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RESEARCH

Identifying intragenic functional modules 
of genomic variations associated with cancer 
phenotypes by learning representation 
of association networks
Minsu Kim1, Jennifer E. Huffman2,3, Amy Justice4,5, Ian Goethert6, Greeshma Agasthya7, VA Million Veteran 
Program and Ioana Danciu8,9* 

Abstract 

Background:  Genome-wide Association Studies (GWAS) aims to uncover the link between genomic variation and 
phenotype. They have been actively applied in cancer biology to investigate associations between variations and 
cancer phenotypes, such as susceptibility to certain types of cancer and predisposed responsiveness to specific 
treatments. Since GWAS primarily focuses on finding associations between individual genomic variations and cancer 
phenotypes, there are limitations in understanding the mechanisms by which cancer phenotypes are cooperatively 
affected by more than one genomic variation.

Results:  This paper proposes a network representation learning approach to learn associations among genomic vari-
ations using a prostate cancer cohort. The learned associations are encoded into representations that can be used to 
identify functional modules of genomic variations within genes associated with early- and late-onset prostate cancer. 
The proposed method was applied to a prostate cancer cohort provided by the Veterans Administration’s Million 
Veteran Program to identify candidates for functional modules associated with early-onset prostate cancer. The cohort 
included 33,159 prostate cancer patients, 3181 early-onset patients, and 29,978 late-onset patients. The reproduc-
ibility of the proposed approach clearly showed that the proposed approach can improve the model performance in 
terms of robustness.

Conclusions:  To our knowledge, this is the first attempt to use a network representation learning approach to learn 
associations among genomic variations within genes. Associations learned in this way can lead to an understanding 
of the underlying mechanisms of how genomic variations cooperatively affect each cancer phenotype. This method 
can reveal unknown knowledge in the field of cancer biology and can be utilized to design more advanced cancer-
targeted therapies.

Keywords:  Genome-wide Association Study, Network Representation Learning, Machine Learning
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Introduction
Genome-wide Association Studies (GWAS) correlate 
specific genomic variations with phenotypes. They are 
being actively applied in cancer biology to investigate the 
link between an individual’s genomic variations and can-
cer phenotypes, including susceptibility to certain types 
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of cancer or predisposed responsiveness to treatments. 
GWAS has identified many common genomic variants 
associated with cancer phenotypes. A recent review 
study by Sud et al. [1] highlighted hundreds of loci asso-
ciated with increased cancer risk in a variety of cancer 
tissues, including breast, prostate, lung, colorectal, pan-
creatic, gastric, renal, and bladder cancers.

Cancer phenotypes, such as early-onset and late-onset, 
can be understood as a result of the accumulation of 
abnormal gene functions, where each gene function can 
be compromised by genomic variants within each gene 
[2]. The implications of individual genomic variants 
on gene function have been actively investigated using 
genomic data. Substantial amounts of genomic variants 
have been identified with the potential to affect gene 
function in a variety of mechanisms, including premature 
stop, splice site, frameshift insertion and deletion (InDel), 
missense, untranslated region (UTR), promoter, proximal 
enhancer, protein binding sites, and RNA binding sites 
[3].

A collection of genomic variants within each gene can 
cooperatively alter the expression level of a gene [4] and 
the structure of its gene product [5]. This implies that 
cancer phenotypes can be cooperatively influenced by 
two or more genomic variations within genes that inter-
act with each other [2]. The widespread linkage disequi-
librium (LD) of the human genome also suggests that 
there may be unknown functional associations among 
individual genomic variations within genes [6]. To under-
stand how genomic variations cooperatively affect spe-
cific cancer phenotypes, it is required to first identify 
associations among them.

There are some challenges in identifying associations 
among genomic variants within each gene. First, there 
are no metrics available that can encompass both the 
co-occurrence between variations and the correlation 
between the co-occurrence and a given cancer pheno-
type. This makes it difficult to generate machine learning 
models that require quantifiable features that well rep-
resent associations among genomic variants within each 
gene. Second, there is no effective and unbiased way to 
learn associations from pairwise relationships between 
variations. A computational framework capable of 
extracting usable representations from data with a graph 
structure is required, where each node is each variant, 
and the edge is the degree of association between the two 
variants. Lastly, there is no systematic way to test how 
robust these learned associations are.

Biological networks have been actively used to learn 
associations between biological entities, such as protein-
protein interaction (PPI) networks and gene co-expres-
sion networks. Many studies have used these network 
approaches to capture biologically meaningful subgroups 

or gene subsystems in which genes interact with each 
other [7–9]. In this study, we consider the individual 
genomic variations within each gene as entities and 
extend the biological networks approach to learn associa-
tions between them from data.

One of the most effective ways to extract information 
from a network is to use a network representation learn-
ing technique such as DeepWalk [10] and GloVe [11]. 
DeepWalk is a graph embedding algorithm that uses a 
deep learning architecture. It learns vector representa-
tions from a given graph structure, where the represen-
tation encodes relationships between nodes [10]. It first 
generates a document-like input by sampling the nodes 
with random walks, and then uses natural language pro-
cessing (NLP) techniques on the input data to generate 
vector representations. The learned representation space 
reflects the relative distance between nodes. GloVe takes 
the input structure as a global matrix and applies matrix 
factorization to get vector representations [11]. Deep-
Walk relies on local contexts to learn representation 
while GloVe uses global statistics. Both approaches are 
known to have good performances in NLP tasks such as 
word analogy inference [10, 11].

We devised a computational framework for identify-
ing associations among variants by learning network 
representations. Here, we define the association between 
two variants by two criteria: (1) the two variants must 
co-occur frequently, and (2) this co-occurrence must be 
correlated with a given cancer phenotype. We devised a 
metric that can quantify both criteria at once to define 
the level of association (LOA) between two variants for 
a given cancer phenotype. By measuring the LOA for 
every pair of variants within a gene, it is possible to con-
struct an association network where each node is each 
variant and the edge weights are the LOAs between them 
(Fig.  1). It is possible to infer modules of variants in a 
data-driven manner using representations learned from 
the constructed network.

Prostate Cancer (PC) is the leading cancer diagnosis in 
U.S. men with an estimated 191,930 new cases expected 
in 2020 and the second most common cause of cancer 
deaths in U.S. men, accounting for about 33,330 deaths 
in 2020 [12]. PC is known to be a heterogeneous disease 
that includes both a chronic phenotype of old age and an 
aggressive phenotype such as clinically advanced early-
onset PC. High-throughput sequencing technology offers 
opportunities to elucidate biomarkers at the molecular 
level [13]. However, the clinical and molecular character-
istics of early-onset PC still have not been well described 
[14]. This creates an opportunity for large-scale machine 
learning genomics approaches to contribute to elucidat-
ing the mechanisms of early-onset PC at the molecular 
level.
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We applied the proposed approach to the prostate can-
cer cohort provided by the Veterans Administration’s 
(VA) Million Veteran Program (MVP) to identify intra-
genic functional modules associated with early-onset 
prostate cancer. Our cohort had 33,159 PC patients 
(3,181 early-onset and 29,978 late-onset). Note that the 
scope of the study included only early and late-onset 
patients with prostate cancer and that the methodology 
was also evaluated using only the prostate cancer cohort.

The following sections describe (1) how to define asso-
ciations between genomic variations for a given cancer 
phenotype, (2) how to learn representations from defined 
association networks between variations, and (3) how 
to identify sets of genomic variations within each gene 
as candidates for functional modules associated with a 

given cancer phenotype and (4) how to evaluate the pro-
posed method.

Materials and methods
Our study used DNA samples and phenotypic data from 
Million Veterans Project (MVP). The MVP program 
recruited individuals aged 18 to >100 years old from 
63 Veterans Affairs Medical Centers across the United 
States. We used MVP release 19.2 for this analysis [15]. 
This approach was applied to a cohort with 33,159 pros-
tate cancer patients (3,181 early-onset and 29,978 late-
onset). We identified 2,146,891 genomic variations within 
5,298 genes. Note that variants here include only single 
nucleotide variations (SNVs) and InDels.

Fig. 1  Identification of functional module candidates within a gene. First, the proposed method generates an association network by calculating 
the LOA between each variant within a gene. It then learns the associations from the network to produce a representation that can be used to 
identify module candidates
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Our project was approved by the VA Central IRB. 
All participants enrolled in the MVP have signed an 
Informed Consent document allowing the use of their 
data by approved researchers in accordance with the 
MVP data access policy.

Terminology

•	 A genomic variation, variation, genomic variant, or 
variant refers to individual SNVs and InDels at spe-
cific genomic locations.

•	 Association refers to the co-occurrence between two 
genomic variations or a correlation between a spe-
cific variation and a phenotype.

•	 An intragenic functional module or module within a 
gene refers to a set of genomic variants located within 
each gene, where members co-affect the structure or 
function of the gene product.

•	 A module candidate refers to a set of variants within 
a gene that is inferred from the data as potential can-
didates for a module.

•	 A phenotype associated module refers to a module 
candidate identified as having a statistically signifi-
cant association with a given phenotype.

Defining associations between genomic variations
Identifying genomic variations that are associated with 
each other starts with defining what is association. There 
are two different aspects of associations to be considered 
in this context: (1) Co-occurrence between two genomic 
variations and (2) Correlations between the co-occur-
rence and a given cancer phenotype. We addressed this 
by defining the level of association between two varia-
tions A and B for a given phenotype X as the following 
Eqs. (1a, 1b).

LOA(A, B|X) represents the level of association between 
the two variations A and B for a given phenotype X. 
JCS(A,B|X = k) is the Jaccard similarity [16] of the two 
variations A and B when X is k. Where k is 0 or 1. Where 
X = 1 represents the sample with the given phenotype X, 
and X = 0 is vice versa. P(A ∩ B|X = k) represents the 
intersection of samples with phenotype values of k and 
both A and B variations, whereas P(A ∪ B|X = k) indi-
cates the union. Hence, JCS is the ratio of intersection 
to the union, which is how frequently the two variations 

(1a)LOA(A,B|X) = log
JCS(A,B|X = 1)

JCS(A,B|X = 0)
,

(1b)JCS(A,B|X = k) =
P(A ∩ B|X = k)

P(A ∪ B|X = k)
,

co-occur. LOA represents the log ratio of JCS for samples 
with a given phenotype to samples without the pheno-
type. Thus, a positive LOA indicates a positive association 
between two variations for a given phenotype, a negative 
LOA indicates the opposite, and a value of 0 indicates no 
association. By defining a metric in this way, it is possible 
to measure how differentially two variants co-occur in 
samples with different phenotypes.

Constructing association networks of intragenic variations
After annotation, each genomic variation is assigned to 
the gene in which it is located. We then computed the 
LOA between all pairwise variations (Eq. 1a) to construct 
a graph structure represented by the adjacency matrix 
AJM (Eq.  2). Each node in the constructed graph or 
association network is a genomic variation and the edge 
weight represents the level of association between the 
two variations.

For i and j ∈ Vl , where Vl is the set of all genomic varia-
tions identified in gene l. The edge weight between two 
nodes or variations i and j for a given phenotype X can be 
defined as LOA(i, j|X), which is also the value of the adja-
cency matrix AJMVl ,X [i, j] . Since the metric is symmetric, 
AJMVl ,X [i, j] equals AJMVl ,X [j, i].

Representation learning for the defined association 
networks
The constructed association network contains valuable 
information about how each genomic variation in each 
gene is associated with each other. There are two major 
approaches to learning associations between entities, 
(1) Local context window approaches such as DeepWalk 
[10], (2) Global matrix factorization approaches such as 
GloVe [11]. In the task of learning associations between 
genomic variations, there was no systematic comparison 
of which approach worked better, so we implemented 
both methods to suit our problem and compared the 
results. Hereafter, the local context window approach 
will be referred to as the LCW approach and the global 
matrix factorization approach will be referred to as the 
GMF approach.

Both approaches have a similar input/output struc-
ture that takes a pairwise adjacency matrix AJMVl ,X [i, j] 
(Eq. 2) and then learns a vector representation for each 
variant (Fig. 2). LCW takes a matrix as a weighted graph 
where each node is a variant. Then it samples a weighted 
random walk starting at each node as a corpus of words 
(Fig.  2). This approach uses Word2Vec (i.e. SkipGram) 
[17] to learn the representation of each variant in the 
corpus by processing it as a word in the document. 
GMF takes the matrix then applies matrix factorization 

(2)AJMVl ,X [i, j] = LOA(i, j|X),
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to produce a vector representation (Fig.  2). It extracts 
a representation by decomposing a given adjacency 
matrix into two low-dimensional rectangular matrices. 
Principal component analysis (PCA) [18] and non-neg-
ative matrix factorization (NMF) [19] were used for the 
decomposition.

Identifying module candidates using the learned 
representations
After learning the representation space from the data, 
we applied a general data mining technique, hierarchi-
cal clustering [20] to extract variant clusters that can 
be considered module candidates. The optimal number 
of clusters k was determined using the silhouette score 
[21] (Fig. 1). For each gene, the optimal number of vari-
ant clusters was found by choosing the k that maximizes 
the silhouette score. Then each cluster was considered a 
module candidate.

Measuring the association between module candidates 
and cancer phenotypes
To assess the significance of each module candidate, 
we established a metric that measures how strongly the 
module candidate is associated with a given phenotype. 

The metric computes the correlation between each 
patient’s module status and phenotype. Here, we 
defined the status of each module for each patient as 
either activated or inactivated. For a given threshold thr 
between 0 and 1, if the module activation level MAL of 
patient p for module m exceeds thr, then the module 
activation status MAS of patient p for module m is set 
to activated (Eqs. 3a, 3b, 3c). 

MAL(p,  m) represents the module activation level of 
patient p for module m, where Rm is the set of variants 
in module m and Fp is the set of variants that are found 
in patient p. MAS(p, m) represents the module activation 
status of patient p for module m for a given threshold 

(3a)MAL(p,m) =
|Rm ∩ Fp|

|Rm|
,

(3b)MAS(p,m) =

{

1, ifMAL(p,m) > thr(m)

0, otherwise

(3c)thr(m) =

∑

p∈L MAL(p,m)

|L|
,

Fig. 2  Description of sub-approaches to learning representations of an association network. The first sub-approach is to use SkipGram, the other is 
to use global matrix factorization
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value for module m, thr(m), where 1 indicates activated 
and 0 indicates the opposite. the(m) is computed as the 
mean MAL(p, m) for all patients, where L is the set of all 
patients in the data.

For the confusion matrix described in Table  1, we 
defined FEP(m,Vl) as the one-sided p value of Fisher’s 
exact test [22] and FER(m,Vl) Defined as the prior odds 
ratio (Eq. 4). Here, La is the set of patients with MAL acti-
vated and early onset phenotype. Lb is the set of patients 
with MAL activated and late-onset phenotypes. Lc is 
the set of patients with MAL inactivated and early onset 
phenotype. Ld is the set of patients with MAL inacti-
vated and late-onset phenotype. Note that FEP(m,Vl) is 
defined as a positive one-sided Fisher’s exact test, mean-
ing that it only measures the significance of the positive 
correlation between module activation and the early 
onset phenotype.

FER(m,Vl) is the prior odds ratio of Fisher’s exact test 
between module activation status and the early-onset 
prostate cancer phenotype for module m. A higher 
FER(m,Vl) value indicates a greater positive correla-
tion between activation of the module m and the given 
phenotype Vl , which is the early-onset phenotype in this 
case, and a lower FEP(m,Vl) indicates a greater positive 
correlation.

(4)FER(m,Vl) =
|La|/|Lb|

|Lc|/|Ld |
,

Evaluation of the approach
One of the main challenges in analyzing genomics data 
with machine learning approaches is overfitting. It occurs 
when the model memorizes the training data and the 
results are not reproduced in other datasets. We meas-
ured the robustness of our approach as the model’s abil-
ity to handle noise and prevent overfitting, which is 
measurable through the level of reproducibility of the 
results between two separate datasets. We divided the 
data set into training and test datasets to test reproduc-
ibility. Here, the training-set contains 16,579 prostate 
cancer samples (1590 early-onset, 14,989 late-onset) and 
the test-set contains 16,580 samples (1591 early-onset, 
14,989 late-onset) (Fig. 3).

Three sub-approaches with different implementations 
were prepared for evaluation: (1) LCW approach using 
SkipGram (LCW-SG), (2) GMF approach using PCA 
(GMF-PCA), and 3) GMF approach using NMF (GMF-
NMF). In addition, two alternative approaches were pre-
pared as controls: (1) the individual variant approach 
(CTRL-INV) and (2) the gene-level aggregation approach 
(CTRL-GLA). CTRL-INV is a control approach that 
evaluates the performance of individual variants instead 
of modules, which can show whether it is useful to infer 
associations between variants. CTRL-GLA is a con-
trol approach in which all variants within each gene are 
considered a single module, which can show whether 
it is useful to infer modules from the data. A total of 
five approaches were evaluated in terms of robustness 
(Fig. 3).

The evaluation process is performed for each sub-
approach as follows (Fig.  3). (1) identify module candi-
dates using each sub-approach, (2) measure FEP with 
training data for each module candidate, (3) identify 
phenotype associated modules with a p value threshold 
of 0.05, (4) measure FEP with test data for each pheno-
type associate module, and (5) calculate the reproduction 

Table 1  Confusion matrix for calculating positive one-sided 
Fisher’s exact test

Early-onset Late-onset

Module activated La Lb

Module inactivated Lc Ld

Fig. 3  Description of the evaluation scheme. It aims to evaluate the robustness of each sub-approach by measuring reproducibility
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rate by applying a p value threshold of 0.05. For example, 
if the LCW-SG approach identifies 1000 module can-
didates from the training data, 100 of them are found 
to have FEPs greater than 0.05. And if nine of them are 
found to have FEPs greater than 0.05 in the test data, 
then the reproduction rate is 9%. Since the test data were 
not used to define module candidates, the reproduction 
rate reflects the expected reproducibility when using the 
approach on one dataset and validating it on another 
dataset.

Implementation of the sub‑approaches
As stated, LCW-SG, GMF-PCA, and GMF-NMF are the 
network representation learning approaches we aim to 
evaluate, while CTRL-INV and CTRL-GLA are the con-
trol approaches that provide a baseline for evaluation.

CTRL-INV is an approach that measures the repro-
duction rate of individual variants. It calculates the p 
value of the Fisher-exact test to measure the correlation 
between the early onset phenotype and each variant 
instead of a module candidate. It does not use any algo-
rithms, models, or parameters. Thus, the reproduction 
rate here reflects the innate bias between the training and 
test datasets, meaning that this is a target that an ideal 
algorithm can achieve. CTRL-GLA is an approach that 
considers all variants within a gene to constitute a sin-
gle module, thus it represents a passive algorithm that 
does not actively identify modules among variants. It can 
be used to quantify the usefulness of approaches using 
active algorithms such as LCW-SG, GMF-PCA, and 
GMF-NMF compared to a passive algorithm.

LCW-SG, GMF-PCA, and GMF-NMF approaches use 
network representation learning approaches to identify 
module candidates from given data (Fig.  2). The afore-
mentioned approaches take AJM as input, learn vector 
representations for each variant, and then identify mod-
ule candidates using hierarchical clustering [20] in the 
learned representation space, where the optimal number 
of clusters is determined using the silhouette score [21]. 
Their difference lies in how the network representation is 
learned from AJM.

In the case of LCW-SG, it starts at each node (i.e. each 
variant) and extracts 10 weighted random walks of length 
10 each to learn the network representation. For exam-
ple, if a gene has 100 variants, AJM represents a graph 
of 100 nodes, where the edge weights between nodes A 
and B represent the LOA between variants A and B. Since 
the edge weight reflects the level of association between 
two variants (Eq. 1a), the weighted random walk contains 
association information between variants. Therefore, by 
applying the SkipGram algorithm to the extracted ran-
dom walk, associations between variants can be encoded 
into a vector representation.

GMF-PCA learns the vector representation by apply-
ing PCA [18] to AJM via two-dimensional reduction, 
whereas GMF-NMF uses NMF [19] with the same num-
ber of dimensions. Note that the matrix AJNM (Eq.  5) 
used in GMF-NMF was a matrix with an exponential 
value for each value of AJM, because NMF requires the 
matrix to be non-zero.

Results
As shown in the Table 2, the three approaches identified 
14,000–20,000 module candidates in 5270 genes (variants 
in 28 genes were missing in the training data). LCW-SG 
identified 20,045 module candidates, of which 517 were 
found to be phenotype associated in the training data 
(acceptance rate 2.58%), of which 59 were found to be 
phenotype associated in the test data (reproduction rate 
11.41%). Next, GMF-NMF identified 14,985 module can-
didates, of which 1728 were identified as having a phe-
notype association in the training data (acceptance rate 
11.53%), of which 257 were identified as being phenotype 
associated in the test data (reproduction rate 14.87%). 
Lastly, GMF-PCA identified 20,369 module candidates, 
of which 2465 were found to be phenotype associated in 
the training data (acceptance rate 12.10%), of which 342 
were identified as phenotype associated in the test data 
(reproduction rate 13.87%).

CTRL-GLA identified 5270 module candidates for each 
gene (Table 2), of which 67 were found to be phenotypes 
associated in the training data (acceptance rate 1.27%), 
of which 4 were found to be phenotype associated in 
the test data (reproduction rate 5.97%). This means that 
all three approaches, LCW-SG, GMF-NMF, and GMF-
PCA, performed better in terms of reproduction rate, 
with the best approach being GMF-NMF, which is 2.49 
times larger than CTRL-GLA. This means that GMF-
NMF is 2.49 times more reproducible than a passive 
algorithm. CTRL-INV identified 1,887,981 individual 
variants as module candidates, of which 305,106 were 

(5)AJNMVl ,X [i, j] = eLOA(i,j|X),

Table 2  Reproducibility test results with a p value threshold of 
0.05

Approaches #_of_
module_
candidates

pR < 0.05 Ratio pE < 0.05 Ratio

LCW-SG 20,045 517 0.0258 59 0.1141

GMF-NMF 14,985 1,728 0.1153 257 0.1487

GMF-PCA 20,369 2,465 0.1210 342 0.1387

CTRL-GLA 5,270 67 0.0127 4 0.0597

CTRL-INV 1,887,981 305,106 0.1616 188,369 0.6174
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identified as having a phenotype association in the train-
ing data (acceptance rate 16.16%), of which 188,369 were 
identified as being a phenotype associated in the test data 
(reproduction rate 61.74%). As shown in Table  2, the 
reproduction rate of GMF-NMF was 24.09% of CTRL-
INV, which is the target value that an ideal algorithm 
can achieve. This means that the robustness level of the 
network representation learning approach is as good as 
24.09% of the ideal target value.

Discussion
GMF-NMF showed the best performance in terms of 
reproduction rate among the three approaches based 
on network representation learning (NRL). All three 
approaches were found to outperform CTRL-GLA. This 
means that the NRL approach can improve reproduc-
ibility when identifying functional modules within genes, 
regardless of implementation.

Limitations of the approach
As can be seen from the comparison with CTRL-INV, 
the best of the three NRL approaches performed 24.09% 
compared to the control, implying that substantial over-
fitting still remains. These limitations can be explained in 
part by the use of primitive algorithms to identify pheno-
type associated modules. Since our goal was to measure 
the effectiveness of the NRL method itself, we did not use 
techniques to reduce overfitting such as data augmenta-
tion [23] and regularization [24] in this evaluation. This 
means that there is room to improve the performance of 
the approaches by deploying more sophisticated machine 
learning approaches such as deep neural network archi-
tectures and XGBoost [25] that can leverage the afore-
mentioned techniques.

However, as indicated by the reproduction rate of 
the CTRL-INV approach, even the non-parameter-
ized approach did not achieve 100% reproducibility. In 
other words, the data is inherently biased and prone to 
false discoveries. Since these innate biases reside in the 
data itself, it cannot be addressed by more sophisticated 
machine learning approaches or other techniques to 
avoid overfitting. To address these challenges, there is an 
alternative to improving machine learning approaches by 
adopting prior knowledge of the associations and inter-
actions between biological entities. In a recent study by 
Kim et al. [9], an external source of information such as 
a PPI network was adopted in addition to the given input 
data so that the model can learn more generalized and 
reproducible patterns to avoid overfitting.

Unfortunately, it is not easy to apply the aforemen-
tioned idea directly to our problem because there is 
not enough information about the functional associa-
tions among variants. As discussed in the Introduction 

section, the functional and structural associations among 
variants within a gene are not yet fully understood. We 
believe that advances in deep neural networks (DNNs) 
and artificial intelligence (AI) technologies in genomics 
studies could be a solution to the problem. To the best 
of our knowledge, there are no viable methods that can 
identify associations among variants within a gene in 
terms of implications for protein function and structure. 
Therefore, this leaves us with two interesting topics for 
future research. First, to develop a method to learn func-
tional associations between variants by adopting exter-
nal information, such as linkage disequilibrium (LD) 
among variants [26, 27], or a method to learn functional 
associations directly from genomic sequences using AI 
techniques. Next, to integrate the learned associations 
between variants with our network representation learn-
ing framework.

Limitations in the cohort selection
Due to the MVP enrollment protocols, and the overall 
demographics of the VA population, the data used for 
this study is biased towards individuals who survive to 
the date of enrollment in the MVP program. Most of the 
subjects with both early and later onset prostate cancer 
enrolled in MVP after their diagnosis of Prostate Cancer 
(92% of early-onset and 83% of later onset). This suggests 
the possibility of survival bias in both groups, particularly 
in the early-onset group. However, our paper focuses 
on methods development, and the intragenic GWAS 
approach described in this paper is generalizable to other 
association studies.

Novelty of learning associations among genomic 
variations
Learning associations between biological entities have 
been widely used in the biomedical field, not only in 
genomics data [9] but also in other clinical data such as 
electronic health records [28]. However, to our knowl-
edge, no approach has been found that can actively learn 
associations among genomic variations to target vari-
ables such as early and late-onset phenotypes. Therefore, 
the proposed approach can be of great benefit for further 
studies pursuing specific target phenotypes.

Future works
We identified associations between variations within 
genes. Since the underlying biological mechanisms for 
each association have not yet been investigated, it is 
not easy to present the outcomes as meaningful results. 
For example, suppose we found an association between 
a particular variant A and B. To reasonably interpret 
the results, we should also be able to provide actual evi-
dence to support a functional association between them. 
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It could be a linkage related to protein structure or other 
regulatory implications it may have, such as transcrip-
tion factor (TF) and microRNA (miRNA) binding sites. 
Therefore, to evaluate and annotate learned associations 
in terms of clinical and biological significance, a more 
systematic framework is needed to evaluate these impli-
cations by integrating heterogeneous data sources such 
as biological networks and sequences.

Conclusion
This work proposes a network representation learning 
(NRL) approach and evaluates its utility in the identifica-
tion of intragenic functional modules of genomic varia-
tion within a gene to facilitate understanding of the link 
between genomic variation and cancer phenotype. This 
approach was applied to the MVP prostate cancer cohort, 
which included 33,159 prostate cancer patients, 3,181 
early-onset, and 29,978 late-onset. The NRL approach 
was evaluated in terms of reproducibility. The GMF-
NMF approach showed 2.49 times higher reproduction 
rate than CTRL-GLA using a passive algorithm, while 
24.09% compared to CTRL-INV, indicating that there is 
still substantial overfitting to improve.

To our knowledge, this is the first attempt to use the 
NRL approach to identify associations between genomic 
variations within genes. This study made it clear that the 
NRL approach can improve model performance in terms 
of reproducibility. Moreover, it opens up ways to study 
associations among variants to facilitate the understand-
ing of the underlying biological mechanisms of how vari-
ants affect cancer phenotypes, which could lead to more 
advanced therapeutic targets for anticancer therapies.
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