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Abstract

Essays in Environmental and Health Economics

by

Catherine Callahan Wright

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Meredith Fowlie, Chair

This dissertation contains three empirical studies that explore the health impacts of two
dimensions of environmental quality, outdoor air pollution and extreme ambient temper-
ature. All three studies rely on high-resolution, publicly available data on air pollution
concentrations and weather, as well as restricted-access administrative data on individual-
level mortality outcomes and hospital utilization. Chapters 1 and 3 explore the potential
for health insurance to mitigate health damages from air pollution and temperature, respec-
tively, while Chapter 2 incorporates recent advances in air particle dispersion modeling to
assess whether health benefits projected under policies to reduce power plant emissions ac-
tually manifest in practice. The first two chapters generate causal estimates of the effects of
poor air quality on health outcomes, while the third primarily provides suggestive evidence
that public health insurance may play a role in driving heterogeneity in the relationship
between extreme temperature and health.

In the first chapter, I investigate the potential for health insurance to mitigate adverse
health impacts of air pollution in the United States – a country that lacks universal health
care and continues to bear a large health burden from air pollution every year. To explore
this issue, I focus on California as a case study, relying on exogenous variation in pollution
exposure derived from wildfire smoke and a policy-induced increase in public health insurance
coverage that varied in its regional intensity. Estimates for the state as a whole imply a 3%
reduction in the health burden of air pollution for each one percentage point increase in
the publicly insured rate. Back-of-the-envelope calculations based on these estimates imply
a lower bound of $250 million per year in newly-measured benefits from California’s ten
percentage point Medicaid expansion under the Affordable Care Act. These results suggest
that extending health insurance may be one way to address the increasing threat of wildfire
smoke exposure in the western U.S., and potentially air pollution more broadly.

The second chapter, co-authored with Meredith Fowlie and Edward Rubin, focuses on
the role of co-benefits in benefit-cost analyses of air pollution reduction policies. An envi-
ronmental regulation generates pollution ‘co-benefits’ when it indirectly induces reductions
in pollutants that are not the target of the authorizing legislation. In recent EPA rulemak-
ings, quantified pollution co-benefits have exceeded directly targeted benefits. This increased
prominence has invited increased scrutiny. We aim to advance the theory and inform the
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practice of air pollution co-benefits accounting, focusing in particular on the health impacts
of reduced exposure to small particulate matter (PM2.5). We integrate a model of air particle
dispersion into an empirical analysis of how reductions in power plant emissions impact local
air quality downwind. We highlight the potential role of interactions with existing policies,
documenting suggestive evidence that changes in power plant emissions have had differential
impacts across areas that are more or less constrained by pre-existing air quality regulations.
Future work will incorporate more precise modeling of pollution trajectories to explore these
complex relationships, and associated health outcomes in greater detail.

In the third and final chapter, I return to the role of health insurance as a potential
mediator of environmental health damages, in this case focusing on extreme temperature
rather than air pollution. While the relationship between ambient temperature and human
health has been studied at length by researchers across disciplines, this study is one of the first
to consider the impacts of temperature on morbidity, rather than mortality, in a standard
econometric framework. Relying on administrative hospital data from the state of Texas, I
find that both extreme cold and extreme hot temperatures are associated with higher health
care utilization, relative to a mild day. I also find that public health insurance may drive
heterogeneity in the temperature-health relationship. Specifically, I estimate that health
care utilization for temperature-related illness is relatively lower among adults insured by
Medicaid, whereas the opposite holds for children. One potential explanation for this pattern
is that the positive health benefits of public insurance strengthen over time, and that the
lower relative benefit for children simply reflects their fewer number of potential years in
the program. While these Medicaid-related estimates are suggestive rather than causal, this
study provides novel evidence that income (which is correlated with Medicaid enrollment)
may drive important heterogeneity in the relationship between climate and human health.
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Chapter 1

Does Health Insurance Reduce the
Health Burden of Air Pollution?
Evidence from California Wildfires

1.1 Introduction
Air pollution continues to pose a serious public health threat in many industrialized regions
around the world, including in wealthy countries like the United States and Japan where
current pollution levels are relatively low. The U.S. suffers nearly 100,000 premature deaths
annually from exposure to particulate matter and ozone, and there is expected to be little
improvement in this statistic over the next 30 years (OECD 2016). In the U.S., it is important
that pollution-health impact estimates accurately reflect the true health burden of pollution
exposure since these estimates are often the basis of national environmental policy, which in
turn has important implications around the globe, including with respect to climate change.1
More generally, efficient environmental policy requires accurate estimation of the magnitude
of the externality, which may be mitigated (or exacerbated) by existing institutions and/or
policies.

This paper assesses the interaction between air pollution externalities and U.S. health
care policy. In places that lack a universal health care system, the propensity to invest
in pharmaceuticals and other preventive or emergency care that could modify the costs of
pollution exposure is governed in large part by access to health insurance. To study the influ-
ence of health insurance on the pollution-health relationship, this paper focuses on the case
of California, a western state which has experienced an increasing wildfire (and associated
smoke) burden in recent years and which simultaneously saw an over 40% expansion of its
Medicaid insurance program beginning in 2014 under the Affordable Care Act. Leveraging
spatial variation in exposure to the health insurance expansion and novel data on wildfire
smoke plume trajectories, I find that enhanced access to public health insurance substantially
mitigates the health burden of air pollution from wildfires. Relying on instrumented vari-
ation in local policy exposure, I estimate a local average treatment effect of approximately

1EPA frequently relies on research estimating the health impacts of pollution as the basis for benefit-cost
analyses of new or modified environmental standards (e.g., U.S. EPA, 2012; U.S. EPA, 2011).
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3% fewer emergency room visits and deaths related to smoky air for every one percent-
age point increase in Medicaid coverage. While the largest estimated impacts manifest in
asthma-related ER visits and heart attack-related mortality, estimates of the relative effects
of insurance and smoke are remarkably stable across the diagnoses and outcomes considered.
I also find suggestive evidence that the Medicaid expansion has reduced the health burden
from air pollution relatively more for Black and Hispanic residents than other demographic
groups. Overall, assuming linearity, the estimates I obtain imply that for the approximately
ten percentage point Medicaid expansion that California actually experienced as a result
of the ACA, monetized health benefits related to wildfire smoke exposure are on the order
hundreds of millions of dollars per year, at a minimum.2 To my knowledge, this particular
insurance benefit was not used to justify California’s Medicaid expansion, and this is the
first time that it has been measured empirically.

The findings of this paper contribute to a large empirical literature in environmental
economics and related fields that measures the effects of air pollution exposure on mortality
and other observable health outcomes, including emergency room (ER) utilization.3 The
earliest work in this area was primarily based on cross-sectional and longitudinal research
designs, and damage estimates from this early work continue to inform some of EPA’s long-
standing environmental regulations. More recent work in this area has relied on sophisticated
quasi-experimental methods to carefully identify the causal impacts of acute fluctuations in
pollution exposure. For example, Schlenker and Walker 2016 exploit short-term variation
in carbon monoxide (CO) exposure driven by congestion across U.S. airports to estimate
that a one standard deviation increase in local CO levels is associated with an additional
$540,000 in hospitalization costs for nearby residents. Of note, Schlenker and Walker measure
adverse health effects at exposure levels below EPA’s mandated maximum for the pollutant,
suggesting possible room for re-calibration of current standards. In a related study of acute
pollution fluctuations, Deryugina et al. 2019 estimate that moderate increases in local PM2.5
concentrations driven by wind fluctuations are associated with non-trivial increases in elderly
mortality. Miller, Molitor, and Zou 2017 estimate health impacts of a similar magnitude also
among the U.S. elderly population, instead exploiting variation in PM2.5 exposure driven by
wildfire smoke, the same source of air quality variation that this paper leverages.

Beyond first-order health and health care impacts, pharmaceutical purchases by individ-
uals are another way to value the (indirect) health costs of pollution, as demonstrated most
clearly by Deschenes, Greenstone, and Shapiro 2017. Related work in the medical literature
indicates that defensive actions – such as regular use of preventive pharmaceuticals – can
yield significant health benefits, particularly for pollution-sensitive subpopulations. For ex-
ample, several medical studies estimate an over 50% decrease in the relative risk of acute
asthma exacerbations requiring emergency treatment among chronically asthmatic patients
who are under long-term treatment with inhaled corticosteroids (see, for example, Donahue
et al. 1997, Sin et al. 2004, and Merchant et al. 2018). In their seminal paper, economists

2The assumption that insurance benefits scale linearly is fairly strong. I discuss several caveats in Section
1.6.5.

3Researchers have studied the health effects of a variety of pollutants over the years, including ozone,
carbon monoxide, and particulate matter of various sizes. Recent attention has often focused on fine partic-
ulate matter or “PM2.5,” generally considered to be the most harmful pollutant contained in wildfire smoke
and thus the most relevant to this paper.
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Deschenes et al. (2017) estimate that reductions in drug purchases during periods in which
the NOx Budget Program reduced ambient ozone levels by limiting industrial NOx emissions
were equivalent to over 60% of the monetized mortality benefits over the same period, or
$800 billion dollars. Although Deschenes et al. acknowledge that “sticker” prices and co-
pays for the pharmaceuticals they study often diverge significantly based upon on whether
a patient is insured, the authors do not address at length the potential influence of health
insurance coverage on the health outcomes they measure.

On the health insurance side, the conceptual starting point for this paper is that in the
absence of a universal health care system, defensive (and emergent) health care utilization
– both of which may influence the health impacts that researchers measure in response to
pollution shocks – are price sensitive. Previous work on the economics of health insurance
makes clear that prices strongly influence the type and amount of health care demanded
by patients, in both randomized and observational evaluations. The RAND and Oregon
Medicaid experiments found that lower out-of-pocket prices are associated with significant
increases in the likelihood of taking prescription drugs, seeking outpatient care, and com-
plying with recommended screenings (see, for example, Aron-Dine, Einav, and Finkelstein
2012 and Finkelstein et al. 2012). Quasi-experimental studies leveraging discontinuities in
insurance eligibility for both public and private health plans have reached similar conclusions
(e.g., Anderson, Dobkin, and Gross 2012, Card, Dobkin, and Maestas 2008, and Miller 2012).
In each of these studies, the increased demand for health care documented by researchers
primarily occurs in low-value care, a manifestation of the classic problem of insurance-related
moral hazard and a phenomenon which policymakers have cited as a potential cost of ex-
panding public health insurance.

The implications of insurance coverage for health care demand are slightly more nuanced
in this paper’s setting, in which air quality shocks derived from wildfire smoke exposure are
both unexpected and temporal in nature. Conceptually, in the short-term, expanding health
insurance involves countervailing effects on the demand for emergency care in response to
poor air quality. A price effect predicts an increase in ER demand for a decrease in its price,
while a “prevention effect” should act in the opposite direction and reduce ER visits, as
newly insured individuals are more likely to consume preventive care, relative to previous
levels and relative to the remaining uninsured population.4,5 Over the longer run, health
insurance may help enrollees adapt to the shock of smoke, further reducing ER visits without
a corresponding increase in preventive care consumption, as insured individuals learn from
previous smoke events and consume preventive care in earlier periods. Due to a narrow
focus on the years surrounding California’s 2014 Medicaid expansion as well as a lack of
pharmaceutical data, the primary insights of this paper regard the short-run dynamics of
insurance coverage for net ER visits and mortality. Of note, only the prevention effect is
relevant for mortality outcomes, implying a weakly negative effect of health insurance on
short-run mortality for pollution-related conditions when levels of pollution are high.

4Although preventive care (e.g., pharmaceuticals) in general represents low-value care, there are likely
access/extensive margin constraints and/or liquidity constraints that make uninsured individuals less likely
to consume such care to protect against poor air quality, even if it is relatively inexpensive.

5While health insurance almost certainly improves health outcomes for a wide variety of conditions, all
else equal, the central idea of this paper is that insurance would disproportionately affect air quality-related
health during periods when air quality is poor.



4

Building upon existing evidence that preventive care might play a substantal underlying
role in the empirical estimation of pollution health impacts, as well as research showing that
prices are strongly predictive of health care utilization, this paper is the first to consider
health insurance as a mediator of short-run health damages from air pollution. The most
closely related papers have studied potential health care-related mediators of another en-
vironmental shock, extreme temperature, but have generated mixed results (e.g., Barreca
et al. 2016 estimate no impact of physician availability on heat-related health damages, while
Mullins and White 2020 find that improvements in health care access following de-segregation
of the American south mitigated some temperature-related illness, but only those related to
extreme cold). Estimating the effect of health insurance on the pollution-health relationship
will generate new knowledge about whether health insurance can be used to address the high
health burden from air pollution that the U.S. continues to face. The results of this analysis
may also inform the design of efficient environmental policy by improving the accuracy of
impact estimates that underlie the calibration of regulatory thresholds.

The rest of the paper is organized as follows. Section 1.2 provides background information
on the two key pieces of this analysis: wildfire trends in the western U.S. and the connection
between smoke and PM2.5, and the state of health insurance in California prior to and as a
result of the ACA reform. Section 1.3 summarizes a simple model of demand for health care
that elucidates why the expected short-run effect of health insurance on pollution-related
ER visits is ambiguous. Sections 1.4 and 1.5 summarize the data and empirical strategy,
while Section 1.6 reports results and provides discussion, including a counterfactual analysis
based on empirical estimates. Section 1.7 concludes.

1.2 Background

1.2.1 Wildfire Smoke and Particulate Pollution
Wildfires are increasing in frequency and severity at a significant rate in the western United
States. Since 1970, California has experienced an over 500% increase in annual area burned
by wildfires, with particularly devastating wildfire seasons in 2017 and 2018 (Williams et
al. 2019). In addition to the direct, immediate effects of wildfires in terms of loss of life
and damage to wildlife and property, wildfire events can have severe indirect effects on
human health through their creation of vast plumes of smoke. Further contributing to
their perniciousness, wildfire smoke plumes can travel across large distances over relatively
short time frames as dictated by unpredictable weather conditions, potentially resulting in
exposure of wide swaths of the population living in areas far from the initial point of ignition.

While wildfire smoke contains many harmful chemicals, scientists generally agree that
it is primarily the fine particulate matter or PM2.5 which makes wildfire smoke so harm-
ful to humans (Cascio 2019).6 A recent study on the evolving burden of wildfire-derived
air pollution in the U.S. confirms the strong empirical association between wildfire smoke
and particulate pollution. Burke et al. 2020 link ground-level PM2.5 concentration data to

6Human exposure to PM2.5 can exacerbate underlying respiratory conditions such as asthma and chronic
obstructive pulmonary disease (COPD), as well as trigger serious cardiovascular health events like stroke
and heart attack.
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satellite-based smoke plume locations and estimate that wildfires have accounted for between
25-50% of ambient PM2.5 levels in recent years. Estimates of the statistical relationship be-
tween wildfire smoke exposure and PM2.5 levels based on the California data used in this
paper are reported in Table 1.1. In this table, Smoke is a binary variable that represents
smoke coverage across ZIP-weeks or county-months of at least one standard deviation of the
smoke coverage distributions for each of these aggregations. In each case, the one standard
deviation threshold corresponds to full spatial coverage of the ZIP code or county by one or
more smoke plumes on approximately one day during a week or four days during a month,
respectively. The estimates in the table show a strongly positive correlation between smoke
coverage and contemporaneous local PM2.5 concentrations.

Table 1.1: Smoke Exposure and Ambient PM2.5 in California (2012-2017)

ZIP-Week County-Month
Mean PM2.5 Maximum PM2.5 Mean PM2.5 Maximum PM2.5

(1) (2) (3) (4)
Smoke (≥ 1 SD) 2.6∗∗∗ 5.2∗∗∗ 2.2∗∗∗ 13.9∗∗∗

(0.2) (0.4) (0.2) (2.3)

Min. Temperature (◦F) −0.02 −0.1∗∗ −0.01 −0.03
(0.02) (0.02) (0.04) (0.1)

Max. Temperature (◦F) 0.1∗∗∗ 0.2∗∗∗ 0.04∗∗∗ 0.2∗∗∗
(0.01) (0.02) (0.01) (0.1)

Precipitation (mm) −0.03∗∗∗ −0.03∗∗∗ −0.4∗∗∗ −0.6∗∗∗
(0.004) (0.01) (0.1) (0.1)

Observations 44,926 44,926 3,710 3,710
Adjusted R2 0.415 0.333 0.531 0.302

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variables are the mean and maximum PM2.5 con-
centrations in µg/m3 based on official EPA monitors within a given ZIP-week or county-month. Not
all ZIPs and counties in California have monitors. Smoke is a binary variable indicating smoke cover-
age of at least one standard deviation of the ZIP-week or county-month distributions, equal to 17.2% or
15.4% coverage, respectively. For conistency with the main specifications, all models include fixed effects
for ZIP-week-of-year or county-month-of-year, and year. Standard errors are clustered by either ZIP or
county.

The main source of air quality variation relied upon in this paper’s empirical analysis
is a measure of local smoke exposure. While a direct PM2.5 elasticity would be easier
to interpret and more externally valid than a reduced form smoke effect, estimates from
the main empirical model of health outcomes are imprecise when instrumenting for PM2.5
levels with smoke coverage. I therefore rely on smoke exposure itself as a proxy for local
air pollution, noting that the estimates from Table 1.1 suggest that my preferred smoke
threshold of one standard deviation or greater generally corresponds to an increase in local
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PM2.5 concentrations of approximately 2.5 µg/m3.7 Moreover, due to the unpredictable
trajectories of plumes through space and time, exposure to smoke from wildfires appears to
be as good as random, ensuring that estimates of the effect of smoke on health outcomes are
unbiased. Further, wildfires and associated smoke exposure are increasingly policy-relevant
and of growing concern to the public given wildfire trends in California and surrounding
regions in recent years.

1.2.2 ACA in California
The Affordable Care Act was signed into federal law in 2010 before being fully enacted
in 2014. The main components of the law were state-level Medicaid expansions to cover
all adults with incomes below 138% of the federal poverty line, the creation of state-run
private insurance marketplaces, expanded coverage for people under age 26 and those with
pre-existing conditions, and the individual mandate. Taken together, these policy changes
resulted in more than 20 million Americans gaining health insurance coverage over the first
five years of the ACA, reducing the national uninsured rate from 15% to 10%. For data-
related reasons, the focus of this paper is on California. Fortunately, the state is large,
diverse, prone to smoke exposure from wildfires, and was significantly benefitted by the ACA.
As a result of the health reform, California’s overall uninsured rate fell by approximately 10
percentage points, from 17% in 2013 to 7% by 2016, the vast majority of which has been
attributed to the increase in Medicaid enrollment of 6 million low-income Californians (KFF,
2020).8

Although the ACA substantially increased the insured rate among low income adults
across California, the potential effect of the reform was largest in jurisdictions that were
relatively less insured before the reform was enacted, an insight credited to Miller 2012 in
her analysis of Massachusetts’ 2006 health reform. This spatial variation in potential policy
exposure is the main source of variation that I exploit in this paper to identify the causal
effect of insurance coverage on health outcomes that respond to air pollution. Specifically,
I augment a standard difference-in-differences (DID) research design by instrumenting for
the continuous treatment variable of interest (the area-level Medicaid coverage rate) using
plausibly exogenous pre-period variation in exposure to the policy. Figure 1.1 illustrates this
variation in pre-reform insurance coverage at the ZIP code-level in California. For ZIPs with
at least 10,000 residents, the 2013 adult uninsured rate ranged from 3% in 94507 (Alamo,
Contra Costa County) to 64% in 90057 (MacArthur Park, Los Angeles County). At the
county-level, this rate ranged from 13.2% in Marin to 37.7% in Alpine, a small county near
Lake Tahoe.9 Areas that were highly insured prior to the reform serve as natural controls and
help to estimate the common time trend, while the remaining areas were treated by the policy
to varying degrees based on the spatial differences depicted in Figure 1.1. Identification of the
causal impacts of the reform could be threatened by differential trends in potential insurance
coverage correlated with the timing of the Medicaid expansion, but I am not aware of any

7To put this number in context, the annual average and daily maximum thresholds that EPA enforces
for PM2.5 are set at 12.0 and 35.0 µg/m3, respectively.

8For comparison, total enrollment in Covered California, the state’s private insurance exchange created
under the ACA, has held steady since 2014 at between 1.2-1.4 million individuals (PPIC, 2018).

9A map that corresponds to Figure 1.1 at the county-level is Appendix Figure A.3.
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Figure 1.1: Adult Uninsured Rates, by ZIP Code (2013)

Notes: Figure shows the ZIP-level rate of uninsured adults in 2013. Data come from the American
Community Survey 5-Year estimates. Blank areas of the map represents unincorporated areas that
are not assigned a ZIP Code Tabulation Area (ZCTA), which is the spatial unit of analysis that
corresponds to ZIP-based postal codes.

such trends. Still, to guard against the possibility of confounding, I control for observable
socioeconomic indicators at the jurisdiction-level in each of the empirical specifications that
follow.

As with any instrumental variables (IV) design, it is important to characterize the com-
plier population, i.e. the individuals who are induced into treatment by the chosen instru-
ment. In California, the great majority of new Medicaid enrollees post-ACA were low income
adults between the ages of 18 and 65 and without dependent children.10 One concern with
a policy exposure instrument is that relevant demographics within this newly eligible group
might vary systematically across high- versus low-exposure areas in ways that are correlated
with outcomes, thus threatening the causal interpretation of empirical estimates.11 More-

10This was the case for several reasons. Higher-income individuals and their dependents were generally
covered by employer-based plans, which saw no change from the ACA, while low-income children and their
guardians were often already eligible for existing public programs (e.g., Children’s Health Insurance Pro-
gram). Adults above the age of 65 are almost universally eligible for Medicare, the U.S.’s other major public
insurance program.

11A related issue concerns the spatial overlap between areas highly exposed to the health care reform
and the jurisdictions that are most affected by smoke from wildfires over the sample period. For example,
causality (and external validity) could be threatened if the only areas that are exposed to smoke are those that
are highly uninsured. To assess this, I compute the simple correlation between the fraction of smoke coverage
and the pre-period adult uninsured rate in a given ZIP code or county. At the ZIP-level, the correlation
ranges from 0.04% in the Inland Empire to 10% in the southern Central Valley. At the county-level, the
range is from -6% in San Diego to 16% in the San Francisco Bay Area. These correlations appear low
enough to rule out serious concerns about lack of overlap in the two primary treatment variables. In future
work, however, it could be interesting to explore how pre-existing health care disparities might exacerbate
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over, given that not all eligible individuals enroll in the programs for which they qualify,
estimates will be further biased if the likelihood of program take up is correlated with treat-
ment intensity. These concerns are especially important to address in this setting since I
estimate potentially important race-based treatment effect heterogeneity for certain health
outcomes.

I provide two pieces of evidence that speak to these concerns. First, Table 1.2 reports key
ZIP-level demographics in the first year of the ACA across deciles of the pre-period adult
uninsured rate (a proxy for treatment intensity). Unsurprisingly, as ZIPs move from less
uninsured to more uninsured, per capita income falls. Simultaneously, while the fraction
of Black residents remains relatively stable across uninsured deciles, the rate of Hispanic
residents increases dramatically from about 10% to 50% when moving from the most in-
sured to least insured decile. However, in the least insured areas, the proportion of white
residents is still relatively high at about one third of total population. This breakdown pro-
vides some reassurance that, although Californias’s Medicaid expansion disproportionately
affected lower-income areas which tend to be less white and more Hispanic, a substantial
number of the former do comprise a sizable fraction of total residents in the highest-exposure
jurisdictions.

Table 1.2: ZIP Code Demographics, by Decile of Adult Uninsured Rate (2014)

Uninsured Uninsured Mean Income Mean White Black Hispanic Other Race
Decile Range (%) Per Capita ($) Population (%) (%) (%) (%)

1 0-7 49, 093 6, 714 70.0 3.4 11.6 15.0
2 7-11 50, 293 20, 005 66.3 2.7 12.5 18.5
3 12-15 43, 025 23, 435 61.8 3.6 17.2 17.4
4 15-18 37, 633 24, 168 61.5 3.6 18.8 16.1
5 18-22 31, 904 22, 595 58.9 4.2 23.2 13.6
6 22-25 28, 434 23, 465 57.0 4.0 27.5 11.6
7 25-29 25, 404 23, 153 49.2 4.4 34.4 12.0
8 29-34 22, 741 24, 948 42.3 6.1 39.3 12.3
9 34-41 19, 809 23, 405 35.0 4.3 50.8 9.9
10 41-100 17, 137 21, 429 32.4 4.4 56.1 7.1

Notes: Table reports unweighted statistics as of 2014, the first year of the ACA implementation, by decile of the adult
uninsured rate in 2013. Unit of observation is the ZIP code. Other Race includes non-Hispanic individuals of any race
not already represented in the table, or a combination of two or more races.

The second piece of circumstantial evidence on the characteristics of the complier group
comes from the California Health Interview Survey in 2015, which describes differences be-
tween new enrollees and non-enrollees among the group of Californians that became newly
eligible for Medicaid in 2014. The survey found that over 85% of newly Medicaid-eligible
residents enrolled in the program in the first year, which is significantly higher than esti-
mates of pre-ACA take up of between 50-60% (Wang and Trivedi 2017). Compared to newly
eligible individuals that did not enroll, new enrollees were more likely to be female and over
35 years or older, and less likely to be employed. Although no significant differences were
reported for rates of chronic asthma, new enrollees tended to have slightly poorer health,

environmental justice issues more broadly.
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with elevated rates of obesity and heart disease (both of which could affect propensity to
be harmed by exposure to air pollution). New enrollees also tended to have higher incomes
(although all incomes in the sample fell below the new eligibility threshold of 138% of the
federal poverty line). Most importantly for the heterogeneity analysis that follows, racial
composition was not statistically different between enrollees and non-enrollees. This sug-
gests that within the newly eligible population, racial differences did not drive differences in
enrollment. Taken together, these statistics provide further reassurance that the differences
I estimate across race stem from true underlying differences rather than statisical properties
of my instrumented model (e.g., poor representation of certain demographic groups across
all exposure levels, etc.).

1.3 Conceptual Model of Health Care Demand
This paper assesses how the effect of air pollution on health outcomes (ER visits and mortal-
ity) depends on access to health insurance. Intuitively, the expected direction of the effect of
interest depends on the outcome considered. The expected short-run mortality impact from
simultaneously improving health insurance access while reducing air quality is straightfor-
ward. An individual – whose likelihood of being insured is exogenously increased due to a
change in policy – first chooses whether to seek preventive care (or take other related actions
to avert or defend against pollution exposure). She subsequently experiences an unexpected,
negative shock to local air quality, which may or may not result in her death. The only
active choice in this scenario is whether or not to seek preventive care prior to the air quality
shock. The likelihood of seeking preventive care will almost certainly increase after gaining
insurance coverage, given that there exist both access constraints and liquidity constraints
that make it relatively more cumbersome for the uninsured to obtain preventive care even
if it is fairly inexpensive.12 If the individual does seek preventive care, available medical
evidence on the effectiveness of relevant pharmaceuticals suggests that a reduction in their
price should have at least a weakly negative influence on the likelihood of death.13 As noted
previously, this protective effect should strengthen over time from the date of insurance en-
rollment, as new enrollees learn from temporal but seasonal smoke-related air quality shocks
and become more likely to preemptively seek preventive care in anticipation of future shocks.

By contrast, the analysis of short-run morbidity outcomes (i.e., ER visits) is more nu-
anced. At a high level, insurance reduces the price of visiting the ER (which should increase
ER visits, if they are a normal good), and also reduces the price of preventive and primary
(i.e., doctor’s office) care, which should decrease ER visits, if those types of care provide
some sort of protection against acute illness episodes in response to environmental shocks.
This protection effect may come through increased utilization of preventive care specifically
to address the types of health conditions exacerbated by poor air quality, or it may come

12For context, the current price of budesonide, a common inhaled corticosteroid used for long-term asthma
treatment, is currently about $300 without insurance (GoodRX.com) while the uninsured cost of an asthma-
related ER visit is approximately $1,500 (Wang et al. 2014).

13There is no reasonable scenario under which increasing the probability of being insured would increase
individual propensity to be fatally harmed by poor air quality, so the expected net effect of health insurance
on pollution-related mortality is either null or negative.
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through better management of chronic health conditions, thereby decreasing the likelihood
that pollution exposure triggers acute illness. It is not clear a priori which of these coun-
tervailing effects – the price effect or the prevention effect – will dominate in the short run,
which is the relevant time horizon in this paper.14

A simple conceptual model demonstrates mathematically why the expected direction of
the effect of health insurance on air pollution-related morbidity is ambiguous in the short
run.15 This model is based on a highly simplified version of the canonical Becker-Grossman
health production function model (Becker 1965; Grossman 1972), in which the production
of health contributes directly and positively to individual utility. Specifically, consider a
standard two-period utility maximization problem with no time discounting or uncertainty.
The agent derives utility from health H(·), and from consumption of the numeraire good x,
which has price normalized to unity. Health is a function of preventive care q, emergency
(ER) care e, and pollution c. Investments in preventive care are made in t = 1, while the
pollution shock and the choice of whether to seek emergency care occur in t = 2. Naturally,
pollution is bad for health so ∂H/∂c < 0, while preventive and emergency care contribute
positively to health: ∂H/∂q > 0 and ∂H/∂e > 0. Insurance status is determined outside
the model and sets the prices paid for both emergency and preventive care, pe and pq. This
setup leads to a constrained utility maximization problem, where non-labor income Y is
determined outside the system. The goal is to determine the sign of de/dc, which is how ER
visits (e) are expected to change for a given increase in pollution levels (c), all else equal.

To determine the sign of de/dc, I proceed with a standard comparative statics analysis,
the calculations for which are reported in Appendix Section A.2. These calculations show
that the direction of this effect is indeterminate for at least three reasons. First, changes
in relative health care prices (pe and pq) are unknown, and in particular, depend on the
individual’s baseline insurance status. It is likely that most uninsured individuals that
became newly eligible for Medicaid through the ACA faced lower prices for all forms of health
care post-reform, but that might not hold universally. Further, pe and pq are potentially
correlated with e through the insurance choice, although this concern is mitigated if relying
on an exogenous source of variation in coverage, as I do in the empirical analysis of this paper.
Finally, the shape of the health production function H(·) is not known. In particular, it is
not clear whether investments in q and e have decreasing, increasing, or constant marginal
returns to health, or whether preventive and emergency care are compliments or substitutes.
For these reasons, the theoretical direction of the effect of health insurance coverage on
pollution-related ER visits is ambiguous, and thus should be assessed empirically.

14In the longer run, it is likely that the preventive effect will dominate, as health insurance coverage allows
enrollees to learn from – and adapt to – repeated air quality shocks by seeking preventive care prior to the
negative shock. In effect, insurance coverage will help individuals insure against poor air quality by making
it easier and cheaper to consume low-value but highly protective care.

15Mullins and White 2020 present a similar conceptual framework in their paper on health care access
and ambient temperatures, also taking care to distinguish between acute (emergency) and preventive care.
The authors appear to make this distinction primarily in order to understand the possible mechanisms for
their empirical results, since the health care expansion they study only affected access to preventive care. In
contrast, the health care access shock that I study, the expansion of California’s Medicaid program under
the ACA, improved access to both preventive and acute health care simultaneously.
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1.4 Data

1.4.1 Hospital Visits
Data on ER utilization comes from California’s Office of Statewide Health Planning and
Development (OSHPD). This database is a complete census of all patient visits that occurred
at any hospital in the state over the period 2012-2017. Each OSHPD record represents a
medical claim for a single visit, and contains demographic information about the patient, as
well as details regarding their hospital visit, including diagnosis codes in order of relevance.
To ensure a focus on visits that were likely induced by current air quality conditions, I filter
the hospital sample to include only visits that originated in the Emergency Department
(effectively excluding any pre-scheduled visits like planned surgeries, etc.). I link patients to
contemporaneous, ambient air quality based on their home ZIP code and the week in which
their hospital visit occurred.

I categorize ER patients into diagnosis groups based only on the first (primary) diagnosis
code on the claim, in order to maximize statistical precision.16 Diagnosis codes are based on
the International Classification of Diseases (ICD), which is published by the World Health
Organization (WHO) and used worldwide for morbidity and mortality statistics, insurance
reimbursement systems, and other health care purposes. To identify diagnoses that are most
likely to be affected by air pollution, I follow the convention in the pollution-health literature
and first focus narrowly on asthma and heart attacks before expanding to include hyper-
tension and visits for any respiratory-related condition. I also consider several “placebo”
conditions – which should not be affected by air quality – in order to test the validity of my
empirical model and specifications. For this, I follow the lead of previous researchers and
examine effects of smoke and health insurance on ER visits for diabetes and appendicitis.
The list of ICD codes used to identify each health condition are listed in Appendix Table
A.1.

1.4.2 Mortality
To assess mortality impacts, I rely on restricted-access data on the universe of U.S.-based
deaths contained in the Multiple Cause of Death (MCOD) files provided by the U.S. Centers
for Disease Control and Prevention (CDC). The MCOD files are person-level records based
upon individual death certificates for U.S. residents. To preserve individual privacy, each
mortality event is identified only by the county and month in which it occured. Consequently,
the mortality analyses that follow are conducted at the county-by-month level, whereas
morbidity (ER visits) analyses are conducted at the ZIP-by-week level.17 Each MCOD
record contains a single underlying cause of death, up to twenty additional multiple causes,
as well as demographic data about the decedent. The WHO defines the underying cause-
of-death as “the disease or injury which initiated the train of events leading directly to
death, or the circumstances of the accident or violence which produced the fatal injury.” As
with the hospital data, mortality data are linked to diagnoses using the ICD coding system,

16Analyses that consider secondary diagnoses generate similar, although weaker, regression estimates.
17To ensure comparability of estimates across these levels of aggregation, I also conduct morbidity analyses

at the county-by-month level, which are reported in Appendix Table A.11.
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and I assess mortality impacts on the same set of pollution-related and placebo conditions
described previously.

1.4.3 Air Quality
The main source of air pollution variation in this paper is derived from the plausibly random
trajectories of wildfire smoke plumes through space and time. Information on the location
of smoke plumes in the atmosphere above the ground at a given point in time is a product of
the National Oceanic and Atmospheric AdministrationâĂŹs Hazard Mapping System. This
database contains daily geocoded outlines of smoke plumes that are generated through a
combination of satellite imagery and visual screening by human analysts. The HMS smoke
plume data cover the entirety of the contiguous U.S. and can be overlaid onto economically-
meaningful spatial units, such as ZIP Code Tabulation Areas (ZCTAs)18 or counties, using
standard mapping tools.

Figure 1.2: Distribution of Wildfire Smoke Coverage (ZIP-Week)

Notes: Figures plot the distribution of smoke coverage at the ZIP-week level in California, condi-
tional on smoke coverage being greater than 0%. Smoke plume location data come from NOAA’s
Hazard Mapping System (HMS) and plumes have been overlaid onto ZIP Code Tabulation Ar-
eas (ZCTAs) from the U.S. Census Bureau. Panel (b) reports the distribution for Summer 2017
specifically because that was a severe wildfire year. Summer corresponds roughly to weeks 27-39
of the calendar year (June, July, and August).

I overlay smoke plumes on ZIP codes and counties, calculating the fraction of the spatial
unit’s area that was covered by smoke on a given day. I then aggregate the daily smoke
coverage data to the ZIP-week (for the ER visits analysis) or the county-month (for the

18The connection between ZIP code and ZCTA is described in Appendix Section A.1.2. Throughout the
paper, ZIP code refers interchangeably to both ZIP and ZCTA, since the differences between the two appear
to be minimal for California.
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mortality analysis) by taking the average coverage across the number of days in the time
period. As an example, a smoke coverage measure of 50% could mean either that the
geographic unit was fully covered by smoke plumes during half of the days in the period, or
50% covered by smoke plumes on every day of the period. For ease of interpretation, the
main results presented in this paper all rely on a binary measure of smoke coverage, equal
to a one standard deviation or greater level of smoke coverage across the full distribution of
smoke. For the ZIP-week analysis, one standard deviation is 17.1% coverage (equal to 1.2
days of coverage out of seven days in a week) and for the county-month it is 15.4% (equal
to 4.62 days of coverage out of 30 days in a month).

Figure 1.3: Distribution of Wildfire Smoke Coverage (County-Month)

Notes: Figures plot the distribution of smoke coverage at the county-month level in California,
conditional on smoke coverage being greater than 0%. Smoke plume location data come from
NOAA’s Hazard Mapping System (HMS) and plumes have been overlaid onto California counties.
Panel (b) reports the distribution for Summer 2017 specifically because that was a severe wildfire
year. Summer months are June, July, and August.

Figure 1.2 and Figure 1.3 show the distribution of smoke coverage for all years (Panel
A) and limited to the summer of 2017 (Panel B) at the ZIP-week and county-month levels,
respectively.19 Comparing the two figures, counties are much less likely to be fully covered by
smoke than are ZIP codes, which makes sense based on their relative sizes. The periodicity
that is apparent in the ZIP-week figures corresponds to the total number of full-coverage
days in a week. This is because the small geographic size of ZCTAs means that they are
often fully covered by a smoke plume when they are covered by smoke at all. Additionally,
the figures indicate that there exists significant variation in smoke coverage across regions
above the one standard deviation threshold specified for the binary smoke indicator in the
empirical specifications.

19The summer of 2017 was an especially smoky period, particularly in the San Francisco Bay Area and
other parts of Northern California.
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I supplement the smoke plume data with estimates of PM2.5 ground-level concentrations,
which are reported daily at the individual monitor-level in EPA’s Air Quality System (AQS)
database (along with monitor readings for all other criteria air pollutants that are regulated
under the Clean Air Act). The network of official EPA monitors is relatively sparse, where
some areas have just a single regulatory-grade monitor (e.g., San Francisco County) and
other, often historically dirtier areas, have monitors in multiple locations (e.g., Los Angeles
had 11 official EPA monitors for PM2.5 as of 2018). I aggregate PM2.5 monitor data to
the ZIP-week and county-month by computing the mean and maximum readings across all
available monitors in the area during a given week or month. Correlations between smoke
coverage and local PM2.5 concentrations are reported in Table 1.1.

1.4.4 Weather
I control for ambient maximum and minimum temperatures and total precipitation at the
ZIP and county levels based on evidence of interactions between weather and air pollution.
Data on daily temperatures and precipitation reported in a 4km-by-4km grid for the con-
tiguous U.S. was obtained from PRISM Climate Group at Oregon State University. PRISM
constructs measures for each grid cell by interpolating weather station data and accounting
for relevant weather factors such as wind direction and topography.

1.4.5 Socioeconomic Variables
Socioeconomic data at the ZIP code and county levels comes from the American Community
Survey (ACS) 5-year estimates (2008-2012 through 2013-2017). These variables are included
as covariates in the main empirical specifications due to potential non-zero correlation of
these measures with population health outcomes and/or insurance penetration. These data
include area-level (ZIP code or county) measures such as the distribution of race, per capita
income, unemployment, and health insurance status by age group (which is used to construct
the instrument for the main IV-DID model). Monthly data on ZIP-level enrollment in
California’s Medicaid program (Medi-Cal) was obtained through a Freedom of Information
Act (FOIA) request submitted to the California Department of Health Care Service (DHCS).

Table 1.3 reports summary statistics of all of the main variables at the county-month
aggregation for the period 2012-2017, while the summary statistics for the same variables at
the ZIP-week level are reported in Appendix Table A.2. As described, the measure of smoke
coverage for the county-month aggregation represents the average spatial coverage during a
single month in the given county. As is clear from the periodicity of the ZIP-week smoke
distribution in Figure 1.2(a), ZIPs are often completely covered by smoke when they are
covered at all. There is more variation in smoke coverage at the county-month level since
counties in California are typically large enough to often be only partially covered by smoke
plumes on a given day. Additionally, these summary statistics suggest that the majority of
smoke exposure during 2012-2017 occured roughly in the summer months, or from June 1
through August 31.20

20In more recent years, wildfire events and smoke have continued into the late Fall months.
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Table 1.3: Summary Statistics, 2012–2017 (County-Month)

Variable N Mean p25 p75 Max
Morbidity outcomes:

Total ER visits 4,176 19,171 1,766 19,721 325,841
ER visits: Asthma 4,176 315 24 292 8,718
ER visits: All Respiratory 4,176 1,992 177 1,989 62,137
ER visits: Hypertension 4,176 122 9 107 2,738
ER visits: Heart Attack 4,176 75 8 71 1,457
ER visits: Diabetes 4,176 175 14 160 3,178
ER visits: Appendicitis 4,176 53 3 51 1,015

Mortality outcomes:
Total Mortality 4,176 362 32 384 6,229
Mortality: Asthma 4,176 18 2 18 347
Mortality: All Resp. 4,176 34 3 36 702
Mortality: Hypertension 4,176 11 0 11 220
Mortality: Heart Attack 4,176 7 0 8 215
Mortality: Diabetes 4,176 0 0 0 3

Air quality (Jun–Aug):
% smoke coverage 1,044 27.0 9.4 40.9 95.1
Mean PM2.5 929 9.4 6.5 11.2 106.8
Maximum PM2.5 929 25.0 13.7 28.0 498.0

Air quality (Sep–Nov):
% smoke coverage 1,044 2.3 0 1.7 37
Mean PM2.5 928 10.0 5.6 12.5 55.0
Maximum PM2.5 928 26.1 13.2 33.0 557.0

Air quality (Dec–Feb):
% smoke coverage 1,044 0.3 0 0.2 10
Mean PM2.5 928 9.1 5.0 11.0 50.0
Maximum PM2.5 928 22.7 11.2 30.2 355.4

Air quality (Mar–May):
% smoke coverage 1,044 3.3 0 4.8 26
Mean PM2.5 925 7.1 5.1 8.7 42.7
Maximum PM2.5 925 15.7 10.5 18.6 76.5

Population and health insurance:
Total population 4,176 649,465 45,173 692,696 10,032,014
Adult population 4,176 410,040 26,564 417,688 6,493,977
% Uninsured adults, 2013 (Z) 4,176 23.2 18.5 27.6 37.7
% Medicaid coverage 4,176 29.4 21.6 36.8 56.6

Notes: Table reports unweighted statistics for the main mortality estimation sample. Unit of observation
is the county-month. PM2.5 data is only available for the counties that have official EPA monitors.
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1.5 Empirical Strategy
An empirical test for the primary research question of this paper is to estimate the joint
effect, on ER utilization and mortality separately, of short-run exposure to air pollution
(derived from wildfire smoke) and improved access to public health insurance. I model these
two distinct relationships using the same general regression framework:

log(Countjty) = α Smokejty + β MedicaidRatejty +

τ (Smokejty ×MedicaidRatejty) +

X ′jty γ + θjt + δy + εjty,
(1.1)

where Yjty is the log of the count of either ER visits or deaths, for a given health condition,
in jurisdiction j over time period t in year y. Smokejty is a measure of smoke plume
coverage over jurisdiction j during time period t,21 and MedicaidRatejty measures the rate
of Medicaid coverage in jty (in percentage points of the local population). The parameter of
primary interest is τ , the coefficient on the interaction between smoke and Medicaid coverage,
which measures the percent change in smoke-related ER visits or deaths associated with a
one percentage point increase in the rate of public health insurance when the air is smoky.22

The coefficient on the Medicaid rate, β, measures the effect of public health insurance
on morbidity and mortality rates, and it is important to note that its interpretation is
different depending on the outcome considered. For ER visits, this effect represents a general
“price effect” of insurance when the level of smoke held constant. If ER utilization is a
normal good, basic economic theory suggests that a Medicaid program expansion (which
increases the disposable income of eligible households that enroll and no longer have to pay
for private health insurance and/or costly medical services if uninsured) should be associated
with an increase in quantity consumed, in the absence of an adequate subsitute. However,
enrolling in Medicaid simultaneously involves price reductions of other forms of health care,
including primary care (e.g., office visits) and prescription medications, both of which new
enrollees may substitute toward when becoming insured. As discussed in Section 1.3, shifting
toward these health care substitutes could in theory reduce the quanty of acute ER care
demanded. Therefore, the main effect of health insurance on ER demand in response to
smoke is ambiguous. This result is shown mathematically in Appendix Section A.2. By
contrast, the effect of insurance on mortality should be unambiguously (weakly) negative.

The dependent variable in Equation (1.1) represents a week-based total (or a month-based
total, depending on the outcome measured). This temporal aggregation should somewhat
alleviate concerns about “harvesting” (i.e., temporal displacement of health outcomes) which
is a standard concern in studies that rely on daily or even shorter-term variation in environ-
mental quality. The variables included in Xjty represent a selection of weather-related and
socioeconomic controls that may independently affect the rates of ER utilization and mor-

21For the main specifications in the paper, this is constructed as a binary variable representing smoke
coverage greater than or equal to standard deviation of the distribution of smoke coverage for ZIP-weeks or
county-months.

22Under the assumption that the underlying population counts trend smoothly, the estimated disconti-
nuities in log ER visit and death counts that I obtain can be interpreted as estimates of the percentage
discontinuities in rates (Card, Dobkin, and Maestas 2004 provide a justification of this approach).
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tality. These include temperature distributions, total precipitation, the fraction of j that is
non-white, and median per capita income. Equation (1.1) also includes ZIP by week-of-year
or county by month-of-year (θjt) and year (δy) fixed effects. The ZIP-by-week-of-year (or
county-by-month-of-year) fixed effects represented in θjt control for any seasonal correlation
between smoke and health outcomes that is common across years in given jurisdiction. δy

is a time trend that controls flexibly for common time-varying shocks, such as those that
induced by any changes to health care or environmental policies that apply universally to all
jurisdictions in California. Identifying variation comes from differences across years (2012-
2017) within ZIP-week-of-year or county-month-of-year. I estimate alternative specifications
with varying controls and fixed effects to demonstrate the robustness of my results. For
the morbidity and mortality analyses, standard errors are clustered at the level of the ZIP
code and county levels, respectively. This clustering allows for arbitrary within-jurisdiction
correlation.

After simplifying the air quality dimension of the model by defining Smokejty to be a
binary variable representing smoke coverage of at least one standard deviation, Equation
(1.1) can be viewed as a standard difference-in-differences (DID) model with a continuous
treatment measure, equal to the level of Medicaid coverage in jt. This treatment measure
changed discontinuously in 2014 as a result of California’s expansion of its Medicaid program
under the ACA. However, if estimated by OLS, coefficients in Equation (1.1) are likely to
be biased because of underlying (almost always unobservable) relationships between health
insurance coverage, socioeconomic status, baseline health, risk preferences and other factors
that influence the propensity to seek medical care, or to become seriously ill or die, when
air quality worsens. For example, lower income individuals are more likely to be uninsured
and in poorer health, which might both affect susceptibility to poor air quality. A credible
strategy for causal inference requires isolating exogenous variation in Medicaid coverage that
is uncorrelated with unobservable propensities for acute and/or fatal illness during periods
of high air pollution. I therefore employ an IV strategy, using the pre-period (2013) adult
uninsured rate in jurisdiction j as an instrument for the Medicaid rate in jt in the post-
period. Specifically, I define Zjy = PrePeriodAdultUninsuredRatej,2013 × Posty where
Posty is an indicator for years in the sample period after the policy was implemented (e.g.,
2014-2017). The empirical specification for the first stage is then

MedicaidRatejty = λ Smokejty + ρ Zjy + X ′jty γ + θjt + δy + ξjty, (1.2)

where Equation (1.2) contains the same set of covariates and controls that are included in the
original endogenous model. I then estimate the following equation using the instrumented
treatment variable ̂MedicaidRatejty that contains only the variation in jurisdiction-level
Medicaid coverage that is explained by the pre-period uninsured rate, a proxy for exposure
to the policy change.

The second stage equation, Equation 1.3, is an IV-DID intensity model, where τIV esti-
mates a local average treatment effect (LATE) of a one percentage point increase Medicaid
coverage, during periods of smoke, on health outcomes for new Medicaid enrollees living in
areas that were highly uninsured prior to the implementation of the ACA in 2014. In this
research design, areas that had complete (or nearly complete) health insurance coverage in
2013 serve as the pure control group which was unaffected by the policy change. If access
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to health insurance offers some sort of protective value during periods of poor air quality –
through enhanced access to preventive care, or something else – ER utilization (and mortal-
ity) should fall in areas that were more exposed to the policy as compared to areas which
had nearly full insurance pre-reform. Therefore, we would expect τ̂IV to be negative. The
second stage IV-DID model is

log(Countjty) = α Smokejty + β ̂MedicaidRatejty +

τIV (Smokejty × ̂MedicaidRatejty) +

X ′jty γ + θjt + δy + εjty

(1.3)

There are several conditions that must be met for this empirical model to identify a
causal effect. First, identification relies on the assumption that if the ACA had not been
enacted, deviations in ER utilization and deaths from their average levels in high- and low-
uninsurance areas would have evolved similarly. This is the parallel trends assumption for
difference-in-differences models that include place-by-temporal-unit fixed effects (i.e., θjt). I
proceed by evaluating whether pre-reform trends in these outcomes were similar across areas
with differing uninsured rates prior to the reform. The intuition behind this sort of placebo-
based test is to check for statistically identifiable treatment effects on relevant outcomes in the
years before the new policy was in place. Specifically, I estimate a model similar to Equation
(1.3) in which instead of interacting the 2013 adult uninsured rate with an indicator for post-
policy years, I interact it with individual indicators for each year in the 2012-2017 sample
period. The excluded reference year is 2013, which leaves the 2012 interaction for assessment
of pre-policy trends. Reassuringly, for ER visits and deaths associated with almost all of
the outcomes considered, the placebo coefficients are indistinguishable from zero. The only
detectable pre-trends are observed for all respiratory conditions (ER visits and mortality)
and diabetes (mortality only), although these health conditions are not the main focus of
this paper. I report pre-trend coefficients for all of the diagnoses and each health outcomes
in Appendix Section A.5.1. These placebo tests provide suggestive evidence that the relevant
outcomes were not trending at differential rates across areas with high versus low insurance
in pre-reform years, and thus that any post-reform changes are attributable to the change
in policy.

Another concern with identification is that difference-in-differences models will produce
biased treatment effect estimates if there are time-varying, place-specific shocks that are
correlated with outcomes of interest and occur at the same time as treatment. This type of
confounding results in a violation of the parallel trends assumption, but it is unfortunately
not testable with a similar placebo-based test due to non-zero correlation with the timing of
treatment itself. In this paper’s setting, a violation of this condition requires that something
else changed in aggregate in 2014 that could influence health outcomes related to smoke
exposure, but was experienced by different jurisdictions to varying degrees. For instance,
if areas with relatively low pre-ACA Medicaid penetration rates experienced jurisdiction-
level shocks that made it easier to access public health care starting in 2014 (for reasons
unrelated to the Medicaid expansion), then this effect could confound the effect of the public
insurance expansion that the focus of this paper. However, the possibility of confounding at
this level seems unlikely in this setting. The most significant health care-related, aggregate
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changes that occurred at the same time as California’s Medicaid expansion were the other
components of the Affordable Care Act, and each of those policy changes applied equally
across all jurisdictions in the state (and to many extents, the U.S. as a whole). Additionally,
differential socioeconomic trends across jurisdictions that could affect health outcomes –
such as changes in employment or poverty rates – are observable and included in Xjty in
Equation (1.3), providing further defense against potential confounding of the estimated
treatment effect.

A third assumption that must be met for this model to deliver unbiased, causally-
identified estimates is related to the instrumental variables component: relevance of the
instrument, Zjy. Relevance requires that there be sufficient correlation between the instru-
ment and exogenous regressor, since “weak” instruments can produce IV coefficient estimates
that perform poorly even relative to OLS (for reasons surveyed in Stock, Yogo, and Wright
2002). The standard test for weak instruments is an F -test on the first stage regression. The
F -statistic for the model estimated in Equation 1.2 is 55.8, far exceeding the standard thresh-
old of 10, and indicating that the instrument is highly relevant to the endogenous ZIP-level
Medicaid rate. This positive correlation is depicted graphically in Figure 1.4, which plots the
unconditional distribution of changes in ZIP-level Medicaid penetration from 2013 to 2017
across deciles of the adult uninsured rate in 2013. While there is variation in the endogenous
variable within each decile, there is a clear monotonic relationship between uninsured rates
and mean Medicaid growth. The county-month version of Figure 1.4 is Appendix Figure
A.2, and first stage estimates at the county-level are reported in column (4) of Table A.5).
The F -statistic for the county-level first stage equation is 265.9.

Figure 1.4: First Stage Correlation (ZIP-Level)

Notes: Figure shows the unconditional distributions of the percentage point change in ZIP-level
Medicaid coverage from 2013 to 2017 for each decile of the exogenous instrument (the adult
uninsured rate in 2013). ZIP codes with total population smaller than 500 (134 out of 1619 total
with non-missing insurance data) have been dropped.
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The final condition that must be satisfied for causal identification of τIV is the exclusion
restriction. This requires that the instrument not have a direct effect on the outcome(s) of
interest (ER visits and mortality), implying that the instrument is safely excludable from
the original model in Equation (1.1). The exclusion restriction further requires that the
instrument not have an indirect effect on outcomes through non-zero correlation with any
relevant omitted variables. This is equivalent to requiring that Cov[Zjy, εjty] = 0, or that
the instrument is not correlated with the error term in the baseline model, since this would
violate the standard exogeneity requirement. Excludability and exogeneity of the instrument
in general are not conditions that can be tested empirically. However, after controlling for
observable time-varying socioeconomic measures that in theory or expectation could influence
health outcomes it seems unlikely that a single-year, jurisdiction-specific uninsured rate
would be systematically related underlying propensity to use the ER or die when exposed
to air pollution from wildfire smoke plumes.

1.6 Results

1.6.1 ER Visits
As discussed, in the results that follow, Smokejty is constructed as a binary variable repre-
senting smoke coverage in ZIP j and week t of year y of at least one standard deviation of
the distribution of smoke coverage across ZIP-weeks during 2012-2017 in California. For the
analysis of ER visits, this is equal to 17.2% coverage or full coverage during approximately
1.2 days in a week. This modeling choice is intended to simplify the interpretation of magni-
tudes in the reported estimates by forcing the intensity effect of the main IV-DID intensity
model to come solely through changes in the Medicaid rate (and not simultaneously through
changes in the intensity of smoke exposure). Recognizing that this represents a non-trivial
simplification, I also conduct a supplemental analysis in which I instrument for PM2.5 using
the fraction of smoke coverage in a jurisdiction (which I refer to as the “double-IV-DID”
model). First-stage estimates are reported in Table 1.1, and indicate that the average in-
crease in PM2.5 in a given ZIP-week or county-month associated with this binary smoke
variable is about 2.5 µg/m3. Reassuringly, the second-stage estimates generated by this
double-IV model in general are not meaningfully different in magnitude from the results
contained in the main text. However, restricting the sample to only counties and ZIP codes
that contain official EPA PM2.5 monitors results in very few precisely measured estimates,
and therefore these results are reported in Appendix Section A.6, rather than the main text.

Table 1.4 reports OLS, first stage, reduced form, and IV estimates of the relationship
between smoke and health insurance on asthma-related ER visits. Medicaid coverage rates
and the 2013 adult uninusured rate (Z) have been scaled to represent an increase in each
of ten percentage points. This scaling was implemented since it represents approximately
the reduction in California’s uninsured rate as a result of the ACA (the vast majority of
which was due to the Medicaid expansion), and it is also approximately the remaining
uninsured rate as of 2020. Column (1) of Table 1.4 reports baseline OLS estimates that
only include spatial and temporal fixed effects, while column (2) includes additional weather
and socioeconomic controls to reduce bias and increase statistical precision. Columns (3)-
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(6) report corresponding first stage, reduced form, and IV estimates of the causal effect of
smoke exposure and health insurance when instrumenting for the jurisdictional Medicaid
rate with Z (the adult uninsured rate in 2013). The dependent variable in the first stage
equation, column (4), is the rate of Medicaid coverage in jty in percentage points of the
local population. For all other columns, the dependent variable is the log of the count of
asthma-related ER visits.

The estimates in Table 1.4 indicate that Medicaid insurance reduces the health damages
of air pollution. Preferred IV estimates are in column (6), and are substantially larger than
corresponding OLS estimates in column (2), suggesting that OLS suffers from attenuation
bias in this setting. It is first worth noting that the OLS and IV estimates capture the be-
havior of different populations, which may have very different health care demand responses
to both air quality and health insurance. While the OLS estimate is an average treatment
effect for the population as a whole, the IV estimate is a local average treatment effect for
the population induced into treatment by the instrument (e.g., new enrollees living in areas
that were highly uninsured pre-ACA). The attenuated Medicaid OLS estimate suggests that
compliers use the ER relatively more for asthma-related issues than does the overall popu-
lation, when holding smoke constant. Conversely, compliers are less likely than the average
person to visit the ER for asthma issues when smoke crosses the one standard deviation
threshold (represented by the negative coefficient on the main interaction between smoke
and Medicaid). These results together suggest there might be some important differences
between new and existing Medicaid recipients that lead the former to seek more emergency
health care in general (as evidenced by the positive Medicaid coefficient) but seek it less in
response to poor air quality (with a negative interaction coefficient possibly indicative of a
larger prevention effect among new enrollees). These differences between OLS and IV also
indicate caution is warranted if intending to extrapolate these IV estimates to the overall
population.
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Table 1.4: OLS and IV Estimates — ER Visits (Asthma)

OLS OLS First Stage Reduced Form IV IV
(1) (2) (3) (4) (5) (6)

Smoke 0.012∗∗∗ 0.010∗∗ −0.020∗∗∗ 0.020∗∗∗ 0.008∗∗∗ 0.046∗∗∗
(0.004) (0.005) (0.005) (0.004) (0.003) (0.007)

Medicaid 0.004 0.005∗ 0.020∗∗ 0.023∗∗
(0.003) (0.003) (0.010) (0.010)

Smoke × Medicaid −0.001 −0.001 −0.013∗∗∗
(0.001) (0.001) (0.002)

Z 0.228∗∗∗ 0.006∗∗∗
(0.026) (0.002)

Smoke × Z −0.008∗∗∗
(0.001)

Included controls:
Year FE X X X X X X
ZIP-week-of-year FE X X X X X X
Weather controls X X X X X
Socioeconomic controls X X X X X

Observations 551,019 543,052 543,052 545,635 543,052 543,052
Adjusted R2 0.774 0.771 0.902 0.772 0.771 0.771

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable in columns (1)-(2) and (4)-(6) is the log of the count of
asthma ER admissions in ZIP j and week t of year y. The dependent variable in column (3) is the Medicaid coverage
rate (the total number of Medicaid enrollees divided by total population) in ZIP j and week t of year y. Socioeconomic
controls include fraction Black, fraction Hispanic, fraction of other race, overall population, and per capita income.
Medicaid-related estimates have been scaled to reflect a ten percentage point increase in Medicaid coverage. Smoke
is a binary variable indicating smoke coverage of at least one standard deviation of the smoke distribution across
ZIP-weeks (equal to 17.2% coverage) or greater. Standard errors are clustered by ZIP.

The IV estimates in Table 1.4 imply that smoke coverage of 17.2% or more during a single
week causes a 4.6% increase in asthma-related ER visits by local residents, an effect of which
over 25% (i.e., 1.3%) is mitigated by raising the Medicaid coverage rate by ten percentage
points. Further, the ER price effect (captured in the coefficient on the main Medicaid effect)
of 2.3% represents the overall increase in ER visits for asthma holding smoke-related air
pollution at less than 17.2% coverage per week. A negative coefficient on the interaction
term provides suggestive evidence that the prevention effect dominates the price effect when
ambient air is relatively smoky. The first stage estimates in column (3) imply that a one
percentage point increase in the adult uninsured rate in 2013 (Z) is associated with a 0.23
percentage point increase in Medicaid coverage in the post-period (2014-2017). This strong
relationship is further supported by a relatively large first-stage F -statistic of 55.8.
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Table 1.5: IV Estimates — ER Visits (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke (α) 0.046∗∗∗ 0.015∗∗ 0.018∗∗ 0.001 0.009 −0.005 0.008

(0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.005)

Medicaid (β) 0.023∗∗ 0.030∗∗∗ 0.027∗∗∗ 0.021∗∗∗ 0.064∗∗∗ 0.028∗∗∗ 0.005
(0.010) (0.009) (0.009) (0.005) (0.011) (0.007) (0.004)

Smoke × Medicaid (τIV ) −0.013∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.0002 −0.004∗∗ 0.001 −0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 543,052 543,052 543,052 543,052 543,052 543,052 543,052
Adjusted R2 0.771 0.928 0.555 0.382 0.977 0.680 0.335

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of ER admissions for the stated condition in ZIP j and
week t of year y. Medicaid-related estimates have been scaled to reflect a ten percentage point increase in Medicaid coverage. Smoke is a binary
variable indicating smoke coverage of at least one standard deviation of the smoke distribution across ZIP-weeks (equal to 17.2% coverage) or
greater. All models include all of the fixed effects and controls listed in Table 1.4. Standard errors are clustered by ZIP.

In Table 1.5, I report diagnosis-specific estimates based on my preferred IV specification
(column (6) of Table 1.4), with the asthma results reproduced in column (1) for comparison
to the other health conditions. Columns (2)-(4) report results for several conditions that are
well known to be exacerbated by air pollution, while the conditions in columns (5)-(7) are
placebo conditions that in general should not be affected by poor air quailty. The effect of
smoke and health insurance on ER visits for all respiratory-related conditions (column (2))
and hypertension (column (3)) are similar in magnitude to the asthma estimates. Comparing
asthma visits to all respiratory visits, of which asthma is a subset, it is not surprising that
the smoke effect (α) and the interaction effect (τIV ) are both stronger when restricting
specifically to asthma-related visits. The all respiratory category contains other respiratory
conditions, such as influenza and pneumonia, which are more likely to be seasonal and to have
fewer targeted preventive care options than are available to treat asthma. The estimates for
heart attacks are of similar direction as the asthma estimates, though of smaller magnitude
and not statistically significant. This may reflect the fact that ER visits for heart attacks are
much less common than for asthma attacks, particularly when disaggregated to the ZIP-by-
week level. Alternatively, it may reflect the possibility that, when triggered by wildfire smoke
specifically, heart attacks more often result in a death than an ER visit. This possibility
is supported by strong and statistically significant effect estimates related to heart attack
mortality (as opposed to morbidity), which are presented in the following section. Each of
the four selected pollution-related conditions has fairly similar estimates for the price and
smoke effects, which in general are offset by an interaction (i.e., prevention) effect that is
30-50% in relative magnitude. Taken together, these results indicate that health insurance
can have a strongly mitigating influence on pollution-related morbidity, without incurring a
huge cost burden due to the increase in overall utilization when prices fall.

Results for the placebo conditions Table 1.5 help to validate the model and specifications,
in addition to the use of smoke as a reduced form measure of air pollution. As we would
expect, none of the placebo conditions has a statistically significant relationship with smoke
exposure. In column (5) (All Conditions), the β estimate of 6.4% reflects the overall increase
in the ER visit rate (for any medical condition) that we would expect to be caused by a ten
percentage point increase in Medicaid coverage. The associated prevention effect of -0.4%



24

is significantly smaller in magnitude, most likely since the vast majority of acute health
conditions requiring emergency medical attention are not related to smoke. Notably, there
is no price effect observed for appendicitis – this condition is generally understood to strike
individuals at random, and must be treated immediately due to the excrutiating pain it
often typically (as well as the high risk of death if left untreated). For these reasons, we
would not expect ER demand for appendicitis to be highly sensitive to price. Overall, the
placebo models confirm that the smoke-related estimates obtained for the selected conditions
of interest are indeed likely to have been triggered specifically by poor air quality.

1.6.2 Mortality
In most analyses of the effect of air pollution on health, mortality accounts for the largest
share of overall costs. In this section, I consider the effect of health insurance and smoke on
diagnosis-specific mortality, reporting IV estimates for pollution-related and placebo condi-
tions in Table 1.6. With mortality, the main Medicaid effect can no longer be interpreted as
a price effect, as we would not expect mortality to rise when the price of health care falls,
as discussed in Section 1.3. In the mortality context, β can be interpreted as an additional
prevention effect which operates only when the smoke indicator equals zero. Similar to the
morbidity analysis, to simplify the interpretation of the effect estimates, Smokejty is con-
structed to be a binary variable equal to one standard deviation of the smoke distribution
or greater. For the county-by-month mortality analysis, this is 15.4% coverage.23

Few of the mortality estimates in Table 1.6 are statistically significant, which is not
unexpected given that mortality events are relatively rare occurrences as compared to ER
visits. Also, due to data constraints, the mortality analysis is conducted using far fewer
records than the morbidity analysis, by a factor of over one thousand (i.e., due to the county-
by-month aggregation as opposed to ZIP-by-week). However, heart attack-related mortality,
reported in column (4), shows a strong response to smoke, both in its association with
smoke alone and with the smoke and Medicaid interaction. Similar in relative magnitude
to the analysis of asthma-related ER visits, the preventive effect of Medicaid reduces the
mortality burden of smoke by over 30%, in this case with no corresponding price effect. The
large magnitude of this result for heart attacks is somewhat surprising, but likely refects
the low baseline rate of heart attack deaths in a given county-month.24 As hypothesized,
the main Medicaid effect is not statistically significant for any of the reported conditions.
The interaction effect τIV is negative for nearly all of the conditions, although with limited
statistical precision for all of the causes of death other than heart attacks. Overall, these
estimates suggest a potentially important role for health insurance in the prevention of
wildfire smoke-related mortality, but standard errors are wide enough that I cannot reject
the null of no effect at the 90% confidence level, except in the case of heart attacks.

23I conduct a supplemental analysis of ER visits at the county-by-month level for comparison purposes,
and the results are not substantially different from the original morbidity analysis at the ZIP-by-week level.
Results from this supplemental analysis are contained in Appendix Table A.11.

24Across all counties and years, the median number of heart attack-related deaths in a given county and
month is 2.2 per 100,000 residents. For comparison, the rate for respiratory-related deaths is 5.4 per 100,000
residents.
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Table 1.6: IV Estimates — Mortality (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke (α) 0.106 0.115 −0.012 0.143∗ 0.041 0.041 0.027

(0.077) (0.086) (0.093) (0.080) (0.062) (0.078) (0.028)

Medicaid (β) 0.002 0.034 −0.023 0.116 0.042 −0.091 0.002
(0.059) (0.058) (0.112) (0.120) (0.055) (0.141) (0.022)

Smoke × Medicaid (τIV ) −0.023 −0.034 0.006 −0.047∗ −0.004 −0.002 −0.005
(0.021) (0.026) (0.028) (0.025) (0.019) (0.023) (0.008)

Observations 4,176 4,176 4,176 4,176 4,176 4,176 4,176
Adjusted R2 0.925 0.950 0.916 0.916 0.989 0.900 0.142

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of deaths for the stated condition in county
j and month t of year y. Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a
binary variable indicating smoke coverage of at least one standard deviation of the smoke distribution across county-months (equal to
15.4% coverage) or greater. All models include county-month-of-year and year fixed effects and weather and socioeconomic controls.
Standard errors are clustered by county.

1.6.3 Treatment Effect Heterogeneity
The preceding sections measure the effects of health insurance and smoke on health outcomes
for the complier population as a whole. However, previous research on air pollution and
health has shown that impacts of exposure can be heterogeneous across observable and
unobservable factors, including individual characteristics, regional socioeconomic trends, and
background exposure levels. The mortality data collected by CDC contains a rich set of
individual-level characteristics which I rely on in this section to investigate heterogeneity
in mortality impacts across age group and broad race category. Table 1.7 presents these
results for asthma-related mortality. Each column represents a separate regression in which
the outcome variable is the log of the count of asthma deaths in a county and month for the
relevant age or race group. Although the age-based estimates are not statistically significant,
the main (and interaction) effect of smoke increases monotonically with age. This pattern is
consistent with previous research: less healthy individuals tend to be more sensitive to smoke,
and age is often a reasonable proxy for health.25 Notably, the race-specific regressions for
asthma-related mortality in Table 1.7 suggest that Blacks are both significantly more harmed
by smoke exposure, and are also the most benefited by a public insurance expansion. The
estimates imply that the asthma-related mortality rate for Blacks in a given county and
month increases by 11.5% when smoke coverage is at least 15.4% or higher during the
month, but that this health burden is reduced by 3.3% for a ten percentage point increase in
the Medicaid penetration rate. Similar to the overall morbidity and mortality results, this
represents a health insurance-induced reduction in the overall burden of smoke exposure of
about 30%.

25California’s Medicaid expansion primarily improved health care access for ages 19-64, but seniors are
eligible for supplemental Medicaid insurance on top of Medicare benefits if they meet the same income
requirements.
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Table 1.7: IV Estimates — Mortality (Asthma), by Age and Race Groups

Age Group Race Group
1-18 19-64 65+ White Black Hispanic Other
(1) (2) (3) (4) (5) (6) (7)

Smoke (α) 0.012 0.039 0.102 0.053 0.115∗∗ 0.061 0.004
(0.017) (0.085) (0.078) (0.084) (0.050) (0.069) (0.089)

Medicaid (β) 0.016 0.064 0.002 0.010 0.009 0.015∗∗ 0.009
(0.026) (0.063) (0.056) (0.066) (0.042) (0.006) (0.053)

Smoke × Medicaid (τIV ) −0.004 −0.005 −0.019 −0.006 −0.033∗∗ −0.012 −0.006
(0.005) (0.026) (0.022) (0.023) (0.015) (0.021) (0.025)

Observations 4,176 4,176 4,176 4,176 4,176 4,176 4,176
Adjusted R2 0.132 0.762 0.919 0.911 0.836 0.801 0.804

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Each column represents a separate regression. p-values have been adjusted
for multiple testing using the Bonferroni correction. The dependent variable is the log of the count of asthma
deaths for the given age or race group in county j and month t of year y. Medicaid-related estimates have been
scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating smoke coverage of at
least one standard deviation of the smoke distribution across county-months (equal to 15.4% coverage) or greater.
All models include county-month-of-year and year fixed effects and weather and socioeconomic controls. Standard
errors are clustered by county.

Results for heart attack-related mortality (reported in Table 1.8) are similar to those
for asthma, but for this disease the largest effects manifest among Hispanics. On average,
Hispanics are much more affected by smoke than any other race, and a Medicaid expansion
of ten percentage points reduces the mortality burden by just over 30% when smoke cover-
age crosses the one standard deviation threshold. As with asthma mortality, the main and
interaction effects of smoke monotonically increase with age, although the estimates are im-
precisely estimated due to the relatively small sample sizes. It is unfortunately not possible
using the current research design to investigate the underlying causal mechanisms for these
race-based results, but examination of relevant characteristics (e.g., race and income) across
levels of the policy-exposure instrument (as discussed in Section 1.2.2) indicates that there
exists sufficient variation in exposure to identify differences in impacts across these demo-
graphic groups. For example, if there was minimal representation of a certain racial group
in the highest exposure areas then these race group-specific estimates might lack sufficient
statistical power to be comparable across groups, but the statistics in Table 1.2 indicate that
lack of coverage is likely not a significant concern. Moreover, the California Health Inter-
view Survey of new Medicaid enrollees in 2015 found no statistically significant differences
in program take up across race groups, which is further reassuring. Without leaning too
heavily on these race-based results, given statistical imprecision and unclear mechanisms,
these estimates are at least weakly suggestive that public health insurance might be a useful
policy lever to counteract the negative health impact of poor air quality for two historically
marginalized populations.



27

Table 1.8: IV Estimates — Mortality (Heart Attacks), by Age and Race Groups

Age Group Race Group
1-18 19-64 65+ White Black Hispanic Other
(1) (2) (3) (4) (5) (6) (7)

Smoke (α) −0.003 0.066 0.118 0.098 −0.004 0.192∗ −0.029
(0.006) (0.095) (0.087) (0.070) (0.052) (0.090) (0.079)

Medicaid (β) 0.008 0.159∗ 0.068 0.133 0.026 0.059 0.081
(0.008) (0.079) (0.122) (0.117) (0.052) (0.097) (0.063)

Smoke × Medicaid (τIV ) 0.001 −0.017 −0.042 −0.032 −0.004 −0.061∗∗ 0.003
(0.002) (0.030) (0.028) (0.021) (0.016) (0.028) (0.023)

Observations 4,176 4,176 4,176 4,176 4,176 4,176 4,176
Adjusted R2 0.040 0.789 0.908 0.892 0.822 0.831 0.849

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Each column represents a separate regression. p-values have been adjusted
for multiple testing using the Bonferroni correction. The dependent variable is the log of the count of asthma
deaths for the given age or race group in county j and month t of year y. Medicaid-related estimates have been
scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating smoke coverage of at
least one standard deviation of the smoke distribution across county-months (equal to 15.4% coverage) or greater.
All models include county-month-of-year and year fixed effects and weather and socioeconomic controls. Standard
errors are clustered by county.

1.6.4 Discussion
Relative estimates of the mitigating effect of health insurance on pollution-related health
damages are fairly consistent across diagnoses, as well as across health outcomes (ER visits
versus deaths). For diagnoses for which I estimate a statistically significant mitigating effect
of health insurance on smoke-related ER visits and/or mortality – such as asthma, all-cause
respiratory issues, hypertension, and heart attacks – the effect tends to be approximately
30-40% of the main smoke effect. Under the assumption that the Medicaid expansion only
affected ER visits and mortality by expanding insurance coverage, then the estimated re-
ductions in smoke-related ER usage and deaths can be directly interpreted as the treatment
effect of a 10 percentage point increase in Medicaid coverage on each of these outcomes.
However, as with any IV model, each estimate generated by this empirical model is a local
average treatment effect (LATE) rather than a population-level average treatment effect.
The LATE estimates from the IV-DID model capture the average effect of Medicaid on the
subpopulation of Californians who gained coverage as a result of the Medicaid expansion
and at the time of their health event (ER visit or death), live in a jurisdiction (a ZIP code
or county) which had a high rate of uninsured adults in 2013. If the ACA was particularly
effective at expanding Medicaid coverage among residents whose ER demand (or propensity
to die) in response to smoke exposure is particularly sensitive to insurance (e.g., those with
chronic and/or highly serious medical conditions), the estimated effects of Medicaid in this
paper may be larger than corresponding average treatment effects for the entire uninsured
population.

These estimates are broadly in line with previous work that has estimated the main
(separate) effects of health insurance and air pollution on ER visits and mortality. For
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example, Deschenes et al. (2017) estimate a 0.4% reduction in the all-cause mortality rate
during months in which the NOx Budget Program was operating.26 Although it is not
statistically significant, this point estimate is essentially the same as the estimate I obtain
for all-cause mortality for a ten percentage point Medicaid expansion, reported in column (5)
of Table 1.6. It is also approximately the effect I estimate on heart attack-related mortality
specifically, for a one percentage point increase in the Medicaid rate (column (4) of Table
1.6). The estimates in this paper are also consistent with previous work when accounting
for the first-stage effect of wildfire smoke on the concentration of fine particulates, rather
than simply considering the reduced form effect of the smoke. In versions of the main
analyses in which I instrument for PM2.5 concentrations with smoke coverage (Appendix
Section A.6), the estimate of the first stage effect of smoke on mean weekly and monthly
PM2.5 concentrations is about 2.5 µg/m3. Combining this with my estimate of a 0.4%
increase in overall mortality when the air is smoky, this corresponds almost exactly to the
Deryugina et al. 2019 estimate of a 0.2% increase in all-cause (elderly) mortality associated
with each 1 µg/m3 increase PM2.5 concentrations. Overall, the percent increase in ER visits
and mortality that I estimate for smoke is consistently in the low single digits, which is in
the general range estimated in recent pollution-health studies that leverage other sources of
quasi-random variation in pollution exposure.

Estimates of the price effect of insurance, β, are similarly in line with previous quasi-
experimental work. For example, Card, Dobkin, and Maestas 2008 study the effect of Medi-
care – another public health insurance program – using a regression discontinuity design
based on the strict age-65 eligibility threshold. These authors estimate a local average
treatment effect of insurance for all-cause ER visits of 3.3%. Although they leverage a fun-
damentally different source of variation in public health insurance, and study a relatively
older population, the estimate they obtain is similar in direction and magnitude to my es-
timate of 6.4%. A remaining open question is whether and to what degree the increase
in ER utilization that accompanies an insurance expansion is inefficient.27 Without addi-
tional information on patient-level characteristics and the underlying severity of illness that
prompted the ER visit, it is difficult to ascertain whether these additional post-reform visits
are socially optimal. However, comparing estimates of β for conditions with differing levels of
presenting symptoms but a comparable risk of death without treatment, such as appendici-
tis and heart attacks, may shed some light. Appendicitis presents with increasingly severe
and recognizable pain, whereas heart attack symptoms are often non-specific and may go
ignored. The 0% price effect for appendicitis implies that the health insurance reform had
no impact on ER demand for appendicitis. The 1.9% estimated health insurance impact
for heart attack visits, given the severity of the condition and high likelihood of being a
true emergency, suggests that these patients were under-utilizing emergency care relative
to its efficient level in the pre-reform period. It is harder to make the same argument for
the other pollution-related conditions, since these tend to have lower fatality risk than heart
attacks. However, that the β estimate for each of these other pollution-related conditions is
around 2% whereas the estimate for all conditions is over 6% implies that pollution-related

26One key difference between this paper and Deschenes et al. is that those authors link their estimated
mortality impacts to reductions in ambient ozone, rather than to ambient PM2.5.

27As discussed, this concern only applies to the ER visits analysis and not the mortality analysis, and it
remains that case that mortality impacts by far comprise the largest source of estimated benefits.
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health conditions are less prone to inefficient over-utilization of the ER than are conditions
not affected by pollution. Taken together, these comparisons suggest that insurance-related
moral hazard may be less of a concern in the context of using health insurance to adapt to
recurring air quality shocks, as compared to standard health insurance models.

1.6.5 Counterfactual Analysis
In this section, I present monetized benefits from avoided ER visits and premature deaths
based on IV-DID estimates of τIV under several counterfactual increases in the percentage
point penetration of Medicaid coverage across regions within California. Specifically, I use
the model to predict ER visits and mortality, using either the true Medicaid penetration rate
in a given jurisdiction and year, or the counterfactual rate obtained after various percentage
point increases in the true rate.28 Predictions are made at the original level of analysis, ZIP-
by-week (for ER visits) or county-by-month (for mortality), and then aggregated to produce
a California-wide total health impact for each year, which are reported in Appendix Section
A.7. It is important to note that the estimates of avoided health events are only for the
ZIP-weeks and county-months where the smoke indicator Smokejty is turned on, or where
smoke coverage in jt is at least one standard deviation of the respective smoke distribution.
Therefore, fluctuations in actual and predicted numbers of ER visits and mortality across
years as reported in the table in part reflect true differences in the severity of wildfire seasons
and associated smoke exposure across years.

Under the assumption of linearity, estimated impacts scale proportionally based on the
counterfactual Medicaid increases, as is clear from the estimates in Appendix Table A.10.
The assumption of linearity in Medicaid impacts is fairly strong, and comes with some
important caveats. Medicaid enrollment may be correlated with underlying health status
(or expected health risk), which would result in diminishing returns to insurance if there
is negative selection in enrollment (e.g., if the sickest individuals are the first to enroll).
However, Wang and Trivedi’s analysis of the 2015 California Health Interview Survey noted
that rates of asthma were not statistically different between enrollees and non-enrollees
among the sample of newly eligible Californians. This provides some reason to rule out the
potential for negative selection, at least if narrowly focused on air pollution-related health
outcomes like asthma. Another potential threat to the linearity of impacts assumption is
that there may be crowd out of other forms of insurance coverage as the Medicaid rate
rises. While certainly possible, this is probably not highly representative of the Medicaid
population in practice due to the strict eligibility threshold for annual income of 138% of the
federal poverty line (approximately $16,000 for an individual). This income threshold is far
below what would likely qualify for employer-sponsored insurance, and also likely too low for
an individual to be able to comfortably afford unsubsidized monthly premiums for private
insurance plans. Consequently, it seems quite likely that the majority of new Medicaid
enrollees were previously uninsured, somewhat reducing concerns about crowd out. For
these reasons, while linearity remains a strong assumption and the benefit estimates reported

28Counterfactual Medicaid rates are capped at one hundred percent in jurisdictions where the increase
would result in more than full coverage (i.e., where the counterfactual number of Medicaid enrollees would
be greater than total regional population).
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in this section are meant primarily for illustrative purposes, typical concerns regarding a
linearity assumption are less applicable to this setting.

I report benefit estimates for asthma-related ER visits and heart attack-related mortality
only, since these health outcomes are where the protective influence of health insurance
was most clear. However, this set of results represents only one small piece of a larger
picture about how health insurance can reduce the health burden of air pollution exposure.
Moreover, these estimates represent an even smaller piece of the overall benefits to society
of public health insurance, the vast majority of which are almost surely unrelated to air
pollution. The estimates in Panel (a) of Table A.10 indicate that a ten percentage point
increase in Medicaid coverage results in approximately 500 fewer annual ER visits for asthma
during years that are particularly smoky (e.g., 2016 and 2017). However, if accounting for
the price effect β, we would see a net increase in ER visits for a given insurance expansion,
causing the estimates to switch sign but be only about one third of their original magnitude
based on the relative magnitudes of the coefficients in Table 1.5. The average cost of an
asthma-related ER visit is about $1,500 (Wang et al. 2014), which implies an annual increase
in the monetized public burden of ER visits for asthma of approximately $250,000 for a ten
percentage point increase in Medicaid.

Estimated mortality impacts are not complicated by a price effect, and are significantly
more meaningful in economic terms when monetized using standard values for lost life.
Panel (b) of Table A.10 reports estimates of annual avoided heart attack deaths for a ten
percentage point Medicaid expansion. Again focusing on the estimates in relatively smokier
years, a ten percentage point increase in Medicaid in California reduces heart attack-related
mortality by about 20-25 deaths per year. Applying the current average value of a statistical
life (VSL) of $10,000,000, this implies mortality benefits – for heart attacks only – of 200
to 250 million dollars per year. Again, this represents a lower bound on overall insurance
benefits, specifically related to air pollution, and further narrowed to focus on a single health
condition. To put this estimate in context, EPA’s 2012 Regulatory Impact Assessment of
the national ambient PM2.5 standard projected that about 90 premature deaths would be
avoided annually by lowering the threshold for mean PM2.5 concentrations by 3.0 µg/m3

and assuming full compliance by all states (U.S. EPA 2011, p. ES-17). Given that EPA’s
estimate is for the entire country, as opposed to the California-only estimates in this paper,
this suggests that the estimated reduction in pollution-related fatal heart attacks due to
expanded public insurance in California is both of reasonable magnitude, and also large
enough to be policy-relevant. Further, this comparison suggests that California’s actual
Medicaid expansion of about 10 percentage points delivered mortality benefits on the order
of those projected to manifest under national environmental policy governing ambient air
quality. To my knowledge, this is the first time that this comparison has been made.

1.7 Conclusion
Using California as a case study, this paper assesses whether access to public health insurance
can mitigate the negative health impacts of exposure to air pollution. This is a policy-relevant
question in the U.S. given recent and widespread public health insurance expansions enacted
under the Affordable Care Act, and the likelihood of near-term air quality deterioration due
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to both the dismantling of environmental regulations in recent years and increasingly severe
wildfire seasons in the drought-stricken West. While the individual effects of air pollution
and health insurance on health outcomes have been studied previously in great depth by
researchers across disciplines, this paper is the first to consider the two effects in the same
empirical framework.

My research strategy brings together quasi-random variation in air pollution exposure
generated by wildfire smoke, and regional variation within California in exposure to the
Medicaid program expansion that began in 2014. Smoke plumes from wildfires contain high
concentrations of PM2.5, a pollutant directly regulated by EPA and widely understood to
be one of the most harmful to human health, and can travel unpredictably across wide
distances and short time horizons based on wind and other weather patterns. Further, the
impact of California’s Medicaid expansion was experienced differently across regions based
on the number of newly eligible individuals residing in each locality. I rely on this plausibly
random spatial variation in exposure to the health care policy to address the classic problem
of endogeneity in insurance take-up decisions using an instrumental variables research design.

My preferred estimates suggest that a one percentage point expansion in public insurance
reduces the heath burden of smoke exposure by approximately 3%, a finding that is fairly
consistent across smoke-related health conditions and health outcomes (i.e., ER utilization
versus mortality). I estimate that a ten percentage point increase in Medicaid coverage
– which approximates the actual post-ACA increase in California’s Medicaid enrollment,
as well as the percentage of uninsured remaining in the state as of 2020 – has resulted in
around 20 fewer heart attack deaths and 1,500 asthma ER visits annually. Together, using
standard values for lives lost and costs of ER hospitalization, these avoided health impacts
are valued in the hundreds of millions of dollars each year, and yet represent only a small
fraction of public insurance benefits related to two (of potentially many) health outcomes
that might affected by smoke. Moreover, these effects represent reductions in mortality and
hospitalizations over and above the health benefits of public insurance when air pollution is
minimal.

A common concern of policymakers regarding public health insurance is increased uti-
lization of health care services following a decrease in price, a phenomenon which I indeed
document in this setting. The concern centers around whether or not the post-reform increase
in utilization is socially “efficient” – in that it represents truly necessary care. By comparing
estimates of this effect across different health conditions in the California Medicaid setting,
I provide suggestive evidence that the observed increases might be socially efficient. How-
ever, more work is needed to examine this issue further, ultimately to determine whether
the benefits of public health insurance, including the novel air pollution-related benefits that
are estimated in this paper for the first time, outweigh overall costs.

Wildfires and associated smoke plumes pose a continued threat to population health in
western regions of the U.S. that have seen persistent drought in recent years. California
wildfire seasons in 2017 and 2018, and again in 2020, have broken previous records for acres
burned, and sent plumes of smoke and ash hundreds of miles away from initial ignition
sites, thereby exposing much of the state’s population to harmful particulate pollution over
sustained periods. By demonstrating the value of improved access to health care (through
more widely available health insurance) in reducing the severity of health impacts from air
pollution, this study’s findings may have relevance for the mitigation of negative health
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impacts linked to future wildfire events. Further, given the strong association of wildfire
smoke with PM2.5, a harmful pollutant that has been regulated by EPA for decades, the
findings of this paper may have implications for addressing the persistent health burden
of air pollution more generally. Despite this clear takeaway, this paper has some important
limitations. Specifically, in addition to further exploring the potential issue of over-utilization
of the ER, understanding the causal mechanisms for the effects that I have documented –
whether the benefits come through improved take up of preventive care, or something else
not yet identified – is a clear area for future research.
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Chapter 2

Declining Power-Plant Emissions,
Co-Benefits, and Regulatory Rebound

2.1 Introduction
Over the past half-century, expansive regulations have been introduced under the Clean Air
Act to reduce emissions of harmful air pollution. Hundreds of studies have assessed the
benefits of these regulations, the vast majority of which manifest as reductions in premature
mortality. In recent years, ‘co-benefits’ have accounted for a substantial share of the assessed
benefits from EPA emissions regulations. This increased prominence has invited increased
scrutiny of the indirect impacts of emissions regulations. This paper investigates co-benefits
accounting in theory and practice, bringing new evidence to bear on complex causal relation-
ships between reductions in power plant emissions, improvements in downwind air quality,
and associated health outcomes.

An environmental regulation generates co-benefits when it delivers not only the environ-
mental improvements targeted by the authorizing legislation, but also reductions in other
related damages. For example, regulations targeting greenhouse gas emissions (GHGs) may
induce investments that reduce not only GHGs, but also precursors to the formation of
small particulate matter (PM2.5). Figure 2.1 shows how co-benefits from reduced exposure
to PM2.5 have comprised a significant share of assessed benefits under recently proposed
climate-change-mitigation efforts (e.g. the Clean Power Plan and ACES) and other electric-
ity sector regulations (e.g. the Mercury Rule). Looking ahead, the local pollution impacts
of the accelerated deployment of low-carbon resources will have a substantial role to play in
policy discourse surrounding climate change.

Accounting for both the direct and indirect effects of a policy or market intervention is
consistent with fundamental economic principles of benefit cost analysis (see, for example,
Gramlich, 1990; Boardman et al. 2018). Guidance issued by the Office of Management
and Budget (OMB) is unequivocal, stating that agencies conducting benefit cost analysis
should “[i]dentify the expected undesirable side-effects and ancillary benefits of the proposed
regulatory action and the alternatives. These should be added to the direct benefits and
costs as appropriate” (OMB 2003, pp. 2-3). What is less clear is how to properly account
for indirect versus direct impacts.
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Figure 2.1: Co-benefits as a Share of Total Projected Benefits

Notes: Estimated “co-benefit” from reduced particulate matter (PM2.5) exposure account for
over 90% of mortality benefits from recent regulations targeting greenhouse gas (GHG) emissions,
mercury emissions. Source: EPA Regulatory Impact Assessments.

In cases where markets operate efficiently, indirect impacts in ‘secondary’ markets can
be safely ignored when they are captured by measured surplus changes in primary markets
(Boardman et al. 2018). Additional measurement and accounting of indirect impacts be-
comes more important in the presence of market failures such as environmental externalities.
The increased emphasis on health co-benefits in the assessment of emissions regulations has
prompted increased scrutiny around the accounting of these indirect benefits. The EPA
Science Advisory Board recently noted the absence of “any careful scientific guidance on
how co-benefits should be identified and estimated in regulatory analyses” (U.S. EPA, May
2019).

This paper advances the theory and informs the practice of co-benefits accounting in
the context of air pollution regulation. We formalize a framework for analyzing indirect
benefits in the presence of overlapping air quality regulations. Using two recent emissions
policy regimes as case studies, we implement this framework empirically. We leverage high-
resolution meteorological data, recent advances in the modeling of air particle trajectories,
and significant variation in power plant emissions across the United States over the period
2005-2019. We integrate simulated air particle trajectories into an empirical analysis of how
reductions in coal plant emissions impact downwind PM2.5 concentrations.

Empirical estimates of how changes in power plant emissions have impacted ex post
observed PM2.5 concentrations are useful for evaluating the economics of co-benefits along
a number of dimensions. First, we systematically compare our empirical estimates with the
projections of workhorse models that are widely used in ex ante and ex post assessments of
pollution co-benefits. Second, we investigate the extent to which policy interactions generate
discrepancies between projected and realized co-benefits. In the assessment of pollution co-
benefits, it is standard to assume away any meaningful interactions between new and existing
policies. We note the potential for ‘regulatory rebound’ in areas where upwind reductions
in power plant emissions relieve the constraints that were previously imposed by threshold-
based air quality standards. We propose an empirical test for this local regulatory response
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which effectively trades off local air quality improvements and locally incurred pollution
control costs. Finally, to the extent that we document significant discrepancies between
standard accounting predictions and realized air quality impacts, we incorporate ex post
observed mortality outcomes to assess the health implications of these discrepancies.

In this working paper, we report on an preliminary exercise that uses a less computa-
tionally intensive approach to modeling pollution fate and transport. We systematically
compare the results of these simpler simulations against PM2.5 monitor readings in down-
wind locations. This exercise provides some initial insights into the accuracy with which
standard models predict observed air quality outcomes. It also supports a very preliminary
empirical test for regulatory rebound in areas constrained by local air quality standards. We
find weak but suggestive evidence of rebound in local pollution levels following sustained
emissions reductions that were prompted by several recent emissions regulations. Based on
our current transport modeling and empirical strategy, estimates of emissions reductions on
long-run mortality are also weakly suggestive of rebound. In future work, we will incorporate
more precise particle trajectory modeling which is better suited to this setting.

The paper proceeds as follows. In Section 2.2, we review the historic decline in power
plant emissions that has occurred over the past twenty years and describe the implications of
several recent regulatory interventions that we use as case studies in our analysis. In Section
2.3, we summarize the role of PM2.5 in the quantification of co-benefits under emissions
policy proposals and we outline our theory of regulatory rebound with respect to existing
air quality standards. In Section 2.4 we describe our current method for modeling the
transport of emissions particles from power plants to downwind locations and the formation
of precursors into PM2.5, and Section 2.5 describes our data sources. Section 2.6 presents
and discusses our empirical results and Section 2.7 concludes.

2.2 Power Plant Emissions
Figure 2.2 documents a dramatic decline in air pollution emissions from US coal-fired power
plants. The top panel plots sulfur dioxide (SO2) emissions. The bottom panel shows nitro-
gen oxide (NOx) emissions. There are a number of factors that could explain this downward
trend, including increased competition from domestic shale gas, increases in renewable elec-
tricity generation, lower than expected energy demand, and EPA regulations that directly
target emissions from power plants.
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Figure 2.2: SO2 and NOx emissions, 2005-2019

Figure 2.2 tracks coal plant emissions separately for plants that retired over this period
and those that operated over this duration. The figure shows that plant retirements over
this period explain a relatively small share of total reductions. A recent paper decomposes
the decline in power plant emissions damages over the period 2010-2017 in terms of the
scale of electricity production; the composition of power plants generating electricity; and
the technology or emissions intensity of plants in the market (Holland et al. 2020). These
authors find that the most significant driver of pollution damage reductions over this period
is plant-level ‘technique’ changes that have reduced the emissions intensity of coal-fired
generation. Technique changes have primarily involved capital-intensive pollution control
technologies. Fuel switching has played a smaller role.

Regulations limiting power plant emissions have been the driving force behind the tech-
nique changes that have delivered significant reductions in the emissions intensity of coal-fired
electricity generation. Over the fifteen year period we consider, the stringency of regulations
limiting SO2 and NOx emissions increased substantially. The vertical lines in Figure 2.2 de-
note two distinct regulatory regimes. The first line denotes the implementation of the Clean
Air Interstate Rule (CAIR) which expanded the scope of NOx regulations and increased the
stringency of SO2 emissions regulations. CAIR introduced three different cap-and-trade pro-
grams: an annual program for SO2, an annual program for NOx and a summertime program
for NOx. Although this rule was announced in 2005, programs did not start operating until
2009.1

1A 2008 court decision upheld CAIR but instructed the EPA to replace the rule with another, which
eventually became the Cross State Air Pollution Rule (U.S. EPA, 2015c, 2008c). The court remanded CAIR
“without vacatur” because it found that allowing CAIR to remain in effect until replaced would temporarily
preserve environmental values.
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The Cross-State Air Pollution Rule (CSAPR) replaced CAIR in 2015 and it remains
in effect today. This regulation imposes annual SO2, annual NOx, and ozone-season NOx

emissions “budgets” at the state level. 2015 was also the year that coal plants started
complying with the Mercury and Toxics Rule (MATS). Because technologies that reduce
mercury emissions also reduce other criteria air pollution, it was projected that MATS would
reduce SO2 emissions by more than 40% beyond the reductions expected from the Cross State
Air Pollution Rule.

This sequence of increasingly stringent EPA regulations has delivered significant and
sustained reductions in NOx and SO2 emissions from coal plants. Ex ante and ex post
analyses associate large health benefits with these emissions reductions. Ex ante regulatory
impact assessments of CSAPR and MATS projected annual benefits in the range of $120-$280
billion and $25-$70 billion, respectively. In an ex post analysis of emissions reductions over
the period 2010-2017, Holland et al. 2020 estimate that coal plant investments in pollution
abatement and fuel switching delivered annual health benefits in excess of $60 billion.

The health benefits assessed in both ex ante and ex post studies are comprised almost
entirely of health benefits from reduced exposure to small particulate matter (PM2.5). The
causal link between reductions in power plant emissions and reduced PM2.5 exposure is
complex and indirect. Complicated interactions between atmospheric chemistry, meteorol-
ogy, topography, and pre-existing levels of precursors determine how changes in emissions
of NOx and SO2 at an electricity generating unit in one location cause changes in ambi-
ent PM2.5 concentrations at other locations. Ex ante projected health benefits, and many
ex post benefits assessments, rely on complex integrated assessment modeling to map coal
plant emissions changes to local air quality changes to health improvements. The validity
of these projections rely to a significant extent on the accuracy with which these complex
relationships are represented.

The complex modeling that underpins the assessment of co-benefits has come under some
scrutiny (Aldy et al., 2020). In what follows, we leverage significant and staggered reductions
in coal plant emissions, advances in high-resolution particle transport modeling, and daily
monitoring of local PM2.5 concentrations across thousands of locations to empirically inves-
tigate the relationships between coal plant emissions reductions and downwind air quality.

2.3 Co-benefits, Overlapping Policies, and Regulatory
Rebound

In a recent review of benefit-cost analyses (BCA) of recent EPA air-pollution regulations,
Aldy et al. (2020) highlight a number of striking facts. First, reduced exposure to small
particulates (PM2.5) has been the most economically significant source of prospective ben-
efits from major air-pollution regulations. Second, “co-benefits” (i.e., benefits caused—but
not directly targeted—by CAA regulations) comprise almost half of the monetized benefits
assessed in prospective regulatory assessments. Third, reductions in exposure to PM2.5 repre-
sent 96 percent of all monetized co-benefits over this period. For example, PM2.5 co-benefits
account for more than 99 percent of benefits assessed under MATS.

As we note in the prior section, complex relationships between air pollution emissions,
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PM2.5 formation, and dose-response relationships complicate the assessment of local air
pollution co-benefits. This assessment exercise is further complicated by the potential for in-
teractions between overlapping regulations. We consider, in particular, interactions between
regulations limiting air pollution from coal plants (e.g. CAIR, CSAPR, MATS) and the
ambient air quality standards that specify maximum allowable air pollution concentrations
for air pollutants such as PM2.5 and ozone. These health-based national ambient air quality
standards (NAAQS) apply uniformly across the country, and have been a central regulatory
mechanism governing air quality improvements across the United States in recent decades.

Threshold-based NAAQS are enforced using pollution concentration measurements col-
lected across the EPA’s air pollution monitoring network. Compliance with these national
standards is assessed at a local level on the basis of ‘design values’ (DVs) which are calibrated
using local air quality monitor readings. Within three years of a new or revised NAAQS,
states must submit state implementation plans to demonstrate how they will comply. The
SIP process relies on emissions inventories and air quality modeling to determine the portfo-
lio of control strategies (such as mandating abatement investments or limiting entry of new
sources) required to achieve compliance. If a region fails to comply with NAAQS, it must
take additional steps to improve air quality.

It is important to note that emissions from distant upwind sources can significantly
affect a county’s design value (and thus NAAQS compliance status). Recent research has
demonstrated that a majority of local PM levels measured at EPA monitors had originated
at sources outside the home county (see, for example, Wang et al. 2020). This and related
findings underscore that local regulators only control a fraction of emissions that contribute to
local air quality. A review of approved SIPs finds that states routinely account for national or
regional emissions regulations in their compliance strategy planning. In contrast, prospective
regulatory impact analysis does not.

Figure 2.3 provides a stylized illustration of pollution damages and abatement costs in
a jurisdiction that is constrained by an ambient air quality standard. The vertical black
line represents the pollution concentration threshold that localities should not exceed under
NAAQS. In the top panel, local pollution levels exactly meet this threshold. The downward
sloping line represents the local marginal abatement cost curve. The area A represents the
costs of remaining in compliance with the standard.

The horizontal line represents marginal damages caused by increased pollution exposure.
Consistent with the scientific assessment of health impacts from particulate matter exposure,
we assume the damage function is locally linear. Figure 2.3 depicts a case where levels of
abatement under the standard are inefficiently low given the pollution damage costs. A
single national ambient air quality standard applies to all counties across the United States.
Even if these standards are set efficiently on average, there will be many localities in which
marginal abatement costs do not equal marginal damages at the threshold.

Consider an emissions regulation that would reduce emissions from large point sources
which contribute to the formation of pollution summarized in Figure 2.3. Suppose this
regulation would induce reductions in upwind sources such that local pollution levels fall to
point G. Now that air quality standards are no longer binding, a rational response on the
part of the local regulator in this location would be to release constraints on local emissions
sources. Shapiro and Walker 2020 study local markets for pollution “offset” permits that
are created when a new entrant must pay incumbent plants to reduce emissions and indeed
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Figure 2.3: Policy Interactions and Regulatory Rebound
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the abatement costs incurred locally to comply with a binding air quality standard. In the
bottom panel, a reduction in regional emissions reduces local pollution concentrations. The local
regulatory response is to permit local emissions up to the level that corresponds to zero abatement
costs. This effectively foregoes health benefits (equal to area ABGH) in exchange for a reduction
in local abatement costs of EGH.
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show that the shadow value of air quality standards can be quite high in constrained areas.
This ‘regulatory rebound’ in response to the new emissions regulation would increase local
pollution levels to point H. In other words, increases in local pollution would counteract
regional reductions induced by the new regulation.

We are not the first to highlight the potential for interactions between new and existing
policies. For example, in its assessment of the MATS rule, the EPA notes that the proposed
rule could “lead to reductions in ambient PM2.5 below the NAAQS for PM in some areas and
assist other areas with attaining the PM NAAQS” (U.S. EPA 2011a, pp. 5-2). But standard
co-benefits accounting ignores the economic implications of this regulatory response. In
Figure 2.3, standard approaches to assessing co-benefits ex ante would would project benefits
represented by the area ACGI. After accounting for the local regulatory response, realized
health co-benefits would equal area BCHI. Additional benefits accrue as increased economic
activity (area EGH).

In this illustrated example, standard accounting practices over-estimate realized realized
co-benefit value. But this need not be true in general. In constrained areas where marginal
abatement costs exceed marginal damages from pollution exposure, failing to account for
regulatory rebound could under-estimate realized co-benefits. The net implications will
depend on how the economic value associated with increased local pollution compares to the
foregone health co-benefits.

Despite the pivotal importance of projected PM2.5-related co-benefits to the benefit-
cost assessment of proposed emissions regulations, we are unaware of any ex post efforts to
empirically quantify realized benefits of previous regulations. In a similar vein, standard
integrated assessment modeling (e.g., the InMAP model, which we rely on in this paper to
simulate the transport of emissions particles from sources to downwind receptors) does not
account for potential policy interactions or other factors which could result in actual pollution
concentrations diverging from predicted levels, such as the regulatory-rebound phenomenon
we describe. In what follows, we will estimate the impacts of recent emissions regulations
on ambient PM2.5 levels across the EPA monitoring network, as well as changes in long-run
mortality rates. In an empirical test for regulatory rebound, we will also assess the extent
to which these impacts appear to vary across regions that are more or less constrained by
pre-existing ambient air quality standards (i.e., NAAQS).

2.4 Modeling PM Formation
In this working paper, we report results based upon the Intervention Model for Air Pollution
(InMAP) from Tessum, Hill, and Marshall 2017, which is one of the reduced-form particle
transport models that simulates both the transport of and transformation of precursor par-
ticles into ambient PM2.5.2 The InMAP project provides a reduced complexity approach
that maps emissions to PM2.5 concentrations using a calibrated source-receptor matrix ap-
proximation. More precisely, InMAP uses pre-processed physical and chemical information
from detailed chemical transport modeling to calibrate a source-receptor matrix that can

2In subsequent versions of this paper, we will report on results based on particle transport simulations
instead using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model from the Na-
tional Oceanic and Atmospheric Administration (NOAA).
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be used to quickly simulate how emissions at one location impacts PM2.5 concentrations at
other locations (Tessum et al., 2017). InMAP takes as inputs plants’ geographic coordinates,
stack heights and diameters, and levels of precursor emissions—both NOx and SO2.

While InMAP includes quarter of year (or annual) source-receptor matrices, we run
InMAP for each month of our sample—combining monthly total emissions with the month’s
respective quarter. Importantly, InMAP’s quarterly source-receptor matrices are fixed across
all years, thus abstracting away from potentially significant meteorological variation over
time that is not season-invariant. The output is a grid for which each “cell” includes a level
of PM2.5 in µg/m3.3 The two panels of Figure 2.4 illustrate examples of the output from
InMAP for January and July in 2005. Specifically, Figure 2.4 depicts the modeled PM2.5
concentrations based upon the aggregate emissions reported by all electricity generating
units in the contiguous U.S. during the stated month.

Figure 2.4: InMAP outputted PM2.5 concentrations

Notes: Figures depict examples of InMAP modeled PM2.5 for January 2005 (A) and July 2005 (B), using
aggregate emissions reported by all generating units in the CEMS database in the respective month.

Our first empirical exercise is to assess the extent to which InMAP predictions correspond
to actual PM2.5 measurements over our time period (2005-2019). Equation (2.1) summarizes
our basic empirical approach for modeling this relationship:

(Monitor PM2.5)i,t = β
(
P̂M2.5

)
i,t
+ θi + ηr(i),t + εi,t (2.1)

The dependent variable in equation (2.1) is the average concentration of ambient PM2.5
measured at monitor i in time t. In this working paper, our analysis is conducted using data
disaggregated to the monthly level, although in subsequent versions of this project we may
shift to a finer temporal resolution, e.g. incorporating daily or hourly variation in emissions
and pollution concentrations. P̂M2.5 represents the InMAP-predicted level of ambient PM2.5
at monitor i in month-of-sample t attributable to emissions of precursor pollutants by power
plants in t. Importantly, these predicted concentrations represent PM2.5 attributable to

3It is possible to get many other outputs from InMAP; in this paper, we are focusing on PM2.5.
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aggregate power plant emissions in these months, a large portion of which are driven by
the plausibly exogenous policy changes described in Section 2.2. The β coefficient captures
the statistical relationship between variation in these power plant emissions and local air
quality, after accounting for monitor-specific effects (θi) and NERC region by month-of-
sample trends (ηr(i),t). If InMAP is accurately modeling pollution transport and PM2.5
formation, we should expect to estimate a β parameter equal to (or at least close to) one.

Next, we implement an empirical test for regulatory rebound. Intuitively, we want to
assess whether localities that were constrained at baseline take back the gap between local
PM2.5 concentrations and air-quality standards following sustained, largely policy-induced
drops in upwind emissions. If regulatory rebound does happen, then upwind decreases in
PM2.5 precursors, which are the primary inputs to our InMAP modeling, should reduce local
PM2.5 concentrations to a lesser extent when the locality was previously constrained by (or
in the neighborhood of) an air-quality standard.

In order to test this hypothesis, we extend equation (2.1) by allowing the effect of upwind
PM2.5 to vary during the policy period by the monitor’s baseline proximity to the NAAQS
threshold for PM2.5, i.e.,

(Monitor PM2.5)i,t =

β1
(
P̂M2.5

)
i,t
× 1{Far, Below}Baseline +

β2
(
P̂M2.5

)
i,t
× 1{Near, Below}Baseline +

β3
(
P̂M2.5

)
i,t
× 1{Near, Above}Baseline +

β4
(
P̂M2.5

)
i,t
× 1{Far, Above}Baseline +

β5
(
P̂M2.5

)
i,t
× 1{Far, Below}Baseline × 1{Policy Regime}t +

β6
(
P̂M2.5

)
i,t
× 1{Near, Below}Baseline × 1{Policy Regime}t +

β7
(
P̂M2.5

)
i,t
× 1{Near, Above}Baseline × 1{Policy Regime}t +

β8
(
P̂M2.5

)
i,t
× 1{Far, Above}Baseline × 1{Policy Regime}t +

θi + ηr(i),t + ui,t

(2.2)

where Near indicates that a monitor was within 1.0 µg/m3 of the NAAQS for PM2.5
in the baseline period of each policy regime, and Far indicates the opposite.4 We currently
focus on the annual NAAQS threshold for PM2.5 but may also consider distance from the
24-hour PM2.5 NAAQS in future extensions of this work.5 Similarly, Below indicates that the
monitor is below the standard, and Above indicates that the monitor’s PM2.5 level exceeds

4We define the baseline period for the CAIR regime (2009-2014) as 2007-2008 and the baseline period for
the CSAPR/MATS regime (2015-2019) as 2013-2014. We average over design values in each baseline period
to reduce noise from year-to-year pollution fluctuations.

5As an example of the NAAQS PM2.5 limits: The annual standard was revised downward from 15.0 to
12.0 µg/m3 (annual mean, averaged over three years) in 2012, with implementation beginning in 2014, and
has stayed at that level through 2019, the last year of our panel.
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the standard. Thus, 1{Near, Below}Baseline takes on a value of one if and only if monitor i
is located in a region with a NAAQS design value that is between 0 and 1 µg/m3 below the
PM2.5 standard in the baseline period. 1{Policy Regime}t takes a value of one in years when
each policy is operating (2009-2014 and 2015-2019 for the CAIR and CSAPR/MATS regimes,
respectively). The interactions between upwind PM and distance indicators in the pre-policy
period (β1 through β4) account for pre-existing differences in particulate exposure from
upwind sources that exist absent any regulatory action. In addition to monitor-level fixed
effects, we also include an interaction for NERC region and month-of-sample. The latter two-
way fixed effect is given by ηr(i),t in equation (2.2). If regulatory rebound occurs in practice,
then upwind decreases in PM2.5 concentrations6 during each emissions policy regime should
reduce local PM2.5 concentrations to a lesser extent when the locality is constrained (or in
the neighborhood of) an air quality standard. In equation (2.2), we would expect to see no
distance-based heterogeneity in the pre-policy period, so β1 through β4 should be of relatively
equal size (and close to one, if InMAP is accurately predicting downwind PM2.5). During
each policy regime, regulatory rebound would manifest empirically as smaller pass-through
of emissions changes the more constrained a county is by existing air quality standards. In
equation (2.2), this equates to β5-β8 getting increasingly smaller as the regional design value
approaches and passes the NAAQS threshold. These coefficients may even become negative,
depending upon the magnitude of rebound in practice. We are particularly focused on
comparing the Near, Below and Near, Above categories, since these counties are likely the
most constrained.7

Beyond pollution impacts, we are ultimately interested in the effect of reductions in power
plant emissions on human mortality, which drive the vast majority of co-benefit estimates
in the regulatory impact assessments of emissions policies. Mirroring the analysis of how
upwind emissions affect local PM2.5 concentrations, we first assess how mortality varies with
changes in local air quality driven by upwind emissions changes. However, rather than assess
trends in month-to-month mortality, we focus instead on estimating the effect of the long-
run change in local PM2.5 from upwind sources on the long-run change in relevant mortality
rates. We make this modification for two reasons. First, it is inherently difficult to estimate
the causal effect of air quality on mortality rates due to numerous unobservable factors that
also play a role in determining long-run health outcomes. Second, and more importantly,
first-order mortality impacts from changes in air pollution exposure are generally the effect
of years of exposure. Therefore, to assess the effect of the long-run change in air quality on
the long-run change in mortality, we estimate

(∆Mortality)c = β
(

∆P̂M2.5
)

c
+ ηr(c) + εc (2.3)

where (∆Mortality)c and
(

∆P̂M2.5
)

c
are the changes in mortality and InMAP-estimated

local PM2.5 concentrations in county c, respectively, over the duration of each policy regime.
For CAIR, we define this as the difference from 2009 to 2014, and for CSAPR/MATS from

6Or PM2.5 precursors, which are the input to the InMAP model.
7The intuition is that the Far, Below counties have plenty of slack in their air quality constraint, and

the Far, Above counties are almost certainly in non-attainment with NAAQS at baseline and presumably
already working with EPA to reduce emissions, prior to any upwind shocks.
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2015 to 2018.8 In equation (2.3) we also include a NERC region fixed effect ηr(c) to absorb
level-based differences in mortality rates that are common across counties in the same NERC
region and fixed over time.

We test our theory of regulatory rebound in the context of mortality by extending equa-
tion (2.3) similarly to the PM2.5 case by allowing the effect of variation in upwind emissions
to be heterogeneous based on the county’s proximity to the PM2.5 NAAQS in the baseline
period before each policy is enacted. Specifically, we estimate

(∆Mortality)c =

β1
(

∆P̂M2.5
)

c
× 1{Far, Below}Baseline +

β2
(

∆P̂M2.5
)

c
× 1{Near, Below}Baseline +

β3
(

∆P̂M2.5
)

c
× 1{Near, Above}Baseline +

β4
(

∆P̂M2.5
)

c
× 1{Far, Above}Baseline +

ηr(c) + uc

(2.4)

where the indicator variables for distance from the PM2.5 NAAQS threshold are de-
fined the same way as in equation (2.2). The outcome variable in the mortality regressions
(∆Mortality)c is calculated as the change in a relevant diagnosis-specific mortality rate per
100,000 residents in county c over the course of each policy regime.9 Analogous to the PM
case, evidence of regulatory rebound could be identified if β1-β4 are increasingly small, again
with particular focus on comparing the two Near categories. This would be evidence that
constrained localities take back some of the air quality (and ultimately, health-related) gains
from policy-induced reductions in power plant emissions. Consistent with previous work to
estimate the long-run mortality impacts of long-run changes in particulate matter exposure
(e.g., Henneman, Mickley, and Zigler 2019), we estimate equation (2.4) by regressing the
long difference in diagnosis-specific mortality rates on the long difference in InMAP-modeled
PM2.5 by OLS.10

8The CSAPR/MATS policy regime goes through 2019, however our mortality data from CDC currently
end in 2018.

9Relevant diagnoses considered are those identified in previous work as being affected by poor air quality.
See Section 2.5 for details.

10Related papers have instead estimated mortality impacts using count-based Poisson models, but we
note that a Poisson model is not appropriate in our case given that the mortality changes we document are
often negative. Also, there are very few zeroes in county-by-month mortality rates, even when limited to
specific diagnosis categories.
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2.5 Data Sources

2.5.1 Emissions and Plant Data
Our daily emissions data come from the US EPA’s Continuous Emissions Monitoring Sys-
tems (CEMS).11 For each day of operation for each electricity-generating unit (EGU), the
CEMS data record heat input, total generation, CO2 emissions, NOx emissions, and SO2
emissions. We merge these daily EGU emissions data with additional unit- and plant-specific
features, including unit nameplate capacity, stack height, stack diameter (and area), geo-
graphic coordinates, NERC region, and dates of key events that may change units’ emissions
trajectories. These key events include retirements, fuel switching, and abatement-technology
installations.12

2.5.2 EPA Monitor Readings, Design Values, and Distance Met-
rics

EPA maintains a national network of monitors that it uses to track local air quality and
assess compliance with national air quality standards. These data are reported in EPA’s
Air Quality System and can be downloaded at the monitor-level for individual pollutants
and temporal aggregations (e.g., hourly, daily, annually, etc.) through EPA’s data API. In
this working paper, we focus on monitors with pollutant code 88101, which identify PM2.5
monitors that meet the federal requirements to be used in NAAQS determinations, and we
aggregate daily monitor readings to the monthly level by taking a simple average.

Individual PM2.5 monitors are mapped to counties using their geographic coordinates,
and we exclude any monitors outside of the continental U.S. Although most counties have
just one PM2.5 monitor that meets the standards for NAAQS calculations, some (often
historically more-polluted) counties have multiple monitors. For instance, as of 2018, Cook
County, Illinois and Los Angeles County had nine and ten monitors for PM2.5, respectively,
whereas San Francisco County has only one regulatory-grade monitor.

As discussed, determinations regarding local compliance with each pollutant-specific
NAAQS are made on the basis of design values which are calculated using monitor readings
from EPA’s network. Design values are first computed at the monitor-level, and are based on
pollutant- and duration-specific formulas which typically specify a data capture requirement
and, upon regulatory approval, allow for exclusion of certain rare exceptional events that
could affect concentration readings (e.g., wildfires, volcanic eruptions, etc.).13 To calculate
the design value for a given area, EPA selects the maximum of the valid monitor-level design
values across all monitors within that area. Each year, EPA publishes monitor-level and

11We obtained this data through a partnership with EPA via its 2019 EmPOWER Air Data Challenge.
12While we currently input unmodified “raw” emissions into the InMAP model, we may in the future

use these plant-level indicators to exclude EGUs whose emissions are likely not affected by regulations (e.g.,
plants that we can identify as retiring due to trends in renewable energy or other reasons that are unrelated
to the emissions policies we study).

13In our current analysis, in order to increase geographic coverage, we generally treat as valid the design
values that are deemed “invalid” due to insufficient data capture, since they are published for public use
annually and easily observable by local regulators. Versions of our analyses which exclude these invalid
design values appear to reach the same general conclusions, but are less precise due to smaller sample size.
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county-level design values, as well as design values for “previously designated nonattain-
ment areas,” which may be comprised of one or more counties. For example, the designated
nonattainment area Los Angeles-South Coast Air Basin, CA includes Los Angeles, Orange,
Riverside, and San Bernardino counties. Future iterations of this paper may instead con-
sider geographic aggregations other than counties, which may correspond better to a local
air district, such as a “commuting zone”, as the spatial unit of analysis.

We currently define a county as “constrained” or not with respect to the NAAQS for
annual PM2.5, equal to 15.0 µg/m3 through 2012 when it was reduced to 12.0 µg/m3 in
2012 (with implementation in 2014). Specifically, we first calculate the average design value
for a county in the baseline period of each policy (2007-2008 for the CAIR regime and 2013-
2014 for the CSAPR/MATS regime) and calculate the distance between that value and the
applicable NAAQS (15.0 and 12.0 for CAIR and CSAPR/MATS, respectively). We then
assign each county to one of four groups based on this measure: (−∞,−1) (Far, Below),
[−1, 0) (Near, Below), [0, 1] (Near, Above), and (1,∞) (Far, Above). In our estimation
detailed below, we test for heterogeneity in regulatory rebound across these four mutually
exclusive groups.

We construct our main estimation panel by matching county-level annual design values
to PM2.5 monitor readings at the specific site which determined the county-level design value
in the given year (i.e., the monitor with the maximum DV in the county), which we call the
“marginal” monitor site. This construction results in a panel in which each county only
appears in the data once in each month of the sample. One alternative construction, which
would include monitor readings from all monitors and assign distance based on each moni-
tor’s county-level design value, would over-represent counties which have multiple regulatory
monitors. A third alternative would simply include all existing monitors and assign each
monitor its own design value. However, that panel structure is less representative of reality
on the ground, since individual monitor design values that are below the maximum in an
area are not used for regulatory decisions. In any case, we run our empirical analysis using
these two additional panel structures, but results are not meaningfully different from those
using our preferred estimation panel.

2.5.3 Mortality Data
To assess long-run trends in mortality related to declining power plant emissions, we rely on
Multiple Cause of Death (MCOD) data from the Centers for Disease Control and Preven-
tion. This is a database of individual-level death records for the entire U.S. from 2005 to
present. Each record contains demographic information and information about the event,
including the primary cause of death identified by diagnostic codes contained in the Inter-
national Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). In
addition to assessing trends in total mortality, we assess trends in several air quality-related
conditions in order to be consistent with several epidemiological studies relied upon by EPA
in estimating health co-benefits associated with proposed emissions policies. These condi-
tions and associated ICD-10 code prefixes include the following: all cardiovascular diseases
(I10.0-170.9), cardiopulmonary disease (I26-I28), ischemic heart diseases (I20-I25), lung and
related cancers of the respiratory system (C33.0-C34.9), chronic lower respiratory diseases
(J40.0-J47.0). We also examine trends in several other diseases not believed to be related
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to air quality as a placebo check on our model. Mortality records are matched to local air
quality at the county and month, which is the lowest level of spatio-temporal aggregation
available in the confidential MCOD data.

2.6 Results and Discussion
In the results that follow, we report coefficient estimates from our estimating equations
for our two policy regimes: CAIR and CSAPR/MATS. We begin by assessing how well
PM2.5 exposure predicted by InMAP correlates with observed local pollution levels. And
then we test for regulatory rebound in both monitored PM2.5 and mortality by allowing
for heterogeneity in upwind (InMAP) PM2.5 impacts by distance from the annual NAAQS
threshold in the baseline period of each policy regime. For all regressions, we use a bandwidth
of 1.0 µg/m3 to assign the Near, Above and Near, Below categories. That is, counties with
a design value in the baseline of the CAIR period (2007-2008) of between 14.0-15.0 µg/m3

would be categorized as Near, Below, while counties with a design value of between 15.0-
16.0 µg/m3 are categorized as Near, Above. For the baseline of the CSAPR/MATS regime
(2013-2014), we also use a bandwidth of 1.0 µg/m3, but we note that distance metrics for
that regime are determined with respect to the lower national threshold of 12.0 µg/m3 that
was enforced following the 2012 NAAQS update.

2.6.1 Local Air Pollution
Table 2.1 reports regression results from equations (2.1) and (2.2) for the CAIR regime.
In column (1), we regress EPA PM2.5 monitor readings (averaged monthly) on InMAP
predictions for the grid cell in which each monitor is located, based upon all power plant
emissions in the contiguous U.S. in the corresponding month. β in equation (2.1) gives the
effect of upwind14 emissions events on average monitor-level PM2.5 concentrations at monitor
i during month t in NERC region r(i). If InMAP is accurately modeling pollution transport
and PM2.5 formation, we should expect to estimate a β parameter near one.

Column (1) of Table 2.1 suggests that the combination of aggregate EGU emissions and
InMAP modeling slightly under-predicts (on average) the relationship between monitored
PM2.5 concentrations and precursor emissions originating at power plants. That is, β of 1.27
in equation (2.1) implies that every 1.0 µg/m3 of modeled PM2.5 is associated with 1.27
µg/m3 of actual (monitored) PM2.5 downwind. However, at the 5-percent level, although
we reject that β is less than or equal to zero, we fail to reject that β differs from one
(95% confidence interval of [0.87, 1.68]). One explanation for β being larger than one is
that upwind PM2.5 generation is correlated with local (near the monitor) PM2.5-generating
activity, thus creating some upward bias in the coefficient estimate.

The results of our preliminary empirical test for regulatory rebound under the CAIR
regime are reported in column (2) of Table 2.1. Intuitively, we want to assess whether
constrained localities respond to sustained reductions in upwind emissions by taking back
the gap between local PM2.5 concentrations and air-quality standards. In order to test this
hypothesis, we allow the influence of upwind EGU emissions on local PM2.5 concentrations to

14Upwind using InMAP’s dispersion model.
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differ by proximity to the NAAQS threshold for ambient PM2.5 after the new emissions policy
has been enacted. Since there are likely pre-existing regional differences in how power plant
emissions affect downwind air quality – for example, due to natural differences in topology
and/or average meteorology across regions – we control for heterogeneity in the pre-policy
period (β1 through β4 in equation (2.2)). Our main focus is on the coefficients that are
interacted with CAIR (β5 through β8 in equation (2.2)), capturing heterogeneity during
the CAIR policy regime (2009-2014). If regulatory rebound occurs, one would expect the
estimated coefficients during the policy regime to be smaller the more constrained a county
is, reflecting lower pass-through of local air quality benefits in areas that have relatively
higher incentives to permit more economic activity following sustained drops in emissions
from upwind sources.

The estimates in column (2) of Table 2.1 provide weak but suggestive evidence that
regulatory rebound occurred in response to CAIR implementation. The first four estimates in
column (2) suggest there exist some pre-policy differences in the impact of upwind emissions
on local air quality, with the Near counties experiencing greater pass through of emissions
than counties farther from the threshold in the pre-policy period. However, we cannot reject
that β1-β4 are equal given that the 95% confidence intervals for the estimates are overlapping.
Further, the coefficients on the CAIR interactions conform broadly with rebound, although
they are imprecisely estimated. The coefficient on the Near, Above counties is relatively
smaller than the coefficient on Near, Below, while the Far, Above coefficient is negative. This
is what one would expect if areas with poorer ambient air quality at baseline face relatively
larger incentives to permit more polluting activity when they experience a favorable external
shock from upwind sources. However, although these estimates are potentially suggestive of
rebound, they are relatively noisy. We note that there are many fewer localities classified as
exceeding the annual standard in baseline period of CAIR (47 are classified as Near, Above
and 25 as Far, Above, compared with 99 Near, Below and 667 Far, Below) which helps
to explain the less precise coefficients on these CAIR-period interactions.15 Overall, while
these estimates do not provide irrefutable evidence of rebound, they also do not provide
strong reason to reject it. Importantly, we note that while relying on InMAP to model
downwind PM2.5 formation offers a quick read on these potential relationships, its reduced
complexity and static seasonal meteorology likely make it not the best suited model for this
task. As we note, future iterations of this analysis will instead rely primarily on particle
transport/dispersion predicted by the higher-complexity HYSPLIT model.

Table 2.2 reports empirical results for our second regime, CSAPR/MATS. The table
structure is the same as in Table 2.1, but in this case we include interactions between the
distance bins and the CAIR regime (2009-2014) in addition to the CSAPR/MATS regime
(2015-2019), in order to allow distance-based heterogeneity to differ between the CAIR
regime and the period prior to any policy implementation (2005-2008). We note that the
distance metrics in this estimation sample are assigned to counties with respect to design
values in the baseline period of the CSAPR/MATS regime (2013-2014) (rather than with
respect to the CAIR baseline period of 2007-2008, as in Table 2.1).16

Similar to the CAIR analysis, InMAP under-predicts particulate pollution derived from
15We report results from a supplementary analysis that excludes California counties and collapses the

Near, Above and Far, Above categories to a single Above category in Appendix Table B.3.
16A county’s level of constrained-ness as of 2013-2014 seems to be the most relevant value to measure any



49

Table 2.1: The effect of upwind emissions on monitors’ PM2.5 levels under CAIR

Dependent variable: Monitor-average PM2.5 (month of sample)
(1) (2)

Pooled Annual Standard

P̂M2.5 1.268∗∗∗
(0.204)

(P̂M2.5) × Far, Below 1.093∗∗∗
(0.210)

(P̂M2.5) × Near, Below 1.347∗∗∗
(0.209)

(P̂M2.5) × Near, Above 1.442∗∗∗
(0.203)

(P̂M2.5) × Far, Above 1.313∗∗∗
(0.269)

(P̂M2.5) × Far, Below × CAIR 0.371
(0.267)

(P̂M2.5) × Near, Below × CAIR 0.476∗
(0.279)

(P̂M2.5) × Near, Above × CAIR 0.287
(0.262)

(P̂M2.5) × Far, Above × CAIR -0.491
(0.350)

Fixed effects
Monitor Yes Yes
Month by NERC region Yes Yes
Observations 62,451 62,451

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the monitor-month, limited to only one
monitor per county (selected monitors represent the “marginal” monitor, defined as the monitor
that determined the county’s annual design value for PM2.5 in the respective year). The dependent
variable is the monthly average PM2.5 concentration at the given monitor.P̂M2.5 refers to InMAP-
based estimates of the transport of PM2.5 from upwind emissions at electricity-generating units
to the monitor. Distance indicators denote the distance of the monitor’s county from the Annual
PM2.5 NAAQS of 15.0 µg/m3 in the base period of CAIR (2007-2008). Based on a bandwidth of
1.0 µg/m3, there are 667 monitors categorized as Far Below, 99 as Near Below, 47 as Near Above,
and 25 as Far Above. We two-way cluster errors at the same level as the specifications’ fixed effects.
The data sample for this set of regressions covers 2005-2015.
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upwind emissions when we extend the panel to include the CSAPR/MATS years (2015-2019).
At 95% confidence, we can reject a β of zero, although we fail to reject a value of one. To test
for regulatory rebound during this second regime, we are focused primarily on the distance
interactions with CSAPR/MATS, where evidence of rebound would be indicated again by
smaller pass-through of upwind emissions in relatively more constrained counties. Of the
four interactions of interest, the estimate for Near, Above is indeed relatively smaller than for
Near, Below (and both smaller than Far, Below) but it is hard to interpret the increasingly
large negative values. For example, the value for Near, Above counties of -1.4 implies that
every 1.0 µg/m3 decrease in PM2.5 from upwind sources is associated with a 1.4 µg/m3

increase in local PM2.5. While this is theoretically consistent with rebound, the magnitude
of the response seems extreme. Again, we note that InMAP is a highly simplified model of
chemical transport, and the coefficients in column (1) of Tables 2.1 and 2.2 indicate that it
does not accurately predict downwind PM2.5, at least on average. We therefore emphasize
that although weakly indicative of rebound, these InMAP-based estimates are preliminary.
Future iterations of this paper will incorporate data-driven estimates of downwind PM2.5
based instead on a state-of-the-art atmospheric dispersion model (HYSPLIT) which may
generate different results.

2.6.2 Mortality
In this section, we report estimates of the effect of long-run changes in predicted PM2.5 from
upwind emissions on long-run changes in mortality rates for relevant conditions.17 We note
that mortality is a primary outcome of interest in our analysis given the large contribution of
monetized mortality benefits to the projection of overall co-benefits under proposed emissions
policies. We report estimates for five cardiac and respiratory health outcomes that are the
focus of several studies that underlie EPA’s mortality projections under recent policy pro-
posals (e.g., Krewski et al. 2009 and Lepeule et al. 2012), in addition to all-cause mortality.
These conditions include ischemic heart disease (IHD), all cardiovascular diseases, all car-
diopulmonary diseases, lung cancer, and chronic obstructive pulmonary disorder (COPD).18

The estimates contained in Tables 2.3 and 2.4 are based on the regression presented
in equation (2.4), and focus on long-run changes in predicted PM and mortality over the
duration of the CAIR and CSAPR/MATS policy regimes, respectively. Each column rep-
resents a separate regression limited to mortality for the specified condition. Based on the
granularity of the CDC mortality data, estimates are at the county-level, and represent the
annual count of deaths per 100,000 county residents. To reduce noise in the data, we aver-
age over mortality rates (and InMAP-predicted PM2.5) over two pre-policy years and two
post-policy years for each regime. For CAIR, the long difference compares 2007-2008 values

changes against, since it determined the county’s NAAQS compliance status just prior to the implementation
of CSAPR and MATS. However, we recognize that 2013-2014 falls right at the end of the CAIR regime,
and thus these CSAPR/MATS distance definitions may be confounded by any regulatory rebound that is
occurring in response the earlier policy regime. In future work we will consider other measures of distance,
e.g. the existence of offset permit markets.

17We report mortality estimates based on InMAP-modeled PM even though the results from the previous
section indicated that InMAP may not be very well-suited for this task.

18Ischemic heart disease refers to heart problems caused by narrowed arteries around the heart. COPD
includes chronic lower respiratory diseases, such as bronchitis, emphysema, and asthma.
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Table 2.2: The effect of upwind emissions on monitors’ PM2.5 levels under CSAPR/MATS

Dependent variable: Monitor-average PM2.5 (month of sample)
(1) (2)

Pooled Annual Standard

P̂M2.5 1.278∗∗∗
(0.176)

(P̂M2.5) × Far, Below 1.238∗∗∗
(0.192)

(P̂M2.5) × Near, Below 1.189∗∗∗
(0.178)

(P̂M2.5) × Near, Above 1.225∗∗∗
(0.237)

(P̂M2.5) × Far, Above 1.591∗∗∗
(0.393)

(P̂M2.5) × Far, Below × CAIR 0.239
(0.265)

(P̂M2.5) × Near, Below × CAIR 0.216
(0.272)

(P̂M2.5) × Near, Above × CAIR 0.135
(0.289)

(P̂M2.5) × Far, Above × CAIR 0.097
(0.578)

(P̂M2.5) × Far, Below × CSAPR/MATS -0.203
(0.573)

(P̂M2.5) × Near, Below × CSAPR/MATS -0.529
(0.544)

(P̂M2.5) × Near, Above × CSAPR/MATS -1.418∗∗
(0.716)

(P̂M2.5) × Far, Above × CSAPR/MATS 1.066
(2.118)

Fixed effects
Monitor Yes Yes
Month by NERC region Yes Yes
Observations 86,267 86,267

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the monitor-month, limited to only one
monitor per county (selected monitors represent the “marginal” monitor, defined as the monitor
that determined the county’s annual design value for PM2.5 in the respective year). The outcome
variable is the monthly average PM2.5 concentration at the given monitor. P̂M2.5 refers to InMAP-
based estimates of the transport of PM2.5 from upwind emissions at electricity-generating units
to the monitor. Distance indicators denote the distance of the monitor’s county from the Annual
PM2.5 NAAQS of 12.0 µg/m3 in the base period of CSAPR/MATS (2013-2014). Based on a
bandwidth of 1.0 µg/m3, there are 807 monitors categorized as Far Below, 72 as Near Below, 30 as
Near Above, and 22 as Far Above. We two-way cluster errors at the same level as the specifications’
fixed effects. The data sample for this set of regressions covers 2005-2019.
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to 2013-2014 values, and for CSAPR/MATS the comparison is 2013-2014 to 2017-2018. We
note that the results presented currently are essentially “reduced form” estimates, based on
evidence from the air pollution regressions that InMAP PM2.5 is not perfectly correlated
with actual (monitored) PM2.5. In future work, we hope to move beyond the reduced form
to generate estimates of mortality impacts that can be compared directly to projections
contained in regulatory impact assessments of emissions policies. Positive estimates for each
of the mortality regressions would indicate that PM2.5 and relevant mortality move in the
same direction, which one would expect if pollution is bad for health. Analogous to the
previous section, evidence of regulatory rebound would be indicated if the coefficients on
the distance-based interactions become relatively smaller the farther a county moves out of
attainment with the prevailing NAAQS. This would suggest lower pass-through of expected
mortality benefits from CAIR or CSAPR/MATS in counties that were constrained ex ante
by existing air quality standards at the time that each emissions policy was enacted.

The coefficient estimates in Table 2.3 do not provide strong evidence of rebound in
mortality under the CAIR period, which is not totally surprising given the imprecision of
the first-stage estimates in Table 2.1. The presence of several negative coefficients – indicating
higher mortality as pollution levels fall – is unexpected, although the estimates are generally
imprecise and very small in magnitude (especially when interpreted as an annual rate per
100,000 county residents). The results in Table 2.4 for the CSAPR/MATS regime also do
not provide strong evidence of mortality-related regulatory rebound. However, we again
note that these estimates are preliminary, and are based on InMAP-modeled PM2.5 which
we show is not a perfect predictor of actual PM2.5. We also note that there are far fewer
counties that are assigned to the Above categories than the Below categories, which helps
to explain the relatively noisier coefficients on these interactions. In future work, we may
incorporate other measures of a county’s level of constrained-ness with respect to NAAQS,
including possibly the existence of local markets for emissions offset permits.

2.6.3 Robustness
Based on our primary estimates, we have identified weak but suggestive evidence of regula-
tory rebound in local pollution levels (although not in long-run mortality). However, since
a large portion of counties assigned to the Far, Above category are located in California – a
state which was only marginally impacted by the CAIR and CSAPR/MATS policy changes
– we replicate our analyses with all California counties excluded from the sample. These
supplementary results are reported in Appendix Section B.1. When excluding California
counties, the CAIR regime estimates reported in Appendix Table B.1 continue to indicate
weakly suggestive evidence of rebound based on our proposed empirical test. Similarly, es-
timates for the CSAPR/MATS regime, in Appendix Table B.2, offer limited evidence of
rebound. We also note that once excluding California counties from our analysis under the
CSAPR/MATS regime, we are left with only two non-California counties in the Far, Above
category. Therefore we conduct a final set of CSAPR/MATS regressions in Appendix Table
B.3 in which we combine Near, Above and Far, Above to a single Above category. In this
case, we again find some evidence of rebound, although the majority of estimates are not sta-
tistically significant. Overall, we are encouraged by the limited evidence we have obtained of
rebound occurring in practice, but continue to interpret these InMAP-based estimates with
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Table 2.3: The effect of changes in upwind emissions on changes in county mortality under
CAIR

(1) (2) (3) (4) (5) (6)
All IHD Cardiovasc. Cardiopulm. Lung COPD

(∆P̂M2.5) × Far, Below 1.390 2.667 −3.448 −1.025 −1.899 −1.210
(29.161) (6.205) (10.233) (0.634) (2.615) (2.877)

(∆P̂M2.5) × Near, Below −10.467 1.733 −5.301 −1.489∗∗ −3.461 −2.345
(27.330) (5.815) (9.590) (0.594) (2.451) (2.696)

(∆P̂M2.5) × Near, Above 13.694 7.507 7.614 −0.660 −1.195 2.100
(29.027) (6.177) (10.186) (0.631) (2.603) (2.864)

(∆P̂M2.5) × Far, Above 4.782 5.681 0.383 −1.335 −0.091 1.953
(48.544) (10.330) (17.035) (1.056) (4.353) (4.789)

Fixed effects
NERC Region Yes Yes Yes Yes Yes Yes
Observations 438 438 438 438 438 438

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The outcome variables is the change in the county-level mortality
rate per 100,000 residents for the stated health condition from the pre-period to the post-period of
the policy. For CAIR, this change is calculated as the difference between the 2013-2014 average rate
and the 2007-2008 average rate. ∆P̂M2.5 refers to the change in average InMAP-based exposure
from 2007-2008 to 2013-2014. Distance indicators denote the distance of the county from the
Annual PM2.5 NAAQS of 15.0 µg/m3 in the base period of CAIR (2007-2008). We cluster errors
by NERC region.



54

Table 2.4: The effect of changes in upwind emissions on changes in county mortality under
CSAPR/MATS

(1) (2) (3) (4) (5) (6)
All IHD Cardiovasc. Cardiopulm. Lung COPD

(∆P̂M2.5) × Far, Below 4.371 4.412 22.702 0.229 8.552 −2.114
(51.588) (12.371) (17.032) (1.358) (6.134) (6.307)

(∆P̂M2.5) × Near, Below 30.284 4.818 25.392 −2.084 10.678 1.612
(59.278) (14.215) (19.570) (1.560) (7.049) (7.247)

(∆P̂M2.5) × Near, Above −2.787 10.729 7.210 −0.577 15.703 2.038
(90.715) (21.754) (29.949) (2.388) (10.787) (11.090)

(∆P̂M2.5) × Far, Above 3.733 13.569 23.931 −0.041 7.279 0.175
(168.430) (40.390) (55.606) (4.434) (20.028) (20.591)

Fixed effects
NERC Region Yes Yes Yes Yes Yes Yes
Observations 437 437 437 437 437 437

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the change in the annual county-level
mortality rate per 100,000 residents for the stated health condition from the pre-period to the
post-period of the policy. For CSAPR/MATS, this change is calculated as the difference between
the 2017-2018 average rate and the 2013-2014 average rate per 100,000 residents. ∆P̂M2.5 refers to
the change in average InMAP-predicted exposure from 2013-2014 to 2017-2018. Distance indicators
denote the distance of the county from the Annual PM2.5 NAAQS of 12.0 µg/m3 in the base period
of CSAPR/MATS (2013-2014). We cluster errors by NERC region.
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some caution.
We also conduct several placebo tests related to the mortality analysis, by estimating the

impact of changes in predicted PM2.5 on changes in long-run mortality for several conditions
that are not known to be associated with air quality. In general, we find no effects, as
expected. These estimates are reported in Appendix Tables B.4 and B.5.

2.7 Conclusion
This paper begins to investigate co-benefits accounting in theory and practice. We focus on
two distinct policy regimes, the CAIR regime (2009-2014) and the CSAPR/MATS regime
(2015-2019), during which the U.S. saw unprecedented reductions in the emissions of harmful
criteria pollutants associated with power generation. We highlight the potential importance
of policy interactions in the determination of health co-benefits associated with reductions in
these pollutants. We introduce an empirical strategy for evaluating the indirect impacts of
power plant emissions on air quality in down-wind locations that accounts for this “regulatory
rebound”, which we theorize may manifest in ex ante constrained localities. To approximate
the transport of precursor pollution from power plants and formation of PM2.5, we rely on the
InMAP model, a reduced-form chemical transport model that allows us to get a preliminary
read on how emissions changes affect down-wind pollution levels, and ultimately, long-run
mortality.

Based on our current empirical strategy and the projections of downwind PM2.5 delivered
by the InMAP model, we currently find weakly suggestive evidence of regulatory rebound in
practice. While our proposed empirical test does not deliver irrefutable evidence of rebound
in local pollution levels or long-run health impacts in constrained areas, we also cannot rule
it out. We note that there are several important limitations to our current research design,
which we aim to improve upon in future iterations of this work. First, while useful for
obtaining preliminary suggestive estimates, the InMAP model may not be the best-suited
tool for this task. The effects we hope to detect require accurate, precise estimates of how
emissions particles travel through space and time, and InMAP – which abstracts away from
year-to-year variation in meteorology – may misattribute emissions to down-wind locations.
Indeed, our efforts to validate the InMAP projections in our baseline model (column (1) in
Tables 2.1 and 2.2) indicate that InMAP does not perfectly predict local pollution. As we
mention, future work will incorporate more precise particle trajectory modeling based instead
upon the higher-resolution and more computationally-intensive HYSPLIT model. Estimates
of local pollution levels based on emissions particle trajectories projected by HYSPLIT will
support a more rigorous test of our regulatory rebound hypothesis, and allow us to directly
compare our estimates of benefits to their projected levels reported in EPA’s prospective
regulatory analyses. In addition to incorporating more complex pollution transport model-
ing, we will also continue to refine our empirical approach. We may consider other relevant
spatial units beyond individual counties, as well as broaden our definition of ‘constrained’ to
include qualitative indicators, such as the existence of offset permit markets (as explored by
Shapiro and Walker 2020). Overall, we aim to inform the current debate on how co-benefits
should be properly accounted for, and provide rigorous empirical evidence on how reductions
in power plant pollution impact local air quality and associated health outcomes.



56

Chapter 3

Income-Related Heterogeneity in
Extreme Temperature and Health

3.1 Introduction
Whether and to what degree humans are harmed by a changing climate is currently an active
area of research in empirical environmental economics. There is evidence that extreme
temperatures and the unpredictable weather events made more likely by climate change
(such as tropical cyclones) affect a wide range of economic outcomes, summarized in detail by
Carleton and Hsiang 2016. Examples of potential negative impacts of climate change include
reductions in agricultural yields (Aufhammer, Ramanathan, and Vincent 2012 and Schlenker
and Roberts 2009), deceleration of macroeconomic growth (Burke, Hsiang, and Miguel 2015),
strained energy systems and infrastructure (e.g., Jaglom et al. 2014), increased civil conflict
and interpersonal violence (Burke et al. 2009 and Ranson 2014), reduced labor supply and
productivity (Graff-Zivin, Hsiang, and Neidell 2018), increased mortality (Deschenes and
Greenstone 2011), and greater disease prevalence (e.g., Burke, Hsiang, and Miguel 2015).

Of particular importance when projecting climate damages into the future is the range of
possible actions that individuals might take to moderate harmful impacts, i.e. human adap-
tation to climate change. Much attention has been focused in recent years on envrionmental
policy measures that might mitigate the accumulation of harmful gases in the atmosphere,
such as taxation of carbon emissions and increasingly stringent regulations for other pollu-
tants. More recently, researchers have focused on the adaptive measures that individuals and
other agents can take to adapt to actual or expected climate. Example adaptive behaviors
include investments in residential cooling systems, strategic urban planning, or improved
public health services, such as early warning systems. Also important to the estimation of
climate change-related damages is understanding whether and how populations with differ-
ent underlying characteristics are differentially affected by the same climate conditions, since
this heterogeneity could have important implications for the distribution of climate damages
(or benefits) and thus the design of optimal climate policy.

In the United States, public assistance provided by the government to low-income popu-
lations, administered through in-kind benefit programs like Medicaid or through direct cash
welfare via programs like the Supplemenal Nutrition Assistance Program, is aimed broadly
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at redistributing resources from the rich to the poor. However, one unintended benefit of
such welfare programs could also be improved protection from climate-related shocks, either
through directly increasing the baseline health stock of program recipients (via improved nu-
trition or investments in preventive health care) or indirectly through loosening the budget
constraint to allow investment in other defensive measures or in the general stock of health.

In this chapter, I return to the potential for public health insurance (e.g., Medicaid)
to be used as a tool to mitigate the health impacts of higher temperatures, rather than
air pollution exposure as studied at length in Chapter 1. I begin by replicating previous
work on the health impacts of extreme temperature using Texas as a case study. I confirm
the “U”-shaped relationship documented by previous researchers, where both extreme cold
and extreme hot temperatures are associated with higher morbidity, relative to a mild day.
Furthermore, although as of 2020 Texas has not expanded its Medicaid program under the
ACA, I provide descriptive (non-causal) evidence that adult recipients of Medicaid may
be relatively less vulnerable to extreme climate shocks. I supplement this with several
additional analyses in which insurance status is replaced by regional income measures, in
an attempt to disentangle the “Medicaid effect” from the “income effect”. Whether public
health insurance can be used to counteract the effects of extreme weather is a potentially
policy-relevant question, particularly as climate change is making extreme temperatures and
related climate events more common over time. If other studies are identifying problems
that can be (or already are) solved by public assistance programs like Medicaid, then the
policy recommendations would be clear.

Using administrative patient-level data on hospital use and insurance status, I estimate
that health care utilization for temperature-related illnesses is relatively lower among the
population of patients insured by Medicaid, but only when limited to the subset of patients
18 years and older. For children, I find the opposite result: Medicaid recipiency is associated
with higher morbidity on extreme temperature days. Without more detailed information on
patient-level characteristics, it is difficult to ascertain the reasons for this difference, but it
might suggest that the positive health benefits of Medicaid recipiency strengthen over time,
and that the protective Medicaid effect should theoretically be lower for children simply
due to their young age (and fewer number of potential years enrolled in the program).
Alternatively, the differences I estimate may be the result of unobservable selection bias
which I cannot control for with the current research design. Indeed, I emphasize that, unlike
the air pollution and Medicaid analysis summarized in Chapter 1, in this chapter I am not
leveraging quasi-random variation in insurance coverage and so these estimates should not
be interpreted as identifying a causal effect of that coverage. However, my data sample
includes only patients that were ultimately admitted to the hospital following an initial ER
visit, so it seems reasonable to assume that these patients are indeed acutely ill, which may
alleviate some concerns about insurance-related moral hazard that has been documented by
previous researchers. As a further check on this issue, in some specifications I focus on a set
of more severe temperature-related diagnoses for which the demand for health care is likely
to be (at least almost) universal, regardless of insurance status.

This study fits loosely into several existing literatures in economics and related fields.
First, it contributes to the existing literature on the health impacts of climate, providing
some of the first evidence (to my knowledge) that extreme temperatures lead to increased
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morbidity among patients with any form of insurance.1 Second, based on the potentially
strong assumption that Medicaid recipiency is a reasonable proxy for an individual having
relatively lower income, this study adds to a well-developed literature documenting how
income is related the utilization of and demand for health care services (e.g., one influential
example is Hall and Jones 2007, who find large income elasticities in the demand for health
and health care). Third, this study is related to an emerging literature that uses plausibly
exogenous variation in local climate to estimate health impacts among individuals receiving
public assistance of various forms, or to quantify the added value of such programs in the
wake of extreme climate events (e.g., existing work in this area includes Heutel, Miller, and
Molitor 2020, Bishop, Ketcham, and Kuminoff 2018, and Deryugina 2017).

The chapter proceeds as follows. Section 3.2 provides an overview on the state of the
literature on the relationship between temperature and health, presents institutional de-
tails about the Medicaid system that are relevant to this analysis, describes a conceptual
framework of how Medicaid recipiency and income may modify the temperature-health rela-
tionship, and discusses current knowledge on income-related hetereogeneity in the demand
for health care services. Section 3.3 provides information on the data sources used for es-
timation of morbidity impacts, including the Texas hospital data, and Section 3.4 reports
relevant summary statistics. Sections 3.5 and 3.6 detail my econometric strategy and empir-
ical results. Section 3.7 discusses the implications of these results, and concludes.

3.2 Background

3.2.1 Extreme Temperature and Human Health
The human body’s thermo-reguatory system allows for continued functioning during ambient
exposure to extreme hot or cold temperatures. However, despite the body’s natural self-
regulating behaviors, there are a variety of mechanisms through which extreme temperatures
can lead to compromised health. Low temperatures cause the body’s blood vessels and
arteries to narrow, restricting blood flow and reducing oxygen to the heart. The heart must
then pump harder to circulate blood through the constricted blood vessels, which increases
blood pressure and heart rate. These physiological responses, particularly when coupled with
physical exertion, can lead to serious medical conditions such as heart attack and stroke.
Conversely, blood vessels will dilate in extreme heat, allowing more blood to flow to the
surface of the skin, where heat can be lost to the air. With more blood near the surface
of the skin, however, less is available to the heart, and heart rate will increase to maintain
cardiac output. During this process, chemicals are released that make blood stickier and
more likely to clot, and excess sweating triggers the loss of electrolytes that are critical to
the functioning of both the heart and nervous system. These responses can lead to conditions
such as heat exhaustion and heat stroke, which are sometimes fatal (and are particularly
dangeous for the young and the elderly, since their thermo-regulatory systems are relatively
less advanced).

1While there exist numerous epidemiological studies on temperature-related morbidity, previous eco-
nomics studies, such as Deschenes and Greenstone 2011, have focused primarily on mortality related to
extreme weather and/or temperature.
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In one of the early economic studies on the relationship between temperature and health,
Deschenes and Greenstone 2011 estimate a statistically significant association between daily
mean temperatures and the annual mortality rate in the United States, with extreme temper-
atures at both ends of the spectrum associated with elevated risk of death. Specifically, using
inter-annual variation in daily temperatures and aggregate state-by-year mortality data, the
authors find that an additional day with a mean temperature above 90°F, relative to a day in
the 50°-60°F range, leads to a 0.11 percent increase in the annual mortality rate. Similarly,
a day below 20°F is associated with an increased mortality rate of about 0.08 percent. No-
tably, the authors uncover significant heterogeneity in the responses to extreme temperatures
across age groups, with the elderly and the young being relatively more harmed.

While mortality is an important indicator of population health as a whole, as well as the
largest cost when monetized using values for statistical life, focusing on this measure alone is
likely to understate health damages associated with severe weather. In particular, as a result
of exposure to extreme temperatures, individuals may suffer damages to health that don’t
immediately lead to loss of life, but should arguably be captured in a comprehensive analysis
of extreme temperatures and health. As summarized in Chapter 1, there has been recent
work exploring the morbidity impacts of air pollution exposure in the U.S. (e.g., Deryugina
et al. 2019 and Schlenker and Walker 2016), but morbidity has been relatively less explored
by economists working on issues related to climate. Instead, the latest work on climate and
health has sought to investigate the adaptive behaviors and investments that individuals and
societies can make in an effort to mitigate the harmful effects of exposure to extreme climate
conditions. As discussed, these adaptative measures should be accounted for when estimat-
ing future damages of climate change since they will temper the associated health-related
reductions in overall welfare. Motivated by the striking decline in U.S. mortality over the
twentieth century, Barreca et al. 2016 provides some of the clearest evidence that adapta-
tion is worth measuring. The authors assemble a comprehensive database of historical U.S.
death records and daily temperatures, as well as measures of adaptation that might modify
the temperature-mortality relationship. They find that temperature-related mortality has
declined by 75% since 1960, a trend which they link primarily to the diffusion of residential
air conditioning.

Another recent study on heterogeneity in the temperature-mortality relationship inves-
tigates the role of historical adaptation to climate. Heutel, Miller, and Molitor 2020 bring
together data on the universe of Medicare beneficiaries and daily weather readings and find
that the mortality effects of extreme temperatures vary widely depending on average local
climate. The authors assign U.S. ZIP codes to one of three distinct groups based on histor-
ical average temperature (e.g., cold, moderate, or warm ZIPs) and find that the marginal
effect of an extremely hot or extremely cold day varies dramatically across these categories.
For example, they find that the mortality effects of hot days are much larger in cool regions
(increased mortality of 3.3 deaths per 100,000 residents for a day hotter than 95°F, relative
to a moderate 65°-70°F day) versus slightly negative in the hottest third of ZIP codes (a
reduction in mortality of 0.1 deaths per 100,000 people). Similarly, the authors find that
extremely cold days are much less harmful in cool regions than in the warmest regions: an
increase in 0.2 deaths per 100,000 versus 2.4, respectively. These findings have important
implications for projecting climate-related mortality into the future, if climate adaptation is
indeed an important modifier of the temperature-mortality relationship. The authors sug-
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gest that incorporating this regional heterogeneity and adaptation to local climate over time
leads to predictions that atmospheric warming will actually decrease mortality in the coldest
third of the U.S. while increasing mortality in the warmest third.

One dimension of heterogeneity and adaptation that is of increasing interest in the study
of temperature and mortality/health is income. In a recent study, Carleton et al. 2020
estimate age-specific causal relationships between climate and mortality based on data that
covers 40% of the global population, treating income as well as average climate (as in Heutel,
Miller, and Molitor 2020) as the primary determinants of adaptation. They find that relative
to a day at 20°C, a day at 35°C increases the global mortality rate by 2.94 deaths per 100,000.
Their analysis suggests that by year 2100, this rate will be reduced to only 0.89 deaths per
100,000, with income accounting for 88% of the reduction. The finding that income is
adaptive at the hot end of the temperature distribution provides the primary motivation
for examining the influence of income at a more granular level in the present study. While
the wide temporal and spatial scope of the causal estimates presented in the Carleton et al.
2020 study are undoubtedly useful for generating more precise estimates of the social cost
of carbon that account for the costs and benefits of adaptation, the authors rely on highly
aggregated income measures to arrive at their headline results. In this chapter, I exploit
information on individual-level income (which I infer via Medicaid enrollment status) to
understand how income might influence temperature-health impacts on an individual-level.
Again, however, I emphasize that the Medicaid and income-related estimates in this chapter
are in general not causal, and may be biased by unobservables correlated with both Medicaid
status and propensity to seek emergency care in response to extreme temperatures. Still, to
my knowledge, this study is a first step in examining income-related heterogeneity in climate
impacts for individuals.

3.2.2 Medicaid Institutional Details
This section expands upon some of the basic background information about the Medicaid
program that was first introduced in Chapter 1. I also provide additional details about the
program in Texas, a state which unlike California did not adopt an expansion under the
Affordable Care Act. Medicaid is the third largest U.S. entitlement program after Social
Security and Medicare, with approximately $500 billion in annual spending in recent fiscal
years. The program was established alongside Medicare in 1965 through amendments to the
Social Security Act, and underwent significant expansions in the 1980s and 1990s, as well
as more recently in 2012 with the ACA. Medicaid provides counter-cyclical social insurance,
in that its enrollment expands to meet rising needs during an economic downturn, when
employment rates fall and people lose employer-based health coverage. During the recession
of 2008 and its aftermath, Medicaid enrollment increased by approximately 10 million people,
more than half of which were children. As of 2015, the program served nearly 100 million low-
income Americans, with children under age 20 accounting for over 40% of enrollees during
the year. Importantly, Medicaid is an uncapped entitlement program; the government is not
permitted to limit the number of eligible people who can enroll, and it must pay for any
covered services for enrollees.

Eligibility for the program is based generally on income and family size, and can also
be granted automatically by eligibility for certain cash welfare programs. The fiscal burden
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of Medicaid is jointly shared by U.S. states and the federal government, with the federal
payment share inversely proportional to the state’s per capita income (though the federal
share is always greater than or equal to 50% of costs). Federal guidelines for the program
are quite broad and the states have historically had significant discretion in designing and
administering their programs–states independently determine the amount, duration, and
scope of the services they provide under Medicaid (though the services must meet a minimum
standard). For example, states must cover hospital and physician services, but they can limit
the number of hospital days or physician visits they pay for. As a result of this flexibility,
Medicaid benefits packages can and often do vary widely from state to state.

As of 2015, approximately 16% low income Texans were insured by Medicaid, and Med-
icaid payments to providers represented over 25% of the state’s budget in FY 2013. Yet,
according to healthinsurance.org, Texas is tied with Alabama for having the most stringent
eligibility criteria in the nation. In order to qualify for Medicaid coverage in Texas (if not
already granted automatic coverage through another federal assistance program) , a family
of four, for example, must not have annual income before taxes exceeding $48,708. Further,
the state government of Texas has not accepted Medicaid expansion under the ACA, which
if it were accepted would cover an additional 2.5 million Texans.2 Regardless of whether
Texas adopts a Medicaid expansion in the future, it remains the case that it is a program
whose enrollment and costs are not capped. If the poor are relatively more damaged by a
changing climate and are less able to adapt than those with higher incomes, federal and state
expenditures on Medicaid could rise exponentially to meet increased demand. Alternatively,
if it can be shown that public assistance programs like Medicaid provide (unanticipated)
supplemental health benefits to vulnerable populations that suffer increasingly extreme tem-
peratures, then it might suggest that the expansion of these programs could serve as another
line of defense in the broader fight against climate change.

There has been research demonstrating that Medicaid recipients may use health care
differently than individuals with other types of insurance (see, for example, Taubman et al.
2014). It is also the case that not all providers must accept Medicaid insurance, which
could result in unobservable supply-side influences on observable health care utilization that
differ between Medicaid and non-Medicaid patients. However, following the federal Emer-
gency Medical Treatment & Labor Act (EMTALA) of 1986, all acute care facilities that
have emergency rooms and treat Medicare patients (which constitutes essentially all public
and private hospitals in the U.S.) cannot turn away patients regardless of ability to pay.
Hence, for “true” emergencies, Medicaid patients should not be seen at emergency rooms
at significantly lower rates than patients with other forms of insurance. This suggests that
comparing temperature-related health outcomes across Medicaid/non-Medicaid groups – at
least for relevant conditions with sufficient severity – might still be valuable even in the
absence of exogenous variation in insurance coverage. I return to this issue in the empirical
analysis that follows.

2Statistics reported at https://www.healthinsurance.org/texas-medicaid/.
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3.2.3 Health Insurance-Related Mitigation of Climate Damages
The potential reasons that Medicaid might help individuals adapt to extreme climate events
are similar to those discussed with respect to poor air quality in Chapter 1. I therefore
just briefly summarize the intuition here. Enrollment in the Medicaid insurance program
might lead to improved health outcomes (both in general and as related to extreme climate
events) through two main channels. First, a substitution effect leads to increased utilization
of health care services since they are now less costly. In fact, upon enrollment in Medi-
caid, many health care services (including preventive and emergency visits) are provided
completely free of charge. As with air quality-related illness, this could result in recipients
seeking more preventive health care in earlier periods that could improve baseline health and
possibly increase resiliency to future health shocks. An income effect, arising from a loosen-
ing of the budget constraint since health care now has an effective price of zero, results in
more disposable income available for the consumption of other non-health care goods. This
additional income might be shifted toward food consumption (also potentially increasing
individuals’ baseline stock of health) or could be used to invest in durable goods or technolo-
gies that allow individuals to better insulate themselves from extreme weather conditions.
One potential investment that could be undertaken that has been shown to be particularly
valuable in reducing temperature-related mortality is residential air conditioning, as doc-
umented by Barreca et al. 2016. Another potential investment is personal transportation.
Low-income households are generally more frequent consumers of public transportation ser-
vices, which implies potentially more time spent outside exposed to ambient temperatures.
Extra household resources might be spent toward the purchase of an automobile, reducing
the amount of time that household members spend outside. Such large durables investments
are often quite costly (for example, a residential A/C unit costs on average $5,327 in the
U.S. in 2018)3 but could be made more likely by an effective redirection of income away from
health spending upon enrollment in public insurance.

3.2.4 Income Effects vs. “Medicaid Effects”
As discussed, one potential issue with using hospital admissions data as a proxy for indi-
viduals’ true health status is that there are likely important differences in the demand for
health care across the income distribution, both in general as well as during periods of ex-
treme temperature. This could result in non-random selection into the Texas hospital visit
sample. Indeed, Hall and Jones 2007 find an income elasticity for health care spending above
one, suggesting that people spend an increasing fraction of income on health care as income
increases. This behavior is explained by the authors as the fact that the marginal utility
of an additional year of health does not decline in the same way that the marginal utility
for normal consumption goods does. On the other hand, among the poor, enrollment into
Medicaid might change recipients’ demand for health care services as compared to the non-
Medicaid poor or patients with other forms of insurance, again resulting in a non-randomly
selected sample of patients that present to the ER for any medical issue. This has been
shown to be true empirically. Results from an experiment on Oregon’s Medicaid program
that randomly granted Medicaid status to a sample of the eligible population revealed that

3Estimate obtained at https://www.homeadvisor.com/cost/heating-and-cooling/install-an-ac-unit/.
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Medicaid patients utilize emergency departments for all forms of care at higher rates than
non-Medicaid patients, including for conditions that may be better treated in a primary care
setting (Taubman et al. 2014). One hypothesized reason for this result is that visits are
essentially free under Medicaid, whereas ER co-pays for patients with other forms of insur-
ance are often fairly expensive, which encourages relatively higher utilization of primary care
rather than emergency care among non-Medicaid populations.

For these reasons, we should expect health care utilization to differ across both the
income distribution as well as between Medicaid/non-Medicaid enrollees conditional on being
low income, even in the absence of any exogenous health shocks. What is less clear (and
unfortunately not empircally testable with the current research design) is whether the health
care demand response of each of these groups is heterogeneous with respect to the short-
run temperature variation that I rely on for identification in this study. As a hypothetical
example, it could be the case empirically that adults with higher incomes are relatively more
likely to seek immediate medical attention when they fall ill during times of extreme heat
or cold, which could lead to a higher observed hospital visit rate, regardless of the true
relative physiological health responses of the different groups. For children, non-random
selection could also be a concern, depending on the relative incentives and constraints that
parents/guardians face when deciding whether to seek medical care for a sick child. Previous
work has shown that the poor obtain a relatively higher marignal return of investing in
children’s health, which could lead to higher observed rates of health care utilization among
poor children in response to exogenous health shocks. However, the income effect identified
by Hall and Jones 2007 would work in the opposite direction: one should expect to see
higher visit rates among higher income children in response to the same shocks, simply
because higher income households spend relatively more on health care services.

The purpose of this discussion is to highlight that while a descriptive analysis of dif-
ferences in temperature-related health care utilization across Medicaid/non-Medicaid indi-
viduals might be valuable (especially if limited to sufficiently severe conditions for which
health care demand should be nearly universal), there may still be significant selection bias
operating in the background. I emphasize that the results in this chapter are meant to be
interpreted as suggestive rather than causal, unlike the Medicaid-related estimates in Chap-
ter 1.4 Still, I conduct several different versions of my empirical analysis, testing models
with different proxies for income. First, in some specifications I replace the indicator for an
individual’s Medicaid status with a measure of per capita annual income in the individual’s
home county. I additionally test specifications where the individual’s Medicaid status is
instrumented with the measure of county-level per capita income. It is possible that county-
level income is uncorrelated with any unobservables that influence likelihood of inpatient
admission, except through its effect on Medicaid status. I also run these same specifications
but instead replace the per capita income variable with a measure of county-level poverty
(although since income and povety are closely related, these models generate very similar
results, hence I only report results from the models based on income). As a final check
on this issue, I also report results when the sample is limited to visits for a set of relatively

4Unfortunately, given that Texas has not expanded the Medicaid program under the ACA, it is not
possible to conduct a similar analysis leveraging spatial differences in potential policy exposure, as in Chapter
1.
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severe diagnoses for which the demand for healthcare should be nearly universal, e.g. cardiac
arrest and congestive heart failure.

3.3 Data Sources

3.3.1 Health Data
The hospital utilization data is collected by the Texas Department of State Health Services
(T-DSHS), and represents a complete universe of all hospital visits in the state of Texas over
the study period (2001-2010). The dataset includes basic patient information (month of visit,
age group, sex, race, ethnicity, and home ZIP code) as well as medical information, including
the principal cause of admission and up to 20 additional diagnosis codes, whether the admis-
sion was planned or unplanned, the route into the hospital (emergency versus scheduled),
the patientâĂŹs primary health insurance provider (private insurance, Medicare, Medicaid,
etc.), the patient’s length of stay in the hospital, and a list of all procedures performed.
There are also coded indicators for the patient’s risk status and severity of conditions during
their hospital stay. To protect patient confidentiality, these records are aggregated to the
calendar quarter (3-month) level. To my knowledge, data like these have not been previously
exploited by economists to explore the health impacts resulting from extreme climate condi-
tions. Patient data is linked to the weather data (described below) using the patient’s home
ZIP code. For computational reasons, these data are then aggregated to the county-level, by
taking a population-weighted average of weather variables across ZIP codes in each county.
Note that this processing implicitly assumes that patients are exposed only to the weather
conditions in their home county.

Following the epidemiology literature and previous studies within the economics field on
the temperature-health relationship, I focus on admission rates for respiratory and cardio-
vascular diagnoses that might be induced or exacerbated by extreme weather conditions.5
Using the ICD diagnostic classification system described in Chapter 1, I limit to respira-
tory diagnosis codes with the following prefices: 491 (bronchitis), 492 (emphysema), 493
(asthma), 496 (chronic obstructive pulmonary disease) for adults. I also include codes 466
(acute bronchitis and bronchiolitis) and 490 (bronchitis, not otherwise specified) for young
children. The relevant cardiovascular diagnosis codes considered are 393-396 (heart disease),
401-405 (hypertension), 410-414 (ischemic heart disease), 427 (cardiac dysrhythmias), 428
(congestive heart failure), and 430-434 and 436-438 (cerebrovascular disease). As a check
on the validity of my results, I additionally explore the effect of quarterly temperature vari-
ation on admission rates for a placebo diagnosis (i.e., one that is unlikely to be related to
ambient weather): bone fractures. I identify bone fractures as those with ICD-9 prefixes of
800-829. Each hospital record contains codes for the diagnosis-upon-admission and a prin-
cipal diagnosis (which is coded upon completion of the visit), which may differ from each
other, as well as up to 20 secondary diagnoses. For this analysis, I consider a diagnosis to
be temperature-related (or placebo-related) if any one of the possible 22 diagnosis codes is
one of those listed in the relevant categories.

5See, for example, Lin et al. 2009.
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I emphasize that the health records provided by T-DSHS and analyzed in this chapter
include only the universe of inpatient visits, i.e. visits that resulted in at least one over-night
stay in a hospital. However, it is likely that many of the morbidity impacts of extreme tem-
perature result in outpatient visits, the records of which are not publicly available. Therefore,
the estimates produced in this analysis should be understood to represent a lower-bound of
the morbidity impact of extreme temperature. Assessing outpatient impacts of extreme
weather is a clear direction for future research. Furthermore, to ensure that irrelevant inpa-
tient stays (e.g., planned surgeries or other inpatient visits unlikely to be related to random
weather variation) are not considered in the analysis of this paper, I limit the data to include
only the inpatient visits that originated in the ER. Restricting the sample in this way results
in a final database of approximately 4.7 million patient-level records over the 10-year period.
Furthermore, for the analyses that investigates income via Medicaid status, I also limit the
sample to ages 65 and below, which excludes low-income seniors and people with disabilities
– so-called “dual eligibles” – who are enrolled in both Medicare and Medicaid simultaneously
and likely have inherently different health profiles than the general population due to their
advanced age.

3.3.2 Weather Data
Information on daily mean temperatures and precipitation was obtained in a 4km-by-4km
grid for the contiguous U.S. from PRISM Climate Group at Oregon State University. PRISM
constructs a temperature measure for each unit of the grid by interpolating daily weather
station data and accounting for relevant weather factors such as wind direction. The grid was
mapped to Texas geographies using shape files containing U.S. Census ZIP code tabulation
areas (ZCTAs) and county borders. According to the Texas Resiliency System, there are
10 distinct “climate regions” in the state of Texas: East, Edwards Plateau, High Plains,
Low Rolling Plains, Lower Valley, North Central, South, South Central, Trans Pecos, and
Upper Coast. In some econometric specifications (described in Section 3.5), I control for
time-invariant characteristics of these climate regions using a fixed effects estimator.

3.3.3 Additional Data
I use population data at the ZIP code level to weight the weather data to the county-level, as
well as to construct admission rates for various subpopulations of interest. These data were
obtained from the ACS 2015 5-year estimates. Data on the population of Medicaid enrollees
was also obtained from ACS 2015 5-year estimates at the ZIP code level for a single year of
my sample (2010), and is used to calculate baseline rates of admission for Medicaid patients
for the temperature-related and placebo diagnosis categories listed above. Medicaid enrollee
population data for earlier years will potentially be available in the future and incorporated
into this analysis.
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3.4 Summary Statistics
The primary unit of analysis in this study is county-quarter. There are 254 counties in
Texas, yielding 10,160 county-quarter observations over the sample period 2001-2010. When
records are broken out by the four primary age categores that are the focus of this paper,
this increases to 40,640 observations at the county-quarter-age group level.

Desipte being an on-average hotter state, Texas exhibits a fair degree of climate variation,
from arid in the west to humid in the east. Figure 3.1 summarizes the distribution of mean
temperatures over the study period across each of the climate regions and seven temperature
bins. Summary statistics on temperatures for each climate region have been weighted by the
ZIP code population in 2010 from the ACS 2015 5-year estimates. Thus, the height of each
bar represents the mean number of days of exposure per year for the average person Texan.
The main empirical model in this chapter estimates a non-linear temperature-morbidity
relationship using these seven bins. However, as is clear from the model, the marginal effect
of temperature is restricted to be constant within each of the temperature bins. Table
3.1 compliments Figure 3.1 with summary statistics on the distribution of daily minimum,
maximum and mean temperatues across the then climate regions of Texas over the study
period. In particular, it shows significant variation in weather across regions, with the
southern region experiencing the majority of high-temperature days (about 90°F degrees)
and the plains regions experiencing the majority of the coldest days.
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Figure 3.1: Annual Distribution of Daily Mean Temperature by Climate Region

Note: Figure shows that historical average distribution of daily mean temperatures across
ten temperature-day bins for each of the 10 climate regions in Texas. The bars represent the
average number of days per year in each temperature category for the 1749 ZIP code-year
observations over the period 1999-2010, weighted by total population in each ZIP code using
the ACS 2015 5-year population estimates.

Table 3.2 presents summary statistics on the Texas patient population considered in
this analysis. Note that this table contains statistics at the hospital visit-level rather than
patient-level, since it is not possible to track the same individuals over time in the publicly
accessibly Texas hospital records. Thus, any individuals that were admitted to a Texas
hospital through the ER more than once during 2001-2010 necessarily are counted in these
summary statistics equal to their total number of visits. The table reprts characteristics for
three different age groups: all ages, younger than 65, and younger than 18.

The aggregate statistics reported in Table 3.2 represent total number of visits for each
age-insurance category in 2010, divided by the total population in each of the categories.
Data for the year 2010 is used since that is currently the single year of data with Medicaid
enrollment data available at the county-level. When additional years of Medicaid enrollment
data are provided by T-DSHS, this table will be updated to reflect the additional years. As
is clear from the table, visit rates are higher for the Medicaid population across all categories
of diagnoses, with bone fractures having the most-similar rates across the insurance types.
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Table 3.1: Daily Temperatures Across 10 Texas Climate Regions, 2001-2010

Average daily Days with Days with
temperature mean > 90 F mean < 40 F

Climate Region Mean Min Max Number Mean Number Mean
East 66.7 55.8 77.6 1.6 90.7 17.6 35.8
Edwards Plateau 66 53.5 78.6 .7 90.6 19.1 35.1
High Plains 60.1 46.2 74 .5 90.9 51.1 32.6
Low Rolling Plains 64 51.4 76.6 6.3 91.1 35.1 33.4
Lower Valley 74.9 64.8 85 3.4 90.6 1.5 37.6
North Central 65.9 55.2 76.7 7.7 91.1 25.1 34.4
South 73.1 61.3 84.8 14.7 90.9 2.9 37
South Central 69.2 58.3 80.2 1 90.6 8.7 36.2
Trans Pecos 64.8 51.1 78.5 1.3 90.8 20 35.7
Upper Coast 69.9 60.5 79.3 .7 90.6 5.3 36.9

Notes: All statistics are weighted by ZIP code population using the ACS 2015 5-year
estimates.

This may reflect the fact that Medicaid patients tend to over-utilize the ED compared to the
rest of the population, as has been found in previous related work (e.g., the Oregon Health
Insurance Experiment).

As described above, the Medicaid population differs significantly along key dimensions
from the rest of the population. Due to the large number of children enrolled in the pro-
gram, Medicaid patients are on average younger than non-Medicaid patients, even within
age narrow age groups (e.g., 17 years and younger). Within children, the average age of
Medicaid recipients is 5.2 years old, and for other types of insurance the average patient
age is 7.4 years. Unsurprisingly, given the socioeconomic and demographic characteristics
across the U.S., Medicaid patients are less often white and more often of Hispanic origin
than non-Medicaid patients, across each of the three age groups considered. Interestingly,
Medicaid and non-Medicaid patients reside in ZIP codes with very similar average per capita
incomes–a pattern which holds across all age categories. This provides some assurance that
Medicaid and non-Medicaid patients are mixed throughout similarly wealthy ZIP codes in
Texas and exposed to similar climate conditions.

Risk and severity scores are coded indicators from 1 (minor) to 4 (extreme) that indicate
risk of mortality and severity of illness, respectively. These scores are assigned by T-DSHS
after reviewing each medical record. Risk of mortality indicates the likelihood of dying,
while severity of illness indicates the extent of “physiologic decompensation”. In most cases,
Medicaid patients appear to be in slightly worse condition on both of these dimensions,
although it is not totally clear why. It could be that, due to relatively lower reimbursement
rates for Medicaid, providers are slightly less willing to admit Medicaid patients, so that
the Medicaid patients who are ultimately admitted to a hospital are on average slightly
sicker. Average length of stays tell a similar story: Medicaid patients are kept in the hospital
slightly longer on average once they are admitted. However, I note that these differences are
relatively small.
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In accordance with lower reimbursement rates for Medicaid patients, total claim charges
are $500-$1,000 lower for Medicaid patients when considering the all ages and < 65 age
groups, and they are less likely to die in the hospital or be discharged to hospice care,
although the rates are fairly similar. The opposite is true when looking only at children.
Children with Medicaid have total claim charges that are on average over $4,000 more than
non-Medicaid claims, and they were 0.05% more likely to expire or enter hospice care than
non-Medicaid children. These statistics provide further evidence that poor children are of
particular interest in the temperature-health dimension since they seem to be slightly less
healthy on average across all types of conditions.

Table 3.2: Characteristics of Texas ED Admit Population, 2001-2010

All Ages Age < 65 Age < 18
Non-Medicaid Medicaid Non-Medicaid Medicaid Non-Medicaid Medicaid

Patient-level Statistics:
Age 56.7 43.9 41.0 29.3 7.4 5.2
Male (%) 45.1% 33.0% 47.2% 35.4% 54.2% 52.9%
White (%) 69.5% 53.6% 63.8% 53.7% 62.9% 53.3%
Hispanic (%) 22.4% 36.8% 27.7% 39.4% 35.4% 47.1%
2010 ZIP Per Capita Income ($) 27,008 27,004 26,959 26,948 26,256 26,054
Risk Score 1.75 1.71 1.41 1.44 1.12 1.17
Severity Score 2.10 2.13 1.87 1.95 1.52 1.65
Length of Stay (Days) 4.83 5.15 4.31 4.81 3.28 3.97
Total Charges ($) 29,139 28,057 26,600 26,054 17,469 21,606
Expired or Hospice Discharge (%) 4.35% 3.78% 1.92% 1.85% 0.45% 0.50%

Aggregate Statistics:
2010 Visit Rate: Any (%) 1.76% 2.83% 1.09% 2.22% 0.50% 0.99%
2010 Visit Rate: Respiratory (%) 0.37% 0.69% 0.17% 0.50% 0.13% 0.31%
2010 Visit Rate: Cardiovascular (%) 1.18% 1.42% 0.54% 0.74% 0.01% 0.04%
2010 Visit Rate: Bone Fractures (%) 0.04% 0.04% 0.02% 0.03% 0.01% 0.01%
Total Number of Visits (2001-2010) 6,982,530 2,320,816 3,849,917 1,593,200 359,932 467,146

Notes: All patient-level statistics are weighted by total ZIP code population using the ACS 2015 5-year estimates. The aggregate visit statistics
are calculated by summing the total count of visits for the relevant diagnoses and dividing by the relevant population. Visit rates are calculated
for 2010 only due to the lack of disaggregated Medicaid enrollment data for earlier years. Risk Score indicates a patient’s likelihood of dying.
Severity score indicates the extent of a patient’s physiologic decompensation. Expired or hospise discharge indicates patients that died in the
hospital or were discharged to hospice care.

3.5 Empirical Strategy
In this section, I describe the primary regression model used to estimate the relationship
between ambient temperature and hospital admissions. This baseline model (not accounting
for differences in insurance coverage) is identified by plausibly exogenous variation in the
distribution of mean daily temperatures across counties and calendar quarters in the state of
Texas. Utilizing a similar approach to that of Barreca et al. 2016, who allow for a non-linear
relationship between temperature and morbidity across the different temperature bins, I
estimate variants of the following model:

log(Cacqy) =
∑

j

βjTMEANcqyj + γPRECIPcqy + δc + αq + ρy + θrq + φa + εacqy, (3.1)

where Cacqy is the count of hospital admissions for subgroup a in county c, quarter q and
year y. County-level and region-by-quarter fixed effects are included to absorb differences
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in admissions that vary across geographies (where region represents one of the ten climate
regions in Texas as described above) and calendar seasons. The year indicators are included
to account for idiosyncratic changes in admission rates that are common across counties in
Texas, such as the rise in Medicaid enrollment during the 2009 recession. φa is a group-level
fixed effect that absorbs permanent differences in admission rates that vary based on patient
characteristics, such as age group.

The variables of primary interest in this study are the measures of temperature TMEANcqyj ,
which are constructed flexibly and non-parametrically and equal to the total number of days
during quarter q of year y in county c in which the mean daily temperature was in the jth of
7 temperature bins in degrees Fahrenheit (< 40°, 40°-49°, 50°-59°, 60°-69°, 70°-79°, 80°-89°,
and > 90°). The low-temperature bins have been collapsed to a single < 40° bin due to
the relative infrequency of very low mean-temperature days in Texas during 2001-2010. I
omit the 60°-69°F bin as the reference category, so the coefficients on the other bins are
interpreted as the morbidity impact of an additional day in the respective bin relative to
an additional day in the 60°-69°F bin. The main functional form restriction implied by this
parameterization is that the effect of temperature is constant within each of the bins, which
previous research has shown to be a reasonable assumption when the bins are fairly narrow,
as they are here. Finally, PRECIPcqy is equal to total quarterly precipitation in county c
and year y and is included in the model based on the well-established association between
ambient temperature and rainfall.

In a secondary analysis, as discussed, I attempt to explore income-related heterogene-
ity in the relationship between temperature and health. To do this, I augment equation
(3.1) by including interactions between each of the temperature bins and Medicaid status.
Specifically, I estimate

log(Cacqy) =
∑

j

βjTMEANcqyj +
∑

j

πjTMEANcqyj ×MCAIDacqy

+ γPRECIPcqy + δc + αq + ρy + θrq + φa + εacqy,
(3.2)

where MCAIDacqy equals 1 for patients with discharge records indicating a payment source
of Medicaid. This specification assesses whether the effect of an additional day in a given bin
is different for Medicaid (i.e., low income) patients than for non-Medicaid patients. In some
additional specifications described below, I replace MCAIDacqy with county-level per capita
income or the county-level poverty rate (results not reported given their similarity to the
income-based results). I also conduct an analysis in which Medicaid status is instrumented
for using county-level per capita income in a two-stage least squares procedure.

3.6 Results

3.6.1 Temperature-Related Admissions for Overall Population
The regression results presented in Table 3.3 replicate findings from the epidemiology litera-
ture on temperature-related morbidity and also serve as a check on the validity of the Texas
hospital data. Previous studies on the temperature-mortality relationship have tended to
recover a “U-shaped” response function across the binned temperature distribution. That
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is, they find an increasingly severe health response as the distribution of mean temperatures
shifts farther above and below a moderate reference category (which in the present study is
the 60°-69°F bin). The outcome variable for all columns of Table 3.3 is the log of the count
of admissions for temperature-related diagnoses (i.e., the respiratory and cardiovascular di-
agnoses described in Section 3.3) in a given county and quarter for the overall universe of
ER admissions resulting in an inpatient stay in Texas from 2001-2010. In contrast to previ-
ous work exploring the effect on temperature on various outcomes, in the present study the
lowest temperature bins (i.e., < 10°, 10°-19°, 20°-29° and 30°-39°) are collapsed to a single
< 40° degree bin due to the relative infrequency of days in Texas where average temperature
falls below 40°F.

Column (1) of Table 3.3 reports the baseline OLS estimates where the logged admission
count is regressed on the seven temperature bins and, due to the close known association
between temperature and rainfall, a control for total precipitation (in inches) in the respective
county-quarter, as well as controls for the county-level logged poverty rate and per capita
annual income. Columns (2) through (5) report the results obtained from fixed effects
estimators controlling for various time-invariant trends and common economic shocks across
space in Texas. Column (5) reports my preferred estimates from a model that includes fixed
effects for county, year, region-by-quarter, and age group.6

The results reported in column (5) suggest that relative to a day with a mean tempera-
ture between 60°-69°F, days in the 70°-79°F, 80°-89°F and 90°+F bins increase the overall
quarterly admission rate for temperature-related diagnoses by 0.1, 0.14 and 0.29 percentage
points, respectively. Similarly, a day with a mean temperature of less than < 40°F increases
the relevant admission rate by 0.15 percentage points. These estimates of the morbidity
impacts of extreme temperature for the general population are very much in line with the
existing literature on mortality impacts of temperature. For example, Deschenes and Green-
stone 2011 find that relative to a day in the 50°-60°F bin, the annual mortality rate increases
by 0.11 percentage points with an additional day of mean temperature > 90°F. Note, how-
ever, that this estimate from Deschenes and Greenstone represents the contemporaneous
impact of a single additional day in the > 90°F bin, whereas their headline results predict
that “by the end of the century climate change will lead to increases of 3 percent in the age-
adjusted mortality rate.” The mortality (and morbidity) effects of climate change over that
time horizon will clearly be much larger than the impact of a single extreme temperature day,
and I note here that climate change is not the primary focus of this paper. It is nevertheless
encouraging that the single day predicted morbidity impacts for the overall population are
very much in line with Deschenes and Greenstone’s single day mortality impact estimates.

6The four age groups included in this model are the 0-17 years, 18-44 years, 45-64 years, and over 65
years.
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Table 3.3: OLS Estimates — Ambient Temperature and ER Visits (Overall Population)

Temperature Bin (◦F) (1) (2) (3) (4) (5)
< 40° 0.0023∗ 0.0014∗∗∗ 0.0012∗∗∗ 0.0015∗∗∗ 0.0015∗∗

(1.93) (3.61) (2.72) (2.68) (2.24)
40°-49° −0.0009 0.0005 0.0003 0.0006 0.0001

(−1.00) (1.50) (0.69) (1.17) (0.26)
50°-59° −0.0001 0.0008∗∗∗ 0.0008∗∗ 0.0010∗∗∗ 0.0013∗∗∗

(−0.10) (2.67) (2.09) (2.72) (3.37)
70°-79° 0.0000 0.0007∗∗∗ 0.0005∗∗ 0.0003 0.0010∗∗∗

(0.12) (3.33) (2.40) (1.46) (3.41)
80°-89° −0.0004 0.0003∗∗ 0.0002 0.0001 0.0014∗∗∗

(−1.47) (2.13) (0.49) (0.18) (3.01)
> 90° 0.0011 0.0006 0.0004 0.0002 0.0029∗

(0.64) (1.37) (0.55) (0.19) (1.90)
Included controls:

County FE X X X X
Year FE X X X X
Quarter-of-year FE X
Region-by-quarter-of-year FE X X
Age group FE X

Observations 10,160 10,160 10,160 10,160 40,640

Note: t-statistics in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the county-
quarter (columns (1)-(4)) or county-quarter-age group (column (5)). The outcome variable in
all regressions is the log of the count of inpatient admissions that originated in the Emergency
Department and contain a respiratory and/or cardiovascular-related diagnosis. Total precipitation,
per capita income (in $1,000s) and the logged poverty rate are also controlled for in each regression.
Standard errors are clustered by county.

3.6.2 Temperature-Related Admissions Conditional on Medicaid
Status

Table 3.4 reports the same information as Table 3.3 but includes interactions of each of
the bins (as well as the omitted category bin) with an indicator variable denoting Medicaid
status on the medical claim. Medicaid status is identified if either one of the two “payer
source” variables indicate a payment made by Medicaid.7 Each of the four columns report
results from a fixed effects regression which includes the full set of fixed effects reported
in column (5) of Table 3.3 (for county, year, region-by-quarter, and age group). The only
difference between each of the four columns in Table 3.4 is the age group on which the
regression is run, denoted in each of the column headings. As discussed above, there is a small
population of elderly low-income patients who are insured by both Medicare and Medicaid
(“dual eligibles”), although this is not very common in the data. However, since patients
older than 65 are known to have different mortality and morbidity profiles than younger
populations (e.g., Card, Dobkin, and Maestas 2008 find that both hospital admission rates
as well as overall health status may improve with Medicare coverage), claims for visits by
patients older than 65 years are excluded in all regression reported in Table 3.4.

The results in Table 3.4 suggest that Medicaid coverage is associated with fewer temperature-
7Most claims only have one payer source.
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related admissions for all age groups except children (patients younger than 18 years). For
children, I find that temperature-related admissions are higher among Medicaid recipients
when there are more extreme temperature days. The opposite result is obtained for older
patients, and appears to be increasing with age. That is, as Medicaid patients get older,
they are less likely on average to be admitted for temperature-responsive conditions when
the temperature distribution is more extreme during a given calendar quarter. As an exam-
ple, relative to non-Medicaid patients, Medicaid enrollees younger than 18 see an increase
in temperature-related admissions due to an additional 80°-89°F day during the calendar
quarter (relative to a 60°-69°F day) of 0.07 percentage points. In contrast, Medicaid en-
rollees between ages 18-44 are relatively less likely to be admitted than non-enrollees by 0.20
percentage points for the same temperature shock. This admissions differential is even more
extreme for patients aged 45-64, with Medicaid status associated with 0.32 percent fewer
admissions in relative terms.

These results suggest that for children, the “Medicaid effect” (described previously as the
empirical observation that Medicaid enrollees over-utilize emergency departments for care
relative to non-Medicaid patients) outweighs the “income effect” (where higher people–those
whose means exceed the eligibility limits for publicly-funded Medicaid insurance–demand
relatively more health care on average). The opposite appears to be true when considering
adults separately from children. These results and possible explanations are discussed in
more detail in Section 3.7. I note again that these Medicaid-based estimates are suggestive
rather than causal.
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Table 3.4: OLS Estimates — ER Visits (Conditional on Medicaid Status)

(1) (2) (3) (4)
0-64 0-17 18-44 45-64

< 40° 0.0015∗∗ 0.0027∗∗ 0.0009 0.0019∗∗
(2.19) (2.00) (1.19) (2.53)

40°-49° 0.0008 -0.0001 0.0011 0.0009
(1.14) (-0.06) (1.64) (1.29)

50°-59° 0.0009∗ 0.0005 0.0006 0.0013∗∗∗
(1.88) (0.51) (1.09) (2.73)

70°-79° 0.0013∗∗∗ 0.0012∗ 0.0004 0.0017∗∗∗
(5.67) (1.66) (1.17) (5.56)

80°-89° 0.0015∗∗∗ 0.0004 0.0006 0.0020∗∗∗
(3.33) (0.63) (1.13) (3.82)

> 90° 0.0015 -0.0020 0.0003 0.0027
(0.87) (-1.25) (0.17) (1.47)

< 40° × Medicaid -0.0022 0.0000 -0.0019∗ -0.0037∗∗∗
(-1.63) (0.01) (-1.66) (-2.79)

40°-49° × Medicaid -0.0048∗∗∗ -0.0005 -0.0041∗∗∗ -0.0062∗∗∗
(-3.85) (-0.27) (-4.21) (-4.88)

50°-59° × Medicaid -0.0007 0.0039∗∗∗ -0.0013 -0.0019∗
(-0.70) (3.40) (-1.54) (-1.70)

60°-69° × Medicaid -0.0024∗∗∗ 0.0014∗∗ -0.0020∗∗∗ -0.0033∗∗∗
(-6.52) (2.05) (-5.64) (-8.85)

70°-79° × Medicaid -0.0034∗∗∗ 0.0003 -0.0025∗∗∗ -0.0044∗∗∗
(-19.57) (0.87) (-11.36) (-19.97)

80°-89° × Medicaid -0.0026∗∗∗ 0.0007∗∗ -0.0020∗∗∗ -0.0032∗∗∗
(-7.77) (2.48) (-5.88) (-8.81)

> 90° × Medicaid -0.0003 0.0031 -0.0006 -0.0009
(-0.16) (1.34) (-0.32) (-0.61)

Observations 20,320 20,320 20,320 20,320

Note: t-statistics in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis
is the county-quarter-Medicaid status (a binary categorical variable) for the respective
age group. The outcome variable in all regressions is the log of the count of inpatient
admissions that originated in the Emergency Department and contain a respiratory and/or
cardiovascular-related diagnosis. Total precipitation, per capita income (in $1,000s) and
the logged poverty rate are also controlled for in each regression. Standard errors are
clustered by county.
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3.6.3 Temperature-Related Admissions Conditional on County-
Level Per Capita Income

As discussed previously, health care is a superior good, and previous research has shown large
income elasticities in the demand for health care, which could partially explain the pattern
observed in Table 3.4, particularly if higher income adults (i.e., those less likely to be in-
sured by Medicaid) are more likely to need (or at least, to seek) health care during periods
of extreme temperatures. Table 3.5 reports comparable results to Table 3.4 using an alter-
native measure of income than Medicaid status: county-level per capita income (reported in
$1,000s). These results show that income is positively associated with hospital admissions
for children, and negatively associated with admissions for adults, which is the opposite re-
sult from the effect obtained in the previous table if one considers Medicaid as a pure proxy
for income. These results together suggest that Medicaid recipiency and income work in
opposite directions when considering effects for children and adults separately. For children,
having Medicaid (as opposed to any other form of insurance) makes them more likely to seek
medical care on very hot or very cold days. Yet, in a contrasting result, higher county-level
income (which is certainly negatively correlated with likelihood of Medicaid status among
county residents) is also associated with increased hospital utilization by children during
the same periods. The opposite holds for adults. In any case, it appears that for children,
the county-level income effect (an approximate increased in admissions of 0.3 percentage
points for each of the temperature bins) outweighs the Medicaid effect (approximately 0.01
percentage points for each of the bins).

Given previous research showing that Medicaid status is likely correlated with unobserv-
ables that influence both the level of demand for emergency care as well as the likelihood
of hospital admission (assuming that providers have a degree of discretion in which patients
are ultimately admitted), it is likely that the estimates in Table 3.4 suffer from omitted
variables bias. Table 3.6 reports results of a two stage least squares regression in which
Medicaid is instrumented in a first stage model with county-level income. (Table 3.5 thus
serves as a sort of reduced form depiction of this relationship). The IV results essentially
pick up no effect of instrumented Medicaid status on the log of total admissions for the
relevant diagnoses. The first-stage results (not reported) indicate that county-level income
is (perhaps not surprisingly) a fairly weak instrument for Medicaid status of individual res-
idents. Indeed, the F -statistic in the first stage is less than 1 for most of the age groups,
which clearly underscores a weak instruments problem. In future iteratures of this work,
it could be enlightening to run a similar two stage least squares analysis instead relying on
a more granular income measure, perhaps at the ZIP code, Census Tract, or Census Block
level. Income at one of these lower levels of granularity would likely be a better predictor
of an individual’s Medicaid status, given the degree of income variation one might expect to
exist in geographic areas as large as a county.
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Table 3.5: OLS Estimates — ER Visits (Conditional on Per Capita Income)

(1) (2) (3) (4)
0-64 0-17 18-44 45-64

< 40° -0.0021 -0.0074∗∗∗ -0.0029 -0.0008
(-1.41) (-2.70) (-1.63) (-0.49)

40°-49° -0.0012 0.0001 0.0020 -0.0026∗∗
(-1.15) (0.02) (1.19) (-2.15)

50°-59° -0.0025∗∗ -0.0049∗ -0.0040∗∗ -0.0011
(-2.12) (-1.75) (-2.38) (-0.95)

70°-79° -0.0026∗∗∗ -0.0045∗∗ -0.0018 -0.0023∗∗
(-2.86) (-2.58) (-1.33) (-2.32)

80°-89° -0.0001 -0.0012 -0.0004 0.0004
(-0.06) (-0.78) (-0.30) (0.41)

> 90° 0.0035 0.0042 0.0036 0.0031
(1.43) (1.32) (1.35) (1.19)

< 40° * Inc. -0.0004 0.0034∗∗∗ -0.0007 -0.0011∗∗
(-1.01) (4.57) (-1.57) (-2.10)

40°-49° × Income -0.0005 0.0031∗∗∗ -0.0009∗ -0.0011∗∗
(-1.24) (4.41) (-1.93) (-2.15)

50°-59° × Income -0.0004 0.0033∗∗∗ -0.0007 -0.0011∗∗
(-1.03) (4.79) (-1.52) (-2.15)

60°-69° × Income -0.0005 0.0031∗∗∗ -0.0009∗ -0.0012∗∗
(-1.30) (4.41) (-1.88) (-2.25)

70°-79° × Income -0.0004 0.0033∗∗∗ -0.0008∗ -0.0011∗∗
(-1.06) (4.64) (-1.70) (-2.10)

80°-89° × Income -0.0005 0.0032∗∗∗ -0.0008∗ -0.0012∗∗
(-1.23) (4.54) (-1.81) (-2.22)

> 90° × Income -0.0006 0.0030∗∗∗ -0.0009∗ -0.0012∗∗
(-1.37) (4.33) (-1.86) (-2.24)

Observations 10,160 10,160 10,160 10,160

Note: t-statistics in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis
is the county-quarter-Medicaid status (a binary categorical variable) for the respective
age group. The outcome variable in all regressions is the log of the count of inpatient
admissions that originated in the Emergency Department and contain a respiratory and/or
cardiovascular-related diagnosis. Total precipitation and the logged poverty rate are also
controlled for in each regression. Standard errors are clustered by county.
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Table 3.6: IV Estimates — ER Visits (Instrumenting for Medicaid with Per Capita Income)

(1) (2) (3) (4)
0-64 0-17 18-44 45-64

< 40° 0.0090 0.0398 0.0068 0.0108
(1.09) (0.82) (0.29) (0.45)

40°− 49° 0.0064 -0.0360 0.0130 0.0169
(0.48) (-0.63) (0.24) (0.50)

50°− 59° -0.0051 0.1405 -0.0386 -0.0162
(-0.24) (0.96) (-0.37) (-0.61)

70°− 79° 0.0067 0.0211 0.0037 0.0032
(1.15) (0.71) (0.16) (0.40)

80°− 89° -0.0075 0.0894 -0.0305 -0.0088
(-0.54) (0.83) (-0.48) (-0.76)

> 90° -0.0166 0.0872 -0.0636 -0.0177
(-0.63) (0.68) (-0.55) (-0.68)

< 40° × M̂edicaid -0.0075 -0.0594 0.0168 -0.0168
(-0.33) (-0.59) (0.18) (-0.25)

40°− 49° × M̂edicaid -0.0029 0.0677 0.0121 -0.0398
(-0.11) (0.64) (0.11) (-0.43)

50°− 59° × M̂edicaid 0.0323 -0.2339 0.1490 0.0704
(0.51) (-1.03) (0.42) (0.76)

60°− 69° × M̂edicaid 0.0141 0.0143 0.0322 0.0128
(1.15) (0.23) (0.56) (0.59)

70°− 79° × M̂edicaid -0.0049 -0.0157 0.0145 0.0032
(-0.43) (-0.44) (0.28) (0.23)

80°− 89° × M̂edicaid 0.0327 -0.1141 0.1050 0.0367
(0.96) (-0.82) (0.55) (1.24)

> 90° × M̂edicaid 0.0499 -0.0891 0.1678 0.0560
(0.93) (-0.61) (0.61) (0.94)

Observations 20,320 20,320 20,320 20,320

Note: t-statistics in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis
is the county-quarter-Medicaid status for the respective age group. Medicaid status is
instrumented using county-level per capita income. The outcome variable in all regres-
sions is the log of the count of inpatient admissions that originated in the Emergency
Department and contain a respiratory and/or cardiovascular-related diagnosis. Total pre-
cipitation and the logged poverty rate are also controlled for in each regression. Standard
errors are clustered by county.

I conduct several supplemental robustness checks, which are reported in Appendix Section
C.1, in order to gauge the stability of these estimates. First, I conduct a placebo test to
ensure that the estimated morbidity impacts are indeed a response to short-run temperature
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variation, rather than spurrious correlation or due to some other unobservable factor. This
type of placebo test is common practice in the literature on environmental health. For this
analysis, I run a placebo check using a medical diagnosis that theoretically should not respond
to ambient temperature: bone fractures. For this test, I limit the sample to only children
because they seem to be the age group least likely to suffer from insurance-related selection
issues (i.e., if the child genuinely needs medical care, parents/guardians will likely seek it).
These estimates confirm that hospitalization rates for bone fractures are not empirically
associated with extreme temperature. The two columns in Table C.1 report results from
regressions which include the full set of fixed effects used in column (4) of Table 3.3 (for
county, year, and region-by-quarter). The lack of statistical significance of essentially all the
estimated coefficients in Table C.1 suggests that the morbidity impacts estimated in each of
these models are likely a geniune response to climate variation.

Second, to address potential selection effects by income and Medicaid status, I narrow
the focus to very severe illnesses that theoretically would require hospitalization regardless
of financial or other demand-side constraints. These results are reported in Table C.2. These
results suggest that admissions are relatively lower for Medicaid patients for severe diagnoses
during periods of extreme temperature, particularly when focusing on older patients. The
impact is largest for patients aged 45-64, who experience approximately 0.2 percent fewer
admissions for severe conditions. Based upon the (potentially quite strong) assumption that
the demand for health care should be universal for these illnesses, this provides at least weak
evidence that Medicaid-insured adults fare better against climate shocks than patients with
other forms of insurance. Of course, it might be the case that Medicaid patients suffering
severe illness in response to extreme temperature more frequently die prior to reaching the
ER, or conversely, are treated fairly quickly in the ER without being admitted to the hospital.
In either case, these patients would not appear in the hospital inpatient sample that is
used in this analyiss. In future work, it could be worthwhile to examine whether there is
a corresponding increase in mortality and/or outpatient (non-admitted) ER visits among
Medicaid-insured adults in order to rule out these possibilities.

Finally, I also run the main Medicaid analysis at the ZIP code rather county level to see
whether improving the geographic resolution of the data has any impact on the estimated
effect sizes.8 Qualitatively, the results are unchanged from the county-level analysis.

3.7 Discussion and Conclusion
Using Texas as a case study, the results of this analysis confirm that increased morbid-
ity, like mortality, is a health consequence of extreme ambient temperature. Additionally,
while lacking strong causal foundations, the supplemental Medicaid results presented in this
chapter suggest that both public health insurance and county-level income drive statistically
significant differences in climate-related morbidity, although relative impacts differ across
age groups. Relatively higher admissions among Medicaid-insured children in response to
extreme temperature could indicate a decreased ability in this population to endure extreme
weather conditions – perhaps through lower baseline health stock or more hours spent out-

8It was not possible to run the income-based and poverty-based analyses at the ZIP level due to lack of
publicly available data for these variables at the time of analysis.
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doors on average – as compared to children with other forms of insurance (and likely higher
household income). Indeed, as summarized in Section 3.2, the body’s thermo-regulatory
system is less developed in children, indicating that they are likely more vulnerable to their
surrounding environment than adults. If children in Medicaid families are more likely to be
exposed to extreme temperature, this could be an explanation for the results obtained in this
analysis. On the other hand, relevant admissions for children in higher-income counties are
relatively higher than in lower-income counties, perhaps due to a higher medical spending
elasticity in this population, or perhaps a lower insurance penetration among the poor and
thus lower overall health care utilization. Although the underlying reasons for these differ-
ences have not been identified, and the results come with several important caveats, these
findings point to the likelihood that both income and public health insurance can moderate
the health impacts of extreme climate.

Interestingly, while acknowledging the clear limitations of the current research design,
it appears that the income and Medicaid effects work in opposite directions, with the in-
come effect relatively larger in magnitude for children. If hospital utilization is considered
a reasonable proxy for underlying health status, then the relatively larger health damages
among children in wealthier counties estimated in this chapter run counter to the mortality
estimates in Carleton et al. 2020, who find that income can mitigate the damaging health
impacts of extreme climate. More work should be conducted in this area to disentangle
these two competing explanations, including leveraging quasi-random variation in insurance
coverage (perhaps by instead focusing on a state which did adopt the ACA Medicaid ex-
pansion and using an exposure-based instrument, as in Chapter 1 of this dissertation). The
selection bias that almost certainly underpins the current estimates likely derives from two
separate channels: supply-side constraints (e.g., limits on hospital capacity, lower prevalence
of providers that accept Medicaid insurance, etc.), and demand-side factors (e.g., differential
demand for health care across both insurance plans and the income distribution in gen-
eral). Exploring these possibilities further would require data on hospital characteristics,
such as location (e.g., ZIP code) and capacity (number of beds, physician availability, etc.).
These data exist and have been requested from the Texas hospital association through an
open records request, but the request has not yet been fulfilled. In future work, it may be
interesting to explore distance-based heterogeneity in hospital admissions (i.e., comparing
patients who reside in ZIP codes within 5 miles from the hospital, 5-10 miles, and so on)
to assess whether access may play a role in the estimated impacts. It could also be useful
to control for county-level hospital capacity, which could shed light on the potential issue of
capacity constraints.

This study provides suggestive evidence on the temperature-health relationship for po-
tentially vulnerable subpopulations: those that qualify for Medicaid and those that are low-
income in general. To my knowledge, it is the first study of its kind to exploit individual-level
health care claims data to investigate income-based (although non-causal) heterogeneity in
the temperature-health relationship. Preferred estimates suggest that temperature-related
admission rates are relatively higher among children insured by Medicaid than children with
all other forms of insurance. Conversely, admissions are relatively lower for Medicaid-insured
adults, a difference which might be explained by an improved ability to endure extreme tem-
perature that arises from long-term participation in the Medicaid program (although, with
these data, it is currently only possible to determine Medicaid status at the point in time of
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a patient’s hospital visit). However, if improved climate protection is determined to indeed
be partially attributable to publicly funded health insurance, then the health care-related
policy recommendations are clear: incorporate these additional insurance benefits into future
benefit-cost analyses around public insurance expansions. Additional empirical work based
on exogenous variation in health insurance coverage is necessary to determine with certainty
whether improved resiliency to climate variation is one unintended benefit of the Medicaid
program, and this paper is a first step in exploring that possibility.
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A.1 Data Notes

A.1.1 Identification of Selected Health Conditions

Table A.1: Diagnostic Code Prefixes Associated with
Selected Medical Conditions

Diagnosis ICD-9 ICD-10
Asthma 493 J44, J45
All Respiratory 460-466, 470-488, J00-J18, J20-J22, J30-J47,

490-496, 500-519 J60-J70, J80-J86, J90-J99
Hypertension 401, 402 I10, I11
Heart Attack 410 I21
Diabetes 250 E10, E11
Appendicitis 540 K35

Note: Table reports the prefixes in diagnostic codes used to iden-
tify health conditions under the International Classification of Dis-
eases (ICD) coding system. Hospitals switched from ICD-9 to
ICD-10 codes in the fourth quarter of 2015.

A.1.2 ZIP Codes vs. ZCTAs
Throughout the paper, I refer interchangeably to ZIP codes and ZIP Code Tabulation Areas
as simply ZIPs. However, ZIP codes are linear entities, representing a collection of United
States Postal Service (USPS) routes, while ZCTAs are geo-coded area representations of
5-digit ZIP Code service areas. The Census Bureau created ZCTAs to map more closely to
block-level information collected in surveys and censuses. The Census Bureau assigns 5-digit
ZCTAs based on the most frequently occurring USPS ZIP Code within that ZCTA. There-
fore, ZCTAs may contain more than one ZIP Code. The Census Bureau does not provide
an official crosswalk between ZIPs and ZCTAs, but other entities do. I map ZIP Codes to
ZCTAs using the crosswalk provided here: https://www.udsmapper.org/zcta-crosswalk.cfm.

A.2 Derivation of Comparative Statics

A.2.1 Model Setup
Model summary:

• Two-period model (no time discounting)

• Maximize sum of utility in both periods subject to budget constraint

• Insurance status determined outside model and sets prices paid for healthcare (preven-
tive and emergency)

• Pollution shock in t = 2, with level determined exogenously.



87

Variables:

• Non-healthcare consumption: x

• Preventive care (purchased in t = 1): q

• Emergency care (purchased in t = 2): e

• Pollution shock shock (experienced in t = 2): c

• Prices paid for preventive and emergency care: pq, pe

Health production function:

• H = H(q, e, c)

• Pollution is bad: ∂H/∂c < 0

• Healthcare is good: ∂H/∂q > 0, ∂H/∂e > 0

A.2.2 Optimization Problem
Constrained maximization:

maxx,q,e U(x) +H(q, e, c) s.t. x+ pqq+ pee ≤ Y

First order conditions:

1. Ux − λ = 0

2. Hq − pqλ = 0

3. He − peλ = 0

4. Y − x− pqq− pee = 0

Total differentials of the four FOCs:
Uxx 0 0 −1

0 Hqq Hqe −pq

0 Hqe Hee −pe

1 pq pe 0



dx
dq
de
dλ

 = D


dx
dq
de
dλ

 =


0

−Hqcdc+ λdpq

−Hecdc+ λdpe

−qdpq − edpe

 (1)

Applying Cramer’s Rule to solve for de:

|D| = Uxx(p2
qHee + p2

eHqq − 2pqpeHqe) +HqqHee −H2
qe
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|D| > 0 by SOC for a maximum.

By Cramer’s Rule,

de =

∣∣∣∣∣∣∣∣∣
Uxx 0 0 −1

0 Hqq −Hqcdc+ λdpq −pq

0 Heq −Hecdc+ λdpe −pe

1 pq −qdpq − edpe 0

∣∣∣∣∣∣∣∣∣
|D|

=
C · dc+Q · dpq +E · dpe

|D|
(2)

where

C = Uxx(pqpeHqc − p2
qHec) + (HqeHqc −HqqHec)

Q = λpqpe − peqHqq + pqqHqe + λHqe

E = −λp2
q + pqeHqe − peeHqq + λHqq

Then, assuming only c changes,

de

dc
=
Uxx(pqpeHqc − p2

qHec) + (HqeHqc −HqqHec)

|D|
(3)
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A.3 Insurance Variation (County-Level)

Figure A.1: Adult Uninsured Rates, by County (2013)

Notes: Figure shows the county-level rate of unin-
sured adults in 2013. Data come from the American
Community Survey 5-Year estimates.
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A.4 Summary Statistics (ZIP-Week)

Table A.2: Summary Statistics, 2012–2017 (ZIP-Week)

N Mean p25 p75 Max
Morbidity outcomes:

Total ER visits 560,316 142.9 10 218 3,276
ER visits: Asthma 560,316 2.3 0 3 135
ER visits: All Respiratory 560,316 14.8 1 20 675
ER visits: Hypertension 560,316 0.9 0 1 17
ER visits: Heart Attack 560,316 0.6 0 1 13
ER visits: Diabetes 560,316 1.3 0 2 23
ER visits: Appendicitis 560,316 0.4 0 1 11
ER visits: Bone Fractures 560,316 1.4 0 2 18

Air quality (Jun–Aug):
% smoke coverage 137,436 20.8 0 31.0 100
Mean PM2.5 11,070 9.5 6.1 11.7 195.6
Maximum PM2.5 11,070 13.7 8.3 16.0 498.0

Air quality (Sep–Nov):
% smoke coverage 137,436 2.2 0 0 100
Mean PM2.5 10,994 10.1 5.2 12.5 232.1
Maximum PM2.5 10,994 15.3 7.5 19.1 557.0

Air quality (Dec–Feb):
% smoke coverage 137,436 0.3 0 0 69
Mean PM2.5 11,106 9.3 4.7 11.6 481.0
Maximum PM2.5 11,106 14.2 6.9 17.9 985.0

Air quality (Mar–May):
% smoke coverage 137,436 3.4 0 0 100
Mean PM2.5 11,101 7.9 5.0 10.1 52.0
Maximum PM2.5 11,101 11.1 7.1 13.8 167.3

Population and health insurance:
Total population 560,316 21,378 1,497 35,790 107,888
Adult population 560,316 13,497 895 22,609 67,363
% Uninsured adults, 2013 (Z) 546,960 23.8 14.2 31.6 100.0
% Medicaid coverage 551,019 28.4 13.6 39.1 100.0

Notes: Table reports unweighted statistics for the main morbidity estimation sample. Unit of
observation is the ZIP-week. PM2.5 data is only available for the ZIP codes that have official EPA
monitors. Mortality data is not available at an aggregation lower than county-by-month.



91

A.5 IV-DID Model Assumptions

A.5.1 Parallel Trends
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Table A.3: Pre-Trends Analysis — ER Visits (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke 0.018∗∗∗ −0.0002 0.002 0.002 0.0004 −0.004 0.002

(0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.002)

Medicaid 0.019∗ 0.031∗∗∗ 0.024∗∗∗ 0.018∗∗∗ 0.057∗∗∗ 0.023∗∗∗ 0.004
(0.010) (0.010) (0.009) (0.005) (0.011) (0.007) (0.004)

Smoke × Medicaid × 2012 0.001 0.013∗∗∗ 0.003 −0.001 0.001 0.001 −0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Smoke × Medicaid × 2014 0.008∗∗∗ 0.007∗∗∗ 0.001 0.001 0.005∗∗∗ 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Smoke × Medicaid × 2015 −0.009∗∗∗ −0.006∗∗∗ −0.002∗ −0.001 −0.002∗∗ 0.003∗∗∗ −0.0002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Smoke × Medicaid × 2016 −0.004∗∗∗ −0.005∗∗∗ −0.006∗∗∗ 0.001 −0.004∗∗∗ 0.002∗ −0.0004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Smoke × Medicaid × 2017 −0.009∗∗∗ −0.008∗∗∗ −0.004∗∗∗ −0.001 −0.002∗ 0.002∗ −0.002∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 545,219 545,219 545,219 545,219 545,219 545,219 545,219
Adjusted R2 0.772 0.929 0.557 0.384 0.977 0.681 0.337

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of ER visits for the stated condition in ZIP j and week t of
year y. Medicaid is instrumented for using the rate of uninsured adults in the ZIP code in 2013 (as in the ER visits models in the main text), and
Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating smoke coverage
of at least one standard deviation of the smoke distribution across ZIP-weeks (equal to 17.2% coverage) or greater. The excluded year is 2013. All
models include ZIP-week-of-year and year fixed effects and weather and socioeconomic controls. Standard errors are clustered by ZIP.
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Table A.4: Pre-Trends Analysis — Mortality (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke 0.025 −0.007 −0.009 0.036 0.016 −0.003 0.018

(0.043) (0.039) (0.041) (0.043) (0.033) (0.043) (0.018)

Medicaid −0.0005 0.029 −0.020 0.108 0.042 −0.092 0.001
(0.060) (0.057) (0.110) (0.117) (0.054) (0.139) (0.021)

Smoke × Medicaid × 2012 0.056 0.083∗∗∗ 0.016 0.012 0.026 0.059∗ −0.004
(0.037) (0.030) (0.031) (0.039) (0.028) (0.032) (0.007)

Smoke × Medicaid × 2014 0.018 0.022 0.028 −0.026 0.016 0.024 −0.004
(0.025) (0.026) (0.020) (0.018) (0.015) (0.016) (0.006)

Smoke × Medicaid × 2015 0.001 0.005 0.015 −0.011 0.007 0.008 0.001
(0.017) (0.017) (0.015) (0.016) (0.012) (0.016) (0.005)

Smoke × Medicaid × 2016 0.009 0.009 −0.012 −0.023 −0.001 0.007 −0.001
(0.015) (0.016) (0.016) (0.016) (0.011) (0.014) (0.006)

Smoke × Medicaid × 2017 −0.010 −0.012 0.004 −0.010 −0.0002 0.011 −0.007∗
(0.013) (0.012) (0.017) (0.014) (0.012) (0.015) (0.004)

Observations 4,176 4,176 4,176 4,176 4,176 4,176 4,176
Adjusted R2 0.925 0.951 0.916 0.917 0.989 0.900 0.142

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of deaths for the stated condition in county j and week t of
year y. Medicaid is instrumented for using the rate of uninsured adults in the county in 2013 (as in the mortality models in the main text), and
Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating smoke coverage of
at least one standard deviation of the smoke distribution across county-months (equal to 15.4% coverage) or greater. The excluded year is 2013. All
models include county-month-of-year and year fixed effects and weather and socioeconomic controls. Standard errors are clustered by county.
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A.5.2 IV First Stage: Insurance (County-Level)

Table A.5: OLS and IV Estimates — Mortality (Heart Attacks)

OLS OLS First Stage Reduced Form IV IV
(1) (2) (3) (4) (5) (6)

Smoke 0.012 0.009 −0.040∗∗∗ 0.038 −0.002 0.143∗
(0.071) (0.070) (0.013) (0.040) (0.031) (0.080)

Medicaid −0.031 −0.034 0.094 0.116
(0.072) (0.074) (0.116) (0.120)

Smoke × Medicaid −0.007 −0.006 −0.047∗
(0.023) (0.023) (0.025)

Z 0.347∗∗∗ 0.038
(0.093) (0.038)

Smoke × Z −0.025∗
(0.015)

Included controls:
Year FE X X X X X X
County-month-of-year FE X X X X X X
Weather controls X X X X X
Socioeconomic controls X X X X X

Observations 4,176 4,176 4,176 4,176 4,176 4,176
Adjusted R2 0.917 0.917 0.978 0.917 0.917 0.916

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable in columns (1)-(3) and (5)-(7) is the log of the count
of heart attack deaths in county j and month t of year y. The dependent variable in column (4) is the Medicaid
coverage rate (the total number of Medicaid enrollees divided by total population) in county j and month t of year
y. Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary
variable indicating smoke coverage of at least one standard deviation of the smoke distribution across county-months
(equal to 15.4% coverage) or greater. Standard errors are clustered by county.
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County-Level Correlation

Figure A.2: First Stage Correlation (County-Level)

Notes: Figure shows the unconditional distributions of the percentage point change in County-level
Medicaid coverage from 2013 to 2017 for each decile of the exogenous instrument (the adult uninsured
rate in 2013). There are 58 total counties in California.

A.6 Double-IV Model
In this section, I present results in which Smokejty is used as an exogenous instrument for
mean PM2.5 in the ZIP-week or county-month, rather than used as a reduced form measure
of air pollution exposure. Consistent with the main text, Smokejty is constructed as a
binary variable representing one standard deviation or greater of smoke coverage across the
ZIP-week or county-month, equal to 17.2% and 15.4%, respectively.
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Table A.6: Double-IV Estimates — ER Visits (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Mean PM2.5 0.033 0.014 −0.027 0.005 0.009 −0.036 −0.002

(0.025) (0.017) (0.022) (0.016) (0.011) (0.023) (0.016)

Medicaid 0.003 0.050 −0.143 0.009 0.052 −0.011 0.032
(0.165) (0.128) (0.209) (0.084) (0.111) (0.152) (0.096)

Mean PM2.5 × Medicaid −0.009 −0.005 0.004 −0.001 −0.004 0.010 0.001
(0.008) (0.005) (0.006) (0.004) (0.004) (0.007) (0.005)

Observations 44,926 44,926 44,926 44,926 44,926 44,926 44,926
Adjusted R2 0.746 0.929 0.505 0.349 0.982 0.639 0.303

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of ER admissions for the stated condition in ZIP j and week
t of year y. PM2.5 is measured in standard units of µg/m3. Medicaid is instrumented for using the rate of uninsured adults in the ZIP code
in 2013 (as in the ER visits models in the main text), and Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid
coverage. PM2.5 is instrumented for with a binary variable indicating smoke coverage of at least one standard deviation of the smoke distribution
across ZIP-weeks (equal to 17.2% coverage) or greater. All models include all of the fixed effects and controls listed in Table 1.4 of the main text.
Standard errors are clustered by ZIP.
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Table A.7: Double-IV Estimates — Mortality (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Mean PM2.5 0.028 0.025 0.011 0.067 −0.010 0.024 0.014

(0.047) (0.046) (0.056) (0.063) (0.025) (0.053) (0.019)

Medicaid 0.042 0.085 0.019 0.360 −0.058 −0.066 0.044
(0.193) (0.192) (0.264) (0.293) (0.121) (0.293) (0.080)

Mean PM2.5 × Medicaid −0.004 −0.007 −0.002 −0.020 0.006 −0.003 −0.003
(0.014) (0.014) (0.017) (0.020) (0.009) (0.016) (0.006)

Observations 3,710 3,710 3,710 3,710 3,710 3,710 3,710
Adjusted R2 0.924 0.950 0.915 0.909 0.989 0.894 0.111

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of deaths for the stated condition in county j and week
t of year y. PM2.5 is measured in standard units of µg/m3. Medicaid is instrumented for using the rate of uninsured adults in the county
in 2013 (as in the mortality models in the main text), and Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid
coverage. PM2.5 is instrumented for with a binary variable indicating smoke coverage of at least one standard deviation of the smoke distribution
across county-months (equal to 15.4% coverage) or greater. All models include county-month-of-year and year fixed effects and weather and
socioeconomic controls. Standard errors are clustered by county.
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A.6.1 IV Estimates: ER Visits (Monitor Sample)
This table repeats the analysis of Table 1.5 in the main text, using only the ZIP codes that
have official EPA monitors for PM2.5. This equals 165 ZIP codes out of approximately 1,750
total in California.

Table A.8: IV Estimates (Monitor Sample) — Mortality (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke 0.064 0.038 −0.026 0.004 0.024 −0.065∗ −0.007

(0.042) (0.030) (0.037) (0.028) (0.022) (0.037) (0.031)

Medicaid −0.122 −0.020 −0.081 −0.002 0.006 0.119 0.045
(0.214) (0.131) (0.154) (0.061) (0.137) (0.168) (0.071)

Smoke × Medicaid −0.017 −0.014∗ −0.002 0.001 −0.009 0.015 0.003
(0.013) (0.008) (0.010) (0.008) (0.007) (0.010) (0.009)

Observations 44,926 44,926 44,926 44,926 44,926 44,926 44,926
Adjusted R2 0.757 0.933 0.519 0.349 0.983 0.655 0.304

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Sample includes only ZIPs that have at least one regulatory grade monitor for PM2.5. The
dependent variable is the log of the count of ER visits for the stated condition in ZIP j and week t of year y. Medicaid-related
estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating smoke coverage
of at least one standard deviation of the smoke distribution across ZIP-weeks (equal to 17.2% coverage) or greater. All models
include ZIP-week-of-year and year fixed effects and weather and socioeconomic controls. Standard errors are clustered by ZIP.

A.6.2 IV Estimates: Mortality (Monitor Sample)
This table repeats the analysis of Table 1.6 in the main text, using only the counties that
have official EPA monitors for PM2.5. This equals 52 counties out of 58 total in California.

Table A.9: IV Estimates (Monitor Sample) — Mortality (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke 0.050 0.050 0.020 0.134 −0.022 0.043 0.027

(0.077) (0.089) (0.107) (0.090) (0.047) (0.086) (0.031)

Medicaid −0.007 −0.003 −0.005 0.104 0.012 −0.106 0.003
(0.058) (0.052) (0.100) (0.105) (0.051) (0.127) (0.022)

Smoke × Medicaid −0.004 −0.013 −0.003 −0.038 0.012 −0.003 −0.005
(0.021) (0.026) (0.032) (0.027) (0.016) (0.026) (0.009)

Observations 3,710 3,710 3,710 3,710 3,710 3,710 3,710
Adjusted R2 0.927 0.951 0.915 0.918 0.990 0.896 0.139

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Sample includes only counties that have at least one regulatory grade monitor for PM2.5.The
dependent variable is the log of the count of deaths for the stated condition in county j and month t of year y. Medicaid-related
estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating smoke coverage
of at least one standard deviation of the smoke distribution across county-months (equal to 15.4% coverage) or greater. All models
include county-month-of-year and year fixed effects and weather and socioeconomic controls. Standard errors are clustered by
county.
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A.7 Impact Estimates

Table A.10: Estimated Benefits — Avoided Smoke-Related ER Visits and Deaths

(a) ER Visits (Asthma) (b) Mortality (Heart Attacks)
∆ Medicaid Rate ∆ Medicaid Rate

Year Actual + 5pp + 10pp + 20pp Actual + 5pp + 10pp + 20pp
2012 −3, 756 −68 −136 −272 219 −4 −8 −15
2013 −20, 229 −230 −460 −920 1, 247 −8 −16 −31
2014 −7, 491 −102 −203 −406 507 −5 −11 −21
2015 −15, 476 −184 −368 −735 932 −8 −17 −33
2016 −35, 381 −255 −510 −1, 019 2, 044 −10 −20 −40
2017 −35, 938 −257 −514 −1, 029 2, 018 −12 −24 −49
Total 118, 271 −1, 096 −2, 191 −4, 381 6, 967 −47 −96 −189

Note: Counterfactual estimates of avoided ER visits and deaths are statewide totals, and are based on predictions
using the estimates of τIV in Table 1.5 (ER visits) and Table 1.6 (mortality) for asthma and heart attacks,
respectively. The estimates reflect actual and predicted health outcomes only during periods defined as smoky,
i.e. having at least one standard deviation or greater of overall smoke coverage during the ZIP-week (for
ER visits) or county-month (for mortality). There were relatively fewer wildfires (and thus relatively fewer
associated smoke plumes) in 2012 and 2014 as compared to the other years in the sample.

A.8 Robustness Checks

A.8.1 ER Visits (County-Month)
This table repeats the analysis of ER visits but instead uses a county-by-month aggregation
rather than a ZIP-by-week aggregation, to facilitate comparisons with the mortality analysis
which can only be conducted at the county-month level due to data limitations.
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Table A.11: IV Estimates — ER Visits (Selected Conditions)

Selected Conditions Selected Placebos
Asthma All Resp. Hypertension Heart Attack All Conditions Diabetes Appendicitis

(1) (2) (3) (4) (5) (6) (7)
Smoke 0.054 0.078∗∗ −0.138∗ −0.008 0.010 −0.112 0.059

(0.068) (0.036) (0.081) (0.055) (0.019) (0.070) (0.092)

Medicaid −0.018 −0.026 −0.155 0.035 0.036 −0.004 0.237∗∗
(0.169) (0.097) (0.160) (0.094) (0.036) (0.079) (0.116)

Smoke × Medicaid −0.028 −0.026∗∗ 0.033 −0.004 −0.006 0.030 −0.012
(0.022) (0.011) (0.025) (0.018) (0.005) (0.023) (0.031)

Observations 4,176 4,176 4,176 4,176 4,176 4,176 4,176
Adjusted R2 0.977 0.991 0.969 0.961 0.998 0.979 0.954

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The dependent variable is the log of the count of ER visits for the stated condition in county j and month
t of year y. Medicaid-related estimates have been scaled to reflect a 10pp increase in Medicaid coverage. Smoke is a binary variable indicating
smoke coverage of at least one standard deviation of the smoke distribution across county-months (equal to 15.4% coverage) or greater. All
models include county-month-of-year and year fixed effects and weather and socioeconomic controls. Standard errors are clustered by county.
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Appendix B

Supplemental Material for Chapter 2
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B.1 Main Results: Excluding California

Table B.1: The effect of upwind emissions on monitors’ PM2.5 levels under CAIR
Excluding California

Dependent variable: Monitor-average PM2.5 (month of sample)
(1) (2)

Pooled Annual Standard

P̂M2.5 1.255∗∗∗
(0.205)

(P̂M2.5) × Far, Below 1.079∗∗∗
(0.210)

(P̂M2.5) × Near, Below 1.334∗∗∗
(0.210)

(P̂M2.5) × Near, Above 1.433∗∗∗
(0.204)

(P̂M2.5) × Far, Above 1.261∗∗∗
(0.268)

(P̂M2.5) × Far, Below × CAIR 0.294
(0.264)

(P̂M2.5) × Near, Below × CAIR 0.409
(0.279)

(P̂M2.5) × Near, Above × CAIR 0.227
(0.262)

(P̂M2.5) × Far, Above × CAIR -0.555
(0.354)

Fixed effects
Monitor Yes Yes
Month by NERC region Yes Yes
Observations 57,681 57,681

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the monitor-month, limited to only one
monitor per county (selected monitors represent the “marginal” monitor, defined as the monitor
that determined the county’s annual design value for PM2.5 in the respective year). The dependent
variable is the monthly average PM2.5 concentration at the given monitor.P̂M2.5 refers to InMAP-
based estimates of the transport of PM2.5 from upwind emissions at electricity-generating units
to the monitor. Distance indicators denote the distance of the monitor’s county from the Annual
PM2.5 NAAQS of 15.0 µg/m3 in the base period of CAIR (2007-2008). Based on a bandwidth of
1.0 µg/m3, there are 619 monitors categorized as Far Below, 95 as Near Below, 47 as Near Above,
and 9 as Far Above. We two-way cluster errors at the same level as the specifications’ fixed effects.
The data sample for this set of regressions covers 2005-2015.
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Table B.2: The effect of upwind emissions on monitors’ PM2.5 levels under CSAPR/MATS
Excluding California

Dependent variable: Monitor-average PM2.5 (month of sample)
(1) (2)

Pooled Annual Standard

P̂M2.5 1.259∗∗∗
(0.177)

(P̂M2.5) × Far, Below 1.231∗∗∗
(0.192)

(P̂M2.5) × Near, Below 1.182∗∗∗
(0.178)

(P̂M2.5) × Near, Above 1.192∗∗∗
(0.234)

(P̂M2.5) × Far, Above 1.256∗∗∗
(0.173)

(P̂M2.5) × Far, Below × CAIR 0.199
(0.261)

(P̂M2.5) × Near, Below × CAIR 0.178
(0.270)

(P̂M2.5) × Near, Above × CAIR 0.107
(0.285)

(P̂M2.5) × Far, Above × CAIR -0.417∗
(0.246)

(P̂M2.5) × Far, Below × CSAPR/MATS -0.160
(0.516)

(P̂M2.5) × Near, Below × CSAPR/MATS -0.498
(0.507)

(P̂M2.5) × Near, Above × CSAPR/MATS -1.466∗∗
(0.683)

(P̂M2.5) × Far, Above × CSAPR/MATS -0.760∗
(0.453)

Fixed effects
Monitor Yes Yes
Month by NERC region Yes Yes
Observations 79,274 79,274

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the monitor-month, limited to only one
monitor per county (selected monitors represent the “marginal” monitor, defined as the monitor
that determined the county’s annual design value for PM2.5 in the respective year). The outcome
variable is the monthly average PM2.5 concentration at the given monitor. P̂M2.5 refers to InMAP-
based estimates of the transport of PM2.5 from upwind emissions at electricity-generating units
to the monitor. Distance indicators denote the distance of the monitor’s county from the Annual
PM2.5 NAAQS of 12.0 µg/m3 in the base period of CSAPR/MATS (2013-2014). Based on a
bandwidth of 1.0 µg/m3, there are 753 monitors categorized as Far Below, 69 as Near Below, 19 as
Near Above, and 2 as Far Above. We two-way cluster errors at the same level as the specifications’
fixed effects. The data sample for this set of regressions covers 2005-2019.
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Table B.3: The effect of upwind emissions on monitors’ PM2.5 levels under CSAPR/MATS
Excluding California, Above Category Collapsed

Dependent variable: Monitor-average PM2.5 (month of sample)
(1) (2)

Pooled Annual Standard

P̂M2.5 1.259∗∗∗
(0.177)

(P̂M2.5) × Far, Below 1.234∗∗∗
(0.193)

(P̂M2.5) × Near, Below 1.184∗∗∗
(0.179)

(P̂M2.5) × Above 1.219∗∗∗
(0.205)

(P̂M2.5) × Far, Below × CAIR 0.193
(0.261)

(P̂M2.5) × Near, Below × CAIR 0.173
(0.270)

(P̂M2.5) × Above × CAIR -0.034
(0.285)

(P̂M2.5) × Far, Below × CSAPR/MATS -0.156
(0.516)

(P̂M2.5) × Near, Below × CSAPR/MATS -0.494
(0.507)

(P̂M2.5) × Above × CSAPR/MATS -1.302∗∗
(0.616)

Fixed effects
Monitor Yes Yes
Month by NERC region Yes Yes
Observations 79,274 79,274

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the monitor-month, limited to only one
monitor per county (selected monitors represent the “marginal” monitor, defined as the monitor
that determined the county’s annual design value for PM2.5 in the respective year). The outcome
variable is the monthly average PM2.5 concentration at the given monitor. P̂M2.5 refers to InMAP-
based estimates of the transport of PM2.5 from upwind emissions at electricity-generating units
to the monitor. Distance indicators denote the distance of the monitor’s county from the Annual
PM2.5 NAAQS of 12.0 µg/m3 in the base period of CSAPR/MATS (2013-2014). Based on a
bandwidth of 1.0 µg/m3, there are 753 monitors categorized as Far Below, 69 as Near Below, and
21 as Above. We two-way cluster errors at the same level as the specifications’ fixed effects. The
data sample for this set of regressions covers 2005-2019.
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B.2 Placebo Tests: Mortality

Table B.4: The effect of changes in upwind emissions on changes in county mortality under
CAIR

(1) (2) (3)
Diabetes Liver Congen.

(P̂M2.5) × Far, Below 1.739 0.343 0.073
(1.847) (0.956) (0.333)

(P̂M2.5) × Near, Below 0.416 −0.040 0.341
(1.731) (0.896) (0.312)

(P̂M2.5) × Near, Above 0.678 0.009 −0.025
(1.838) (0.952) (0.332)

(P̂M2.5) × Far, Above 1.251 −0.826 0.439
(3.075) (1.592) (0.555)

Fixed effects
NERC Region Yes Yes Yes
Observations 438 438 438

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The outcome variables is the change in the county-level mortality
rate per 100,000 residents for the stated health condition from the pre-period to the post-period of
the policy. For CAIR, this change is calculated as the difference between the 2013-2014 average rate
and the 2007-2008 average rate. ∆P̂M2.5 refers to the change in average InMAP-based exposure
from 2007-2008 to 2013-2014. Distance indicators denote the distance of the county from the
Annual PM2.5 NAAQS of 15.0 µg/m3 in the base period of CAIR (2007-2008). We cluster errors
by NERC region. Liver includes chronic liver disease and cirrhosis. Congen. refers to congenital
diseases.
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Table B.5: The effect of changes in upwind emissions on changes in county mortality under
CSAPR/MATS

(1) (2) (3)
Diabetes Liver Congen.

(P̂M2.5) × Far, Below −8.071∗ −1.007 −1.031
(4.633) (2.059) (0.864)

(P̂M2.5) × Near, Below −6.760 −0.189 −1.788∗
(5.324) (2.366) (0.993)

(P̂M2.5) × Near, Above −2.344 1.103 −2.727∗
(8.147) (3.621) (1.520)

(P̂M2.5) × Far, Above −0.696 −1.724 −1.729
(15.126) (6.723) (2.822)

Fixed effects
NERC Region Yes Yes Yes
Observations 438 438 438

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The outcome variables is the change in the county-level mortality
rate per 100,000 residents for the stated health condition from the pre-period to the post-period of
the policy. For CSAPR/MATS, this change is calculated as the difference between the 2017-2018
average rate and the 2013-2014 average rate. ∆P̂M2.5 refers to the change in average InMAP-based
exposure from 2013-2014 to 2017-2018. Distance indicators denote the distance of the county from
the Annual PM2.5 NAAQS of 15.0 µg/m3 in the base period of CSAPR/MATS (2013-2014). We
cluster errors by NERC region. Liver includes chronic liver disease and cirrhosis. Congen. refers
to congenital diseases.



107

Appendix C

Supplemental Materials for Chapter 3
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C.1 Placebo Test

Table C.1: OLS Estimates — ER Visits (Bone Fractures)

(1) (2)
0-17 0-17

< 40° 0.063 0.085
(1.01) (1.20)

40°− 49° 0.056 0.036
(0.58) (0.44)

50°− 59° 0.027 0.026
(0.52) (0.41)

70°− 79° 0.095∗ 0.070
(1.97) (1.29)

80°− 89° 0.076 0.054
(1.03) (0.79)

> 90° -0.009 -0.006
(-0.07) (-0.04)

< 40° × Medicaid 0.033
(0.52)

40°− 49° × Medicaid -0.056
(-0.77)

50°− 59° × Medicaid -0.042
(-0.47)

60°− 69° × Medicaid 0.008
(0.13)

70°− 79° × Medicaid -0.042
(-1.22)

80°− 89° × Medicaid -0.019
(-0.90)

> 90° × Medicaid -0.080
(-0.77)

Observations 10,160 20,320

Note: t-statistics in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the county-
quarter in column (1) and the county-quarter-Medicaid status in column (2). The outcome variable
is the log of the count of inpatient admissions that originated in the Emergency Department and
contain a bone fractures diagnosis. Total precipitation, per capita income, and the logged poverty
rate are also controlled for in each regression. Standard errors are clustered by county.
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C.2 Robustness

Table C.2: OLS Estimates — ER Visits (Severe Conditions)

(1) (2) (3) (4)
0-64 0-17 18-44 45-64

< 40° -0.0008 -0.0002 0.0004 -0.0011
(-1.16) (-0.12) (0.57) (-1.42)

40°− 49° -0.0002 -0.0021 0.0020∗∗ -0.0007
(-0.41) (-1.16) (2.39) (-1.16)

50°− 59° 0.0001 -0.0021 0.0010 -0.0001
(0.31) (-1.63) (1.52) (-0.28)

70°− 79° 0.0001 -0.0003 0.0006 -0.0001
(0.26) (-0.17) (1.40) (-0.15)

80°− 89° 0.0002 -0.0002 0.0001 0.0001
(0.33) (-0.15) (0.18) (0.23)

> 90° 0.0008 -0.0027 0.0008 0.0007
(0.55) (-1.53) (0.51) (0.46)

< 40° × Medicaid -0.0000 -0.0002 -0.0001 -0.0000
(-0.00) (-0.16) (-0.03) (-0.00)

40°− 49° × Medicaid -0.0029∗∗∗ -0.0026∗∗ -0.0008 -0.0035∗∗∗
(-2.99) (-2.30) (-0.67) (-3.00)

50°− 59° × Medicaid -0.0010 0.0020∗∗ -0.0014∗ -0.0010
(-1.03) (2.57) (-1.94) (-0.86)

60°− 69° × Medicaid -0.0021∗∗∗ -0.0003 0.0000 -0.0027∗∗∗
(-4.32) (-0.34) (0.03) (-4.84)

70°− 79° × Medicaid -0.0014∗∗∗ -0.0000 -0.0010∗∗∗ -0.0015∗∗∗
(-5.61) (-0.03) (-2.76) (-5.54)

80°− 89° × Medicaid -0.0016∗∗∗ -0.0000 -0.0007∗∗ -0.0019∗∗∗
(-4.09) (-0.03) (-2.32) (-4.10)

> 90° × Medicaid -0.0025 0.0040∗∗∗ -0.0026 -0.0026
(-1.40) (3.14) (-1.08) (-1.39)

Observations 20,320 20,320 20,320 20,320

Note: t-statistics in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The unit of analysis is the county-
quarter in column (1) and the county-quarter-Medicaid status in column (2). The outcome variable
is the log of the count of inpatient admissions that originated in the Emergency Department and
contain a severe respiratory and/or cardiovascular-related diagnosis (cardiac dysarythmias and
congestive heart failure). Total precipitation, per capita income, and the logged poverty rate are
also controlled for in each regression. Standard errors are clustered by county.




