UC Berkeley UC Berkeley Previously Published Works

Title On embedding 4-manifolds in R7

Permalink https://escholarship.org/uc/item/9bs6f38k

Journal Mathematical Proceedings of the Cambridge Philosophical Society, 61(3)

ISSN 0305-0041

Author Hirsch, Morris W

Publication Date 1965-07-01

DOI 10.1017/s0305004100038998

Peer reviewed

d = |(a, b; a = baab, b = abba)|. G' and then to G'' proves that $a to Z_3$.) Notice that the commay therefore conclude that if anifold M^{n+1} and $M^{n+1} - O^n$ is from $\pi_1(M^{n+1})$ onto Z_3 . On the m^{n+1} , thus if $O^n \subset M^{n+1}$, Z_3 is a

as fundamental group $\pi_i(O^n)$ is with boundary, that imbedups have the property that if beddings of the sort yielding rty that

f [G,G].

t normal subgroup of $\pi_1(V)$

oundary is immediate when

. Scand. 10 (1962), 119–126. dge, 1962).

ogie (Toubner; Berlin, 1934). notes; 1963).

On embedding 4-manifolds in R^7

By MORRIS W. HIRSCH University of California

(Received 4 January 1965)

Let M denote a connected, compact, unbounded, piecewise linear (= PL) manifold of dimension 4. Denote by $\overline{W}_3(M)$ the normal Stiefel-Whitney class in dimension 3, with integer coefficients (twisted if M is not orientable).

It is well known that $\overline{W}_3(M) = 0$ if M is orientable; see (5), for example. Let R^7 denote Euclidean 7-space.

THEOREM. If M is orientable, or, more generally, if $\overline{W}_3(M) = 0$, then there is a PL embedding $M \to \mathbb{R}^7$.

(Note. This theorem, with the same proof, is due independently to C. T. C. Wall.)

Proof. Let $\Delta \subset M$ be a 4-simplex, and put $M_0 = M - \operatorname{int} \Delta$. Let S be the 3-sphere $\partial M_0 = \partial \Delta$.

The embedding $M \to R^7$ is constructed in two stages, following the method of Haefliger-Hirsch ((1)). First a PL embedding $g: M_0 \to R^7$ is found such that $g|S \simeq 0$ in $R^7 - g(\operatorname{int} M_0)$; call such an embedding *untwisted*. Then a theorem of Irwin is applied to extend g to a PL embedding of Δ in $R^7 - g(\operatorname{int} M_0)$.

To find an untwisted PL embedding $g: M_0 \to R^7$, the argument of § 4 of (1) is applied to a smoothing \tilde{M}_0 of M_0 (which exists because M_0 is 4-dimensional ((7))) to produce a smooth untwisted embedding $f: \tilde{M}_0 \to R^7$; then Whitehead's approximation theorem ((6)) is invoked to obtain g.

(For completeness, the construction of the smooth embedding $f: \tilde{M}_0 \to R^7$ is outlined. In (2) it is proved that there is a smooth embedding $h: \tilde{M}_0 \to R^7$, which might be twisted. If $\overline{W}_2(M) = 0$, then h admits a normal vector field, thought of as a map $u: M_0 \to R^7 - h(M_0)$. If M is orientable, u(S) bounds the chain $u(M_0)$ in $R^7 - h(M_0)$. Alexander duality and Hurewicz isomorphism then imply $u(S) \simeq 0$ in $R^7 - h(M_0)$, and it follows that h is untwisted. If M is not orientable, then u(S) bounds mod 2; in this case g is obtained by twisting $h(M_0)$ around the 3-handles of a handle decomposition.)

Assume then that $M_0 \subset R^7$ as a subcomplex, and $S \simeq 0$ in $R^7 - M_0$. Let $N \subset R^7$ be a 'regular neighbourhood' of M_0 with $S \subset \partial N$ ((3)). Put $W = R^7 - \text{int } N$. The *PL* 7-manifold W is easily seen to be 2-connected, since it has the same homotopy type as $R^7 - M_0$.

Clearly $S \simeq 0$ in W, so there exists a map $v: \Delta \to W$ with v|S = identity. Theorem 1 of Irwin ((4)) implies that v is homotopic rel S to a PL embedding $\phi: \Delta \to W$. Since $W \cap M_0 = S$, the embedding ϕ completes the embedding of M in \mathbb{R}^7 .

M. W. HIRSCH

REFERENCES

- HAEFLIGER, A. and HIRSCH, M. Existence and classification of differentiable embeddings. Topology, 2 (1963), 129–135.
- (2) HIRSCH, M. On imbedding differentiable manifolds in euclidean space. Ann. of Math. 73 (1961), 566-671.
- (3) HUDSON, J. F. P. and ZEEMAN, E. C. On regular neighbourhoods. Proc. London Math. Soc.
 (3) 14 (1964), 719-745.
- (4) IRWIN, M. Combinatorial embeddings of manifolds. Bull. American Math. Soc. 68 (1962), 25-27.
- (5) MASSEY, W. and PETERSON, F. On the dual Stiefel-Whitney classes of a manifold. Bol. Soc. Mat. Mexicana (1963), pp. 1-13.
- (6) WHITEHEAD, J. H. C. On C¹ complexes. Ann. of Math. 41 (1940), 809-824.
- (7) WHITEHEAD, J. H. C. Manifolds with transverse fields in euclidean space. Ann. of Math. 73 (1961), 154-212.

proc. Camb. Phil. Soc. (1965), 6 Printed in Great Britain

Unkn and

knottedness hypotheses. p, S^{p-1} for the standard un Kosinski proved in (5), y I Let T be a submanife of its complementary compo-II Let T_1, T_2 be as in I. T III Let S_1, S_2 be subm and $S^{p+q+1} - S_2$ are diffeom The present paper is m improved. To fix notation LEMMA 1. Let T^{p+q} be a that each component has A joint union of two open se homology S^p , and if $p \neq 1$ We shall call a manifold

We shall present this pap

though all our arguments

of a sphere with a disc or sphere throwing the man diffeomorphic to the produ Lemma 1, our first main r

THEOREM 2. Assume p-(A) Suppose C_p is a ho p = 1 and q = 3, assume th (B) Suppose $p, q \neq 1$ an torus.

(C) Suppose q = 1, and Then T is unknotted if and

Conjecture. Any h-cobor It should perhaps be 1 geometric terms, we have s to a purely algebraic (comp between our conjecture at

Proceedings of the CAMBRIDGE PHILOSOPHICAL SOCIETY

(MATHEMATICAL AND PHYSICAL SCIENCES)

VOLUME 61

CAMBRIDGE AT THE UNIVERSITY PRESS 1965