UC Irvine
ICS Technical Reports

Title
Arcturus user's guide

Permalink
https://escholarship.org/uc/item/9bq9i74t]

Authors

Willson, Stephen Hunter
Snider, Craig

Publication Date
1984-11-28

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9bq9j74t
https://escholarship.org
http://www.cdlib.org/

ARCTURUS USER’S GUIDE
Stephen Hunter Willson

Technical Report #241

Department of Information and Computer Science
University of California
Irvine, CA 92717

November 28, 1984

e ves

et

Z

699

¢ 3
no, A4/

Arcturus User’s Guide

Stephen Hutiter Willson
Revised by Craig Snider :

Programming Environment Project
Department of Information and Computer Science
University of California, Irvine

ABSTRACT

This document describes the Arcturus programming environment, a first realiza-
tion of an advanced programming environment based on the programming
language Ada. It is the first environment that supplies interactive, "statement
(or declaration) at a time” execution of Ada program fragments.

Version 3.0-A

Acknowledgments: The Arcturus programming environment was designed
and constructed by the Programming Environment Project at U.C. Irvine, Tho-
mas A. Standish, Principal Investigator. Ray Klefstad, Craig Snider, Frank
Tadman, Steve Whitehill, and Stephen Willson were the principal programmers
on the project. Thanks to Frank Tadman and Professor Thomas A. Standish for
reviewing this document. Thanks especially to Judy Bamberger and Frank Belz
at TRW and Anne Brindle at Aerospace Corp. for their patient experimentation
with Arcturus. Special thanks also to Richard N. Taylor, from U.C. Irvine,
Anne Brindle and Larry Jansen, from Aerospace Corp., and Dave Martin from

'U.C. Los Angeles, for their efforts in adding tasking to Arcturus.

This work was sponsored in part by the Defense Advanced Research Projects Agency of
the United States Department of Defense under contract MDA-903-82-C-0039 to the Ir-
vine Programming Environment Project. The views and conclusions contained herein are
those of the author and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the United States Government.

1. Preface

Arcturus runs on Vax-family mini-computers under the Berkeley release
(4.1, 4.1a, or 4.2) of the UNIX} operating system. The document, "Introduction
to Arcturus”, by Stephen Willson gives an executive overview of Arcturus, and

should be read before wading through this document. "Introduction to
Arcturus” is supplied on the magtape that contains the Arcturus files.

2. Getting started with Arcturus

The following typescript demonstrates a simple session with Arcturus.

% ada

Arcturus release 3.0-A November 1, 1984

> 445
9

Typing an expression causes it to be computed and the result printed.

> 22*64
1408

> -5%442
-18

Next, we type in a simple function that doubles the value.of its argument.
Notice that if we haven’t finished entering the function, the system will prompt

for more input with a ’+°.

+ UNIX is a trademark of Bell Laboratories.

> function double(n : integer) return integer
+ is begin :
+ return n*2;

+ end;

Using a procedure called ’pp’, for ’pretty print’, we can look at functions or

procedures we have typed in or read in from a file.

> pp(double’sym); -- The ’sym is required.
function double(n: in integer) return integer is
begin

return n * 2;
end double;

Since functions can be part of expressions, we can just type in a call to

’double’ and look at the result.

> double(5)

10

> double(400/2+3)
406

Now we’ll enter a little more complicated function to compute the factorial

of an integer.

> function fact(n : integer) return integer
+ is begin -

+ if n < 2 then return I,

+ else return n * fact (n - 1);

4+ end if;

+ end;

> pp(fact’sym);
function fact(n: in integer) return integer is
begin :
if n < 2 then
return 1;
else
return n * fact(n - 1);
end if;
end fact;

Pretty printing it makes it more readable.

> fact(5)
120
> fact(6)
720

We test it by getting 5! and 6!.

We can redefine ’fact’ to ’break’ when it gets to the terminating condition

of the recursion. Once fact’ has ’broken’, we can look at variables and examine
?

a ’trace’ of fact’s execution.

-5-
> function fact(n : integer) return integer
+ is begin
+ ifn < 2 then]

+ break; -- this is the new line
+ return I;

+ else return n * fact(n - 1);

+ end if;

+ end;

Warning: fact redefined in package 'usr’

> fact(3)

Break:in: standard.usr.fact

The message indicates that ’break’ was called from within fact’. One of the
things we can do at a break is to get a backtrace of the last few statements that
were executed by Arcturus. In the next two examples, we look 3 deep and 6
deep; respectively. The ampersand character (’&’) character is a place holder for
where the preceding entry in the backtrace belongs. The colon (*:’) prompt indi-

cates that we are at a break.

: bktr(3);

29. bktr(3);

28. break;

27. ifn < 2 then & ... else ... end if;

: bktr(6);
29. bktr(6);
28. break; .
27. ifn < 2 then & ... else ... end if;
-- In #27, °&’ holds the place of ’break;’
26. function fact(n: in integer) return integer is
begin
&
-- here, ’&’ holds the place of the if statement in #27
end fact;
25. fact(n - 1)
24. n*& :
-- ’&’ holds the place of ’fact(n - 1)’

:n -- we can examine the value of 'n’

1 --whichis’l’

: *D -- Typing ’control-D’ continues execution from the
-- ’break’

6 -- and the result of fact(3) = 6

Arcturus allows us to enter Ada type definitions and to declare variables

too. Below, we declare a type definition for an array of ten integers, then

create an instance of that type with the variable ’squares’.

> type int_array is array(1..10) of integer,;

> squares : int_array;

Ada statements can also be typed in. Below, we type in a for loop which

fills ’squares’ with the squares of the integers from one to ten.

> for i in 1..10 loop squares(i) := i*i; end loop;

We print out the value of the fifth element of the array.

N

> squares(5)
25

With another loop, we print out all the entries in the array. The procedure

‘new_line;’ prints a carriage return/line feed.

> for i in squares’range loop put(squares(i)); new_line; end loop;
1 _
4

9

16

25

36

49

64

81

100

The procedure ’dir;’ will list out all the definitions we have entered into the

environment.

> dir;
Visible:
Body:
type int_array;

squares: int_array;

function double;
function fact;

> “D -- Typing a control-D leaves the environment.

%

As you can see, Arcturus supports the Ada programming language in an
interactive manner similar to that provided by many Lisp environments for that

language. The most notable difference between Arcturus and a Lisp

\
\
i
i
\
H

-8-
environment is that Arcturus is designed to support a statically scoped, strongly .

typed, modular language, whereas Lisp environments support a primarily

dynamic language with a relatively flat name space.

3. Details about the Arcturus Ada Interpreter

Arcturus is a fairly complicated system (a reflection of the complexities of
the underlying problems of working with large systems with a strongly typed
language). The remainder of this document describes the facilities available in
the Ada interpreter, as well as support routines and backstage data manipula-

tions by the interpreter that might affect your work.

3.1. Introduction to some Arcturus Terminology

This section introduces some terminology that will be used in the remaining

sections of this document.

Top level: The top level of Arcturus is indicated when the system prints a
’>’ as the prompt. This is the level of the system you enter when it is first

started. If you ever get confused, you can type a control-C to return to the top

level of the system.

Break Package: The break package is indicated when the system prints a -’

as the prompt. This will happen if you try to do something illegal or if you call

-9-

the procedure ’break;’. ~ When you are in the break package, you can type any

. legal Ada statement or an expression to be evaluated. To leave the break pack-

age and continue execution of your program, type control-D. To get back to the
top level, type control-C. It is also possible to enter the break package by typ- -
ing control-\ (that’s control-backslash). If you think your program is in an
infinite loop, you can type control-\ to enter the break package, examine your
program’s current execution environment, and then leave the break package
with either control-C to return to the top level or control-D to continue execu-
tion of your program. By the way, there is special code in- Arcturus to insure
that control-C traps won’t desﬁroy your execution environment at a bad time.

These haven’t been installed for control-\

Editing characters: When you are typing to Arcturus, you can edit your
input by using certain keys on the terminal. The ’delete’ key will erase the last
character you entered. Typing control-U will erase an entire line. Typing

control-W will delete the last word.

Temporary escape: If you want to leave the environment for a short time
and then return, type control-Z. This will type "stopped” and give you the Unix
prompt-. When you want to continue the system, type "%ada” (without the

quotes) followed by a couple of carriage returns. You should see an Arcturus

prompt (either ’>’ or ?’).

Error messages: Most of the error messages you will see will be prefixed by

"Error: ". This indicates that you have done something wrong. If, after care-

-10-
fully checking your program, you believe the error message to be incorrect, you
should use the "bug;” procedure (described below in the section on predefined
subprograms) to report the problem. Error messages prefixed by "INTERNAL
ERROR: " indicate that something is wrong inside Arcturus. You will be asked
to describe what you did to cause the error and then you will be put in the
break package. (Likewise for "Error: " type error messages: you will end up in
the break package.) Error messages prefixed by "FATAL ERROR: " indicate
that Arcturus may have damaged itself beyond recovery. Arcturus tries to
save all the subprograms and variables and type definitions you have entered.

Re-entering Arcturus should get you running again.

The ’sym attribute: The Ada language definition does not allow pro-
cedures, functions, or packages to be passed as arguments. In general, it is
difficult to quote a bit of Ada syntax according to the language rules. For-

tunately, Ada has an escape clause which allows ar implementation to define

- special attributes as necessary. In Arcturus, we use the implementation-defined

attribute ’sym to return the internal structure associated with an object, type
definition, procedure or function name, or package name for the purposes of
talking about it in the Arcturus system. The attribute ’sym returns an object of
the private type known as symbol. Symbol is predefined in package standard.
You can declare objects of type symbol, and do the usual assignment and com-
pai‘ison operators on them since symbol is a private type. The only way to

obtain an object reference suitable for use as a symbol is via the attribute ’sym.

In short, whenever you call an Arcturus service that requires the name of an

-11-

object defined in Arcturus, you must quote the name with ’sym. Examples:

pp(fact’sym);
dir(standard’sym);

3.2. Reading files into Arcturus: procedures include, include_commands, and

load

If you created a file "fred” with a text editor and wanted to read it into

Arcturus, you would type:

> include("fred");

and this would read the text of fred into Arcturus, and interprets it as an Ada
compilation unit, which may include only subprograms and packages right now.

If include is used to read in the code:

use red; procedure green is ... begin ... end;

the use clause applies to the procedure green.

Typing:
> include_commands(“fred”);

reads the text of fred in as a sequence of commands as if they were typed at the
top level of Arcturus. fred may contain loose expressions, declarations, and
statements, in addition to those things allowed by include. If include_commands

is used to read in the code:

-12-

use red; procedure green is ... begin ... end;

the use clause applies to the package usr, as if it was typed at the top level.

Typing:
> load{"fred");

reads in compiled code in compilation units.

If any syntax errors were detected while reading fred then you would find
yourself put into a text editor with the cursor flashing near the point of the
error with a suitable error message displayed. (For more details on text editors

in Arcturus see the section on the edit procedure and the note near the end of

this document.)

If you specify a filename that is "simple” (that is, it is a Unix pathname
with only onme component, such as "fred”, but not "./fred” or "user/fred” or
" /logins/400/johnny/fred”) and the file isn’t found in your current directory,

then Arcturus will look in a site-specific library directory for the file.

3.3. Ada Language Features Implemented in this Release

This section follows the general outline of the Ada LRM, and gives an indi-
cation of the currently implemented set of features of the Ada language available

in this release of Arcturus.

2.0 Lexical Elements Complete

3.2.1 Object Declarations

-13-

The reserved word constant is ignored.
3.2.2 Number Declarations Not implemented.
3.3.1 The following type definitions are supported:
enumeration types
record types
access types
derived types
array types
3.3.2 The following subtype definitions are supported:
range constraint
index constraint
3.4 Derived types :
Types can be derived from existing types, but no automatic
inheritance of the operations available for the type occurs.
One can, however, use explict type conversions to make these
functions available.
3.5 Scalar types _
T'FIRST and T’LAST are available.
3.5.1 Enumeration types
Character enumeration literals are not allowed.
Overloading of enumeration literals is not allowed.
3.5.2 Character types are not supported, except for the predefined
character type character.
3.5.3 The type boolean is supported.
3.5.4 Integer types are not supported beyond the predefined type
integer which is 32 bits wide on the VAX{.
3.5.5 Attributes available for discrete types:
‘pos
'val
‘succ
pred
’image
8.5.6 Real types are not supported.
3.5.7 Floating point types are not supported beyond the type
float which is predefined and is 32 bits wide on the VAX.
3.5.8 No attributes for floating types are defined. The operations
o o oy 0200 and assignment are defined.
3.5.9 Fixed point types are not supported.
3.6 Array types are supported (both constrained and unconstrained).
3.6.1 Arcturus (erroneously) allows a declaration such as
s : string := "hello”.
3.6.2 Operations on array types:
first
last
’range

?

+ VAX is a trademark of Digital Equipment Corporation.

-14-

length ,
- The ’attr(n) versions are not supported.

3.6.3 The predefined type string is supported.

3.7 Record types are supported.

3.7.1 Discriminants are not supported.

3.7.3 Variant records are supported, except that the variant is
never checked at runtime.

3.7.8 The attribute ’constrained is not supported.

3.8 Access types are supported.

3.9 Declarative parts follow slightly relaxed rules regarding the
order of elaboration. The ezport laundry (under
development) fixes this when programs are exported from Arcturus.

4.0 Names and Expressions

4.1.1 Indexed components are supported.

4.1.2 Slices are supported only in simple expressions such as

a(1..3) := b(2..4);

4.1.3 Selected component notation is supported.

4.1.4 Some attributes (as indicated) are supported in expressions.

4.2 Numeric literals are not treated as members of the type
universal_integer or universal_real.

4.3 Aggregrate quantities are supported for single-dimension,
positional array assignments. '

4.4 Expressions
The operator rem is not supported.

Further, boolean operations on array types are not
supported. _

4.6 Type conversions for derived types and to enforce range
constraints are supported. Conversion between integer
and float is supported. Automatic conversion of out
parameters to subprograms is not supported.

4.7 Qualified expressions are not supported.

4.8 The allocator new is supported.

Unchecked_deallocation is not provided. There is no
garbage collector. The pragma controlled is not
supported.

4.9 No check is made to insure that expressions which should be
static are actually static. Expressions are simply evaluated
at runtime.

4.10 Universal expressions are not supported.

5.0 The following statements are available:
accept
assignment
block
case
delay

6.0
6.2

6.3

6.3.1
6.3.2

6.4

6.4.1
6.4.2

6.5

6.6
6.7

7.0
7.4

8.0
8.4

8.5
8.6

9.0
9.2
9.5

9.6

9.7

-15-

entry call

exit

goto

if

loop

null
procedure call
return

select

Statements may be labeled.

Subprograms _

Parameter modes tn, in out, and out are supported.

In out and out parameters are passed by reference.
Subprogram bodies may have exception parts.

No overloading of subprogram names is permitted.

In-line expansion isn’t supported.

Named parameters are supported.

Conversion of out parameters is not allowed.

Default parameters are supported. '

Functions are supported, but no check is made to insure that
parameters have mode in only. ' ‘

No overloading is supported.

Operators may not be overloaded (or even defined as functions).

Packages are supported.
Private types are not supported.

The scoping rules are supported.

The with clause is not supported. The use clause

is supported.

Renames is not supported.

The package Standard exists and contains a few definitions.

Tasking is supported.
Task types are not supported.
Entries, entry calls and accept statements are supported.

Entry families are not supported.
Delay statements are supported. Under BSD 4.2, resolution is

10 microseconds (for practical purposes, 10 milliseconds seems
to be about the limit on a VAX 750). Under BSD 4.1,
resolution is 1 second.

Type duration is not supported. Package Calendar is not
implemented.

Select statements are supported.

Selective waits are supported.

- 16 -

Conditional entry calls are supported.
Timed entry calls are supported.
9.8 Pragma Priority is not supported.
9.9 Task and entry attributes callable, terminated, and count

are supported.

9.10 Abort statements are not supported.

9.11 The generic library procedure shared_variable_synchronize
is not supported

10.0 Compilation issues: n/a

11.0 Exceptions

11.1 Constraint_error, numeric_error, storage_error, program_error,
and tasking_error are supported.

11.2 Exception handlers are supported.

11.3 The raise statement is supported.

11.7 It is not possible to suppress an exception check.

12.0. Generic Units are not supported.

13.0 Representation clauses are not supported.

14.0 I/O support is covered in another section.

3.4. The Morse code of comments

Comments entered into the Arcturus environment are attached to your pro-
gram, and can be pretty printed with your program. Cdmments are hard to deal
with, and we don’t do a very good job with them at this time. | They tend to
move around a little bit and get lost. Once a cﬁmment has moved though, it

w1l stay put. The following conventions are used to control and support the

printing of comments:

-- A regular old comment '

- this comment was continued from the previous line

--. this comment is a "major” comment, and should be printed
--- on a separate line and indented the same as the current

\ I
‘

-17 -
--- indentation level of statements in the program.

Some comments are created by the system on its own! The printing of
these is controlled by the "attachments” flag to the pretty printer, whereas the
printing of the former is controlled by the "comments” flag to the pretty printer

(see below for a description of pretty printer options).

--! Indicates the source of a refinement (éee the document describing
--- Castor and Program Design Language)

--* Counter: nnn

-- The above comment is produced by the dynamic analysis tools
--- of Arcturus (described elsewhere).

3.4.1. Warning: wandering comments

Due to an implementation oversight that we haven’t exactly figured out
how to deal with, the mechanism which attaches comments to internal program
representations is lacking finesse. The basic problem is that occasionally the
parser will move a comment from where you typed it in (lexically speaking) to
somewhere else. This can get to be quite annoying. The worst case is something

like this:

--. what a great procedure
procedure yuck is
i : integer;
~ogin
--. more comments ...
null;
end;

- 18 -

transforms into

procedure yuck is
--. more comments
i : integer;
begin
null;
end;

Notice that the header comments are history while the comments before the
first statement migrated to the fop of the procedure! This horrible behavior is
something you’ll bave to live with for now. We have a solution to this mess, but
the implementation is so tedious that for some reason no one can find the time
to stick it in the system. To get around the problem, put comments AFTER the

syntactic unit you want them attached to. For instance,

procedure yuck is
--. what a great procedure (attaches to procedure header)

i : integer;
begin

null;

--. more comments (attaches to null statement)
end;

Experiment! Once a comment has moved, it stays put.

-19 -

3.5. Packages available in Arcturus

The following packages are always present in the environment:

package standard;
-- contains definitions of integer, real float,
-- character, string, and natural.

package io_exceptions;

-- contains the definitions for exceptions that might

-- be raised during input/output operations

package text_io;

-- contains a subset of Ada ’82 input output routines.

-- See the section on input/output in Arcturus

package ascij;

-- contains definitions for non- graphlc characters.

-- Ex: "you rang the bell” & ascii.bel & "!"

package uci;

-- contains Arcturus specific procedures and functions for
-- manipulating the Arcturus environment (like bktr; break; dir;)
package pp_functions;

-- contains object and procedure definitions for use

-- with the pretty printer.

package usr;
-- contains all the definitions you enter.

Packages standard and usr are in an enclosing scope around your program.
Packages uci, pp_functions, io_exceptions, text_io, usr, and ascii are enclosed by
package standard only. The package uci is visible because it has been "used” by

package standard. Package ascii must be explicitly "used” or be referenced via

selected components.

‘

-9 -

The package structure looks something like this:

another of

your packages
other definitions
of yours ...

3.6. Some predefined subprograms

This section describes some of the commonly used subprograms available for
manipulating the Arcturus environment and for interacting with the Unix

environment.

*

-21 -

3.6.1. Breaks:

These services allow you to enter the break package and to manipulate the. .
Arcturus environment somewhat. The current implementation of the break
package is such that it isn’t actually a package, but merely a recursive call on
the interpreter. It is dangerous, presently, to do much more than merely look
around. Defining new objects (except for loop control variables) is not a good
idea. But‘you can look around by executing Ada statements and by calling Sub-

programs to print data structures and the like.

procedure break;

Causes your program to enter the break package. Continue with control-
D. Control-C pops you back to the top-level, and kills any running tasks besides

main, which is always running. You can’t get back just one break level just yet.

procedure bktr(depth: in integer := integer’last);

Prints a backtrace of the statements and expressions of your program
currently being evaluated by Arcturus. The default argument causes the entire

backtrace to be printed.

procedure stack_trace;

Prints a backtrace of the subprogram call stack. Each subprogram

currently active is printed, most recent first, followed by the name of the stati-

cally enclosing subprogram or package.

-922-

procedure where;

Prints (using the Ada selected component notation [more or less <more

more than less>]) where your program is presently executing.

3.6.2. Unix services:

procedure bug;

If you find a bug in Arcturus, you can use this procedure to send a bug
report to the implementors.It will prompt you for a description of your problem
and then mail it to a site-specific bug report account. The Implementation

Notes describe how to set the site-specific information.

procedure question;

If you have a question about Arcturus, you can use this procedure to mail a

question to a site-specific user.

procedure csh(s: in string := "");

To execute a Unix command and then return to the interpreter, use
csh("command"”);. For example, to see what users are on the system, type
csh("users”);. The default argument causes a child csh to be créated under
Arcturus which you can then use interactively. To return to Arcturus, leave the

csh with control-d or "exit”. Invoking a csh will read .cshrc before the shell

starts accepting commands.

-923-
3.6.3. Examining the name-space:

procedure dir(
symtab: in symbol := standard.usr’sym;
filename: in string := ™;
color: in pp_color_use := no_color);

Dir will print a directory of the definitions in the named packagé. The
default argument is to print a directory of the usr’ package. (This is usually
what you want since the usr package contains user-defined definitions.) Specify-
ing a filename causes the output to be directed to that file. The color argument
causes information about procedure invocation frequency to be printed on a
colorscan-10 terminal. A description of the enumeration type pp_color_use is

given in the section describing the pretty printer. Here is a handy redefinition

you may want to try:

procedure dir(s : symbol := usr’sym) is

begin
pp_functions.dir(s, filename => " dirfile");
csh("more ,dirfile”);

end dir;

procedure edit(x: in symbol);

Edit will call a text editor on the named procedure or function or package.
These are the only symbol types you can edit. Upon leaving the text editor, the
subprogram or package will be re-read into the interpreter as if you had included
it with pragma include. See the notes at the end of this document concerning

the interaction of this routine with the Unix environment variable "EDITOR".

Remember, to edit the function "fact”, you need to type "edit (fact’sym);".

-24-
3.6.4. Random commands:
procedure quit;

Leaves the environment. Equivalent to typing control-D at the top level.

See the section on the ADA.SAVE file.

procedure die;

Leaves the environment. Equivalent to typing ""Z kill %" under the C shell.
Will type a message indicating memory usage, but will not update the files

ada.core or ADA.SAVE. The variable uci.croak_ok must be set to true for this

routine to work.

procedure fix;

This routine calls a text editor on the last command before the fix command
that you entered interactively. For instance, if you typed in a big procedure and
screwed it up, and got a syntax error, typing "fix;" would allow you to make a
stab at correcting the trouble. If you screw up the fix command (say by typing

"fx;" by mistake) then it’s too late.

3.6.5. The Prettyprinter

The pretty printer takes the internal representation of an Ada program
fragment and prints it according the parameters supplied. All of these parame-
ters take default values from within the package pp_functions. If you want, you

can change these values. First, here is a description of the pretty printer

specification:

-95-

-- the pretty printer specification;
-- only the first argument is required.

procedure pp(sym: in symbol;
filename: in string := "";
nroff: in boolean := pp_nroff;
vert_bars: in boolean
:= pp_vert_bars;
comments: in boolean
:= pp—comments;
attachments: in boolean
:= pp-attachments;
width: in integer range 40..120
:= pp_width;
attach_column: in
integer range 30..110
:= pp_attach_column;
color: in pp_color_use
:= pp—color;
identifiers: in pp_capitalize
:= pp_identifiers;
" reserved_words: in pp_capitalize
:= pp_reserved_words;
number: in boolean := pp_number;
indent: in integer range 0..10
:= pp_indent;
export: boolean := false);

-- type definitions and default values for the pretty printer
type pp—color_use is
- (no_color, counts, random, circular,

depth);
type pp_capitalize is

(lower, upper, initial, mixed);
pp_nroff: boolean := false;
pp_vert_bars: boolean := false;
.-1-..comments: boolean := true;
pp_attachments: boolean := false;
pp_width: integer range 40..120 := 70;
pp_attach_column: integer range 30..110 := 40;
pp_color: pp_color_use := no_color;
pp_identifiers: pp_capitalize := lower;
pp_reserved_words: pp_capitalize := lower;
pp_indent: integer range 0..10 := 4;
pp_number: boolean := false;

- 26 -

In the normal case, the pretty printer will print the given procedure, func-
tion, package, type, or object onto the terminal. If you want to change a default

value for a particular parameter, you would change the corresponding object in

| pp_functions. For instance, to ‘change the default width, you would set

pp_width to 90. The arguments to pp are used as follows:

filename: is a string containing a Unix filename. The output will be put in this

file. The default argument indicates output should go to the terminal.

nroff: if true, the output will be run through the text formatter nroff before
being displayed or output to the named file. Setting this to true will cause
reserved words to be underlined, the output to be paginated, and a table of con-
tents to be created. (Great stufft) To get this to work, you need to copy the
file "rpp.titles” from wherever your Arcturus library is to your own account, and
edit the file. Change the name Ada Augusta to your own name, so that your
name will appear on the listings. For the nroff option to work, you need to have

the tmac.X macros for nroff from UCLA installed on your Unix system.

vert_bars: if true, the output will contain vertical bars indicating the program

structure.

comments: comments will be displayed if true.

attachments: if true, will cause attachments (such as PDL macros) to be

displayed.

-97-

width: the maximum line length.

attach_column: Specifies the column at which all comments (both attachment
comments and real comments) will displayed. Exception: Major comments (--.)

ignore this argument.

color: (Note: Only useful on Datamedia Colorscanl0 compatible terminals.)

Given an element of the enumeration pp_color_use will have an effect as follows:

no_color prints in black and white
counts color depends on execution frequency
random each construct is printed in a random color

circular each construct is printed in a new color in

a circular fashion.
depth each construct is colored according to its

syntactic depth.

tdenti fiers: the argument spleciﬁeskhow identifiers should be pretty printed (all

upper case, all lower case, mixed case, etc.) [Note: I think mixed case looks the

best.]

reserved_words: specifies how reserved words should be printed.
number: if true, indicates that lines should be numbered.
indent: indicates how much to indent blocks.

ezport: since Arcturus is designed to be used to construct Ada programs that
you might later want to compile, we’ve added this little hack to méke life

simpler. The problem is that we interpret a mix of Ada ’80 and Ada ’82. Set-

- 98-
ting export => true causes the empty paren’s around argumentless function
calls to be removed by the pretty printer. The pretty printer will also print for-
ward declarations for all procedures and functions in your program. This is
great because Arcturus allows you to compose your program in a less structured
fashion than allowed by the language definition. The export flag allows you to

export code from Arcturus with a minimum of pain. This is a big hack.

3.7. Input/Output facilities

3.7.1. Terminal I/O

Output to the terminal is done with the procedure ’put’. Put usually takes

one argument only, the item to be output. Examples of uses of put are:

put(5); -- integer output
put("hello”); -- string output
put(’c’); -- character output
put(3.4); -- floating point output

Input from the terminal is done with the procedure get. The (single) argu-

ment to get must be a variable. Get will input one item of the type of its argu-

ment (either integer, float, or character).

-99-

declare

i:integer; .

c : character,

f: float;

s : string(1..5);
begin _

get(i); -- will input an integer

get(f); -- will input a floating point value

get(c); -- will input a character

get(s); -- equivalent to five getchr’s.
end;

The procedures ’get’ and ’put’ are the only procedures which can be used
with different typed arguments in this way. Further, get and put will only work
for the types given above. If you want to print something more complicated,

you must make a procedure of your own. For example:

declare
type rec is record
a,b : integer; .

end record;

T : rec;

procedure putrec(r : rec) is begin
put("a =>");
put(r.a);
put("; b=>");
put(r.b);

end;

begin

r.a:= 9;

r.b := 6;

putrec(r);

end,;

Note: the illusion of overloading for get and put is accomplished by special

mapping of these identifiers to actual procedures named putint, putstr, putchr,

-30-
getchr, getstr, getint, etc. These procedures are stored in uci. Care must be
taken if you want to define your own procedures with these names because if
you define a procedure getint and then try to "get(i);” where i is an integer, your

version of getint will be called if it is visible.

Further note: Due to a problem with our implementation of arrays, string
arguments to the routines put, get, put_line, and get_line must be less than 255

characters in length.

3.7.2. Working with files

The following example illustrates the use of text files in Arcturus.

declare
pame : string := "my_file";
-- declare text file for use
inp : file_type; -- declare file descriptor: the file
-- descriptor is used to reference the file;
-- there can be more file descriptors than

-- files (up to about 11)

ch : character; -- used to store characters from the file

begin
textedit(name); -- call text editor to put stuff in my_file
open(inp, in_file, name); -- open file for reading using descriptor ’inp’

while not end_of_file(inp) loop
fgetchr(inp, ch);-- read a character from the file referenced

-- by ’inp’ into ’ch’
put(ch); -- print on terminal
end loop;
close(inp);
end;

-31-

Notice that for terminal input/output operations ’put’ and ’get’ can take
more than one type, but for working with files you must say which type you are
going to print. ’fgetchr’ means ’get a character from a file’. We didn’t want to
get to carried away with the subterfuge we used for overloading simple get and
put. Overloading is great stuff, but a real pain in the petunia to implement. It

interacts with everything.

The procedure 'Textedit’ invokes a text editor on the file specified. This

makes it easy to enter text into a file.

Note that the state-of-the-art in Kernel Ada Program Support Environment
(KAPSE) services is presently under development nation-wide. This version of

Arcturus supports only a subset of the file facilities defined for ADA 82.

There are several exceptions defined in the package io_exceptions that can

‘be raised by input/output operations. See the LRM.

3.7.3. Arcturus text_io subset

Here’s a list of the contents of our version of Ada ’82 text_io. Presently, it’s
basically just a bunch of procedures that do i/o, since we don’t yet do generic

packages.

-- type file_type is limited private; --> defined in standard
-- , for technical reasons

type file_mode is (in_file, out_file);

type count is range O .. integer’last;

-32-

subtype positive_count is count range 1 .. count’last;
subtype field is integer range 0..integer’last;
subtype number_base is integer range 2..16;

unbounded : constant integer := 0;

procedure create(file: in out file_type;
mode : in file_mode := out_file;
name : in string := "";
form : in string := "");

procedure open(file: in out file_type;
mode : in file_mode;
name : in string := "";
form : in string := "");

procedure close(file : in out file_type);

function standard_input return file_type;
function standard_msg return file_type;
function standard_output return file_type;
function current_input return file_type;
function current_output return file_type;
function current_msg return file_type;

procedure set_input(file: file_type);
procedure set_output(file: file_type);
procedure set_msg(file: file_type);

procedure fputreal(file: file_type; item: float; width, mantissa: integer := 0);
procedure fputstr(file: file_type; item: string);

procedure fputint(file: file_type; item: integer; width: integer := 0);
procedure fputchr(file: file_type; item: character);

-- The next four routines can be called simply as "put”
procedure putstr(item: string);

procedure putint(item: integer; width: integer := 0);
procedure putchr(item: character);

procedure putreal(item: float; width, mantissa: integer := 0);

procedure new_line(spacing: integer := 1);
procedure fnew_line(file: file_type; spacing: integer := 1);

-- The next four routines can be called simply as "get"
procedure getchr(item: out character);

procedure getreal(item: out float); .

procedure getint(item: out integer);

-33-

procedure getstr(item : in out string);

- procedure fgetchr(file: file_type; item: out character);

procedure fgetint(file: file_type; item: out integer);
procedure fgetreal(file: file_type; item: out float);

function end_of_file(file: file_type) return boolean;

procedure put_line(item : in string);
procedure fput_line (file : in file_type; item : in string);
procedure get_line(item : out string; last : out natural);
procedure fget_line(file : in file_type;

item : out string;

last : out natural);

Pay attention to the note above in the section describing put and get which

describes the overloading that takes place when these identifier names are used

as subprogram names.

Other handy input/output routines we support (which are not in text_jo)

are listed below.

procedure textedit(t: in string);

Calls a text editor on the file "t", allowing you to alter the object.

procedure type_out(t: in string);

Prints out on the terminal the current contents of the text object t’. For

example,

declare
testing : string := "a_file";

begin '
textedit(testing);
type_out(testing);

end;

-34-
Will allow you to edit the text file ’a_file’ and then print its contents on the

terminal.

4. Bugs, warnings, deficiencies, and stuff like that

4.1. Warning

4.1.1. It’s a Prototype!

The implementation of Arcturus is under constant revision. Until otherwise
noted it must be understood that the system you will be using is a PROTO-
TYPE at a rather early stage in its development. Further, the development of
the system is incredibly undercapitalized given the scope of the task. As if that
weren’t enough, sometimes we actually have to solve novel research problems.
For these reasons, we ask your cooperation and understanding as we undertake

the task of making Arcturus more bullet proof and more complete.

We are interested in your responses to the system (bug reports, frustration,

missing functionality, encouragement). You can send computer mail to

-35-
uci-icsclada on the uucp network
or
ada@uci-icsc on the InterNet

or U.S. Mail to
Arcturus
Programming Environment Project
Department of Information and Computer Science
University of California
Irvine, Ca.
92717

on matters concerning Arcturus.

4.1.2. Lack of Strict Checking:

A bothersome oversight in Arcturus is that we don’t check for assignment
to objects that are declared to be constant, including in parameters to subpro-
grams. When you go to export a unit, you’re likely to find that you’ll get lots of
error messages from the compiler. We intend to fix this sort of thing so that
Arcturus Ada is completely compatible with the LRM. Actually, allowing the
Arcturian style of freeform program entry to coexist with the notion of an

ordered representation of a program is the topic of a thesis by Willson.

4.2. Execution Environment on Berkeley Unix 4.2

4.2.1. Using Nroff & Arcturus

If you want to use nroff to super pretty print a definition, you need to have

installed on your Unix system the "X" nroff macros from UCLA.

4.2.2. Text Editors & Arcturus

Arcturus knows about a default editor to use when you use any of the pro-
cedures that invoke an editor. If you want to use a different editor than you will
need to set the Unix environment variable ' EDITOR to the name of an editor
that you wish to use. Depending on the editor named, different functionality is
available. The best case is to use EMACS (by James Gosling at CMU). (Actu-
ally, it is best to use Adash, but that is another matter.) When syntax errors are
detected you will be put into EMACS with two windows. One contains the
offending subprogram fragment with the cursor positioned at the offending token
or one past it. The other window contains a list of expected tokens. Other

choices for values for the EDITOR variable are listed below.

ermnacs as described above

nf local UCI editor by Stephen Willson.
Positions cursor, but only has
one window. The bottom line contains an error

message.

ash template directed editor by Ray Klefstad. Same
business as nf, but has special support for Ada.

vi Berkeley screen editor. Can only position to line
containing error (not the column).

none no editor is called if an included file has a syntax
error. The error message and the line and column
numbers are printed (sysputf) and the error file is
generated. This can be handy in Adash or when running
Arcturus under EMACS. If $EDITOR is none, the edit

procedure is not available.

anything else: will print an error message, then pause 2 seconds,
and execute the following "system” call:
system("< EDITOR variable value> < filename>");

-37-

4.3. The User Directory & Auto-Saving of Definitions

4.3.1. General Scheme:

Arcturus will create a directory called "usr”. [Note: earlier versions of
Arcturus called this direcfory muser”. You will want to rename this directory to
"usr” if you have been using an earlier version of Arcturus.] This directory con-
tains a copy of each subprogram or package you define or include in an Arcturus
session. This way, if the system blows up in your face, there is a copy of the
subprograms you had around when the system blew. Arcturus remembers
which files you had loaded in a file called "ADA.SAVE". This file contains spe-
cial pragma’s which describe the subprograms and packages that you had read
into Arcturus. When you restart vArcturus these files will be read in automati-
cally when they aré first referenced. In this way, if you just want to sneak into

Arcturus to calculate pi or something, then you don’t have to wait for these files

- to be read in.

The ADA.SAVE file also contains notes on which packages you had "use’d” at

the toplevel. These will automatically be re-’use’-d when you reenter Arcturus.
You can edit the ADA.SAVE file if you want to or if it gets damaged for some

reason. The special pragma’s are described below.

‘There is a file called "ADA.SETUP" which is also read at startup (before

ADASAVE). You can put commands in here to execute everytime the system

is started (for instance to set pretty printer defaults). My ADA.SETUP file

says:

-38-

ppfunctions.pp_width := 90;
pp_functions.pp_identifiers := pp_functions.mixed;
pp_functions.pp_reserved_words := pp_functions.initial;
pp_functions.pp_indent := §;

uci.croak_ok := true;

uci.write_core_file := true;

4.3.2. The Special ADA.SAVE pragma’s

There are three special pragma’s that are used to get at files in the "usr”

directory.

pragma procedure_name(fact);
pragma function_name(fib);
pragma package_name(my_pack);

In the examples above, "fact”, "fib", and "my_pack” are the name of a pro-
cedure, function, and package, respectively, that is stored in the user directory.
The use of these pragmas differs from the use of the include pragma in that the
corresponding file will not be read into Arcturﬁs until it is first referenced.
This is handy if you have a lot of procedures and functions and definitions that

you only use once in a while in that you don’t have to pay the price of including

them everytime you start up Arcturus.

Note, if you are using BSD 4.1, that since the files are stored in a Unix subdirec-

tory, the Unix limit of fifteen character long file names applies. If you define

procedure this_is_my_big_procedure_l ...

-39-

and then define
procedure this_is_my. big_procedure_2 ...

the first definition of big_procedure stored in the user subdirectory will get
clobbered. This stuff is all temporary, until we get the session manager work-

ing (which is the subject of Steve Whitehill’s thesis).
4.4. Quick startup with ada.core
4.4.1. General Scheme:

The Unix operating system doesn’t provide a mechanism for saving core

images of processes. As a result, it can take a noticable amount of time for

Arcturus to start up while the many definitions in the standard environment are

elaborated. To get around this troublesome behavior, we added two special pro-
cedures that save and restore large portions of the memory space used by
Arcturus (basically from the beginning of initialized data to the program break)

to and from disk files. These procedures can only be called from the top-level.

procedure save(filename : string := "ada.core”);
-- writes a copy of the currently executing Arcturus process data

-- segments to the named file.
procedure restore(filename : string := "ada.core”);

-- reads the specfied memory image into an executing Arcturus process,
-- destroying any previous definitions.

The core files contain a timestamp based on the creation time of the version

of Arcturus that you are presently running. Arcturus will not allow an out-of-

Jl

- 40 -
date. core file to be used to restore context information. For this reason, one
should not rely exclusively on the reading and writing of core files to save
definitions that have been entered during an Arcturus session, because if you
move to a new version of Arcturus, the old files will be unreadable. Simply use
this feature as a time saver. Remember: you can use "save” and “restore” to
save and restore object and type definitions that wouldn’t normally be saved in
the ADA.SAVE file, but if you rely on this feature and shift to a new version of

Arcturus, your old definitions will be lost.

4.4.2. Scenario for Usage:

When at the top-level of Arcturus, calling "save” will write a copy of the
variable and heap storage used by Arcturus to the named file. Calling restore
will read in one of these files, destroying any previous definitions. The file
"ada.core” is special: when Arcturus is 4ﬁrst invoked, it checks for this file. I it
exists, then the normal startup routine of reading in library files and the con-
tents of ADA.SAVE and ADA.SETUP is not done, and, instead, "ada.core” is

read in to initialize the session.

To speed up the initialization of Arcturus, run Arcturus, and allow the»nor-
mal initialization code to execute. When you get the ">" prompt, call “save;".
This will write out the initialized data segment of Arcturus. Next time you

invoke Arcturus, it will start up in about one or two seconds.

If you are going to give a demo, and don’t want to wait for Arcturus to

- 41-

start up, set up the environment the way you want it, and then call the save
procedure with a suitable filename argument to save your work. When you
invoke Arcturus, it will read from "ada.core”, and then give you the ">" prompt.

Call the restore procedure with your core file as an argument, and you’ll be up

and running.

% ada
Arcturus version ...

- wait for Arcturus to start up (20 seconds?)

> save; -- save initialized Arcturus

> 1: integer := 3; -- do some work ...

> save("demo.core”); -- save the current environment
> quit;

% ada .~ # restart Arcturus

[Context restored from ’ada.core’]
> restore("demo.core”);

[Context restored from ’demo.core’]
> i -- ready to roll

3
>

There is a variable in the uci package that causes the ad#.core file to be
written automatically when the system is existed via *D or the quit procedure.
Setting "uci.write_core_file := true;” will turn on this mechanism. In this way,
you get quick start up of Arcturus without having to worry that your ada.core
and ADA.SAVE files will get out of sync. Then, if you have a new version of
Arcturus installed, you can recreate the bulk of your execution environment
from the ADA.SAVE file. Of course, any object definitions not eﬁclosed in pack-
ages will be lost. For more information on this sort of stuff, see "How to Export

Files from Arcturus”, by Stephen Willson, and distributed with this tape.

4

<

-42-

"How can anyone feel so important when we know that death is

stalking us?”
-- don Juan in Journey to Iztlan
by Carlos Castaneda

The End

