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A B S T R A C T

Infrared spectroscopy has transformed soil property quantification by enabling low-cost, high-throughput ana-
lysis of soils, enabling mapping and monitoring of this non-renewable resource. However, less evaluated are
newly emerging indicators of soil health. Furthermore, as soil spectral libraries expand in size, commonly em-
ployed linear models such as partial least squares regression (PLSR) may be challenged by the number and
diversity of spectra. Artificial neural networks (ANN) are an emerging deep learning approach that can offer
advantages in quantification of soil properties by utilizing non-linear relationships among spectra and soil
components. We compared ANN versus PLSR models for predicting an increasingly used soil health indicator,
permanganate oxidizable C (POXC), as well as more routinely predicted soil variables (e.g., clay, soil organic C
[SOC]), across a gradient of soil organic matter furnished by a deforestation chronosequence in Kenya
(n = 144). Candidate ANN architectures were first methodologically evaluated and described to identify best-
practices for the application of ANN to soil spectroscopy. Predictions by the resulting ANN relative to PLSR were
similar or slightly improved for routinely measured variables that represent soil organic matter (SOC, C:N) and
physical properties (clay, silt, sand, bulk density). The accuracy of POXC predictions were similar for ANN
(RMSE 102 mg kg−1) and PLSR (RMSE 106 mg kg−1). However, models drew on shared but also distinct
wavenumbers, indicating differential use of information in soil infrared spectra by non-linear versus linear
chemometric models. Even in relatively small spectral datasets of similar soil types expected to favor PLSR, ANN
shows comparable predictive performance. To help guide future applications of ANN in soil spectroscopy, we
propose a systematic procedure to select ANN model hyperparameters.

1. Introduction

Infrared spectroscopy is driving a global revolution in the mapping
and monitoring of soil, a non-renewable resource that provisions mul-
tiple services to human societies (Nocita et al., 2015). Chemometric
prediction is increasingly employed for determining relatively static soil
variables such as texture and total soil organic matter (SOM), (Viscarra
Rossel et al., 2016) but the ability of infrared spectroscopy to predict
sensitive and therefore temporally variable indicators of SOM dynamics
has been less evaluated. Developing chemometric models to quantify
general soil properties is well established (Bellon-Maurel et al., 2010)
and is increasingly applied to quantify SOM fractions (Calderón et al.,
2017; Peltre et al., 2014; Zhang et al., 2017). Chemometric predictions
employing diffuse reflectance infrared Fourier transform (DRIFT)
spectra in the mid-infrared (MIR; 4000 – 400 cm−1) and/or near-

infrared (NIR; 12,000–4000 cm−1) offer a robust, low-cost, and rapid
alternative to traditional wet chemical analyses of SOM fractions used
to assess nutrient cycling, soil C stabilization, and soil health. In de-
veloping nations in which technical capacity and costs constrain tra-
ditional soil analyses, chemometric predictions of soil properties en-
abled by DRIFT spectroscopy have transformed soil assessment and
enabled local to continental soil mapping (e.g., African Soil Information
Service (AfSIS) (Liu et al., 2018). However, soil health variables remain
less evaluated globally and in particular in developing nations
(Berazneva et al., 2018). An emerging soil health variable that is also an
SOM fraction is permanganate oxidizable C (POXC), which has been
proposed to be an early indicator of SOM accrual (Hurisso et al., 2016;
Lucas and Weil, 2012) and to reflect soil C mineralization and stabili-
zation processes sensitive to microbial activity (Hurisso et al., 2016;
Paul et al., 2013; Schindelbeck et al., 2016).
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DRIFT spectroscopy-based predictions of soil variables can achieve a
degree of repeatability and/or precision comparable or greater than
traditional wet chemistry analyses (Shepherd et al., 2005), though the
accuracy of chemometric predictions can vary widely depending on the
soil variable(s) of interest, soil type, sample size, and chemometric
models (Viscarra Rossel et al., 2006). Coupling DRIFT spectroscopy and
chemometrics enables sample throughput rates of up to several hundred
per day (Reeves III et al., 2012). This enables detailed monitoring or
mapping of soil C and related soil properties at field, landscape, con-
tinental, and global scales (Nocita et al., 2015; Sanchez et al., 2009;
Stevens et al., 2013). Several efforts are currently underway to build
soil spectral libraries of national (Castaldi et al., 2018; Wijewardane
et al., 2016b) and global coverage (Viscarra Rossel et al., 2016).

Partial-least squares regression (PLSR) is a linear model commonly
employed in chemometric predictions of soil variables from DRIFT
spectra. While PLSR is suitable for similar soil types (e.g., mineralogy,
particle size) (Reeves III and Smith, 2009; Stumpe et al., 2011), accu-
rate PLSR prediction of soil variables that constitute a minor component
of DRIFT spectral absorbances such as SOM fractions may be chal-
lenged. On a limited soil sample set (n = 24) encompassing a gradient
of POXC (550 to 1430 mg kg−1) induced by long-term management on
a single soil type, Veum et al. (2014) demonstrated decent prediction
accuracy of POXC from MIR using PLSR (R2 = 0.69,
RMSEV = 220 mg kg−1) and higher prediction accuracy with VNIR
(R2 = 0.94, RMSEV = 120 mg kg−1). However, spectra were collected
on demineralized (hydrofluoric acid-treated) soil samples, a laborious
soil pre-treatment not commonly practiced for high-throughput spectral
analyses and also prone to artifacts (Margenot et al., 2017; Yeasmin
et al., 2017). Using a larger and more edaphically diverse soil sample
set across the United States (n = 496), acceptable prediction of POXC
from MIR spectra using PLSR, has been achieved (e.g., up to R2 = 0.81,
RMSEV = 144 mg kg−1) and with better prediction of POXC using MIR
compared to NIR Calderón et al. (2017).

The artificial neural network (ANN) is a non-linear, non-parametric
model that has dramatically risen in prominence within the machine
learning community over the past six years (Liu et al., 2017) and has
seen recent application to soil science for digital mapping (Bagheri
Bodaghabadi et al., 2015; Were et al., 2015) and spectral predictions of
soil variables (Morellos et al., 2016; Wijewardane et al., 2016b). The
salient advantage of ANN is its use of non-linear relationships between
the measured data and the predicted properties. Because an ANN may
be able to address non-linear spectral responses better than PLSR, it has
been leveraged to improve accuracy of predictions in multiple appli-
cations and disciplines, including quantifying variables from spectra
(Zhao et al., 2006).

Large-scale comparisons of ANN and PLSR for prediction of soil
properties (e.g., clay) from infrared spectra have found ANN to out-
perform PLSR using a global model of relatively large datasets
(n > 20,000) but the opposite has been found for local models and/or
smaller datasets (Rossel and Behrens, 2010; Wijewardane et al., 2016a;
Wijewardane et al., 2016b). However, the relative performance of ANN
and PLSR for soil spectra-based predictions using local datasets (i.e.,
edaphically homogenous) appear to be specific to the soil variable. For
example, ANN had comparable prediction as PLSR for soil organic C
(SOC) but not for labile inorganic nutrient element fractions across
fields in Belgium and northern France (n = 168) (Mouazen et al.,
2010).

To evaluate the potential of ANN to support high-throughput soil
health assessments, we utilized a geographically constrained dataset
considered ‘local’ by virtue of similar soil type and relatively small size
(n = 144) to conservatively test the hypothesized advantage of the non-
linear model of ANN relative to PSLR for chemometric prediction of
POXC, a labile SOM fraction and minor mass component of soil (gen-
erally < 0.2%), from DRIFT spectra of soils. The specific research ob-
jectives were to:

(i) Explore ANN architectures to determine a suitable network design
for use with soil DRIFT spectra;

(ii) Evaluate the accuracy of PLSR compared to ANN to predict POXC;
(iii) Identify organic and mineral function groups in soils associated

with POXC by examining infrared frequencies used in PLSR vs ANN
models of POXC; and

(iv) Evaluate the applicability of an ANN architecture selected for ef-
ficacy in predicting one soil variable to be trained for another soil
variable, specifically for POXC-based architectures to be used to
predict variables routinely predicted with PLSR (e.g., clay, SOC).

2. Materials & methods

2.1. Site description

Soils were sampled from the Nandi forest and adjacent agricultural
fields in Nandi County, Kenya. The Nandi forest is a remnant of the
formerly contiguous Guineo-Congolian rainforest, and one of the few
relic primary rainforests remaining in East Africa (Lehmann et al.,
2007) since the expansion of agriculture in this region in early 20th
century (Solomon et al., 2007). The Nandi forest is composed of a
mixture of Guineo-Congolian species such as Aningeria altissima, Milicia
excelsa, Antiaris toxicaria, Chrysophyllum albidum (Solomon et al., 2007).
Sites were situated at 1700–1800 m above sea level, with a mean an-
nual temperature of 19 °C and mean annual precipitation estimated at
2000 mm (Solomon et al., 2007). Soils are developed from biotite-
gneiss parent materials and are classified as Hapludoxes (USDA Tax-
onomy) or as Humic Nitosols (FAO) (Lehmann et al., 2007). In addition
to primary forest (n = 4), agricultural fields (n = 20) of varying time of
establishment from the forest were sampled in March 2017 to furnish a
gradient of SOC and POXC across similar soil mineralogy and texture.
At each site (n = 24 total), soils in three sub-plots were sampled by
augur at 0 – 20 cm and 20 – 40 cm depths for a total of n = 144 soil
samples. Soils were air-dried prior to analyses.

2.2. Soil analyses

Dry soils were gently crushed to pass a 2 mm sieve. Soil texture was
determined by laser diffraction particle size analysis (LDPSA) across a
size range of 3000 – 0.01 µm using a Horiba LA-950V2 (Horiba Ltd.,
Kyoto, Japan) (Towett et al., 2015). Suspended soil samples were
analyzed following dispersion by sonication (130 W, 20 kHz). Total soil
organic C (SOC) and nitrogen (TSN) was determined as total soil C
using a CN elemental analyzer (Elementar, Hanau, Germany). Per-
manganate oxidizable carbon (POXC) was determined based on Weil
(2003) as modified by Culman (2012) using 0.02 mol L−1 KMnO4. Non-
reduced Mn7+ was quantified by colorimetry (550 nm) and POXC was
calculated assuming the oxidation of 9000 mg C per mol Mn7+ reduced
(Weil et al., 2003).

2.3. DRIFT spectroscopy

Soils were analyzed by DRIFT spectroscopy by collecting spectra in
the MIR region and part of the NIR region (7500–600 cm−1), as is
standard for many soil spectroscopic characterizations (Viscarra Rossel
et al., 2006), using a Tensor 27 HTS-XT spectrometer (Bruker, Brennen,
Germany). Sieved soils (< 2 mm) were subsampled by coning and
quartering, and ground to < 0.5 mm using a RM 200 Restch motor
grinder. The resulting finely ground soil samples were loaded into
stainless steel wells and surface-leveled. Duplicate spectra were col-
lected for each soil.

Duplicate spectra were evaluated for outliers prior to PLSR and ANN
using The Unscrambler X, V10.4 (Camo Inc., Oslo, Norway) using
principal component analyses (PCA) to visualize variability in spectra
(Calderón et al., 2017; Guillou et al., 2015). To test for potential out-
liers, Mahalanobis distance analysis was used with an elliptical decision
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boundary (p < 0.05) as well as Hotelling’s T2 (Calderón et al., 2017).
One outlier replicate spectrum characterized by high leverage was
identified by both tests and removed. For all other soils, duplicate
spectra were averaged to obtain one mean spectrum per soil sample
(n = 144).

2.4. Partial least squares regression (PLSR)

Prediction of POXC from DRIFT spectra was first performed using
PLSR. To enable direct comparison of PLSR and ANN, a PLSR model
was developed using the same open source software and libraries as was
used for ANN: Python 3.6 and scikit-learn (Pedregosa et al., 2011). This
was done to validate the computation environment and data import
from the proprietary format OPUS spectroscopy for use in the neural
network research outlined below. PLSR model performance was eval-
uated for fit (R2) and accuracy (RMSE) of POXC predictions. Explora-
tion of the number of components most appropriate for a POXC re-
gression model was performed by varying the number of components
used. First, 80% of the dataset observations were randomly selected as
the calibration set, and the remaining 20% was withheld for in-
dependent validation (Calderón et al., 2017; Nanni et al., 2018; Xie
et al., 2015). For each train-validation split, a PLSR model was built for
component counts from 2 to 30, a range of components chosen to bound
component variation from what is likely too few to unnecessarily high
number of components and thus risks overfitting (Rossel and Behrens,
2010). This calibration was performed for a total of 50 different, ran-
domized splittings of the data into training and validation sets. Mean
RMSE and R2 were calculated using model performance for n = 50
splits.

2.5. Artificial neural networks (ANN)

2.5.1. Background on ANN
An artificial neural network (ANN) consists of three components: an

input layer, a series of one or more hidden layers and a regression layer
(Fig. 1). The hidden layers are composed of neurons, the basic com-
putation unit of a neural network. A neuron receives inputs from the
previous layer, scales each input by a weight, adds a bias and then
applies an activation function to the result. The output of each in-
dividual neuron is thus: +F w x b( ).activation i i

The activation function serves to de-linearize the function ap-
proximated by the ANN. Popular activation functions include sigmoid,

= +x( ) e
1

(1 )x , hyperbolic tangent, = +tanh x( ) e e
e e

x x
x x , and Rectified

Linear Unit (ReLU), relu(x) = maximum(0,x). The output of each
neuron is passed to all, or some subset of, the neurons in the subsequent
layers. In this way a neural network can be formed by linking many

neurons together in multiple layers. This allows the neural network to
act as function approximator for complex functions. Increasing the
number of neurons and layers allows for approximation of increasingly
complex function.

In the case of the final hidden layer, all outputs are passed to a
regression layer for final estimation. Generally, the collection of
weights and biases of the network are referred to as the parameters.
Other details, such as the numbers of neurons in each layer, the number
of layers, the activation function, and how the neurons are connected,
are referred to as the hyper-parameters of the network.

The training of an ANN consists of exposing the network to the
training data until (i) the network approximates the function it is in-
tended for or (ii) no further improvement can be achieved. The network
is exposed to the training data in small batches. After each batch, the
parameters are adjusted in a way that ensures a more accurate output
from the network for that batch. The process of exposing the network to
training data in batches and then updating the parameters is repeated
until the training set is complete. Exposing the entire training set to the
network is considered one epoch. Usually the training set is exposed to
the network for multiple epochs before training is complete. For large
datasets fewer epochs are needed whereas for small datasets more
epochs are necessary, increasing the risk of over-fitting.

2.5.2. ANN architecture and hyper-parameter selection
We began exploration of ANN architecture with networks similar to

the large, deep ANN used in image classification. These networks, often
with thousands of neurons in each layer and millions of parameters per
network (Real et al., 2017; Szegedy et al., 2015), were unnecessarily
complex and difficult to train with our comparatively small dataset of
soil spectra (n = 144). In most popular applications, ANN are trained
with larger datasets commonly n > 10,000, though ANN can be suc-
cesfully used on small datasets (n > 100) (Tange et al., 2017). Given
the reduced input dimensionality of the spectral data (absorbance in-
tensity at 3578 frequencies across 7500–600 cm−1) and relatively small
dataset (n = 144) a small network was considered most appropriate.
The following network hyper-parameters and training parameters were
varied in explorations:

(i) Number of Hidden Layers in the ANN. Networks were tested with
1, 2, 3, 5, 10, and 20 hidden layers.

(ii) Number of neurons in the hidden layers. This was varied from 10
to 100 in increments of both 3 and 5, depending upon the number
of layers used. These increments were chosen for expediency (to
reduce computation time) and becaus they were small enough to
monitor when network improvements occurred.

(iii) Symmetry of hidden layers (variable number of neurons between

Fig. 1. Schematic of artificial neural networking (ANN) for prediction of soil variables (e.g., permanganate oxidizable carbon [POXC]) from diffuse reflectance
infrared Fourier transform (DRIFT) spectra of soils. Spectral input included combined NIR and MIR spectra (7500–400 cm−1) or truncated spectra (e.g.,
1800–400 cm−1).
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layers). This was done mainly with 2-layer networks, and with the
second layer varying from equaling the size of the first hidden
layer down to approximately half the number of neurons.

(iv) Batch size used during batch-gradient descent phase of ANN
training. This was varied in powers of two from 1 to 64. This is the
number of data sample the network is exposed to before making
modifications to the network in an attempt to improve the model.
Smaller batches sizes are more computationally intense, and thus
take longer to train the network, but more can be learned from
each sample. Large batches sizes require less computation but
learning can be slower and subtleties found in individual samples
can be missing in training.

(v) Number of training epochs. This was also varied in exponents of
two from 1 to 2048, with further refinement after the likely a point
of over fitting was discovered.

(vi) Activation Function. This was tested with the ReLU, hyperbolic
tangent, and sigmoid functions. The activation function is what
allows the ANN to 'learn' a non-linear model (Abadi et al., 2016).

After preliminary ad-hoc testing of various networks, a systematic
approach was adapted. The initial exploration was performed to pro-
vide a large potential architectural design space. Determining which
configurations were outside feasibility, insufficient or over-designed
allowed us to limit the design exploration and select a design space that
seemed promising. Adopting an iterative approach or a heuristic
method to explore potential models is needed, not unlike the iterative
testing of PLSR models developed by various methods such as spectral
preprocessing and on selected spectral regions (e.g., Calderón et al.,
2017). The systematic approach used is outlined below. Among the first
observation made during speculative testing was that the activation
function had little effect on model prediction accuracy. As such the
ReLU was used exclusively afterward as its simplicity reduces compu-
tation time and shortens training and testing time (Abadi et al., 2016).

The basic kernel of testing is:
For each parameter variation{
Train a network using 10 different ways train- validation splits.
}
Record the outcomes.
The search heuristic:
Select a single ANN near the middle of design space.
For some small number of iterations {
Vary Epoch and Batch size and perform the basic kernel.
(In the first iteration these should be varied broadly)
Limit the Epoch and Batch to a small range that worked best.
Expand the number of Network layers and Neurons in the
ANN to be explored.
(Both reducing and expanding the number of layers and neurons)
Perform the basic Kernel.
Limit the Kernel and Layers size to a small range that worked
best
}
For several more iterations, select some another ANN some distance

from the previously selected design and begin again.
After multiple iterations, the most promising ANN can be tested and

trained for a greater number of train-validation splits to accurately
assess the model reliability and performance (e.g., RMSE of POXC
prediction).

2.5.3. ANN model calibration and validation
Soil spectra were independently used to develop ANN model for

prediction of POXC. The same randomly sub-sampled dataset used to
calibrate (80% of data) and then independently validate (20%) the
PLSR model was used to enable comparability of PLSR and ANN model
results. The entire dataset was randomly split into a training (80% of
data) and test set (20% of data). ANN and PLSR models were calibrated
using the same training set and validated using the same test set. To

account for variable performance with different data splits, the data
was split in ten different iterations, in which PLSR and ANN models
were trained and tested in ten separate instances.

The hyper-parameters that determine ANN architecture (Fig. 1) and
that were explicitly tested during ANN development for soil variables
were:

(i) Number of hidden layers
(ii) Number of neurons in the hidden layers
(iii) Batch size used during batch-gradient descent phase of training
(iv) Number of training epochs
(v) Activation function

All ANN exploration was performed using open source tools. Python
3.6 was used as the development environment (Chollet, 2015) for high
level model description and TensorFlow (Abadi et al., 2016) was used
as the backend computational library. Over 6000 architectures and
hyper-parameter combinations were explored to determine one suitable
for POXC estimation. The final architecture used was an ANN with an
input layer of the spectral data, ten hidden layers each using a rectified
linear unit activation function, and a single regression layer for output.
Each hidden layer was fully connected and contained 30 neurons
(Fig. 1). The network was trained for 384 epochs using a batch size of 2.
After this architecture and hyper-parameter combination was empiri-
cally selected as the most promising, a final analysis was performed.
The ANN was trained and tested by splitting the data into a training and
validation set. A total of 50 different train-validation splits were per-
formed. Minimal data preprocessing was performed before network
training and testing. In brief, each frequency of the spectral input data
was standardized by removing the mean and scaling to unit variance.
Spectra were not further processed (i.e., spectral pre-processing treat-
ment such as normalization or baseline correction) because the hy-
pothesized advantage of ANN over PSLR is robustness in accounting for
input (i.e., spectra).

The selected network was also trained and tested with various
subsets of the spectra sampled. To test ANN vs PLSR prediction resi-
lience to limited spectral information, spectra were reduced by sam-
pling every nth wavenumber across three orders of magnitude of re-
duction: n = 1, 2, 3, 5, 10, 15, 30, 50, 100. Model performance was
separately testing using limited portions of the spectrum: (1) the al-
cohol O-H, amine N-H, and aliphatic C-H region at 4405–3100 cm−1;
and (2) the region of absorbance by organic and mineral moieties hy-
pothesized to be related to this labile C fraction (Calderón et al., 2017;
Margenot et al., 2017) at 3700–3600 cm−1 and 1800–1000 cm−1.
These two regions were proposed by Calderón et al. (2017) to offer
comparable predictions as the full MIR (4000–400 cm−1). PLSR and
ANN models were trained and tested in the manner described pre-
viously. To ensure that the minimum sufficient amount of spectral data
necessary for PLSR compared to ANN, a 2-layer neural network and 10
component PLSR model were trained using increasingly large subsets of
the complete dataset, from n = 1 to n = 80 spectra using twenty dif-
ferent train-validation splits for each training set size. PLSR and ANN
showed similar improvement of RMSE for POXC up until n = 60 spectra
were used, after which no improvement (lower RMSE) was detected.

Finally, the suitability of the architecture developed for the ANN
model for POXC to predict additional soil properties, also considered
soil health indicators, was tested. The same architecture and hyper-
parameter combination for POXC was used to train ANN to predict bulk
density, SOC, total nitrogen (TSN), carbon to nitrogen ratio (C:N), β-
glucosidase activity, and particle size fractions of clay, silt, and sand. As
with POXC, β-glucosidase activity is considered a newly emerging
biological indicator of soil health, whereas the remaining variables are
considered soil health physical indicators (bulk density, clay, silt, sand)
or chemical indicators (SOC, TSN, C:N) (NRCS, 2019; SHI, 2017). To
enable comparison of PLSR and ANN, separate PLSR models were de-
veloped in the same manner as for POXC for these additional soil

A. Margenot, et al. Computers and Electronics in Agriculture 168 (2020) 105098

4



variables. The RMSE of validations and R2 were reported for all pre-
dictions for further comparison of ANN and PLSR

2.6. Evaluation of wavenumbers used for chemometric models

Evaluating specific wavenumbers used by chemometric models can
be used to evaluate functional relationships between the spectral input
with the predicted analyte (Roggo et al., 2007). For PLSR, inspection of
component loadings enables identification of specific wavenumbers
that are related indirectly or directly to the soil variable predicted since
these wavenumbers were used by the model for prediction (Calderón
et al., 2017). In contrast, ANN is generally considered a ‘black box’ in
that it does not offer direct evaluation of the functional relationships
between input (i.e., spectra) and predicted variables (e.g., POXC) (Were
et al., 2015), because every instance calculated by the network entails a
distinct valuation of input. However, it is possible to visualize wave-
number loadings for particular instance(s) of the ANN model. Since an
ANN is given no initial indication as to which wavenumbers are likely
to contain relevant information, it discovers a set of wavenumbers
stochastically which can be used for regression. We trained four neural
networks with a single hidden layer to examine the wavenumbers were
weighted heavily by the network, and thus were more likely to be re-
levant to POXC. We then selected the highest weight assigned to every
wavenumbers for each instance and plotted them. The resulting plots
for each ANN trained show which wavenumbers the network dis-
covered could be used to predict POXC. These ANN were developed
solely to observe the wavenumbers used and to demonstrate that there
are multiple different wavenumbers groupings that can be used to infer
POXC.

3. Results and discussion

3.1. Soil properties

POXC was generally highest under forest and lowest under agri-
cultural use (Table 1). Greatest variability in POXC for cultivated sites
occurred for 50 y agricultural fields (n = 5), ranging from
1197 ± 38 mg kg−1 to 470 ± 181 mg kg−1. Younger and older
agricultural fields with the same chrono-replication exhibited lower
variability. POXC was positively correlated with TSC (R2 = 0.75,
p < 0.0001). Across sites, variation in POXC (8.8-fold) was less than
total SOC (13.9-fold) but more than β-glucosidase activity (6.7-fold).
Soil textural class varied from clay to sandy clay loam, with clay con-
tent ranging from 26 to 91%.

3.2. PLSR and ANN prediction of POXC

Using the full spectrum collected (8000–600 cm−1), the PLSR model
predicted POXC with an accuracy (RMSE) of 106 mg kg−1 using 50
different train-validation splits (Table 2). An increase in PLSR

predictive accuracy (lower RMSE) occurred until 9 components were
used, after which an increase in components yield little change in
RMSE, which decreased with ≥ 20 components. The ANN architectures
tested exhibited acceptable prediction of POXC with a performance
similar to that of PLSR (Table 2). A few showed promise of performing
better than PLSR when tested for a small number of train-test splits. The
selected ANN (see Section 2.5) predicted POXC with slightly greater
(+3.9%) accuracy than PLSR (−4 mg kg−1 RMSE).

Model accuracy was tested using reduced spectra in which every nth

wavenumber from n = 2 to 100. Accuracy of POXC predictions (RMSE)
by PLSR and the ANN exhibited resilience to spectral reduction
(Table 3). Prediction accuracy of ANN slightly increased with spectral
reduction but was similar for PLSR. For example, spectral reduction to
every 50th wavenumber led lowered RMSE of ANN from 102 to
95 mg kg−1 and of PLSR from 106 to 105 mg kg−1.

3.3. Differential use of infrared absorbances by PLSR vs ANN models for
POXC

Infrared frequencies used by PLSR (Fig. 2) and ANN (Fig. 3) were
examined to assess which functional groups of mineral and organic
matter phases were driving chemometric determination of POXC. The
four randomly selected instances of the ANN demonstrate that similar
wavenumbers were being employed, and that these largely corre-
sponded to inorganic (mineral) functional groups, notably phyllosili-
cate O-H at 3697 – 3624 cm−1, quartz-like Si-O at 2050 – 1780 cm−1,
and Fe-O, Al-O, and Si-O at 927 – 818 cm−1. Wavenumbers corre-
sponding to organic functional groups were less strongly weighed than
those of mineral functional groups, and were strongest for aliphatic C-H
at 2920 and 2852 cm−1, aromatic C = C at 1593 cm−1, and a mixture
of phenol, carboxyl, and ester C-O at 1333 – 1034 cm cm−1. Con-
tribution of absorbances in the NIR (7500 – 4000 cm−1) to ANN were
negligible in all four instances.

3.4. Architectural transfer to other soil properties

The ANN architecture developed for POXC exhibited high trans-
ferability for other variables, with comparable or better prediction of
additional soil variables relative to predictions by PLSR models devel-
oped separately for each additional soil variable (Table 3). ANN gen-
erally performed better than PLSR at predicting additional soil prop-
erties, as indicted by lower mean RMSE (-Δ). PLSR yielded greater
prediction accuracy for soil bulk density and β-glucosidase activity
relative to ANN, whereas SOM related variables SOM (SOC, TSN, C:N)
and texture (clay, sand, silt) were predicted with greater accuracy using
ANN. Though predicted using an architecture developed for POXC, total
SOC showed the greatest difference in more accurate predictions by
ANN compared to PLSR (-35% RMSE).

4. Discussion

4.1. POXC and SOM prediction by PLSR vs ANN

Inference of soil variables using ANN compared favorably with PLSR
despite the use of a relatively small and edaphically homogenous

Table 1
Descriptive statistics of soil properties evaluated for prediction by artificial
neural networking (ANN) compared to partial least squares regression (PLSR)
for soils from a deforestation chronosequence in Nandi County, western Kenya
(n = 144).

Mean Median Min Max

Clay (%) 29.5 27.9 13.6 49.2
Silt (%) 19.9 20.0 7.6 28.0
Sand (%) 50.7 50.4 32.4 76.4
Bulk density (g cm−1) 1.02 1.01 0.71 1.53
SOC (g kg−1) 36.1 35.3 6.1 85.0
C:N 9.7 9.8 5.7 12.0
POXC (mg kg−1) 749 737 157 1382
β-glucosidase (µmol pNP g−1 h−1) 0.79 0.77 0.27 1.82

Table 2
Summary of previous POXC predictions from diffuse reflectance infrared
Fourier transform (DRIFT) spectra of soils.

Study Veum et al 2014 Calderón et al. 2017 This study

Sample size (n) 24 496 144
Scale Field Continental Regional
Method PLSR MLR PLSR PLSR ANN
R2 0.69 0.83 0.77 0.75 0.77
RMSE (mg kg−1) 220 150 144 106 102
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dataset, and for POXC slightly improved predictions were achieved
with ANN. The relatively small sample set of this study even for PLSR-
based models do not optimize the hypothesized advantage of ANN for

chemometric prediction from large datasets, thus offering a competitive
advantage to linear models such as PLSR. Increasing sample size and, or
perhaps more importantly, variation in soil properties that translate to
spectral diversity (e.g., mineralogy) is expected to enhance the slightly
better prediction (RMSE) of POXC by ANN. Our results are consistent
with previous PLSR predictions of POXC with moderate to high accu-
racy (RMSE validation 144 mg kg−1) from two studies differing in an
order of magnitude in sample size (n = 24 vs 496) (Calderón et al.,
2017; Veum et al., 2014). Of the eight additional soil variables eval-
uated in this study, the ANN approach showed improvement (lower
RMSE) over PLSR in six variables.

However, these improvements were achieved only after careful se-
lection of the ANN to be used and the training hyperparameters.
Without significant design space search the ANN performed similarly as
PLSR for POXC prediction, but outperformed PLSR for larger pools of
SOM (e.g., SOC, C:N) as well as texture fractions. Reduced data com-
plexity to sample size ratio likely explains improved ANN prediction
relative to PLSR, because with few training samples it is easier for a
neural network to learn from a simpler dataset. However, this does not
explain PLSR outperformance of ANN for some soil variables (e.g., bulk
density, β-glucosidase activity).

Our study demonstrates that both ANN and PLSR obtain the ma-
jority of predictive infrared frequencies for POXC from the MIR com-
pared to NIR, consistent with previous findings (Calderón et al., 2017).
Critically, we demonstrate that ANN and PLSR can draw upon different
and shared frequencies to produce similar prediction accuracy of the
same variable (i.e., POXC). Inspecting component loadings (PLSR) en-
ables attribution of model performance for a particular soil variable to
certain wavenumbers (Calderón et al., 2017), and inspection of wave-
numbers used in randomly selected instances of the ANN offers an
analogous evaluation. Both PLSR and ANN emphasized the phyllosili-
cate OH region at 3700–3600 cm−1, which may reflect associations of
organic matter with minerals. In contrast to the soils analyzed by
Calderón et al. (2017) largely being dominated by 2:1 phyllosilicate
mineralogy (with the exception being Watkinsville, GA soils), the
highly weathered soils in the present study exhibit 1:1 mineralogy (e.g.,
kaolinite features at 3700 – 3200 cm−1) that was more strongly used by
both ANN and PLSR models for POXC prediction. Though indirect, this
suggests that POXC composition may be influenced by soil mineralogy
(Margenot et al., 2017).

ANN appeared to draw more heavily on wavenumbers corre-
sponding to absorbance of mineral functional groups than of organic
functional groups. ANN did not strongly weigh the aliphatic C-H stretch
at 3000–2800 cm−1, though previous evaluations have found this
spectral feature to be the most strongly and positively correlated to
POXC (Calderón et al., 2017; Margenot et al., 2015). Notably, the
randomly selected instances of ANN more strongly weighed absorbance
at 2050–1800 and 818 cm−1 than the aliphatic C-H stretch, absor-
bances ascribed to quartz-like Si-O (Nguyen et al., 1991; Soda, 1961).
Absorbances used by ANN that corresponded to multiple potential or-
ganic functional groups with co-contributions to absorbance at
1300–1150 cm−1, including polysaccharide C-O, phenol and carboxyl

Table 3
Comparison of artificial neural networking (ANN) and partial least-squares regression (PLSR) for prediction of soil variables from DRIFT spectra.

Variable ANN RMSE PLSR RMSE ANN R2 PLSR R2 ANN RPD PLSR RPD ANN SD PLSR SD

Clay (%) 3.5 3.9 0.78 0.78 1.95 2.04 6.8 7.9
Sand (%) 3.4 3.4 0.83 0.79 2.35 2.40 7.9 8.2
Silt (%) 2.3 2.6 0.64 0.65 1.77 1.56 4.0 4.0
Bulk density (g cm−3) 0.11 0.10 0.52 0.60 1.46 1.26 0.16 0.13
SOC (g kg−1) 0.35 0.54 0.92 0.84 3.13 2.16 1.10 1.17
C:N 0.43 0.50 0.76 0.71 2.36 1.86 1.01 0.93
POXC 106 102 0.77 0.75 2.10 2.00 223 204
β-glucosidase (µmol pNP g−1h−1) 0.23 0.20 0.52 0.52 1.14 1.08 0.26 0.22

RMSE, root mean square error; RPD, ratio of performance to deviation; SD, standard deviation.

Fig. 2. Component loadings of partial least square regression (PLSR) model for
prediction of POXC for soils in western Kenya (n = 144) using DRIFT spec-
troscopy.

Fig. 3. Maximum weight of each wavenumber in random selections of training
iterations (“instance”) the hidden layer of an ANN trained to predict POXC from
soils in western Kenya (n = 144) using DRIFT spectroscopy.
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C-O, and alcohol O-H (Parikh et al., 2014). All are components of SOM
and using assorted non-DRIFT spectroscopic and spectrometric techni-
ques appear related to POXC (Margenot et al., 2017; Romero et al.,
2018).

4.2. Designing neural networks in soil spectroscopy

Over the past few years ANN have risen in prominence within the
machine learning community. Despite the large body of research on the
topic, there has been limited discussion on the in selection of ANN
architectures. Several maxims have been developed, but trial and error
is still a key component of development. The present study tested over
6000 architecture and hyper-parameter combinations. As such, we feel
the reader may benefit from a discussion of the methodology used to
select the ANN and hyper-parameters and as well as an overivew of the
features of an ANN architecture.

A summary of methodological points on designing and evaluating
ANN for soil property prediction from DRIFT spectra of soils are as
follows:

(i) As others in the soil community have done (Farifteh et al., 2007;
Janik et al., 2009; Kuang et al., 2015; Wijewardane et al., 2016a),
it is recommended to keep the number of neurons in layers small.
In the present study, using less than 80 neurons appeared to suffice
for a network of 1–2 layers and less than 50 for networks with
more than two hidden layers, as has been found by others (Janik
et al., 2009).

(ii) Given small sample sizes (numbering in the hundreds) a large
number of epochs should be used for training (e.g., training epochs
in the low hundreds for datasets n < 1000).

(iii) Batch sizes should be kept small. Small batch sizes expose net-
works to risk of overfitting and susceptibility to noise. Training of
the ANN should be observed carefully to discover when overfitting
begins to occur. It is also imperative with small datasets (again
data samples < 1000) that the network learn as much as possible
from each data point. With soil spectral datasets typically in the
hundreds but increasingly in the thousands or tens of thousands
(Nocita et al., 2015), batch sizes should be limited to 1–2.

(iv) Deeper networks (those with more hidden layers) may help in-
crease prediction accuracy. Previous use of ANN for prediction of
soil variables (Farifteh et al., 2007; Janik et al., 2009; Kuang et al.,
2015; Wijewardane et al., 2016a) tend to use ANN with 1–2 hidden
layers. For the present study's dataset, deep networks repeatedly
performed better with 5 to 10 layers proving optimal. Soil spectra
datasets are likely to increase in size as the increasing availability
of high-throughput methods for collecting soil spectra generate
large amounts of spectral data (Reeves III et al., 2012) used to
populate spectral libraries of regional to global scale (Castaldi
et al., 2018; Viscarra Rossel et al., 2016; Wijewardane et al.,
2016b). For these larger soil spectral datasets, ANN is likely to
offer a more viable alternative to PSLR or other multivariate che-
mometric models. This is largely due to more limited diversity in
soil type and thus soil spectra that generally result from geo-
graphically constrained or “local” datasets (Parikh et al., 2014; Sila
et al., 2016), PLSR offers good to high performance in prediction
soil properties. Larger and/or more geographically extensive soil
sample sets that are generally more spectrally diverse datasets may
explain why ANN has an additional advantage over PLSR. By
virtue of being relatively small (n = 144), the sample set used in
this study is likely to favor PLSR and thus offers a conservative
comparative evaluation of ANN. The need to consider regional
and/or soil type-specific soil health indicators (Bongiorno et al.,
2019; Bünemann et al., 2018) means that soil sample sets acquired
for indicators such as POXC may be more likely to be geo-
graphically constrained, further potentially favoring PLSR.

4.3. Software tools and computation resources

ANN can require significant computational power and/or time, with
computation scaling linearly with the size of the dataset. For the ANN
amodeling in this study, however, we used a desktop computer: a AMD
FX 8370 processor with 8 cores, 16 GB of RAM, and two NVIDIA GTX
750 cards. With this setup, training a network over 500 Epochs requires
approximately 10 min. Thus, 50 different training-test splits required
nearly 9 h of training time using the widely used open-source machine
learning framework TensorFlow from Google. TensorFlow represents
the state-of-the-art in terms of algorithms and data structures for
training large ANN and is available as a software-as-a-service from
Google Cloud, which provides a cost-effective way to scale computa-
tional resources required on demand. The recent introduction of spe-
cialized hardware (e.g., ensor Processing Units (TPUs)) in cloud plat-
forms can significantly accelerate machine learning. This makes using
ANN and exploring the design space of the best neural network archi-
tecture for a given dataset accessible to both laboratories offering soil
spectroscopy as a service and individual researchers who do not have
access to significant computational resources.

4.4. Implications for soil health monitoring in agriculture

Quantification of a proposed soil health indicator such as POXC
(Hurisso et al., 2018; Moebius-Clune et al., 2016) by DRIFT spectro-
scopy in this and other studies (Calderón et al., 2017) indicates the
possibility of infrared spectroscopy-based assessment of soil health
(Veum et al., 2015). Prediction of individual indicators can be accom-
plished through linear-based methods such as PLSR. For example, mi-
crobial biomass C (Reeves III et al., 2012) and mineralizable C (Peltre
et al., 2014) as well as more common metrics of total soil C, pH and
texture (Parikh et al., 2014) are routinely predicted from DRIFT
spectra. The recent emergence of field-deployable, portable FTIR
spectrometers (Hutengs et al., 2018; Robertson; Soriano-Disla et al.,
2017; Soriano-Disla et al., 2018) raises the possibility of on-site as-
sessment of soil health using chemometric models. The ability of re-
using an ANN architecture developed for one variable (e.g., POXC) or
other variables (e.g., SOC, clay) as shown in this study raises the pos-
sibility of multiply predicting individual soil health indicators from a
single ANN model, in contrast to multiple individual indicator-specific
PLSR models. Since infrared spectra of soils contain information on soil
properties such as texture used to weigh soil health indicators
(Mikhailova et al., 2018) and that are predictable from spectra (Parikh
et al., 2014), ANN may further enable scoring functions of soil health
indicators (Fine et al., 2017) and/or their integration into a final soil
health ‘score’ (Rinot et al., 2019) to be simultaneously calculated.

5. Conclusions

Infrared spectroscopy coupled with chemometrics has enabled cost-
effective high-throughput analysis of soil and is increasingly used to up-
scale spatial and temporal soil property assessment and monitoring.
This recent transformation has been driven by the use of linear che-
mometric models, most notably partial least squares regression (PLSR)
to derive soil property measurements or ‘predictions’ from soil spectra.
As soil spectral libraries expand in size concurrent with the scale of soil
sampling and mapping efforts to continental and even global coverage,
commonly employed linear models such as PLSR may be compromised
by the number and diversity of spectra. Artificial neural networks
(ANN) have revolutionized numerous scientific and engineering dis-
ciplines in recent years by enabling prediction of properties or features
from data-rich inputs, making it a promising candidate for chemometric
determination of soil properties from infrared spectra. We evaluated the
comparative performance of ANN and PLSR to predict routinely mea-
sured (e.g., total SOC) and emerging (e.g., permanganate oxidizable C
(POXC)) soil properties across a gradient of SOC furnished by a
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deforestation chronosequence in Kenya (n = 144). Systematic evalua-
tion of potential ANN architectures was used to identify best-practices
for the application of ANN to soil spectroscopy. Additionally, models
were assessed for which infrared frequencies were employed using
component loadings (PLSR) or randomly selected instances of neuron
layers (ANN). Similar or improved predictions by ANN relative to PLSR
for standard variables of soil organic matter (SOC, C:N) and physical
properties (clay, silt, sand, bulk density) indicates comparable utility of
ANN even for smaller spectral datasets thought to favor accuracy of
PLSR. Accuracy of POXC predictions were similar for ANN (RMSE
102 mg kg−1) and PLSR (RMSE 106 mg kg−1). That ANN and PLSR
models drew on overlapping and distinct wavenumbers in the MIR in-
dicates that these non-linear and linear models, respectively, draw upon
different information from soil infrared spectra to derive similar pre-
dictions. To help guide future ANN efforts on soil spectra, we propose a
systematic procedure to select ANN model hyperparameters.
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