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A Latent Transition Mixture Model Using
the Three-Step Specification

Karen Nylund-Gibson, Ryan Grimm, Matt Quirk, and Michael Furlong
University of California, Santa Barbara

The 3-step method for estimating the effects of auxiliary variables (i.e., covariates and distal
outcome) in mixture modeling provides a useful way to specify complex mixture models. One
of the benefits of this method is that the measurement parameters of the mixture model are not
influenced by the auxiliary variable(s). In addition, it allows for models that involve multiple
latent class variables to be specified without each part of the model influencing the others.
This article describes a unique latent transition analysis model where the measurement models
are a latent class analysis model and a growth mixture model. We highlight the application of
this model to study kindergarten readiness profiles and link it to elementary students’ reading
trajectories. Mplus syntax for the 3-step specification is provided.

Keywords: auxiliary variables, growth mixture modeling, latent class analysis, latent transition
analysis, mixture modeling, three-step method

Mixture modeling has become a widely used statistical
method in the social and behavior sciences. The ability to
identify and understand latent subpopulations in a given
population has great appeal because it allows for a richer
understanding of a population by identifying the heterogene-
ity that exists within it. In addition, the use of mixture models
potentially allows for a more accurate description of the rela-
tionships that exist in the data by relaxing the assumption
that relationships are the same for all individuals in a popu-
lation; rather, relationships can vary across subpopulations.
The intersection of mixture modeling with a range of more
traditional latent variable models, such as factor mixture
models, which combine mixture modeling and the common
factor model (see, e.g., Lubke et al., 2007), allows for a wide
range of modeling possibilities that might aid in accurately
depicting the complexities often seen in social science data.

Over the past 15 years there has been a rapid increase
in the applications of mixture models in the social and
behavioral sciences. There is a wide range of applications
across many disciplines where the use of mixture models has
aided in the understanding of educational and psychological
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phenomena. Latent class analysis (LCA) was used to study
the heterogeneity in students’ experiences with peer victim-
ization and identified three classes that differed by severity,
not type of victimization (Nylund, Bellmore, Nishina, &
Graham, 2007). A study by Cleveland, Lanza, Ray, Turrisi,
and Mallett (2012) used latent transition analysis (LTA)—
considered a longitudinal extension of the LCA model—to
study how college freshmen transitioned between latent
classes of drinkers and nondrinkers before and after they
began college. In another application of mixture modeling,
Morin et al. (2011) used growth mixture modeling (GMM)
to study heterogeneous developmental trajectories of anxiety
in a sample of adolescents.

Most commonly, in applied social science research, mix-
ture models are used in an exploratory fashion. That is,
although there is interest in enumerating the latent classes,
researchers do not usually have a specific number of classes
hypothesized a priori. Equally important as enumerating the
number of latent classes is developing an understanding of
the individuals that make up the emergent latent classes.
By including auxiliary information into the mixture model
in the form of covariates (also called predictors or inde-
pendent variables) or distal outcomes (or consequences),
researchers can begin to better understand the characteris-
tics of the individuals who make up the latent classes as
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well as the consequences of class membership. In addition
to better understanding the heterogeneity, including auxil-
iary information also provides validity to the emergent latent
classes by providing a “substantive check” to the classes
and information about how the classes relate to auxiliary
variables in a way that is consistent with theory (Muthén,
2003).

APPROACHES FOR INCLUDING AUXILIARY
INFORMATION IN MIXTURE MODELS

There are several approaches to including auxiliary infor-
mation into mixture models. The most commonly used
approach available in most mixture modeling software pack-
ages is to regress the latent class variable on the auxiliary
variable, considered a one-step approach. As Vermunt (2010)
pointed out, there are several disadvantages to this approach;
namely, it becomes impractical with a large number of
covariates and forces the researcher to make a decision
about when to include covariates in the modeling pro-
cess. Although some recommend including covariates in the
mixture model from the beginning (Muthén, 2001), recent
simulation studies recommend that the number of classes be
decided in a model without the auxiliary variable (Nylund-
Gibson & Masyn, 2011). Using the three-step approach, you
decide on the number of classes before you include auxiliary
information.

One significant disadvantage of the one-step approach is
that once the auxiliary variables (e.g., covariates or distal out-
comes) are included in a mixture model, the measurement
parameters of the latent class model could, and often do,
shift depending on the strength of the relationship between
the latent class indicators and the covariates or distal out-
comes (Asparouhov & Muthén, 2013; Vermunt, 2010). This
implies that the item probabilities used to interpret and assign
names to the latent classes could change when comparing a
model with and without covariates. A significant change in
one or more of the item probabilities, the class size, or both
could lead to a different interpretation of the latent classes.
In fact, it is possible that a model with covariates might result
in a different number of classes to be chosen in the class
enumeration process.

This change in the measurement parameters of the latent
class variable is often unsettling for applied researchers.
Although covariates and distal outcomes are important to
the modeling process, the measurement of the latent classes
is often conceptualized to be independent of the statistical
relationship between the covariates or distal outcomes and
the latent class variable. In addition, the change in mea-
surement parameters is inconsistent with the motivation to
use the latent class variable to capture heterogeneity in a
set of outcome variables free from covariate influence. For
example, in Nylund, Bellmore, et al. (2007), six indicators of

peer victimization were used to capture heterogeneity in vic-
timization experiences. The three latent classes that emerged
differentiated victimization experiences by severity. Then,
victimization classes were related to auxiliary variables—
two covariates (gender and feelings of school safety) and a
distal outcome (later depression). Having the auxiliary vari-
ables influence the class formation in this example would
imply that instead of the latent classes capturing hetero-
geneity in victimization experiences, the latent classes would
capture heterogeneity in victimization experiences, gender,
school safety, and depression together. Although the latter is
an interesting endeavor, it would likely result in a different
set of latent classes than those that emerged when just the
victimization experiences were used.

Another approach to including auxiliary information into
a mixture model that overcomes the shift in the measure-
ment parameters is the classify–analyze approach. In this
two-step approach, an unconditional mixture model is spec-
ified and individuals are assigned to a latent class using
modal class assignment. Then, in a second modeling step,
modal class assignment is read in as data and individuals
are compared on the covariates or distal outcomes using a
more traditional method to compare groups (e.g., analysis of
variance). This approach overcomes the disadvantage of hav-
ing measurement parameters shift, but it does not account
for the imperfect assignment to class and has been shown to
be biased, especially when entropy is low (Asparouhov &
Muthén, 2013; Clark & Muthén, 2009).

THREE-STEP PROCESS FOR COVARIATES
AND DISTAL OUTCOMES

Recent methodological work has provided a framework for
avoiding the measurement parameter shift problem; namely,
the three-step method for estimating the effects of covariates
and distal outcomes in mixture models (Asparouhov &
Muthén, 2013; Vermunt, 2010). This method has been
shown to be less biased than older options for estimat-
ing these effects, including the pseudo-class draw approach
(Asparouhov & Muthén, 2013). This newer three-step
method ensures that the measurement of the latent class
variable is not affected by the inclusion of covariates or dis-
tal outcomes by fixing the measurement parameters of the
latent class variable of the model with covariates at values
from the unconditional latent class model. As the name sug-
gests, it involves three modeling steps: (a) estimating the
unconditional mixture model, (b) assigning individuals to
latent classes using modal class assignment, and (c) estimat-
ing a mixture model with measurement parameters that are
fixed at values that account for the measurement error in the
class assignment. Once the model in the third step is spec-
ified, auxiliary information is included in this model in the
traditional fashion.
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THREE-STEP PROCESS FOR MODELS WITH
MORE THAN ONE LATENT CLASS VARIABLE

Latent Transition Analysis

The three-step process described earlier can also be used in
models with more than one latent class variable. Asparahov
and Muthén (2013) demonstrated how to use the three-step
method for a simple latent transition analysis (LTA) model
(Collins & Lanza, 2010; Collins & Wugalter, 1992). LTA
is referred to as the longitudinal extension of LCA because
it involves multiple latent class variables where LCA is the
measurement model for each of the latent class variables.
In traditional applications of LTA, the interest is in modeling
change in latent class membership over time by regressing
the latent class variable at one time point on previous ones.
To apply the three-step method described in Asparouhov
and Muthén (2013), the manual three-step process is needed
where the LCA parameters of the first latent class variable
are determined and then the second, independent of the first,
and so on.

THIS ARTICLE

In this article, we illustrate the utility of the three-step
method in the context of multiple latent class variables.
Specifically, we use this method within the LTA framework
where the latent class variables are not repeated measures
but instead are two mixture models, namely an LCA and a
growth mixture model (see Figure 1). A few other applica-
tions of the three-step method have been used (Asparouhov
& Muthén, 2013; Vermunt, 2010), but this article is the first
to use the three-step method within the LTA framework using

FIGURE 1 Final latent transition analysis model modeling the transitions
between kindergarten readiness classes to elementary reading trajectory
classes controlling for age, gender, language (CELDT), and prior preschool
experiences.
Note. KSEP = Kindergarten Student Entrance Profile.

different measurement models. This is a novel application
for several reasons, one of which is that the measurement
invariance of the LTA model does not apply because the
latent class variables are not repeated measures, which is
the case for most applications of LTA models. Further, LTA
with nonrepeated measures is a useful modeling technique
that is not widely used but could provide a useful framework
to study different developmental changes. In addition, the
LTA model used in this article includes an interaction term,
where covariates are allowed to influence the probability of
transitioning—a specification in LTA modeling that is not
widely used. To aid in the understanding of the specification
of a complex model like the one used in this article, we pro-
vide the Mplus (Muthén & Muthén, 1998–2012) syntax for
all the models involved in the three-step specification, as well
as the calculations for the parameters used in the three-step
method.

Using an example of kindergarten readiness and ele-
mentary reading achievement trajectories, in this article
we use an LTA model where the research questions are
focused on identifying latent classes in each process, and
then modeling changes among latent classes. Specifically, we
identified heterogeneity in kindergarten readiness and read-
ing trajectories in elementary school (Grades 2–5). By using
the three-step method described earlier, the formation of
the trajectory classes in kindergarten was not influenced
by reading classes in elementary school, and vice versa.
In addition, we included covariates into the model without
changing the measurement parameters. We also allowed for
the covariates to influence the transition between kinder-
garten readiness classes and the reading trajectories. That
is, the model explores the influence of covariates on how
children transition. This model allowed us to better under-
stand the association between variations that are evident
in children’s kindergarten readiness and long-term reading
achievement trajectories through Grade 5.

METHOD

Sample

During the first month of the 2005 and 2006 academic years,
all kindergarten students entering a medium-sized school
district in central California were assessed using a univer-
sal school readiness screening as part of general education
practices. Participants in this study were 2,172 Latino and
Latina children who (a) entered kindergarten in the dis-
trict during this time period, (b) were rated on the school
readiness screening, and (c) had values for the predictors
included in the model. Of these students, 49.3% were male
and 69.9% were English language learners, as reported by
the school district. A significant proportion of the chil-
dren in the district were from families experiencing low
socioeconomic circumstances, with approximately 78% of
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students in the district receiving free or reduced-price lunch
services.

The participating K–8 school district is located in a
semirural area with a population of about 100,000 people.
From 2008 to 2012, 33% of the district’s students in Grades
2 through 5 obtained scores of “proficient” or “advanced”
scores on the state language arts assessments, compared with
54% of similar-aged students throughout California. On the
mathematics standards assessment, 50% of the district’s stu-
dents in Grades 2 through 5 obtained “proficient” (minimum
goal for all students) or “advanced” (optimal goal for stu-
dents) scores, compared to 64% of students statewide during
the same time period.

Measures

School readiness. The Kindergarten Student Entrance
Profile (KSEP; Santa Maria-Bonita School District, First
5 of Santa Barbara County, & University of California Santa
Barbara, 2005) was used as a school readiness screening
measure to assess social-emotional, behavioral, physical, and
cognitive elements of students’ school readiness. The ver-
sion of the KSEP used in this study had 16 items, with
7 items measuring social-emotional readiness, 3 items mea-
suring physical readiness, and 6 items measuring cognitive
readiness. Teachers completed this rating scale by drawing
on their observations and professional judgments in the nat-
ural classroom setting over at least a 3-week period at the
beginning of the school year (for more on the KSEP, see
Quirk, Furlong, Lilles, Felix, & Chin, 2011; Quirk, Nylund-
Gibson, & Furlong, 2013). A 4-point rating rubric (1 = not
yet, 2 = emerging, 3 = almost mastered, 4 = mastered) is
associated with each individual item that provides an oper-
ational definition and an example of the type of behaviors
that would be indicative of a child at various levels of mas-
tery. For the purposes of this study, ratings for each item
were dichotomized (1 = mastered [defined as ratings of
mastered], 0 = not mastered [defined as ratings of not yet,
emerging, and almost mastered); therefore, total scores for
individual children ranged from 0 to 16, with a score of
16 indicating that the teacher rated the child at the mastery
level on all items. The KSEP is not an assessment of English
language proficiency; therefore, children could demonstrate
readiness in any language or form of communication.

Previous research has provided evidence of the KSEP’s
reliability and validity (Furlong & Quirk, 2011; Lilles et al.,
2009; Quirk et al., 2011; Quirk et al., 2013). For this
sample, the internal consistency (Cronbach’s alpha) of the
dichotomized 16-item ratings was .90, with subscale relia-
bility coefficients of .85 (social-emotional), .79 (physical),
and .74 (cognitive). Total scores for the sample ranged from
0 to 16 (M = 6.33, SD = 4.73).

Academic achievement. The English Language Arts
(ELA) and Mathematics subtests of the California Standards

Test (CST) were used to assess students’ academic achieve-
ment in Grades 2 through 5. California schools use the
CST to monitor student academic progress from Grades
2 through 11 in comparison to curriculum-based academic
standards. Multiple independent item review teams matched
items from the ELA portion to a curriculum blueprint cov-
ering the areas of word analysis, reading comprehension,
literary response and analysis, writing strategies, and written
conventions. The ELA scores are reported as scale scores,
percentiles, and as standard scores ranging from 1 (far below
basic) to 5 (advanced). Scale scores range from 150 to 600.
However, for the purposes of our study, we transformed
scale scores to normal curve equivalents (NCEs) because
the CST ELA tests are not vertically equated. That is, we
could not directly compare scale scores of our sample across
years. Transforming scale scores to NCEs allowed us to
standardize the scale scores across years and yielded inter-
pretable growth parameters. NCEs have a mean of 50 and
a standard deviation of 21.06 and range from 1 to 99
(Haertel, 1987). At values of 1, 50, and 99, NCEs corre-
spond to percentile ranks, but, unlike percentile ranks, NCEs
have equal intervals between all scores and are on a linear
scale, making them more appropriate for statistical analy-
ses (Haertel, 1987). Internal consistency coefficients for the
ELA subtest ranged from .92 to .94 for Latino and Latina
students in Grades 2 through 5 (California Department of
Education Standards and Assessment Division, 2008–2012).
From 2008 to 2012, the estimated proportion of students
in Grades 2 through 5 correctly classified as proficient or
advanced in ELA ranged from .92 to .94 across all stu-
dents (California Department of Education Standards and
Assessment Division, 2008–2012).

Predictors. Four predictors, all of which are theo-
retically relevant to children’s school readiness levels at
kindergarten entry and growth in elementary reading, were
examined. The predictors included in the model were (a)
whether or not the child had previous preschool experience,
(b) the age of the child when the KSEP was administered, (c)
gender, and (d) English language proficiency.

Procedure

At the participating district’s school, the teachers were
trained by the readiness kindergarten transition coordinator
on the use of the KSEP prior to the 2005 and 2006 school
years. KSEP ratings were recorded for each student on a
standard form and scores were recorded in a Microsoft Excel
database with an associated student identifier that was used
to link readiness data with longitudinal achievement vari-
ables. All data were collected by the district as part of general
education practices and shared with researchers as part of
a collaborative effort to better understand the readiness of
the district’s students at school entry and its relationship to
their later academic achievement. Unique identifiers were
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removed from the data used for this study to be compliant
with the university’s Human Subjects Review Board.

The Analysis Plan

The specification of a complex model that involves two latent
class variables with different measurement models requires
careful attention to the specification of each component part,
thus the analysis was conducted in several steps. First, the
cross-sectional LCA was conducted on the KSEP items and
the number of classes was decided. Then, covariates and
distal outcomes were included in the chosen model to help
provide validity to the emergent classes. Next, the GMM
model with the reading scores was specified and several
different models were studied and compared, resulting in
one final GMM model for which covariates were included.
Once each of the mixture models (e.g., LCA and GMM)
was independently specified and the most plausible model
for each was identified, then the manual three-step method
was specified.

Class enumeration. When fitting a two latent class
variable model, the class enumeration process is done sepa-
rately for each latent class variable. That is, for our example
we determined the number of classes for the LCA and GMM
models separately. Several indicators of model fit were used
because there is no single statistical indicator that is a per-
fect indicator of which model fits best (Nylund, Asparouhov,
& Muthén, 2007). The Bayesian information criterion (BIC;
Schwartz, 1978), the most commonly used and trusted fit
index for model comparison, was used, where lower val-
ues of the BIC indicated better fit. In addition, we compared
models that differed in the number of classes using the Lo–
Mendell–Rubin (LMR) test and the bootstrap likelihood ratio
test (BLRT) to evaluate if adding an additional class signifi-
cantly improved model fit (for more on these fit indices, see
Nylund, Asparouhov, et al., 2007). The entropy of the final
model selected is reported in the text but not used for model
fit because it is a measure that describes the overall classifi-
cation of students into the latent classes assuming the model
is correct and is not intended for model selection. Entropy
ranges between 0 and 1, where 1 is perfect classification and
values approaching 1 indicate clear delineation of classes
(Celeux & Soromenho, 1996).

Three-step method in Mplus. With just covariates or
just distal outcomes, it is possible to use the facilities in
Mplus 7.11 to estimate these effects using the three-step
method. The LTA model used in this article requires us to do
a manual specification of the three-step model. This involves
several model runs for each LCA and GMM model, and then
a final model where the three-step variables for each model
are combined into one model run. In this final model, the

LTA modeling framework is used where the latent class vari-
able from the GMM is regressed on the LCA variable as
depicted in Figure 1.

Once the best model is identified for each of the latent
class variables (e.g., for the LCA and GMM models), an
unconditional model is run where covariates are designated
as auxiliary variables (see Appendix A) and a “savedata”
command, requesting “cprobabilities” is specified so that
Mplus will create a new data set. In this new data set, all indi-
vidual values of the class indicators of the mixture model are
included (e.g., the KSEP items or NCE reading scores), as
well as the posterior probabilities, modal class assignment,
and any variables that were specified in the auxiliary com-
mand. An important step at this point is to specify covariates
or distal outcomes as “auxiliary” variables so that they are
included in this newly written data set and can be used later
in the three-step procedure (see Appendix A).

This newly written file (called 5clca.dat in Appendix A)
is then read in as data in the next model run. In this model, a
mixture model is specified to have one indicator—the modal
class assignment variable from the first step. In this run, the
threshold values for this latent class variable are fixed as
specific values. The values then are fixed using the qc1,c2 val-
ues from the Asparouhov and Muthén (2013), Equation 1.
Appendix B illustrates how to hand calculate these values
for the LCA model used in this study. The values from the
“Average Latent Class Probabilities for Most Likely Latent
Class Membership” are from the output file from the first
run (Appendix A).1 Using these values, the mixture model
is specified (Appendix C). This same process is done for the
GMM model (Appendices D and E). For each model, the
three-step process is conducted and the results are compared
to ensure that the class sizes match from the first and third
steps.

The three-step LTA model is specified using the calcu-
lated values from the LCA and GMM latent class variable
(see Appendix F). The final LTA model used in this study,
depicted in Figure 1, included interactions (Appendix G) for
two of the four covariates.

RESULTS

The results are divided into several subsections. We first
present the descriptive statistics for all the variables used
in both the LCA and GMM models, including covariates.
We then present the class enumeration results for the LCA
and GMM models. We present covariate results for both the
LCA and GMM models, which helps provide validity for the
emergent classes. Finally, we include modeling results for
the final model where we link the kindergarten LCA and the
elementary school GMM results and include covariates.

1Starting in Mplus 7.1, these values are provided for you, but we
included the calculations for pedagogical purposes.
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Descriptive Statistics

Table 1 presents the means and standard deviations for the
KSEP items, reading scores, and covariates that were used in
the analysis. The KSEP item most often mastered by students
was “Separates appropriately from caregiver most days.”
This was the only item mastered by over half of the sample.
Other items that had relatively high frequencies of mastery
included “Recognizes own name,” “Demonstrates sense of
his or her own body in relation to others,” “Demonstrates
general coordination,” and “Stays with or repeats a task.”
Perhaps not surprising, these items might have had the high-
est frequencies of mastery because they are nonacademic
in nature, as most of these students have not yet experi-
enced formal academic training. Conversely, the item with
the lowest amount of students who had attained mastery was
explicitly academic in nature, “Writes own name.” Similarly,
the other items with means less than 0.30 were all related to
explicit academic instruction rather than personal traits.

Overall, the mean ELA scores were consistently below
the state average for all four academic years. The highest
overall achievement scores occurred during fourth grade,

TABLE 1
Descriptive Statistics of the Kindergarten Student Entrance Profile
(KSEP) Items, Normal Curve Equivalent (NCE) Reading Scores,

and Covariates Used in the Final Model

Variables M SD

KSEP items
Seeks help 0.35 0.48
Cooperative play 0.41 0.49
Impulse control 0.38 0.48
Stays with task 0.45 0.50
Separates from caregiver 0.71 0.45
New activities 0.42 0.49
Follows rules 0.37 0.48
Uses tools 0.34 0.47
Coordination 0.46 0.50
Body sense 0.47 0.50
Recognizes own name 0.49 0.50
Writes own name 0.19 0.39
Expressive 0.29 0.45
Number sense 0.29 0.45
Recognizes colors 0.23 0.42
Primary shapes 0.25 0.43

NCE ELA scores
2nd grade 42.63 16.91
3rd grade 33.91 18.57
4th grade 44.13 18.06
5th grade 39.43 17.75

Covariates
Age 5.33 0.32
K-CELDT 2.61 2.01
Female 0.51 0.50
Preschool 0.47 0.50

Note. ELA = English language arts; K-CELDT = Score on the
California English Language Development Test in Kindergarten.

and there were decreases in ELA scores during third and
fifth grades, with third grade being the larger decrease of
the two. In California, the CSTs are read out loud to stu-
dents in the second grade, but this practice is discontinued
beginning in the third grade. This might account for the
large decrease in ELA scores. However, on average, the stu-
dents in this sample never fell below 1 SD below the state
mean.

Kindergarten LCA

A series of LCA models were fit starting with a one-class
model. We then increased the number of classes by one until
nonconvergence was achieved. Fit indices for each model
were collected (see Table 2) and compared to aid in select-
ing the best fitting LCA model among those considered.
In this application, the BIC never reached a minimum value;
however, we looked for an “elbow” (i.e., the last relatively
large decrease in the BIC value; Nylund et al., 2007), which
occurred with the five-class model. None of the p values
for the LMR were nonsignificant, so this was not used to
inform our decision. The first nonsignificant p value for the
BLRT occurred with the four-class model, suggesting the
three-class model was preferable. Given that the fit statis-
tics did not unilaterally identify a single LCA model as the
correct one, we considered substantive reasons in our deci-
sion of which model to retain. We drew on our previous work
with similar data (Quirk et al., 2013) to guide our decision,
and examined the item profile plots of the three-, four-, and
five-class models. This revealed that the five-class model did
the best job of explaining the heterogeneity in kindergarten
readiness and this was then chosen as the final LCA model.
This result is consistent with the LCA results using the KSEP
instrument in the Quirk et al. (2013) study.

The item probability plot presented in Figure 2 was
used to interpret and label the five emergent latent classes
beginning with the two most extreme classes. The top
class had the highest probability of receiving mastery rat-
ings across the KSEP items. Thus, this class was labeled
Balanced High and consisted of 13.5% of the sample.
At the opposite extreme, the class at the bottom of the plot
had the lowest probability of being rated at the mastery
level for all but the last two KSEP items. Thus, this class
was labeled Extremely Low and consisted of 33.9% of the
sample.

The next three classes were labeled based on pat-
terns of being rated at the mastery level on the social-
emotional/behavioral (SE) and cognitive items (Cog). The
second highest class, denoted with a solid line and squares,
had a high probability of being rated at the mastery level for
the SE items, but a low probability of being rated at the mas-
tery level on the Cog items. This class was labeled High SE,
Low Cog and consisted of 13.8% of the sample. The next



THREE-STEP WITH LONGITUDINAL MIXTURE MODELS 7

TABLE 2
Fit Information for the Latent Class Analysis and Growth Mixture

Models

LMR BLRT
No. of
classes

Log
Likelihood BIC p Value p Value

LCA
1 −30255.21 60694.81 — —
2 −17433.10 35150.38 <.001 <.001
3 −16612.76 33671.00 <.001 <.001
4 −16378.42 33363.61 <.001 0.37
5 −16178.90 33125.87 <.001 0.07
6 −16048.46 33026.27 <.001 0.05

GMM
1 −28397.17 56877.60 — —
2 −28377.71 56861.40 .003 <.001
3 −28363.44 56855.57 <.001 <.001
4a −28346.68 56852.33 .12 <.001
5b −28309.92 56824.24 .09 <.001
6 −28340.01 56876.85 .68 .10

Note. BIC = Bayesian information criterion; LMR = Lo–Mendell–
Rubin test; BLRT = bootstrap likelihood ratio test; LCA = latent class
analysis; GMM = growth mixture modeling.

aIntercept variance for Class 1 freely estimated. bResidual variance for
Class 1 freely estimated.

class, denoted by a solid line with triangles, had a moder-
ate probability of mastery on both the SE and Cog items,
and was labeled Moderate SE, Moderate Cog and made up
19.7% of the sample. The final class, denoted by a dashed
line with circles, had a relatively low probability of mastery

across both SE and Cog items. This class was labeled Low
Cog, Low SE and made up 19.1% of the sample.

Covariates in KSEP LCA. Four covariates—age,
gender, preschool experience, and English language
proficiency—were included in the analysis and served to
help validate the classes. These covariates are a subset of
the ones used in the Quirk et al. (2013) study. Comparing
the emergent latent classes across the LCA model with
and without covariates, there were no large shifts in the
emergent latent classes. That is, the profiles remained stable,
as did the relative size of the latent classes. Thus, in this
context, because the entropy is high and the classes do
not substantially change once covariates are included, the
covariate results using the three-step method will likely not
differ much from the more traditional approach of regressing
the latent class variable on the covariates.

Covariate results were consistent with those found in
Quirk et al. (2013) and are in line with substantive pre-
dictions. For example, having prior preschool experience
was a consistent predictor of being in the Balanced High
class. Furthermore, the odds ratio for the Extremely Low
class showed that students with preschool experience were
almost 17 times more likely to be in the Balanced High
class. Additionally, age and English language proficiency
consistently differentiated the Balanced High class from the
others. Specifically, students who were older or more profi-
cient in English were more likely to be in the Balanced High
class than each comparison class. Gender only differentiated
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FIGURE 2 Item probability plot for the latent class analysis of Kindergarten Student Entrance Profile items.

Note. Cog = Cognitive; SE = Social-emotional/behavioral.



8 NYLUND-GIBSON ET AL.

the Balanced High class from the Mod SE, Mod Cog, and
Extremely Low classes, with females more likely to be in the
Balanced High class.

Elementary School GMM

A series of GMM models were fit using the NCE reading
scores from second through fifth grade. A similar model
selection process was performed for the GMM models as
the LCA models. The bottom panel of Table 2 presents
the fit statistics for the GMM models that were consid-
ered. The lowest BIC value (56824.24) indicated a five-class
solution. The nonsignificant LMR value of the four-class
solution indicated a three-class solution was the best fit
to the data. However, the nonsignificant BLRT value of
the six-class model indicates the five-class model is again
the preferred solution. Although most of the fit statistics
seemed to indicate the five-class solution was the appro-
priate model, substantive interpretation of the classes must
also play a key role in the process of model selection.
When we examined the growth patterns for the five-class
solution, one latent growth class only made up 0.4% of
the sample and two of the other classes were not very
well differentiated. The four-class model resulted in latent
classes that identified different growth trajectories with rea-
sonably sized classes; we thus determined this was a plau-
sible and interpretable solution to describe heterogeneity
in NCE growth trajectories. Additionally, this model had
the next lowest BIC value, which provided some statisti-
cal evidence for the validity of the four-class solution. The
entropy for this model was .48, which is considered low.
However, none of the models had an entropy value greater
than .65.

As with the LCA, the mean plot in Figure 3 was used to
interpret and label the classes using the growth plot. Because

NCEs have a mean of 50, we used this value as a refer-
ence for the class names. Subsequently, the top class had
mean ELA scores greater than 50 at all four occasions and
was named Above Average. This class made up 17% of the
sample. The bottom class was named Very Low, reflecting
the fact that the mean ELA scores for this class were more
than a standard deviation below the mean at all four time
points. This class consisted of 14.8% of the sample. The class
depicted with a dashed line and diamonds was termed Low
Average, as they were slightly below the mean for 3 of the
4 years. This was the largest class and made up 45.3% of
the sample. Finally, the class depicted with a solid line and
squares was labeled Low and constituted 22.9% of the total
sample.

Covariates in GMM

Three covariates were used in the GMM analysis and were
related to the latent class variable: age, gender, and preschool
experience. Unlike in the LCA results, comparing the classes
of the four-class GMM model with and without covariates
showed significant differences. Figure 3 shows the mean tra-
jectory plot for the final chosen unconditional (i.e., without
covariates) GMM, and Figure 4 shows the mean trajec-
tory plot for the conditional (i.e., with covariates) GMM.
Comparing the two figures, we see that both the nature of the
profiles and the sizes change with the inclusion of covariates.
For example, we see that the Low Average class performs
much more similar to the Very Low class when there are
covariates (see Figure 4) as opposed to performing more
similar to the Low class with the model without covariates.
One of the most notable differences between the models
is that there is less variation in the three lower performing
classes in the conditional model. This is especially appar-
ent when we compare Grades 2, 4, and 5. The mean scores
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FIGURE 3 Mean normal curve equivalent (NCE) scores for the four-class unconditional growth mixture modeling solution.
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FIGURE 4 Mean normal curve equivalent (NCE) scores for the four-class growth mixture modeling solution with covariates.

of the lower performing classes are clustered substantially
closer together in the conditional model than the uncondi-
tional model. Another key difference between the models is
the Above Average class has lower NCE scores across all
four grades, but a higher proportion of the sample in the
conditional model compared to the unconditional model.

In the LCA, most of the covariates proved to be significant
predictors of class assignment. However, this was not the
case for the GMM. It should be restated that the California
English Language Development Test (CELDT) score was
not included as a covariate in the GMM due to model conver-
gence difficulties. Gender was the only significant covariate
in the GMM model, and this result was limited to the Low
and Very Low classes when using the Above Average class
as the reference class. That is, there were no gender differ-
ences when comparing the Above Average and Low Average
classes. However, boys were slightly more than twice as
likely to be in the Low and Very Low classes instead of the
Above Average class.

Results of the Combined LTA Model

After establishing the models for the LCA and GMM mod-
els, the combined LTA model was fit using the three-step
specifications from the independent LCA and GMM mod-
els. When doing this, the class percentage (i.e., class size)
remained the same for each part of the model as a result of
the three-step specification. First, a model without covariates
was fit and then the final LTA model with covariates was fit
(see Figure 1).

Table 3 presents the transition probabilities describing
the patterns of change of students from the kindergarten
readiness classes to the elementary school reading trajec-
tory classes based on the unconditional model. The results
indicate that the students in the Balanced High class in

TABLE 3
Latent Transition Analysis Transition Probabilities Based on the

Unconditional Latent Transition Analysis Model

GMM Classes

K Readiness Classes Very Low Low Low Average Above Average

Extremely Low 0.25 0.25 0.42 0.08
Low SE, Low Cog 0.16 0.24 0.51 0.09
High SE, Low Cog 0.08 0.18 0.66 0.08
Mod SE, Mod Cog 0.07 0.29 0.40 0.24
Balanced High 0.06 0.11 0.28 0.55

Note. Cog = Cognitive; GMM = growth mixture modeling; SE =
Social-emotional/behavioral.

kindergarten had a .55 probability of transitioning into the
Above Average reading trajectory class in elementary school,
the class with consistently above-average reading scores in
elementary school. Another way to interpret this is that 55%
of the students who were in the Balanced High class transi-
tioned into the Above Average reading trajectory class. The
next most likely class they transitioned into was the Low
Average reading trajectory class, which is the second high-
est reading trajectory class. It was very unlikely (e.g., low
probability) that a student in the Balanced High class would
transition into the Low or Very Low class.

Forty percent of the students in the Mod SE, Mod Cog
class transitioned into the Low Average class. The next two
likely classes these students would transition to are the Low
class (29%) and the Above Average (24%) class. Most (66%)
of the students in the High SE, Low Cog class transitioned
into the Low Average class. The next likely class for these
students to transition to would be the Low class.

Just over half (51%) of the students in the Low SE, Low
Cog class transitioned into the Low Average class. The next
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most likely classes were the Low class (24%) or the Very
Low (16%) class. It was rare (9%) that students in this class
transitioned to the Above Average class. Finally, of the stu-
dents in the Extremely Low class, 42% transitioned into
the Low Average class, and then just over half transitioned
into either the Very Low (25%) or Low (25%) class. Like
the Low SE, Low Cog class, students in the Extremely Low
class were very unlikely to transition into the Above Average
class.

Covariate Results of the Final LTA Model

Tables 4 and 5 present the covariate results for the final LTA
model. Note that the class percentages for both the LCA
and GMM models remain the same as the unconditional
three-step model, again one of the advantages of the three-
step method. The final LTA, depicted in Figure 1, included
the regression of the two latent class variables on the set
of covariates. This model included an interaction term that
allowed for the transition probabilities to be different based
on the covariates. All four covariates were allowed to influ-
ence the transition probabilities, but only the covariates of

age and prior preschool experience yielded results. Covariate
results are presented first for the regression of the latent class
variable on the covariates (Table 4) and then the interaction
terms (Table 5). The Balanced High class was the reference
class for the kindergarten readiness classes and the Above
Average was the reference class for the elementary reading
trajectory classes. A summary of the key covariate findings
follows.

The covariate results in Table 4 are consistent with
those found in the two independent analyses. The rela-
tionship of the covariates with the kindergarten readiness
classes found that there was a consistent, positive effect of
prior preschool experience and English language proficiency
(CELDT); specifically across all the latent classes, students
who went to preschool and who had higher English language
proficiency were more likely to be in the Balanced High
class. With the exception of the High SE, Low Cog class,
older students were significantly more likely to be in the
Balanced High class, as were female students.

With respect to elementary reading trajectory classes,
there was a consistent gender effect. Specifically, female stu-
dents were more likely to be in the Above Average class

TABLE 4
Covariate Table for the Final Model That Included Interaction Effects

Effect Logit SE Logit/SE p Value OR

K readiness classes
Mod SE, Mod Cog Age −0.66∗ 0.32 −2.11 0.04 0.51

CELDT −0.13∗ 0.04 −3.20 0.00 0.87
Female −1.05∗ 0.20 −5.21 0.00 0.35
Preschool −0.66∗ 0.23 −2.93 0.00 0.52

High SE, Low Cog
Age −0.47 0.34 −1.41 0.16 0.62
CELDT −0.40∗ 0.06 −7.17 0.00 0.67
Female 0.02 0.24 0.09 0.93 1.02
Preschool −1.21∗ 0.25 −4.86 0.00 0.30

Low SE, Low Cog
Age −1.04∗ 0.30 −3.47 0.00 0.35
CELDT −0.42∗ 0.05 −8.66 0.00 0.66
Female −0.52∗ 0.19 −2.66 0.01 0.60
Preschool −1.53∗ 0.22 −7.09 0.00 0.22

Extremely Low
Age −1.67∗ 0.29 −5.73 0.00 0.19
CELDT −0.39∗ 0.04 −9.43 0.00 0.67
Female −1.08∗ 0.19 −5.83 0.00 0.34
Preschool −2.71∗ 0.21 −12.92 0.00 0.07

Reading trajectory classes
Low Average CELDT −0.34∗ 0.08 −4.50 0.00 0.71

Female −0.53 0.33 −1.58 0.11 0.59

Low CELDT −0.27∗ 0.07 −3.69 0.00 0.76
Female −0.83∗ 0.34 −2.46 0.01 0.44

Very Low CELDT −0.37∗ 0.10 −3.76 0.00 0.69
Female −1.02∗ 0.33 −3.12 0.00 0.36

Note. Cog = Cognitive; OR = odds ratio; SE = Social-emotional/behavioral. CELDT = California English Language
Development Test.

∗p < .05.
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TABLE 5
Interaction Effects of Age and Preschool Experience in the Final Latent Transition Analysis Model

K Readiness Class
Reading

Trajectory Class Effect Logit SE Logit/SE p Value OR

Balanced High Very Low Preschool 0.17 1.28 0.13 0.90 1.18
Age 2.90 3.18 0.91 0.36 18.19

Low Average Preschool −0.20 1.18 −0.17 0.87 0.82
Age 0.21 1.20 0.18 0.86 1.24

Low Preschool −0.45 1.14 −0.39 0.69 0.64
Age 0.96 2.62 0.37 0.72 2.61

High SE, Low Cog Very Low Preschool −6.90∗ 3.14 −2.20 0.03 0.00
Age −7.32 4.97 −1.47 0.14 0.00

Low Average Preschool −7.87∗ 2.87 −2.74 0.01 0.00
Age −7.25 4.13 −1.76 0.08 0.00

Low Preschool −8.33∗ 2.96 −2.81 0.01 0.00
Age −9.11∗ 4.40 −2.07 0.04 0.00

Mod SE, Mod Cog Very Low Preschool −0.55 1.44 −0.38 0.70 0.58
Age −11.18∗ 4.60 −2.43 0.02 0.00

Low Average Preschool 1.27 0.77 1.65 0.10 3.55
Age 1.32 1.51 0.88 0.38 3.74

Low Preschool 1.01 0.77 1.32 0.19 2.76
Age −1.11 1.43 −0.77 0.44 0.33

Low SE, Low Cog Very Low Preschool −0.31 0.74 −0.41 0.68 0.74
Age −0.02 1.25 −0.02 0.99 0.98

Low Average Preschool −0.22 0.77 −0.29 0.77 0.80
Age 0.57 1.12 0.51 0.61 1.77

Low Preschool −0.98 0.83 −1.18 0.24 0.38
Age 0.51 1.27 0.40 0.69 1.67

Extremely Low Very Low Preschool 0.47 0.94 0.50 0.62 1.59
Age −0.67 0.91 −0.74 0.46 0.51

Low Average Preschool −0.72 1.13 −0.64 0.52 0.49
Age −2.92∗ 1.08 −2.71 0.01 0.05

Low Preschool −0.90 1.11 −0.81 0.42 0.41
Age −2.85∗ 1.11 −2.57 0.01 0.06

Note. Cog = Cognitive; OR = odds ratio; SE = Social-emotional/behavioral.
∗p < .05.

compared to the Low and Very Low classes, but were equally
likely to be in the Low Average and Above Average classes
(see Table 4). Also, there was a consistent finding that
students with higher English language proficiency were sig-
nificantly more likely to be in the Above Average class
compared to all the other classes.

Interaction results. The other two covariates, age and
prior preschool experience, were included in the model and
were allowed to have an interaction on the transition proba-
bilities. That is, we tested to see if these variables changed
the probability of a student transitioning among the kinder-
garten readiness classes and the reading trajectory classes.
Table 5 presents the results of the interaction. There were
several key findings here. For students who were in the
Extremely Low kindergarten readiness class, results indicated
that there is an interaction for age for two of the possi-
ble transitions. Specifically, older students who were in the
Extremely Low kindergarten readiness class were signifi-
cantly less likely to transition into the Low Average class
relative to the Above Average class (−2.92, p < .05). Also,

older students who were in the Extremely Low kindergarten
readiness class were significantly less likely to transition into
the Low class relative to the Above Average class (−2.85,
p < .05). In other words, older students who were in the
Extremely Low class were more likely to transition to better
reading trajectory classes that had higher NCE scores.

There were several effects of age and prior preschool
experiences for students who were in the High SE, Low Cog
kindergarten readiness class. There was a consistent interac-
tion effect for prior preschool experience for students in this
class, indicating that students who went to preschool were
significantly more likely to be in the Above Average class
relative to any of the other reading trajectory classes (see
Table 5). There was one age effect for students in the High
SE, Low Cog kindergarten readiness class. Older students in
this class were significantly less likely to end up in the Low
reading class compared to the Above Average class (−11.18,
p < .05). There was no interaction with age and the other
reading trajectory classes. There were no interactions for age
and prior preschool experience for students who were in the
Balanced High or Low SE, Low Cog classes.
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DISCUSSION

In this article we present a flexible way to use the three-step
method for a longitudinal model that involves the estimation
of two mixture models. The example we used to illustrate
this involved modeling heterogeneity in kindergarten readi-
ness and linking it to heterogeneity in middle school reading
trajectories. By providing an example of a complex LTA
model that involved different measurement models for the
latent class models as well as the syntax for these models,
this article helps to provide building blocks for other mixture
models that would benefit from using the three-step method.

The application of this model to study the relationship
between kindergarten readiness and its link to elementary
reading trajectories extended previous work examining the
relationship between Latino and Latina children’s readiness
and subsequent academic achievement. First, the five readi-
ness classes identified in this study were virtually identical
to those identified by Quirk and colleagues (2013), provid-
ing a replication of these readiness classes with an additional
cohort of Latino and Latina students. Second, the associa-
tions between readiness classes and subsequent achievement
were consistent with previous research (Quirk et al., 2011;
Quirk et al., 2013), with results providing additional evi-
dence that Latino and Latina children’s readiness levels, par-
ticularly cognitive readiness, at kindergarten entry are pre-
dictive of subsequent achievement through Grade 5. In addi-
tion, this study found that children’s reading achievement
trajectories remained fairly stable across the elementary
grades, which is consistent with previous research on read-
ing achievement trajectories across the elementary grades
(Juel, 1988; Phillips, Norris, Osmond, & Maynard, 2002).
Specifically, these findings revealed a discouraging trend
amongst the Latino and Latina children from our sample,
with the majority of students falling into a consistent pattern
of below-average reading achievement across the elementary
grades. Finally, the relationships yielded from the covariates
examined were consistent with patterns found in previous
studies, with preschool experience and age emerging as the
most influential factors differentiating children’s readiness
classes and longitudinal reading achievement. Overall, the
findings from this study suggest that Latino and Latina chil-
dren who enter school unprepared for the social-emotional
and cognitive demands of kindergarten are at extremely high
risk of remaining on below-average reading achievement tra-
jectories throughout the elementary grades, with very few
students closing achievement gaps that persist from Grades
2 through 5.

Limitations

As in any study, there are several limitations that should
be mentioned. We focus on how to specify the three-step
LTA model in Mplus, but it should be noted that these mod-
els can be specified in other mixture modeling software
such as Latent Gold (Vermunt & Magidson, 2005). In our

application, we do not include distal outcomes predicted by
the growth model and it should be noted that the manual
three-step method easily allows for one or more distal out-
comes to be included. Also, we do not allow the covariates in
the GMM model to directly influence the growth parameters,
only the latent class variable, which might in part explain
why there are shifts in the latent classes’ prevalence. In this
article, we focused on modeling ideas, and are not able to
focus fully on the potentially important contributions this
study makes to understanding kindergarten readiness and its
link to elementary reading trajectories.

Future Directions

The three-step method provides a robust modeling frame-
work that allows for a new way to estimate and specify
mixture models. By having a model with fixed measure-
ment parameters, we are more in line with our measurement
wishes—that our auxiliary variables do not influence the
measurement of the latent class variable. Using the three-
step method is advantageous, however, because it becomes
more time efficient to specify complex models that involve
multiple latent class variables, which opens the door to more
easily computed complex mixture models. For example, LTA
with three time points or a higher order model (e.g., the
Mover–Stayer model [Langeheine & van de Pol, 2002], once
the three-step specification was calculated) could be esti-
mated much more efficiently. Also, using the framework
presented in this article it becomes more straightforward
to have a latent class variable as a mediator or as another
variable that is in a larger structural equation model.
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APPENDIX A
STEP 1 FOR THE LCA MODEL

Data: File is KSEP_Mplus.dat;

Variable: Names are IDSort SMID Cohort KSEP_AGE BirthMo Gender
Presch KSEPProg Sp_Ed_K K_CELDT Ethnic KSEP_A KSEP_B
KSEP_C KSEP_D KSEP_E KSEP_F KSEP_G KSEP_H KSEP_I
KSEP_J KSEP_K KSEP_L KSEP_M KSEP_N KSEP_O KSEP_P
KSEP64 B_KSEP_A B_KSEP_B B_KSEP_C B_KSEP_D B_KSEP_E
B_KSEP_F B_KSEP_G B_KSEP_H B_KSEP_I B_KSEP_J B_KSEP_K
B_KSEP_L B_KSEP_M B_KSEP_N B_KSEP_O B_KSEP_P
KSEP16 KSEPLang ELA2_SS ELA2_PR MATH2_SS MATH2_PR
ELA3_SS ELA3_PR MATH3_SS MATH3_PR ELA4_SS ELA4_PR
MATH4_SS MATH4_PR ELA5_SS ELA5_PR MATH5_SS
MATH5_PR K_School Age_KSEP K_SpEd;

Usev = B_KSEP_A B_KSEP_B B_KSEP_C B_KSEP_D B_KSEP_E
B_KSEP_F B_KSEP_G B_KSEP_H B_KSEP_I B_KSEP_J B_KSEP_K
B_KSEP_L B_KSEP_M B_KSEP_N B_KSEP_O B_KSEP_P
Age_KSEP K_CELDT Gender Presch;
categorical = B_KSEP_A B_KSEP_B B_KSEP_C B_KSEP_D
B_KSEP_E B_KSEP_F B_KSEP_G B_KSEP_H B_KSEP_I
B_KSEP_J B_KSEP_K B_KSEP_LB_KSEP_M B_KSEP_N
B_KSEP_O B_KSEP_P;

idvariable=smid;
auxiliary= Age_KSEP K_CELDT Gender Presch;

Missing are all (999);
classes = c(5);

Analysis: type=mixture;

Output: tech11 tech14 sampstat;

savedata:
file is 5clca.dat;
save=cprob;
missflag=9999;

APPENDIX B
CALCULATING VALUES FOR THE LOGIT

VALUES USED IN THE THIRD STEP

Using the two following tables taken from the Step 1 file for the LCA
run (the Appendix B output file) from Mplus. We calculate the probabili-
ties using the following equations, described on page 4 of Asparouhov and
Muthén (2013).

Average Latent Class Probabilities for Most Likely Latent Class
Membership (Row) by Latent Class (Column)

1 2 3 4 5

1 0.842 0.001 0.039 0.064 0.054
2 0.001 0.934 0.061 0.005 0.001
3 0.029 0.068 0.822 0.081 0.001
4 0.051 0.006 0.106 0.817 0.020
5 0.067 0.001 0.001 0.020 0.913

Note. Values that were zero were converted to 0.0001 for the sake of
calculation.
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Classification of Individuals Based on Their Most
Likely Latent Class Membership

Latent Classes

1 280 0.12891
2 734 0.33794
3 520 0.23941
4 367 0.16897
5 271 0.12477

qc1=1,c2=1

= 0.842 (280)

0.842 (280) + .0001 (734) + 0.029 (520) + 0.051 (367) + .067 (271)

= 0.819216

qc1=2,c2=1

= 0.001 (737)

0.842 (280) + .0001 (734) + 0.029 (520) + 0.051 (367) + .067 (271)

= 0.000255

Doing this calculation for all cells in the table, we get the following values
for qc1,c2

qc1,c2 1 2 3 4 5

1 0.819216 0.000002 0.020918 0.048568 0.055998
2 0.000255 0.948051892 0.085768 0.009947 0.000272
3 0.052400 0.048899163 0.818790 0.114156 0.000193
4 0.065038 0.003045135 0.074519 0.81264 0.027184
5 0.063092 0.000002 0.000005 0.01469 0.916353

To calculate the logits for each class which are used in the input file

of the third step, we calculate the following, log
(

qc1,c2
qK,c2

)
. Thus, using the

values from above, we obtain

logitqc1=1,c2=1 = log

(
0.819216

0.063092

)
= 2.563758177

logitqc1=2,c2=1
= log

(
0.000255

0.063092

)
= −5.510887505

Doing these calculations for all possible combinations results in the fol-
lowing set of logit values that are used in the third step (see Appendix C).
Note that there are four rows of c1 because the last class is the reference
class.

1 2 3 4 5

1 2.563758 0.032670782 8.301403 1.195822 −2.79508
2 −5.51089 13.13418401 9.712434 −0.3899 −8.12293
3 −0.18569 10.16953506 11.96862 2.050427 −8.46761
4 0.030376 7.393319863 9.571852 4.01315 −3.51776

Note that in Mplus 7.1, these values are provided to you in the out-
put of the Step 1 run in a table labeled “Logits for the Classification
Probabilities for the Most Likely Latent Class Membership (Row) by Latent
Class (Column).”

APPENDIX C
STEP 3 FOR LCA MODEL

Data: file is merged.dat;
Variable:

Names = nce2 nce3 nce4 nce5 smid i s ci cs cprob1g cprob2g cprob3g
cprob4g cg ksepa ksepb ksepc ksepd ksepe ksepf ksepg kseph ksepi
ksepj
ksepk ksepl ksepm ksepn ksepo ksepp age kcdldt gender presc cprob1l
cprob2l cprob3l cprob4l cprob5l cl;

missing are all (9999);
nominal=cl;
usevar= cl;
classes=c1(5);

analysis: type=mixture;
starts=0;

Model:
%c1#1%

[cl#1@2.563758177];
[cl#2@-5.510887505];
[cl#3@-0.185686799];
[cl#4@0.030376041];

%c1#2%
[cl#1@0.032670782];
[cl#2@13.13418401];
[cl#3@10.16953506];
[cl#4@7.393319863];

%c1#3%
[cl#1@8.301402614];
[cl#2@9.712434258];
[cl#3@11.96862057];
[cl#4@9.571852307];

%c1#4%
[cl#1@1.195821592];
[cl#2@-0.389904153];
[cl#3@2.050426872];
[cl#4@4.013149848];

%c1#5%
[cl#1@-2.795081052];
[cl#2@-8.122930766];
[cl#3@-8.467610983];
[cl#4@-3.51776058];
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APPENDIX D
STEP 1 FOR GMM

Data: File is KSEP_Mplus_NCE.dat;
Variable:

Names are IDSort SMID Cohort KSEP_AGE BirthMo Gender
Presch KSEPProg Sp_Ed_K K_CELDT Ethnic KSEP_A
KSEP_B KSEP_C KSEP_D KSEP_E KSEP_F KSEP_G
KSEP_H KSEP_I KSEP_J KSEP_K KSEP_L KSEP_M
KSEP_N KSEP_O KSEP_P KSEP64B_KSEP_A B_KSEP_B
B_KSEP_CB_KSEP_D B_KSEP_E B_KSEP_F B_KSEP_G
B_KSEP_H B_KSEP_I B_KSEP_J B_KSEP_K B_KSEP_L B_KSEP_M
B_KSEP_N B_KSEP_O B_KSEP_P KSEP16 KSEPLang ELA2_SS
ELA2_PR MATH2_SS MATH2_PR ELA3_SS ELA3_PR MATH3_SS
MATH3_PR ELA4_SS ELA4_PR MATH4_SS MATH4_PR ELA5_SS
ELA6_PR MATH6_SS MATH6_PR K_School Age_KSEP K_SpEd
MATH5_SS E_NCE2 E_NCE3 E_NCE4 E_NCE5;

Usev = E_NCE2 E_NCE3 E_NCE4 E_NCE5;
Missing are all (999);
Classes = c(4);

Analysis: type=mixture;
starts = 500 100;
process=8;

Model:
%overall%
i s | E_NCE2@0 E_NCE3∗ E_NCE4∗ E_NCE5@1;

%c#1% i
i;

Plot: type=plot3;
series = E_NCE2 E_NCE3 E_NCE4 E_NCE5(∗);

Output: tech1 tech11 tech14 sampstat;

APPENDIX E
STEP 3 FOR GMM

data: file is merged.dat;

Variable:
Names = nce2 nce3 nce4 nce5 smid i s ci cs cprob1g cprob2g cprob3g
cprob4g cg ksepa ksepb ksepc ksepd ksepe ksepf ksepg kseph ksepi
ksepj ksepk ksepl ksepm ksepn ksepo ksepp age kcdldt gender presc
cprob1l cprob2l cprob3l cprob4l cprob5l cl;

missing are all (9999);
nominal=cg;
usevar= cg;
classes=c2(4);

Analysis: type=mixture;
starts=0;

Model:

%c2#1%
[cg#1@11.21770963];
[cg#2@9.893657578];
[cg#3@9.228930143];

%c2#2%
[cg#1@0.282194847];
[cg#2@2.476637782];
[cg#3@0.229667677];

%c2#3%
[cg#1@0.240097661];
[cg#2@1.394279801];
[cg#3@2.384519776];

%c2#4%
[cg#1@-5.728501062];
[cg#2@-0.604537082];
[cg#3@-1.790119257];

APPENDIX F
STEP 3 FOR COMBINED LTA MODEL

data: file is mergedfinal.dat;

variable:
names = KSEP_A KSEP_B KSEP_C KSEP_D KSEP_E KSEP_F
KSEP_G KSEP_H KSEP_I KSEP_J KSEP_K KSEP_L KSEP_M
KSEP_N KSEP_O KSEP_P SMID AGE CELDT GENDER PRESCH
CPROB1 CPROB2 CPROB3 CPROB4 CPROB5 Cl E_NCE2 E_
NCE3 E_NCE4 E_NCE5 CG;

missing are all (9999);
nominal=cl cg;
usevar= age celdt gender presch cl cg;
classes=c1(5) c2(4);

Analysis:
type=mixture;
starts=0;

Model:
%overall%
c2 on c1;

Model c1:
%c1#1%

[cl#1@2.565];
[cl#2@-11.051];
[cl#3@-11.051];
[cl#4@0.034];

%c1#2%
[cl#1@0.000];
[cl#2@13.762];
[cl#3@10.795];
[cl#4@8.020];

%c1#3%
[cl#1@ 6.236];
[cl#2@7.639];
[cl#3@9.898];
[cl#4@7.503];

%c1#4%
[cl#1@1.209];
[cl#2@-0.427];
[cl#3@ 2.063];
[cl#4@4.026];

%c1#5%
[cl#1@-2.787];
[cl#2@-13.729];
[cl#3@-10.441];
[cl#4@-3.542];
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Model c2:
%c2#1%
[cg#1@6.612539444];
[cg#2@5.288487392];
[cg#3@4.623759957];

%c2#2%
[cg#1@0.282194847];
[cg#2@2.476637782];
[cg#3@0.229667677];

%c2#3%
[cg#1@0.240097661];
[cg#2@1.394279801];
[cg#3@2.384519776];

%c2#4%
[cg#1@-5.728501062];
[cg#2@-0.604537082];
[cg#3@-1.790119257];

APPENDIX G
STEP 3 FOR COMBINED LTA MODEL WITH

COVARIATES AND COVARIATE
INTERACTIONS

data: file is mergedfinal.dat;
variable:
names = KSEP_A KSEP_B KSEP_C KSEP_D KSEP_E KSEP_F
KSEP_G KSEP_H KSEP_I KSEP_J KSEP_K KSEP_L KSEP_M
KSEP_N KSEP_O KSEP_P SMID AGE CELDT GENDER PRESCH
CPROB1 CPROB2 CPROB3 CPROB4 CPROB5 Cl E_NCE2
E_NCE3 E_NCE4 E_NCE5 CG;

missing are all (9999);
nominal=cl cg; !CL = latent class ; CG = growth mixture model
usevar= age celdt gender presch cl cg;
classes=c1(5) c2(4);

Analysis:
type=mixture;
starts=0;

Model:
%overall%
c2 on c1;
c1 on age celdt gender presch;
c2 on celdt gender;

Model c1:
%c1#1%
[cl#1@2.565];

[cl#2@-11.051];
[cl#3@-11.051];
[cl#4@0.034];

C2 on presch age;
%c1#2%
[cl#1@0.000];
[cl#2@13.762];
[cl#3@10.795];
[cl#4@8.020];
c2 on presch age;

%c1#3%
[cl#1@ 6.236];
[cl#2@7.639];
[cl#3@9.898];
[cl#4@7.503];
c2 on presch age;

%c1#4%
[cl#1@1.209];
[cl#2@-0.427];
[cl#3@ 2.063];
[cl#4@4.026];

c2 on presch age;
%c1#5%
[cl#1@-2.787];
[cl#2@-13.729];
[cl#3@-10.441];
[cl#4@-3.542];

c2 on presch age;
Model c2:

%c2#1%
[cg#1@6.612539444];
[cg#2@5.288487392];
[cg#3@4.623759957];

%c2#2%
[cg#1@0.282194847];
[cg#2@2.476637782];
[cg#3@0.229667677];

%c2#3%
[cg#1@0.240097661];
[cg#2@1.394279801];
[cg#3@2.384519776];

%c2#4%
[cg#1@-5.728501062];
[cg#2@-0.604537082];
[cg#3@-1.790119257];
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