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    Abstract 

 Despite the development of numerous novel antiepileptic drugs (AEDs) in 
recent years, several unmet clinical needs remain, including resistance to 
AEDs in about 30 % of patients with epilepsy, adverse effects of AEDs 
that can reduce quality of life, and the lack of treatments that can prevent 
development of epilepsy in patients at risk. Animal models of seizures and 
epilepsy have been instrumental in the discovery and preclinical develop-
ment of novel AEDs, but obviously the previously used models have failed 
to identify drugs that address unmet medical needs. Thus, we urgently 
need fresh ideas for improving preclinical AED development. In this 
review, a number of promising models will be described, including the use 
of simple vertebrates such as zebrafi sh ( Danio rerio ), large animal models 
such as the dog and newly characterized rodent models of pharmacoresis-
tant epilepsy. While these strategies, like any animal model approach also 
have their limitations, they offer hope that new more effective AEDs will 
be identifi ed in the coming years.  
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23.1         Introduction 

 Rodent models of seizures and epilepsy have 
played a fundamental role in advancing our 
understanding of basic mechanisms underlying 
ictogenesis and epileptogenesis. They have also 
been instrumental in the discovery and preclini-
cal development of novel antiepileptic drugs 
(AEDs) [ 12 ]. Indeed, animal models with a simi-
larly high predictive value do not exist for other 
neurological disorders, such as bipolar disease or 
migraine [ 62 ]. Despite the availability of predic-
tive rodent models, at least 30 % of epilepsy 
patients are not controlled by currently available 
AEDs. One reason is that, with few exceptions, 
most AED candidates were identifi ed in simple 
evoked seizure models in otherwise healthy 
rodents such as the maximal electroshock seizure 
(MES) or acute pentylenetetrazole (PTZ; metra-
zol) tests [ 48 ]. In these traditional models, in use 
since the 1940s, successful AED treatments sup-
press acute seizure events, but effects on drug- 
resistant seizure events or chronic spontaneous 
seizures are not routinely evaluated. Thus, we 
urgently need fresh ideas for improving preclini-
cal AED development. Here, a number of prom-
ising models will be described, including the use 
of simple vertebrates such as zebrafi sh ( Danio 
rerio ), large animal models such as the dog and 
newly characterized rodent models of pharmaco-
resistant epilepsy. We will not discuss  in vitro  
brain slice models or neurons derived from 
patients using induced pluripotent stem cell tech-
nology, because the network complexity of the 
brain and its alterations by seizure activity are 
diffi cult to recapitulate in the dish.  

23.2     Zebrafi sh-Based Approaches 
to Epilepsy and Drug 
Discovery 

 Traditionally used as a model organism to study 
vertebrate development and embryogenesis, 
zebrafi sh only recently emerged as an important 
model for epilepsy research [ 5 ,  17 ,  27 ,  29 ,  53 ,  65 , 
 70 ]. The rapid ex vivo development, genetic trac-

tability and transparency of larval zebrafi sh make 
them ideally suited to these types of studies 
(Fig.  23.1 ). Because zebrafi sh are vertebrates with 
a fairly complex nervous system [ 2 ,  21 ,  61 ] 
recording electroencephalographic activity is also 
possible [ 7 ], and with exposure to standard con-
vulsant manipulations (e.g., PTZ, pilocarpine, 
4-aminopyridine, heat) abnormal electrical dis-
charge with brief high-frequency small amplitude 
(interictal-like) and longer duration, complex 
multi-spike large amplitude (ictal- like) events can 
be readily observed. Sophisticated imaging 
approaches, taking advantage of the transparency 
of larval zebrafi sh and genetic modifi cation to 
express calcium or bioluminescence indicators, 
provide additional evidence that central nervous 
system (CNS)-generated seizure-like activity is 
robust in response to PTZ. This is an important 
advantage of zebrafi sh as a model organism for 
epilepsy research as CNS-generated abnormal 
electrical events are often considered a hallmark 
feature of this disease. In the original description 
of the acute PTZ seizure model in wild-type 
zebrafi sh at 6 or 7 days post- fertilization (dpf), 
Baraban et al. [ 5 ] provided a framework for char-
acterizing epilepsy in zebrafi sh: (i) evidence for 
seizure-induced gene ( c-Fos ) expression, (ii) a 
scoring system for seizure-like behaviours, (iii) 
electrophysiological examples of abnormal elec-
trographic burst discharge and (iv) sensitivity to 
common AEDs (valproate, ethosuximide, carba-
mazepine, phenytoin, phenobarbital and diaze-
pam). As expected from similar PTZ testing in 
rodents [ 71 ], valproate and diazepam were the 
most effective at inhibiting electrographic seizure 
events with approximate ED 50 s of 1 mM and 
5 μM, respectively. Using this same model, 
Berghmans et al. [ 11 ] extended this dataset to 
include 14 standard AEDs. These follow-up 
experiments used an assay where wild-type larvae 
were “incubated” in a test compound for 24 h 
prior to acute PTZ administration and monitoring 
of seizure-like behaviour exclusively in a 
locomotion- based tracking assay. These studies 
confi rmed the results of Baraban et al. [ 5 ] but also 
highlight the limitations of a behaviour-only 
assay as two drugs that failed to alter electro-
graphic burst discharge amplitude (ethosuximide 
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and carbamazepine) were identifi ed as 
 “anticonvulsant” as measured by a reduction in 
swim activity. A likely explanation is that over-
night exposure to these AEDs was either toxic or 
sedative to developing zebrafi sh, as both possi-
bilities would appear as suppressed locomotion in 
motion-based tracking assay. More recently, 
Afrikanova et al. [ 1 ] revisited this overnight expo-
sure-PTZ challenge assay and evaluated a similar 
list of 13 AEDs using a combination of locomo-
tion tracking followed by electrophysiology on 
agar-immobilized larvae. These latter studies 
aligned most closely with the original PTZ fi nd-
ings, identifying valproate and diazepam, while 
also showing that ethosuximide altered burst fre-
quency but not amplitude. Maximum-tolerated 
drug concentrations were studied in both papers 
highlighting an additional advantage of the zebraf-
ish platform for simultaneous in vivo evaluation 
of drug toxicities e.g., one of the primary reasons 
that most compounds identifi ed in preclinical tri-
als ultimately fail to reach the clinic. In a recent 
paper by Baxendale et al. [ 10 ] also using PTZ, a 
high-throughput screen of a ~2,000 bioactive 

small molecule library was reported. These studies 
used a fi rst- pass assay based on increased  c-Fos  
mRNA expression (as measured by in whole-
mount situ hybridization) following PTZ exposure 
at two dpf and a secondary locomotion-based assay 
at four dpf for additional concentration-response 
studies. Unfortunately, it is unclear whether the 
46 compounds identifi ed using this approach are 
antiepileptic as previous studies indicate the earli-
est possible developmental stage where confi rmed 
electrographic seizures could be observed in 
zebrafi sh larvae is three dpf [ 6 ,  27 ]. Before this 
age, larvae are still in chorion and do not swim 
freely. Furthermore, these non-physiological 
assays should be interpreted with caution as the 
Baxendale et al. [ 10 ] study identifi ed several can-
didate compounds with known neurotoxicity pro-
fi les e.g., lindane, rotenonic acid, deguelin, endrin 
and propanil.

   Although seizures can be easily induced, drug 
discovery using acute seizure models, even in 
zebrafi sh, are prone to the same limitations as in 
rodents. Namely, these approaches use healthy 
animals, the seizure-events are acute and evoked 

Adult heterozygote mutants

Large numbers of offspring (+/+, +/-, -/-)

Transfer to individual wells Record seizure behavior

Chemical library

Phenotype-based screen e.g., inhibition of seizure behavior

  Fig. 23.1    Schematic 
illustration of the zebrafi sh 
assay       
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using potentially non-physiological stimuli such 
as a stimulation electrode or convulsants, and 
most importantly they do not model spontane-
ously occurring seizure events. Zebrafi sh 
diverged from humans roughly 450 million years 
ago but recent genome sequencing revealed that 
the similarity between the zebrafi sh and human 
genome is ~70 % [ 28 ]. This fact, coupled with 
the fecundity of adult zebrafi sh (producing 100–
200 offspring per week from a single adult breed-
ing pair), the permeability of larvae to drugs 
placed in the bathing media, and ability to thrive 
in volumes as small as 100 μl make zebrafi sh an 
attractive model for a drug discovery program 
targeted to genetic forms of epilepsy. In the 
Baraban laboratory, we have focused on zebraf-
ish designed to mimic monogenic epilepsy disor-
ders of childhood as they offer the advantages of 
spontaneous seizure activity and a genetic basis 
mimicking the human condition. In this approach, 
one can model specifi c forms of pediatric epi-
lepsy – Type I Lissencephaly ( Lis1 ), Angelman 
syndrome ( Ube3A ), Tuberous Sclerosis Complex 
( Tsc ) or Dravet syndrome for example ( Scn1a ) – 
then design drug screening programs targeted to 
that patient population. In some cases these are 
stable mutations carried in the zebrafi sh germ-
line, where other models involve acute antisense 
knockdown of gene expression in immature 
zebrafi sh. Thus, a form of “personalized medi-
cine” aimed at identifying new therapeutic 
options for relatively rare, but catastrophic, forms 
of epilepsy. Our recent studies are based on a 
two-stage screening process. First, zebrafi sh 
mutants are placed in individual wells and behav-
iour (locomotion) is tracked using a 96-well for-
mat. Once a baseline level of spontaneous seizure 
activity is established a test compound is added, 
and then a second locomotion assay is performed 
to evaluate the effect on seizure behaviour (with 
distance travelled and mean velocity of swim 
movement used as surrogate markers) [ 5 ,  16 ]. As 
freely behaving larvae can simultaneously be 
observed for heart rate, edoema or touch- 
sensitivity, in vivo toxicity is also determined 
with this strategy. Using a 96-well format it is 
relatively easy to power this research for statisti-
cal analysis and multiple drug concentrations can 

be assessed in a given plate. The same fi sh can 
subsequently be used for electrophysiological 
analysis, which allows a determination of “false 
positives” in the locomotion assay that are lethal, 
sedative or paralyzing. With even a modest 
zebrafi sh facility, this approach can easily be 
used to screen 20–50 drugs per week. The disad-
vantage of this strategy is that it is not well-suited 
to acquired forms of epilepsy that develop more 
slowly over time or in the adult nervous system, 
or compounds that are not easily dissolved in 
embryo media. It is also diffi cult to directly trans-
late concentrations that are effective via bath 
application in larval zebrafi sh to those that may 
be useful clinically in humans.  

23.3     Rodent Models of 
Pharmacoresistant Seizures 

 The concept of developing rodent seizure or epi-
lepsy models that do  not  respond to clinically 
approved AEDs and then using such models for 
the discovery of novel more effective AEDs is not 
new but, to our knowledge, was fi rst proposed by 
Löscher in 1986 [ 38 ]. Since then, several models 
of pharmacoresistant seizures have been devel-
oped, including the phenytoin-resistant kindled 
rat [ 40 ], the lamotrigine-resistant kindled rat 
[ 68 ], and the phenobarbital-resistant epileptic rat 
[ 14 ]. In all these models, resistance to one AED 
extends to other AEDs (cf., [ 49 ]), thus fulfi lling 
the criterion of pharmacoresistant epilepsy [ 32 ]. 
By using two of these models, Löscher and col-
leagues described several factors that differenti-
ated AED-resistant from AED-responsive rats, 
including the extent of neurodegeneration in the 
hippocampus, genetic factors, AED target altera-
tions, alterations in drug effl ux transporters, and 
intrinsic severity of the epilepsy as a determinant 
of AED refractoriness [ 49 ]. Similar factors have 
been described for AED-resistant human epi-
lepsy, so that the rat models obviously refl ect 
clinically important mechanisms of refractori-
ness. The next logical step was to use such mod-
els for new treatment discovery. One example 
here is that inhibiting the drug effl ux transporter 
P-glycoprotein (Pgp), which is increased at 
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the blood–brain barrier of AED-resistant rats, 
counteracted resistance to phenobarbital in epileptic 
rats [ 15 ]. The increased Pgp functionality in epi-
leptic rats can be visualized in vivo by positron 
emission tomography [ 4 ]. By using Pgp imaging, 
Feldmann et al. [ 19 ] demonstrated that about 
40 % of AED-resistant patients exhibit increased 
brain functionality of Pgp and could potentially 
benefi t from Pgp inhibition. This example illustrates 
that chronic rodent models of pharmacoresistant 
seizures are helpful to discover new strategies for 
treatment of medically intractable epilepsy. 

 The disadvantage of the described chronic 
epilepsy models is that they are not suited for 
large-scale testing of novel compounds but rather 

for evaluation of selected treatment strategies as 
illustrated by the example of Pgp inhibition. 
Kindling models such as the phenytoin-resistant 
kindled rat [ 40 ] or the lamotrigine-resistant kin-
dled rat [ 68 ] have the advantage that seizures can 
be induced at will, so that chronic drug adminis-
tration is not needed, whereas models with spon-
taneous recurrent seizures (SRS) such as the 
phenobarbital-resistant epileptic rat [ 14 ] necessi-
tate continuous (24/7) EEG/video recording for 
assessing drug effi cacy. When testing drug effects 
on SRS in such rat models, the rapid elimination 
of most drugs, including AEDs, in rats (Table  23.1 ) 
necessitates the use of an adequate dosing regi-
men during prolonged drug administration to 

    Table 23.1    A comparison of elimination half-lives of antiepileptic drugs in humans, dogs and rats   

   Half-life (h) 

 AED  Human  Dog  Rat 

 Carbamazepine  25–50 a,b   1–2 a,b   1.2–3.5 a  
 Clobazam  16–50  ~1.5  1 
 Clonazepam  18–50  1–3  ?    
 Diazepam  24–72 a  (DMD = 40–130)  1–5 a  (DMD = 4)  1.4 a  (DMD = 1.1) 
 Ethosuximide  40–60  11–25  10–16 
 Felbamate  14–22  4–8  2–17 c  
 Gabapentin  5–7  3–4  2–3 
 Lacosamide  13  2–2.5  3 
 Lamotrigine  21–50  2–5  12 to >30 
 Levetiracetam  6–11  4–5  2–3 
 Oxcarbazepine  1–2.5 a  (MHD = 8–14)  ~4 a  (MHD = 3–4)  ? a  (MHD = 0.7–4) 
 Perampanel  70  5  2 
 Phenobarbital  70–100 b   25–90 b   9–20 b  
 Phenytoin  15–20 b,c   2–6 b,c   ~1–8 b,c  
 Potassium bromide  ~300  ~600  72–192 
 Pregabalin  6  6–7  2.5 
 Primidone  6–12 a  (PB = 70–100)  4–12 a,b  (PB = 25–90)  5 a  (PB = 9–20) 
 Tiagabin  5–8  1–2  1 
 Topiramate  20–30  3–4  2–5 
 Valproate  8–15 a   1–3 a   ~1–5 a,c  
 Vigabatrin  5–7 d   ? d   ~1 d  
 Zonisamide  60–70  ~15  8 

  Data are from previous reviews of Löscher [ 44 ,  46 ] and have been revised and updated for the present study. Note that 
rats and dogs eliminate most AEDs more rapidly than humans, which has to be considered when using such drugs for 
chronic studies in experimental animals 
  DMD  desmethyldiazepam,  MHD  monohydroxy derivative,  PB  phenobarbital, ? indicates that no published data were 
found 
  a Active metabolites;  b shortens on continuing exposure to the drug (because of enzyme induction);  c non-linear kinetics 
(half-life increases with dose);  d duration of action independent of half-life because of irreversible inhibition of GABA 
degradation  
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avoid false negative results [ 46 ]. The same is true 
when administering potential antiepileptogenic 
drugs in the latent period following epileptogenic 
brain insults in rats [ 46 ]. Mice developing SRS 
after intrahippocampal injection of kainate have 
been proposed as a model of pharmacoresistant 
seizures; these mice have the advantage that the 
frequency of SRS is so high that drug effi cacy can 
be determined after single dose administration 
[ 54 ,  66 ]. However, as yet this model has only 
rarely been used for investigating the antiepileptic 
effi cacy of novel compounds [ 54 ].

   Based on the logistical problems associated 
with drug testing in chronic models, models such 
as the zebrafi sh or acute rodent seizure models 
are indispensable when testing large numbers of 
investigational compounds before evaluating the 
most interesting compounds in chronic models. 
One of these acute seizure models, the 6-Hz 
model of partial seizures in mice, was initially 
proposed to provide a useful model of therapy- 
resistant limbic seizures [ 9 ], but more recent 
studies have not confi rmed this idea [ 49 ]. Rather, 
the 6-Hz model is a valuable part of a preclinical 
test battery to further differentiate compounds. 
Also, a more recent genetic mouse model of 
Dravet syndrome, in which clinical symptoms of 
this syndrome occur after Scn1a heterozygous 
knockout, may be an interesting possibility for 
testing drugs or drug combinations for treatment 
of as yet pharmacoresistant types of seizures [ 59 , 
 60 ]. Furthermore, a zebrafi sh Scn1a mutant, such 
as the one recently described by the Baraban lab-
oratory [ 8 ] would be an effi cient fi rst pass high- 
throughput approach to identify potential 
candidate compounds that can be further investi-
gated in chronic rodent models of pharmacoresis-
tant seizures.  

23.4     Naturally Occurring 
Epilepsy in Dogs 
as a Translational Model  

 The dog is an important large animal model in 
various fi elds of biomedical research and fi lls a 
crucial step in the translation of basic research to 
new treatment regimens. For instance, because of 

the relative large body size of dogs and many 
similarities in physiology and pharmacology 
between dogs and humans, scaling doses from 
dogs to humans is much easier than using rodents 
in selecting doses for clinical trials in humans. To 
our knowledge, Löscher et al. [ 37 ] were the fi rst 
to propose naturally occurring canine epilepsy as 
a translational model of human epilepsy. The 
prevalence and phenomenology of epilepsy in 
dogs are very similar to human epilepsy. Indeed, 
epilepsy is the most common chronic neurologi-
cal disease in dogs, affecting about 0.6–1 % of 
the dog population [ 64 ,  69 ]. Furthermore, causes 
of canine epilepsy are similar to those in humans 
(Fig.  23.2 ) except that cerebrovascular disease 
does not play any signifi cant role, because it is 
rare in dogs [ 69 ]. About 50 % of dogs with partial 
and generalized convulsive seizures are not con-
trolled by treatment with AEDs, so that epileptic 
dogs have been proposed as a valuable model of 
pharmacoresistant epilepsy that can be used to 
unravel mechanisms of resistance and evaluate 
new strategies for treatment [ 44 ,  64 ]. However, 
clinical trials on new AEDs in epileptic dogs are 
as laborious and time-consuming as clinal trials 
in human patients, necessitating randomized trial 
designs in which the new drug is compared with 
either placebo or a standard comparator [ 57 ,  58 ]. 
Recently, different treatments, including AEDs, 
vagal stimulation, and ketogenic diet were com-
pared with placebo in epileptic dogs, and an 
unexpectedly high placebo rate was found, which 
was similar to that known from controlled clini-
cal trials in humans with epilepsy [ 57 ,  58 ]. In 
contrast to humans, the placebo effect has been 
largely disregarded in veterinary medicine. In 
humans, a placebo response seems to require a 
recognition by the patient of the intent of treat-
ment efforts. Because it is generally presumed 
that animals lack certain cognitive capacities, e.g. 
the ability to comprehend the intent of the veteri-
narian’s manipulations, the power of suggestion, 
and expectations of recovery and healing, the 
existence of a placebo effect in animals seems 
counterintuitive [ 55 ]. However, in veterinary 
studies, the placebo response may be a result of 
expectations of the pet owner regarding treatment 
in studies as those conducted by Munana et al. 
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[ 57 ,  58 ] in epileptic dogs, where the owners are 
responsible for administration of treatment and 
outcome measures (i.e., seizure frequency) are 
derived solely from owner observations. Other 
factors that may be included in placebo responses 
in veterinary studies include regression to the 
mean, investigator bias, client bias, the potential 
for a higher level of care during the study, and 
improved adherence to treatment with active 
medication that is being administered in addition 
to the placebo during the study (for details see 
[ 57 ]). Furthermore, the placebo response can be 
because of effects of placebo administration on the 
animal, which is well documented in laboratory 
animals and may involve conditioned responses 
among others [ 55 ]. As a consequence, studies on 
new treatments in laboratory animals (or pets) 
should always include a “placebo” group receiv-

ing all manipulations (e.g., handling, injections, 
electrode implantation, seizure recording etc.) 
that are used for the new treatment.

   In addition to chronic epilepsy, naturally 
occurring canine status epilepticus (SE) has been 
proposed as a translational platform for evaluat-
ing investigational compounds for eventual use in 
human trials [ 34 ] and a controlled study on i.v. 
levetiracetam for treatment of SE in dogs has 
been published recently [ 23 ]. 

 One important caveat that has to be consid-
ered when using dogs for long-term studies on 
AEDs is that dogs, similar to rodents, eliminate 
many drugs, including most AEDs, much more 
rapidly than humans (Table  23.1 ). Thus, when 
using AEDs such as phenytoin, carbamazepine or 
valproate with too low half-lifes for maintenance 
treatment in epileptic dogs, no suffi cient drug 

  Fig. 23.2    A comparison 
of the presumed causes 
of recurrent epileptic 
seizures in humans and 
dogs. The graph on humans 
illustrate the proportion 
of incidence cases of 
epilepsy by etiology in 
Rochester, Minnesota, 
U.S.A., 1935–1984 [ 24 ]; 
a similar graph was 
initially shown by 
Lowenstein [ 35 ]. The graph 
on dogs illustrates data from 
a recent epidemiologic 
study on canine 
epilepsy [ 69 ]       
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levels and, hence, no antiepileptic effects are 
obtained in this species [ 20 ,  36 ,  37 ]. The few 
AEDs with suffi ciently long half-lives for main-
tenance treatment include phenobarbital, primi-
done (because of its metabolism to phenobarbital), 
and potassium bromide, which is the reason why 
until recently only these old drugs were approved 
for treatment of canine epilepsy in the US or 
Europe. This situation has changed by the recent 
approval of imepitoin for treatment of dogs with 
newly diagnosed epilepsy (see below). 
Furthermore, several newer AEDs, including 
levetiracetam, felbamate, zonisamide, topira-
mate, gabapentin, and pregabalin are used as add-
 on treatment in dogs with pharmacoresistant 
seizures [ 64 ]. It has been tried to overcome the 
problem of too rapid elimination of most AEDs 
by dogs by using sustained-release formulations; 
however, sustained-release preparations devel-
oped for use in humans are not suited for dogs 
because of the much higher gastrointestinal pas-
sage rate in dogs (~24 h) vs. humans (~65–100 h) 
[ 36 ,  44 ]. Thus, AED formulations that exhibit 
retarded release of the drug in the gastrointestinal 
tract have to be adapted to the dog to overcome 
problems associated with too rapid drug elimina-
tion in this species. For phenytoin, a slow-release 
preparation has been developed for dogs, by 
which therapeutic plasma levels could be main-
tained despite the rapid elimination of this drug 
in dogs [ 18 ], but, to our knowledge, no clinical 
experience with this preparation has been pub-
lished. Vigabatrin has been evaluated for control 
of epilepsy in dogs, because its mechanism of 
action (irreversible inhibition of GABA degrada-
tion) allows an effective treatment which should 
be independent of species differences in drug 
elimination. Vigabatrin proved to be effective in 
epileptic dogs with phenobarbital-resistant sei-
zures, but at least in part vigabatrin had to be 
withdrawn because of development of severe 
adverse effects, such as haemolytic anaemia [ 67 ]. 

 Löscher’s group has used dogs as a transla-
tional model over the recent 25 years in the 
development of a new category of AEDs, i.e., 
drugs that act as partial agonists at the benzodi-
azepine (BZD) site of the GABA A  receptor. 
Such drugs have the wide spectrum of antiepi-

leptic activity against diverse types of seizures 
as the traditional full BZD agonists such as 
diazepam, clonazepam or clobazam, but are 
much better tolerated and lack the tolerance and 
abuse liability of the full agonists [ 22 ,  41 ]. In 
our studies, we either used a canine seizure 
model, in which seizures are induced by i.v. 
infusion of pentylenetetrazole, or epileptic dogs. 
The fi rst partial BZD agonist that was character-
ized in dogs (and compared with full BZD ago-
nists) was the β-carboline abecarnil, providing 
proof-of-concept that partial BZD agonists are 
advantageous for treatment of seizures com-
pared to traditional, full-agonist BZDs [ 39 ,  41 ]. 
More recently, the low-affi nity partial BZD ago-
nist imepitoin, an imidazolin derivative, was 
evaluated in the dog seizure model and epileptic 
dogs and reported to provide effi cacious antiepi-
leptic activity without the known disadvantages 
of full BZD agonists [ 45 ,  51 ]. Based on several 
randomized controlled clinical trials in epileptic 
dogs, imepitoin was recently approved in 
Europe for treatment of canine epilepsy [ 13 , 
 51 ]. That imepitoin is an effective and safe AED 
in epileptic dogs indicates that low-affi nity par-
tial BZD agonists may offer a new mechanistic 
category of useful AEDs.  

23.5     Network Approaches 
for Development of Novel 
Treatments 

 Several of the models described in this review 
may be particularly interesting for evaluating a 
novel strategy of AED development, the network 
approach [ 3 ,  26 ,  50 ]. One of the dominant strate-
gies in drug discovery is designing maximally 
selective ligands to act on individual drug targets 
[ 26 ]. However, many effective drugs act via mod-
ulation of multiple targets rather than single pro-
teins. Furthermore, most epilepsies develop not 
from alterations of a single target but rather from 
complex alterations resulting in an epileptic net-
work in the brain. The only existing cure of epi-
lepsy is resective surgery in which the regional 
epileptic network or part of this network is 
removed. Thus, treatments focusing exclusively 
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on a single protein or individual biochemical 
pathway may be less effective than treatments 
targeting different proteins or pathways involved 
in the network. The latter approach has been 
recently termed “network pharmacology” and 
relates to principles of systems biology [ 3 ,  26 ]. 
The principle of network pharmacology is to 
develop combinations of existing drugs, which 
regulate activity via different targets within a bio-
logical network, for diseases that do not suffi -
ciently respond to single drug treatment or for 
which no treatment exists. Integrating network 
biology and polypharmacology holds the prom-
ise of expanding the current opportunity space 
for druggable targets [ 26 ]. However, the rational 
design of polypharmacology faces considerable 
challenges in the need for new methods to vali-
date target combinations and optimize multiple 
structure-activity relationships while maintaining 
drug-like properties. The advances in zebrafi sh 
chemical screening technologies may allow 
rapid identifi cation of the most interesting drug 
combinations resulting from network approaches, 
followed by evaluating these combinations in 
chronic models of epilepsy. 

 Some examples for interesting network 
approaches include combinations of glutamate 
receptor antagonists that target different gluta-
mate receptor subtypes. We reported that 
extremely low doses of the NMDA (N-methyl- D - 
aspartate ) receptor antagonist MK-801 (dizocil-
pine) markedly potentiated the anticonvulsant 
effect the AMPA (alpha-amino-3-hydroxy-5- 
methyl-4-isoxazolepropionic acid) receptor 
antagonist NBQX (2,3-dihydroxy-6-nitro-7- 
sulfamoylbenzo(F)quinoxaline) without increas-
ing its adverse effects [ 42 ]. Similar over- additive 
effects were seen when NBQX was combined 
with the competitive NMDA antagonist 
CGP39551 (the carboxyethylester of DL-(E)-2-
amino- 4-methyl-5-phosphono-3-pentenoic acid) 
or the low-affi nity, rapidly channel blocking 
NMDA receptor antagonist memantine [ 42 ,  43 ]. 
We are currently evaluating combinations of clin-
ically approved NMDA antagonists (ketamine, 
memantine) and the novel AMPA antagonist per-
ampanel in models of diffi cult-to-treat seizures. 
Another interesting example is the combination 

of phenobarbital with the diuretic bumetanide, 
which is currently evaluated clinically following 
promising preclinical data [ 31 ,  52 ]. The biologically 
plausible idea behind this combination is that a 
shift from inhibitory to excitatory GABA may be 
involved in diffi cult-to-treat neonatal and adult 
seizures [ 30 ,  56 ]. GABA-mediated excitation has 
been observed when expression of the chloride 
importer NKCC1 is higher than expression of the 
chloride exporter KCC2; e.g., early during devel-
opment and in the hippocampus of adults with 
temporal lobe epilepsy [ 30 ,  56 ]. Bumetanide 
inhibits the neuronal chloride cotransporter 
NKCC1, thereby reverts the GABA shift and 
enables GABAmimetic drugs such as phenobar-
bital to potentiate inhibitory GABAergic trans-
mission [ 52 ]. This recent work builds on an 
earlier demonstration from the Schwartzkroin 
laboratory that furosemide, another chloride 
cotransporter inhibitor, exhibits powerful anti-
convulsant activity across a range of  in vitro  and 
in vivo seizure models [ 25 ]. Further examples for 
interesting network approaches include com-
bined targeting of different infl ammatory path-
ways, which are involved in seizure generation 
[ 33 ]. These examples strongly indicate that com-
binatorial treatment strategies offer new options 
for epilepsy therapy.  

23.6     Conclusions 

 Models for the discovery of drugs with antiepi-
leptic activity have traditionally relied on a rela-
tively small number of acute seizure models 
employed in otherwise healthy rodents. While 
useful in the discovery of most drugs currently 
available in the clinic, more resistant types of epi-
lepsies including temporal lobe epilepsy patients 
who are unresponsive to available AEDs and 
catastrophic, often genetically-based, types of 
epilepsies seen in children necessitate alternative 
drug discovery strategies. Zebrafi sh, canine and 
novel rodent approaches are described here and 
offer several unique advantages over these tradi-
tional models. While these strategies, like any 
animal model approach also have their limita-
tions, they offer hope that new classes of 
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AEDs will be identifi ed in the coming years. 
Furthermore, animal models in which epilepsy 
develops after brain insults or gene mutations are 
essential in the search for novel antiepileptogenic 
treatments that prevent or modify the develop-
ment of epilepsy in patients at risk [ 47 ,  63 ]. 
Previously, this fi eld was dominated by studies in 
SE models in rats, although SE is only rarely a 
cause of symptomatic epilepsy [ 47 ]. Thus, mod-
els of more common causes of acquired epilepsy, 
such as traumatic brain injury, and models in 
which epilepsy develops after gene mutations 
should be used more extensively in research on 
antiepileptogenesis. We have started to use the 
zebrafi sh and canine approaches to identify 
molecular pathways that may be involved in the 
epileptogenic process and may offer new targets 
for antiepileptogenic treatments.     
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