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ABSTRACT 

The elastic scattering of 9Be + 28si has been measured at laboratory 

energies of 121.0 and 201.6 MeV. These data have been combined with 

existing lower energy 9Be + 
28si data in order to carry out a global 

optical model analysis. Calculations employing Woods-Saxon potentials 

yield good fits to the data without requiring explicitly energy-dependent 

parameters. In contrast, using a proximity form for the real potential 

requires an explicitly energy dependent Woods-Saxon lmaglnary potential 

in order to achieve comparable quality fits. Notch perturbation 

calculations have been utilized to locate the radial region of the 

potential to which the scattering is sensitive. At all energies the 

imaginary potential is stronger than the real potential at the radius 



of max~mum sensitivity. This dominance of the absorptive potential 

greatly limits the amount of information ·which can be gained about 

the real potential. Comparison of the 9Be + 28si system with other 

. . h 6 . 28 8 ~. 12c + 28 . d 16 28 . l~ght heavy ~on systems sue as L:L + ,_, S1, an -- 0 + S1. 

suggests that the weak binding of 9Be may be responsible for the strong 

absorption in this case. 



?8 . (9 9 ) NUCLEAR REACTIONS - SJ_ Be, Be 9 E
1 

= 12LO and 20L6 MeV, measured 

do/dQ; optical model analysis; deduced Woods-Saxon and proximity model 

optical parameters, V/W ratios, fusion barriers. Comparison with 

61i + 2Bsi and 16o + 28si behavior. 





I. Introduction 

In recent years we have been involved in a systematic study112 

of the elastic scattering of various light heavy ion projectiles from 

28si. Our goal is to gain a better understanding of this relatively 

simple heavy ion interaction process. For example, we wish to learn 

about the energy dependence of the optical potentials, the sensitivity 

to the real or imaginary well depths, the "projectile dependence" 

of the interaction, and whether heavy ions show evidence for nuclear 

"rainbow" scattering (as is found 3 for light ion projectiles), 

The .an~atz for this study will be the same as that used 1n prev1.ous 

work: We combine our high energy measurements with existing lower energy 

4~6 . 
data 1n order to perform global optical model searches. In addition, 

we begin with a simple assumption about the interaction ~ that it can 

be described by a potential having no explicit energy dependence. 

The neglect of the energy dependence of the real potential (due to 

non~locality of the nucleon-nucleon force) is expected to be a good 

approximation for heavy ion projectiles, since the non~locality effects 

decrease as 1/A • 7 As regards the imaginary potential, the situation 
p 

1s less clear. Our v1ew 1s that, insofar as it is possible to describe 

data over a large energy range without explicit energy dependence, 

the approach is a reasonable one. If the data do not allow such a 

treatment, then more complicated parametrizations must be sought. 

We will see below that the question of whether or not the imaginary 

potential need be explicitly energy dependent depends quite strongly 

on the choice of the real potential. In particular, using a non~Woods~ 



Saxon (WS) shape, such as a folded or proximity real potential, seems 

to requ1re a marked energy dependence in the imaginary potential. 

1 ? 
Rased on our prev1ous work, '- we have been able to separate the 

characteristics of the projectiles investigated into two classifications, 

which we refer to as "light ion" and "heavy ion" behavior. In the 

f 1 . . b 1 . 4 . . f d3 h case o 1ght 1on e1av1or, e.g., He, lt 1s oun tat: a) nuclear 

rainbow scattering is observed at high energies; b) the fitted potentials 

are dominated by the real potential, that is V/W ~ 5 (in the central 

region); and c) the fitted potentials are energy dependent. In contrast, 

for heavy ions, e.g., 16o, we find 112 : a) no evidence for nuclear 

rainbow scattering; b) the fitted potentials have V/FJ ~ 1 (in the 

nuclear surface); and c) it is possible to find energy independent 

potentials which fit data over a very large energy range, provided 

a shallow real well (V
0 
~ 10 MeV) is chosen. 

In Ref. 2 it was shown that the elastic scattering of 12c + 28si 

exhibits heavy ion behavior very similar to the 16o + 28si system. 1 

In contrast, the 6Li + 
28 si system2 behaves in a qualitatively different 

fashion. In particular, the 6Li data at E
1 

= 135.1 MeV do exhibit 

the characteristic exponential falloff of nuclear rainbow scattering. 

As is true for a-particle elastic scattering, 3 a reasonable fit to 

the high energy data requires a real well depth V
0

?: 100 MeV. Further-

. h b . b 1 f. 6 . 28 . d 1 more, 1t as not een poss~. e to 1t L1 + S1 ata over a arge 

energy range with an energy independent WS potentiaL For these 

reasons we classify the 61i + 28si system as one which exhibits light 

ion behavior, 



h f 1 . . f 28 . Because the c aracter o. thee ast~c scatter~ng rom a - s~ target 

changes markedly from 6Li to 12c projectiles, we have undertaken a 

study of the intermediate 9Be + 28 si system in order to map out the 

transition region. In addition, 9Be shares a number of properties 

. 6 . 1 h d h' h 1.n common w~th L~ 9 name y, bot. have groun states w ~c are not 

spin~zero and both are quite weakly bound compared with other projectiles 

d • d f1 • f 6 • d 9 b • • L h f b stu J.e , 'Jompar~son o _ the L~ an Be ehav:LOr m1.gt1t t ere ore e 

expected to shed some light on the question of whether or not the 

d · ff b 6 · d 12c 1 · · 1 d J. erences etween L~ an e ast~c scatterJ.ng are re ate to 

these properties of 6Li. 



II. Experimental 

The elastic scattering of 9Be + 28 si has been studied at laboratory 

energies of 121.0 and 201.6 MeV using 9Be (3+) and 9Be (4+) beams from 

the LBL 88-Inch Cyclotron. Data were measured with an array of four 

2. 5 mm thick Si (Li) detectors mounted m a 91 em diameter scattering 

chamber. The beam spot s1ze at the target was about 1.5 x 3 mn; the 

calculated divergence is roughly o.so. The individual counters in 

the array had an angular acceptance of 0.25° and a spacing of 2°; 

each had a solid angle of 0.13 msr. Measurements were made in 0.5o 

steps at forward angles and 10 steps at backward angles. The angular 

range covered was 30 to 220 at 201.6 MeV and 30 to 3Lfo at 121.0 MeV. 

Absolute angles were determined by making comparative measurements 

on both sides of the beam ax1s, Fluctuations in the beam direction 

were monitored and corrected for in the analysis by means of a suitably 

placed monitor detector. The monitor angle was chosen to correspond 

to a rapidly changing region of the oscillatory forward angle elastic 

angular distribution. Since the inelastic angular distribution of 

the 28si(2+) state at 1.78 MeV excitation is oscillating out of phase 

. h h 1 . +; + . . 1 . . w1t t e e ast1c, the 0 2 rat1o 1s an extreme y sens1t1ve measure 

of the scattering angle, Using this ratio easily allows detection 

of beam angle changes as small as ±o.oso. 

The thickness of the self-supporting, enriched 28si target was 

380 ]Jg/cm2 • It was determined by comparing the elastic cross section 

to that of a natsijtarget which was later weighed. Relative errors 

were obtained for each point by adding in quadrature the error due 



to angular uncertainty and the statistical error. The former error 

dominates at the forward s and essentially negl ible there-

after, Absolute cross sec ti.ons measured here are estimated to have 

an uncertainty of ±10%, 

The data were stored J.n an analyzer based on a TI-960A computer 

and transferred to a ModComp IV/25 computer where they were written 

on tape for subsequent ana lysis, 



III. Results and Discussion 

A. Woods-Saxon Potentials 

As mentioned earlier, we begin by looking for a potential which 

requires no explicit energy dependence. We use a WS shape for both 

the real and imaginary potentials: 

where 

V ( r ) = -V 
0 

)1 + e xp [ ( r - RR) / aR] \ -l 

W(r) = -iw
0

) 1 + exp[(r- R1)/ai]\-l 

For the Coulomb potential we use the standard form: 

Vc(r) 
te2 

' ( r > Rc) r 

2 

[3 ~19 Z Z e 
p t 

(r < Rc) 
2Rc R~ J 

where 

(1) 

(2) 

(3a) 

(3b) 

(4a) 

(4b) 

(4c) 



Global optical model searches were carried out using the code 

GENOA. 8 Generally the input data consisted of 9Be + 28si elastic 

5 scattering cross sections at 13 MeV along with the 121.0 and 201.6 

MeV cross sections measured here. Representative examples of the 

quality of fits obtained are shown in Fig, 1. Parameters for the 

optical potentials shown in Fig, 1, along ~,;rith those for other potentials 

which lead to comparable quality fits, are listed in Table I. 

It is apparent from Table I that a wide range of real we 11 depths 

are allowed by the data, even with the additional constraint of demanding 

an energy independent potentiaL For example, the two potentials 

shown in Fig. 1, G92 and G95, have very similar imaginary wells and 

yet differ by an order of magnitude J.n the real well depth. The close 

similarity of the pred ted angular tributions at all three energies 

demonstrates clear that in the absence of additional knowledge it 

will not be possible to extract information about the real well depth 

in this system. At glance this does not seem surprising - "heavy 

ions" are usually assumed to behave this way. However, our previous 

1 1 ' 2 · h 16o d 12c d h h 1 1 f · t · · resu ts WJ.t an o not s. ow t e same .ac z o _ sens:t :tVJ.ty 

to the rea 1 vJe lL In order to fit 16o + data over a wide energy 

range with an energy independent potential, it was found that on 

a shallow real well (set F:l8 J.n Table II) gave acceptable results. 

The 12c + 28si system led to a similar conclusion (set: Hl2 in Table II). 

The sensitivity to the real well :m the case of 12c and 16o scattering 

1s related to the predicted existence of nuclear rainbow scattering for 

deep real potentials having moderate absorption. This is illustrated 



1n Fig. 2 where predictions for 16o + 28si elastic scattering at 215 

MeV are compared for two choices of real well depth, V
0 

= 10 MeV and 

V 100 M h 1 . 1 ' . 16 28 . 
0 

"" eV. T_ e atter potentJ_a , wh1ch hts low energy 0 + S1. 

elastic data (ELab = 33 - 81 MeV) as well as does the shallow potential, 

is totally incompatible with the high energy data. (We note that it 

is possible, if one relaxes the requirement of energy independence, 

to rectify this discrepancy. 9) However, we emphasize that in the 

9Be + 28si system there is no E:_eed to make the imaginary potential 

energy de pendent in order to ach reasonable agreement with the 

data, independent of the depth of the real potential. 

There is some problem with most of the potentials listed in Table 

I in reproducing the trend of the larger angle data (8 -25°) in 
Ceffio 

the 201.6 MeV angular distribution. This defect is improved, as shown 

in Fig. 3, by using a potential such as G38. (Although the parameters 

of potential G38 are somewhat unusual, it will he seen belm:v that 

this potential is not very different from the other potentials used 

here 1n the important radial region around 5-10 fm.) 

We found empirically that the fitting procedure we used tended 

to overemphasize the high energy data sets. Recently there have appeared6 

h . h 1 . q 28 . . d 1 . . some 1g qua 1.ty -Be + S1 scatter1ng ata at ow energ1es; J.t 1s 

instructive to see whether or not our potentials can reproduce these 

data, Figure 4 shows predictions from two of our potentials, G92 

and G38, compared with the data and one of the "universal" potentials 

from Balzer et al. 6 (Set BOl in Table I), It can he seen that potential 

G92 does not do a completely adequate job at the low energies. (This 

deficiency is already in evidence, albeit not too visibly, in Fig. 1.) 



On the other hand, the fits using potential G38 are quite comparable 

to those using potential BOl. In contrast, Fig. 5 shows that the 

potential derived from the low energy data alone does not extrapolate 

well to the high energy data sets measured in this work. 

One question we hope to answer in this study concerns the existence 

of nuclear rainbow scattering in the high energy angular distributions. 

We know 2' 3 that high energy light ions, up to 611, do show behavior 

· h · d · b 1 · b · h ·1 12 d 16o wh1.c. 1s · om1nated y nuc .ear ra1n ow scattertng, w L e C an 

r J'ect'·Jes ( e "'' 2) d t 192 "'he 9Be "'~ 28st' potentt'als lt'sted p.o 1. se ,.tg. _ o no_, 1. • 

in Table I have predicted rainbow angles, 6R' ranging from ~81° to 

~2°. Thus, one would expect to see evidence for rainbow scattering 

in the data if V
0 

is greater than about 75 MeV, provided the absorption 

ts not too strong. This is demonstrated in Fig. 6 v;hich shows the 

behavior of potential G92 as the imaginary strength is reduced toward 

zero. Although the predicted value of 6R is -46°, there is nonetheless 

an increase in cross section of almost 2 orders of magnitude in the 

region where data exist. We cone lude from this that the absorption 

required to fit the data is suffcient to remove the observable effects 

of rainbow scattering in the calculated angular distributions. Although 

the calculation involving potential G38 (Fig. 3) does show some flattening 

out at back angles, this is not related to rainbmv effects. It can be 

seen in Fig. 7 that for this potential a reduction of the imaginary 

strength by a factor of 100 (to W = 5 MeV) makes essent 11y no change 

1n the magnitude of the predicted cross sections, although the phase 

of the oscillations shifts markedly. 



~10~ 

Based on the classifications outlined in Section I, the above 

results clearly indicate that 9Be behaves as a "heavy ion" projectile, 

B. Other Potential Shapes 

1. Folding Model 

hl 10 f . 1 . f . Sate er has per ormed an extens~ve ana ys~s o our h~gh energy 

9Be + 28si data and also the low energy data of Balzer~ al. 6 utilizing 

a double~folding model for the real part of the optical potential 

and a WS ~mag~nary potential. As was true for the 16o + 28si system 

analyzed earlier, 9 the folding model fits are similar in quality to 

those obtained with a WS real potentiaL However 9 for the 9Be + 28si 

system the folding mode 1 results are anomalous in the sense that a 

substantial renormalization (N ~o.5) is required. In other words, 

the predicted strength of the real potential must be reduced a factor 

of 2 from the folding model estimate in order to fit the data. Although 

a substantial number of projectile + target combinations have been 

studied, 11 only 9Be and 6Li (Ref. 12) appear to require such a large 

reduction in the pred ted strength of the folding-model real potentiaL 

h f 1 • d 1 ]_ • r h 16 28 • d 9 In t e o d1ng-mo e· ana ys1s or t e 0 + S1 ata, a global 

approach was employed. In order to get agreement t-7ith the data, however, 

it was essential to use a WS imaginary potential having an explicit 

energy dependence of the diffuseness parameter. Satchler also showed 

that the same sort of parametrization of the imaginary potential allowed 

a fit to the 16o data with a deep WS real well, something which was not 

possible with an energy independent imaginary potential. Unfortunately, 

no global analysis was performed 10 for the 9Be + 28 si system so no 

systematic behavior of the imaginary potential is available. 



2. Proximity Potential 

In recent years, it has become more common to analyze heavy ion 

eL'lstic scattering 13 and also fusion data 14·, 15 by means of the proximity 

potential formulation. In the proximity model, the real ion-ion potential 

Ls glVen by: 16 

v (I;;) 4ny Cbcp (t;) 

\vhere the dimensionless distance parameter lS 

(r 

In equation ( 5), 

- ct 
c _, 

c + c 
p t 

with c = R [1 ~- (b 2 /R~) J 
X X 

In this paper we will use for the universal proximity function the 

16 analytic approximation given hy Blocki _:-t_~· ~ , 

( 5) 

( 6) 

(7) 

(8) 

(9a) 

(9b) 



-12~ 

Following Vaz and Alexander, 14 we use suggested values 16 for 

most of the parameters but allow for some deviation from the standard 

proximity formulae: 

R 
X 

1/3 -1/3 
= 1.28A - - 0.76 + 0.8 A + ~R 

X X 

b = LO + ~ b 

(10) 

( 11) 

(12) 

In equations (10) and (11), ~R and ~b g1ve us the ability to modify 

the potential slightly. For simplicity, the same ~R value will be 

used for both target and projectile radii. 

Satchler 9 employed a slightly different parametrization of the 

proximity potential in his study of the 16o + 28si system. He found 

that it was possible to get fits comparable in quality to those employing 

a folding~model or \.VS real potential, again using an energy dependent 

imaginary diffuseness. 

Our results, using proximity potential POl 1n Table I to fit 

h 9 28 . d h . . 8 d t,e Be+ 81 ata, are sown 1n F1gs an 9, We found, as did 

Satchler, 9 that it was not possible to obtain agreement with the data 

if an energy independent imaginary potent 1 is used. However, as can 

be seen in Figs, 8 and 9, the agreement ~:vith the data is quite good 

when an energy-dependent imaginary diffuseness 1s employed. Other 

possibilities for the energy dependence (e.g., an energy-dependent 



value of W ) '\vere not investigated, In the 16o + 28si system, 1 even 
0 

a quadratic energy dependence of W
0 

was unsuccessful compared to the 

approach utilized here, 

The optimum values for LIR and L\b in Eqs. (10) and (11) are 0.059 fm 

and 0.078 fm, respectively. In the important radial region, these corres~ 

pond to inc reas the real potential by about 25 ~ SO% compared with the 

standard proximity potential (LIR =Lib = 0). (Note that this modification 

is in the opposite sense to that required for the folding-model potential 

discussed earlier.) In g. 10 we compare the best WS real potential, 

G38, with the folding-model potential (N 0.5) and the proximity potential 

POl. It 1s evident that the data define the value of the real potential, 

A.t least to some extent, in the radial region around 6-9 fm. 

C. Comparison with Other Projectiles 

In order to understand why 9Be behaves differently from the other 

projectiles, it is instructive to examine the potentials which fit the 

various systems. Fig. 11 shows the radial form of the WS potentials 

f 6 . 9 d 160 1 . . f 28 . or 11, Be, an e_.asttc scatter1ng rom S1 .• (The behavior 

and the best~ potential for 12c are so similar to 16o that the 

latter projectile can he considered representative of both ions.) 

Potential parameters may be found in Table I for 9Be and in Table 

II for the other projectiles. We see in Fig. ll that there is evidence 

for a transition ln behavior in going from 611 to 16o. For 6Li 9 the 

J_maglnary potential exceeds the real potential at large radii (or 

low energies) while for 16o the real potential ls stronger at large 

radii. The behavior of 9Be is intermediate between these extremes. 



In this case the real and imaginary potentials are comparable throughout 

the tail region, with the imaginary potential somewhat stronger than 

the rea 1. 

The sensiti_ve reglons shovm in Fig. 11. were obtained from "notch 

perturbation" calculations. 17 As shown schematically in Fig. 12, 

this technique involves scanning a radial perturbation across the 

potential. In radial regions were there is no sensitivity, the x2-

value of the fit remains unchanged, while in sensitive regions X 2 

worsens dramatically. Figure 13 shows the results of such a scan 

f h 9 28 ' 01 M ' h ' 1 G38 . or t e ·Be + S1 system at 2 __ eV Wlt potentHt • It can be 

seen that in this case the sensitive region is about r = 5 - 9 fm 

and that the radius of maximum sensitivity (for the real potential), 

Rsens' is 6.7 fm. For this particular case the real and imaginary 

potentials have essentially the same reg1on of sensitivity. In the 

other cases shown in Fig, 11, the sensitive regions for the real and 

imaginary potentials are indicated separately. For each projectile, 

the sensitive region shovm in Fig. 11 is evaluated for the highest 

energy data set available, that is 135.1 MeV 6ti, 201.6 MeV 9Be, and 

16 215.2 MeV 0. 

Although the potentials we have used have no 

dependence, the cHfferent real and imaginary well geometries nonetheless 

give rise to an implicit energy dependence. This is demonstrated for the 

16o 28s· · · 14 h · f I < · + , J_ system ln F1g. 1 w ere we show the rat1o o. V W evaluated 

at the radius of maximum sensitivity from the notch perturbation calcula-

tions) as a function of energy. We see that for a potential w·hich fits 

the data, such as El8, the ratio slopes downward as the energy increases, 



signifying a gradual increase in the strength of the imaginary compared 

with the real potential. 9 The behavior of Satcher's "A~type" WS potential-

is also shmvn in Fig. 14, This potential has a deep real well but has an 

imaginary diffuseness which increases with energy; it does about as well 

as potential El8 in fitting the data. Although not shown in Fig. 14, the 

proximity model fit to the 16o + 28 si data obtained by Satchler9 behaves 

very similarly to the "Satchler" curve. Thus, it is clear that the trend 

shown in Fig. 14 for potential El8 more or less characteristic of 

all potentials which fit the 16o + 28 si data over the whole energy range. 

It is worth commenting that the overall trend displayed here for the 

16o + 28si system has also been reported for other systems involving 

this projectile, such as 16o + 40ca (Ref. 18) and 16o + Ni (ReL 19). 

For comparison, we also show u1 Fig. 14 the behavior of potential A23 

from Ref. 1. This potential energy independent and has a deep real 

well similar to the A~type potential above; it was "adjusted11 to fit 

the high energy by increasing the imaginary strength. (Such an increase 

has the effect of absorbing a.way the trajectories 1vhich ve r1se 

to the large rainbow cross sections generated with the deep real potentiaL 

When a shallmv real potential such as El8 is used, the rainb01,1 angle 

moves toward 0° and the effect gets lost in the more familiar Coulomb 

rainbow region.) Looking at the V/W ratios in Fig. 14, we see that 

potent 1 A23 behaves very differently than El8 at low energies, 

We might expect, therefore, that potential A23 will work less well 

than El8 in this energy range, as is indeed the case. 



As shown in Fig. 15, for 6Li + 28 si just the opposite trend lS 

observed, with the V/W ratio increasing as the energy increases. 

In the case of 6Li, it was not possible to find an energy independent 

potential which fits the high and low energy data sets simultaneously; 2 

the curve marked "fits" is obtained from somewhat different potentials 

at each energy. We have attempted to improve this situation by including 

various energy dependent parametrizations of both the real and imaginary 

potential. Thus far it has turned out to be difficult to fit the high 

and low energy data sets together. This is demonstrated in Fig. 16, 

h h W . 1 f. 6 . 28 . d b f "' ere we s ow S potentla .lts to Ll + Sl ata at a num er o 

energies. The solid curve in Fig. 16 is representative of a 6-parameter 

WS fit to all three energies using potential SOl of Table II. Compared 

with a potential such as R22 of Ref. 2, this compromise fit causes the 

x2/N value at 135.1 MeV to worsen by a factor of 2; in spite of this 

the fit at the lowest energy is quite poor. By allowing an explicitly 

energy-dependent imaginary well depth (potential 802), it is possible 

to improve the fit to the low energy data set with some additional 

worsening of the high energy fit. Unfortunately, such improvement 

corresponds to a substantial worsening of the fit at 46 MeV. We note 

that for a WS shape, an optimum energy dependent fit leads to a negative 

energy dependence, that is W decreases with increasing energy. This 

aspect is consistent with the trend evidenced in Fig. 15 but lS very 

unusual from a phenomenological point of view. 20 This point will be 

discussed further belm.;r, 



Recently Tabor ~ al. 21 attempted to apply the proximity formalism 

to the scatter of light :tons, They found that, while the formalism 

itself appeared to ~vork, certain discrepancies were apparent. Firstly, 

the effective projectile radius required by the data was larger than the 

model prediction 16 (in agreement with the present results) and secondly, 

the effective ion-ion interaction,¢(~), was determined to be more 

steeply rising in both the surface and tail regions than that given 

hy Ref. 16. It is therefore of interest to see hO\v well a proximity 

potential can do on the 6Li data sets we have studied here. Figure 17 

shows results of using proximity potential FlO. As with theWS potentials, 

the fit to the lowest energy data set is quite poor. In contrast to the 

HS potentials, however, we find that no better agreement with the 135.1 

MeV data set is obtained even when it is fitted alone. The combination 

of a proximity real potential and a WS imaginary potential has difficulty 

reproducing the smooth back angle rainbow fall"-off. This is consistent 

with the results of Tabor et ~l·, 21 in essence affirming the inadequate 

deflecting force represented by the conventional proximity potential 

of Ref. 16. For the 6Li + 
28

si system, the 11 trick" of using an energy 

dependent imaginary diffuseness to obtain global fits doesn 1 t help much, 

As was true with a WS potential (see Fig. 16) improving the 13 MeV fit 

comes at the expense of the 46 MeV fit. Even the extreme of allowing 

independently optimized values of at each energy did little to 

improve things. The resulting values of a1 can be parametrized with 

a quadratic energy dependence (potential Pll). This is basically an 

exercise in parameter-juggling and is unlikely to have any predictive 



power; nonetheless the corresponding fits are shown as the dashed 

curves in Fig. 17. 

The basic problem with fitting the 6Li + 28si data over the whole 

energy range can be discerned by looking at Fig. 15. The lmv energy 

data set requires a very different value of the V/W ratio than do 

higher energy data sets. In fact the ratio appears to change almost 

discontinuously at low energies; the high energy data sets are in 

fair agreement with an energy independent potential. (This statement 

:ts confirmed by comparing the potentials discussed here with existing 

99 MeV 6Li + 28si data. 22 ) Unfortunately, at low energies, the real 

and imaginary wells are complementary to each other to a large extent. 

If we compare the potentials which fit the 13 MeV data with those 

which fit the higher energy data, we find that there are two different 

types of modification of the high energy potentials which are successful 

in achieving a fit at 13 MeV. Either the real potential can be decreased 

by a factor of roughly 3, with the imaginary potential kept the same 

(e.g., S22 or Pl2 in Table II), or the imaginary potential can be 

adjusted to have a steeper fall~off at large radii with the real paten-

tial fixed (e.g., 823 or Pl3). Obviously some combination of these 

techniques (e.g., R27) also \vorks. In any case, it seems unambiguous 

that the 6Li + 
28 si optical potential is very different at 13 MeV than 

it is at energies above 46 MeV. Possible reasons for this behavior 

will be discussed below. 

. h 9 28 . . 8 h Return:tng now to t,e Be+ S:t system, we see :tn F:tg, 1 tat 

the overall trend of V/W is quite flat as a function of energy, with 

the imaginary potential always being stronger than the real. If we 



stretch our faith in a representation of this type, we can infer that 

for this particular system a 4-parameter WS potential (that is, rR = r 1 , 

aR = a ) might be adequate over the whole energy range. Figures 19 and I 

20 show the results of using the 4-parameter potential G05 (see Table I) 

to fit the data. As expected, the fits are nearly the same quality as 

those from the 6~parameter potentials. On the other hand, using the 

folding model potential with a "complex normalization constant" does not 

9 23 yield good fits to the high energy Be data, although the optimum V/W 

ratio, 0.77, ism good agreement with what we find using WS potentials. 

(The preference for a phenomenological WS shape over a folded shape for 

the imaginary potential seems to hold for all of the systems studied up 

to no'N', 11 ) Although there is no theoretical justification for doing so, 

as an exercise ~.;re tried a proximity form for the imaginary as well as 

the real potentiaL We found, as for the folding model, that the optimum 

ratio of V/W was about 0.75, but the fits were rather poor (X 2/N for the 

high energy data sets increased by a factor of 5). Thus, for the 9Be + 

28s · · 1 · 1 h · f h ~ system, an opt~ca potent~a av1ng a common geometry or t e 

real and imaginary well is only successful if a \\TS form is used. 

D. Projectile Spin Effects 

As mentioned earlier, one difference between the 6Li and 9Be 

projectiles and the other projectiles we have studied ~s that both 

the former have non-zero ground state spins (Jn = 1+ and 3/2- for 6Li 

and 9Be, respectively), In principle, this means that a spin-orbit 

potential, which we have not considered in our analysis, must contribute 

to the scattering. One must therefore ask whether ignoring the spin-

orbit term leads to incorrect values of the central potential parameters, 
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Although there :Ls no information on this point for 9Be elastic scattering, 

. . 6 . . the spin-orbit etfects 1.n L:t have been J_nvest ted previously both 

experimentally24925 and theoretically. 26 The existence of a spin"-orbit 

term in the interaction potential was demonstrated 24 
:u1 a study of 6Li 

1 . . 20 d 22 8 1 . d 6 . b e. ast1c scatter1ng at _ an • MeV us1.ng a vector po ax:Lze 11. earn 

on a number of targets, lud 
28

5
. 

' :L ' It was shown ln th work that 

the observed asymmetries were consistent with a folding-model estimate 26 

of the spin-orbit potential. On the other hand, was also pointed 

out that a "reasonable" spin-orbit potential has almost no effect on 

the predicted angular distributions. 2" Chua et al.-Y made a study of 

1 . d 6- . 1 . . . f b unpo arlze LJ_ e astlc scatter1.ng on a var1ety o targets, ut not 

28sc· • at h' l f 50 6 M V . a _ 1g1er energy o • e , Their conclusion, based on a 

standard derivative form for the spin-orbit potential, was that the 

data gave no unambiguous evidence for spin-orb effects, Here too 

the addition of the spin-orbit term had very little observable effect 

on the angular d istrihutions, the main one being a slight increase 1n 

the predicted structure at large angles. (Even this effect could 

be compensated by slight changes in the imaginary potentiaL) From 

these studies 24 , 25 we conclude that, in terms of angular distributions, 

the spin-orbit influence is likely to be negligible. Thus, the poten~ 

tials we extracted from our angular distributions would not be signifi~ 

cantly different if a spin~orbit term were explicitly considered. 

Similar conclusions were reached by Satchler and Love. 12 



Although there are no data from which one can get information 

on the spin-orbit potential the case of 9Be elastic scattering, 

we can use the folding model to estimate the mass dependence of the 

effect. Amakawa and Kubo 26 have shown that the result of folding 

the spin-orbit potential over the projectile volume is that the radial 

form of the spin-orbit term changes from its original derivative form 

to a volume form, and that the mass dependence is A- 2 • In this 
p 

case the spin-orbit effects in 9Be elastic scattering would be even 

smaller than for 6Li and would not be expected to influence our optical 

model analysis. (Clearly the effect of the spin-orbit potential will 

increase at high energ1es and heavier projectile masses due to the 

larger value of the grazing angular momentum. However, since the 

centrifugal potential increases much more rapidly with energy than 

the spin-orbit potential, even at high energies the spin-orbit effects 

are expected 26 to be small.) 

In addition to possible spin-orbit effects, 6Li and 9Be might 

also be influenced by quadrupole terms 1n the optical potentials. 

Satch ler and Fulmer 27 have shown that, J_n a simple coupling mode 1, 

the (incoherent) contribution from the quadrupole term leads to an 

additional elastic cross section which is proportional to the cross 

section for inelastic scattering to the 2+ state in the core. Because 

the 2+ cross section is generally out of phase with the elastic, the 

practical effect of this term is to damp out the structure J_n the 

back angle elastic scattering angular distribution (where 1 and 

Oinel are more or less comparable in magnitude). Evidence for this 

sort of behavior has been seen in heavy ion systems similar to the 
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ones studied here by Parks et al., 28 who investigated the elastic 

scattering of 10B and 11B from 27 Al at 50 MeV. They find that for 

10B + 27 Al there is substantial damping of the cross sections in the 

angular region beyond 8 = 50° compared with a standard optical c.m. 

model prediction. In the case of 11B, the effect is less severe, but 

some filling-in of the minima is visible. Parks et al. were able 

to reproduce these trends by adding the quadrupole cross section, 

calculated with a double-folding model, to the spherical optical model 

cross section. The importance of the quadrupole term was found 28 

to scale roughly as the quadrupole moment of the projectile. 

If we try to apply these results to our situation, the following 

points emerge. Since 61i has a very small quadrupole moment (-0.8 

emb) 29 compared with that for 10B or 11 B (80 and 40 emb, respectively), 30 

it is unlikely that the quadrupole term is significant in this case. 

On the other hand, the 9Be quadrupole moment (65 emb) 29 is comparable 

to those in the boron projectiles. It seems possible, therefore, 

9 that the larger angle Be data, particularly at 20L6 MeV (Figs. 1,3, 

and 8), could contain a contribution from this effect. If this is 

the case, it calls into question to some extent a potentia 1 such as 

G38 (Fig 3), which more or less reproduces the lack of back angle 

9 structure in the high energy Be angular distribution. However, the 

fact that a potential such as G38 is capable of fitting data over 

such a large energy range argues at the very least that it is possible 

to successfully incorporate quadrupole effects, if present, into an 

optical potential. Although calculations such as those reported by 

Parks et a1. 28 are beyond the scope of this paper, they would clearly 
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be very interesting to perform for the 9Be + 28 system. (It is 

9 unfortunate that our experiment does not allow us to observe the ·Be 

projectile excitation, since the approach of Satchler and Fulmer 27 

would then yield a direct estimate of the quadrupole contribution 

to the elastic scattering.) 

E. Breakup 

If we look at the trends for the various projectiles indicated in 

Figs. 14, 15 and 18, we see that 16o behaves in a rather intuitive way, 

that is, the imaginary potential gets more important as the energy 

Lncreases. On the other hand, 6Li behaves in the opposite fashion and 

q 
>Be shows a stronger imaginary potential at all energles. Because the 

binding energies of 6Li and 9Be (1.47 and 1.67 MeV, respectively) are 

very lmv compared with other light heavy ions, it is tempting, partie-

J 1 . f 6 . 'b h 1 b h . b 1 u .ar y ln the case o Ll, to ascrl e t e ow energy e avlor to rea mp 

m the Coulomb field of the target. 

The Coulomb breakup mechanism for 6Li has already been demonstrated31 , 32 

at near-barrier energies on a variety of targets. (Even very near the 

barrier, hovvever, it has been shown 33 that the nuclear potential plays 

a role in the breakup process.) In addition, it was shown 32 that the 

.. f h 6 · d . f '] h. rnaJor·~ty o t. e L1 -+a + cross sect1on comes rom a sequentJa mec an1sm 

1n which 1s first inelastically excited to its 2.18 MeV, 3+ level. 

• • • • 3Lt 
At hlgh energ1es 9 on the other hand, there lS evldence- that the breakup 

changes to a direct (presumably nuclear) process which does not proceed 

through the 6Li 2.18 MeV state. 



If we assume a Coulomb excitation mechanism is dominant at low 

energies, it is possible to estimate what effect it might have on the 

6 . 28 . . ] . 1 L1 + S1 opt1ca . potent1a • Love et al. 35 have shown that the main 

effect shows up in the imaginary potential, which has a long range 

tail added to it characterized by a strength 

w -- 0.01676 
p 

B(E2) g MeV•fm5 , 
2 

(13) 

where~ is the reduced mass (in amu), k is the wave number, g2 is a 

tabulated adiabaticity factor and the B(E2), taken from Ref. 36, is m 

. f 2 f 4 un 1 ts o . e · m • Compared w·ith the cases listed in Ref. 35, however, 

the strength appropriate to 6Li + 28si is more than 2 orders of magnitude 

weakeq near the sensitive radius at 13 MeV the polarization potential 

ts a few keV, compared with an imaginary strength of about 1 MeV. 

Thus, it ts not clear (sequential) Coulomb breakup 1s responsible for 

the low energy behavior. 

If one considers instead a breakup process initiated by nuclear 

. 1 . . h 1 . 35 . h ' . . . 1 tne asttc scattertng, t e cone uston ts t at tne tmagtnary potent1a 

should still be more strongly modified than the real potential. In 

the nuclear case, no simple expression for the polarization potential 

ts available. Although our experimental technique does not allow us 

1 . f . . 1 . . f 6 . ( 3+) to measure t.1e cross sect1on -or proJectl e excttat"Lon o the L1~ 

state at 2.1.8 MeV, it is known from light ion inelastic scattering37 

that this excited state is populated very strongly. In fact, with 

a particles, the integrated cross section for inelast scattering 1s 

twice that of the elastic. It is in just this situation that channel 
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coupling may be most important. 38 Assuming the projectile excitation 

• J 6 . 28 s1· . h . '1 h . u1 ~ow energy 11 + scatten .. ng as a sJ.mJ. ar strengt. y 1t seems 

clear that either a full coupled-channels calculation, or at least 

an . t 1 1 t. h proposed by J.ove et al.- 35 chould approxuna e ca cu a 1on snc as _ _ . o 

he carried out. It 1s interesting that, for a fixed real potential, 

the change required 1n the ~naginary potential at higher energies 

is that the tail increases increases). Qualitatively, this is 

just the sort of behavior which would be expected due to the add it ion 

f 1 . . . J '15 h . h . o a po ar1zat1.on potentu1 .- at t e h1.g er energ1es. The rapid change 

1n the imaginary potential as the energy increases might he related to 

a change 1~n the strength of the coupling to the elastic channel when 

3!, 
the breakup mechanism changes from a sequential to a direct one. 

Of course depending on the strength of the direct process, in the 

h energy regime it may be inappropriate to ignore the explicit 

channel coupling in obtaining optical potentials. Unfortunately, 

there is not enough information presently available to answer this 

question. (As mentioned earlier 1 the low energy are equally 

consistent with a fixed potential anrl a marked weaker 

real potentiaL This could conceivably be viewed as symptomatic of t\w 

same problem that causes the folding~model real potential to require 12 

a substantial reduction for 6Li projectiles. If this were true, one 

might expect that a "global" folding-model fit to the !3 MeV data would 

reqtnre an even larger renormalization than do the higher energy fits.) 

q 
In the Be case, Fig. 18 does not indicate any anomaly in the low 

energy region, although there 1s some preference here too for the 

imaginary to increase relative to the real potential at lmv energies, 



There are certain differences in the 9Be breakup compared with 6Li 

breakup which might explain this fact. Although 6Li breakup at low 

energies goes rna inly through a single state, which is populated pre~ 

9 39 dominantly via Coulomb excitation, the Be breakup goes through a 

number of low-lying states. One of these states is reached by an E2 

. . . h . ( ) . . 1 29 h f h 6 . . d translt1on w1t a B ,E2 s1.m1 ar to t at or t e L1 exc1te state, 

but the others are not reached by E2 transitions and are probably 

excited predominantly by nuclear inelastic scattering. Depending 

on which states dominate the breakup process at a given energy, it 

is conceivable that the V/W ratio for 9Be does not change much near 

the barrier. At higher energies, Stahel et a1. 40 have shown that there 

. . bl d. b k . . h ( 9 8 ) 1s a s1za. e 1rect rea .up cross sect1on 1n t e Be, Be reaction at 

50 MeV, How, or if, the breakup mechanism changes between the Coulomb 

barrier and 50 MeV is presently unknown. 

F. Fusion 

13 18 Certain groups ' have recently attempted to fit both elastic 

and fusion cross sections with a single interaction potent 1, rather 

than treating the two types of data independently. Although there 

. 1 . f . q 28 . f . . 1 b 1 d 1s not muc 1 1.n ormat1on on ·Be + S1 us1.on ava1. a e, some ata 

have recently been measured41 which make it \vorthwhile to compare 

with predictions from our elastic scattering potentials. 

In order to predict fusion cross sections, we must employ a model 

of the fusion process. Most models 15 ,42 , 43 agree that, at low energies, 

the fusion barrier is determined by the max1.mum ln the real (S-wave 

potential: 

04) 



where the barrier radius, RB 9 ~s de fined by 

0 

r "' RR t 

(15) 

In addition, there ~s a maximum in the fusion cross section at an 

energy E 
max' 

which ~n some models 13 ' 15 
~s related to the 

of the "pocket" the real potential for 5!,~£ 
max and ~n 1.n 
cr 

models43 is related to reaching a critical distance, R 
cr 

cross section is given by 

co 

(2£ + 1) Pr;_, 
9, ·o.;; 0 

disappearance 

other 

The fusion 

(16) 

where 1.s the fusion probability for partial wave 9,. In a sharp cut-

o ff ( SCO) mode 1 , 

1 

0 

(£ ;( £cr) 

(5!, > !l,cr) 

Cl7a) 

Cl7b) 

and £ is the highest partial wave for which the barrier maximum ~s cr 

below E • Alterna"tively, the Pn values can be calculated allowing 
Coffio N 

. . h h 11 h b . 13 
transmJ.ss~on t roug , as we as passage ove1~, t e arrJ.er. In so far 

as us a SCO model, i.e., using Eq. (17), predicts essentially the 

same fusion cross sections <~xcept at energ~es very near the barrier, 

we have used the simpler approach. The SCO cross sections are then 

given by: 

(E < E ) 
max 

(l8a) 

(E > E ) (l8b) 
mi1X 



In the critical radius picture of Glas and Mosel (GM), 43 the 

fusion probability, Pt, calculated for transmission through a para~ 

bo lie barrier. If the approximations of constant barrier curvature 

and constant barrier radius are made, this model leads to an analytic 

expression for a f in terms of the i = 0 barrier (see Eqs. ( 14) and 

(15)) and the potential at the "critical" radius for fusion: 

where empirically43 the value for rcr ~s about 1.0 fm. 
0 

(19) 

( 20) 

Figure 21 shows calculations based on both the SCO and GM models 

compared with data from Ref. 41. The various parameters needed for 

the calculations were taken from either potential G38 (solid curves) 

or the proximity potential (dashed curves) and are listed in Table III. 

It appears that the data are most consistent ~vith the GM calculation 

based on potential G38. This is some\vhat surprising since in other 

systems, such as 16o + 28si, a GM calculation based on a shallow WS 

potential such as El8 predicts cross sections much lower than are 

observed experimentally. 15 A SCO calculation with a deep WS real 

potential, such as G92, would look fairly similar to the proximity 

potential calculation shown in Fig. 2l. Although a real WS well depth 

between 13.8 and about 100 MeV is capable of roughly matching the 

magnitude of the experimental cross sections, the SCO model must produce 

a downward sloping curve at high energies, in apparent contradiction 

with the experimental results. 41 



We note that our potentials suggest that the fusion data measured 

J.n Ref. 41 are high energy data, in the sense of being beyond the "bend" 

m the predicted fusion cross sections (see Fig. 21), In the analysis 

of Ref. 41, the data are assumed to be in the low energy reg~me of 

fusion cross sections. Th t . 1 d 4 1 t 1 f th assump 1.on ea s ·.o va ues . or · e 

radius and height of the fusion barrier of RB = 7, 68 ± 1, 02 fm and 

VB = 22 ± 4 HeV. Although the radius extracted from the data is in 

bl . h . 14 h b . h . h . reasona e agreement w1t systemat~cs, t e arr1er e1g t 1s not 

and ~vill lead to very different fusion cross sections at near-barrier 

energies, In spite of there being no low energy data available with 

~vhich to compare, the values for RB and VB obtained from potentials 

which fit the elastic data (Table III) may be compared with the results 

of Vaz and Alexander , 14 who made a systematic study of fusion barrier 

parameters over a very vJide range of nuclei. Their parametrization 

of the barrier parameters is: 14 

(2la) 

(2lb) 

( 22a) 

(22b) 

For 9Be + 
28

si, this leads to the values RB = 8.248 fm and VB "" 8.874 HeV, 

Agreement with the values obtained in Table III is very good and g1ves 

some hope that the potentials we have extracted from the elastic scattering 
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will be capable of also reproducing low energy fusion cross sections. 

Clearly the combination of high-quality fusion data along with the 

available elastic data over a wide energy range will provide an important 

test of whether or not it 1s possible to fit both types of data together 

with a common potential. 

One word of caution regarding the GM ca.lculations is clearly in 

order. It is not implausible that the elastic scattering potential 

can give information regarding the outer S-wave barrier, but it is 

much less clear 11 that the optical potential is still "operative" 

at the smaller separations corresponding to Rcr" There is some hope 

1n our case that the optical model Vcr is reasonable, however, since 

the high energy elastic data do have sensitivity into small enough 

radii to correspond at least roughly to the Rcr values. 

h 6 . 28 . b. . h 1 In t e Ll + 81 system, there 1s an am 1gu1ty at t e .owest 

energy about whether the required change 1n the fit potential should 

be ascribed to the real or the imaginary well. Although hardly a 

definitive test, it is instructive to compare the predicted fusion 

barriers of the various real potentials to the Vaz and Alexander system

atics.14 The results, given in Table IV, sho;,v that the real potentials 

obtained from the high energy data lead to fusion barriers consistent 

with systematics, while the real potentials adjusted to fit the low 

energy data do not. If we make the assumption that low energy 6Li + 28 si 

fusion data do not show any unusual behavior compared with systematic 

predictions - a fact not presently verified - we would conclude that 



the change ln optical potential from low to high energies lS most likely 

related to a change m the tail of the imaginary potential (possibly due 

to strong coupling to other channels). 



IV. Summary 

We have measured the elastic scattering of 9Be + 28si at 121.0 

and 201.6 MeV and, in combination with other data, have performed 

a global optical model analysis in the energy range from 12 to 201.6 

MeV. In contrast to earlier studies, 1 ' 2 we find that it 1s possible 

to obtain a number of energy independent WS potentials, spanning a 

~vide range of real well depths, which fit the data rather welL Op-

tical model calculations employing a proximity form for the real poten-

tial have also been performed. Good fits to the data can be obtained 

provided the parameters of the proximity potential are modified some-

what from their suggested values. In this case it is necessary to 

employ a WS imaginary potential having an explicit energy dependence 

in order to reproduce the data. At the highest energy, an examination 

of the various potentials indicates that there are no visible effects 

due to nuclear rHinbow scattering. However, the data at 201.6 MeV 

are suggestive of the influence of quadrupole terms in the interaction 

potent A calculation of this effect would be very informative 

to see if this is the case. 

Notch perturbation calculations have been performed for the 9Be + 

28si potentials obtained here as well as the 6Li + 28si and 16 o+ 28 si 

. 1 d' d 1' 1 ' 2 potent1a s stu 1e ear 1er. The sensitive region in 9Be elastic 

scattering extends from about 5-10 fm, and shows that the 1.magJ.nary 

potential is stronger than the real potential throughout. In the 

f 6 . 1 . . h d . d' h h . . case o L1 e ast1c scatter1ng, t e ata 1n 1cate t at t e 1mag1nary 

potential exceeds the real potential at low energies with the real 



potential becoming increasingly important at higher energ~es 9 while 

for 16 0 the reverse is true. For all systems at all energies we have 

shmm that the ratio of V/W evaluated at the radius of maximum sensitivity 

is nearly the same for all potentials which fit the data. However, 

this ratio is not sufficient by itself to map out the potential, probably 

because the V/W ratio samples the potential at only one point while 

the scattering itself is sensitive to a fairly large region at any 

given energy. 

Possible explanations of why the low energy 6Li data, and to 

some extent the 9Be data, are dominated by strong absorption have~ 

been considered. One possibilitv is related to either Coulomb or 

nuclear breakup at low energies. However, simple estimates of this 

effect indicate that the expected Coulomb excitation contribution 

. 11 h . . fl 6 . 28 . 1 . ~s too sma. to ave a maJor ~n. uence on the L~ + 81 e .ast~c scat-

tering. It may be that the strength of the coupling to the direct 

breakup channel ~s sufficiently large that a full coupled-channels 

approach will be required; this aspect should be investigated by cal-

culations. 

Using two simple models of the fusion process, 1ve have compared 

OLlr potentials to existing fusion reaction cross sections, The S-

'.vave barrier radius and height extracted from the various potentials 

agree very 1vell "-ri.th predictions from fusion systematics. It will 

be interesting to see how these barrier parameters compare with low 

q f . ..1 energy -Be us~on uata. 
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Set 

G90 

G92 

G89 

G84 

G95 

G38 

GOSd) 

BOle) 

POl f) 

Table I. 9Be + 28si Optical Potentials.a) 

v 
0 

(MeV) 
rRb) 

( fm) 

300.0 0.567 

150.0 0.703 

100.0 0.767 

75.0 0.776 

15.0 1.149 

13.8 L 244 

13.8 1.232 

10.0 1.162 

0.944 

0.960 

1.012 

0.914 

0.652 

0.729 

0.820 

Til 
0 

(MeV) 

41.1 

27.6 

23.1 

29.8 

24.4 

503.2 

16.9 

20.4 

17.8 

1.054 

1.150 

L 191 

1.143 

1.185 

0.617 

1. 232 

1.162 

1. 241 

0.782 

0.753 

0.736 

0.744 

0.701 

0.825 

0.729 

0.820 

0. 7145i) 

(1.20xl0- 3) 

~81 

-46 

~31 

~22 

0 

~17 

a) WS form, except as notede The Coulomb radius, Eq., (4), 1.s rc = 
1.0 fm unless noted otherwise. 

b) See Eq. (3) . 

c) Value of calculated rainbow angle for the real potential at E
1 

= 201.6 MeV. 

d) Four parameter fit with r "' I 

e) Taken from Ref. 6 9 rc = 0.71 fm. 

f) Proximity real potential, see Eqs. (5) ~ (12) in Sec. III-B(2). 

g) Value of 6R 1n Eq. (10). 

h) Value of 6b m Eq. (11). 

i) Energy dependent imaginary diffuseness, a= a
0 

+ (a
1

) EL. 
value of a

1 
is shown in parentheses. 

The 



Table II. 6Li, 12c, and 16 o + 28si Optical Potentials.a) 

Ion 

12c 

l6o 

Set 

R22 

R27 

SOl 

S02 

822 

S23 

PlOd) 

Pll d) 

Z8 

Hl2 

El8 

A23 

vo 
(MeV) 

r b) 
R 

(fm) 

150.0 o. 727 

150.0 

150.0 

150 .o 

150.0 

150.0 

0.682 

o. 7 25 

o. 725 

o. 577 

o. 7 27 

O.l07e) 

o. 877 

0.828 

0.874 

0.874 

o. 770 

o. 877 

0. 04-8 f) 

w 
0 

(MeV) 

44.4 

38.8 

34.2 

l 51.6c) 

(~0.18) 

44.4 

50.8 

45.5 

O.l07e) 0.048f) 45.5 

~Q.045e) ~0.08lf) 45.5 

o.1o7e) o.048f) 36.9 

10.0 1.340 0.809 82.1 

10.0 1.320 0.617 30.3 

10.0 1.350 0.618 23.4 

100.0 0.932 0.797 165.0 

100.0 1.060 0.640 42.0 

100.0 0.967 

r b) 
I 

(fm) 

o. 904 

1.020 

1. 019 

1.112 

0.904 

1. 113 

0.906 

0.906 

0.906 

1 '088 

0.955 

1.160 

1.230 

0.890 

1.060 

1.073 

L060 

0.889 

o. 904 

0.742 

1.060 

0.743 

1.029 

0.7620g) 
(6.3x10~3) 

t- 3 , 2 X 1 0~~ 5] 

1.029 

o. 770 

o. 727 

0.609 

0.552 

0.764 

0.640 

o. 05 3 l 6 
g) 

(l.l4x10~ ) 

a) W8 form, except as noted. The Coulomb radius, Eq. (4), 1s rc"" 
1.0 fm unless noted otherwise. Potentials El8, A23, and 875 are 
from Ref. 1 and potentials R22, R27, Z8, and Hl2 are from Ref. 2. 

b) See Eq. (3). 
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c) W0 = W1 + (W2) EL· The value of W2 is shown in parentheses. 

d) Proximity real potential, see Eqs. (5) ~ 02) in Sec. III·-B(2). 

e) Value of 6 R m Eq. (10), 

f) Value of6b m Eq. (11). 

g) Energy dependent imaginary diffuseness, a= ao + (al) EL + [ a2J E~. 

h) From Ref. 9, with rc = 1.3 fm. 
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Table III. Predicted 9Be + 28si Fusion Barriers, 

RB VB R a) V(R )a) 
cr cr 

Set ( fm) (MeV) (fm) (MeV) --- --~ --~~-·-

G38 8.145 9.056 5.63 3.90 

GOS 8.215 8.881 5.63 4.44 

G92 8.193 8.699 5.63 -1.30 

POl 8.242 8.894 5.63 -4.25 

BOlb) 7.444 9.447 5.63 8.37 

Folded c) 8.066 9.080 5.63 ~2. 67 

Syst. d) 8.248 8.874 

a) Values of critical radius and critical potential, Eqs. (19) and 
(20), required for Glas-Mosel calculations. A barrier curvature 
hw = 5 MeV was also used. 

b) From Ref. 6. This potential does not reproduce the high energy 
data sets measured in this work. 

c) From Ref. 10, using method B and N = 0.5. 

d) From Eqs. (21) and (22), based on Ref. 14. 



Table IV. Predicted 6Li + 28si Fusion Barriers. 

RB VB 
Set ( fm) (MeV) 

~~-

R22a) 8.099 6.654 

SOla) 8.071 6. 677 

PlOa) 8.065 6.802 

R27b) 7.558 7.120 

Pl2b) 7. 21+2 7. Lt85 

Syst. c) 7. 971 6.871 

--~--~-~-< 

a) Preferred for high energy data sets. 

b) Preferred for 13 MeV data set. 

c) From Eqs. (21) and (22), based on Ref. 14' 



Fig, l. 

Fig, 2. 

Fig. 3. 

Fig. 4. 
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FIGURE CAPTIONS 

9Be + 28 si elastic scattering angular distributions at EL 

13, 121.0, and 201.6 MeV. The curves are representative 

optical model fits using two of the WS potentials listed 

~n Table I. Values of X2/N for potential G95 (G92) are: 

13 MeV , L 4 ( 2 , 5 ) ; 121. 0 MeV , 2 • 6 ( 5 • 1 ) ; 2 0 L 6 MeV , 2 , 7 ( 2 • 8 ) . 

16o + 28 s· 1 t' tt · 1 d' t ·b t' t E "' l e as lC sea erlng angu ar lS rl u-lon a L 

215.2 MeV (taken from Ref. 1). The solid curve lS a fit 

with a shallow WS potential, El8, and the dashed curve is 

a prediction using the deeper potential S75 of Table II. 

Although the deep potential predicts a substantial enhance-

ment of the back angle cross sections due to the existence 

of nuclear rainbow scattering, the data show no such effect. 

9Be + 2Bsi elastic scattering angular distributions at E = 
l, 

13, 121.0, and 201.6 MeV. The solid curve is a fit to all 

three energies using potential G38. Values of X2/N for 

potential G38 are: 13 MeV, 1.2; 121.0 MeV, 10.2; 201.6 MeV, 

LB. 

q 28 . 1 . . 1 d . . b . , Be + s~ e .ast~c scatterlng angu ar _ ~strL utlons at E = 
L 

12, 20, and 26 MeV. Data are from Ref. 6. Predicted angular 

distributions are shown for potentials G38 and G92 from 

this work, along with one of the "universal" potentials 

from Ref. 6, BOl. Values of x2/N for potential G38 (G92) 

[1301] are: 12 MeV, 0.6 (5.0) [0.2]; 20 HeV, 2.0 (25.6) f2.7]; 

26 MeV, 1.9 (12.7) [1.5]. 



Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Comparison between predicted and experimental angular 

d . . b . f 9 28 . 1 . . 121 0 1str1 ut1ons .or Be+ S1 e ast1c scatter1ng at . 

and 201.6 MeV. The universal potential BOl from Ref. 6 does 

not do a good job of reproducing the high energy data. 

Predicted angular distributions for 9Be + 28si elastic 

scRttering at E1 = 201.6 MeV, using the deep potential G92 

with various imaginary well depths. As the imaginary strength 

decreases, a large enhancement in the back angle cross sec-

tions due to nuclear rainbow scattering becomes clearly 

visible. 

d . d 1 d. . b . f 9 28 . 1 . Pre 1cte angu ar 1str1 ut1ons or Be + S1 e ast1c 

scattering, using the shallow potential G38 with two different 

imaginary well depths. In this case no evidence for a cross 

section enhancement due to nuclear rainbow scattering is 

seen because the rainbow effects are so far forward in angle 

they are dominated by the huge Coulomb rainbow. 

Fits to high energy 9Be + 28si data using the proximity 

model (potential POJ 1n Table I). The fits are similar 

1n quality to the WS potential fits shown in Figs. 1 and 3. 

Values of iiN for potential POl are: 12LO MeV, 4.9; 201.6 

MeV, 3.1. 

Fits to low energy 9Be + 28si data us1ng the proximity model 

(potential POl in Table I). The fits are similar 1n quality 

to the WS potential fits shown in Fig. 4. Values of X2/N 

for potential POl are: 12 MeV, 0.5; 20 MeV, 4.9; 26 MeV, 0.9. 



Fig, 10. Comparison of WS (G38), proximity (POl) and folding model 

(Ref. 10, Method B, N "' 0.5) real potentials which fit 9Be + 

288' ] ' ' 1 e .. ast1c scatter1ng. The data appear to define the 

potential reasonably well J.n the radial region around 6-9 fm. 

Fig. 11, Radial form of WS potentials which fit the 16o, 9Be 1 and 

6Li + 28 si systems. 9Be potentials are listed in Table I; 

those for the other projectiles are listed in Table II. 

The "sensitive region" for each potential is obtained from 

a notch perturbation calculation and is shown separately 

for the real (solid lines) and imaginary (dashed lines) 

1-;rell unless the two regions coincide. 

Fig. 12. Example of a \oilS potential VJhich has been modified by addition 

of a localized radial perturbation. Varying the position 

of the perturbation, Rp' produces a sensitivity function 

such as that shown in Fig. 13. 

Fig. 13. Sensitivity function for a radial perturbation such as that 

1n Fig. 12. The "baseline" corresponds to the unperturbed 

x2 value. Radii of the real and imaginary wells along with 

the turning point of the grazing partial ¥rave ( "" 0.5) 

are indicated for comparison. In this case, the scattering 

lS sensitive to a region from about 5-9 fm, and the "radius 

of maximum sensitivity," R
8

, is about 6. 7 fm. In general, 

R
8 

decreases as the energy increases and tends to be inside 

of the strong absorption radius (n 112 ) used by Satchler 

(Refs. 9-12), 



Fig. 14. Ratio of real to ~mag~nary strength for various 16o + 28si 

potentials. The curve marked nsatchlern refers to the A

type WS potential from Ref. 9 (see Table II). At each energy 

the ratio is evaluated at R
8

, the radius of maximum sensi

tivity (for the real potential) from a notch perturbation 

calculation. For this system, the real potential is stronger 

at low energies and the imaginary potential becomes more 

important as the energy increases. 

Fig. 15. Same as Fig. 14, but for 61i + 28 si. The curve marked "fits" 

refers to somewhat different potentials at each energy (see 

text). Potential parameters are given in Table II. For 

this system, the imaginary potential is stronger at low 

energies and the real potential becomes more important as 

the energy increases. 

Fig. 16. Fits to 6Li + 28 si elastic scattering at 13 MeV (data from 

J. E. Poling, E. Norbeck, and R. R. Carlson, Phys. Rev. 

C 13~' 648 (1976)), 46 MeV (Ref. 5), and 135.1 MeV (Ref. 

2) using an energy independent WS potential (SOl) and an 

energy dependent WS potential (S02). The difficulty in 

fitting 6Li data over a wide energy range is apparent (see 

text). Potential parameters are listed in Table IL Values 

of x2 for potential SOl (S02) are: 13 MeV, 21.1 (1.7); 

46 MeV, 16.0 (119.5); 135.1 MeV, 5.4 (10.3). Note the 

different angle scales for the high and low energy data. 
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Fig. 17. Fits to 6Li + 28 si elastic scattering us1ng the proximity 

Fig. 18. 

model. Parameters are listed in Table II. In contrast 

to the results of Ref. 2 or Ref. 12, which employed WS and 

folded potentials, respectively, the combination of a prox~ 

imity real potential and a WS imaginary potential does not 

properly reproduce the smooth fall~off of the data in the 

rainbow region. Values of x2/N for potential PlO (P11) 

are : 13 MeV , 18 • 0 ( 9 • 0 ) ; 4 6 MeV, 11+. 9 (1 0 • 9 ) ; 13 5 • 1 MeV, 

6.1 (6.1). Note the different 8.ngle scales for the high 

and low energy data. 

. 14 b f 9 28 . Same as F1g. , ut or ·Be + S1. For this system the 

imaginary potential is stronger than the real potential 

at all energies. 

. . h . h 9 28 . d . 4 F1g. 19. F1ts to t e h1g energy Be + S1 .ata us1ng a ~parameter 

WS potential, G05 (see Table I). Values of x2/N for potential 

G05 are: 121.0 MeV, 4.1; 201.6 MeV, 3.5. 

Fig. 20. Fits to the low energy 9Be + 28 si data using a 4~parameter 

WS potential, GOS (see Table I). Values of X2/N for potential 

GOS are: 12 MeV, 0.6; 20 MeV, 4.6; 26 MeV, 1.9. 

Fig. 21. Predicted complete fusion cross sections for 9Be + 28si, 

based on parameters extracted from potentials which fit 

the elastic scattering. The solid lines correspond to poten-

tial G38 and the dashed lines to proximity potential POl, 

Both sharp cut-off (SCO) and Glas-Mosel (GM) calculations 

(see Sec. III-F) are shown for each potentiaL (Predictions 

using a deep WS potential such as G92 would look similar 



to the dashed lines.) Data points are from Ref. 41 and 

the relevant barrier parameters are summarized in Table 

III. Note the increased cross sections pred ted 1n the 

GM model compared with the SCO model at low energies due 

to the consideration of barrier penetrability in the former 

case. 
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