management

in petroleum ambient. Journal of Intelligent & Fuzzy Systems. 2015 Jan

1;28(1):43-53.

[62] Thill M, Konen W, Bäck T. Time series encodings with temporal convolutional

networks. InInternational Conference on Bioinspired Methods and Their

Applications 2020 Nov 16 (pp. 161-173). Cham: Springer International Publishing.

[63] TSADIS webpage: https://sites.google.com/view/tsadis

[64] Wang R, Liu C, Mou X, Guo X, Gao K, Liu P, Wo T, Liu X. Deep Contrastive

 97

One-Class Time Series Anomaly Detection. arXiv preprint arXiv:2207.01472. 2022

Jul 4.

[65] Wen Q, Sun L, Yang F, Song X, Gao J, Wang X, Xu H. Time series data

augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478. 2020

Feb 27.

[66] Wu R, Keogh E. Current time series anomaly detection benchmarks are flawed

and are creating the illusion of progress. IEEE TKDE. 2021.

[67] Yairi T, Kato Y, Hori K. Fault detection by mining association rules from house-

keeping data. Inproceedings of the 6th International Symposium on Artificial

Intelligence, Robotics and Automation in Space 2001 Jun 18 (Vol. 18, p. 21).

Citeseer.

[68] [50]Yankov D, Keogh E, Rebbapragada U. Disk aware discord discovery:

finding unusual time series in terabyte sized datasets. Knowledge and Information

Systems. 2008 Nov;17:241-62.

[69] Yeh CC, Kavantzas N, Keogh E. Matrix profile VI: Meaningful

multidimensional motif discovery. In2017 IEEE international conference on data

mining (ICDM) 2017 Nov 18 (pp. 565-574). IEEE.

[70] Yeh CC, Zhu Y, Ulanova L, Begum N, Ding Y, Dau HA, Silva DF, Mueen A,

Keogh E. Matrix profile I: all pairs similarity joins for time series: a unifying view

that includes motifs, discords and shapelets. In2016 IEEE 16th international

conference on data mining (ICDM) 2016 Dec 12 (pp. 1317-1322). Ieee.

[71] Yoon J, Jarrett D, Van der Schaar M. Time-series generative adversarial

networks. Advances in neural information processing systems. 2019;32.

[72] Zhang C, Kuppannagari SR, Kannan R, Prasanna VK. Generative adversarial

 98

network for synthetic time series data generation in smart grids. In2018 IEEE

international conference on communications, control, and computing technologies

for smart grids (SmartGridComm) 2018 Oct 29 (pp. 1-6). IEEE.

[73] Zhang C, Song D, Chen Y, Feng X, Lumezanu C, Cheng W, Ni J, Zong B,

Chen H, Chawla NV. A deep neural network for unsupervised anomaly detection

and diagnosis in multivariate time series data. InProceedings of the AAAI

conference on artificial intelligence 2019 Jul 17 (Vol. 33, No. 01, pp. 1409-1416).

[74] Zhu Y, Yeh CC, Zimmerman Z, Kamgar K, Keogh E. Matrix profile XI:

SCRIMP++: time series motif discovery at interactive speeds. In 2018 IEEE ICDM

2018 (pp. 837-846).

