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ABSTRACT OF DISSERTATION

Optimization of Signal Segmentation, Signal Recovery, and Limited Current

by

Hung-Hsu Chou

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Russel E. Caflisch, Chair

The first chapter is based on applying the Poisson summation formula to a con-

strained optimization problem. Motivated by Shannon sampling theorem and results on

shift-invariant subspaces, we establish a compatible framework for the two key factors:

the accuracy constraint, which is described in the frequency space, and the efficiency

function, which is expressed in the regular space. We derive the optimal wavelet, denoted

as the double-sinc function, that obtains the smallest support while remaining first or-

der accuracy. Based on this wavelet, we further improve its accuracy by loosen up the

constraint in support and manage to achieve nearly optimal efficiency.

The goal of the second chapter is to recover the underlying signal from its superposed

randomly-shifted noisy measurement, motivated by multi-reference alignment and Cryo-

EM problem. The general setting is that we observe samples from noisy signal that is

acted by a random group action, and we would like eliminate those noises, one type at

a time. In our particular setting, rational Fourier monomials and total Fourier product

are invariants under the group action and hence partially remove the effect of the noise

from the group action. We then apply central limit theorem to eliminate the Gaussian

noise. Finally, we apply the split Bregman algorithm in compressed sensing to obtain an

explicit solution assuming that the signal is compactly supported.
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The third chapter is dedicated to applying a variation principle to the Euler-Poisson

equation for periodic flow in a diode to optimize the flux difference, which could poten-

tially exceed the Child-Langmuir limit. We derive a set of dual equations and boundary

conditions and use upwind method to solve both the forward and backward equations.

In our numerical experiment we derive a periodic solution whose flux goes above the CL

limit before the physical setting or the method of characteristics breaks down.



The dissertation of Hung-Hsu Chou is approved.

Inwon Kim

Stanley J. Osher

Monica Visan

Russel E. Caflisch, Committee Chair

University of California, Los Angeles

2019

iv



To the world and myself

v



Contents

Abstract ii

List of Figures viii

Acknowledgements ix

Vita x

1 Signal Segmentation of Amplitude-Modulated Signal 1

1.1 Motivation from Poisson and Shannon . . . . . . . . . . . . . . . . . . . 3

1.2 Projection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Support Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Efficiency Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Derivation of Analytic Optimizer . . . . . . . . . . . . . . . . . . 10

1.4.2 Analysis on Analytic Optimizer . . . . . . . . . . . . . . . . . . . 12

1.4.3 Numerical Convolution Optimizer . . . . . . . . . . . . . . . . . . 14

1.5 Wavelet Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 Truncated Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.2 Double Sinc Function . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.3 Optimal Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Superposed Multi-Reference Alignment Problem 20

2.1 Motivation: MRA and Cryo-EM . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Pairwise Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Frequency Marching . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Method of Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 SMRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Invariant: Rational Fourier Monomial . . . . . . . . . . . . . . . . 32

2.3.3 Ratio Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Phase and Spectrum Product Estimation . . . . . . . . . . . . . . 35

2.4.2 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Unsteady Current Beyond Child-Langmuir Limit 40

3.1 CL Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Flux optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Lagrange Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 Dual Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Steady Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Break Down of Characteristics . . . . . . . . . . . . . . . . . . . . 53

3.4.3 Break Down of CL Limit . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Signal Segmentation 57

A.1 Poisson Summation Formula . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Proof of Corollary 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Analysis of kernel η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B MRA 63

B.1 Spectrum and Bi-spectrum Calculation . . . . . . . . . . . . . . . . . . . 63

B.2 Cyclotomic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.3 Ratio Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.4 Fermats Little Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 67



List of Figures

1.1 Periodization and unperiodization of band-limited signals in frequency
space, with perfect reconstruction . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Periodization and unperiodization of AM signals in frequency space, with
imperfect reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Efficiency maximizer φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Partition of the maximizer φ . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Structure of convolution optimizers φ2, φ3, φ10 (from left to right). Note
that φ2 is very similar to the analytic solution in figure 1.3. . . . . . . . . 16

2.1 The underlying signal x . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Illustration of samples y generated based on x . . . . . . . . . . . . . . . 22

2.3 Original samples yi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Aligned samples zi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Averaging over original samples . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Averaging over aligned samples . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 A superposed signal (top) that allows different decomposition, depending
on whether the shift is the same (right) or not (left) . . . . . . . . . . . . 31

2.8 The relation between the l2 error in our estimation and sparsity of the
signal, normalized compared to random guesses . . . . . . . . . . . . . . 37

2.9 An example of estimation that deviates from the underlying signal but
preserves the signal’s general shape . . . . . . . . . . . . . . . . . . . . . 39

3.1 Characteristics of steady solutions when ψ0 ≈ −
√

2u0J0 . . . . . . . . . . 47

3.2 Steady solution with parallel characteristics . . . . . . . . . . . . . . . . 53

3.3 Formation of shocks and nearly vertical characteristics . . . . . . . . . . 54

3.4 Nonuniform density in characteristics . . . . . . . . . . . . . . . . . . . . 55

viii



ACKNOWLEDGEMENTS

I am grateful to have Russel Caflisch as my advisor, who has been providing me

insightful guidance. I would like to thank Afonso Bandeira and Inwon Kim for their

reading groups and advice, as well as all my committee members. I would also like to

thank my colleague Jonathan Siegel for the enormous amount of useful discussions. My

research was conducted under the support of UC Regents, NSF, and AFOSR grant.

ix



VITA

Education

2013 B.S. in Physics

College of Creative Studies, UCSB

2017 Adjunct Instructor

Courant Institute of Mathematical Sciences, NYU

Publication

• Russel E. Caflisch, Hung Hsu Chou, and Jonathan W. Siegel (2018). Accuracy,

Efficiency and Optimization of Signal Fragmentation. submitted to Multi-

scale Modeling and Simulation

• Russel E. Caflisch, Hung Hsu Chou, and Jonathan W. Siegel (2018). Efficient

Frame Projection of Amplitude-Modulated Signals. UCLA CAM report

• Michael D. Johnson, Hung Hsu Chou, Carl R. Gwinn (2013). Optimal Correla-

tion Estimators for Quantized Signals. The American Astronomical Society,

752(2), 135-142. arXiv:1210.7271

x



Chapter 1

Signal Segmentation of

Amplitude-Modulated Signal

Signals are often analyzed in the frequency space despite the fact that our devices operate

in regular space. Bridges between those spaces have received much attention and led to

great results, the Poisson summation formula and Shannon sampling theorem for instance.

Our work focuses on the finding an accurate and efficient way to segment amplitude-

modulated signals, with applications to antenna transmission.

Consider a signal f ∈ L2(R) whose Fourier transform is supported on a small neigh-

borhood of radius ε around ±1. Signals of this type are called amplitude-modulated

(AM) signal with bandwidth ε. Our first goal is to find wavelets φ ∈ L2
c(R) such that the

approximation

f(t) ≈
∑
n∈Z

f(n∆)φ(t− n∆) (1.1)

is highly accurate for AM signals, where N ∈ N, and ∆ = 2π
N

represents the spacing

between wavelets. A more compact expression of (1.1) is

f ≈ φ ∗ C∆ · f (1.2)
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where C∆ :=
∑

n∈Z δn∆ is the sum of Dirac distributions over the lattice ∆Z, also known

as the Dirac comb.

The second goal is to minimize the support size of wavelets. In antenna transmission,

the support size of wavelets correspond to the amount of time each device needs to be

turned on. The signal is fully delivered only after all device finish their tasks, and hence

it is undesirable to have wavelets with large support. For instance, in Shannon sampling

theorem, the wavelets are not compactly supported and requires modification in practice

[1]. Errors from those modification are often complicated if not intractable, and hence

we want to avoid such by requiring our wavelets to be compactly supported.

The third goal is to maximize the efficiency of our approximation. Inefficiency are

mostly due to cancellation between wavelets, and can be costly in practice. Our formu-

lation of efficiency is based on the energy in the far-field energy, the Ohmic heating, and

the radiation [2].

In summary, we would like to find wavelets φ such that for any AM signal f ,

1. the projection error ||f − φ ∗ C∆ · f ||2 is small,

2. the support size |Ωφ| is small,

3. the efficiency E(φ) := φ̂(1)2

|Ωφ|·||φ||22
is large.

Notation-wise, denote f̂(k) or F(f)(k) :=
∫∞
−∞ f(t)e−iktdt to be the Fourier transform of

f evaluated at k, and Ωφ to be the support of φ.

We first provide motivation of our formulation in section 1.1 and formally state the

accuracy constraint and the scaling of the error in projection in section 1.2. In section

1.3 we derive the lower bound of support sizes subject to the accuracy constraint. In

section 1.4 we formulate the efficiency optimization problem in two ways, one through

analytic calculation and one through numerical simulation. In section 1.5 we compute

the efficiency of the wavelets we derive and compare them with other typical wavelets.
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1.1 Motivation from Poisson and Shannon

In signal processing, signals are often easier to describe in the frequency space. By

Parseval’s identity, the projection error can be expressed as

||f − φ ∗ C∆ · f ||2 = ||F(f − φ ∗ C∆ · f)||2

= ||f̂ − φ̂ ·NCN ∗ f̂ ||2

due to the Poisson summation formula (A.2). Therefore it suffices to find φ such that

||f̂ − φ̂ ·NCN ∗ f̂ ||2 is small. For simplicity, we will absorb the factor N into the wavelet

φ.

An application of the Poisson summation formula is the Shannon sampling theorem,

which plays a important role in signal processing. The techniques in the Shannon sam-

pling theorem (1.1) is simple yet inspiring, which will be shown as we reconstructed the

proof of theorem 1.1.

Theorem 1.1. (Shannon sampling theorem[3])

Fix N > 0 and ∆ = 2π
N

. A signal f ∈ L2(R) whose Fourier transform is supported

on (−N/2, N/2) can be fully reconstructed from its samples on the lattice ∆Z. The

reconstruction takes the form

f = φ∆ ∗ C∆ · f (1.3)

where φ∆(t) := sin(∆−1t)/(∆−1t) is called the sinc function.

Proof. The core idea is to periodize f̂ with CN and unperiodized it with φ̂, illustrated by

figure 1.1.
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Figure 1.1: Periodization and unperiodization of band-limited signals in frequency
space, with perfect reconstruction

Clearly, if φ̂ is the indicator function of (−N,N), then the reconstruction is perfect

and f̂ = φ̂ · CN ∗ f̂ . Note φ̂ = Nφ̂∆, and hence f can be expressed as

f = F−1f̂ = F−1
(
Nφ̂∆ · CN ∗ f̂

)
= φ∆ ∗ C∆ · f

where φ∆(t) := sin(∆−1t)/(∆−1t).

We would like to apply similar techniques to AM signals, but with the constraint

that our wavelet must be compactly supported in the regular space, which means it can

not be compactly supported in the frequency space. In exchange, we will sacrifice some

accuracy and the error scales with εN−1; in the limit as εN−1 goes to zero we will obtain

perfect reconstruction of am signals. Our method, similar to the one’s used by Shannon,

is illustrated in figure 1.2.
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Figure 1.2: Periodization and unperiodization of AM signals in frequency space, with
imperfect reconstruction

1.2 Projection Accuracy

Projections to partial wavelet spaces have received much attention in signal processing

literature [4] due to its applications. Along with results from frame theory [5] and complex

analysis [6], it was shown that the accuracy of such projections are related to the order

of zeros on some lattice in the frequency space in the following sense:

Definition 1.2. Let ε > 0, the space of ε-band-limited functions Hε is given by

Hε := {f ∈ L2 s.t. f̂(k) = 0 if |k| ≥ ε}. (1.4)

5



Let φ ∈ L2(R) with ‖φ‖2 = 1. The partial wavelet space of φ, S(φ), is defined by

S(φ) := span{φ(x− n)}n∈Z. (1.5)

Let φ ∈ L2(R) and ε > 0. The accuracy of φ at bandwidth ε is

Aφ(ε) := sup
f∈Hε, ‖f‖2=1

‖PS(φ)f − f‖2
2 (1.6)

where P stands for projection.

Theorem 1.3 ([6]). Assume that φ ∈ L2(R) has compact support and

Rφ(k) :=
∑
n∈Z

|φ̂(k − n)|2 (1.7)

is bounded and bounded away from 0. Let L > 0 be an integer. Then

Aφ(ε) = O(ε2L) (1.8)

iff F(φ)(l)(n) = 0 for all n ∈ Z\{0} and l = 0, ..., L − 1, i.e. if and only if the Fourier

transform of φ vanishes to order L at all non-zero integers.

Theorem 1.3 describes the conditions for accurate projections and their correspond-

ing error. Though larger L leads to smaller error, for simplicity we will consider the

simplest case where L = 1. Since AM signals have Fourier transform supported around

±1 and the spacing between our wavelets are ∆ rather than 1, we are interested in the

modified error

Ãφ(ε) := sup
f∈Hε±1, ‖f‖2=1

‖PS∆(φ)f − f‖2
2 (1.9)

where S∆(φ) := span{φ(x− n∆)}n∈Z. A natural condition for wavelets in AM signals,

motivated by figure 1.2 and theorem 1.3, is defined in definition 1.4.
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Definition 1.4. Fix N ≥ 3. We say φ ∈ L2
c(R) is first order accurate at the scale of N

for AM signals if

φ̂(±1 +NZ\{0}) = 0 , φ̂(±1) = 1. (1.10)

We will refer (1.10) as the accuracy constraint.

Theorem 1.5. Fix N ≥ 3 and ∆ = 2π
N

. Suppose φ is first order accurate at the scale of

N for AM signals, and f is an AM signal with bandwidth ε. The projection error scales

like

||f − φ ∗ C∆ · f ||2 = O(ε∆). (1.11)

The proof of theorem 1.5 is very similar to the proof of theorem 1.3. As a result

of theorem 1.5, sinusoidal signals can be perfectly reconstructed by first order accurate

wavelets.

The accuracy constraints involve infinitely many qualities, which can be hard to work

with. Fortunately, it can be translated into a system of two equations in the regular space

according theorem 1.6, which will be useful in the later sections.

Theorem 1.6. Fix N ≥ 3 and ∆ = 2π
N

. Suppose φ is a Schwartz function in R. Then φ

is first order accurate at the scale of N for AM signals if and only if

U±φ := N−1C∆ ∗Q±φ = 1 (1.12)

where Q±φ := e∓itφ(t).

Proof. By the Poisson summation formula,

F(U±φ ) = F
(

1

N
C∆ ∗ e∓itφ(t)

)
= CN · δ±1 ∗ F(φ). (1.13)

Hence φ is first order accurate at the scale of N for AM signals if and only if F(U±φ ) = δ0,

which is equivalent to U±φ = 1.

7



1.3 Support Bound

Since the accurate wavelets for AM signals are not required to be compactly supported in

the frequency space, we expect the existence of accurate compactly supported wavelets.

While the existence of such wavelets are easy to show, we are further interested in find-

ing the ones that have the minimal support, if there a minimum do exist. Using the

equivalent accuracy constraints 1.12, we manage to derive the minimum support and its

corresponding minimizer, as described in theorem 1.7.

Theorem 1.7. Fix N ≥ 3 and ∆ = 2π
N

. If φ is first order accurate at the scale of N

for AM signals, then |Ωφ| ≥ 2∆. If |Ωφ| = 2∆, the φ equals to the double sinc function,

denoted as ψ and defined as

ψ :=


N

sin(∆)
sin(∆− |t|) if |t| ≤ ∆

0 otherwise

(1.14)

Proof. Suppose φ ∈ D1,N ∩D−1,N with support Ωφ ⊂ [−∆,∆]. Decompose φ into φ1(t) =

φ(t − ∆)χ[0,∆](t) and φ2(t) = φ(t)χ[0,∆](t) (so that φ = φ1(t + ∆) + φ2(t)), where χ are

indicator functions. By theorem 1.6 we have

Nχ[0,∆](t) = e−it(ei∆φ1 + φ2) (1.15)

Nχ[0,∆](t) = eit(e−i∆φ1 + φ2) (1.16)

The solution to the system is

φ1(t) =
N

sin(∆)
sin(t)χ[0,∆](t) (1.17)

φ2(t) =
N

sin(∆)
sin(∆− t)χ[0,∆](t) (1.18)

where we recover (1.14).

8



According to theorem 1.6, the projection error of ψ should go to zero when f is

sinusoidal, which implies the following corollary.

Corollary 1.8. Sinusoidal signals can be perfectly reconstructed by the linear combination

of shifted double sinc function ψ defined in (1.14). In particular, for integer N ≥ 3,

sin(t) =
1

N

∞∑
n=−∞

sin(n∆)ψ(t− n∆) (1.19)

where ∆ = 2π
N

.

Proof. See A.2.

1.4 Efficiency Optimization

Under the assumption of perfect superposition, i.e. the far-field signal is equal to the

sum of the derivatives of the currents in antennas, efficiency can be defined as the ratio

between energy density in the far field and the energy dissipation in the antennae, which

is due to radioactive loss and Ohmic heating. Suppose the efficiency is defined as

Eeff :=
Efar

Erad + Eohm

. (1.20)

In the limit when the number wavelets N is large and the number of antenna M is

comparable to N , [2] states that the efficiency for such projection is approximately

Eeff ≈ E1(φ) :=
φ̂(1)2

|Ωφ| · ||φ||22
(1.21)

≈ E2(φ) :=
||φ||21

|Ωφ| · ||φ||22
(1.22)

after normalization. Roughly speaking, the numerator is the far field energy and denom-

inator is the radioactive loss; the Ohmic heating is less significant in the regime where

M and N are large. Here we list two efficiency formulations (that are approximately the

9



same when M,N � 1) because (1.21) is easier to work with analytically, as shown in

section 1.4.1 while (1.22) is easier to work with numerically, as shown in section 1.4.3.

Our goal at this stage is to maximize the efficiency, while maintaining accuracy and

small support. The accuracy constraints in theorem 1.6 implies that |Ωφ| ≥ 2∆, due to

corollary 1.7. To add some degrees of freedom in our optimization problem, we define our

objective function to be

max
φ

Eeff(φ) subject to U±φ = 1 and |Ωφ| ≤ 4∆. (1.23)

1.4.1 Derivation of Analytic Optimizer

Consider

max
φ

E1(φ) subject to U±φ = 1 and |Ωφ| ≤ 4∆. (1.24)

In this section we derive an analytic solution to problem 1.24. Since the conditions U±φ = 1

implies that φ̂(1) = 1, by fixing the upper bound of support size, the problem 1.24 can

be reduced to

min
φ
||φ||22 subject to U±φ = 1 and |Ωφ| ≤ 4∆. (1.25)

Define φn := φ(t+ (n− 3)∆)χ[0,∆](t) for 1 ≤ n ≤ 4; equivalently,

φ(t) = φ1(t+ 2∆) + φ2(t+ ∆) + φ3(t) + φ4(t−∆)). (1.26)

Then the constraints in (1.25) become

Nχ[0,∆](t) = Q+
u,p = e−it[e2i∆φ1 + ei∆φ2 + φ3 + e−i∆φ4] (1.27)

Nχ[0,∆](t) = Q−u,p = eit[e−2i∆φ1 + e−i∆φ2 + φ3 + ei∆φ4]. (1.28)
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Consider eit(1.27)± e−it(1.28), we get

N cos(t) = cos(2∆)φ1 + cos(∆)φ2 + φ3 + cos(∆)φ4

N sin(t) = sin(2∆)φ1 + sin(∆)φ2 − sin(∆)φ4

=⇒ N

cos(t)

sin(t)

 =

cos(2∆) cos(∆)

sin(2∆) − sin(∆)


φ1

φ4

+

cos(∆) 1

sin(∆) 0


φ2

φ3


=⇒

φ2

φ3

 =
N

sin(∆)

 sin(t)

sin(∆− t)

+

−2 cos(∆) 1

1 −2 cos(∆)


φ1

φ4


Hence we arrive a simpler form of objective:

min
φ1,φ4

||φ1||22 + ||φ4||22 +
∣∣∣∣φ4 − 2 cos(∆)φ1 +N sin(∆)−1 sin(t)

∣∣∣∣2
2

+
∣∣∣∣φ1 − 2 cos(∆)φ4 +N sin(∆)−1 sin(∆− t)

∣∣∣∣2
2

(1.29)

The symmetry suggests that φ2(t) = φ3(∆ − t). Solving the system by differentiating

with respect to φ1 and φ4, we get

0 = (2 + 4 cos2(∆))φ1 − 4 cos(∆)φ4 +
N

sin(∆)
(sin(∆− t)− 2 cos(∆) sin(t))

0 = (2 + 4 cos2(∆))φ4 − 4 cos(∆)φ1 +
N

sin(∆)
(sin(t)− 2 cos(∆) sin(∆− t))

=⇒

φ1

φ4

 = c

2 + 4 cos2(∆) 4 cos(∆)

4 cos(∆) 2 + 4 cos2(∆)


2 cos(∆) −1

−1 2 cos(∆)


 sin(t)

sin(∆− t)


= c

 8 cos3(∆) 4 cos2(∆)− 2

4 cos2(∆)− 2 8 cos3(∆)


 sin(x)

sin(∆− x)



11
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Figure 1.3: Efficiency maximizer φ

where c = N
4 sin(∆)(1+4 cos4(∆))

. Hence the full solution is



φ1

φ2

φ3

φ4


= c



8 cos3(∆) 4 cos2(∆)− 2

4 cos2(∆) + 2 4 cos(∆)

4 cos(∆) 4 cos2(∆) + 2

4 cos2(∆)− 2 8 cos3(∆)


 sin(x)

sin(∆− x)

 (1.30)

shown in figure 1.3 and 1.4. Note that the function φ is symmetric since φ2(t) = φ3(∆−t)

and φ1(t) = φ4(∆ − t). From now on we will denote this analytic optimal wavelet,

described in (1.30), as φ. We will analyze its properties in section 1.4.2.

1.4.2 Analysis on Analytic Optimizer

Due to constraint (1.10), which is equivalent to (1.12), the double sinc function ψ and the

optimal wavelet φ share the same roots on the lattice ±1 + Z\{0} in the Fourier space.

12
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Figure 1.4: Partition of the maximizer φ

Moreover, ψ̂ only vanishes on those points and it zeros are all simple. Therefore the ratio

η̂ :=
φ̂

ψ̂
(1.31)

is well-defined. If η̂ can be inverse Fourier transformed, we could write φ = ψ ∗ η, where

η is the inverse Fourier transform of η̂.

Proposition 1.9. The optimal wavelet φ defined in (1.30) can be written as

φ = η ∗ ψ (1.32)

13



where ψ in the double sinc function defined in (1.14) and η is defined as

η = c0 + c1(θ∆ + θ−∆)− c2(θ∆ − θ−∆)D (1.33)

c0 = 2c sin2(∆)(2 + 2 cos(2∆))

c1 = 2c sin2(∆) cos(∆)(1 + 2 cos2(∆))

c2 = 2c sin2(∆) sin(∆) cos(2∆)

where c is the same as in (1.30), θ∆(u)(t) := u(t−∆) is the shift operator and Du(t) :=

u′(t) is the differential operator.

Proof. See appendix A.3 for explicit calculation.

Though not totally unexpected, it is still a bit surprising that φ can be written as

ψ ∗ η, since there is no guarantee that η̂ has inverse Fourier transform. Given this result,

we conjecture that

Conjecture 1.10. If φ is an optimizer of problem 1.23 without the constraint on |Ωφ|,

then φ = ψ ∗ η almost surely for some η in the weak L1 space.

1.4.3 Numerical Convolution Optimizer

The efficiency of the optimal wavelet φ achieve is around 0.94, much greater than that

of double sinc ψ, whose efficiency is around 0.75. The gain is due to the relaxation of

the support size: the support size of φ is 4∆ while the support size of ψ is 2∆, and

extending the upper bound of |Ωφ| will further improve the efficiency. However, when

the upper bound exceeds 4∆ the degree of freedom exceeds the number of constraints

and it becomes difficult to solve problem 1.23 analytically. Thus we turn to numerical

optimization through a convolution approach.

The goal of this section is to construct a generalization of 1.23 where the support

bound can be 2l∆ for any l ∈ N while the problem can still be solved numerically; this

14



can be achieved by reducing the constraints and approximating the objective function.

Consider

max
φ

E2(φ) subject to U±φ = 1 and |Ωφ| ≤ 2l∆. (1.34)

for any l ∈ N. The first step is motivated by conjecture 1.10. Let ψ be the double sinc

function. If the conjecture holds, all solutions should take the form φ = ψ ∗ η for some

η in weak L1, and the condition U±ψ = 1 is satisfied automatically. Thus we can re-write

the problem as

max
ηl

E2(ψ ∗ ηl) subject to |Ωψ∗ηl | ≤ 2l∆. (1.35)

Along with the fact that |Ωψ∗η| ∼ |Ωψ|+ |Ωη|, we can further reduce it into

max
ηl

E2(ψ ∗ ηl) subject to |Ωηl | ≤ 2(l − 1)∆. (1.36)

The second step is to approximate the objective function according to Holder in-

equality. Optimizers of problem 1.34 exist since E2 is bounded above by 1 due to Holder

inequality:

||φ||1 ≤ ||φ||2||χΩφ||2 = ||φ||2
√
|Ωφ| =⇒ E2(φ) ≤ 1. (1.37)

Equation (1.37) implies that E2(φ) is upper-bounded by 1 and equals to 1 if and only if

φ is an indicator function almost surely. Although indicator functions do not satisfy our

accuracy constraint (1.6), and hence not feasible, we would like to have our wavelet as

close to an indicator function as possible. Therefore, we propose this alternative problem

min
ηl
||ψ ∗ ηl − χ[−l∆,l∆]||22 subject to |Ωηl | ≤ 2(l − 1)∆ (1.38)

which is simply a least square problem with a sparsity constraint that can be solved

efficiently numerically, for any l ∈ N. We call the solution of this problem the l-th

“convolution optimizer” φl := ψ ∗ ηl.

In our numerical experiments, E(φl) increases monotonically with respect to l and
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Figure 1.5: Structure of convolution optimizers φ2, φ3, φ10 (from left to right). Note
that φ2 is very similar to the analytic solution in figure 1.3.
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l 1 2 3 4 5 6 7 8
E(φl) 0.7538 0.9388 0.9729 0.9848 0.9903 0.9933 0.9951 0.9963

Table 1.1: Efficiency of convolution optimizers φl

approaches 1 asymptotically. According to table 1.1, the most significant increase occurs

between l = 1 and l = 2, where we already have analytic expression (1.30). Figure 1.5

shows that when l = 2, we recover something close to what we derive in section 1.4.1.

This suggests some consistency between the numerical approach (1.38) and the analytic

approach (1.25). Moreover, the patterns in figure 1.5 provides some evidence of our

conjecture 1.10.

As a side note, the middle spikes in figure 1.5 is a matter of numerical artifact that

is bounded above and only occurs at a single point, which has negligible contribution to

the efficiency.

1.5 Wavelet Comparison

We compare the efficiency of signal fragmentation using three different wavelets. Recall

the definition of efficiency

E(φ) =
||φ||21

|Ωφ| · ||φ||22
.

1.5.1 Truncated Gaussian

A frequently used wavelet is φGauss, which is a truncated (for compact support) and shifted

(for continuity) Gaussian, defined as

φGauss(t) =:


e−

t2

2σ2 − e−
∆2

2σ2 if |t| ≤ ∆

0 otherwise.

(1.39)
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Denote α = ∆
σ

, then a direct calculation shows that

E(φGauss(α)) =
1

2α

(√
2πerf

(
α√
2

)
− 2e−

α2

2 α
)2

√
πerf(α)− 2e−

α2

2

√
2πerf

(
α√
2

)
+ 2e−α2α

(1.40)

in which erf(x) := 1√
π

∫ x
−x e

−τ2
dτ is the error function. Note that (1.40) only depends on

α. The maximal efficiency is around 0.83, which is achieved when α is small. Although

φGauss does not satisfy equation (1.7) and hence cannot perfectly reconstruct a sinusoidal

signal, we nevertheless set 0.83 as a bar for our efficiency.

1.5.2 Double Sinc Function

The L1 and L2 norms and the efficiency E of the double sincc function are

||ψ||1 = 2(1− cos(∆)), ||ψ||22 = ∆− 1

2
sin(2∆)

E(ψ) =
1

2∆

4(1− cos(x))2

∆− 1
2

sin(2∆)
≈

41
4
∆4

2∆(1
2

8
6
∆3)

=
3

4
. (1.41)

Compared to φGauss, ψ has higher accuracy for band-limited functions but lower efficiency.

1.5.3 Optimal Wavelet

Consider our optimal wavelet φ = ψ ∗ η. The L1 and L2 norms and the efficiency E are

calculated (and approximated for large N) as

||ψ ∗ η||1 = (2c0 + 4c1)(1− cos(∆)) ≈ 2π

||ψ ∗ η||22 = (
1

2
c2

0 + c2
1)(2∆− sin(2∆)) + 4c2

2∆

−2c0c1(cos(∆)∆− sin(∆))− 4c0c2(1− cos(∆))

≈ 16π2

15
∆−1

E(ψ ∗ η) = (4∆)−1 ||ψ ∗ η||21
||ψ ∗ η||22

≈ 15

16
(1.42)
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which has efficiency that is much higher than both ψ and φGauss, and close to the optimal

efficiency of 1.

1.6 Conclusion

In this chapter we quantify the projection error (spectral leakage) through the Poisson

summation formula, establish its relation with the support size of wavelets, and optimize

the efficiency under those constraints. We have analytically derive the double sinc function

ψ, a wavelet that creates no spectral leakage while reconstructing sinusoidal wave and has

the smallest support. Based on ψ, we further discover the analytic efficiency optimizer

φ. In addition to no leakage, it also maximizes the efficiency under the constraint of its

support size being less than 4∆. Its efficiency is around 0.94, fairly close to the upper

bound 1.

There are two possible directions for further work: one is to investigate the case where

the order of zeros on lattices exceeds one, while the other is to prove the our conjecture

1.10. ψ is derived by taking L = 1 in theorem 1.3, but one may consider taking L ∈ N in

general, and come up with a systematic way of constructing those wavelets with minimal

support. The convolution conjecture, based on the observation that φ = ψ ∗ η, might

require some specific regularity constraints since the efficiency needs to be well-defined.
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Chapter 2

Superposed Multi-Reference

Alignment Problem

In this chapter we propose a method that uses rational Fourier monomial and compressed

sensing to recover signals from noisy observations. Let x ∈ RN be the underlying signal

and denote x(n) to be the n-th entry of x, for n ∈ [N ] := {0, . . . , N − 1}. Let G be a

cyclic group of order N generated by z. We define the group action zl acting on x as

(zl · x)(n) = x ([n+ l]N) (2.1)

where zl can be viewed as the circular-shift operators. Here the notation [n]N is defined

as [n]N := n (mod N).

Let g be a distribution over the group G. Our goal is to recover the underlying signal

x from i.i.d. noisy samples of the form

yi = gi,1 · x+ gi,2 · x+ σξi (2.2)

where gi,1, gi,2 ∼ g, ξi ∼ N (0, IN×N) is the N -dimensional standard normal distribution,

and all gi,1, gi,2, ξi are independent. This is called the superposed multi-reference align-

ment problem (SMRA), an extension of multi-reference alignment problem (MRA), where
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Figure 2.1: The underlying signal x

samples take the simpler form

yi = gi · x+ σξi. (2.3)

Figure 2.2 illustrates how a sample yi is generated from the ground truth shown in

figure 2.1. In many applications, it suffices to recover an element in the orbit G ·x because

we care about the shape of the signal rather than its location/orientation. This objective

is simpler than recovering x since we have enlarged our solution space.

We will provide motivation in section 2.1, introduce MRA techniques in section 2.2

and apply it to SMRA in section 2.3. We will then propose an algorithm based on

compressed sensing in section 2.4, show some numerical results in section 2.5 and state

our conclusion in section 2.6. Notation-wise, we define the discrete Fourier transform x̂

or F(x) by

x̂(k) =
1

N

N−1∑
n=0

x(n)e−ink∆ (2.4)
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Figure 2.2: Illustration of samples y generated based on x

where ∆ = 2π
N

and k ∈ Z. With slight abuse of notation, in the case where g is a random

shift operator, we denote

F(g · x) = eig∆F(x) (2.5)

where eig∆ is a random variable distributed over ei[N ]∆, since circular-shifting a signal is

equivalent to multiplying its Fourier transform by a phase. Although the g has slightly

different meaning in g · x and in eig∆, they are homomorphic and hence can represent

each other.

2.1 Motivation: MRA and Cryo-EM

Signals are often corrupted by more than one type of noise, which increases the difficulty

in signal recovery. For example, in one-dimensional multi-reference alignment problem

(MRA), signals are randomly shifted and corrupted with Gaussian noise; in cryogenic
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electron microscopy (Cryo-EM) [7], images of particles are randomly rotated and cor-

rupted with Gaussian noise. We are interested in the cases where there are two types of

noise: the regular Gaussian noise, denoted as ξ, and the noise that comes random group

action, denoted as g, distributed over some known group G. In MRA, G is the cyclic

group, corresponding to random circular shifts; in Cryo-EM, G is the special orthogonal

group in dimension three, representing random three-dimensional rotations.

The goal is to recover x (or an element inG · x) from samples yi of the form

yi = gi · x+ σξi (2.6)

where gi ∼ g for some distribution g over G, ξi are Gaussian, and all gi, ξi are independent.

This problem is nontrivial only when σ > 0 and g is not deterministic. It is clear

that if σ = 0, one sample is sufficient. In the case where g is deterministic and equals to

some element g̃ ∈ G, we can recover the element g̃ · x by averaging M samples since

1

M

M∑
i=1

yi = g̃ · x+
1

M

M∑
i=1

σξi −−−−→
M→∞

g̃ · x ∈ G · x (2.7)

by law of large numbers. Moreover, according to the central limit theorem, the variance of

such estimation isO(σ2M−1). However, in the case where σ > 0 and g is not deterministic,

the same stradegy will not work because

1

M

M∑
i=1

yi =
1

M

M∑
i=1

(gi · x+ σξi) −−−−→
M→∞

E(g · x) 6∈ G · x. (2.8)

illustrated by figure 2.5.

In section 2.1.1 and 2.1.2, we will review some classical techniques used for MRA,

whose performance highly depends on the noise level σ. In section 2.2, we will introduce

a recent mechanism that works for arbitrary noise level, and apply it to SMRA in section

2.3.
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2.1.1 Pairwise Alignment

In the case where the Gaussian noise is small, i.e. σ � 1, it was shown that pairwise

synchronization/alignment produces estimation that is positively correlated with some

element in the orbit [8]. The idea is to estimate the relative “phase” gjg
−1
i , and construct

the aligned samples zi (figure 2.3) from the original samples yi (figure 2.4). For instance,

fix j ∈ N and let

gji := arg min
g∈G
||g · yi − yj|| (2.9)

be the approximation of gjg
−1
i for all i. The aligned samples take the form

zi := gji · yi ≈ gj · x+ σξi. (2.10)

If the approximation is close to correct, then by similar calculation in (2.7), the element

gj · x can be approximated by the average

1

M

M∑
i=1

zi ≈ gj · x+
1

M

M∑
i=1

σξi −−−−→
M→∞

gj · x ∈ G · x (2.11)

illustrated by figure 2.6.

However, the relative phase estimations are not exact and become less accurate as

σ increases. When σ > 1, this method reaches its information theoretic limit [9], in the

sense that the correlation between our estimation and any element in G · x is zero in

average, that is, this method is no better than a random guess.

2.1.2 Frequency Marching

One alternative way is frequency marching [10], where instead of recovering the signal at

once, we perform frequency estimation in a bounded domain, and extends its range at

each step. It starts with estimating a set of low frequencies {x̂(k)}k=0,...,K because they

are less sensitive to noise. For instance, x̂(0) equals to the average of entries of x, which
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Figure 2.3: Original samples yi

0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
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is easy to estimate if the group action is Harr-distributed. We then use {x̂(k)}k=0,...,K to

estimate x̂(K + 1). When a new frequency is introduced, the old ones will be modified

accordingly so that the overall error is minimized. We carry this inductive procedure

until we recover the full signal. Successful numerical results in Cryo-EM are shown in

[10], but it is also pointed out that random initialization is subject to occasional failure,

since this method requires solving multiple non-convex optimization problems and could

be trapped by a local minimum.

2.2 Method of Invariant

Unlike the method of pairwise alignment and frequency marching, the method of invariant

works for any σ > 0 and does not require an initial guess. The downside is that it requires

more samples than others. For instance in MRA, the number of samples required for

nontrivial estimation is O(σ2) for most algorithm, but the method of invariant requires

O(σ6) samples because it involves estimation of the third moment of the signal [11]. Such

scaling, though seem undesirable, is in fact optimal in the sense that when σ � 1, it is

necessary and sufficient to use O(σ6) samples [9], [12].

The method of invariant consists of two part: finding invariant under the group action

and recovering the signals from those invariant. We will examine how those techniques

work in MRA, and use them to solve the superposed MRA problem, abbreviated as

SMRA. To achieve such goal, we will first define the invariant in the general sense.

Definition 2.1. (Invariant)

Let y be a random variable related to an underlying signal x ∈ RN . We say a functional

f : RN × RN1 → R for some N1 ∈ N is an invariant of x with respect to y if

E[f(y, k)] = c1f(x, k) + c2 (2.12)
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for some deterministic c1 and c2 and the variance Var[f(y, k)] is finite for all k ∈ [N1].

For simplicity we will denote f(y, k) with fy(k).

In other words, invariant determine the types of partial information of x that we

can deduce from y. For example in MRA, the first and second moment of a vector,

f(x, k) :=
∑

n∈[N ] x
k(n), k = 1, 2, are invariant of x with respect to y because

E[f(y, 1)] =
∑
n∈[N ]

x(n) + σE[ξ(n)] = f(x, 1)

E[f(y, 2)] =
∑
n∈[N ]

x2(n) + 2σx(n)E[ξ(n)] + σ2E[ξ2(n)] = f(x, 2) + σ2.

Among all invariant, we would like to find the ones that help us recover the original

signal. In MRA, they are the spectrum and bi-spectrum: lemma 2.2 states that spectrum

and bi-spectrum are invariant, while theorem 2.3 claims that they are sufficient for recov-

ery of x. Intuitively, since the spectrum contains the information about the magnitudes

and the bi-spectrum provides the information about the phases, we can fully recover x̂ and

hence x, assuming the x̂ does not vanish at any point. We will apply similar techniques

to SMRA in the later sections.

Lemma 2.2. In MRA, the spectrum S and bi-spectrum B defined as

Sx(k) := x̂(k)x̂(−k) (2.13)

Bx(k1, k2) := x̂(k1)x̂(k2)x̂(−k1 − k2) (2.14)

are invariant of x with respect to y.

Proof. See B.1.

Theorem 2.3. A signal x ∈ RN with x̂(k) 6= 0 for all k ∈ [N ] can be fully recovered from

its spectrum and bi-spectrum up to a global shift.

Proof. By assumption, Sx(k) and Bx(k1, k2) are also nonzero for all k, k1, k2 ∈ Z. We

will first compute x̂(0) and x̂(1) through S and B and finish the proof by induction. The
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calculation of x̂(0) is relatively straightforward:

x̂(0) =
Bx(0, 0)

Sx(0)
. (2.15)

By periodicity,
∏N−1

k=0 x̂(k) =
∏N−1

k=0 x̂(k + n) for any n ∈ Z and hence

N−1∏
k=0

Bx(1, k) =
N−1∏
k=0

x̂(1)x̂(k)x̂(−1− k)

= [x̂(1)]N
N−1∏
k=0

x̂(k)
N−1∏
k=0

x̂(−1− k)

= [x̂(1)]N
N−1∏
k=0

x̂(k)
N−1∏
k=0

x̂(−k)

= [x̂(1)]N
N−1∏
k=0

Sx(k)

which enables us to compute x̂(1) by

x̂(1) =

[
N−1∏
k=0

Bx(1, k)

Sx(k)

] 1
N

. (2.16)

Note that there are N possible values x̂(1) can take as we take the N -th root, each of

them corresponding to a different global shift of x. For our purpose this ambiguity will

not affect the outcome, so we will pick one at random. Given x̂(0) and x̂(1), we may

recover other frequencies by the following inductive steps

x̂(−k) =
Sx(k)

x̂(k)
(2.17)

x̂(k + 1) =
Bx(−1,−k)

x̂(−1)x̂(−k)
(2.18)

until we fully recover x̂ and hence x up to a global shift.

The significance of theorem 2.3 is that it not only specifies the method for signal

recovery, but also provides the number of samples required for nontrivial estimation,
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which is proportional to the variance of our invariant. Since the variance of spectrum

and bi-spectrum are O(σ4) and O(σ6), the number of samples required is O(σ6) [13].

2.3 SMRA

Recall that in SMRA our objective is to recover the signal x from samples of the form

y = g1 · x+ g2 · x+ σξ (2.19)

where g1, g2 are random shifts and ξ are Gaussian. We will examine the well-posedness

of this problem, find its invariant, and propose an algorithm for recovery.

2.3.1 Well-posedness

Even without the presence of Gaussian noise, SMRA might not be well-posed due to

cancellation between g1 · x and g2 · x, which is easier to analyzed in Fourier space. In

particular if y = g1 · x+ g2 · x, then the k-th frequency

ŷ(k) =
(
eig1k∆ + eig2k∆

)
x̂(k) = c(k)x̂(k)

contains no information of x if c(k) = 0. According to lemma 2.4, which also works for

the general sum y =
∑M

m=1 gm · x, we can avoid such issue by requiring N to be a prime.

Lemma 2.4. If N is a prime, N > M ∈ N, and y =
∑M

m=1 gm · x, then ŷ(k) = 0 if and

only if x̂(k) = 0.

Proof. Let ∆ = 2π
N

. By definition

ŷ(k) =

(
M∑
m=1

eigmk∆

)
x̂(k) = c(k)x̂(k)
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and hence it suffices to show that c(k) 6= 0 for all k ∈ [N ]. We will prove this by

contradiction. Suppose c(k) = 0 for some k ∈ [N ]. Since eigk∆ = ei[gk]N∆, let an = |{m :

[gmk]N = n}| be the number of terms in c(k) that equals to ein∆. Then c(k) = 0 implies

that

0 =
M∑
m=1

eigmk∆ =
M∑
m=1

ei[gmk]N∆ =
N−1∑
n=0

ane
in∆ (2.20)

which means that the polynomial

p(z) :=
N−1∑
n=0

anz
n (2.21)

has a root at ei∆. Note that an ∈ Z and some coefficients an in p must be zero because

N > M by assumption. Since N is a prime, the N -th cyclotomic monomial

ΦN :=
N−1∑
n=0

zn (2.22)

is a minimal monic polynomial over the field of the rational numbers. According to

the irreducibility of ΦN (see B.2), the greatest common divisor of ΦN and p is the con-

stant function 1. By Bézout’s theorem, there exists polynomials a and b with rational

coefficients such that

(ap+ bΦN)(z) = gcd(p,ΦN)(z) = 1. (2.23)

Plug in z = ei∆, we get 0 = 1, hence the contradiction.

Moreover, we need to separate the case where g1 = g2 and g1 6= g2 due to the

ambiguity illustrated in figure 2.7, which is justified by proposition 2.5 as we explore the

algebraic structure of SMRA.

Proposition 2.5. If N is a prime, y = g1 · x+ g2 · x, then the total Fourier product

Tx :=
N−1∏
k=0

ŷ(k) (2.24)
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Figure 2.7: A superposed signal (top) that allows different decomposition, depending
on whether the shift is the same (right) or not (left)

satisfies the following equation

Ty = cTx (2.25)

where c = 2 if g1 6= g2 and p = 2N if g1 = g2.

As an interesting side step, this proposition leads to a proof of Fermat’s Little theo-

rem in the case of n = 2. See appendix B.4.
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Proof. Suppose g1 6= g2 and let ΦN(z) := zN+1 =
∏N−1

k=0 (z+eik∆) be the N -th cyclotomic

polynomial. By the algebraic structure of primary cyclic group,

c =
N−1∏
k=0

(eig1k∆ + eig2k∆) =
N−1∏
k=0

(1 + ei(g2−g1)k∆)

=
N−1∏
k=0

(1 + eik∆) (since N is a prime and g1 6= g2)

= ΦN(1) = 2.

The case of g1 = g2 is trivial.

For well-posedness, we will assume N is a prime and g1 6= g2 in the following sections.

Although g1 and g2 are no longer independent under the restriction g1 6= g2, they are

almost independent in the sense that the new joint distribution P(g1 = a, g2 = b) is

defined as

P(g1 = a, g2 = b) =


cP(g1 = a)P(g2 = b) if a 6= b

0 otherwise

(2.26)

for some normalizing constant c.

2.3.2 Invariant: Rational Fourier Monomial

In this section we define and analyze some invariant for SMRA. To better illustrate our

intuition, we will set σ = 0 temporally. Observe that S and B are not invariant in SMRA

because

Sy(k) = (eig1k∆ + eig2k∆)x̂(k)(e−ig1k∆ + e−ig2k∆)x̂(−k)

= (2 + 2 cos((g1 − g2)k∆))Sx(k)

depend on g1− g2. However, the rational Fourier monomial are invariant in SMRA when

σ = 0.
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Definition 2.6. (Rational Fourier Monomial)

Given x ∈ RN such that N is a prime x̂(k) 6= 0 for all k ∈ [N ], we define its rational

Fourier monomials of degree L ≥ 3 to be monomials of the form

PL
x (k1, . . . , kL) :=

L∏
l=1

x̂(kl)

x̂(−kl)
(2.27)

such that
∑L

l=1 kl = 0.

Proposition 2.7. If N is prime and x̂(k) 6= 0 for all k ∈ [N ], then in SMRA when

σ = 0,

PL
y (k1, . . . , kL) = PL

x (k1, . . . , kL) (2.28)

Proof. By lemma 2.4 PN
y is well-defined. Straightforward calculations show that

Ry(k) :=
ŷ(k)

ŷ(−k)
=

(eig1k∆ + eig2k∆)x̂(k)

(e−ig1k∆ + e−ig2k∆)x̂(−k)

= ei(g1+g2)k∆ x̂(k)

x̂(−k)

=⇒ PL
y (k1, . . . , kL) =

L∏
l=1

ei(g1+g2)kl∆
x̂(kl)

x̂(−kl)

=

(
L∏
l=1

ei(g1+g2)kl∆

)
L∏
l=1

x̂(kl)

x̂(−kl)

= ei(g1+g2)∆
∑L
l=1 klPL

x (k1, . . . , kL)

= PL
x (k1, . . . , kL)

since
∑L

l=1 kl = 0.

Proposition 2.5 and 2.7 show that the total Fourier product T and rational Fourier

monomials PL are invariant without Gaussian noise. Unfortunately, rational Fourier

monomials are not invariant when σ > 0 due to the fact that the expectation of a ratio
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does not equal to the ratio of expectation. Here is a simple example: for y = x+ ξ,

E
[
ŷ(k)

ŷ(−k)

]
= E

[
x̂(k) + ξ̂(k)

x̂(−k) + ξ̂(−k)

]
6= x̂(k)

x̂(−k)
=

E [ŷ(k)]

E [ŷ(−k)]
. (2.29)

Though exact recovery may be impossible, under some assumptions we can write

E
[
PL
y (k1, . . . , kL)

]
≈ c1P

L
x (k1, . . . , kL) + c2 (2.30)

for some deterministic c1, c2. We will discuss those assumptions in section 2.3.3.

2.3.3 Ratio Estimator

Suppose σ > 0 and y = g1 ·x+ g2 ·x+σξ. We would like to estimate our rational Fourier

monomials from y. In general given two random variables X, Y with mean µX , µY and

variance σX , σY , the ratio estimator with second order Taylor expansion (see appendix

B.3 for details) has expectation

E
[
X

Y

]
≈ (1 + µ−2

Y σ2
Y )µXµ

−1
Y − µ

−2
Y Cov[X, Y ] (2.31)

and variance

Var

[
X

Y

]
≈ µ−2

Y σ2
X + µ2

Xµ
−4
Y σ2

Y − 2µXµ
−3
Y Cov[X, Y ]. (2.32)

which implies that

E
[
PL
y (k1, . . . , kL)

]
≈

[
1 +

L∏
l=1

1

x̂2(−kl)
σ2L

]
PL
x (k1, . . . , kL)

−
L∏
l=1

1

x̂2(−kl)
Cov

[(
L∏
l=1

ŷ2(kl)

)(
L∏
l=1

ŷ2(−kl)

)]
(2.33)

= c1P
L
x (k1, . . . , kL) + c2. (2.34)
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Since c1 = c1(x, k1, . . . , kL) and c2 = c2(x, k1, . . . , kL) are not constant in R, it can be

quite complicated to estimate PL
x (k1, . . . , kL) with PL

y (k1, . . . , kL). We believe that there

are statistical tools that can help us with this, and for now we will assume that we can

estimate PL
x (k1, . . . , kL).

2.4 Algorithm

In this section we introduce an algorithm that approximates the underlying signal with

rational Fourier monomials and compressed sensing.

2.4.1 Phase and Spectrum Product Estimation

Analogous to the procedure in (2.16), (2.17) and (2.18), we can deduce the phase of x̂

up to a negative sign by the following inductive steps: by definition Rx(0) = 1. Due to

periodicity,

Rx(1) =

[
N−1∏
k=0

P 3
x (1, k,−1− k)

] 1
N

=

[
N−1∏
k=0

P 3
y (1, k,−1− k)

] 1
N

(2.35)

up to a factor of ein∆, n ∈ [N ], that corresponds to a global shift of x. Once Rx(1) is

determined, we can calculate the rest by the following induction

Rx(−k) = Rx(k)−1 (2.36)

Rx(k + 1) = P 3
y (−1,−k, k + 1)Rx(1)Rx(k). (2.37)

Since rational Fourier monomials only provide information of the phase, third-degree

monomials seem to be enough. To gain control over the spectrum, we will use the fact

that the total Fourier product is also an invariant.

In summary, we manage to estimate the following properties of x:

1. phases of x̂ up to a negative sign, denoted as eiθk , and
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2. total product of x̂, denoted as Tx.

The estimation derived above is insufficient for recovering x exactly, but can used for

approximation if we impose extra constraints such as sparsity. In section 2.4.2 we will

introduce an algorithm from compressed sensing that helps us achieve such goal.

2.4.2 Compressed Sensing

Compressed sensing through L1 regularization are widely used in image processing and

computer vision, when the system is under-determined and the signal is sparse. It was

proposed in [14] and further explored in [15]. It is suitable for our problem because the

signals (images of molecules) are sparse over the domain (a plate). To apply the tech-

nique in compressed sensing, we formulate our signal recovery problem into the following

optimization problem:

min
ak∈R

|Ωx| such that x̂(k) = ake
iθk ,

N−1∏
k=0

ak = Tx (2.38)

where eiθk and Tx are given. We can write this in a more compact form by defining the

N -by-N matrix M with Mmk = exp(imk∆ + iθk) and the vector a ∈ RN . Then we have

min
a∈RN

|ΩMa| such that prod(a) = Tx. (2.39)

This falls into the category of the split Bregman method [15]. In the second step of

algorithm 1, the minimization problem is solved through gradient descend under Wolfe

condition. To avoid local minimum, a must be initialized in the right quadrant.

2.5 Numerical Results

In this section we focuses on the relation between the accuracy of our approximation

and the sparsity of the signal, defined as the percentage of nonzero entries. We assume
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Algorithm 1 Generalized Split Bregman

Input M ∈ RN×N , Tx ∈ R
Output a ∈ RN

Random Initializationa, b, d ∈ RN

1: while ||ak − ak−1||2 >tol do
2: ak+1 ← min

a
(prod(a)− Tx)2 + λ

2
||dk −Ma− bk||22

3: dk+1 ← min
d
|d|+ λ

2
||dk −Mak+1 − bk||22

4: bk+1 ← bk + (Mak+1 − dk+1)
5: end while
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Figure 2.8: The relation between the l2 error in our estimation and sparsity of the
signal, normalized compared to random guesses

infinite samples so that all invariant can be accurately calculated, and hence the only

error is due to our algorithm. In our numerical experiment N = 23. For each sparsity

level s ∈ ([N ] + 1)/N , we generate 400 random signals xi, each with two random shifts

gi,1, gi,2. We then apply algorithm 2 to each observation yi = gi,1 ·x+ gi,2 ·x and compute

the l2 difference between the estimation x̃i and the signal xi. The average and normalized

(compare to random guess with z ∼ N (0, IN×N)) error are shown in figure 2.8.

As an example, the result of applying algorithm 2 to samples in figure 2.2 is shown

in figure 2.9. In general, the l2 error increases as the sparsity coefficient increases (less

nonzero entries), as illustrated by figure 2.8, but they are fairly accurate since the error

is far away from 1, the mean error for random guess.
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Algorithm 2 Signal recovery through rational Fourier monomial

Input y ∈ RN

Output x ∈ RN

procedure Phase Estimation
R(0)← 1

R(1)←
[∏N−1

k=0 P
3
y (1, k,−1− k)

] 1
N
,

for k = 1, . . . , N − 1 do
R(−k)← R(k)−1

R(k + 1)← P 3
y (−1,−k, k + 1)R(1)R(k)

end for
end procedure

procedure Total Product Estimation
T ← 1

2

for k = 1, . . . , N do
T ← T · ŷ(k)

end for
end procedure

procedure Compressed Sensing
Random initialization a, b, d ∈ RN

for m = 1, . . . , N and k = 1, . . . , N do
M(m, k) = eimk ·R(k)

end for

while ||ak − ak−1||2 >tol do
ak+1 ← min

a
(prod(a)− T )2 + λ

2
||dk −Ma− bk||22

dk+1 ← min
d
|d|+ λ

2
||dk −Mak+1 − bk||22

bk+1 ← bk + (Mak+1 − dk+1)
end while

end procedure

Output x = Ma

2.6 Conclusion

In this chapter we explore the algebraic structure of the sum of two noisy copies of a signal

under random cyclic shifts. We have shown that in the discrete setting, when the order of

the cyclic group is prime, phases of the signal’s Fourier transformation can be determined

up to a negative sign, and the total product of the noisy spectrum is proportional to that of

the original signal. With further assumption on the support of the signal, we formulate an
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Figure 2.9: An example of estimation that deviates from the underlying signal but
preserves the signal’s general shape

optimization problem that can be solved through split Bergman algorithm. The average

performance is quite impressive, assuming that we can estimate the third-degree rational

Fourier monomial accurately. In the future we would like to add more analysis on this

method and extend it to solving sum of M noisy copies of a signal.
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Chapter 3

Unsteady Current Beyond

Child-Langmuir Limit

In this chapter we will use Euler-Poisson equations to analyze the flow of electrons in a

diode. In fluid dynamics, Euler equations are a set of quasilinear hyperbolic equations

governing the dynamics of flows. Intuitively, Euler Equations can be understood as the

conservation of density in time, i.e.

∂tρ+ u · ∇xρ+ F · ∇uρ = 0 (3.1)

where ρ = ρ(u, x, t) is an distribution representing the density, u is the velocity, t is the

time variable, x is the space variable, and F is a force term. In electrostatics, Poisson’s

equation states that the force F is related to the potential φ, which is related to the

density ρ in the following way

F = ∇xφ (3.2)

∇2
xφ = ρ. (3.3)
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With some manipulations of (3.1), (3.2), and (3.3), we arrive at the Euler-Poisson (EP)

equations that governs the current of an electron beam in a diode:

∂tρ+ ∂x(ρu) = 0 (3.4)

∂tu+ u∂xu− ∂xφ = 0 (3.5)

∂xxφ− ρ = 0 (3.6)

over the domain {(x, t) : (x, t) ∈ [0, L]× [0, T ]}, with boundary conditions

ρ(0, t) = ρ0, u(0, t) = u0, φ(L, t) = φL, φ(0, t) = 0 (3.7)

and periodic boundary conditions

ρ(x, 0) = ρ(x, T ), u(x, 0) = u(x, T ), φ(x, 0) = φ(x, T ) (3.8)

where ρ, u, φ represent velocity, density, and potential respectively. We use the notation

∂x instead of ∇x because we are working with one-dimensional-space, corresponding to

the direction that perpendicular to the cathodes and anodes.

Physicists were interested in the space-charge limited current, i.e. the maximal

current J := ρu given the boundary conditions in velocity u0, potential φL, and the

length L of the device. Such limit was derived for a simpler model by Child [16], where

all variables are assumed to be time-independent and the Euler-Poisson equations are

reduced to the time-independent Euler-Poisson equations:

∂x(ρu) = 0 (3.9)

u∂xu− ∂xφ = 0 (3.10)

∂xxφ− ρ = 0. (3.11)
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Note that equation (3.9) implies that the current

J := ρu

is a constant. Child [16] and Langmuir [17] derived an upper bound for the current in

the case where u0 = 0, which is consistent with their experiment results. Later Jaffe [18]

extended it to the case for general u0 ≥ 0. This limit, which we will call it the CL limit,

is derived from the method of characteristics and defined as

JCL(u0, φL, L) =
2

9L2

(
u0 +

√
u2

0 + 2φL

)3

(3.12)

where full derivation will be shown in section 3.1.

However, such limit no longer holds in the original Euler-Poisson equations, where

the solutions are time dependent. In particular, there are numerical evidence [19] [20]

showing that there exist a periodic boundary condition (ρ0, u0, φL, L) corresponding to a

solution whose average flux exceeds the CL limit, i.e.

J̄0(ρ0, u0) > J̄CL(u0, φL, L) (3.13)

where

J̄0(ρ0, u0) :=
1

T

∫ T

0

ρ0u0dt (3.14)

J̄CL(u0, φL, L) :=
1

T

∫ T

0

JCL(u0, φL, L)dt. (3.15)

We call J̄0 the average flux rather than current because its definition involves integration.

Our goal is to construct a systematic way in finding the maximizer of the flux difference

J̄diff := J̄0 − J̄CL (3.16)
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through variation principle.

In the following sections, we will first derive the CL limit in section 3.1, define objec-

tive Lagrangian and calculate its derivatives in section 3.2.1, and describe the numerical

algorithm in section 3.3. In section 3.4 we will show some numerical results, including

the flux difference and their characteristics.

3.1 CL Limit

In this section we derive the CL limit (3.12) with the method of characteristic and analyze

its limitation.

3.1.1 Derivation

Suppose ρ, u, φ are time independent and denote ψ(x) := φ′(x) to be the electric field. Let

x(s) be a characteristic path such that x′(s) = u(s), x0 := x(0) = 0, and xS := x(S) = L.

We now derive expressions for x, u, ψ with respect to s.

Substituting the first u in (3.10) with x′(s), we get

x′(s)u′(x) = ψ =⇒ u′(s) = ψ.

Multiply (3.11) by x′(s) on both side, we get

x′(s)ψ′(x) = x′(s)ρ =⇒ ψ′(s) = uρ = J = J0.

Multiply the definition of ψ by x′(s) on both side, we get

x′(s)φ′(x) = x′(s)ψ =⇒ φ′(s) = uψ = uu′(s).

43



Hence we arrive the following system of differential equations:

ψ′(s) = J0 (3.17)

u′(s) = ψ(s) (3.18)

x′(s) = u(s) (3.19)

φ′(s) = u(s)u′(s) (3.20)

and therefore

ψ(s) = ψ0 + J0s (3.21)

u(s) = u0 + ψ0s+
1

2
J0s

2 (3.22)

x(s) = u0s+
1

2
ψ0s

2 +
1

6
J0s

3 (3.23)

φ(s) =
1

2

(
u2(s)− u2

0

)
. (3.24)

Our goal is to express J0 as a function of u0, φL, L, S and maximize it over S, where

S is the ending time of the characteristics. At s = S, (3.22), (3.23), (3.24) imply that

uS = u0 + ψ0S +
1

2
J0S

2 (3.25)

L = u0S +
1

2
ψ0S

2 +
1

6
J0S

3 (3.26)

2φL = u2
S − u2

0. (3.27)

Substituting uS in (3.25) with (3.27), we get

√
2φL + u2

0 = u0 + ψ0S +
1

2
J0S

2. (3.28)
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Further substituting ψ0S
2 in (3.26) with (3.28), we get

L = u0S +
1

2

(√
2φL + u2

0S − u0S −
1

2
J0S

3

)
+

1

6
J0S

3 (3.29)

=
S

2

(
u0 +

√
2φL + u2

0

)
− 1

12
J0S

3, (3.30)

and hence

J0(u0, φL, L, S) = 6

(
u0 +

√
u2

0 + 2φL

)
S−2 − 12LS−3. (3.31)

Maximizing (3.31) with respect to S yields equation (3.12).

3.1.2 Comparison

A lower bound of this limit can be obtained through solutions from dimensional analysis,

which corresponds to the Child’ law where the initial velocity is zero. Suppose ρ = axb,

u = cxd, ψ = exf . By matching the coefficients and the powers in the time-independent

Euler-Poisson equations, we get

ρ(x) =
2c2

9
x−

2
3 (3.32)

u(x) = cx
2
3 (3.33)

ψ(x) =
2c2

3
cx

1
3 (3.34)

for some positive constant c determined by the initial conditions. Note that such solutions

exist only when x is positive hence we should assume x ∈ [L1, L1 + L] with L,L1 > 0.

According to (3.32), (3.33), (3.34), the flux, initial velocity, and potential difference can
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be expressed as

u0 = cL
2
3
1 (3.35)

J0 = ρu =
2

9
c3 (3.36)

φL =

∫ L1+L

L1

ψ(x)dx =
c2

2

(
(L1 + L)

4
3 − L

4
3
1

)
. (3.37)

Substituting L1 in (3.37) with (3.35) yields

(2φL + u2
0)

3
4 = u

3
2
0 + c

3
2L (3.38)

and hence

J0 =
2

9L2

[
(2φL + u2

0)
3
4 − u

3
2
0

]2

(3.39)

=
2

9L2

[
(2φL + u2

0)
3
2 − 2(2φL + u2

0)
3
4u

3
2
0 + u3

0

]
≤ 2

9L2

[
(2φL + u2

0)
3
2 + 3(2φL + u2

0)u
1
2
0 + 3(2φL + u2

0)
1
2u0 + u3

0

]
= JCL.

In the limit where u0 = 0 (or L1 = 0), J0 = JCL and it is called the Child’s law.

3.1.3 Limitation

There are two limitations to the CL limit: one due to the algebraic structure of the

formula and one due to the validity of characteristics. First of all, since the flux is real,

(3.12) implies that

u2
0 + 2φL ≥ 0 (3.40)

or else JCL becomes imaginary and non-physical. The second limitation is that the char-

acteristic/particle speed u must remain positive in the domain, which is equivalent to
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requiring

ψ0 > −
√

2u0J0 (3.41)

as explained in [18] and [20]. In figure 3.1 we can see that the characteristics almost

become vertical when ψ0 ≈ −
√

2u0J0.

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1
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2.5
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t

Figure 3.1: Characteristics of steady solutions when ψ0 ≈ −
√

2u0J0

3.2 Flux optimization

Among all the admissible sets of boundary conditions (ρ0, u0, φL), we would like to find

one that maximizes the flux difference J̄diff. This is equivalent to minimizing the CL limit

while keeping J̄0 constant, i.e.

min
ρ0,u0,φL

J̄CL(u0, φL, L) s.t. J̄0(ρ0, u0) = 1 and (ρ, u, φ) solve (3.4), (3.5), (3.6) (3.42)

which can be solved with Lagrange multipliers.
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3.2.1 Lagrange Multiplier

Let

L = J̄CL + λ(J̄0 − 1) +

∫ T

0

∫ L

0

ν1 · (3.4) + ν2 · (3.5) + ν3 · (3.6)dxdt (3.43)

to be the Lagrangian corresponding to our objective function (3.42). Our goal is to

solve minρ0,u0,φL L. To find the minimizer of L, we need to derive its gradients and the

conditions such that

∂(ρ,u,φ)L = F (ρ0, u0, φL). (3.44)

for some explicity function F because we only have control over ρ0, u0, φL. Notation-wise,

we define

∫
f(x, t)|x=Ldt :=

∫
f(L, t)dt∫

f(x, t)|x=L
x=0 dt :=

∫
f(L, t)− f(0, t)dt.

3.2.2 Density

Differentiating the Lagrangian L with respect to ρ and applying integration by parts, we

get

∂L
∂ρ

=
∂

∂ρ
J̄CL +

∂

∂ρ

∫
λ(J0 − 1)dt+

∂

∂ρ

∫ ∫
ν1∂tρ+ ν1∂x(ρu)− ν3ρdxdt

= 0 +
∂

∂ρ

[∫
λρu|x=0dt+

∫
ν1ρ|t=Tt=0 dx+

∫
ν1ρu|x=L

x=0 dt

]
+

∂

∂ρ

∫ ∫
−ρ∂tν1 − ρu∂xν1 − ν3ρdxdt

=
∂

∂ρ

[∫
(λ− ν1)ρu|x=0dt+

∫
ν1ρu|x=Ldt+

∫
ν1ρ|t=Tt=0 dx

]
+

∫ ∫
−∂tν1 − u∂xν1 − ν3dxdt

= I1 + I2 + I3 + I4.
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Here are some conditions that help us eliminate I2, I3, I4.

1. If ν1(L, t) = 0 for all t ∈ [0, T ], then I2 = 0.

2. If ν1(x, t) is periodic in t for all x ∈ [0, L], then I3 = 0.

3. If ∂tν1 + u∂xν1 + ν3 = 0 for all (x, t) ∈ [0, L]× [0, T ], then I4 = 0.

Those conditions will be summarized and restated in section 3.2.5.

3.2.3 Velocity

Differentiating the Lagrangian L with respect to u and applying integration by parts, we

get

∂L
∂u

=
∂

∂u
J̄CL +

∂

∂u

∫
λ(J0 − 1)dt+

∂

∂u

∫ ∫
ν1∂x(ρu) + ν2∂tu− ν2u∂xudxdt

=
∂

∂u

[∫
JCL + λρu|x=0dt+

∫
ν1ρu|x=L

x=0 dt+

∫
ν2u|t=Tt=0 dx+

∫
ν2

1

2
u2|x=L

x=0 dt

]
+

∂

∂u

∫ ∫
−ρu∂xν1 − u∂tν2 −

1

2
u2∂xν2dxdt

=
∂

∂u

[∫
(JCL + λρu− ν1ρu−

1

2
ν2u

2)|x=0dt+

∫
(ν1ρu+

1

2
ν2u

2)|x=Ldt

]
+

∂

∂u

∫
ν2u|t=Tt=0 dx+

∫ ∫
−ρ∂xν1 − ∂tν2 − u∂xν2dxdt

= I1 + I2 + I3 + I4.

Here are some conditions that help us eliminate I2, I3, I4.

1. If ν1(L, t) = ν2(L, t) = 0 for all t ∈ [0, T ], then I2 = 0.

2. If ν2(x, t) is periodic in t for all x ∈ [0, L], then I3 = 0.

3. If ρ∂xν1 + ∂tν2 + u∂xν2 = 0 for all (x, t) ∈ [0, L]× [0, T ], then I4 = 0.

Those conditions will be summarized and restated in section 3.2.5.
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3.2.4 Potential

Differentiating the Lagrangian L with respect to ψ and applying integration by parts, we

get

∂L
∂ψ

=
∂

∂ψ
J̄CL +

∂

∂ψ

∫ ∫
−ν2ψ + ν3∂xψdxdt

=
∂

∂ψ

∫
2

9L2

(
u0 +

√
u2

0 + 2

∫
ψdx

)3

dt+
∂

∂ψ

∫ ∫
−ν2ψ + ν3∂xψdxdt

=
∂

∂ψ

∫
ν3ψ|x=L

x=0 dt+

∫ ∫
2

3L2

(
u0 +

√
u2

0 + 2
∫
ψdx

)2

√
u2

0 + 2
∫
ψdx

− ν2 − ∂xν3dxdt

= I1 + I2.

If ν3(L, t) = 0 for all t ∈ [0, T ], then I2 = ∂
∂ψ

∫
−ν3ψ|x=0dt.

3.2.5 Dual Equations

From section 3.2.3, 3.2.2, 3.2.4, we arrive at the dual equations

u∂xν1 + ∂tν1 + ν3 = 0 (3.45)

u∂xν2 + ρ∂xν1 + ∂tν2 = 0 (3.46)

∂xν3 + ν2 − g1 = 0 (3.47)

(for g1 defined in (3.54)) with zero boundary conditions on x = L

νi(L, t) = 0 (3.48)

and periodic boundary conditions in t

νi(x, 0) = νi(x, T ) (3.49)
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for i = 1, 2, 3. If (3.45), (3.46), (3.47), (3.48), (3.49) are all satisfied, then the gradient of

L is given by

∂ρL = (λ− ν1(0, t))u0 (3.50)

∂uL = λρ0 − ν1(0, t)ρ0 − ν2(0, t)u0 + g2 (3.51)

∂ψL = −ν3(0, t) (3.52)

∂λL = J̄0 − 1 (3.53)

where

g1 =
2

3L2

(
u0 +

√
u2

0 + 2
∫
ψdx

)2

√
u2

0 + 2
∫
ψdx

(3.54)

g2 =
2

3L2

(
u0 +

√
u2

0 + 2

∫
ψdx

)2
1 +

u0√
u2

0 + 2
∫
ψdx

 . (3.55)

We expect that performing gradient descent in such direction, once converges, will yield

a local minimum of J̄CL < 1 = J̄0.

3.3 Algorithm

Denote

ξ(x, t) := (ρ(x, t), u(x, t), ψ(x, t), λ)

ζ(x, t) := (ν1(x, t), ν2(x, t), ν3(x, t))

to be the primal and dual variables respectively. We apply gradient descent on the

Lagrangian L by updating the primal and dual variables according to algorithm 3.
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Algorithm 3 Flux Limit Variation Principle

while ||∇ξ(0,t)L||2 >tol do

Solve ξ(x, t) forward in x with ξ(0, t) and (3.4), (3.5), (3.6).

Solve ζ(x, t) backward in x with ζ(L, t) = 0 and (3.45), (3.46), (3.47).

Update ξ(0, t)←− ξ(0, t)− ε∇ξ(0,t)L with (3.50), (3.51), (3.52), (3.53).

end while

For numerical purpose, it is advantageous to put (3.4), (3.5), (3.6) into conservative

forms by defining new variables η1 = ρu, η2 = u2, ψ = ∂xφ so that

∂xη1 + ∂t

(
η1√
η2

)
= 0 (3.56)

∂xη2 + 2∂t(
√
η2)− 2ψ = 0 (3.57)

∂xψ −
η1√
η2

= 0. (3.58)

Assuming that η2 does not vanish, equations (3.56), (3.57), (3.58) can be solved stably

and consistently using upwind method, which will be our choice of numerical method for

both the forward equations and backward equations.

There are three major stopping criteria for our method:

1. L converges: local minimum is obtained

2. ρ or u becomes negative: characteristics/numerical method breaks down

3. J̄CL becomes imaginary: condition (3.40) is violated

Depending on the initialization, the algorithm might stop due to different reason. Al-

though we often observe the last two cases before the first occurs, those solutions are

nontrivial and do exceed CL limit.
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Figure 3.2: Steady solution with parallel characteristics

3.4 Numerical Results

In this section we will show and analyze some numerical results. In general, When

the initialization is time-homogeneous, the resulting current always converges to the CL

limit. When the initialization is not time-homogeneous, the resulting current converges

to/breaks down at different values depending on the initialization.

3.4.1 Steady Solution

When the initialization is time-homogeneous, i.e. the boundary condition is a constant

function, the resulting current J̄ always converges to the CL limit J̄CL as expected. The

characteristics of our solution are parallel and no shock is formed, as shown in figure 3.2.

3.4.2 Break Down of Characteristics

When the initialization is not time-homogeneous, the algorithm often breaks down be-

cause either the velocity becomes negative, where our numerical PDE solver for (3.56),
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Figure 3.3: Formation of shocks and nearly vertical characteristics

(3.57), (3.58) is no longer valid, or when the density becomes negative, in which the

solution is no longer physical.

In one of our experiment, J̄ exceeds 1.25 · J̄CL before the velocity of our solution

becomes negative at some point in the interior of the domain. Its characteristics are

shown in figure 3.3.

3.4.3 Break Down of CL Limit

Another reason for our algorithm to break is the violation of condition (3.40), where JCL

is no longer real and hence non-physical. This is more of a constraint to our algebraic

formulation rather than a physical constraints.

In one of our experiment, J̄ exceeds 1.02 · J̄CL before JCL becomes complex. There

is no indication of shocks in its characteristics, but we can see that its characteristics are

concentrated towards certain region, as shown in figure 3.3.
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Figure 3.4: Nonuniform density in characteristics

3.4.4 Performance

We search over the parameter space ci ∈ (0, 1), where

ρ0 = 1− c1 cos(t)

u0 = 1

ψ0 = c0 + c1 sin(t)− c2 cos(t)

and managed to find solutions whose current is around 40% above the CL limit. However,

all the optimal solutions we found, except the steady solutions, are at the boundary of

our solution domain.

3.5 Conclusion

In this chapter we re-derive, analyze, and improve the flux limit of Euler-Poisson equa-

tions through the method of characteristics and variation principle. The result from our
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Lagrangian optimization is consistent with the time-independent CL limit. On the other

hand, most of our time-dependent optimizers exceed CL limit but eventually hit the

boundary of our solution space before they converge to a local minimum. The improve-

ment ranges from 2% to 40% depending on the initialization, and we would like to show

analytically that 40% is the flux limit of time-dependent Euler-Poisson equations.
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Appendix A

Signal Segmentation

A.1 Poisson Summation Formula

Define continuous Dirac comb C∆ : R→ R to be

C∆(t) =
∑
n∈Z

δn∆(t). (A.1)

where ∆ 6= 0 and δ is the Dirac delta distribution.

Proposition A.1. (Poisson Summation Formula)[21]

The Dirac comb C∆ has Fourier transform (in the sense of distributions) given by

Ĉ∆ =
2π

∆
C2π/∆. (A.2)

A.2 Proof of Corollary 1.8

Without loss of generality, let

f(t) = sin(t)

g(t) =
1

N

∞∑
n=−∞

f(n∆)ψ(t− n∆)
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and denote

Fp(f)(k) :=
1

2π

∫ 2π

0

f(x)e−iktdt
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to be the Fourier transform of function with period 2π. It suffices to show that Fp(f) =

Fp(g). For simplicity denote C = N
sin(∆)

. By definition,

Fp(f)(k) =

∫ 2π

0

1

4πi
(eit − e−it)e−iktdt

=
−1

4π(1− k)
(e−2πik − 1)− 1

4π(1 + k)
(e−2πik − 1)

=
1

2π(1− k2)
(1− e−2πik)

Fp(ψ)(k) =
C

2π

∫ 0

−∆

sin(∆ + t)e−iktdt+
C

2π

∫ ∆

0

sin(∆− t)e−iktdt

=
C

4πi

∫ 0

−∆

ei(∆+t−kt) − e−i(∆+t+kt)dt

+
C

4πi

∫ ∆

0

ei(∆−t−kt) − e−i(∆−t+kt)dt

=
C

4πi

[
ei∆ − eik∆

i(1− k)
+
e−i∆ − e−ik∆

i(1 + k)

]
+

C

4πi

[
e−ik∆ − ei∆

i(−1− k)
+
eik∆ − e−i∆

i(−1 + k)

]
=

C

2π(1− k2)

(
eik∆ + e−ik∆ − ei∆ − e−i∆

)
Fp(g)(k) =

1

2π

∫ 2π

0

1

N

N−1∑
n=0

f(n∆)ψ(t− n∆)e−iktdt

=
1

N

N−1∑
n=0

f(n∆)Fp(ψ)(k)e−ikn∆

= Fp(ψ)(k)
1

2Ni

N−1∑
n=0

(ein∆ − e−in∆)e−ikn∆

= Fp(ψ)(k)
1

2Ni

(
1− e−2πik

1− ei(1−k)∆
− 1− e−2πik

1− e−i(1+k)∆

)
=

C

2π(1− k2)

(
eik∆ + e−ik∆ − ei∆ − e−i∆

)
· 1

2Ni

(
ei∆ − e−i∆

eik∆ + e−ik∆ − ei∆ − e−i∆

)
(1− e−2πik)

=
1

2π(1− k2)
(e−2πik − 1) · C sin(∆)

N

= Fp(f)(k)
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A.3 Analysis of kernel η

To write φ = ψ ∗ η, we will calculate the Fourier transform of φ and ψ. We will now

compute the φ̂ and η̂. By symmetry, we define

v(k) :=

∫ ∆

0

e−itkψ(t)dt (A.3)

z(k) :=

∫ 2∆

0

e−itkφ(t)dt (A.4)

so that

ψ̂(k) = v(k) + v(−k) (A.5)

φ̂(k) = z(k) + z(−k). (A.6)

For simplicity, we will denote C to be the normalizing constant which will be specified in

the end. Express the Fourier transform of (1.30) with (A.3), we get

Cz(k) = 4 cos(∆)e−i∆kv(−k) + (4 cos2(∆) + 2)v(k)

+ (4 cos2(∆)− 2)e−2i∆kv(−k) + 8 cos3(∆)e−i∆kv(k)

=
(
2 + 4 cos2(∆) + 8 cos3(∆)e−i∆k

)
v(k)

+
(
4 cos(∆)e−i∆k + 4 cos2(∆)e−2i∆k − 2e−2i∆k

)
v(−k)
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and hence

Cφ̂(k) = Cz(k) + Cz(−k)

=

[
v(k) + v(−k) v(k)− v(−k)

]
·2 + 4 cos2(∆) + (4 cos(∆) + 8 cos3(∆)) cos(∆k) + (4 cos2(∆)− 2) cos(2∆k)

i (4 cos(∆) sin(∆k) + (4 cos2(∆)− 2) sin(2∆k)− 8 cos3(∆) sin(∆k))


=

[
v(k) + v(−k) v(k)− v(−k)

]
· 4 + (4 cos(∆) + 8 cos3(∆)) cos(∆k) + (8 cos2(∆)− 4) cos2(∆k)

i(4 cos(∆)− 8 cos3(∆) + 8 cos2(∆) cos(∆k)− 4 cos(∆k)) sin(∆k)


=

8

k2 − 1

[
cos(∆)− cos(∆k) k sin(∆)− sin(∆k)

]
·1 + cos(∆)(1 + 2 cos2(∆)) cos(∆k) + cos(2∆) cos2(∆k)

− cos(2∆)(cos(∆)− cos(∆k)) sin(∆k)


=

8

1− k2
(cos(∆)− cos(∆k))

· [1 + cos(2∆) + cos(∆)(1 + 2 cos2(∆)) cos(∆k)− k sin(∆) cos(2∆) sin(∆k)]

= Cψ̂ · η̂

where

η̂(k) := 4c sin2(∆)[1 + cos(2∆) + cos(∆)(1 + 2 cos2(∆)) cos(∆k)]

− 4c sin2(∆)[k sin(∆) cos(2∆) sin(∆k)] (A.7)

c being the same as in (1.30). According to (A.7) in, η has inverse Fourier transform and

equals to

η = c0 + c1(θ∆ + θ−∆)− c2(θ∆ − θ−∆)D (A.8)
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where θ∆(u)(t) := u(t − ∆) is the shift operator and Du(t) := u′(t) is the differential

operator.
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Appendix B

MRA

B.1 Spectrum and Bi-spectrum Calculation

Since

E
[
ξ̂(k1)ξ̂(k2)

]
=

1

N2
E

[(
N∑
n=1

ξ(n)e−ink1∆

)(
N∑
n=1

ξ(n)e−ink2∆

)]

=
1

N2
E

[
N∑
n=1

ξ2(n)e−in(k1+k2)∆ +
N−1∑
n6=m

ξ(n)ξ(m)e−i(nk1+mk2)∆

]

=
1

N2

N∑
n=1

E
[
ξ2(n)

]
e−in(k1+k2)∆ + 0

=
1

N
δ0(k1 + k2) (B.1)
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direct computation implies that

E [Sy(k)] := E [ŷ(k)ŷ(−k)]

= E
[(
eigk∆x̂(k) + σξ̂(k)

)(
e−igk∆x̂(−k) + σξ̂(−k)

)]
= x̂(k)x̂(−k) + σ2E

[
ξ̂(k)ξ̂(−k)

]
+ σeigk∆x̂(k)E

[
ξ̂(−k)

]
+ σe−igk∆x̂(k)E

[
ξ̂(k)

]
= Sx(k) +

σ2

N
(B.2)

and

E[By(k1, k2)] := E [ŷ(k1)ŷ(k2)ŷ(−k1 − k2)]

= x̂(k1)x̂(k2)x̂(−k1 − k2)

+ σe−igk1∆x̂(k2)x̂(−k1 − k2)E
[
ξ̂(k1)

]
+ σe−igk2∆x̂(k1)x̂(−k1 − k2)E

[
ξ̂(k2)

]
+ σeig(k1+k2)∆x̂(k1)x̂(k2)E

[
ξ̂(−k1 − k2)

]
+ σ2eigk1∆x̂(k1)E

[
ξ̂(k2)ξ̂(−k1 − k2)

]
+ σ2eigk2∆x̂(k2)E

[
ξ̂(k1)ξ̂(−k1 − k2)

]
+ σ2e−ig(k1+k2)∆x̂(−k1 − k2)E

[
ξ̂(k1)ξ̂(k2)

]
+ σ3E

[
ξ̂(k1)ξ̂(k2)ξ̂(−k1 − k2)

]
= Bx(k1, k2) +

σ3

N2

+
σ2

N

[
eigk1∆δ0(−k1) + eigk2∆δ0(−k2) + e−ig(k1+k2)δ0(k1 + k2)

]
= Bx(k1, k2) +

σ3

N2
(for k1, k2, k1 + k2 6= 0) (B.3)
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B.2 Cyclotomic Polynomial

Definition B.1. Let N ∈ N. The N -th cyclotomic polynomialis defined as

ΦL(x) :=
∏

1≤n<N,
gcd(n,N)=1

(x− e
2πin
N ) (B.4)

Proposition B.2. For primes N ≥ 3, the N th cyclotomic polynomials are irreducible

over the field of the rational numbers.

Proof. Although the claim is true for N ≥ 3 in general, it suffices to prove the case

of prime for our purpose. Recall Eisenstein’s criterion: For polynomials of the form

Q(x) =
∑N

n=0 anx
n, if there exists prime p such that p | an for all n < N , p - aL, and

p2 - a0, then Q is irreducible over Q. Since

Q(x) =
(x+ 1)N − 1

x
=

N−1∑
n=0

(
N

n+ 1

)
xn (B.5)

satisfies Eisenstein’s criterion, it is irreducible. Substituting y = x + 1, we can deduce

that

ΦN(x) :=
N−1∑
n=0

yn =
yN − 1

y − 1
(B.6)

is also irreducible.

B.3 Ratio Estimator

Consider two random variable X, Y with mean µX , µY ; we want to estimate µXµ
−1
Y with

E [XY −1] despite the fact that in general E [XY −1] 6= µXµ
−1
Y . In this section we use Taylor

expansion to analyze the expectation and variance of our estimator and its relation to

µXµ
−1
Y . Let f(X, Y ) = XY −1, θ = (µX , µY ), ∆X = X − µX , and ∆Y = Y − µY . The
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second order Taylor expansion in E[f(X, Y )] is

E [f(X, Y )] ≈ E [f(θ) + fx(θ)∆X + fy(θ)∆Y ]

+
1

2
E
[
fxx(θ)∆

2
X + fyy(θ)∆

2
Y + 2fxy(θ)∆X∆Y

]
= f(θ) +

1

2
fxx(θ)Var[X] +

1

2
fyy(θ)Var[Y ] + fxy(θ)Cov[X, Y ]

= µXµ
−1
Y + µXµ

−3
Y σ2

Y − µ−2
Y Cov[X, Y ] (B.7)

and the first order Taylor expansion in E[f(X, Y )2] is

E
[
f(X, Y )2

]
≈ E

[
(f(θ) + fx(θ)∆X + fy(θ)∆Y )2

]
= f(θ)2 + fx(θ)

2Var[X] + fy(θ)
2Var[Y ] + 2fx(θ)fy(θ)Cov[X, Y ]

= µ2
Xµ
−2
Y + µ−2

Y σ2
X + µ2

Xµ
−4
Y σ2

Y − 2µXµ
−3
Y Cov[X, Y ]. (B.8)

Therefore the variance of the ratio estimator is approximately

Var [f(X, Y )] ≈ µ−2
Y σ2

X + µ2
Xµ
−4
Y σ2

Y − 2µXµ
−3
Y Cov[X, Y ]. (B.9)

B.4 Fermats Little Theorem

Corollary B.3. If N is a prime, then 2N ≡ 2(mod N)

Proof. Let z = ei∆. Expand the 2N terms in p in the form of Q(z) =
∑N−1

n=0 anz
n. Since

Q(z)− 2 = 0, by the irreducibly of the Nth cyclotomic polynomials, Q(z)− 2 must be a

multiple of the N -th cyclotomic polynomials
∑N−1

n=0 z
n. Hence 2N − 2 ≡ 0 (mod N).
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