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Antibody Genetics
Charles K. Cole

Abstract

Antibodies are created through a unique mechanism whereby different gene 

segments at the antibody loci are semi-randomly recombined to form functional 

antibody genes. This process allows that adaptive immune system to generate 

protection against a near-infinite array of pathogens, however it presents unique 

challenges from a sequencing prospective. I present three projects addressing 

problems facing the repertoire sequencing community including a method for full-

length antibody transcript sequencing, a method for heavy and light chain pairing in 

single B cells, and a method for generating repertoires as a byproduct of a general 

polyA RNA sequencing protocol.
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Antibody Genetics

The purpose of the Immune system is to allow the body to discriminate between self

and non-self. This enables the body to detect and neutralize viruses, bacteria, fungi,

toxins and, in some situations, even cancer. In Vertebrates, this system can be

divided   into   two   mutually   supporting   but   conceptually   distinct   parts:   innate   and

adaptive immunity. The innate immune system is genetically encoded in the germline

and operates by recognizing evolutionarily-conserved patterns in biomolecules which

indicate the presence of harmful organisms. The adaptive immune system must

learn to recognize   pathogens through patterns in protein structure and is, on the

whole, slower than the innate immune system, taking several days for the response

to occur as opposed to several hours. However, once pathogens are recognized, the

adaptive immune system can retain life-long memory of them  and provide quick and

effective response to future infections.

The adaptive Immune system can be thought of as a chain of responses

which start when dendritic cells or macrophages - professional antigen presenting

cells engulf the pathogen-associated proteins. These proteins are then fragmented

into   smaller   peptides   and   presented   on   the   cell   surface   as   part   of   the   Major

Histocompatibility Complex (MHC2). These peptide fragments are called antigens

and,   when   presented   with   the   correct   co-stimulatory   factors   and   in   the   correct

context, will initiate an immune response by activating CD4+ and CD8+ T cells.

Those   possessing   a   T   cell   receptor   (TCR)   specific   to   one   of   the   antigens   will

continue to proliferate and drive further action by the immune system. CD8+ T cells,
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also known as Cytotoxic CD8+ T cells, serve an important role by migrating to the

site of infection and killing infected cells. CD4+ T cells, on the other hand support

immune response in two important capacities. In their first capacity, they produce

cytokines and chemokines which attract CD8+ T cells, Natural Killer cells and other

immune cells to the site of infection. In their second capacity they initiate the B cell

response by activating B cells in  the  germinal centers of the lymph nodes and

spleen.

A Brief History of Antibody Genetics

The precise moment that B cells  were discovered is somewhat debatable because

antibodies and the B cell response were discovered before the cell population was

isolated. In 1908 Paul Ehrlich received the Nobel prize for the discoveries he made in

the field of immunology and specifically for his work on vaccine development. In his

work   he   characterized   the   production   and   interaction   between   “toxins”   and

substances capable of neutralizing those toxins which he referred to as “antibodies”.

He noted that antibodies effective against one toxin would be ineffective against

another. From these results he developed the “lock and key” theory of antibody

specificity, wherein each antibody is specific to a particular antigen. In 1958 G. J. V.

Nossal published a set of experiments where the individual lymph node cells from

rats   immunized   with   one   or   both   of   two   strains   of   salmonella   were   isolated   in

microdroplets along with one or both strains. He noted that each lymph node cell

could inhibit one strain or the other but never both. This led to the theory that each

antibody-producing cell could produce only one antibody. 
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Antibody   proteins   were   first   isolated   by   Kabat   et   al.   in   1938   by   gel

electrophoresis of the protein component of antibody-containing sera before and

after mixing with antibody-sequestering antigen. He noticed that the sequestered

sample was missing the band at ~150kd, which he dubbed the -globulin. In 1961  𝝲

Edelman published a paper describing how the -globulin protein dissociated into  𝝲

two components under reducing condition, a large protein dubbed the heavy chain at

~50kd and a small protein dubbed the light chain at ~25kd. A simple calculation

revealed that antibodies were likely to consist of two heavy and two light chains.

Further mysteries emerged when it was revealed that the amino acid composition of

these chains are variable and that this variation was present at NH2 end of the

peptide but not the COOH end.

 In 1965 Bennett published a paper describing what was then considered to

be a fundamental paradox: How is it possible for one gene to produce an endless

variety of protein products with this unique pattern of mutations?  Bennet argued that

the conserved domain was the product of a single gene while the variable portion

was the product of a different set of genes and that the proteins were a product of

homology-based binding between these two parts. It was quickly determined that it

would be impossible for each unique antibody to be the product of a different gene

since the genome did not possess enough physical space to accommodate enough

antibody   genes   to   offer   the   near-limitless   level   of   protection   against   pathogens

observed thus far. In addition, a comparison of Human, Mouse and Rabbit antibodies

indicated   an   evolutionary   pattern   which   would   be   impossible   to   replicate   via
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thousands of independently evolving genes. In 1967 smithies proposed a genetic

model whereby there existed a single heavy, kappa, and lambda gene, but for each

gene there existed and associated “scrambler” gene which annealed to the variant

half of the “master” gene during DNA replication, inducing somatic mutations. Leroy

Hood came close to realizing the truth when, in 1970, he proposed a model where

the constant and variable regions of each chain where encoded by two separate

classes of genes and then combined to form the complete antibody (McKean, Bell,

and Potter 1978). M. Weigert noted that variants present in the variable region of

Lambda chains were more likely to occur inside three “specificity” regions of the

chain. He postulated that many of these mutations were likely to be the result of

somatic variants and that they were driven by the antigenic specificity of the antibody

and that the true number of variable segment genes was much lower than what had

been previously proposed (Weigert et al. 1970). 

In 1976 Hozumi et al in the lab of Susumu Tonegawa published a paper

describing   a series  of   experiments  wherein  radio-labeled   whole   and  fragmented

kappa  chain  RNA  was  hybridized  to  restriction-digested  embryonic  and

plasmacytoma DNA from mice (Hozumi and Tonegawa 1976). He noticed that whole

and 3’ fragments of RNA hybridized to a single band in the plasmacytoma DNA while

in embryonic DNA the whole RNA hybridized to two different bands and the 3’

fragments hybridized to the larger of those two bands. He hypothesized that these

patterns appear because the kappa chain gene exists as two separate and remote C

and V genes in the germline but are joined together through somatic rearrangement
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in   antibody-producing   cells.   One   year   later,   direct   visualization   of   kappa   mRNA

hybridization   to   myeloma   DNA   by   electron   microscopy   indicated   that,   in   the

rearranged genome, the C and V genes were 1250bp apart (Brack and Tonegawa

1977). Further experiments on the Lambda chain genes revealed the presence of an

extra antibody gene segment between the C and V segments which had up to that

point remained undetected and which they called the J segment (Brack et al. 1978).

Hood   et   al.   identified   via   sanger   sequencing   a   third   segment   involved   in   the

rearrangement of heavy chain genes which he called the D segment  (Early et al.

1980). In addition, he identified a set of conserved noncoding sequences 3’ to the V

segment   and   5’   to   the   J   segment   which   consist   of   nearly   identical   7   and   10

nucleotide sequences separated by either 11 or 22 nucleotide spacer consisting or

random nucleotides. Furthermore, the conserved sequences at the 3’ of the V and 5’

of the J are nearly inverse complements of one another. Hood correctly hypothesized

the   presence   of   a   protein   which   would   recognize   these   sights   and   initiate

recombination.

5



Diagram of Antibody Genetics (Tonegawa 1983)

 L. LuzzatI studied the phenomena of multi-class expression whereby B cells

express heavy chains which are identical except for the constant region  (Pernis,

Forni, and Luzzati 1977). He observed patterns in Isotype expression of LPS-treated

lymphocytes   which   suggested   that   all   cells   start   out   with   the   ability   to   produce

simultaneous   IgM   and   IgD   and   gradually   transition   over   to   producing   IgG.   The

complete picture would be revealed by Kataoka with the allelic deletion model(Honjo

and Kataoka 1978). Hybridization experiments revealed that myeloma tumor cells

had different copy numbers of different IgG alleles depending on which Isotype they

produced. He observed that cells which produced IgG1 had half as many copies of

IgG3, and that cells which produced IgG2b had half as many copies of both IgG3

and IgG1. Patterns such as these led him to the conclusion that class-switching
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occurs by deletion of the constant region genes between the Variable segment and

the new class.

In 1989, the Recombination Activating Gene(RAG-1) was isolated  (Schatz,

Oettinger,  and   Baltimore   1989).   This   was   the   first   gene   proven   to   confer

recombination   activity   at   Recombination   Signal   Sequences(RSS)   sites.   It   was

detected by repeated fragmentation and transfection of DNA from a cell line with high

recombinase activity into a non-recombining cell line and then plating on media

which selected for recombination activity. The transfected DNA was ligated along

with   a   small   oligo   which   the   experimenters   used   as   a   priming   site   for   sanger

sequencing. Further experiments revealed that RAG-1 was evolutionarily conserved

to the point where Human RAG-1 cDNA could be used as a probe to detect the

RAG-1 genes in mouse, horse, goat, rabbit, and dog as well. One year later RAG-2

would be discovered, a neighboring gene which, in combination with RAG-1, initiate

efficient recombination at RSS sites(Oettinger et al. 1990). 

By this point it was understood which genes were needed for recombination

to occur, however this was not the full story. It was known that nucleotides were

incorporated at the sites of recombination which could not have originated from any

of the available gene segments. In addition, it was known that the heavy and light

chain genes  could mutate during cell  replication.  In 1993 the results of several

knockout   experiment   showed   that   an   absence   of   Terminal   deoxynucleotidyl

transferase expression eliminated the incorporation of non-template nucleotides at

the   CDR3  (Komori   et   al.   1993).   a   few   years   later   Activation-induced   cytidine
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deaminase was shown to be necessary for both somatic hypermutation of antibody

genes and class-switch recombination (Muramatsu et al. 2000) and finally, In 1998, a

complete copy of the Human Heavy Chain locus was assembled(Matsuda et al.

1998). The ~1.4 Mb locus is notable for being internally repetitive and for containing

numerous V segment pseudogenes.

Modern understanding of antibody genetics

In combination these studies laid the groundwork for our current understanding of

how the unprecedented diversity of antibody proteins.

In summary: 

1.) Each B cell produces an antibody which consists of a pair of unique heavy chains

and light chains, each of which can be divided into a variable and constant region. 

2.)   The   Variable   region   of   heavy   and   light   chains   consist   of   3   Complementary

Determining   Regions(CDRs)   which   determine   antigen   binding   and   3   Framing

Regions(FRs) which give the antibody structure. At the mRNA level, the variable

Variable region occurs at the 5’ end of the transcript with the CDRs sandwiched

between the FRs. CDR1 and CDR2 are inherited from the  V gene segment while the

CDR3 is a product of somatic recombination.

3.) During somatic recombination, one V, D (heavy chain only), and J gene segments

are randomly selected from a collection of segments in the respective gene locus.

These segments are recombined into a variable region. During this process   non-

template   nucleotides   are   added   between   the   gene   segments   and   nucleotides

removed via chewback, generating large amounts of sequence diversity. 
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4.)   Further   diversity   is   generated   through   somatic   hypermutation   during   affinity

maturation and clonal expansion. This process generates a lineage of antibodies

which share a common parent but which may possess distinct mutations which affect

their ability to bind to antigens. Antibodies with higher affinity to the target antigen will

divide faster, driving the production of antibodies with increasing affinity. 

5.) The constant region consisted of a single isotope-determining gene segment

which   could   be   expressed   in   either   the   membrane-bound   or   secreted   form.   In

addition, the isotype of an antibody could change due to isotype switching. The

isotype influences the type of receptors the antibody binds to and the multiplicity of

the antibody in its secreted form.

High-throughput sequencing to investigate antibody transcripts

One of the primary technical challenges which faced early antibody 

geneticists  was figuring out the sequence of distinct antibodies. Sanger sequencing 

was the method of choice for most scientists and this method required two things: 1. 

A pure DNA template 2. A known priming site on the template. However, any mRNA 

or cDNA sample derived from a healthy population of B cells will contain contain a 

mixture of distinct antibody transcripts. Thus, many early studies were done using 

lymphoma antibodies. Lymphoma are often derived from a single B cell which means

that the antibody transcripts derived from the cancer will be relatively pure. Cloning 

enabled the isolation of individual antibody transcripts, however this method was 

time-consuming and low-throughput. 

Unfortunately, the advent of high-throughput sequencing didn’t help address this 
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challenge. Regular RNAseq protocols would not allow for the identification of distinct 

heavy and light chains in bulk samples. Because portions of a sequence would be 

shared between different antibodies while other portions would be unique, it would 

be impossible to reconstruct antibodies using an Overlap-Layout-Consensus(OLC) 

or debruijn graph assemblers, which rely on the fact that sufficiently large stretches 

of the target sequence are unique and can be identified by alignment or k-mer 

analysis. In fact, the only difference between two independently-generated antibody 

transcripts may be as small as one nucleotide! Thus, any bulk repertoire sequencing 

approach would have to generate reads which would both cover the entire variable 

segment and also be grouped by the original molecule which the sequence was 

derived from. 

In 2011 a method for high-throughput sequencing of antibody repertoires was 

published (Weinstein et al. 2009). In this study, cDNA amplicons were generated 

from Zebrafish mRNA by priming off of the second framing region and the constant 

region in heavy chain transcripts and then sequencing using 2x230 runs on the 454 

pyrosequencer. These sequences would cover the entire V segment and a portion of

the C segment using two paired reads which could be reconstructed into an antibody

transcript by OLC assembly. This provided enough information to identify the isotype 

and clonality of the heavy chains in a small population of zebrafish. The authors 

found that the recombination rate for different gene segments varied dramatically 

and that the rate of V segment usage varied significantly between individuals. That 

same year a paper was published showing that repertoire sequencing could be used 
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to detect minimal residual disease in patients with CLL. The authors showed that 

high-throughput sequencing of heavy chains in patients with CLL could readily 

identify the presence of cancer-derived antibody clones (Logan et al. 2011). In 2012 

repertoire sequencing was applied to the problem of haplotyping the human heavy 

chain locus (Kidd et al. 2012). The authors did this by taking advantage of the fact 

the J6 is the most commonly used J segment and that if someone is heterozygous 

for J6 then heterozygous V and D segments will segregate with one copy of J6 or the

other when V(D)J recombination occurs. These patterns can be used to phase gene 

segments in the heavy chain locus. Soon after it was demonstrated that repertoire 

sequencing could be used to measure the adaptive immune response through 

detection of heavy chains conserved across multiple administrations of influenza 

vaccine (Vollmers et al. 2013). In 2013 repertoire sequencing was used to identify 

novel HIV neutralizing neutralizing antibodies. Repertoires were generated from 

HIV+ patients and sequences compared to known HIV neutralizing antibodies using 

phylogenetic analysis. This method was capable of identifying antibodies with low 

sequence homology but strong comparable HIV neutralizing ability. Several years 

later it was shown that repertoire sequencing could be used to detect graft rejection 

in heart transplant patients undergoing immune suppression and that it was capable 

of detecting rejection sooner than the cell-free DNA assay which was widely 

considered to be the gold standard. It was found that graft rejection correlated 

strongly with the abundance of highly mutated antibody transcripts, especially IgG 

and IgA sequences (Vollmers et al. 2015).
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Even though Immune repertoire sequencing has been used successfully to answer 

basic and applied questions in immunology, there were still limitations with this 

technology that my work as a graduate student aimed to address.

Aims

Aim 1: Full Length Heavy Chain Sequencing
Heavy chain transcripts are typically somewhere between 1,500 and 2,000bp long 

depending on if they are membrane-bound or secreted. Furthermore, about 700bp 

needs to be sequenced in order to identify the complete variable region as well as 

enough the the constant region in order to identify isotype.  At the time this project 

was conceived, all published protocols for the sequencing of antibody repertoires 

involved priming off one of the conserved framing regions in the V-segment, leaving 

one or more of the CDRs unsequenced (Georgiou et al. 2014). The CDRs define 

what antigens will bind and with what affinity. If you want to study the antibody or use

it in a scientific or healthcare setting, you have to know the sequence of all the 

CDRs.  

To address these limitations, we set out to create a method for sequencing full-length

heavy chain transcripts. We accomplished this by using a combination of molecular 

indexing and random shearing via TN5 to generate a library where entire transcripts 

can be reconstituted practically error-free. 

Aim 2: Heavy and Light Chain Pairing

There are several billion B cells in each person’s blood and hundreds of billions of B 
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cells residing in a person’s lymphatic tissue, which means there are billions of unique

heavy and light chains which comprise an individual’s antibody repertoire. We can 

infer the amino acid sequences of a person’s heavy and light chains by sequencing 

the mRNA extracted from that person’s B cells. However, at the time this project was

conceived, it was impossible to know which pairs of heavy and light chains were 

produced by the same B cell without using single-cell sequencing. In 2015 DeKosky 

et al. published a method for isolating single B cells in droplets and generating Heavy

and Light chain amplicons which could later be sequenced (DeKosky et al. 2015). 

However, this method resulted in a high dropout rate which was likely due to the 

stochastic nature of isolating single cells using droplets. We were interested in 

pairing heavy and light chains for two reasons. From a practical point of view, you 

need to be able to pair heavy and light chains if you want to identify complete 

antibodies using repertoire sequencing and without the use of single-cell techniques. 

Thus, the development of an efficient and robust pairing technique would greatly aid 

in the expression and analysis of antibodies. In addition, pairing heavy and light 

chains would allow for the study of chain pairing patterns, biases and interactions.

We proposed that by taking a sample of B cells, dividing it into several smaller 

samples and sequencing each of these subsamples it is possible to discover heavy 

and light chain pairs which were present in the original sample. Our method calls for 

sequencing subsamples containing several thousand B cells and looking for heavy 

and light chain sequences which occur in multiple subsamples. Because the human 

body contains millions of B cells, each with their own unique heavy and light chains, 
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it is highly improbable that any particular heavy and light chain pair would be present 

in multiple libraries unless they were produced by the same clonal B cell population. 

This project sought to build upon the work done by Howie et al. in their 2015 paper 

on pairing alpha and beta T cell receptor subunits using a very similar method, only 

with heavy and light chains of the antibody (Howie et al. 2015). However, there are 

several important differences which make this project more difficult. The biggest 

difference is that the T cell receptors do not undergo somatic hypermutation. Thus, 

well occupancy can be determined for each alpha and beta subunit by simple 

sequence identity. Heavy and Light chains must first be clustered into lineages which

consist of clonally related sequences. In addition, the unequal expression of heavy 

and light chains increases the probability of antibody dropout and false discoveries.

By good fortune we developed another technology which proved to be the key to 

pairing heavy and light chains. Around the same time we were working on a method 

for sequencing the 5’ ends of transcripts in single cells. At the time, the available 

technology for single cell RNAseq only supported the sequencing of 3’ ends, and 

since the 5’ end contains information about the transcription start site having the 

ability to sequence them would be useful. We developed a simple protocol using 

poly-A selection and template-switch reverse transcription to generate cDNA 

molecules with distinct priming sites at the 5’ and 3’ ends, and then followed with 

tagmentation and amplification to generate libraries which cover the 5’ ends of 

transcripts. We applied this method to a population of B cells and found that the data 

could be used to generate paired heavy and light chains. As you may recall, the 
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variable region of the antibody is present at the 5’ end of the transcript. We found 

that, with sufficient depth of sequencing, this method provided enough coverage of 

that region to assemble the variable portion of heavy and light chain transcripts in 

individual B cells and also estimate their isotype and expression levels. In the end, 

we were able to pair heavy and light chains as a byproduct of a method we 

developed for the sequencing of the 5’ ends of transcripts in single cells which we 

refer to as TN5Prime.

Aim 3: Repertoire Sequencing Using the Oxford Nanopore

Although dedicated antibody sequencing protocols can be used to accurately 

characterize the repertoire from mRNA, a fundamental problem is that these 

methods must be used in conjunction with regular RNAseq in order to fully 

characterize the transcriptome of a population of B cells. However, we demonstrated 

in the TM5Prime paper that repertoires can be acquired as a byproduct of certain 

types of mRNA sequencing. We believe that the future of repertoire sequencing and 

analysis will be as a byproduct of the sequencing of whole transcriptomes. We 

demonstrate that this is possible by applying the previously published R2C2 method 

to bulk PBMC RNA. We show that this method can be used to comprehensively 

measure the transcriptomes of the cells in our population including antibody and T-

Cell receptor transcripts.

In the following chapters I will present work I have done towards meeting these 

research goals. The first two chapters will come in the form of published papers 
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detailing experiments and their results which meet the technical objectives of the first

two aims, and the final chapter will present unpublished results as well as a brief 

analysis. 

Aim 1: Full Length Heavy Chain Sequencing

[THIS SECTION ADAPTED FROM Highly Accurate Sequencing of Full-Length 
Immune Repertoire Amplicons using Tn5 enabled and Molecular identifier 
guided Amplicon Assembly](Cole et al. 2016)

Highly Accurate Sequencing of Full-Length Immune Repertoire
Amplicons Using Tn5-Enabled and Molecular Identifier-Guided

Amplicon Assembly
   

Charles Cole
1
, Roger Volden

1
, Sumedha Dharmadhikari

1
, Camille Scelfo-

Dalbey
1
, Christopher Vollmers

1,*

   
Abstract
Antibody repertoire sequencing is a powerful tool to analyze the adaptive immune 

system. To sequence entire antibody repertoires, amplicons are created from 

antibody heavy chain (IGH) transcripts and sequenced on a high-throughput 

sequencer. The field of immune repertoire sequencing is growing rapidly and the 

protocols utilized are steadily improving, yet, thus far, immune repertoire sequencing 

protocols have not been able to sequence full-length immune repertoires including 

the entire IGH Variable region and enough of the IGH Constant region to identify 

isotype subtypes. Here we present a method that combines Tn5 transposase and 
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molecular identifiers for the highly accurate sequencing of amplicons longer than 

500bp using Illumina short read paired end sequencing. We then apply this method 

to antibody heavy chain amplicons to sequence the first highly accurate full-length 

immune repertoire.

   
Introduction
Antibodies are encoded by Heavy Chain (IGH) and Light Chains (IGκ/λ) loci which ) loci which 

undergo somatic recombination during B cell differentiation. In the heavy chain, VDJ 

recombination creates a highly diverse Complementarity Determining Region 3 

(CDR3) when randomly and imperfectly combining one each of ~40 V, ~30 D, and 6 

J segments. Heavy chain loci are further modified by somatic hypermutation and 

class-switch recombination. Somatic hypermutation introduces mutations and indels 

that can affect the binding characteristics of an antibody. Class-switch recombination

changes the antibody isotype by genomic rearrangement of the isotype-determining 

Constant regions (IgM, IgD, IgG1-4, IgA1-2, IgE). The isotype of an antibody 

changes the characteristics of an antibody like the ability to bind complement, pass 

the placenta, or bind certain Fc receptors. Together, VDJ recombination, somatic 

hypermutation, and class-switch recombination create a virtually unique IGH locus in 

every mature B cell clone.

Because every B cell clone is unique and can expand and mutate in response to an 

antigen, analyzing the repertoire of IGH transcripts in a blood sample provides 

insight into the composition and state of the adaptive immune system. Immune 

repertoire sequencing has so far been used in both basic and translational research. 
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In basic research it has been applied to estimate the absolute size of the B cell 

repertoire in humans, track the effect of aging on the immune system, investigate 

V,D, and J pairing, and haplotype phase the genomic IGH locus. On the translational

side it has been used to track immune response to diseases and vaccines, to track 

minimal residual disease in leukemia, and determine rejection events following organ

transplantation(Boyd et al. 2009; Vollmers et al. 2013; Jiang et al. 2013; Glanville et 

al. 2011; Arnaout et al. 2011; Meyer et al. 2013; Vollmers et al. 2015). All these 

studies rely on capturing the diversity of the IGH repertoire but are limited by current 

sequencing technologies and protocols. Therefore, they either: 1.) utilize long read 

platforms (454) which allow for the sequencing of the whole IGH variable region plus 

partial constant region(Glanville et al. 2011; Jiang et al. 2013; Boyd et al. 2009) but 

are often limited by high cost, lower throughput, and high error rates or 2.) utilize 

short read sequencers (Illumina HiSeq, Illumina MiSeq, IonTorrent PGM) which allow

for higher throughput at lower cost and error-rate but are limited by their short read 

length to sequence only part of the IGH Variable Region including the CDR3 

(Vollmers et al. 2013; Meyer et al. 2013). To provide complete information of an IGH 

repertoire an ideal full-length IGH transcript amplicon would be ~530bp in length, 

starting at the Leader exon and ending at 100bp into the Constant Region. Starting 

in the Leader exon, which does not encode for the final antibody protein, would 

ensure no bases in the Variable region are masked by primers, which would ensure 

the accurate identification of all V segment alleles. Ending 100bp into the Constant 

Region would provide enough sequencing information to distinguish all Isotype and 

subtypes, which is essential for allergy research.
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While an Illumina MiSeq 2x300 sequencing run theoretically allows for the 

sequencing of this ideal 530bp IGH amplicon, in practice declining base quality 

doesn’t allow for the sequencing of an amplicon longer than 450bp. Recently, several

groups have employed approaches utilizing molecular identifiers (UIDs) to improve 

sequencing accuracy which is essential to differentiate somatic hypermutation from 

PCR and sequencing errors (Vollmers et al. 2013; Shugay et al. 2014; He et al. 

2014). Further, several groups have developed protocols utilizing short read 

sequencers to sequence individual molecules exceeding the current raw read length 

of these sequencers. These protocols rely on inefficient steps in library preparation 

including Biotin pulldowns and intra molecular circulations (Hong et al. 2014; Hiatt et 

al. 2010; Wu et al. 2014; Rossano et al. 2009; Lundin et al. 2013). To overcome read

length, accuracy, and library preparation limitations, we developed Tn5 enabled 

Molecular Identifier guided Amplicon sequencing (TMIseq). TMIseq is based on a 

simple library preparation protocol utilizing molecular barcoding of individual 

molecules and Tn5 tagmentation (Picelli, Björklund, et al. 2014) enabling the highly 

accurate and cost effective sequencing of molecules exceeding Illumina read length 

(Fig. 1).

   
Results
Overview of TMIseq
To assemble RNA molecules that exceed the sequencing length but not the cluster 

generation length of Illumina sequencers, TMIseq utilizes molecular identifiers and 

19



the unique characterisitics of the Tn5 enzyme. We reverse transcribe RNA molecules

into cDNA and then generate 2nd and 3rd strand copies of cDNA in a two cycle 

amplification reaction using two primer pools. The primer pools we used for to 

assemble IGH RNA molecules were: 1.) The V_Leader pool containing primers 

specific to the Leader exons of all V segments 2.) The C_long pool containing 

primers that bind 100bp into the Constant regions of all Isotypes (C_long). All 

primers in these pools feature modified 5’ ends to generate a single 3rd strand cDNA

copy of each IGH RNA molecule tagged with 18bp random molecular identifiers and 

partial Nextera (Illumina) sequences on both ends (Nextera_A for V_Leader, 

Nextera_B for C_long) (Fig. 1). We then amplify these uniquely tagged cDNAs using 

primers specific to the partial Nextera sequences that preserve the molecular 

identifiers and add dual-indexed complete the Nextera sequences. This dual-indexed

~530bp amplicon library is at this point Illumina-sequencing-ready. We then split the 

library into three aliquots. The first and second aliquots (Tn5_A and Tn5_B) are 

tagmented with Tn5 enzyme loaded only with partial Nextera_A (Tn5_A) or 

Nextera_B (Tn5_B) oligos and PCR amplified to complete the Nextera_A (Tn5_A) or 

Nextera_B (Tn5_B) sequences, respectively (Fig. 1). The third aliquot (Uncut) is left 

unchanged and sequenced alongside the Tn5_A and Tn5_B libraries (Fig. 1). 

Illumina chemistry only sequences molecules with both complete Nextera_A and 

Nextera_B sequences at their ends (Fig. 1). Therefore, Tn5_A and Tn5_B libraries 

exclusively produce raw read pairs in which one read is anchored by the V_Leader 

(Tn5_A) or C_long (Tn5_B) primers and contains one of the molecular identifiers 

associated with the original template molecule, whereas the other read is primed 
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from the Nextera sequence introduced at a random location into the amplicon by 

Tn5. Finally, the Uncut library exclusively produces raw read pairs in which both 

reads are anchored by V_Leader or C_long primers and contain both molecular 

identifiers associated with the original template molecule (Fig. 1). For analysis, after 

quality trimming and filtering, Uncut, Tn5_A and Tn5_B read pairs containing highly 

similar molecular identifiers (Fig. S1) in their anchored reads are combined into IGH 

molecule groups. IGH molecules are then assembled from each group using 

AMPssembler, a custom k-mer based amplicon assembler that takes advantage of 

the known properties of the TMIseq protocol. Namely, the ends of the assembled 

sequences are defined by the anchored reads and there is only a single sequence to

be assembled per IGH molecule group.
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Figure 1: Schematic TMIseq Library Preparation and Data Analysis.
IGH RNA is reverse transcribed and second and third strand cDNA is generated 
using 5prime modified primers. After PCR amplification the amplicons are tagmented
using custom loaded Tn5 enzymes. 3 libraries per sample are sequenced and the 
resulting reads are grouped using molecular identifiers and assembled with a custom
algorithm (AMPssembler).

Application of TMIseq to the analysis of IGH transcript amplicons
To test the TMIseq protocol and data analysis, we created TMIseq libraries from two 

individuals (I1 and I2) from samples of PBMCs (Peripheral Blood Mononuclear Cells)
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which contain B cells. For I1, we generated TMIseq Uncut, Tn5_A, and Tn5_B 

libraries for one sample (I1 L1), sequenced those libraries on a MiSeq 2x300 run and

truncated the resulting reads to 150bp to model the shorter read length. The MiSeq 

run generated 125,200 raw reads for the I1 libraries, which yielded 120,104 quality 

trimmed reads. The trimmed read pairs were assembled by AMPssembler into 2779 

IGH molecules. For I2, we generated TMIseq Uncut, Tn5_A, and Tn5_B libraries for 

8 samples (I2 L1-L8) and sequenced those libraries on a HiSeq3000 2x150 run. The 

HiSeq run generated 15,587,484 raw reads pairs across the 8 I2 samples, which 

yielded 10,577,945 quality trimmed read pairs. These trimmed read pairs were 

assembled by AMPssembler into 115,108 IGH molecules (11,075-16,985 per 

library).

TMIseq coverage requirements
We used I2 L1 data to determine the coverage requirements to assemble IGH 

molecules and enable future optimization of raw read depth. Successful assembly 

was strongly dependent on read coverage, which itself was strongly positively 

correlated between the Uncut and Tn5_A/Tn5_B libraries (Fig. 2A, B). TMIseq 

assembly success increased from 15% for IGH molecules covered by only one 

Uncut read pair to 60-70% for reads covered by 5 or more Uncut read pairs (Fig. 

2C), with the assembly success of individual molecules being highly dependent on 

Tn5_A and Tn5_B coverage, reaching over 90% for IGH molecules covered by more

than 40 combined Tn5_A and Tn5_B read pairs (Fig. 2C).

Next, we performed rarefaction analysis to determine the ideal coverage levels 
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required for effective assembly. While subsampling of the Tn5_A and Tn5_B raw 

reads had a strong impact on the number of IGH molecules that were successfully 

assembled, subsampling of the Uncut raw reads had only minimal effect until the 

number of raw reads fell below 2-5 times the maximum number of assembled IGH 

molecules (Fig. 2D). A good trade-off between assembled IGH molecules and raw 

read coverage therefore appears to be 5 Uncut raw reads and 30-40 raw reads each

for Tn5_A and Tn5_B for every high abundance IGH molecule in the Uncut library. 

This compares highly favorably to other approaches that enable the sequencing of 

molecules exceeding the Illumina read length limit (Hong et al. 2014). Further, raw 

read requirements are likely to be lower if using a HiSeq2500, as the HiSeq3000 has

a preference for short molecules, which resulted in ~40% of Tn5_A and Tn5_B reads

to be discarded in a quality filtering step because they were too short or contained 

adapter sequences.
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Figure 2: TMIseq Subassembly Coverage Requirements.
A) Read pair coverage for IGH molecules in the I2 L1 Uncut library is shown as a 
histogram. Average Combined Tn5_A and Tn5_B read coverage at increasing Uncut
raw read coverage levels is shown as a color gradient.
B) Average assembly success at increasing I2 L1 Uncut read coverage levels is 
shown.
C) Heatmap showing the correlation of assembly success and read coverage in I2 
L1. Average Success percentage for Tn5_A and Tn5_B coverage combinations is 
shown.
D) Number of I2 L1 IGH molecules successfully assembled from increasing numbers
of subsampled Uncut raw read pairs (line colors) and combined Tn5_A and Tn5_B 
raw read pairs is plotted.
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TMIseq data quality
To assess TMIseq data quality and characteristics we analyzed IGH molecules 

assembled from the I1 L1 library. The average length of the assembled IGH 

molecules was 530bp (Fig. 3A) and trimmed Tn5_A and Tn5_B reads aligned to the 

assembled molecules in the pattern expected based on the library prep protocols 

(Fig. 3B). Of the 2779 assembled IGH molecules, 98% were identified as heavy 

chain transcript and annotated by IgBlast (Ye et al. 2013). We then compared these 

annotated IGH molecules to standard molecular-identifier based immune repertoire 

control data (I1 Control) derived from a biological replicate and produced using a 

shorter 400bp amplicon and a 2x300 run on a MiSeq (Fig. 4A).

To assess base-exchange errors we took advantage of IgD sequences which are 

thought to be expressed almost exclusively by naïve B cells. The vast majority of 

sequenced IgD sequences should therefore be not mutated. Indeed, we found that 

most IgD sequences were not mutated: 95.16% of IgD sequences in the I1 L1 

TMIseq library and 93.6% of IgD sequences in the I1 Control library showed >99% 

identity to reference ). Most importantly, the percentage of mutated IgD sequences 

was comparable between TMIseq and error-corrected control libraries

Next, we tried to assess the rates of artificial insertion and deletions of the TMIseq 

protocol, which, as it relies on computational assembly of sequences, might be prone

to generate the kinds of errors. First, we analyzed the observed CDR3 length and 

potential frame-shifts in the variable region. Lengths of the CDR3s, which is the 

result of the random recombination of V, D, and J segments and the addition of 
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quasi-random P and N nucleotides, are expected to occur in steps of three to 

maintain the reading frame of the antibody heavy chain transcript. Second, we 

analyzed indels occurring in the rest of the Variable region. Indels in the variable 

region should occur in multiples of three to result in the addition or loss of whole 

amino acids, while maintaining the reading frame of the transcripts. We found that 

the rates of out-of-frame CDR3 (Fig. 4B, C) and frame-shift events in the rest of 

Variable region (Fig. 4D) were very similar between I1 L1 TMIseq and I1 Control 

libraries. Together, this confirmed that the rate of errors generated by the TMIseq is 

equivalent to the very low rates of the error-corrected control protocol (Vollmers et al.

2013).

   
Figure 3: TMIseq Assembles 530bp IGH Molecules
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A) Length distribution of I1 L1 IGH molecules assembled using TMIseq.
B) Trimmed Tn5_A and Tn5_B reads are mapped to assembled IGH molecules 
using BLAST. Mapped read coverage across IGH transcripts is shown as 
histograms.

   
Figure 4: TMIseq Mutations Data Equivalent to Control Libraries
A) Schematic of Primer positioning for second and third strand synthesis in TMIseq 
and control Libraries. B-D) Control and TMIseq sequences are compared for CDR3 
length distribution (B), CDR3 translation frame (C), shift in frame produced by indels 
(D).

Variable and Constant region coverage by IGH amplicon and TMIseq
The increased sequencing length made possible by TMIseq enabled us to create a 

longer amplicon by priming in the Leader exon and 100bp into the Constant region. 

Priming in the Leader exon, which is not included in the final antibody protein allowed

us to read every base of the Variable region without it possibly modified by a primer. 

This enabled us to uniquely identify all V segment alleles. In contrast to the I1 

Control library, the I1 L1 TMIseq library was able to identify the V segment allele 

IGHV3-23*04 that differs from the more common IGHV3-23*01 allele by a single 

base in the first 20bp of the segment (Fig. 5A). Additionally, priming in the Leader 

exon enables us to identify mutation hot spots in the entire Variable region, including 
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potential hot spots in the first 20 bases of the IGHV3 V segments family (Figure 5B).

On the other end of the amplicon, priming 100bp into the Constant regions creates 

an amplicon that contains enough distinct base positions to not only distinguish 

isotypes like IgM and IgG, but isotype subtypes like IgG1 and IgG3. Indeed, in 

contrast to the I1 Control Library, the I1 L1 TMIseq library differentiates isotype 

subtypes including IgG1, IgG2, and IgG3 as well as IgA1 and IgA2 (Fig. 5C). While 

IgG4 and IgE which are essential for allergy research were only detected at very low 

levels in the data, this is likely due to the low sequencing depth and their naturally 

low levels in a mix of IGH transcripts.
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Figure 5: TMIseq can differentiate all V segments and Isotypes
A-B) Control and TMIseq sequences are compared for perfectly matched V segment 
usage in a scatter plot (A), and Isotype usage in a pie chart (B). C) Mutation rate 
across the entire V segment averaged across all IGH molecules using V segments of
the IGHV3 family.

Finally, to test the data for obvious recurring assembly artifacts and contaminations, 

we compared IGH molecules derived from all I1 and I2 libraries. Similar to what we 

had previously shown for standard immune repertoire data (Vollmers et al. 2013), 

IGH molecule lineages derived from I1 and I2 samples were shared at high levels 

between the samples of an individual, yet only at very low levels between individuals 

(Fig. 6), which confirmed the absence of rampant cross contamination and assembly 

artifacts.
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Figure 6: TMIseq Data Identifies Clonal IGH Lineages
Visualization of IGH molecule lineages shared between samples. IGH molecule 
lineages of each sample are plotted on the circumference of the circle, with the area 
representing abundance of the respective lineages (logarithmic) and the color 
representing isotype. IGH molecule lineages present in two time points are 
connected with lines colored according to their isotype.
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Discussion
In this study, we show that the TMIseq protocol we developed enables the 

sequencing of amplicons that exceed Illumina read length but not cluster generation 

length. With the current state of technology, this includes amplicons 450bp-800bp in 

length. We applied TMIseq to IGH amplicons creating an immune repertoire 

sequencing protocol that is unprecedented in its combination of sequencing accuracy

and coverage of Variable and Constant regions. Indeed, there currently exists no 

other protocol to accomplish this combination. Coverage of the complete variable 

region will make it possible to query all possible mutations in an antibody and adapt 

antibody repertoire sequencing for the pairing of heavy and light chains as was 

recently shown for T cells (Howie et al. 2015). Further, we have shown here that 

complete variable region coverage, paired with error-correction, enables the 

identification of highly similar but distinct V segment alleles. This distinction will be 

essential for the inferred haplotype phasing of the IG loci which was shown 

previously but hampered by the lower throughput and accuracy of the 454 sequencer

(Kidd et al. 2012). Finally, in addition to the coverage of the complete variable region,

the increase coverage of the Constant region enables the identification of isotype 

subtypes for each molecule, which is essential for the study of class-switching and 

allergies (Looney et al. 2016). The protocol we present is straightforward and cheap 

to implement by allowing for pooling strategies to minimize the use of Tn5 enzyme. 

In our hands the complete protocol, from RNA to sequencing libraries, can be 

completed in a single day. The sequencing cost per TMIseq sample is lower than 

sequencing a shorter amplicon, which would omit either Variable or Constant region 

32



coverage, on a MiSeq 2x300 run using molecular identifiers for error-correction. 

While we applied the TMIseq protocol to IGH amplicons, it will be easy to adapt the 

protocol to any other amplicon. There are several amplicon based applications for 

which this might be beneficial. These applications include among others the 

sequencing of 16S RNA and cancer amplicon panels. Taken together, data quality 

and coverage requirements shown here prove that the TMIseq protocol is capable of 

sequencing full-length immune repertoires, or any other amplicon between 450bp 

and 800bp, highly accurately and at high throughput.

Methods
PBMC extraction and RNA purification
All experiments were approved by the Internal Review Board at UC Santa Cruz and 

Stanford University. For sample I1 whole Blood samples were collected from a 

healthy human adult volunteer by the UCSC Student Health Center. For sample I2, 

buffy coat were provided completely de-identified by the Stanford Blood Center. I1 

and I2 samples were processed by Ficoll-Gradient (GE-Health) to extract PBMCs. 

PBMC were lysed directly in RLT buffer and frozen at -80°C until RNA was 

extracted. RNA was extracted from 400,000 cells each using the RNeasy Mini Kit 

(Qiagen). Resulting RNA concentrations ranged from 20-50ng/ul.

TMIseq Library Preparation
10ul of RNA was used for Superscript II (Thermo) cDNA first strand synthesis using 

a primer pool specific to all exons specific to the secreted isoform of all IGH isotypes 

(IgM, IgD, IgG1-4, IgA1-2, IgE). In a 2 cycle PCR reaction 2nd and 3rd cDNA strands

were synthesized using Phusion polymerase (Thermo) and 2 modified primer pools 

complementary to the beginning of the V-Leader exons and about 100bp into CH1 
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exons of all IGH isotypes and containing molecular identifiers and partial Nextera 

Sequences. cDNA was purified and size selected twice with SPRI beads using a 

0.7:1 (Beads:Sample) ratio corresponding to a cutoff discarding DNA shorter than 

300bp. In a 30 cycle PCR reaction 3rd cDNA strands were amplified using a pair of 

primers containing complete Nextera sequences as well as Illumina i5 and i7 indexes

to index each individual sample. Samples with unique i5 and i7 indexes (i.e. each 

sample can be uniquely distinguished by either i5 or i7 index, e.g. Sample 1: i5_1, 

i7_1; Sample 2: i5_2, i7_2; etc...) are pooled and split into three aliquots. To create 

Tn5_A libraries, aliquot 1 is tagmented using Tn5 enzyme(Picelli et al. 2014) loaded 

with Nextera_A adapter and PCR amplified using a universal Nextera_B primer and 

a Nextera_A primer with a Illumina Index not yet present in the library pool and 

purified and size selected for fragments larger than 380bp using 2% EX Gels (Life). 

To create Tn5_B libraries, aliquot 2 is tagmented using Tn5 enzyme(Picelli et al. 

2014) loaded with Nextera_B adapter and PCR amplified using a universal 

Nextera_A primer and a Nextera_B primer with a Illumina Index not yet present in 

the library pool and purified and size selected for fragments larger than 380bp using 

2% EX Gels (Life). Uncut (aliquot 3), Tn5_A, and Tn5_B libraries were pooled and 

sequenced according to standard Illumina protocols on an Illumina MiSeq 2x300 run 

or HiSeq3000 2x150 run.

Control Library Preparation
Control libraries were generated as TMIseq libraries with the exceptions to the primer

pools used for 2nd and 3rd strand cDNA synthesis. The FR1 specific primer pool 

was designed to bind 1-10bp into the FR1 region, while the C specific primer pool 
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was designed to bind 20bp into the CH1 exons of all IGH isotypes. The resulting 

library with an insert size of ~400bp is sequenced on an Illumina MiSeq 2x300bp run.

Raw data processing data assembly
Raw reads in fastq format are trimmed using trimmomatic (Bolger et al. 2014), 

discarding reads pairs containing adapters. For libraries sequenced on the MiSeq 

2x300, reads were also cropped to 150bp. TMIseq data was further processed 

according to the following pipeline: First, molecular identifiers are extracted from the 

trimmed fastq files. For Uncut libraries the first 18 bases of read 1 represent 

molecular identifier 1 and the first 18 bases of read 2 represent molecular identifier 2.

For Tn5_A libraries the first 18 bases of read 2 represent molecular identifier 2. For 

Tn5_B libraries the first 18 bases of read 1 represent molecular identifier 1. Second, 

reads of the Uncut library are grouped into molecular groups if their combined 

molecular identifiers differed by less than 5 mismatches. Third, reads with highly 

similar (less than 2 mismatches) molecular identifier 1 (Tn5_B) or molecular identifier

2 (Tn5_A) to the Uncut molecular groups are added into these molecular groups. 

Third, the AMPssembler algorithm assembles IGH transcripts from each molecular 

group. The program sorts the raw reads into three categories: 1.) reads derived from 

the 5' "end" of the amplicon. 2.) reads derived from the 3' "end", and 3.) reads which 

are unachored and likely to come from some place in the middle of the molecule. 

Then the program creates a high-quality consensus of the ends of the amplicon 

using a combination of quality and abundance of each nucleotide at each position. 

Finally, the program reduces all of the reads into k-mers and extends one of the ends

until the program reaches the other end of the amplicon or the program runs out of 
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extensions. It then reports the completed molecule in fastq format. When multiple 

extensions are possible, the program always selects the extension which results in 

the highest-quality base being incorporated into the extension. Control data was 

processed as previously described (Vollmers et al. 2013). To analyze molecule 

coverage distribution in Fig. 2B we aligned the raw reads of each molecule group to 

the assembled molecule using BLAST (Altschul et al. 1990). Data was then 

converted to fasta format and annotated using IgBLAST (Ye et al. 2013) with 

germline data retrieved from IMGT (Lefranc et al. 2004). For Fig. 2C IGH molecules 

were grouped into lineages across all samples analyzed using a single linkage 

clustering approach and a 90% CDR3 similarity cut-off. For Fig. 1E reads were 

subsampled to the approximate target levels from the unprocessed fastq file pairs. 

The resulting subsampled files were then analyzed by the complete analysis 

pipeline. Further downstream analysis and visualization was done using 

Python/Matplotlib (Hunter 2007).

Data Access
The AMPssembler script used in the analysis of the data is available at Github at 

https://github.com/chkcole/AMPssembler. All other scripts are available upon 

request.

Raw data was uploaded to the SRA under Bioproject ID PRJNA291102 (I1 data are 

identified by anonymized ID SHC1-3-1, I2 data are identified by anonymized ID 

BB7)

Aim 2: Heavy and Light Chain Pairing
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Abstract

RNA-seq is a powerful technique to investigate and quantify entire transcriptomes. 

Recent advances in the field have made it possible to explore the transcriptomes of 

single cells. However, most widely used RNA-seq protocols fail to provide crucial 

information regarding transcription start sites. Here we present a protocol, Tn5Prime,

that takes advantage of the Tn5 transposase based Smartseq2 protocol to create 

RNA-seq libraries that capture the 5’ end of transcripts. The Tn5Prime method 

dramatically streamlines the 5’ capture process and is both cost effective and 

reliable. By applying Tn5Prime to bulk RNA and single cell samples we were able to 

define transcription start sites as well as quantify transcriptomes at high accuracy 

and reproducibility. Additionally, similar to 3’ end based high-throughput methods like
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Drop-Seq and 10X Genomics Chromium, the 5’ capture Tn5Prime method allows the

introduction of cellular identifiers during reverse transcription, simplifying the analysis

of large numbers of single cells. In contrast to 3’ end based methods, Tn5Prime also 

enables the assembly of the variable 5’ ends of antibody sequences present in single

B-cell data. Therefore, Tn5Prime presents a robust tool for both basic and applied 

research into the adaptive immune system and beyond. 

Introduction

As the cost of RNA-sequencing has decreased, it has become the gold 

standard in interrogating complete transcriptomes from bulk samples and single 

cells. RNA-seq is a powerful tool to determine gene expression profiles and identify 

transcript features like splice-sites. However, standard approaches lose sequencing 

coverage towards the very end of transcripts. This reduced coverage means that we 

cannot confidently define the 5’ ends of mRNA transcripts which contain crucial 

information on transcription initiation start sites (TSSs) and 5’ untranslated regions 

(5’UTRs). Analyzing TSSs can help infer the active promoter landscape, which may 

vary from tissue to tissue and cell to cell. Analyzing 5’UTRs, which may contain 

regulatory elements and structural variations can help infer mRNA stability, 

localization, and translational efficiency. Identifying such features can help elucidate 

our understanding of the molecular mechanisms that regulate gene expression. 

The loss of sequencing coverage towards the 5’ end of transcripts is often 

attributed to how sequencing libraries are constructed. For example, the widely used 

Smartseq2 RNA-seq protocol, a powerful tool in deciphering the complexity of single 
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cell heterogeneity(Picelli, Faridani, et al. 2014; Treutlein et al. 2014; Darmanis et al. 

2015), features reduced sequencing coverage towards transcript ends. This lost 

information is a result of cDNA fragmentation using Tn5 transposase. Several 

technologies have tried to compensate for the lack of coverage by specifically 

targeting the 5’ ends of transcripts. The most notable methods include cap analysis 

of gene expression (CAGE), NanoCAGE, and single-cell tagged reverse transcription

sequencing (STRT)(Islam et al. 2011, 2014; Salimullah et al. 2011; Shiraki et al. 

2003). CAGE uses a 5’ trapping technique to enrich for the 5’-capped regions by 

reverse transcription (Shiraki et al. 2003). This technique is extremely labor intensive

and involves large amounts of input RNA. The NanoCAGE and STRT methods 

target transcripts using random or polyA priming and a template-switch oligo 

technique to generate cDNA (Islam et al. 2011; Salimullah et al. 2011). While 

NanoCAGE can analyze samples as low as a few nanograms of RNA, and STRT 

can be used to analyze single cells, they both require long and labor-intensive 

workflows including fragmentation, ligation, or enrichment steps. Therefore, none of 

the current 5’ end specific protocols are capable of efficiently and cost-effectively 

processing hundreds to thousands of single cells necessary to understand 

heterogeneity within complex mixtures of cells present in, for example, the adaptive 

immune system or cancer. 

Furthermore, new droplet based high-throughput single cell RNAseq 

approaches like Drop-Seq and 10X Genomics Chromium platform can process 

thousands of cells but can only analyze the 3’end of transcripts due to integrating a 

sequencing priming site into the oligodT primer used for reverse transcription. By 
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losing information of the 5’ end almost entirely, these approaches are not capable of 

comprehensively analyzing cells of the adaptive immune cells which express 

antibody or T cell receptor transcripts featuring unique V(D)J rearrangement 

sequence information on their 5’ end.

To overcome this lack of high-throughput single cell 5’ capture methods, we 

chose to modify the Smartseq2 library preparation protocol which is relatively cost-

effective and simple with features of STRT which captures 5’ ends effectively. Here 

we describe a robust and easily implemented method called Tn5Prime that performs 

genome-wide profiling across the 5’ end of mRNA transcripts in both bulk and single 

cell samples. The protocol is based on integrating one sequencing priming site into 

the template switch oligo used for reverse transcription and subsequently tagmenting

the resulting amplified cDNA by Tn5 enzyme loaded with an adapter carrying the 

other sequencing priming site. This combination allows for the construction of 

directional RNAseq libraries with one read anchored to the 5’ end of transcripts 

without the need for separate fragmentation, ligation, and, most importantly, 

enrichment steps. Additionally, by incorporating cellular identifiers into the template 

switch oligo makes it conducive for pooling samples after reverse transcription, 

thereby increasing throughput and reducing cost. Finally, data produced by this novel

approach allows for the identification of transcription start sites, the quantification of 

transcripts, and the assembly of antibody heavy and light chain sequences from 

single B cells at low sequencing depth.  
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Results

Construction of Tn5Prime libraries

Tn5Prime libraries can be constructed from either purified total RNA or single 

cells sorted by FACS into multiwell PCR plates. Tn5Prime libraries create a 

directional paired-end Illumina RNAseq library with read 1 anchored to the 5’ end of 

transcripts. Directionality and read 1 anchoring is achieved through the use of our 

modified template-switch oligo and custom Tn5 enzyme. After the addition of reverse

transcriptase to total RNA or cell lysate, first-strand synthesis occurs using a 

modified oligo-dT and a template-switch oligo (TSO) containing a partial Nextera A 

adapter sequence and, optionally, a cellular index sequence (Table S1, Fig. 1A). 

During reverse transcription, the oligo-dT serves as a primer at the 3’ polyA tail of 

mRNA transcripts, while the sequence of the partial Nextera A template-switch oligo 

is attached to the 3’ end of the synthesized cDNA corresponding to the 5’ end of 

transcript sequences. After reverse transcription, samples with non-overlapping 

cellular indexes can be pooled. The cDNA product is then amplified using a complete

Nextera A primer and a primer complementary to the modified 5’ end of the oligo-dT. 

After amplification, the cDNA product will contain a complete Nextera A adapter 

including Illumina indexes. At this point, samples that contain the non-overlapping 

Illumina indexes can be pooled. By pooling after reverse transcription and PCR 

amplification, we can dramatically reduce the workflow complexity and reagent 

usage.

Next, Tn5 transposase, loaded only with a partial Nextera B adapters, 

fragments the cDNA and attaches the partial Nextera B adapters to the cDNA in a 
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single reaction. The cDNA fragments are then amplified using a universal A primer 

and a Nextera B primer that primes off the partial Nextera B adapter sequences 

attached by the Tn5 enzyme. The final product is compatible with the Illumina 

platform by containing the complete Nextera A and Nextera B adapters. Libraries are

then ready to be size selected and quantified prior to sequencing. At this point, no 

enrichment step is necessary, as only molecules containing both Nextera A and B 

adapters will be targeted for sequencing. Since only the TSOs associated with the 5’ 

end of transcripts contain Nextera A adapters, read 1 of all read pairs in the 

sequencing reaction begins at these 5’ ends and extends into the transcript body, 

thereby identifying transcription start site and directionality (Fig. 1A-C). Read 2 is 

distributed throughout the gene body, as each location represents the random 

insertion of Nextera B adapters by Tn5 and library size selection (Fig. 1B,C).

Creating and analyzing Tn5Prime data of GM12878 cell line RNA   
 

To evaluate whether our Tn5Prime protocol consistently identifies the 5’ end 

of the transcript we first performed low coverage RNAseq of total RNA of GM12878 

cultured lymphoblast cells. We performed a side-by-side comparison of our protocol 

with the standard Smartseq2 protocol using the same starting material. Using the 

HiSeq2500 platform (Illumina) we obtained 570805 and 453761 raw read pairs for 

two replicate Tn5Prime libraries. We next obtained 1094530 raw read pairs from a 

Smartseq2 library. Adapter sequences and low quality reads were removed using 

Trimmomatic (Bolger, Lohse, and Usadel 2014). In the Tn5Prime replicates, 92.51% 

and 92.62% of the trimmed and filtered reads mapped uniquely to the human 
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genome using the STAR alignment tool (Dobin et al. 2013), surpassing the standard 

Smartseq2 protocol at 88.50%. The uniquely aligned reads from the TN5Prime 

replicates collectively had a redundancy of 1.34. This high unique alignment 

percentage indicates that our Tn5Prime protocol produces libraries of high 

complexity.
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Fig. 1 Tn5Prime Library construction and 5’ capture
A.) Schematic of the Tn5Prime library construction. No enrichment steps are required to 
generate a library that captures the 5’ end of transcripts. B.) Read alignment plots comparing 
5’ end capture by Tn5Prime to random fragmentation by Smartseq2 using lymphoblast cell 
line GM12878. A total input of 50 ng of RNA was used. Individual alignments for the first 
(Read1, blue) and second (Read2, red) read of each read pair are shown. Read1 density is 
shown for both library types as a histogram (blue). Gene models are shown on the top panel 
(Color indicates transcriptional direction.)

Detecting Transcription Start Sites using Tn5Prime

We analyzed the read distribution across transcripts both visually and systematically 

to determine the 5’ specificity of our protocol. Visual inspection found that while 

Smartseq2 reads are distributed across the entire body of genes, Tn5Prime reads 

follow two distinct patterns: First, the start of the read 1 is anchored to the 

transcription start site. Second, the start of read 2 is variable and likely dependent on

size selection during library preparation (Fig. 1B). Next, systematic analysis was 

based on mapping the start of read 1 to identify putative Transcription Start Sites 

(TSSs). To test our ability to identify TSSs, we compared our Tn5Prime data to the 

Gencode genome annotation and CAGE data which was generated from the same 

GM12878 cell line from the ENCODE project. We identified putative TSSs by calling 

peaks enriched from the start of read 1 in our Tn5Prime data (see Methods). 89.7% 

of the 17853 peaks  fell within TSSs (0-25 bp upstream) with the vast majority of 

them falling near promoter regions (26bp-1000bp upstream) or 5’UTRs (Fig. 2A). 

Next, we subsampled the CAGE data to levels similar to the Tn5Prime data and 

called peaks in the same manner. We found that 14107 of 17853 Tn5Prime peaks 

(73%) fell within 25bp to the nearest of 27526 CAGE peaks, indicating high 

concordance between the two approaches (Fig. 2B). Tn5Prime peaks (3,746) that 
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were not within 25bp of a CAGE peak contained far less sequencing reads on 

average than those within 25bp of a CAGE peak. These results indicate that these 

transcripts might be expressed at lower levels and show more variance between the 

Tn5Prime and CAGE datasets (Fig. 2B). Ultimately, this suggests that our Tn5Prime 

protocol is equivalent to the gold standard CAGE technique in targeting transcription 

start sites.

Fig. 2 Tn5Prime peaks are highly concordant with GENCODE annotation and CAGE 

peaks 

A) Tn5Prime peaks identified in lymphoblast cell line GM12878 using 50 ng of input RNA 
were matched to features determined by Gencode annotation. Features are shown as a pie 
chart. B) Tn5Prime peaks generated from GM12878 were matched to CAGE peaks also 
generated from GM12878. The green bar on top indicates the peaks within 25 bp and the 
yellow bar indicates all other peaks. Peaks in each were rank sorted according to their read 
coverage and shown as a histogram. 

Quantifying the Transcriptome using Tn5Prime

After validating the ability of Tn5Prime to detect transcription start sites, we next 

wanted to examine whether it is capable of transcript quantification. To determine 

whether our Tn5Prime method is quantitative we compared GM12878 data 
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generated from four different protocols: Tn5Prime, Smartseq2 data generated by our 

lab, as well as CAGE and RNA-seq data produced by the ENCODE project (Fig. 3). 

We used the Tn5Prime data mentioned in the previous section and generated the 

Smartseq2 data on the same Cell line as described by (Picelli, Faridani, et al. 2014). 

We performed replicates using the Tn5Prime protocols to define overall 

reproducibility and accuracy. Based upon our results, transcript quantification by 

Tn5Prime replicates showed extremely high correlation with a Pearson correlation 

coefficient of r=0.97 (95% C.I. 0.97-0.97). Quantification by Tn5Prime also correlated

very well with Smartseq2 with a Pearson r of 0.87 (95% C.I. 0.86-0.87). Tn5Prime 

and Smartseq2 data were comparable with ENCODE RNA-seq and CAGE data (Fig.

3), indicating that the Tn5Prime protocol is equivalent to the conventional Smartseq2 

method in measuring transcript abundance. Together, these data show that 

Tn5Prime can accurately identify transcription start sites and quantitatively measure 

transcript abundance.
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Fig 3. Tn5Prime quantifies transcriptomes accurately and reproducibly.
Pairwise correlations of transcript levels between Tn5Prime, Smartseq2, ENCODE CAGE 
and ENCODE RNAseq experiments using GM12878 cell line are shown as scatter plots. A 
total of 50 ng of input RNA was used. Each transcript is shown as a black dot with an opacity
of 5%. Distribution of transcript levels is shown on the outside of the plots in grey 
histograms.

Transcript quantification and transcription start site localization in single B 

cells.

As the Tn5Prime protocol is based on the same cDNA amplification strategy as the 

Smartseq2 protocol, we expected it capable of generating sequencing libraries from 
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single cells. Indeed, we successfully generated single cell libraries using the 

Tn5Prime protocol from primary murine B-lymphocytes (B2 cells; IgM+B220+CD5-

CD11b-)(n=12) isolated from the peritoneal cavity. We generated between 17,534-

93,429 2x300 bp read pairs per cell using the Illumina MiSeq of which 62% passed 

quality filtering. Of the filtered reads, an average of 91.48% uniquely mapped to the 

mouse genome. The high alignment percentage indicates we are able to generate 

high quality libraries from single cells using our Tn5Prime. Despite the very low total 

number of read pairs we collected, we still detected 339 expressed genes per cell on

average. Although these numbers may seem low, they are in line with previously 

published data on single B cell RNAseq (Zheng et al. 2017; Jaitin et al. 2014; 

Gierahn et al. 2017).Among the genes expressed in many of the single cells were 

genes corresponding to B cell function, including  CD19, CD79a and components of 

the MHC complexes (Fig. S1). These data indicate that we can efficiently identify cell

type specific genes.

Analysis of 192 Single CD27high CD38high Human B Cells

After successfully testing our Tn5Prime method on single mouse B cells, we next 

wanted to develop a multiplex approach capable of evaluating hundreds of human 

single cells. To this end, we FACS sorted 192 single B cells into individual wells of 96

well plates using the canonical surface molecules CD19, CD27 and CD38 to sub-

select the plasmablast subpopulation (Fig. S2). Plasmablasts are one of the most 

widely studied B cell populations and are frequently monitored after vaccination or 

infections by flow cytometry. The plasmablast cell compartment is defined by high 

levels of surface markers CD27 and CD38, but separation from memory B cells 
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which also express these markers, albeit at lower levels, can be challenging. 

Therefore, analyzing these cell types at the single cell level should help further 

delineate these populations. 

We developed a multiplex strategy by inserting cellular indexes into the 

template switch oligo which allows the user to pool samples after reverse 

transcription. This streamlines our method and increases our throughput by 

decreasing the PCR and Tn5 reactions required. Using our multiplexing strategy we 

generated Tn5 libraries for 192 single B cells using 192 RT reactions, 24 PCR 

reactions and 24 Tn5 reactions. Although this was not performed, library pools 

carrying distinct Illumina sample indexes could have been further pooled following 

PCR to reduce the numbers of Tn5 reactions from 24 to 2.  

We generated 194,553,648 150 bp paired end reads total. To determine gene

expression for each cell, reads were assigned to one of 192 single cells based on its 

Illumina index reads and by comparing the sequence of the first 8 bases of read 1 to 

the cellular index sequences.  91% of the 194,553,648 150bp paired end reads were

successfully assigned to one of the 192 single B cells. 90.75% of cell-assigned reads

were successfully aligned to the human genome using STAR with a median of 

74.59% percent of cell-assigned reads being uniquely assigned to an annotated 

gene. Each cell expressed a median of 534 genes. Of the 58234 annotated genes in 

GENCODE, 5414 genes had at least one read per cell on average. The median 

redundancy for each cell is 13.92 which means that, on average, each uniquely 

aligned cDNA fragment was sequenced 13.92 times. This indicates that the libraries 

were sequenced exhaustively. 
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Detecting Transcription Start Sites in single CD27high CD38high B cells using 

Tn5Prime

To determine if transcription start site specificity is maintained within the single cell 

data, read 1 start distribution was compared to annotated transcription start sites and

Encode CAGE data. By calling peaks, we found that our single cell results were able 

to maintain transcription start site specificity, with peaks predominantly falling within 

the annotated transcription start sites (Fig. 4A-B). In addition to the transcription start

site, the directionality of transcription can be inferred due to our custom template 

switch oligo incorporating a forward-read priming site to the 5’ region of the transcript

which is an advantage over many other single cell RNAseq protocol (Fig. 4C,D).
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Fig 4. Transcription start sites are detected in single CD27high CD38high B cells
A) CD27high CD38high Tn5Prime peaks were matched to features in the Gencode annotation 
and the feature they matched are shown as a pie chart. TSS = on or less than 25bp behind the 
start of an annotated GENCODE gene, 5’UTR = inside 5’ prime untranslated region, 
Promoter = between 26 and 1000bp behind start of annotated gene. B) Tn5 peaks were 
categorized into two groups. One group contains all peaks within 25bp of a peak identified in 
the complete RIKEN CAGE peak Human peak database and the other group contains all 
other peaks. These peaks were sorted by the number of cells associated with that peak in the 
CD27high CD28high B cell data set and displayed in figure 5a. The yellow bar indicates the 
peaks within 25bp and the green bar indicates all other peaks. C,D) Genome Browser view of
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reads of several cells aligned to Actb (C) and LTB (D) genes. In addition to TSS information,
read alignments also show differential isoform usage between cells.  

Detecting Subpopulations within CD27high CD38high B cells using Tn5Prime

Since separating memory B cells and plasmablasts by FACS based on surface 

markers can be challenging, especially when the adaptive immune system is not 

perturbed, we wanted to see whether we could do so post-sorting using their gene 

expression profiles. Cells outside more than three median absolute deviations from 

the median for percent alignment, Mitochondrial transcript percentage, or number of 

detected genes were marked as outliers and eliminated prior to normalization of 

transcript counts (Fig. S3). After normalizing raw gene expression counts and 

removing non-recombined and therefore non-applicable antibody gene segments 

from the annotation (Lun, Bach, and Marioni 2016), we clustered the remaining 159 

sorted B cells using t-SNE dimensionality reduction. The clusters were robust when 

the data was subsampled to 100,000 reads per cell (Fig. S4). We then identified 

genes that showed significant differences between the two clusters. We detected 

411 genes with significant changes including J-chain, LTB, XBP-1, HSPA5, MZB1, 

as well as HLA-DRA, HLA-DRB5, and HLA-DPB1 (Table S2). J-chain was 

upregulated in cluster 2 and is involved in antibody secretion of IgM and IgA 

(Lamson and Koshland 1984) (Fig. 5). We also found XBP-1, MZB1 and HSPA5 

were upregulated within cluster 2 and are known targets of BLIMP-1 which is 

essential in plasmablast differentiation (Fig. S5) (Minnich et al. 2016). LTB  was 

downregulated in cluster 2 and has been shown to be downregulated upon B cell 

activation (Zhu et al. 2004) (Fig. 5). HLA-DRA, HLA-DRB5, and HLA-DPB1 which 

encode for the alpha and beta chains of the MHC II complex were also 
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downregulated in cluster 2,  indicating less MHC II presentation to T cells which is 

indicative of plasma cells and plasmablasts (Calame, Lin, and Tunyaplin 2003). 

Together, this suggests that cluster 2 does represent activated plasmablasts which 

are known to secrete more antibody and display less MHC II complex than the 

memory B cells in cluster 1.

Figure 5. Clustering of CD27high CD38high B cells
159 B cells were divided into two populations by t-SNE dimensionality reduction 
(Maaten et al. 2008). In the three subplots, cells are colored based on their 
expression of example genes that were significantly differentially expressed between
the two populations as determined by a multiple hypothesis testing corrected Mann-
Whitney U tests. The cells inside the boxed area belong to cluster 2 and all other 
cells belong to cluster 1.

Assembly of antibody heavy and light chain sequences from single B cell 

Tn5Prime data

Ideally, we would not only want to identify plasmablasts based on their gene 

expression profile, but also determine the sequences of the antibodies they express. 
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Sequencing antibodies has been a long-standing challenge in B cell biology and 

antibody engineering because it requires the identification of unique pairs of 

rearranged antibody heavy and light chains for each cell. Current techniques rely 

either on the targeted amplification and sequencing of antibody heavy and light chain

genes (Wrammert et al. 2008) in single cells or on the assembly of their sequences 

from non-targeted RNA-seq data (Canzar et al. 2017). In contrast to 3’ end based 

Drop-Seq and 10X Genomics data, 5’ based Tn5Prime could potentially provide this 

antibody sequence information in addition to genome wide expression profiling, 

because the 5’ region contains the unique V(D)J rearrangement of heavy and light 

chain transcripts. 

To determine if our Tn5Prime protocol could be used for assembling antibody

heavy and light chain sequences, we assembled whole transcriptomes using 

SPAdes (Bankevich et al. 2012). IgBLAST (Ye et al. 2013) was used to identify 

transcripts containing V, D, and J gene segments rearranged in a productive 

manner. These transcripts were aligned on to Constant gene segments to identify 

isotype. The list of putative antibodies was then filtered for obvious cross-

contamination and mis-assemblies. In this way, we effectively determined heavy and 

light chain sequences and identify their unique pairings within single B cells (Fig. 6A).

Of the 192 B-cells we analyzed, we were able to assemble one heavy chain and one 

light chain to 117 B-cells. Of these 117 B-cells 46 cells had a Lambda light chain and

71 cells had a Kappa light chain. Five additional cells had one heavy chain and two 

light chains, 35 cells had no heavy chains but at least one light chain, and 35 cells 

had no heavy chains and no light chains. To determine the sequencing depth 
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requirement for successful heavy and light chain assembly, subsampling was 

performed on the reads and the assembly and pairing analysis redone (Fig. S6). We 

found 100,000 reads per cell was sufficient to assemble one heavy and one light 

chains for 91 of 117 B cells with successfully assembled chain pairs without 

subsampling. 

101 and of the 117 cells with paired heavy and light chains also passed all other 

quality filters and were clustered by t-SNE into the putative plasmablast and memory 

B cell clusters. This combination of single cell identity and paired antibody 

sequences allowed us to perform detailed analysis of differences in antibody usage 

and characteristics between those two populations. 

First, the putative plasmablast population featured less IgM antibodies than the 

memory B cell population (19% IgM in plasmablasts vs 53% in memory B cells). 

Second, using IgBlast (Ye et al. 2013), we found that both heavy (Fig. 6B) and light 

chain sequences showed significantly higher levels of somatic hypermutation in 

plasmablasts than memory B cells (Heavy chain: median 8.0% vs 3.8% somatic 

hypermutation, two-sided Monte Carlo permutation test p-value=0.0081; Light chain: 

median 4.9% vs 2.7% somatic hypermutation, two-sided Monte Carlo permutation 

test p-value=0.0117). Third, by counting and normalizing sequencing reads 

originating from antibody transcripts, we could determine and compare heavy and 

light chain expression in these two populations. Generally, light chains were 

expressed about 3-fold higher than heavy chains (Fig. 6C) with no significant 

difference between plasmablasts and memory B cells (two-sided Monte Carlo 
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permutation test p-value=0.533). However, the percentage of all aligned sequencing 

reads that originated from antibody transcripts showed dramatic differences between

plasmablasts and memory B cells. The median percentage of reads that originated 

from antibody transcripts was 23.5% in plasmablasts and only 2.2% in memory B 

cells (Fig. 6D) (Monte Carlo Permutation test two-sided p-value=0). In one 

plasmablast over 60% of all aligned sequencing reads originated from antibody 

transcripts indicating just how much of the plasmablast transcriptome can be 

dedicated to the production and secretion of antibodies. In summary, our analysis of 

antibody usage and characteristics showed that plasmablasts express more mutated

and class-switched antibodies at much higher levels than memory B cells.
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Figure 6. Assembling Antibody transcripts from Tn5Prime data
Antibody transcripts were assembled by generating complete assembled transcriptomes for 
each cell with SPADES and then using IGBLAST to search for transcripts with antibody 
features. Antibody transcripts for each cell were filtered for mis-assemblies and mis-
annotations. Cells were sorted by the abundance of heavy chain transcripts in their Tn5Prime 
data and V(,D,) and J segment information for their heavy and light chains are shown in the 
schematic in the center. The putative cell type determined by clustering with t-SNE is 
indicated on the left. Yellow: plasmablasts, Green: Memory B cells. 
B-D) Antibody usage and characteristics were compared between plasmablasts and memory 
B cells. Somatic Hypermutation rates (B), light to heavy chain expression ratios (C) and the 
percentage of all aligned sequencing reads that originated from antibody transcripts (D) were 
compared using dotplots. Yellow: plasmablasts, Green: Memory B cells. Medians are shown 
as red lines. All p-values are calculated using two-sided Monte Carlo permutation test with 
10000 permutations.
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Discussion

Here we present a novel method for the genome-wide identification of transcription 

start sites in bulk samples and single cells. The method combines aspects of 

Smartseq2 and STRT. By modifying template-switch oligos used during reverse 

transcription to carry one sequencing adapter and loading the other sequencing 

adapter on the Tn5 enzyme used for cDNA fragmentation we anchor the sequence 

priming sites for read 1 of an Illumina read pair to the 5’ end of transcripts without the

need for fragmentation, ligation, and enrichment steps. The resulting workflow is 

easy to implement and capable of generating hundreds of libraries within a day. An 

important feature of our Tn5Prime method is the option to integrate cellular indexes 

during reverse transcription and Illumina sample indexes during PCR before Tn5 

tagmentation. This allows the pooling of samples early in the workflow and thereby 

reduces experiment complexity and reagent costs. 

We validated the Tn5Prime protocol on both bulk RNA and single cells. First, 

using 5ng of total RNA from the GM12878 cell line, we yielded similar results as the 

ENCODE CAGE data with respect to the identification of transcripts start sites. 

However, the CAGE protocol used by the ENCODE consortium used several order 

of magnitude more RNA. As the Smartseq2 protocol is already widely used, we 

expect that the Tn5Prime assay with its similar workflow and low RNA input has the 

potential to become a valuable tool for transcriptome annotation and quantification in 

the RNA-seq toolbox. 

In addition to the analysis of bulk samples, we show that our Tn5Prime 

method can be utilized for interrogating single cells, both human and mouse.  The 
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TSO-based multiplexing approach we implemented makes it possible to efficiently 

analyze thousands of cells, thereby increasing the throughput of plate based 

RNAseq library protocols in a manner that is straightforward and economical.

In contrast to other droplet or microwell based protocols, which interrogate 

only the 3’ ends of transcripts, the Tn5Prime protocols interrogates the 5’ ends of 

transcripts, thereby capturing the unique sequence information of adaptive immune 

system receptors expressed on B and T cells. These receptors are often hard to 

assemble due to their unique genomic rearrangement. Our data shows that by 

limiting sequencing reads to the 5’ end of transcripts we can analyze both 

transcriptomes as well as paired antibody heavy and light sequences with the low 

sequencing coverage of ~100,000 reads per cell, thereby enabling the analysis of 

thousands of B cells in a single sequencing run. This approach should, without any 

modification, also be applicable to T cells to map rearrangement of the T cell 

receptors. This can provide novel insights into the composition of B and T cell 

malignancies as well as the state and composition of the adaptive immune system 

with regards to solid tumors. 

To highlight the power of our approach we isolated 192 single human B cells 

from Peripheral Blood Mononuclear Cells(PBMCs) using canonical plasmablast 

markers. Not only were we able to assemble paired antibody transcripts, but we 

succeeded in clustering the cells into two populations based on their gene 

expression profiles. The genes differentially expressed between those clustered 

suggested their putative cell types. Cells in the putative plasmablast cluster 

expressed more XBP-1 (X-box binding protein 1), J-chain, HSPA5, and MZB1 
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(Marginal Zone B1), which are all involved in either B cell activation or antibody 

production and secretion. Consistent with less antigen presentation, cells in the 

putative plasmablast cluster also expressed less MHC II transcripts including HLA-

DRA, HLA-DRB5, and HLA-DPB1. Finally, MS4A1 (CD20) is also expressed less in 

the cells of the putative plasmablast cluster and is known to be downregulated in 

activated B cells. Overall, this clearly established that we could distinguish activated, 

antibody secreting plasmablasts from resting, antigen presenting memory B-cells; 

cell-types which are difficult to distinguish using conventional FACS analysis.

In addition to cell-types, we showed that Tn5Prime can be used to determine 

individual B cells’ paired antibody sequences. Together, these data allowed us to 

compare antibody usage in plasmablasts and memory B cells, showing that 

plasmablast expressed higher levels of more mutated and class-switched antibodies.

In addition to providing functional insight into cell populations, this information will 

make it possible to make informed decisions as to which antibody sequences could 

be further cloned and tested functionally for clinical, diagnostic, and research 

applications.

In summary, Tn5Prime is an RNAseq library construction protocol with a 

streamlined workflow that surpasses the economy and throughput of other plate-

based protocols. While not reaching the throughput of droplet- and microwell-based 

protocols, it generates high quality data that enables the identification of transcription

start sites and could be useful for analyzing 5’ UTR features or help improve 

incomplete genome annotations. Finally, Tn5Prime presents the currently highest 
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throughput mechanism to comprehensively analyze the individual cells of the 

adaptive immune system by determining both paired adaptive immune receptor 

sequences and gene expression profiles. 

Methods

Cell purification, RNA isolation and sorting

GM12878: RNA from 500,000 GM12878 cells was extracted using the RNeasy kit 

(Qiagen) according to manufacturer’s instructions. 

Murine B2 cells: Mice were maintained in the University of California, Santa Cruz 

(UCSC) vivarium according to Institutional Animal Care and Use Committee 

(IACUC)-approved protocols. Single murine Ter119-CD3-CD4-CD8-B220+ 

IgM+CD11b- CD5- B2 cells were isolated from wild-type C57Bl/6 mice by peritoneal 

lavage and incubated with fluorescently-labeled antibodies prior to sorting. The 

following antibodies were used to stain B-cells: Ter119, CD3 (Biolegend; 145-2C11), 

CD4 (Biolegend; GK1.5), CD8a (Biolegend; 53-6.7), B220 (Biolegend; RA3-6B2), 

IgM (Biolegend; RMM-1), CD5 (Biolegend; 53-7.3), and CD11b (Biolegend; M1/70). 

Cells were analyzed and sorted using a FACS Aria II (BD), as described (Ugarte et 

al. 2015; Smith-Berdan et al. 2015; Beaudin, Boyer, and Forsberg 2014). Human B 

cells: Primary human cells were collected from the blood of a fully consented healthy 

adult in a study approved by the Institutional Review Board (IRB) at UCSC. Single 

human B cells were isolated from PBMC using negative selection using RosetteSep 

(StemCell). The resulting B cells were sorted for CD19+ CD27high and CD38high
.The 

following antibodies were used for staining B cells: CD19 (BD Pharmingen; HIB19), 

CD27 (Biolegend; 0323), and CD38 (Biolegend; HB-7). Cells were sorted using 
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FACS Aria II (BD) and analyzed using FlowJo v10.2 (FlowJo, TreeStar Software, 

Ashland, OR).

Both murine and human single cells were sorted into 96 well plates and directly 

placed into 4ul of Lysis Buffer - 0.1% Triton X-100, 0.2ul of SuperaseIn (Thermo), 1ul

of oligodT primer (IDT), 1ul of dNTP (10mM each)(NEB) - and frozen at -80°C. 

RNA-seq library construction and sequencing

4ul of RNA or Single Cell Lysate was reverse transcribed using Smartscribe Reverse

Transcriptase (Clontech) in a 10ul reaction including either a Smartseq2 TSO 

(Smartseq2 libraries) or a Nextera A TSO (Tn5Prime libraries) according to 

manufacturer’s instructions at 42°C. The resulting cDNA was treated with 1 ul of 1:10

dilutions of RNAse A (Thermo) and Lambda Exonuclease (NEB) for 30min at 37°C. 

The treated cDNA was amplified with KAPA Hifi Readymix 2x (KAPA) using the 

ISPCR primer and a Nextera A Index primer (Tn5Prime only). The resulting PCR 

product was treated with Tn5 enzyme (Picelli, Björklund, et al. 2014) loaded with 

either Tn5ME-A/R and Tn5ME-B/R (Smartseq2) or Tn5ME-B/R adapters only 

(Tn5Prime).

The Tn5 treated PCR product was then size selected using a E-gel 2% EX (Thermo) 

to a size range of 400-1000bp. GM12878 RNA Smartseq2 and Tn5Prime libraries 

were sequenced on an Illumina HiSeq2500 2x150 run, mouse B2 cell Tn5Prime 

libraries were sequenced on a Illumina MiSeq 2x300 run, and human B cell 

Tn5Prime libraries were sequenced on two Illumina HiSeq3000 runs. 
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Sequencing alignment and analysis

Smartseq2, Tn5Prime, ENCODE CAGE (GEO accession GSM849368; produced by 

the lab of Piero Carnici at RIKEN), and ENCODE RNAseq (GEO accession 

GSM958742; produced by the lab of Barbara Wold at Caltech) (ENCODE Project 

Consortium 2012) GM12878 data as well as Tn5Prime B2 data were trimmed of 

adapters low quality bases using trimmomatic (v0.33) (Bolger, Lohse, and Usadel 

2014) and a quality cutoff of Q15. Trimming of the 192 human B cell data was 

performed by Cutadapt[Cutadapt](32), filtering out all paired reads where one or 

more read had a post-trimming length of less than 25 bp. 

Trimmed reads derived from the GM cell line and single B cells were aligned to the 

human genome (GRCh38) annotated with Ensembl GRCh38.78 GTF release using 

STAR (v2.4) (Dobin et al. 2013). Trimmed reads derived from the B2 cells were 

aligned to the mouse genome (GRCm38) annotated with Ensembl GRCm38.80 GTF 

release using STAR (v2.4). Expression levels were quantified using featureCounts 

(v1.4.6-p1)] (Liao, Smyth, and Shi 2014) and normalized by total read number 

resulting in RPM (Reads Per Million).

Peaks for CAGE and Tn5Prime data were called by counting the number of unique 

fragments which began their forward read alignments (R1 for Tn5Prime) at each 

position within each chromosome and for each orientation (positive or negative). A 

peak was called at a position and orientation if at least five alignments begin at that 

position, the position one nucleotide downstream has fewer alignments beginning at 

that position, and the position one nucleotide upstream has fewer alignments 
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beginning at that position. For the single cell data, peaks were filtered out unless 

they appeared in more than one cell. The distance between the TN5 peaks and the 

nearest CAGE peak was called by inserting the nucleotide coordinates of the CAGE 

peaks into kd-trees and then performing a nearest neighbor search on them using 

the TN5 peak coordinates. Each chromosome and orientation had its own kd-tree.

Antibody Assembly

After assignment, reads were assembled into transcriptomes using rnaSPAdes 

(Bankevich et al. 2012) with the single-cell parameters. Putative immunoglobulin 

transcripts are detected and annotated by running IGBLAST (Ye et al. 2013) against 

the assembled transcriptome using Human V,D and J segments from the IMGT 

database (Lefranc et al. 2004). Isotypes are assigned to putative IG transcripts by 

aligning constant regions to the transcripts with BWA-MEM[BWA-MEM paper] (Li 

2013). 

Antibody transcripts were filtered with the following process:

1. A table is generated from the SPADES/IGBLAST/BWA pipeline listing each 

putative IG transcript for each cell in which each row represents one assembled 

antibody transcript and contains information indicating which cell it came from, the 

overall abundance(as determined by BWA) within the cell,the CDR3 sequence and 

the type(IGH,IGK,IGL) as well as the inferred segments used during VDJ 

recombination.

2. The transcripts are clustered by CDR3 sequencing similarity using a single-linkage
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clustering algorithm Based on the Levenshtein distance where two clusters of 

transcripts are merged when at least one transcript CDR3 has a Levenshtein 

distance of 2 or less with the CDR3 of any transcript in another cluster.

3. Transcripts belonging to the same cluster are merged so that highly similar 

transcripts belonging to the same cell are combined and their counts added together.

This is done to correct for the production of spurious alternative assemblies 

produced by SPADES within each cell's assembled transcriptome.

4. a list is generated for each transcript of the cells in which they appear.

5. The lists is sorted by the abundance of the transcript within the cells.

6. the entries in the lists are marked by their relative abundance. If the number of 

reads aligned to the transcript in a cell is less than 10% of the largest amount reads 

aligned to that transcript within any cell, it is marked as being a potential 

contaminant. The idea is that if a transcript discovered in a cell is a contaminant it 

should have at least an order of magnitude fewer reads associated with it when 

compared with the cell it actually came from.

7. For each type (IGH,IGK,IGL) of IG transcript found within each cell, the largest 

unique (non-contaminant) transcript is picked to have potentially come from that cell. 

if a unique transcript cannot be found, the most highly expressed transcript is 

selected

8. If both a potential IGK and IGL are present within a cell, the unique transcript is 

selected. if both are unique or non-unique the most highly expressed transcript is 

selected unless either transcript has an abundance of at least  10% of the other.

9. After this process, most cells should have a single heavy chain and a single light 
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chain.

Visualization

All data visualization was done using Python/Numpy/Scipy/Matplotlib[] (Hunter 2007; 

Oliphant 2007; van der Walt, Colbert, and Varoquaux 2011; Jones, Oliphant, and 

Peterson 2001--). Schematics were drawn in Inkscape (https://inkscape.org/en/).

Data and Script Access

Raw data has been uploaded to the Sequence Read Archive (SRA) under the 

accessions 

PRJNA320873 (GM12878 Smartseq2 and Tn5Prime), PRJNA320902 (Mouse B2 

Cells), and

PRJNA415475 (Human CD27high CD38high). A UCSC genome browser track is 

available at 

https://genome.ucsc.edu/cgi-bin/hgTracks?

hgS_doOtherUser=submit&hgS_otherUserName=chkcole&hgS_otherUserSessionN

ame=TN5_Prime_Alignments

The Tn5Prime and CAGE Peak Caller and peak distance calculator are available at 

https://github.com/chkcole/Peak-Calling. All other Scripts are available upon request.
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Aim 3: Repertoire Sequencing Using the Oxford Nanopore

Abstract

Repertoire sequencing is a form of RNAseq specific to immunoglobulin transcripts. 

Over time, improvements have been made to this assay which have dramatically 

increased the breadth, depth, and overall accuracy of the resulting data. However, 

repertoire sequencing still requires a separate library preparation and sequencing 

steps independent of and in addition to the standard PolyA-specific RNAseq one 

might want to do on an RNA sample. We propose that repertoires can be acquired 

as a byproduct of a general RNA sequencing protocol by using the Rolling Circle to 

Concatemeric Consensus(R2C2) (Volden et al. 2018) method on lymphocyte-derived

RNA. We show that the repertories derived from this method are comparable to 

specialized repertoire sequencing approaches and can be achieved at no additional 

cost to the experimenter.
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Introduction

Antibodies are proteins generated exclusively by B cells whose primary purpose is to

bind to pathogens, disabling them and marking them for destruction by the immune 

system. During B cell maturation, each antibody gene(Heavy, Kappa or Lambda) is 

produced through a process called V(D)J recombination whereby a single Variable, 

Diversity, and Joining gene segment is randomly selected and recombined, along 

with the addition of non-template nucleotides, to create a gene unique to that cell. 

This process is what allows the adaptive immune system to generate protection 

against nearly any pathogen it might encounter.

Before the advent of high-throughput sequencing, antibodies were characterized by 

Sanger sequencing of cloned antibody genes or cDNA. Cloning requires the isolation

of a pure DNA template, so early studies were done almost exclusively on 

monoclonal B cell cancers. Even when all the necessary materials were present this 

method was slow and laborious. Indeed, some of the earliest studies of V segment 

diversity were the product of only a few dozen heavy or light chain sequences. With 

the invention of PCR and high-throughput sequencing came the ability to assay 

millions of discrete DNA molecules. In 2009 a method for sequencing antibody 

repertoires from zebrafish using the Roche 454 platform was published. Heavy chain

Amplicons were generated from rna using primers specific to the first framing region 

of the V segment and the constant region. These amplicons were used as the 

template for a 2x230 bp run which, in zebrafish, were long enough to cover the entire

V segment, allowing the entire heavy chain to be reconstituted through overlap 
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merging of the paired reads. Since then improvements to the protocol have been 

made, most notably the inclusion of UMIs into the read which result in the generation

of higher-accuracy antibody transcript sequences as well as more accurate 

quantification of antibody expression.  Nevertheless, amplicon-based repertoire 

sequencing has several experimental and informatic shortcomings such as the lack 

of an effective heavy/light chain pairing method in bulk samples, inability to 

distinguish between membrane and secreted antibodies, and the fact that the use of 

V and C segment primers can result in under or over-reporting of some antibodies. 

Two key technologies have emerged over the last five years which we believe will 

supplant dedicated repertoire-sequencing protocols, allowing for the production of 

high-quality repertoires as a byproduct of more general RNAseq experiments.

Nanopore Sequencing

Nanopore sequencing is a recently developed technology which permits the real-time

sequencing of single molecules of DNA of an arbitrary length. This technology was 

pioneered by Oxford Nanopore Technologies (ONT) and is mostly widely 

implemented in the form of a device called the ONT MinION. Unlike previous 

sequencing technologies amplification of the template strand is not required in order 

to determine the sequence. Instead the DNA is threaded through a protein channel 

embedded in lipid membrane with a current running across it. The DNA strand 

interrupts the flow of electrons through the pore, and will do so in a manner which 

can be used to identify the exact sequence which happens to be inside the pore at 

any given time. Thus, by threading a strand of DNA and measuring the change in 
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current, the current trance can be used to infer its sequence. One of the drawbacks 

of this technology is that there is significantly more uncertainty about the correctness 

of each base in the sequence compared with older sequencing technologies. For 

example, Illumina reads have a typical error rate of 1 in 1000 bases while the Oxford 

Nanopore produces errors at a rate around 1 in 10. Depending on the downstream 

applications for this sequence, a high frequency of errors could make the data 

difficult to analyze or entirely unusable.

In 2018 our lab published a method for improving the accuracy for nanopore reads 

called Rolling Circle Amplification to Concatemeric Consensus (Volden et al. 2018). 

DNA fragments are circularized by gibson assembly and amplified using phi29 and 

random primers. This produces pieces of DNA whose sequences are concatemers of

the original DNA fragment that was circularized. These pieces of DNA are 

sequenced and the sequence of the original fragments are inferred by identifying 

repeats in the sequence, splitting them, and then generating a consensus with the 

repeated sequences. Doing this we can generate sequences from the MinION with 

an average base error rate of 1 in 50.

The original motivation for the development of this method was transcript isoform 

analysis. Isoforms are transcripts produced by the same gene but with alternative 

splicing or transcription start sites. The choice of exons to include in a transcript can 

dramatically impact the function of the resulting protein. As such, the ability to 

quantify the relative expression of isoforms from the same gene is critical for 
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understanding a cell’s biology. Short-read RNAseq can’t be used to quantify isoforms

from complex genes because they are not long enough to span all of the exons and 

provide the needed connectivity information. Oxford Nanopore solves that problem 

by allowing the sequencing of entire transcripts. However, the base accuracy can 

make aligning regular nanopore reads imprecise and may cause the analysis 

software to miss or misidentify isoforms. In addition, a 1 in 10 error rate makes 

multiplexing libraries impractical since most demultiplexing strategies assume 

Illumina-level error rates with no insertions or deletions in the barcode sequence. 

R2C2 provided a method for sequencing full-length transcripts at an error rate low 

enough to accurately call isoforms and demultiplex pooled single cell libraries.

We concluded that, with enough sequencing depth, R2C2 could be used to 

characterize antibody repertoires of B cell-containing samples without any steps in 

the library creation process. Indeed, we proposed these repertoires would be a 

byproduct of a non-selective RNA sequencing experiment. In order to test this 

hypothesis we generated libraries from Human PBMC-derived RNA (Sample 23_2) 

using R2C2 and a conventional antibody-repertoire sequencing protocol and 

compared the results. We also included previously published data using the TMI-seq 

approach as part of the analysis (Cole et al. 2016).

Results

R2C2
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RNA was extracted from the PBMCs resulting in 235.6ng RNA /ul in 30ul of H2O. 

cDNA was generated from 4 ul of RNA using  a Oligo-dT primer and template-

switching oligo followed by ISPCR amplification for 12 cycles resulting in 8ng of 

cDNA/ul in 20ul. 40ng of cDNA was circularized by gibson assembly using DNA 

splints complementary to the ends of the cDNA molecule and the reactions were 

treated with a cocktail of exonuclease to remove uncircularized cDNA. The circles 

were SPRI cleaned and eluted in 40ul. The circularized cDNA was used as the input 

for four 50ul Rolling-Circle Amplification reactions using phi29 and random 

hexamers. These reactions were digested with T7 endonuclease and size selected 

on a gel to remove DNA less than 10kb long. This produced 65ng/ul in 100ul of H2O.

This DNA was used as the input for four LSK109 ligation library preps (1ug per 

library) and sequenced on four flowcells using the Oxford Nanopore MinION, 

generating 16.6 million raw reads. Consensi were called from these reads as 

previously described (Volden et al. 2018), generating 10.3 million consensus reads. 

These were then aligned to the hg38 genome with all alternative assemblies 

removed using minimap2 using the splice-aware mode, aligning 99.96% of the reads

(Li 2018). Putative antibody transcripts were collected by extracting reads which 

aligned on chromosome 14 between positions 105,536,018 and 106,883,485. This 

results in a set of 15171 reads of which 12864 could be successfully annotated by 

IGblast (Ye et al. 2013). V segment alleles and recombination rates were calculated 

for transcripts with either an IgM or IgD isotype which indicate that an antibody 

belongs to a naive B cell and is unlikely to contain significant amounts of somatic 

hypermutation.

72



Antibody Repertoires

The same pool of RNA used for the R2C2 experiments was used to sequence 

standard Heavy chain repertoire libraries (Vollmers et al. 2013). This produced 

[INSERT RAW PAIRED READS HERE] which were used to generate 49563 merged

reads which covered the entire variable region and enough of the constant region to 

call isoforms. Of these, 48899 were successfully annotated by IgBlast.

V segment analysis

We determined the validity of our heavy chain sequences by examining the 

distribution of CDR3 lengths as well as the pattern of somatic hypermutations 

present in the V segments. CDR3 lengths follow a well established pattern: Their 

nucleotide length is generally a multiple of three and they are between 21 and 81 

bases long. The CDR3 sequence is determined by locating the amino acid motifs, 

[FY] [FHVWY] C [ADEGIKMNRSTV] at the 3’ end of the V segment and W[GAV] in 

the J segment. The location of these motifs determines the start and end of the 

CDR3. A histogram of the CDR3 lengths for the repertoire, TMIseq and R2C2 

antibody reads can be seen in figure 1. They have a median CDR3 length of  42, 45, 

and 45 nucleotides respectively. Which is in agreement with previously published 

reports on CDR3 length for heavy chains.

In order to estimate the V segment recombination rate from the disparate data sets 

we only considered heavy chains with an IgM or IgD Isotype. The results of the 
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comparison can be seen in figure 2. The results indicate significant disagreement 

between the three different methods for the recombination rate of the V segments as 

well as the number and type of alleles. Even accounting for the higher error rate of 

the R2C2 method, there clearly exists V segment alleles which are dominant in the 

R2C2 data set but almost entirely absent in the other two. Much of this is likely due 

to the fact that the repertoire sequencing protocol uses a priming site in FR2 and will 

be unable to detect alleles with polymorphisms in FR1, CDR1, or the leader exon. In 

addition, it is likely that the primers will have different efficiencies for different V 

segments, possibly overrepresenting some recombination events while suppressing 

others. We see this same pattern in play when examining the isotype abundance in 

figure 3. In the R2C2, nearly 75% of all antibody transcripts are IGHA, while in the 

TMIseq data it’s only a third. And,  just like with the V segments, the TMI-seq and 

repertoire sequencing protocol prime off of the constant region in order to amplify 

antibody transcripts.

Fig 1. Histograms of the CDR3 lengths for antibody heavy chain transcripts detected 

in S23_2 RNA using three different methods: R2C2, TMIseq, and a conventional 

repertoire sequencing protocol.
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Figure 2.  A bar chart comparing V segment recombination rates for R2C2, TMI-seq 

and a standard repertoire sequencing protocol. Bars are colored by allele.

Figure 3. Pie chart of the heavy chain isotypes detected by R2C2, TMIseq, and a 

conventional repertoire sequencing protocol.

Methods

RNA Purification

Whole blood was collected from a fully consented human volunteer at the UCSC 

Student Health Center. PBMCs were isolated from Whole Blood Sample 23_2 by 

Ficoll-gradient and cryopreserved in DMSO( approximately 10 million live cells per 

tube) using liquid nitrogen (vapor phase). A single tube of PBMCs was defrosted and

washed twice with 37C 1XPBS, spinning at 500g for 5 minutes in between washes. 
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500ul of trizol was added to the cell pellet and the whole volume was transferred to a

1.5ml tube. The cells were lysed for 5 minutes and 100ul of chloroform was added. 

The tube was shaken until the mixture acquired a pink, opaque hue. The reaction 

was allowed then allowed to sit for 2 minutes. The reaction was then spun at full 

speed in a microcentrifuge for 15 minutes at 4C. The aqueous layer was pipetted off 

and an equal volume of 70% Ethanol was added. The Qiagen RNAeasy mini prep kit

was used, starting from section #2 in the instruction booklet, following the directions 

for purifying RNA. The RNA  was eluted in 30ul of H2O, the concentration was 

measured with nanodrop, and aliquoted into individual PCR tubes and stored at -

80C. The results from this procedure when tested on the nanodrop where 235.6ng of

RNA per microliter of H2O. 

cDNA

In order to generate enough cDNA for circularization we generated two separate 

reactions and then pooled them together at the end. First, 2ul of RNA at ~235.6ng/ul 

were combined with 1ul of unprotected oligo dT and 1 ul of dNTPs in a thin-walled 

PCR tube and heated to 72C for 5 minutes using a thermocycler and then 

immediately placed on ice. To this reaction, 2ul of 5x Smartscribe buffer, 1 ul DTT, 

0.3ul of Smartscribe TSO, 1ul of Smartscribe enzyme, 0.25ul of Superase_IN, and 

1.45ul of H2O were added. The reactions were then heated to 42C for 1 hour, and 

then 70C for 5 minutes. The two 10ul reactions were then combined and 1ul of 10um

ISPCR(Smartseq2) primer, 1 ul of Lambda Exonuclease(NEB), 1ul RNAseA, and 

25ul of 2X Kappa master mix were added for a total volume of 50ul. The reaction 
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was then underwent PCR(37C 30 minutes, 95C 0:30 seconds, 12 cycles: 98C 20S; 

67C 15S; 72C 10 minutes, and then held for 4C). The reaction was then purified 

using a .85:1 SPRI purification ratio and eulted in 20ul of H2O.

Circularization
In order to circularize the cDNA we use double-stranded DNA splints complementary

to the end of our cDNA that can undergo gibson assembly. In one PCR tube, 23ul of 

H2O, 25ul of Kappa 2X master mix, 1ul of UMI_Splint_ISPCR 100uM, and 

UMI_splint_reverse 100uM were added then cycled(95C 3 minutes, 98C 1 minute, 

62C 1 minute, 72C 6 minutes). The reaction was then cleaned with the zymo select-

a-size cleanup protocol for single-size selection, but in the buffer preparation add 

85ul of 100% EtOH to 500ul of select-a-size DNA binding buffer. It was eluted in 20ul

of buffer EB (elution buffer) and the concentration measured with qubit. For the 

gibson assembly reaction we combined an approximately equal mass of splint to 

cDNA. In a single PCR tube we added 0.2ul of Splint(210ng), 5ul of cDNA(8ng/ul), 

4.8ul of H2O, and 10ul of NEBuilder 2X Master Max. This reaction is then incubated 

for 50C for 60 minutes. To this reaction we added 5ul of NEBuffer 2, 16ul H2O, 3ul 

Exonuclease I, 3ul of Exonuclease III, and 3ul of Lambda Exonuclease. This reaction

is then incubated 37C for 16hr followed by a heat inactivation step of 80C for 20 

minutes. The reaction was then purified with 0.8:1 SPRI beads and eluted in 40ul of 

H2O. in order to generate enough DNA for multiple library preps, we created four 

separate RCA reactions which were then combined at the end. For each reaction we 

combined in a PCR tube 5ul of Phi29 Buffer(NEB, 10X), 1ul of Phi29 Polymerase, 

2.5ul dNTP(10nM), 2.5ul Random hexamer primers(exo resistant, 10uM), 10ul of 
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circularized DNA from the previous reaction, and 29ul of H2O. The tube was 

incubated for 30C overnight. The four 50ul reactions were combined into two 100ul 

reactions. To each tube 2.5ul of T7 was added and the tube incubated at 37C for 2 

hours, agitating occasionally. The reactions were SPRI purified using a 0.5:1 ratio 

and eluted in 50ul of H2O. The DNA concentration was measured as 65ng/ul using 

qubit.

R2C2 Sequencing:

One microgram of size-selected and purified DNA was used as the basis for a 1D 

ligation-based library prep and then sequenced for 48 hours using the Oxford 

Nanopore MinION. This was done 4 times to produce the data set of interest.

Repertoires

In a single PCR tube, 1ul of RNA at 235ng/ul, 8.5ul of H2O, 2ul of IgH_RT primer 

mix, and 1ul of dNTP were added and heated to 72C for 5 minutes and then 

immediately placed on ice. To this reaction, 4ul of 5X Smartscribe buffer, 2ul of DTT, 

1ul of Superase_IN, and 0.5ul of Smartscribe polymerase were added. The reaction 

was then heated to 42C for 1 hour followed by 70C for 5 minutes. To this reaction 

was added 10ul 5X Phusion buffer, 1ul IgH_C_pool nm, 1ul IgH_V_pool nm, 1ul 

dNTPs 10um, 15ul H20, 1.5ul DMSO, and 0.25ul Phusion Polymerase. The reaction 

was then cycled(2 cycles of: 98 °C for 3 min, 52 °C for 2 min, 72 °C for 4 min) and 

then purified using a Zymo Select-A-Size Clean and Concentrator column with a 

300bp cutoff. The DNA was eluted in 23ul of buffer EB.In a single PCR tube was 

added the 23ul of cDNA, 25ul of 2X Kappa Master Mix, 1ul of Nextera A primers 
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(10nM), and 1ul of Nextera B primers (10nM). The reaction was cycled (95°C for 3 

minutes, 25 cycles of: 98°C 20 secs; 63°C for 30 secs;72°C for 2 min, final extension

of 72°C for 5 minutes). A final purification step was performed using a 1:0.75 sample 

to SPRI bead purification and the product was eluted in a final volume of 20uL. The 

sample was then ran on a 2% agarose gel and quantified by Qubit fluorometer 

(Invitrogen) to verify quantity and quality of the library prior to sequencing. The 

samples were sequenced on a MiSeq 2 x 300 run.

Conclusion 

 During the course of my studies I tackled several problems in the field of antibody 

genetics and succeeded in solving two of them. The TMIseq method allows the 

assembly of full-length antibody transcripts from molecularly-index subreads. This 

method solved the issue of full-length transcript sequencing, allowing people to 

accurately assign V segment allele and isotype to individual transcripts. The 

Tn5prime method is a simple method for sequencing the 5’ ends of RNA transcripts. 

In addition, it allows people to pair full-length heavy and light chains in individual B 

cells. I demonstrated that the R2C2 method can be used to sequence heavy and 

light chain transcripts with enough accuracy to confidently assign V segment alleles 

and isotypes. The preliminary data indicates substantial disagreement with 

previously published methods, raising questions about the validity of V segment 
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recombination rate estimation from primer-based assays.

I propose that the R2C2 method could one day be used as a substitute for repertoire-

specific sequencing protocols when assaying immune function. It captures full-length

transcript information for antibodies, T cell receptors, and every other polyA 

transcript present in the sample. It is also accurate enough to assign transcripts to 

specific isoforms and alleles and, as such, is a substantially more powerful method 

than assays which use primers to target only specific transcripts. I also propose that 

because the R2C2 method does not introduce bias into the data by using DNA 

primers that we can accurately measure the true recombination rates for specific 

gene segments, perhaps revealing hitherto unknown biology about VDJ 

recombination.
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