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ABSTRACT

28

The elastic scattering of 98@ + “78i has been measured at laboratory

energies of 121.0 and 201.6 MeV. These data have been combined with

existing lower energy IBe + 28

Si data in order to carry out a global
optical model analysis. Calculations employing Woods~Saxon potentials
yield good fits to the data without vequiring explicitly energy~dependent
parameters. In contrast, using a proximity form for the real potential
requires an explicitly energy dependent Woods~Saxon imaginary potential
in order to achieve comparable quality fits. Notch perturbation
calculations have been utilized to locate the radial region of the

potential to which the scattering is sensitive. At all energies the

imaginary potential is stronger than the real potential at the radius
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of maximum sensitivity. This dominance of the absorptive potential

greatly limits the amount of information which can be gained about

the real potential. Comparison of the ? 28

6

Be + “°81 system with other

28

2855, 126 Si, and

light heavy ion systems such as °Li + “°Si, 169 + 28g;

suggests that the weak binding of IBe may be responsible for the strong

absorption in this case.
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NUCLEAR REACTIONS 283i (%Be, “Be), B = 121.0 and 201.6 MeV, measured

do/dfl; optical model analysis; deduced Woods~Saxon and proximity model

optical parameters, V/W ratios, fusion barriers. Comparison with

6Li + 2881 and 160 + ZSSi behavior.
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I. Introduction

. . . 1
In recent years we have been involved in a systematic study"z

of the elastic scattering of various light heavy ion projectiles from
2835, our goal is to gain a better understanding of this relatively
simple heavy ion interaction process. For example, we wish to learn
about the energy dependence of the optical potentials, the sensitivity

"projectile dependence"

to the real or imaginary well depths, the
of the interaction, and whether heavy ions show evidence for nuclear
"rainbow" scattering (as is fOund3 for light ion projectiles).

The ansatz for this study will be the same as that used in previous

works We combine our high energy measurements with existing lower energy

data™ 0

in order to perform global optical model searches. In addition,
we begin with a simple assumption about the interaction ~ that it can
be described by a potential having no explicit energy dependence.

The neglect of the energy dependence of the real potential (due to
non~locality of the nucleon~nucleon force) is expected to be a good
approximation for heavy ion projectiles, since the non-locality effects
decrease as 1/Ape7 As regards the imaginary potential, the situation
is less clear. Our view is that, insofar as it is possible to describe
data over a large energy range without explicit energy dependence,

the approach is a reasonable one. TIf the data do not allow such a
treatment, then more complicated parametrizations must be sought.

We will see below that the question of whether or not the imaginary
potential need be explicitly energy dependent depends quite strongly

on the choice of the real potential. 1In particular, using a non-Woods~
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Saxon (WS) shape, such as a folded or proximity real potential, seems
to require a marked energy dependence in the imaginary potential,

Based on our previous work,l’z we have been able to separate the
characteristics of the projectiles investigated into two classifications,

which we refer to as "light ion" and "heavy ion' behavior. 1In the

3

case of light ion behavior, e.g., 4He, it is found” that: a) nuclear

rainbow scattering is observed at high energies; b) the fitted potentials
are dominated by the real potential, that is V/W ~ 5 (in the central

region); and c) the fitted potentials are energy dependent. TIn contrast,

16 1,2

for heavy lomns, e.g., ~ 0, we find ’": a) no evidence for nuclear

rainbow scattering; b) the fitted potentials have V/W ~ 1 (in the
nuclear surface); and c¢) it is possible to find energy independent
potentials which fit data over a very large energy range, provided

a shallow real well (VO ~ 10 MeV) 1s chosen.

In Ref. 2 it was shown that the elastic scattering of 120 + 28Si

exhibits heavy ion behavior very similar to the 16g 4 28 1

6 28

Si system.

si system2 behaves in a qualitatively different

6

In conktrast, the "Li +

Li data at E. = 135.1 MeV do exhibit

fashion. In particular, the 1

the characteristic exponential falloff of nuclear rainbow scattering.
. . . . 3 .
As is true for G-particle elastic scattering,” a reasonable fit to

the high energy data requires a real well depth Vs 2 100 MeV. Further-

28

more, it has not been possible to fit 6Li + “78i data over a large

energy range with an energy independent WS potential. For these

reasons we classify the bri + 2854 system as one which exhibits light

ion behavior.
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Because the character of the elastic scattering from a “78i target

6 12

i to
9

C projectiles, we have undertaken a

28

changes markedly from

study of the intermediate “"Be + “°8i system in order to map out the
transition region. In addition, 9Be shares a number of properties

in common with 6Lig namely, both have ground states which are not
spin-zero and both are quite weakly bound compared with other projectiles

studied. Comparison of the 6Li and 9Be behavior might therefore be

expected to shed some light on the question of whether or not the

6 12

differences between Li and “C elastic scattering are related to

these properties of 611,



1. Experimental

The elastic scattering of Ige + Zggi has been studied at laboratory

9Be (3+) and 9B (4+) beams from

energies of 121.0 and 201.6 MeV using
the LBL 88-Inch Cyclotron. Data were measured with an array of four
2.5 mm thick Si(Li) detectors mounted in a 91 cm diameter scattering
chamber., The beam spot size at the target was about 1.5 x 3 mm; the
calculated divergence is roughly 0.59. The individual counters in
the array had an angular acceptance of 0.259 and a spacing of 20
each had a solid angle of 0.13 msr. Measurements were made in 0.5°
steps at forward angles and 10 steps at backward angles. The angular
range covered was 30 to 229 at 201.6 MeV and 30 to 349 at 121.0 MeV.
Absolute angles were determined by making comparative measurements
on both sides of the beam axis. Fluctuations in the beam direction
were monitored and corrected for in the analysis by means of a suitably
placed monitor detector. The monitor angle was chosen to correspond
to a rapidly changing region of the oscillatory forward angle elastic
angular distribution. Since the inelastic angular distribution of

288i(2+) state at 1.78 MeV excitation is oscillating ocut of phase

the
. s + s . P
with the elastie, the 0"/2" ratio is an extremely sensitive measure

of the scattering angle. Using this ratio easily allows detection
of beam angle changes as small as £(.059.

The thickness of the self-supporting, enriched ZSSi target was
380 ug/cmze It was determined by comparing the elastic cross section
to that of a natsijtarget which was later weighed. Relative errors

were obtained for each point by adding in quadrature the error due



to angular uncertainty and the statistical error. The former error
dominates at the forward angles and is essentially negligible there-
after. Absolute cross sections measured here are estimated to have
an uncertainty of *10%.

The data were stored in an analyzer based on a TI-960A computer
and transferred to a ModComp 1V/25 computer where they were written

on tape for subsequent analysis,
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ITITI. Results and Discussion

A. Woods-Saxon Potentials

As mentioned earlier, we begin by looking for a potential which
requires no explicit energy dependence. We use a WS shape for both

the real and imaginary potentialss

) = - - -1
V() = -V |1+ exp [<r RR)/aR] (1)
R ) _ -1
Wir) 1WO 1+ exp|(r RI)/aI} (2)
where

- 1/3 1/3

Ry = Tp (Ap + AL ) (3a)
} 1/3 . 1/3

Ry =1, (Ap + AT . (3b)
For the Coulomb potential we use the standard forms:
2
Z 7 e
=Pt (4a)
VC(r) = (r:>RC)
2
Z 7
= P te rZ 9 (4b)
= bt |3 e (r <R.)
ZRC R2 ¢
¢ |

where

- 1/3 1/3
R, = T (Ap + At ) (4c)



Global optical model searches were carried out using the code

9 28

GENOA. 8 Generally the input data consisted of “Be + “Si elastic

scattering cross sections at 13 Mey” along with the 121.0 and 201.6

MeV cross sections measured here. Representative examples of the

quality of fits obtained are shown in Fig. 1. Parameters for the

optical potentials shown in Fig. 1, along with those for other potentials
which lead to comparable quality fits, are listed in Table 1.

It is apparent from Table T that a wide range of real well depths
are allowed by the data, even with the additional constraint of demanding
an energy independent potential., For example, the two potentials
shown in Fig. 1, G92 and G95, have very similar imaginary wells and
yet differ by an order of magnitude in the real well depth. The close
similarity of the predicted angular distributions at all three energies
demonstrates clearly that in the absence of additional knowledge it
will not be possible to extract information about the real well depth
in this system. At first glance this does not seem surprising - "heavy

ions™ are usually assumed to behave this way. However, our previous

1,2 16 12

results’ with 70 and "“C do not show the same lack of sensitivity

164 , 28

to the real well, In order to fit 51 data over a wide energy

range with an energy independent potential, it was found that only
a shallow real well (set 18 in Table IT) gave acceptable results,

120 4 2845 system led to a similar conclusion (set H12 in Table 11).

The
The sensitivity to the real well in the case of 12¢ ana 160 scattering

is related to the predicted existence of nuclear rainbow scattering for

deep real potentials having moderate absorption. This is illustrated



28

in Fig. 2 where predictions for 165 4 28gi elastic scattering at 215

MeV gre compared for two choices of real well depth, vV, = 10 MeV and

. . . 16 28
VO = 100 MeV. The latter potential, which fits low energy ~ 0 + S1
elastic data (E;, = 33 ~ 81 MeV) as well as does the shallow potential,
is totally incompatible with the high energy data. (We note that it
is possible, if one relaxes the requirement of energy independence,
to rectify this discrepancyeg) However, we emphasize that in the

990 4+ 28

Si system there is no need to make the imaginary potential
energy dependent in order to achieve reasonable agreement with the
data, independent of the depth of the real potential.

There is some problem with most of the potentials listed in Table

I in reproducing the trend of the larger angle data (GC m'VZSO) in

the 201.6 MeV angular distribution. This defect is improved, as shown
in Fig. 3, by using a potential such as G38. {(Although the parameters
of potential G38 are somewhat unusual, it will be seen below that
this potential is not very different from the other potentials used
heré in the important radial region around 5-10 fm.)

We found empirically that the fitting procedure we used tended
to overemphasize the high energy data sets. Recently there have appeared6

some high quality Ipe 4 28

81 scattering data at low energies; it 1is
instructive to see whether or not our potentials can reproduce these
data., Figure 4 shows predictions from two of our potentials, G92

and G38, compared with the data and one of the "universal™ potentials
from Balzer Eiﬂii°6 (Set BOl in Table I). It can be seen that potential

G92 does not do a completely adequate job at the low energies. (This

deficiency is already in evidence, albeit not too visibly, in Fig. 1.)



On the other hand, the fits using potential G38 are quite comparable
to those using potential BOl. In contrast, Fig, 5 shows that the
potential derived from the low energy data alone does not extrapolate
well to the high energy data sets measured in this work.

One question we hope to answer in this study concerns the existence
of nuclear rainbow scattering In the high energy angular distributions.

253 that high energy light ions, up to 6Li9 do show behavior

12

We know

which is dominated by nuclear rainbow scattering, while ““C and 164

9 28

1,2 Be + “°81i potentials listed

projectiles (see Fig., 2) do not. The

in Table I have predicted rainbow angles, O ranging from -81° to

R?

o) ) . . .
=27, Thus, one would expect to see evidence for rainbow scattering

in the data if VO is greater than about 75 MeV, provided the absorption
is not too strong., This is demonstrated in Fig. 6 which shows the
behavior of potential G92 as the imaginary strength is reduced toward
zero. Although the predicted value of GR is ~46°, there is nonetheless
an increase in cross section of almost 2 orders of magnitude in the
region where data exist., We conclude from this that the absorption
required to fit the data is suffcient to remove the observable effects
of rainbow scattering in the calculated angular distributions. Although
the calculation involving potential G38 (Fig. 3) does show some flattening
out at back angles, this is not related to rainbow effects. 1t can be
seen in Fig. 7 that for this potential a reduction of the imaginary
strength by a factor of 100 (to W = 5 MeV) makes essentially no change
in the magnitude of the predicted cross sections, although the phase

of the oscillations shifts markedly.
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Based on the clagsifications outlined in Section I, the above
results clearly indicate that gBe behaves as a "heavy ion” projectile,
B. Other Potential Shapes
1. Folding Model

10 . . .
Satchler™  has performed an extensive analysis of our high energy

e + 2851 data and also the low energy data of Balzer ggwila6 utilizing

a double~folding model for the real part of the optical potential

164 , 28

and a WS imaginary potential. As was true for the S1 system

analyzed earlier99 the folding model fits are similar in quality to

those obtained with a WS real potential., However, for the 9Be + ZSSi

system the folding model results are anomalous in the sense that a
substantial renormalization (N~0.5) is required. In other words,

the predicted strength of the real potential must be reduced a factor

of 2 from the folding model estimate in order to fit the data. Although

a substantial number of projectile + target combinations have been

9 6

Studied911 only “Be and “"Li (Ref. 12) appear to require such a large

reduction in the predicted strength of the folding-model real potential.

. ) . . 9
In the folding-model analysis of the 16() + 2881 data,” a global

approach was employed. 1In order to get agreement with the data, however,
it was essential to use a WS imaginary potential having an explicit
energy dependence of the diffuseness parameter. Satchler also showed

that the same sort of parametrization of the imaginary potential allowed

16

a fit to the 0 data with a deep WS real well, something which was not

possible with an energy independent imaginary potential. Unfortunately,

no global analysis was performedlo for the 7 28g;

Be + system S0 no

systematic behavior of the imaginary potential is available,
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2. Proximity Potential

Tn recent years, it has become more common to analyze heavy ion

14,15

elastic scatteringl3 and also fusion data by means of the proximity

potential formulation. In the proximity model, the real ion~ion potential

is given by:16

v (5) = &gy Cbo (T) , (5)

where the dimensionless distance parameter 1is

;o= (r-C, - Cp)/b . (6)
In equation (5),
¢ = % e (7)
C;p + Ct
with C =R [1 - (b?“/Rz)] . (8)
X X

In this paper we will use for the universal proximity function the

. . . . . 16
analytic approximation given by Blocki et al.>?,

O(Z) = = 0.5(7~ 2.54)% = 0.0852(z - 2.54)°, £ < 1.2511 (9a)

i

$(5) = =3.437 exp(-C/0.75),¢ = 1.2511 (9b)
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14 we use suggested valuesl6 for

Following Vaz and Alexander,
most of the parameters but allow for some deviation from the standard

proximity formulaes

1/3 -1/3 4

R = 1.28A - 0,76 + 0.8 A AR ao
X X )4
b = 1.0 + Ab (11)
N~z 2| . (12)
vy = 0.9517 |1 - (“Zfﬁ '

In equations (10) and (11), AR and Ab give us the ability to modify
the potential slightly. For simplicity, the same AR value will be
used for both target and projectile radii.

Satchler? employed a slightly different parametrization of the

. . . . 16 28.,. .
proximity potential in his study of the 0 + Si system. He found
that it was possible to get fits comparable in quality to those employing
a folding-model or W8 real potential, again using an energy dependent

jmaginary diffuseness.

Our results, using proximity potential POl in Table I to fit

9 28

the “Be + ““Si data, are shown in Figs 8 and 9. We found, as did
Satchler79 that it was not possible to obtain agreement with the data
if an energy independent imaginary potential is used. However, as can
be seen in Figs. 8 and 9, the agreement with the data is quite good

when an energy-dependent imaginary diffuseness is employed. Other

possibilities for the energy dependence (e.g., an energy-dependent
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28g; system91 even

value of WO) were not investigated. In the 16g
a quadratic energy dependence of W, was unsuccessful compared to the
approach utilized here.

The optimum values for AR and Ab in Eqs. (10) and (11) are 0.059 fm
and 0.078 fm, respectively. In the important radial region, these corres-
pond to increasing the real potential by about 25 - 50% compared with the
standard proximity potential (AR = Ab = 0). (Note that this modification
is in the opposite sense to that required for the foldingwmédel potential
discussed earlier.) 1In Fig. 10 we compare the best WS real potential,

G38, with the folding-model potential (N = 0.5) and the proximity potential
POl. It is evident that the data define the value of the real potential,
at least to some extent, in the radial region around 6-9 fm.

C. Comparison with Other Projectiles

In order to understand why 9Be behaves differently from the other
projectiles, it is instructive to examine the potentials which fit the
various systems., Fig. 11 shows the radial form of the WS potentials

6 160 elastic scattering from 2841, (The behavior

16

for "Li, gBe9 and

and the best=fit potential for 120 are so similar to ‘%0 that the

latter projectile can be considered representative of both ions.)
Potential parameters may be found in Table I for 9Be and in Table

1T for the other projectiles. We see in Fig. 11 that there is evidence

16Og 6

for a transition in behavior in going from 6Li to For 'Li, the

imaginary potential exceeds the real potential at large radii (or

16

low energies) while for "0 the real potential is stronger at large

radii. The behavior of 9Be is intermediate bhetween these extremes.
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In this case the real and imaginary potentials are comparable throughout
the tail region, with the imaginary potential somewhat stronger than
the real.

The sensitive regions shown in Fig. 11 were obtained from "notch
perturbation’ calculations.'’ As shown schematically in Fig. 12,
this technique involves scanning a radial perturbation across the
potential. In radial regions were there is no sensitivity, the sz
value of the fit remains unchanged, while in sensitive regions XZ
worsens dramatically. TFigure 13 shows the results of such a scan

%o 4 28

for the Si system at 201 MeV with potential G38. It can be
seen that in this case the sensitive region is about v = 5 - 9 fm
and that the radius of maximum sensitivity (for the real potential),

R

Rsens? is 6.7 fm., TFor this particular case the real and imaginary

potentials have essentially the same region of sensitivity. In the
other cases shown in Fig. 11, the sensitive regions for the real and
imaginary potentials are indicated separately. For each projectile,
the sensitive region shown in Fig. 11 is evaluated for the highest

energy data set available, that is 135.1 Mev 6Li9 201.6 MeV 9Be, and

215,72 Mey 10

0.

Although the potentials we have used have no explicit energy
dependence, the different real and imaginary well geometries nonetheless
give rise to an implicit energy dependence. This is demonstrated for the
16 284 . . .

0 + S§i system in Fig. 14, where we show the ratio of V/W (evaluated
at the radius of maximum sensitivity from the notch perturbation calecula-

tions) as a function of energy. We see that for a potential which fits

the data, such as E18, the ratio slopes downward as the energy increases,



15

signifying a gradual increase in the strength of the imaginary compared
with the real potential. The behavior of Satcher's "A-type” WS potentia19
is also shown in Fig. 14. This potential has a deep real well but has an
imaginary diffuseness which increases with energy; it does about as well
as potential E18 in fitting the data. Although not shown in Fig. 14, the

Q
160 + ZSSi data obtained by Satchler” behaves

proximity model fit to the
very similarly to the "Satchler" curve. Thus, it is clear that the trend
shown in Fig. 14 for potential E18 is more or less characteristic of

160 . 28

all potentials which fit the 8i data over the whole energy range.

It is worth commenting that the overall trend displayed here for the

16 28

0 + “75i system has also been reported for other systems involving

160 + QOCa (Ref. 18) and 16

this projectile, such as 0 + Ni (Ref. 19),
For comparison, we also show in Fig. 14 the behavior of potential A23
from Ref. 1. This potential is energy independent and has a deep veal
well similar to the A~type potential above; it was "adjusted” to fit

the high energy by increasing the imaginary strength. (Such an increase
has the effect of absorbing away the trajectories which give rise

to the large rainbow cross sections generated with the deep real potential,
When a shallow real potential such as Tl8 is used, the vainbow angle
moves toward 0° and the effect gets lost in the more familiar Coulomb
rainbow region.) Looking at the V/W ratios in Fig. 14, we see that
potential A23 behaves very differently than E18 at low energies,

We might expect, therefore, that potential A23 will work less well

than E18 in this energy range, as is indeed the case.
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As shown in Fig. 15, for 6ri + 28

Si just the opposite trend is
observed, with the V/W ratio increasing as the energy increases.

In the case of 6Li9 it was not possible to find an energy independent
potential which fits the high and low energy data sets simultaneously;z
the curve marked "fits" is obtained from somewhat different potentials

at each energy. We have attempted to improve this situation by including
various energy dependent parametrizations of both the real and imaginary
potential. Thus far it has turned out to be difficult to fit the high
and low energy data sets together. This is demonstrated in Fig. 16,

6Li + zgsi data at a number of

where we show WS potential fits to
energies. The solid curve in Fig. 16 is representative of a 6-parameter
WS fit to all three energies using potential 501 of Table II. Compared
with a potential such as R22 of Ref. 2, this compromise fit causes the
XZ/N value at 135.1 MeV to worsen by a factor of 2; in spite of this

the fit at the lowest energy is quite poor. By allowing an explicitly
energy~dependent imaginary well depth (potential S02), it is possible

to improve the fit to the low energy data set with some additional
worsening of the high energy fit. Unfortunately, such improvement
corresponds to a substantial worsening of the fit at 46 MeV. We note
that for a WS shape, an optimum energy dependent fit leads to a negative
energy dependence, that is W decreases with increasing energy. This
aspect is consistent with the trend evidenced in Fig. 15 but is very

unusual from a phenomenological point of viewazO This point will be

discussed further below.
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Recently Tabor et ii°21 attempted to apply the proximity formalism
to the scattering of light ions. They found that, while the formalism
itself appeared to work, certain discrepancies were apparent. TFirstly,
the effective projectile radius required by the data was larger than the
model predictionlé (in agreement with the present results) and secondly,
the effective ion-ion interaction, $(L), was determined to be more
steeply rising in both the surface and tail regions than that given
by Ref. 16. It is therefore of interest to see how well a proximity
potential can do on the b1i data sets we have studied here. Figure 17
shows results of using proximity potential P10. As with the WS potentials,
the fit to the lowest energy data set is quite poor. In contrast to the
WS potentials, however, we find that no better agreement with the 135.1
MeV data set is obtained even when it is fitted alone. The combination
of a proximity real potential and a WS imaginary potential has difficulty
reproducing the smooth back angle rainbow fall-cff. This is consistent
with the results of Tabor EE,§l§921 in essence affirming the inadequate
deflecting force represented by the conventional proximity potential

. 28, . - .
bri + “%i system, the "trick'" of using an energy

of Ref. 16. TFor the
dependent imaginary diffuseness to obtain global fits doesn't help much,
As was true with a WS potential (see Fig. 16) improving the 13 Mev fit
comes at the expense of the 46 MeV fit. Even the extreme of allowing
independently optimized values of ay at each energy did little to
improve things. The resulting values of a; can be parametrized with

a quadratic energy dependence (potential P11). This is basically an

exercise in parameter-juggling and is unlikely to have any predictive
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power; nonetheless the corresponding fits are shown as the dashed
curves in Fig. 17.

The basic problem with fitting the by i 4+ 28

Si data over the whole
eriergy range can be discerned by looking at Fig. 15. The low energy
data set requires a very different value of the V/W ratio than do
higher energy data sets. TIn fact the ratio appears to change almost
discontinuously at low energies; the high energy data sets are in

fair agreement with an energy independent potential. (This statement
is confirmed by comparing the potentials discussed here with existing

6 ZgSi dataezz)

99 MeV "Li + Unfortunately, at low energies, the real

and imaginary wells are complementary to each other to a large extent.
If we compare the potentials which fit the 13 MeV data with those

which fit the higher energy data, we find that there are two different
types of modification of the high energy potentials which are successful
in achieving a fit at 13 MeV. FEither the real potential can be decreased
by a factor of roughly 3, with the imaginary potential kept the same
(e.g., 822 or P12 in Table II), or the imaginary potential can be
adjusted to have a steeper fall-off at large radii with the real poten~
tial fixed (e.g., $23 or P13). Obviously some combination of these
techniques {e.g., R27) also works. In any case, it seems unambiguous

that the 6Li + 28

81 optical potential is very different at 13 MeV than
it is at energies above 46 MeV. Possible reasons for this behavior
will be discussed below.

Ige + 28Si system, we see in Fig. 18 that

Returning now to the
the overall trend of V/W is quite flat as a function of energy, with

the imaginary potential always being stronger than the real. If we
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stretch our faith in a representation of this type, we can infer that
for this particular system a 4-parameter WS potential (that is, rp = 1y,
ap = aI) might be adequate over the whole energy range. Figures 19 and
20 show the results of using the 4~parameter potential GO5 (see Table I)
to fit the data. As expected, the fits are nearly the same quality as
those from the 6-~parameter potentials. On the other hand, using the

folding model potential with a "complex normalization constant' does not

23

vield good fits to the high energy 9Be data, although the optimum V/W

ratio, 0.77, is in good agreement with what we find using WS potentials.
(The preference for a phenomenclogical WS shape over a folded shape for

the imaginary potential seems to hold for all of the systems studied up

11)

to now. Although there is no theoretical justification for doing so,

as an exercise we tried a proximity form for the imaginary as well as

the real potential., We found, as for the folding model, that the optimum

ratio of V/W was about 0.75, but the fits were rather poor (XZ/N for the

9

high energy data sets incveased by a factor of 5). Thus, for the “Be +

28g4 system, an optical potential having a common geometry for the

real and imaginary well is only successful if a WS form is used,

D, Projectile Spin Effects

) 9

As mentioned earlier, one difference between the “Li and “Be

projectiles and the other projectiles we have studied is that both

+ 6

the former have non-zero ground state spins (J™ = 17 and 3/27 for °Li

and 9Be, respectively). In principle, this means that a spin-orbit
potential, which we have not considered in our analysis, must contribute
to the scattering. One must therefore ask whether ignoring the spin-

orbit term leads to incorrect values of the central potential parameters.
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9

Although there is no information on this point for “Be elastic scattering,

.
the spin-orbit effects in °Li have been investigated previously both

24,25

experimentally and theoretica11y°26 The existence of a spin-orbit

614

term in the interaction potential was demonstrated?® in a study of
elastic scattering at 20 and 22.8 MeV using a vector polarized bri beam

on a number of targets, including ZSSie It was shown in this work that

26

the observed asymmetries were conmsistent with a folding-model estimate”

of the spin-orbit potential., On the other hand, it was also pointed
out that a "reasonable" spin-orbit potential has almost no effect on

=~

the predicted angular distributions. Chua gg_iiﬁZJ made a study of

unpolarized 6Li elastic scattering on a variety of targets, but not
288i9 at a higher energy of 50.6 MeV. Their conclusion, based on a
standard derivative form for the spin-orbit potential, was that the
data gave no unambiguous evidence for spin-orbit effects. Here too
the addition of the spin-orbit term had very little observable effect
on the angular distributions, the main one being a slight increase in
the predicted structure at large angles. (Even this effect could

be compensated by slight changes in the imaginary potential.) From

24,25

these studies we conclude that, in terms of angular distributions,

the spin-orbit influence is likely to be negligible., Thus, the poten-
tials we extracted from our angular distributions would not be signifi-
cantly different if a spin-orbit term were explicitly considered.

Similar conclusions were reached by Satchler and Lovea12
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Although there are no data from which one can get information
on the spin-orbit potential in the case of gBe elastic scattering,
we can use the folding model to estimate the mass dependence of the

26

effect. Amakawa and Rubo have shown that the result of folding

the spin-orbit potential over the projectile volume is that the radial
form of the spin-orbit term changes from its original derivative form
to a volume form, and that the mass dependence is A;ZO In this

9

case the spin-orbit effects in “Be elastic scattering would be even

6

smaller than for “Li and would not be expected to influence our optical

model analysis. (Clearly the effect of the spin-orbit potential will
increase at high energies and heavier projectile masses due to the
larger value of the grazing angular momentum. However, since the
centrifugal potential increases much more rapidly with energy than

the sgpin-orbit potential, even at high energies the spin-orbit effects

326

are expecte to be small.)

61i and 9Be might

In addition to possible spin-orbit effects,
also be influenced by quadrupole terms in the optical potentials,
Satchler and Fulmer’’ have shown that, in a simple coupling model,
the (incohevrent) contribution from the quadrupole term leads to an
additional elastic cross section which is proportional to the cross
section for inelastic scattering to the 2" state in the core. Because
the 2% cross section is generally ocut of phase with the elastic, the
practical effect of this term is to damp out the structure in the
back angle elastic scattering angular distribution (where 0,1 and
Oinei @re more or less comparable in magnitude). Fvidence for this

sort of behavior has been seen in heavy ion systems similar to the
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1,28

scattering of loB and 113 from 27

104

ones studied here by Parks et who investigated the elastic

Al at 50 MeV. They find that for
+ 27A1 there is substantial damping of the cross sections in the
angular region beyond Gcama = 50° compared with a standard optical
model prediction. In the case of 118, the effect is less severe, but
some filling-in of the minima is visible. Parks et al. were able
to reproduce these trends by adding the gquadrupole cross section,
calculated with a double-folding model, to the spherical optical model
cross section. The importance of the quadrupole term was found 28
to scale roughly as the quadrupole moment of the projectile.

If we try to apply these results to our situation, the following
points emerge. Since 6Li has a very small quadrupole moment (~0.8

10 11

emb) 29 compared with that for *°B or "'B (80 and 40 emb, respectively)930

it is unlikely that the quadrupole term is significant in this case.

gBe quadrupole moment (65 emb)29 is comparable

On the other hand, the
to those in the bovon projectiles. It seems possible, therefore,

that the larger angle 9Be data, particularly at 201.6 MeV (Figs. 1,3,
and 8), could contain a contribution from this effect. If this is

the case, it calls into question to some extent a potential such as
G38 (Fig. 3), which more or less reproduces the lack of back angle
structure in the high energy 9Be angular distribution. However, the
fact that a potential such as G38 is capable of fitting data over

such a large energy range argues at the very least that it is possible
to successfully incorporate quadrupole effects, if present, into an

optical potential. Although calculations such as those reported by

Parks EE’E&}ZS are beyond the scope of this paper, they would clearly
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9 28

be very interesting to perform for the “Be + ““Si system. (It is

unfortunate that our experiment does not allow us to observe the IBe
projectile excitation, since the approach of Satchler and Fulmer27
would then vield a direct estimate of the quadrupole contribution

to the elastic scattering.)

fi. Breakup

I1f we look at the trends for the various projectiles indicated in

16

Figs. 14, 15 and 18, we see that 0 behaves in a rather intuitive way,

that is, the imaginary potential gets more important as the energy
increases. On the other hand, 6Li behaves in the opposite fashion and

9 . . . .
“Be shows a stronger imaginary potential at all energies. Because the

6

binding energies of “Li and TBe (1.47 and 1.67 MeV, respectively) are

very low compared with other light heavy ions, it is tempting, partic~

ularly in the case of 6Li9 to ascribe the low energy behavior to breakup

in the Coulomb field of the target.

The Coulomb breakup mechanism for 614 has already been demonstratedsls32

at near-barrier energies on a variety of targets. (Even very near the

33

barrier, however, 1t has been shown that the nuclear potential plays

a role in the breakup process.) In addition, it was shown -2

that the
majority of the 6Li ~a + d cross section comes from a sequential mechanism
in which 6Li is first inelastically excited to its 2.18 MeV, 37 level.

At high energies, on thé other hand, ﬁhefe is evidence?}ziL that the breakup
changes to a direct (presumably nuclear) process which does not proceed

6

through the "Li 2.18 MeV state.
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1f we assume a Coulomb excitation mechanism is dominant at low
energies, it is possible to estimate what effect it might have on the

28 . . . .
6 “881 optical potential. Tove et ilgBS have shown that the main

Li +
effect shows up in the imaginary potential, which has a long range

tail added to it characterized by a strength

U7z
W= 0.01676 —b B(E2) g, Mev-fn®, (13)

where U is the reduced mass (in amu), k is the wave number, g, is a
tabulated adiabaticity factor and the B(E2), taken from Ref. 36, is in

4

units of eZ«fm”*, Compared with the cases listed in Ref. 35, however,

the strength appropriate to 6Li + 288i is more than 2 orders of magnitude

weakers near the sensitive radius at 13 MeV the polarization potential
is a few keV, compared with an imaginary strength of about 1 MeV.
Thus, it is not clear (sequential) Coulomb breakup is responsible for
the low energy behavior.

If one considers instead a breakup process initiated by nuclear
inelastic scattering, the conclusions® is that the imaginary potential
should still be more strongly modified than the real potential. 1In
the nuclear case, no simple expression for the polarization potential

is available. Although our experimental technique does not allow us
to measure the cross section for projectile excitation of the 6Li(3+)
state at 2.18 MeV, it is known from light ion inelastic scattering37
that this excited state is populated very strongly. 1In fact, with

o particles, the integrated cross section for inelastic scattering is

twice that of the elastic. It is inm just this situation that channel
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coupling may be most important,38 Assuming the projectile excitation
in low energy 6Li * 2881 scattering has a similar strength, it seems
clear that either a full coupled-channels calculation, or at least
an approximate calculation such as proposed by Love EE’E;}BS should
be carried out. Tt is interesting that, for a fizxed real potential,
the change required in the imaginary potential at higher energies
is that the taill increases (aI increases). Qualitatively, this is
just the sort of behavior which would be expected due to the addition
of a polarization potentia135 at the higher energies. The vapid change
in the imaginary potential as the energy increases might be related to
a change in the strength of the coupling to the elastic channel when
the breakup mechanism changes from a sequential to a direct one. 3%
0f course depending on the strength of the direct process, in the
higher energy regime it may be inappropriate to ignore the explicit
channel coupling in obtaining optical potentials. Unfortunately,
there is not enough information presently available to answer this
question. (As mentioned earlier, the low energy data are equally
consistent with a fixed imaginary potential and a markedly weaker
real potential. This could conceivably be viewed as symptomatic of the
same problem that causes the folding-model real potential to requirelz
a substantial reduction for °OLi projectiles. If this were true, one
might expect that a "global" folding-model fit to the 13 MeV data would
require an even larger renormalization than do the higher energy fits.)
In the Be case, Fig. 18 does not indicate auny anomaly in the low

energy region, although there is some preference here too for the

imaginary to increase relative to the real potential at low energies.
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There are certain differences in the JBe breakup compared with bri

breakup which might explain this fact. Although 6Li breakup at low
energies goes mainly through a single state, which is populated pre-
dominantly via Coulomb excitation, the 9Be breakup39 goes through a
number of low-lying states. One of these states is reached by an E2

29 to that for the 6Li excited state,

transition with a B(E2) similar
but the others are not reached by E2 transitions and are probably
egcited predominantly by nuclear inelastic scattering. Depending
on which states dominate the breakup process at a given energy, it

is conceivable that the V/W ratio for 9

Be does not change much near

the barrier. At higher energies, Stahel EE.ELQQO have shown that there
. . . . . 9, 8 . ‘
is a sizable direct breakup cross section in the (“Be, Be) reaction at
50 MeV. How, or if, the breakup mechanism changes between the Coulomb
barrier and 50 MeV is presently unknown.

F. Fusion

13,18

Certain groups have recently attempted to fit both elastic

and fusion cross sections with a single interaction potential, rather

than treating the two types of data independently. Although there

28

. . . 9 . . .
is not much information on "Be + S1i fusion available, some data

have recently been measuredAl which make it worthwhile to compare
with predictions from our elastic scattering potentials.
In order to predict fusion cross sections, we must employ a model

15,42,43

of the fusion process. Most models agree that, at low energies,

the fusion barrier is determined by the maximum in the real (S-wave
potentials
Vg = V(Rg) = Vo(Rp) + Vo (Rp) + V

cent(z’ RB)’ (14)
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where the barrier radius, R,, is defined by

B7
av{r) - 0 (15)

dr
r o= RR

In addition, there is a maximum in the fusion cross section at an

energy B, which in some modelslg’15

is related to the disappearance
max I

max

of the "pocket' in the real potential for 2>Q and in other

43

models ™ is related to reaching a critical distance, Rcrs The fusion

cross section is given by
[e o)
o, =% P, (20 + 1) P (16)
£ L
L= 0
where P, is the fusion probability for partial wave £. 1In a sharp cut-
off (SC0) model,
- <
Py = 1 (2 ch) (17a)
= () (L > 2 ) (17H)
cr
and L. is the highest partial wave for which the barrier maximum is
below F . Alteraé%ivelyg the Py values can be calculated allowing

€.

.. . 13
transmission through, as well as passage over, the barrier. Inso far
as using a SCO model, i.e., using Eq. (17), predicts essentially the
same fusion cross sections except at energies very near the bharrier,

we have used the simpler approach. The S5C0 cross sections are then

given by

N

(F < g ) (18a)

£ or : max

il

wx? (A%, 12 (F >E ) (18b)
cr max
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43 the

In the critical radius picture of Glas and Mosel (GM),
fusion probability, Py, is calculated for transmission through a para-
bolic barrier. If the approximations of constant barrier curvature
and constant barrier radius are made, this model leads to an analytic

expression for O in terms of the % = 0 barrier (see Eqs. (14) and

(15)) and the potential at the "critical” radius for fusion:

R = xS (Aé/B + Ai/3) (19)
VR, = VR )+ Va(R ), (20)

43 T

where empirically”” the value for rg is about 1.0 fm.

Figure 21 shows calculations based on both the SCO and GM models
compared with data from Ref. 41. The various parameters needed for
the calculations were taken from either potential G38 (solid curves)
or the proximity potential (dashed curves) and are listed in Table III.
It appears that the data are most consistent with the GM calculation
based on potential G38. This is somewhat surprising since in other

16 ., 28

systems, such as 81, a GM calculation based on a shallow WS

potential such as K18 predicts cross sections much lower than are

15 4 sc0 calculation with a deep WS real

cbserved experimentally.
potential, such as G92, would look fairly similar to the proximity
potential calculation shown in Fig. 21. Although a real WS well depth
between 13.8 and about 100 MeV is capable of roughly matching the
magnitude of the experimental cross sections, the SC0 model must produce
a downward sloping curve at high energies, in apparent contradiction

with the experimental results.”!
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We note that our potentials suggest that the fusion data measured
in Ref. 41 are high energy data, in the sense of being beyond the "bend"
in the predicted fusion cross sections (see Fig. 21). TIn the analysis

of Ref. 41, the data are assumed to be in the low energy regime of

41

fusion cross sections. This assumption leads =~ to values for the

radius and height of the fusion barrvier of R, = 7.68 £ 1,02 fm and

B
V, = 22 % 4 MeV. Although the radius extracted from the data is in

B
14

reasonable agreement with systematics, the barrier height is not

and will lead to very different fusion cross sections at near-barrier
energies. 1In spite of there being no low energy data available with

which to compare, the values for R, and Vg obtained from potentials

B
which fit the elastic data (Table IIT) may be compared with the results

14

of Vaz and Alexander,”  who made a systematic study of fusion barvier

parameters over a very wide range of nuclei. Their parametrization

of the barrier parameters ig: 4

- . 1/3 1/3 N
RB “h (Ap + At ) (21a)
ro = 2.0337 - 0.2412 1oglo<zpzt) (21b)

2
S (22a)
B (A1/3 N A1/3)
e t
r, = 2,301 - 0.3003 10g10(2p2t)e (229b)

For 9Be + 288i9 this leads to the values RB = 8,248 fm and VB = 8,874 MeV,

Agreement with the values obtained in Table IIT is very good and gives

some hope that the potentials we have extracted from the elastic scattering
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will be capable of also reproducing low energy fusion cross sections,
Clearly the combination of high-quality fusion data along with the
available elastic data over a wide energy vange will provide an important
test of whether or not it is possible to fit both types of data together
with a common potential,

One word of caution regarding the GM calculations is clearly in
order. It is not implausible that the elastic scattering potential
can give information regarding the outer S-wave barrier, but it 1is
11

much less clear”™™ that the optical potential is still "operative"

at the smaller separations corresponding to R... There is some hope
in our case that the optical model Ver is reasonable, however, since
the high energy elastic data do have sensitivity into small enough

radii to correspond at least roughly to the R_. values.

28

In the oni + 28gi system, there is an ambiguity at the lowest

energy about whether the required change in the fit potential should

be ascribed to the real or the imaginary well. Although hardly a
definitive test, it is instructive to compare the predicted fusion
barriers of the various real potentials to the Vaz and Alexander system-
aticsal4 The results, given in Table IV, show that the real potentials
obtained from the high energy data lead to fusion barriers consistent
with systematics, while the real potentials adjusted to fit the low

28¢5

energy data do not. If we make the assumption that low energy 61,1 +
fusion data do not show any unusval behavior compared with systematic

predictions - a fact not presently verified - we would conclude that
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the change in optical potential from low to high energies is most likely
related to a change in the tail of the imaginary potential (possibly due

to strong coupling to other channels).
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IV, Summary

9 28

We have measured the elastic scattering of “Be + 8i at 121.0
and 201.6 MeV and, in combination with other data, have performed

a global optical model analysis in the energy range from 12 to 201.6
MeV., In contrast to earlier studies,l92 we find that it is possible
to obtain a number of energy independent WS potentials, spanning a
wide range of real well depths, which fit the data rather well. Op-
tical model calculations employing a proximity form for the real poten-
tial have also been performed. Good fits to the data can be obtained
provided the parameters of the proximity potential are modified some-
what from their suggested values. In this case it is necessary to
employ a WS imaginary potential having an explicit energy dependence
in order to reproduce the data. At the highest energy, an examination
of the various potentials indicates that there are no visible effects
due to nuclear rainbow scattering. However, the data at 201.6 MeV

are suggestive of the influence of quadrupole terms in the interaction
potential. A caleculation of this effect would be very informative

to see if this is the case.

Notch perturbation calculations have been performed for the E

6 28

Be +

28 28

Si potentials obtained here as well as the "Li + Si and 16O+ Si

1,2 . . .9 .
’ The sensitive region in "Be elastic

potentials studied earlier,
scattering extends from about 5-10 fm, and shows that the imaginary
potential is stronger than the real potential throughout. In the

case of 6Li elastic scattering, the data indicate that the imaginary

potential exceeds the real potential at low energies with the real
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potential becoming increasingly important at higher energies, while
for 160 the reverse is true. For all systems at all energies we have
shown that the ratio of V/W evaluated at the radius of maximum sensitivity
is nearly the same for all potentials which fit the data. However,
this ratio is not sufficient by itself to map out the potential, probably
because the V/W ratio samples the potential at only one point while
the scattering itself is sensitive to a fairly large region at any
given energy.
Possible explanations of why the low energy bri data, and to
some extent the 9Be data, are dominated by strong absorption have
been considered. One possibility is related to either Coulomb or

nuclear breakup at low energies., However, simple estimates of this

effect indicate that the expected Coulomb excitation contribution

28

is too small to have a major influence on the 6Li + “VY8i elastic scat-

tering. Tt may be that the strength of the coupling to the direcﬁ
breakup channel is sufficiently large that a full coupled-channels
approach will be required; this aspect should be investigated by cal-
culations.

Using two simple models of the fusion process, we have compared
our potentials to existing fusion reaction cross sections. The 8-
wave barrier radius and height extracted from the various potentials
agree very well with predictions from fusion svstematics. It will
be interesting to see how these barrier parameters compare with low

9 .
energy “Be fusion data.
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Table I. “Be + 28gi Optical Potentialsoa)

c)
o e <§§;}>)) B e éi? (e o)
GO0 300.0 0.567  0.942 41,1  1.054  0.782 -81
692 150.0 0.703  0.944 27.6  1.150  0.753 ~46
G89  100.0 0.767  0.960 23,1 1.191  0.736 31
8 75.0  0.776  1.012 29.8  1.143  0.744 29
€95 15.0 1,149 0.914 26,4 1,185  0.701 -9
e38 13.8  1.244  0.652  503.2  0.617  0.825 -3
cos® 138 1.232 0.729 16.9  1.232  0.729 -3
801®) 10,0 1.162  0.820 20.4  1.162  0.820 0
po1 ) ~ 0.0598) 0.078")  17.8  1.241 { 0.71450) 17
(1.20x%1073)
a) WS form, except as noted. The Coulomb radius, Eq. (4), is rg =

b)

¢)

d)

e)

g)

h)

i)

1.0 fm unless noted otherwise.

See Eq. (3).

Value of calculated rainbow angle for the real potential at EL
= 201.6 MeV.

Four parameter fit with Ty =ty and ap = ape

Taken from Ref. 6, rg = 0.71 fm.

Proximity real potential, see Egs. (5) = (12) in Sec. TIT~RB(2).
Value of AR in Eq. (10).
Value of Ab in Eq. (11).

Energy dependent imaginary diffuseness, a = ay * (al) B The

value of a is shown in parentheses.
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Table IT. 6Li9 126, and 100 + 2851 Optical Potentialsea>
b) a b)
Ton St <MZ§> S (m (ggw o )
61,5 R22 150.0  0.727  0.877  4h.4  0.904 .060
R27 150.0 0.682  0.828  38.8  1.020 0.889
501 150.0  0.725  0.874  34.2  1.019 0.904
302 150.0  0.725  0.874 | 51.6%) 1.112 0.742
(-0.18)
$22 150.0  0.577  0.770  44.4  0.904 1.060
§23 150.0  0.727  0.877  50.8  1.113 0.743
p1od) - 0.107%) o0.0485) 45,5 0.906 1,029
)
p11d) - 0,107 0.8 45,5 0.906 (g:§i§8§3)
[-3.2x1079]
p1od) - -0.045%) -0.081%) 45.5  0.906 1.029
p139) - 0.1078) 0.048%) 36.9  1.088 0.770
78 10,0 1.340  0.809  82.1  0.955 0.727
12¢ H12 10.0  1.320 0.617 30.3 1.160 0.609
160 R18 10,0 1.350  0.618  23.4  1.230 0.552
A23 100.0  0.932  0.797 165.0  0.890 0.764
$75 100.0  1.060  0.640  42.0  1.060 0. 640
A-type™  100.0  0.967  0.745  44.1  1.073 ogeo.fjgl3
(1.14%10 7)

a) Ws form, except as noted.
1.0 fm unless noted otherwise.

b) see Eq. (3).

The Coulomb radius, Eq. (4), is rg =

Potentials E18, A23, and S75 are
from Ref, 1 and potentials R22, R27, Z8, and H12 are from Ref. 2.



c)
d)
e)
£)
g)

h)

el

Wo =Wy + (Wy) Er,. The value of Wy is shown in parentheses.
Proximity real potential, see FEgs. (5) - (12) in Sec. ITI-B(2).
Value of AR in Eq., (10),

Value of Ab in Eq. (11).

Energy dependent imaginary diffuseness, a = ag + (ay1) Ey, + [ ag] o

From Ref. 9, with rg = 1.3 fm.

L



A

Table III. Predicted 9Be + 288i Fusion Barriers.

a) a
w @ oy G e
¢38 8. 145 9,056 5.63 3,90
o5 8.215 8.881 5.63 b4t
a2 8.193 8.699 5.63 ~1.30
POl 8.242 8,894 5.63 4,95
Bo1P) 7. bl 9,447 5.63 8.37
Folded®) 8.066 9,080 5.63 ~2.67
syst.d 8.248 8.874 -~ -

a)

b)

c)

d)

Values of critical radius and critical potential, Eqgs. (19) and
(20), required for Glas-Mosel calculations. A barrier curvature
hw = 5 MeV was also used.

From Ref. 6. This potential does not reproduce the high energy
data sets measured in this work,

From Ref. 10, using method B and N = 0.5.

From Eqs. (21) and (22), based on Ref. 14.
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Table IV. Predicted 61i + 285i Fusion Barriers.

RB VB

Set (fm) (Mev)
R22%) 8.099 6.654
5012 8.071 6.677
p10?) 8.065 6.802
R27P) 7.558 7.120
p1oP) 7.242 7.485
Syst.C) 7.971 6.871

a) Preferred for high energy data sets.

b) Preferred for 13 MeV data set.

¢) From Eqs. (21) and (22), based on Ref. 14.
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FIGURE CAPTIONS

9e + 28gi elastic scattering angular distributions at E, =

Fig. 1. L

13, 121.0, and 201.6 MeV. The curves are representative
optical model fits using two of the WS potentials listed
in Table I. Values of X2/N for potential G95 (G92) are:
13 MeV, 1.4 (2.5): 121.0 MeV, 2.6 (5.1); 201.6 MeV, 2.7 (2.8).

Fig. 2. 16O v 28

Si elastic scattering angular distribution at E, =
215.2 MeV (taken from Ref. 1). The solid curve is a fit
with a shallow WS potential, E18, and the dashed curve is

a prediction using the deeper potential 875 of Table 1I.
Although the deep potential predicts a substantial enhance-
ment of the back angle cross sections due to the existence

of nuclear rainbow scattering, the data show no such effect.

Fig. 3. 98¢ + 2851 elastic scattering angular distributions at EI =

'l

13, 121.0, and 201.6 MeV. The solid curve is a fit to all
three energies using potential G38. Values of XZ/N for
potential G38 are: 13 MeV, 1.235 121.0 MeV, 10.2: 201.6 MeV,
1.8,

Fig. 4, Ipe + 288i elastic scattering angular distributions at EL =
12, 20, and 26 MeV., Data are from Ref. 6. Predicted angular
distributions are shown for potentials G38 and G92 from
this work, along with one of the "universal potentials
from Ref. 6, BOl. Values of XZ/N for potential G38 (G92)
[RO1] are: 12 MeV, 0.6 (5.0) [0.2]: 20 MeV, 2.0 (25.6) [2.7];

26 Mev, 1.9 (12.7) [1.5].



Fig.

Fig.

5.

6.

Fig. 7.

Fig.,

Fig,

8.

A

Comparison between predicted and experimental angular

9 28

distributions for “Be + 51 elastic scattering at 121.0

and 201.6 MeV. The universal potential B0l from Ref. 6 does
not do a good job of reproducing the high energy data,
Predicted angular distributions for 9Be + 288i elastic

scattering at B, = 201.6 MeV, using the deep potential G92

L
with various imaginary well depths. As the imaginary strength
decreases, a large enhancement in the back angle cross sec~
tions due to nuclear rainbow scattering becomes clearly
visible.

ZSSi elastic

Predicted angular distributions for 9Be +
scattering, using the shallow potential G38 with two different
imaginary well depths. 1In this case no evidence for a cross
section enhancement due to nuclear rainbow scattering is

seen because the rainbow effects are so far forward in angle
they are dominated by the huge Coulomb rainbow.

9 28

Fits to high energy “Be + ““Si data using the proximity
model (potential POl in Table T). The fits are similar

in quality to the WS potential fits shown in Figs. 1 and 3,
Values of Y2/N for potential POl are: 121.0 MeV, 4.9; 201.6
MeV, 3.1.

Fits to low energy gBe + 28

Si data using the proximity model
(potential POl in Table I)., The fits are similar in quality

to the WS potential fits shown in Fig. 4. Values of XZ/N

for potential POl ares 12 MeV, 0.5; 20 MeV, 4.9 26 MeV, 0.9,



Fig.

Fig,

Fig.

Fig.,

10,

11.

13.

-

Comparison of WS (G38), proximity (PO1) and folding model

(Ref. 10, Method B, N = 0,5) real potentials which fit 9

28

Be +

Si elastic scattering. The data appear to define the

potential reasonably well in the radial region around 6-9 fm.

Radial form of WS potentials which fit the 1609 ?

bri + 28g4 systems. IBe potentials are listed in Table 1

Be, and

those for the other projectiles are listed in Table II.

The "sensitive region”

for each potential is obtained from
a notch perturbation calculation and is shown separately
for the real (solid lines) and imaginary (dashed lines)
well unless the two regions coincide.

Example of a WS potential which has been modified by addition
of a localized radial perturbation. Varying the position
of the perturbation, Rp9 produces a sensitivity function
such as that shown in Fig. 13.

Sensitivity function for a radial perturbation such as that
in Fig. 12. The "baseline" corresponds to the unperturbed
X2 value. Radii of the real and imaginary wells along with
the turning point of the grazing partial wave (TQ = 0.5)
are indicated for comparison. In this case, the scattering
is sensitive to a region from about 5-9 fm, and the "radius

of maximum sensitivity,” R is about 6.7 fm. 1In general,

S9
Ry decreases as the energy increases and tends to be inside
of the strong absorption radius <D1/2) used by Satchler

(Refs. 9-12).



Fig. 14.

Fig. 15,

Fig. 16,

by T

16 28

Ratio of real to imaginary strength for various ~°0 + “°Si

" refers to the A-

potentials. The curve marked "Satchler
type WS potential from Ref, 9 (see Table II). At each energy
the ratio is evaluated at Ry the radius of maximum sensi-
tivity (for the real potential) from a notch perturbation
calculation. For this system, the real potential is stronger
at low energies and the imaginary potential becomes more
important as the energy increases.

6 ZSSie The curve marked “fits"

Same as Fig. 14, but for “Li +
refers to somewhat different potentials at each energy (see
text). Potential parameters are given in Table II. For
this system, the imaginary potential is stronger at low
energies and the real potential becomes more important as
the energy increases.

Fits to OLi + 288i elastic scattering at 13 MeV (data from
J. B. Poling, ®. Norbeck, and R. R. Carlson, Phys. Rev.

C 13, 648 (1976)), 46 MeV (Ref. 5), and 135.1 MeV (Ref.

2) using an energy independent WS potential (801) and an
energy dependent WS potential (S02). The difficulty in
fitting 611 data over a wide energy range is apparent (see
text)., Potential parameters are listed in Table II. Values
of XZ for potential S01 (802) are: 13 MeV, 21.1 (1.7);

46 MeV, 16.0 (119.5); 135.1 MeV, 5.4 {(10.3). Note the

different angle scales for the high and low energy data.



Fig.

Fig.

Fig.

Fig.

Fig.

17.

18.

19.

48—

6 28

Fits to "Li + “7Si elastic scattering using the proximity
model. Parameters are listed in Table ITI. 1In contrast

to the results of Ref. 2 or Ref. 12, which employed WS and
folded potentials, respectively, the combination of a prox-
imity real potential and a WS imaginary potential does not
properly reproduce the smooth fall-off of the data in the
rainbow region. Values of XZ/N for potential P10 (P11)
are: 13 MeV, 18.0 (9.0); 46 MeV, 14.9 (10.9); 135.1 MeV,
6.1 (6.1). TWote the different angle scales for the high
and low energy data.

9

“Be + 28

Same as Fig. 14, but for S§i. For this system the

imaginary potential is stronger than the real potential

at all energies.

Fits to the high energy 9Be + 288i data using a &4-parameter
WS potential, GO5 (see Table I). Values of X2/N for potential
G05 ares 121.0 MeV, 4.15 201.6 MeV, 3.5.

%o 4 28

Fits to the low energy 81 data using a 4-parameter
WS potential, GO5 (see Table 1). Values of XZ/N for potential

GO5 are: 12 MeV, 0.635 20 MeV, 4.63; 26 MeV, 1.9.

9 28

Predicted complete fusion cross sections for “Be + “78i,
based on parameters extracted from potentials which fit

the elastic scattering. The solid lines correspond to poten-
tial G38 and the dashed lines to proximity potential P0Ol.
Both sharp cut—-off (8C0) and Glas-Mosel (GM) calculatiomns

(see Sec. ITI~F) are shown for each potential. (Predictions

using a deep WS potential such as G92 would look similar



9

to the dashed lines.) Data points are from Ref. 41 and
the relevant barrier parameters are summarized in Table
ITI. Note the increased cross sections predicted in the
GM model compared with the SC0O model at low energies due
to the consideration of barrier penetrability in the former

case.
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