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Abstract
Pulmonary hypertension (PH) is a debilitating disease that alters the structure and function of both the proximal and distal 
pulmonary vasculature. This alters pressure-flow relationships in the pulmonary arterial and venous trees, though there is a 
critical knowledge gap in the relationships between proximal and distal hemodynamics in disease. Multiscale computational 
models enable simulations in both the proximal and distal vasculature. However, model inputs and measured data are inher-
ently uncertain, requiring a full analysis of the sensitivity and uncertainty of the model. Thus, this study quantifies model 
sensitivity and output uncertainty in a spatially multiscale, pulse-wave propagation model of pulmonary hemodynamics. The 
model includes fifteen proximal arteries and twelve proximal veins, connected by a two-sided, structured tree model of the 
distal vasculature. We use polynomial chaos expansions to expedite sensitivity and uncertainty quantification analyses and 
provide results for both the proximal and distal vasculature. We quantify uncertainty in blood pressure, blood flow rate, wave 
intensity, wall shear stress, and cyclic stretch. The latter two are important stimuli for endothelial cell mechanotransduction. 
We conclude that, while nearly all the parameters in our system have some influence on model predictions, the parameters 
describing the density of the microvascular beds have the largest effects on all simulated quantities in both the proximal and 
distal arterial and venous circulations.

Keywords Uncertainty quantification · Pulse-wave propagation · Hemodynamics · Sensitivity analysis · Multiscale 
modeling

1 Introduction

The pulmonary circulation supports the same cardiac output 
as the systemic circulation but with substantially lower pres-
sure magnitudes (between 5 and 20 mmHg) (Gu et al. 2023). 
Elevated pulmonary blood pressures constitute pulmonary 
hypertension (PH), a debilitating, often fatal disease that 
is attributed to vascular remodeling and causes right ven-
tricle (RV) dysfunction if left unmanaged. The disease is 
defined by a resting mean pulmonary arterial blood pressure 
≥ 20 mmHg measured by right heart catheterization and is 
a comorbidity in 36–83% of all adults with left-sided heart 
failure (Allen et al. 2023). While PH secondary to left-sided 

heart failure (World Health Organization (WHO) group II 
PH) is prevalent, there is still an unmet need in understand-
ing the hemodynamic drivers and consequences of group 
II PH (Allen et al. 2023).

A majority of PH research has focused on the proximal 
and distal pulmonary arteries, as RV dysfunction can be 
correlated with elevated proximal arterial pressures (Vonk 
Noordegraaf et al. 2017). For example, pulmonary arterial 
hypertension (PAH) severity is linked to increased distal 
pulmonary arterial wall thickness, lower proximal arte-
rial compliance, and eventual hemodynamic un-coupling 
of the RV and proximal arteries (Bellofiore and Chesler 
2013). These measures of dysfunction are also correlated 
with dysfunctional vascular mechanotransduction, which 
involves the translation of hemodynamics into cell signal-
ing cascades. In contrast, less is known about the role of the 
pulmonary microvasculature surrounding the alveoli in the 
lung, which is hypothesized to remodel in PH due to lung 
disease (Gu et al. 2023). Severe cases of heart failure can 
also result in capillary remodeling, distal arterial stiffening, 
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and RV deterioration (Guazzi et al. 2020; Allen et al. 2023). 
The exact mechanism of this transition in unknown, but is 
likely attributed to changes in mechanical forces, such as 
wall shear stress (WSS) and cyclic stretch (CS), which cause 
malicious changes in mechanotransduction cascades (Allen 
et al. 2023). These various forms of PH are heterogeneous 
and cause both cardiac and vascular dysfunction at multiple 
spatial scales. Disease diagnosis and prognosis rely on mul-
tiple data modalities (e.g., catheterization, imaging, echo-
cardiography) that cannot be integrated easily.

Computational fluid dynamics models have provided sig-
nificant insight into systemic hemodynamics by integrating 
multimodal clinical data (Olufsen 1999; Huberts et al. 2014; 
Mynard and Smolich 2015; Eck et al. 2017). These models 
have also been applied to the pulmonary circuit, including 
fully explicit three-dimensional (3D) (Bordones et al. 2018; 
Yang et al. 2019) and reduced order (Qureshi et al. 2014; 
Clark and Tawhai 2018; Colebank et al. 2021; Bartolo et al. 
2022) hemodynamics models. These mechanistic models 
can be solved in subject-specific geometries from imaging 
data and have potential as a noninvasive tool for disease 
monitoring (Corral-Acero et al. 2020; Morrison et al. 2023). 
In particular, one-dimensional (1D) hemodynamic models 
provide network-level insight into pressure-flow dynamics 
(Qureshi et al. 2014; Bartolo et al. 2022), as well as simula-
tions of wave travel and wave reflections, which correlate 
with PH severity (Quail et al. 2015; Qureshi and Hill 2015; 
Su et al. 2016). Several simulation studies focusing on the 
pulmonary circulation have quantified spatial multiscale 
phenomenon, including distal arterial (Colebank et al. 2021) 
and venous (Qureshi et al. 2014; Clark and Tawhai 2018; 
Bartolo et al. 2022) hemodynamics. However, few studies 
have quantified the uncertainties in these models (Huberts 
et al. 2014; Eck et al. 2016; Brault et al. 2017), and, to the 
authors’ knowledge, none have investigated the sensitivity 
and uncertainty of a multiscale hemodynamics model. These 
latter analyses are imperative, as modeling and simulation 
undergo heavy scrutiny before advancing to medical device 
or clinical applications (Erdemir et al. 2020; Morrison et al. 
2023).

We address this gap in the field by conducting a formal 
sensitivity and uncertainty analysis on a spatially multiscale, 
two-sided model of the pulmonary circulation. We use the 
1D hemodynamics model developed by Qureshi et al. (2014) 
and recently innovated on by Bartolo et al. (2022) to study 
group II PH. The model simulates nonlinear pulmonary 
arterial and venous hemodynamics in the proximal vascu-
lature (i.e., the first 2–3 generations of arteries and veins) 
and uses the structured tree model to generate an artificial, 
self-similar bifurcating tree representative of the distal 
vasculature (Qureshi et al. 2014; Bartolo et al. 2022). We 
employ polynomial chaos expansions (PCEs) to circum-
vent high computational cost and provide Sobol’ indices to 

measure parameter influence on pressure, flow rate, WSS, 
and CS in both the proximal and distal arteries and veins. 
We subsequently provide insight into the uncertainties in 
wave propagation in the arterial and venous systems. Our 
analysis identifies the biophysical parameters of the model 
that are most influential on proximal and distal arterial and 
venous hemodynamics. Importantly, our results suggest that 
microvascular structure (e.g., the number of arterioles and 
venules) is paramount to both proximal and distal vascular 
function. We provide uncertainty bounds for hemodynamic 
and biomechanical stimuli from the model at different spatial 
scales, presenting new details for future studies that seek 
to calibrate this model to patient data. Lastly, our findings 
support experimental conditions for in vitro studies that 
require appropriate stimuli to interrogate pulmonary vascu-
lar mechanotransduction.

2  Materials and methods

2.1  Vascular geometry

The model operates on two vascular domains, as shown in 
Fig. 1. The first domain includes pulmonary arteries (n = 15) 
up to the segmental level, as well as the first two generations 
of pulmonary veins (n = 12). This constitutes the proximal 
vasculature where the nonlinear 1D hemodynamic equa-
tions are solved. Each arterial and venous vessel includes 
a radius and length, as documented in Table 1, based on 
the findings in Mynard and Smolich (2015). The arteries 
and veins at the end of the proximal vasculature are deemed 
terminal branches herein. The axial domain for each vessel 
is 0 ≤ x ≤ L , with L (cm) being the length of the vessel. 

The distal vasculature is constructed using the structured 
tree model (Olufsen 1999; Qureshi et al. 2014; Bartolo et al. 
2022). Although the original formulation of the structured 
tree was based on the systemic vasculature (Olufsen 1999), 
numerous studies have also identified a self-similar, scalable 
structure within the pulmonary vasculature (Rahaghi et al. 
2016; Chambers et al. 2020). The arterial and venous beds 
are assumed to follow a self-similar, bifurcating structure, 
parameterized by five geometric parameters: � and � (dimen-
sionless), the major and minor radii scaling factors in the 
structured tree; �A

rr
 and �V

rr
 (dimensionless), the length-to-

radius ratios of the arterial and venous trees; and rmin (cm), 
the minimum radius cutoff for where the arterial and venous 
beds meet. Each vessel in the structured tree is described by

where rij and Lk
ij
 are the radius (cm) and length (cm) in the 

arterial ( k = A ) or venous ( k = V ) bed. Details regarding the 

(1)rij = �i� jrterm, Lk
ij
= rij�

k
rr
, k = A,V
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self-similarity principles can be found in the original work 
by Olufsen (1999).

2.2  Proximal vessel fluid mechanics

We simulate proximal pulmonary hemodynamics using a 1D 
model of the large arteries and veins, as developed by Qureshi 
et al. (2014) and Bartolo et al. (2022). In short, we assume 
that the blood is Newtonian and homogenous, and that flow 
is predominantly inertial, axially dominant, laminar, and 
axisymmetric, with no-swirl, resulting in only axial x (cm) 
and temporal t (s) dynamics. Each blood vessel is assumed 
to be cylindrical and impermeable with a circular cross sec-
tion. The resulting mass conservation and momentum balance 
equations are

and

where A(x, t)  (cm2) is the dynamic vessel area, q(x, t) 
 (cm3/s) is the flow rate, and p(x, t) (g cm/s2) is the transmu-
ral pressure. The blood density and kinematic viscosity are 
assumed constant in the large vessels, with � = 1.055 (g/
cm3) and � = 3.03 × 10−2  (cm2/s), respectively. We assume 

(2)�A

�t
+

�q

�x
= 0

(3)
�q

�t
+

(� + 2)

(� + 1)

�

�x

(
q2

A

)
+

A

�

�p

�x
= −2��(� + 2)

q

A

a power-law velocity profile with � = 9 , providing a blunt 
velocity profile in the center of each vessel that decreases 
to zero to satisfy the no-slip condition at the vessel wall 
(van de Vosse and Stergiopulos 2011). For the proximal 
wall mechanics, we assume that vessels are thin-walled, 
homogenous, and orthotropic, and follow a linearly elastic 
stress–strain relationship (Bartolo et al. 2022). This is mod-
eled by

where A0 = �r2
0
 is the reference area  (cm2), E (g  cm2/s) is 

the Young’s modulus in the circumferential direction, and 
h (cm) is the wall thickness. We assume that the proxi-
mal arteries have the same, constant material properties, 
KA = EAhA∕r0,A (g  cm2/s), while all the proximal veins have 
their own constant, venous-specific material properties, 
KV = EVhV∕r0,V (g  cm2/s) (Qureshi et al. 2014). The proxi-
mal vessel equations are discretized and solved using the 
two-step Lax-Wendroff scheme (Olufsen 1999). Numerical 
simulations are run through a combination of FORTRAN90 
and C +  + using a MATLAB (Natick, MA) wrapper file. It 
should be noted that pressure is calculated in CGS units and 
then converted to mmHg (1 mmHg = 1333.22 g  cm2/s) to 
make results clearer. We use a discretization of Δx = 0.125 
(cm) and Δt ≈ 1.04 × 10−4 (s) which provides numerically 
accurate solutions across the parameter domain while still 

(4)p(x, t) =
4

3

�
Eh

r0

��√
A∕A0 − 1

�

Fig. 1  Schematic of computational model geometry. a A pulmonary 
artery inflow profile is provided as a boundary condition to the MPA 
and drives flow through the fifteen proximal arteries. A left atrial 
pressure waveform is provided as a pressure boundary condition for 
four proximal pulmonary veins, which are connected to an additional 
generation of veins. The proximal arteries and veins are connected 
by the structured tree model, which includes the distal vasculature. b 

A pictorial representation of the structured tree model and how the 
parameters � and � are used to determine vessel radii. Note that there 
are both arterial and venous structured trees, which have the same 
geometry. MPA: main pulmonary artery; LSV: left superior vein; 
LIV: left inferior vein; RSV: right superior vein; RIV: right inferior 
vein
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satisfying the Courant-Friedrich-Lewy (CFL) condition 
(Olufsen 1999). The model is stopped once beat-to-beat 
convergence (pressure error ≤ 1 g  cm2/s) is reached, and the 
last cycle of the solution is used for all analyses.

2.3  Distal vessel fluid mechanics

Whereas the proximal vascular fluid mechanics include 
both inertial and viscous forces, hemodynamics in the 
distal vasculature are assumed to be viscous dominant. 
We assume that pressure and flow in the structured tree 
branches are periodic with each heartbeat and subse-
quently use the frequency domain representation of pres-
sure, P

(
x,�k

)
 , and flow rate, Q

(
x,�k

)
 , respectively, for 

each frequency �k = 2�k∕T  (rad/s). This leads to a linear 
mass conservation and momentum balance system given 
by the expressions

and

The above equations depend on KST = Eh∕r0,ij (g  cm2/s), 
the material properties of the vascular wall for both the arte-
rial and venous structured trees, the imaginary unit i =

√
−1 , 

and the first- and zeroth-order Bessel functions, J1 and J0 , 
respectively. The structured tree viscosity, �ST = �

(
r0,ij

)
 , 

is radius dependent, as described previously (Pries et al. 
1992; Bartolo et al. 2022), where r0,ij is the radius value for 

(5)i�kCP
(
x,�k

)
+

�Q
(
x,�k

)
�x

= 0, C =
3

2

(
�r2

0,ij

)

KST

(6)

i�kQ
(
x,�k

)
+

(
�r2

0,ij

)

�

(
1 −

2J1
(
w0

)

w0J0
(
w0

)
)
�P

(
x,�k

)
�x

= 0,

w0 = i3r2
0,ij
�k∕�

ST

Table 1  Vessel network used in 
this work based on Mynard and 
Smolich (2015)

Branch name Length (cm) Radius (cm) Parent: Daughters

Arteries
Main Pulmonary Artery (MPA) 4.30 1.350 None: LPA, RPA
Left Pulmonary Artery (LPA) 2.50 0.900 MPA: LIA, LSA
Right Pulmonary Artery (RPA) 5.75 1.100 MPA: RIA, RSA
Left Inferior Pulmonary Artery (LIA) 2.15 0.842 LPA: LIA D1, LIA D2
Left Superior Pulmonary Artery (LSA) 1.23 0.481 LPA: LSA D1, LSA D2
Right Inferior Pulmonary Artery (RIA) 2.35 0.922 RPA: RIA D1, RIA D2
Right Superior Pulmonary Artery (RSA) 1.92 0.755 RPA: RSA D1, RSA D2
LIA Daughter 1 (LIA D1) 1.93 0.757 LIA: LIV D1
LIA Daughter 2 (LIA D2) 1.31 0.514 LIA: LIV D2
LSA Daughter 1 (LSA D1) 1.10 0.433 LSA: LSV D1
LSA Daughter 2 (LSA D2) 0.75 0.293 LSA: LSV D2
RIA Daughter 1 (RIA D1) 2.11 0.829 RIA: RIV D1
RIA Daughter 2 (RIA D2) 1.43 0.562 RIA: RIV D2
RSA Daughter 1 (RSA D1) 1.17 0.460 RSA: RSV D1
RSA Daughter 2 (RSA D2) 1.55 0.610 RSA: RSV D2
Veins
Left Inferior Pulmonary Vein (LIV) 2.15 0.641 None: LIV D1, LIV D2
Left Superior Pulmonary Vein (LSV) 1.23 0.716 None: LSV D1, LSV D2
Right Inferior Pulmonary Vein (RIV) 2.35 0.864 None: RIV D1, RIV D2
Right Superior Pulmonary Vein (RSV) 1.92 0.824 None: RSV D1, RSV D2
LIV Daughter 1 (LIV D1) 1.93 0.576 LIV: LIA D1
LIV Daughter 2 (LIV D2) 1.31 0.391 LIV: LIA D2
LSV Daughter 1 (LSV D1) 1.10 0.643 LSV: LSA D1
LSV Daughter 2 (LSV D2) 0.75 0.436 LSV: LSA D2
RIV Daughter 1 (RIV D1) 2.11 0.777 RIV: RIA D1
RIV Daughter 2 (RIV D2) 1.43 0.527 RIV: RIA D2
RSV Daughter 1 (RSV D1) 1.73 0.740 RSV: RSA D1
RSV Daughter 2 (RSV D2) 1.17 0.502 RSV: RSA D2
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the ij-th branch of the structured tree. The compliance, C , 
is derived using the same linear relationship introduced in 
Eq. (3) under the assumption that Eh ≫ pr0 (Olufsen 1999). 
Equation (5) can be differentiated with respect to x and used 
in Eq. (6) to give a system of wave equations in P

(
x,�k

)
 

and Q(x,�k) . Their solution can be computed analytically in 
terms of sine and cosine functions, as described elsewhere 
(Qureshi et al. 2014; Bartolo et al. 2022).

The numerical solutions for P
(
x,�k

)
 and Q

(
x,�k

)
 require 

a pressure-flow relationship. As originally discussed by 
(Qureshi et al. 2014), the arterial and venous structured 
trees are linked using admittance, which is the inverse of 
impedance and generally expressed as Y = Q∕P . Using the 
analytical solutions for hemodynamics and the structured 
tree geometry, the pressure and flow rate at the inlet ( x = 0 ) 
and outlet (x = L ) of any vessel can be determined by the 
admittance relationship

where Y
(
�k

)
 is the 2 × 2 admittance matrix

Note that at �k = 0 , we obtain a Poiseuille-like admit-
tance matrix

where r0ij and Lij denote the reference radius and length of 
the vessel in the structured tree and �ST is the radius depend-
ent viscosity (Bartolo et al. 2022). The admittance through-
out the structured tree is dependent on the structured tree 
parameters �ST =

{
KST, �, �,�

A
rr
,�V

rr
, rmin

}
.

2.4  Multiscale coupling

The proximal arteries and veins are coupled to the distal 
structured tree beds using the “grand admittance” of the 
structured tree (Bartolo et al. 2022). To link the two models, 
the grand admittance matrix is used as a frequency-domain 
boundary condition to the proximal arteries and veins via a 
convolution integral. The proximal artery pressure and flow 
rate on the arterial and venous sides are calculated (respec-
tively) using the relationship

(7)
⎡⎢⎢⎣

Q
�
0,�k

�

Q
�
L,�k

�
⎤⎥⎥⎦
= Y

�
�k

�⎡⎢⎢⎣

P
�
0,�k

�

P
�
L,�k

�
⎤⎥⎥⎦

(8)

Y
(
�k

)
=

ig�k

sin
(
�kL∕c

)
[
− cos

(
�kL∕c

)
1

1 − cos
(
�kL∕c

)
]
,

(9)g�k
=

√√√√√C
(
�r2

0,ij

)

�

(
1 −

2J1
(
w0

)

w0J0
(
w0

)
)

(10)Y
(
�k = 0

)
=

�r4
0,ij

8�STLij

[
1 −1

−1 1

]

The above expressions depend on the components of the 
admittance matrix, yij(t) , which are the inverse Fourier trans-
formed version of Yij(�k

).
Once the large artery equations have been solved, the 

frequency domain variables P
(
x,�k

)
 , Q

(
x,�k

)
 , and other 

hemodynamic quantities derived from these, can be calcu-
lated in the structured tree. The Fourier transformed pres-
sure solutions at the connecting terminal proximal arteries, 
PA
root

(
�k

)
, and veins, PV

root

(
�k

)
, are used to in Eq.  (7) to 

obtain the arterial and venous flow rates at the root of the 
structured trees. From there, the pressure and flow rate solu-
tions at x = L are computed as

Distal vessel hemodynamics are calculated down the �
-sides and �-sides of each arterial and venous tree. This 
reflects the largest and smallest pathways in the structured 
tree, respectively; i.e., the �-side will include the greatest 
number of branches, while the �-side will include the fewest 
number of branches (Bartolo et al. 2022).

2.5  Inlet and Outlet Boundary Conditions

The mass conservation and momentum balance Eqs. (2–3) 
constitute a coupled hyperbolic partial differential equa-
tion (PDE) system. We require boundary conditions at each 
proximal vessel inlet ( x = 0 ) and outlet ( x = L ). At the inlet 
of the main pulmonary artery (MPA, the first vessel in the 
network), we enforce a period flow rate boundary condition, 
qMPA(t) , using magnetic resonance imaging data obtained 
from the SimVascular webpage1 (Colebank et al. 2021). At 
the proximal vessel junctions, we assume a conservation of 
flow and a continuity of total pressure

(11)

qA(L, t) =

T

∫
0

(
y11(t)pA(L, t − �) + y12(t)pV (0, t − �)

)
d�

(12)

qV (0, t) =

T

∫
0

(
y21(t)pA(L, t − �) + y22(t)pV (0, t − �)

)
d�

(13)P
(
L,�k

)
=

1

Y12
(
�k

)(Q(0,�k

)
− Y11P

(
0,�k

))

(14)Q
(
L,�k

)
= Y21P

(
0,�k

)
− Y22P

(
L,�k

)

(15)
qp(L, t) = qd1(0, t) + qd2 (0, t) and

pp(L, t) = pd1 (0, t) = pd2(0, t)

1 https:// simva scular. github. io/ clini cal/ pulmo nary. html

https://simvascular.github.io/clinical/pulmonary.html
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where the subscripts p , d1 , and d2 denote the parent and child 
branches, respectively. As mentioned above, the proximal 
arterial and venous branches are linked together using the 
grand admittance matrix from the structured tree and the 
convolution interval defined in Eqs. (11) and (12). Lastly, 
we prescribe a simulated left-atrial pressure waveform, 
pLA(t) , at the distal end of each of the four terminal pul-
monary veins: the left and right superior pulmonary veins 
(LSV, RSV) and the left and right inferior pulmonary veins 
(LIV, RIV). The left-atrial pressure waveform is extracted 
from a previously published lumped parameter model of the 
circulation (Colunga et al. 2023).

2.6  Global sensitivity analysis

We use variance-based sensitivity analysis to investigate 
parameter effects on different model outputs. Let Z = M(�) , 
represent a quantity of interest from the model M which 
depends on the parameters � . Throughout, we assume that 
the parameters can be mapped to a uniformly distributed 
random variable on the interval [0,1]. Under the assumption 
of N independent input parameters, the model response can 
be decomposed as

where

and so on. The notation E
[
Z|�i

]
 represents the expectation of 

the output conditioned on a known, fixed value of the param-
eter, �i . The term f0 represents the average response, the term 
fi is the response attributed to only parameter �i , and the term 
fij is the response associated with the interaction between �i 
and �j . In addition, each fi, fij,… term above is constrained 
to have an expected value of zero, which implies that each 
decomposition is orthogonal to each other (Eck et al. 2016). 
We can then write the total variance of the system as

The partial variances, Di(Z) and Dij(Z) , are then

(16)M(�) ≈ f0 +

N∑
i=1

fi
(
�i
)
+

N∑
i=1

N∑
j=i+1

fij
(
�i, �j

)
+… ,

(17)f0 =

1

∫
0

M(�)d� = E[Z]

(18)fi = E
[
Z|�i

]
− f0

(19)fij = E
[
Z|�i, �j

]
− fi − fj − f0

(20)D(Z) = Var[Z] =

1

∫
0

(M(�))2d� − f 2
0
.

Using these definitions, the first-order Sobol’ index, Si , 
for the parameter �i is defined as

which represents the variance attributed to the parameter �i 
alone. The second-order and total-order Sobol’ indices, Sij 
and ST i , are defined in a similar fashion

where the notation E
[
Z|�∼i

]
 represents the expected value 

of the response when all parameters except �i are allowed to 
vary. The second-order index, Sij , accounts for the pairwise 
interactions that contribute to the variance of the system. 
The total index, ST i , is the sum of all the partial variances 
attributed to the parameter �i , including first-order, second-
order, and higher-order Sobol’ indices.

2.7  Polynomial chaos expansions

Variance-based sensitivity indices require numerous param-
eter samples and model evaluations to achieve accurate met-
rics. For lower-fidelity models, this is feasible; however, the 
expensive computation time of running a spatially multiscale 
PDE, such as the one here, limits the number of evaluations 
feasible. To circumvent this, we use PCEs to speed up the 
calculation of output uncertainty and Sobol’ indices.

Briefly, the PCE of a model M(�) can be approximated 
by the finite truncation

where cj are the polynomial coefficients, Ψj(�) are the mul-
tivariate polynomials defined by the product of multiple, 
single-variate polynomials �i

(
�i
)
 , and J =

(
n+K

n

)
 is the 

number of polynomial basis functions, with n being the num-
ber of parameters in the system and K denoting the polyno-
mial order. The polynomials are chosen to be orthogonal in 
their prior space, i.e.

(21)

Di(Z) =

1

∫
0

f 2
i

(
�i
)
d�i, Dij(Z) =

1

∫
0

1

∫
0

f 2
ij

(
�i, �j

)
d�id�j.

(22)Si =
Di

D
=

Var
[
E
[
Z|�i

]]
Var[Z]

(23)

Sij =
Dij

D
=

Var
[
E
[
Z|�i, �j

]]
Var[Z]

, STi = 1 −
Var

[
E
[
Z|�∼i

]]
Var[Z]

(24)M(�) ≈

J−1∑
j=0

cjΨj(�), Ψj(�) =

K∏
i=1

�i

(
�i
)
,

(25)
�

�i

(
�i
)
�j

(
�i
)
d�i =

{
0, i ≠ j

�i, i = j
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where the term �i = E
[
�2
i

]
 is the normalization factor for the 

given polynomial family (Eck et al. 2016). The polynomial 
type is selected based on the prior probability distribution 
for the parameters. We assume that parameters are uniformly 
distributed on a scaled [−1,1] interval, and subsequently use 
Legendre polynomials (Eck et al. 2016).

In this study, the quantities of interest are time depend-
ent. We subsequently have a unique set of polynomial coef-
ficients, cij, that makeup the larger coefficient matrix,C , 
which is a J × nt matrix, where nt is the number of time 
points. Hence, the polynomial matrix, � is 1 × J  , for a sin-
gle realization of the model. The coefficients for each poly-
nomial at each time point can be determined using either 
projection or regression techniques (Eck et al. 2016). Here, 
we employ the regression approach by computing the coef-
ficients using ordinary least squares. Using a set of training 
data, Zi = M

(
�
i
)
 , we can solve the minimization problem 

for the matrix of polynomial coefficients

which gives rise to the vector matrix solution

where �̃ is a repeated matrix of polynomials to match 
each data instance in Z . Once the coefficients have been 
determined, the mean of the output, E[Z] , and the variance, 
Var[Z] , can be calculated as

where c0(t) and cj(t) are the coefficients of the PCE over the 
time interval. The Sobol’ indices can be defined in terms of 
the polynomial coefficients and the polynomial normaliza-
tion factors. Let Ai denote the set of all polynomial coef-
ficients that only depend on �i (i.e., without any interactions 
with other parameters up to the polynomial order K ), Aij 
denote the set of all polynomial coefficients that depend on 
�i and �j , and let AT i denote the set of all polynomials that 
have any dependence on �i . The first-order, second-order, 
and total-order Sobol’ indices are then defined as

Since  Z, Si , Sij , and ST i are time-dependent, we use the 
generalized Sobol’ sensitivities (Alexanderian et al. 2020) 

(26)J = argmin
C

N∑
i=1

(
Zi −�C

)2
,

(27)C =
(
�̃

⊤
�̃

)−1
�̃

⊤Z,

(28)E[Z] = c0(t), Var[Z] =

J−1∑
j=1

c2
j
(t)�j

(29)Si(t) =

��
j∈Ai

c2
j
(t)�j

�
∕Var[Z], Sij =

⎡⎢⎢⎣
�
j∈Aij

c2
j
(t)�j

⎤⎥⎥⎦
∕Var[Z], STi =

��
j∈ATi

c2
j
(t)�j

�
∕Var[Z]

to calculate parameter effects. The first-, second-, and total-
order generalized indices ( GSi, GSij and GSTi , respectively) 
are

which calculates the Sobol’ indices at tj using information 
from all previous time points. The value of GSi, GSij and 
GSTi at the final time point tj = T  , where T(s) is the cardiac 
cycle length, is used as a measure of parameter importance.

2.8  Quantities of interest

We quantify parameter influence and the output uncer-
tainty for several quantities of interest using PCEs. In the 
proximal vasculature, we consider time-series arterial 
pressure and arterial flow rate, as well as the proximal 
wall shear stress (WSS), defined by

where � = 9 gives the blunt velocity profile, as mentioned 
before. The WSS also depends on the blood viscosity, 
� = 0.032 (g/cm s) (Colebank et al. 2021), the velocity at 
the center of the vessel U (cm/s), and the dynamic inner 
radius of the blood vessel wall R(x, t)  (cm2). We use the 
midpoint ( x = L∕2 ) as the location in the proximal branches 
for all quantities of interest. We also consider the average 
pressure, flow rate, and WSS in the distal vasculature in our 
uncertainty quantification analysis, which corresponds to the 
zeroth frequency, �k = 0 . The WSS in the distal vasculature 
at �k = 0 is equivalent to the Poiseuille derived shear stress

(30)

GSi

(
tj
)

=
∫

tj

0
Si(t)Var[Z]dt

∫
tj

0
Var[Z]dt

, GSij

(
tj
)

=
∫

tj

0
Sij(t)Var[Z]dt

∫
tj

0
Var[Z]dt

, GSTi

(
tj
)

=
∫

tj

0
STi(t)Var[Z]dt

∫
tj

0
Var[Z]dt

(31)WSSprox = −�
(
�u

�r

)
r=R

= �U
(� + 2)

R(x, t)

(32)WSSdist =
4�Q

�R
3
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where Q and R are the average flow rate and radii of the 
distal vasculature corresponding to �k = 0 . Lastly, the cyclic 
stretch (CS) in both the proximal and distal vasculature is 
calculated as

Though proximal pressure and flow rate are quanti-
ties typically studied, WSS and CS are known to affect 
and regulate cell signaling at the endothelial and smooth 
muscle cell level (Allen et al. 2023). These mechanotrans-
duction stimuli are rarely examined in modeling studies 
(Bartolo et al. 2022), though they provide insight into the 
magnitude of hemodynamic forces in the vasculature and 
can help guide experimental design.

Lastly, we investigate how uncertainties in the model 
affect wave-transmission in the proximal arteries and 
veins using wave intensity analysis (WIA) (Qureshi and 
Hill 2015; Feng et al. 2021). In short, WIA separates 
pulse waves within the circulation into forward and back-
ward waves. These waves are further defined as forward 
compression waves (FCWs, increasing pressure, increas-
ing velocity), forward expansion waves (FEWs, decreas-
ing pressure, decreasing velocity), backward compression 
waves (BCWs, increasing pressure, decreasing veloc-
ity), and backward expansion waves (BEWs, decreasing 
pressure, increasing velocity). Wave types are hypoth-
esized to correlate with right ventricular dysfunction and 

(33)CS =
max (R(t)) −min (R(t))

min (R(t))

pulmonary vascular disease (Su et al. 2016). The classi-
fication of each wave type is identical to the analysis pre-
sented by (Feng et al. 2021). Though WIA has been used 
to understand pulmonary arterial hemodynamics (Quail 
et al. 2015; Qureshi and Hill 2015; Su et al. 2016), the use 
of WIA in the pulmonary venous system is less common 
(Mynard and Smolich 2015; Feng et al. 2021).

2.9  Parameter uncertainty and study design

To account for uncertainties and use the PCE framework, 
we impose uncertainty bounds and prior distributions for 
our parameters. We consider the following parameters that 
describe the proximal and distal vasculature:

The first three parameters describe the material properties 
of the vasculature, while the latter five describe the struc-
tured tree geometry.

We assume that the above parameters have a uniform 
prior distribution, �i ∼ U(a, b) , where a and b denote the 
upper and lower bounds of the parameters. Parameters are 
scaled to the interval [−1,1] during the PCE construction 
process. A list of the parameters, their upper and lower 
bounds, and references where applicable can be found in 
Table 2. The uniform prior distribution in the parameters 
requires the use of orthogonal Legendre polynomials for 

(34)� =
{
KA,KST ,KV , �, �,�

A
rr
,�V

rr
, rmin

}

Table 2  Parameter descriptions and uncertainties

Parameter Representation Bounds (values) Bounds (relative 
to mean value)

References

K
A

Proximal arterial stiffness (g/cm/s2) [5.60e5, 1.04e6] [0.7,1.3] (Qureshi et al. 2014; Mynard and Smolich 
2015; Feng et al. 2021; Bartolo et al. 2022)

K
ST

Structured tree stiffness (g/cm/s2) [1.75e5, 3.25e5] [0.7,1.3] (Qureshi et al. 2014; Feng et al. 2021; Bartolo 
et al. 2022)

K
V

Proximal venous stiffness (g/cm/s2) [5.95e5, 1.11e6] [0.7,1.3] (Qureshi et al. 2014; Mynard and Smolich 
2015; Feng et al. 2021; Bartolo et al. 2022)

� Radius ratio for � daughter (ND) [0.80, 0.92] [0.93, 1.07] (Qureshi et al. 2014; Chambers et al. 2020; 
Feng et al. 2021; Colebank et al. 2021; 
Bartolo et al. 2022)

� Radius ratio for � daughter (ND) [0.60, 0.70] [0.92, 1.07] (Qureshi et al. 2014; Chambers et al. 2020; 
Feng et al. 2021; Colebank et al. 2021; 
Bartolo et al. 2022)

�
A

rr
Length-to-radius ratio for the arterial side of 

the structured tree (ND)
[10, 50] [0.33,1.67] (Qureshi et al. 2014; Chambers et al. 2020; 

Feng et al. 2021; Colebank et al. 2021; 
Bartolo et al. 2022)

�
V

rr
Length-to-radius ratio for the venous side of 

the structured tree (ND)
[10, 50] [0.33,1.67] (Qureshi et al. 2014; Feng et al. 2021; Bartolo 

et al. 2022)
r
min

Minimum radius for terminating the structured 
tree model (cm)

[1e-3,1e-2] [0.18,1.82] (Qureshi et al. 2014; Chambers et al. 2020; 
Feng et al. 2021; Colebank et al. 2021; 
Bartolo et al. 2022)
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the PCE basis functions, �(�) , as discussed earlier. We 
compare degree K = 2, 3, and 4 polynomials like previous 
studies using the 1D framework (Huberts et al. 2014). We 
assess the PCE accuracy using the mean square error over 
the validation data

where Nval = 100 is the number of validation datasets. Note 
that �MSE is a vector reflecting the validation error for all 
validation data. We report the average errors as a metric of 
validation accuracy for each PCE. We compute the PCEs, 
their moments, and the Sobol’ indices of our various outputs 
using the standard ordinary least squares procedure in the 
UQlab software in MATLAB (Marelli and Sudret 2014).

3  Results

We use PCEs to propagate uncertainties attributed to the 
model parameters to multiple quantities of interest. In 
contrast to prior studies, we calculate the uncertainty and 
parameter influence in both the proximal and distal vascu-
lature, the latter of which has not been analyzed. Parameter 
importance is quantified through Sobol’ indices, which are 
readily available after calculating the PCE coefficients. We 
investigate typical hemodynamic outputs, like blood pres-
sure and flow rate, but also consider the uncertainties and 
parameter effects on WSS, CS, and WIA.

(35)�MSE =
1

Nval

Nval∑
i=1

(
Zi −M

(
�i

))2

3.1  Polynomial chaos surrogate

The PCE surrogate is constructed using the nonintrusive 
ordinary least squares regression approach. We investigate 
the validation error (Eq. (35)) of the PCE using a set of 
100 out-of-sample datasets. Figure 2 illustrates the effect of 
both training set size and polynomial order on the accuracy 
of the PCE as an emulator. Results are shown for the MPA 
and the four large pulmonary veins. Recall that MPA flow 
rate is a boundary condition in the arteries, while left atrial 
pressure is a boundary condition for the pulmonary veins. As 
expected, the K = 4 polynomial has the best validation accu-
racy across all four quantities of interest. The difference in 
accuracy between polynomial orders ( K = 2, 3, or 4 ) is most 
apparent for MPA pressure, MPA CS, and pulmonary venous 
flow rate. There is some improvement with increasing train-
ing data, though the polynomial order has a larger effect on 
the PCE validation accuracy. Given the apparent benefit of 
using a higher-order polynomial, we use the PCE with K = 4 
and 2000 training datasets for the remaining results. We also 
verified that the total-order Sobol’ indices were relatively 
stable as a function of sample size and polynomial order 
(results not shown).

3.2  Proximal vascular hemodynamics

The PCE coefficients provide an efficient way to calculate 
the expectation and variance for each quantity of interest 
in our model. Figure 3 shows the average pressure, flow 
rate, and WSS in the MPA as well as the next two arterial 

Fig. 2  Polynomial chaos expansion accuracy for a set of 100 validation datasets for different training dataset sizes and polynomial order ( K) . 
Accuracy in the MPA and four large veins is shown for a pressure, b flow rate, c WSS, and d CS. Note that the y-axis is presented on a log-scale
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branches, the left and right pulmonary artery (LPA and RPA, 
respectively). We also show one standard deviation from the 
mean, corresponding to the uncertainty using the PCE coef-
ficients in Eq. (24). The arterial system is driven by a flow 
profile; hence, flow rate uncertainty, especially in the MPA, 
is relatively small compared to pressure. Proximal arterial 
WSS has relatively less uncertainty, with the most variability 
occurring during peak-systole. The average CS (not shown) 

is between 4.3 and 4.5% in all the arterial segments, with a 
standard deviation of 0.25%.

Proximal vein hemodynamics are coupled to a pressure 
boundary condition, which leads to relatively small uncer-
tainty in the pressure signals provided in Fig. 4. The dynam-
ics of the pressure signal, corresponding to left atrial reser-
voir, conduit, and pump function, are correlated with the 
venous flow rate profile. Flow rate in the pulmonary veins 
is negligible or slightly negative during the beginning of 

Fig. 3  Output uncertainty via 
the PCEs in the proximal arter-
ies. The average value (black) 
and one standard deviation from 
the average (blue) are provided 
for the a MPA, b LPA, and c 
RPA. Results show pressure 
(top row), flow rate (middle 
row), and WSS (bottom row) 
uncertainty as a function of 
time. Realizations from the 
sampling procedure are shown 
in dash-dotted lines

Fig. 4  Output uncertainty via 
the PCEs in the proximal veins. 
The average value (black) and 
one standard deviation from the 
average (red) are provided for 
the a LIV, b LSV, c RIV, and 
d RSV. Results show pressure 
(top row), flow rate (middle 
row), and WSS (bottom row) 
uncertainty as a function of 
time. Realizations from the 
sampling procedure are shown 
in dash-dotted lines
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ventricular contraction, followed by an increase in flow rate 
while pulmonary venous pressure decreases during atrial 
relaxation. Pulmonary venous flow rate decreases during the 
latter phase of the cycle, with a slight notch in flow corre-
sponding to the change in pressure during left atrial filling. 
Flow into the RPA is greater than the LPA; hence, the flow 
rate in the right pulmonary venous tree is greater than in 
the left pulmonary veins. The proximal venous flow rate 
uncertainty bounds are larger than the arterial side. This 
subsequently elevates the uncertainty in pulmonary venous 
WSS, which trends like the flow rate predictions. The LSV 
flow rate is smaller in magnitude than that of the LIV; thus, 
the WSS is also smaller in magnitude. Lastly, the venous 
CS (not shown) is much smaller in the veins relative to the 
arteries. The average CS across all the proximal veins is 
between 1.2 and 1.3%, with standard deviation between 0.02 
and 0.03%.

3.3  Wave intensity analysis

Wave intensities in the proximal arteries and veins are 
derived from the simulated pressure, flow rate, velocity, and 

area. The FCWs, which represent increasing pressure and 
forward flow, occur in the proximal arteries during ventricu-
lar ejection, as shown in Fig. 5. There are slight BCWs in 
the proximal arteries during ejection, but in general these are 
minimal. Arterial FEWs then follow, representing decreas-
ing pressure and velocity, and then BEWs during decreas-
ing pressure and increasing velocity. These trends are similar 
in all the proximal arteries, but with decreasing wave mag-
nitudes for branches further down the tree.

The proximal venous WIA results are distinct in their 
shape and amplitude compared to the arterial results. In 
general, the proximal veins show a large BEW correspond-
ing to a decrease in pulmonary venous pressure, while flow 
velocity increases in the venous system. There is also a 
prominent FEW that occurs simultaneously. All four veins 
show a relatively large BCW at the end of the cardiac cycle, 
consistent with the start of atrial contraction and increasing 
pulmonary venous pressure. On average, both the LIV and 
the RIV have larger magnitude BEW than the LSV and RSV, 
consistent with the higher flow rate magnitudes shown in 
Fig. 4. Individual simulated wave components (shown as 
dotted lines) vary dramatically in magnitude and in timing. 

Fig. 5  Output uncertainty in wave intensities using PCEs. The aver-
age values for FCWs (red), FEWs (cyan), BCWs (blue), BEWs 
(magenta), and one standard deviation from their respective averages 
(same colors, shaded) are provided for the a first three proximal arter-

ies and b the four large veins. Note that, because wave magnitudes 
vary substantially with vein location, we provide a zoom in subplot 
in c for the LSV, and RSV. Realizations from the sampling procedure 
are shown in dash-dotted lines



1920 M. J. Colebank, N. C. Chesler 

Pulmonary venous wave intensities vary in shape along the 
venous tree, with the LIV, the RIV, and their first daughter 
branches (LIV D1 and RIV D1, respectively) exhibiting the 
largest magnitude for all four wave types.

3.4  Proximal vessel sensitivity

The coefficients of the PCE allow for straightforward 
computation of the first-order (Si) , second-order (Sij) , and 
total-order (STi) Sobol’ indices. The median Sobol’ indices 
and range of values for all of the proximal arteries and all 
of the proximal veins are provided in Figs. 6, 7, 8, and 
9, along with error bars representing the range of Sobol’ 
indices for all the arterial or venous branches.

The values of both Si and ST i are nearly identical for 
all proximal arteries, as indicated by the negligible error 
bars in Fig. 6. The structured tree parameters � and � 
are the most influential parameters, followed by rmin , 
�
A
rr

 , and �V
rr

 . In contrast, the flow rate and WSS Sobol’ 
indices have more variability, especially the values of 
Si corresponding to the parameter � and the values of 
STi for �A

rr
 and �V

rr
 . The sensitivity of CS parallels the 

results for pressure, with the exception that the stiffness 
parameters KA and KST  are more influential for CS than 
pressure. In general, the sensitivity indices for pressure 
and CS are consistent across all of the proximal arteries. 
There is a notable difference between Si and STi for the 
parameters �, �,�A

rr
 , and �V

rr
 , which is attributed to higher-

order interactions. The second-order indices, shown 
in Fig.  7, provide evidence that the parameter pairs 

(�, �),
(
�,�A

rr

)
,
(
�,�V

rr

)
,
(
�, rmin

)
,
(
�, rmin

)
 ,  and 

(
�
A
rr
,�V

rr

)
 

have non-negligible Sij values.
For the proximal veins, the largest values of ST i for 

pressure coincide with the parameters �,�V
rr

 , and � , while 
there is variability for both Si and ST i for the parameter 
KV  . The sensitivity of venous flow rate and WSS is like 
the results found on the arterial side, with less variability 
in the values of Si and ST i . Pulmonary venous CS is almost 
completely determined by values of KV  , with the other 
parameters in the system providing little, if any, effects 
on venous CS. There is a similar difference in Si and ST i 
values in the venous tree. The second-order indices in 
Fig. 7(b) show a similar trend to the arterial tree, with a 
relatively larger interaction effect for 

(
�
A
rr
,�V

rr

)
.

The median Sobol’ indices corresponding to the four 
WIA wave types are provided in Fig. 8 and Fig. 9 along 
with error bars as described in Fig. 6. In general, all four 
wave types in both the arterial and venous trees are most 
sensitive to the value of � in the structured tree model. 
Interestingly, the parameters �A

rr
 and �V

rr
 are second most 

influential for the arterial and venous branches, respec-
tively, followed by the parameter � . The value of rmin has 
some influence on all four wave types, while the three 
stiffness parameters are relatively less influential and 
vary in their effects on the different wave types. Simi-
lar to the results in Fig. 6, the values of Si are smaller 
in magnitude than ST i , suggesting some interactions 
between parameters. The second-order indices presented 
in Fig. 9 indicate non-negligible second-order interac-
tions between (�, �),

(
�,�A

rr

)
,
(
�,�V

rr

)
,
(
�, rmin

)
,
(
�,�V

rr

)
 , 

Fig. 6  Generalized Sobol’ 
indices (Eq. (30)) calculated 
using the PCE coefficients for 
pressure, flow rate, WSS, and 
CS. Both first-order ( Si , light 
gray) and total-order ( ST i, dark 
gray) Sobol’ indices are pro-
vided in the a proximal arteries 
and b proximal veins. Each bar 
height represents the median 
Sobol’ index for the proximal 
arteries or veins, while the error 
bars denote the range of Sobol’ 
indices found in either proximal 
vasculature
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and 
(
�
A
rr
,�V

rr

)
 . In particular, the interactions between (

�,�A
rr

)
 and 

(
�,�V

rr

)
 are the strongest for the proximal 

arteries and veins, respectively.

3.5  Distal vascular hemodynamics

We use the same PCE framework to investigate the 
uncertainties in the distal vasculature as predicted by the 

Fig. 7  Generalized, second-order Sobol’ indices calculated using the 
PCE coefficients for pressure, flow rate, WSS, and CS. Values of Sij 
are provided in the a proximal arteries and b proximal veins. Each bar 

height represents the median Sobol’ index for the proximal arteries or 
veins, while the error bars denote the range of Sobol’ indices found in 
either proximal vasculature
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structured tree model. The structured tree model is run for 
the same model parameters used to generate proximal hemo-
dynamics shown previously. Figure 10 shows the uncertainty 
in one structured tree (corresponding to the first daughter of 
the right inferior pulmonary artery and vein, RIA-D1 and 
RIV-D1, respectively). The other structured tree locations 
show similar results and are provided in the Supplement. 
Since the value of rmin is included in the uncertain parameter 
set, the terminal radii for the structured tree change with 
each draw from the prior distribution. Hence, we quantify 
the uncertainty of the distal vascular hemodynamics as a 
function of distance from the end of the structured tree, 
shown in Fig. 10.

The mean pressure is similar in both the � and � pathways 
on the arterial side, whereas the venous � pathway exhibits 
a slightly smaller mean pressure than the corresponding � 
pathway at the smallest venous branches. The arterial pres-
sure uncertainty is noticeably larger than the venous uncer-
tainty in the structured tree, and the venous uncertainty 
decreases as predictions move closer to the proximal veins.

The flow rate predictions in both arterial and venous trees 
appear nearly identical; however, the mean flow rate at the 
end of the � pathway is on the order of 1e-5, whereas flow 
rates in the � pathway on the order of 1e-4. The standard 
deviation is small in magnitude, ranging from 2 mL/s at 
the largest branches to approximately 4e-4 in the smallest 
branches; however, the coefficient of variance (CoV, the 
ratio of standard deviation to the mean) increases toward 
the smaller branches, with CoV ≈ 0 at the largest branches 
and CoV ≈ 2 in the smallest branches, suggesting more 
uncertainty for smaller vessel radii. The uncertainty in the � 
pathway is slightly larger than the � pathway.

The results for arterial and venous WSS vary with the � 
and � pathways. The � pathways show a slight increase in 

the mean WSS near the capillary bed, whereas the � path-
way exhibits a more drastic increase in shear stress at the 
microvascular bed. Like the flow rate, the CoV for WSS is 
1.8 at the smallest branches and 0.05 at the proximal arteries 
and veins in both pathways, again showing more uncertainty 
in the smaller branches. The mean WSS in the � pathway 
is roughly 15 dyne/cm2 at the capillary beds, whereas the 
� pathway has an average WSS that is between 60 and 65 
dyne/cm2.

Values of CS vary from 8 to 2% in the arterial beds to 
4–1% in the venous beds. Like pressure, CS values are rela-
tively continuous across the structured tree in the � pathway, 
whereas the � pathway shows a slight decrease from the 
arterial to the venous tree after passing the capillary bed. 
The CS CoV increases slightly in the arterial branches from 
approximately 60 to 70% as vessel radii decrease, whereas 
the CoV for venous CS is approximately 60% in the smallest 
branches but steadily decreases to approximately 20% at the 
interface with the proximal pulmonary veins.

3.6  Distal vasculature sensitivity

The PCE coefficients are recomputed for the all the struc-
tured tree model predictions in each distal vasculature, 
corresponding to eight sets of PCE coefficients. Figure 11 
shows the median first- and total-order Sobol’ indices and 
the range of values obtained from all eight sets of structured 
tree predictions in the arterial and venous � or � pathways. 
The second-order indices, Sij , are provided in the supple-
mentary material. There is little variability in the pressure 
sensitivity across the eight structured tree beds. In general, 
� has the largest ST i corresponding to the largest influence 
on pressure. � and rmin are also influential on both arterial 

Fig. 8  Generalized Sobol’ indi-
ces (Eq. (30)) calculated using 
the PCE coefficients for FCWs, 
FEWs, BCWs, and BEWs. 
Both first-order ( Si , light gray) 
and total-order ( ST i, dark gray) 
Sobol’ indices are provided in 
the a proximal arteries and b 
proximal veins. Each bar height 
represents the median Sobol’ 
index for the proximal arteries 
or veins, while the error bars 
denote the range of Sobol’ 
indices found in either proximal 
vasculature
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and venous pathways. Distinct to the venous trees is the 
larger pressure sensitivity with respect to �V

rr
 . Again, stiff-

ness parameters appear to have a minimal effect on pressure.
The values of Si and ST i for the flow rate vary across the 

eight structured tree beds, with both � and rmin exhibiting 
the largest effects on the flow rate predictions. These two 

parameters and � constitute nearly all of the model sensitiv-
ity, with little sensitivity being attributed to the other param-
eters. In contrast to the other quantities of interest (with the 
exception of CS, discussed later), the first and total order 
indices for the flow rate are nearly the same in magnitude for 

Fig. 9  Generalized, second-order Sobol’ indices for FCWs, FEWs, 
BCWs, and BEWs. Values of Sij are provided in the a proximal arter-
ies and b proximal veins. Each bar height represents the median 

Sobol’ index for the proximal arteries or veins, while the error bars 
denote the range of Sobol’ indices found in either proximal vascula-
ture
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all eight structured tree beds, i.e., Si ≈ ST i , even though the 
magnitude of the indices vary with each structured tree bed.

The Sobol’ indices for WSS in the structured tree are 
similar across the different structured tree beds. Again, � 
is the most influential parameter, yet the � pathway shows 
a larger sensitivity to the parameter � than the � pathways. 
The parameter rmin is somewhat influential on all four WSS 
outputs, while all the stiffness parameters, �A

rr
 , and �V

rr
 have 

little to no effect relative to the other three parameters. The 
second-order indices for the distal vasculature (shown in 
the supplement) show substantial second-order interac-
tions between �, � , and rmin for WSS predictions in both 
arterial and venous trees.

Lastly, model predictions of CS vary across all four path-
ways. The parameters �,�A

rr
, �,�V

rr
 , and KV (in order of ST i 

magnitude) are the most influential on arterial CS in the 
� pathway. The arterial � pathway is similar but is more 
sensitive to the � parameter. Like the proximal vasculature, 
the Si and ST i magnitudes for venous CS are largest for the 
parameter KV . However, other parameters, such as �, �,�A

rr
 , 

and �V
rr

 , are also somewhat influential. The venous structured 

trees have more variability in Si and ST i values, whereas the 
arterial sensitivities are more consistent.

4  Discussion

Expensive PDE models are difficult to interrogate using 
traditional sensitivity methods; however, PCEs are a use-
ful emulation tool for this process. Our study identifies the 
important parameters of a recently established model of the 
pulmonary arterial and venous circulation (Qureshi et al. 
2014; Bartolo et al. 2022) and is the first study to quantify 
uncertainty in both the proximal and distal vasculature in 
a spatially multiscale model. We perform a novel analysis 
on two important vascular mechanical stimuli: WSS and 
CS. These latter two outputs are important in vitro stud-
ies, yet they cannot be directly measured preclinically (i.e., 
in animal models in vivo) or clinically. Overall, our results 
show that the structured parameters of the distal vasculature 
( �, �,�A

rr
,�V

rr
 , and rmin ) are the most influential, whereas the 

functional parameters describing stiffness ( KA,KST , and KV ) 
are minimally influential with the exception of venous CS.

4.1  Proximal vascular uncertainty

Proximal pulmonary arterial hemodynamics are commonly 
investigated in PH research. While several computational 
studies have provided predictions of pulmonary arterial 
hemodynamics (Qureshi et al. 2014; Bordones et al. 2018; 
Yang et al. 2019), including work by the present authors 
(Colebank et al. 2021; Bartolo et al. 2022), few groups have 
critically examined the uncertainty in these predictions. The 
uncertainty bounds provided in Fig. 3 show that, even with a 
fixed inflow profile, there can be large uncertainty in proxi-
mal arterial pressure and WSS. This degree of uncertainty 
is larger than that found by (Paun et al. 2020), who quanti-
fied posterior uncertainty in a 1D pulmonary hemodynam-
ics model for mice. Our pressure variance is much larger, 
but is attributed to the prior uncertainty (e.g., in Table 2), 
and would be smaller if we were constructing the posterior 
uncertainty using data.

Our investigation of 1D pulmonary hemodynamic uncer-
tainty using PCEs is the first; however, several studies have 
used PCEs to explore uncertainties in similar models of the 
systemic vasculature. Bertaglia et al. (2021) investigated 
how geometric and material parameters of a systemic 1D 
hemodynamics model affected output uncertainty, and 
found that uncertainties in their parameters contributed to ± 
20 mmHg of uncertainty in thoracic aorta pressure predic-
tions. The study by Eck et al. (2017) used PCEs to quantify 
the uncertainty in a systemic pulse-wave propagation model 
and showed a large variance ( ≈ 45 mmHg) in the systolic 
pressure predictions. Bartolo et al. (2022) quantified the 

Fig. 10  Output uncertainty via the PCEs in the distal arteries and 
veins of one of the structured tree beds. The average value (black) 
and one standard deviation from the average (blue or red shade) are 
provided for the a �-pathway and b �-pathway. Results show the pres-
sure, flow rate, WSS, and CS uncertainty over the structured tree. 
Values on the left-most side of the x-axis correspond to the largest 
arteries in the structured tree, while values on the right-most side of 
the x-axis correspond to the largest veins in the structured tree. The 
dashed black line denotes the transition from arteries to veins in the 
structured tree. Realizations from the sampling procedure are shown 
in dash-dotted lines
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effects different inflow and outflow boundary conditions on 
a similar 1D model and showed that MPA flow rate had 
a large effect on WSS. We did not consider uncertainties 
in the MPA inflow or left atrial pressure boundary condi-
tion, yet still observe variability in arterial and venous WSS 
predictions.

Computational models including pulmonary venous 
hemodynamics are less common than their arterial coun-
terparts. Hellevik et al. (1999) characterized forward and 
backward waves between the pulmonary veins and left 
atrium using a three-element transmission line model, with 

results similar to ours in Fig. 4. While the average pulmo-
nary venous flow rates in Fig. 4 do not exhibit the distinct 
“S1” and “S2” components of human pulmonary venous 
flow (Hellevik et al. 1999; Bouwmeester et al. 2014), sev-
eral of the individual samples generated from our sampling 
routine, as shown in Fig. 12, do have this feature. Our 
venous flow rate and WSS values are similar in magnitude 
to those in Bartolo et al. (2022) but are different in shape 
due to our dynamic left atrial boundary condition. Feng 
et al. (2021) coupled a similar 1D hemodynamics model 
with a 3D model of the mitral valve and left atrium and 

Fig. 11  Generalized Sobol’ indices (Eq.  (30)) calculated using the 
PCE coefficients for pressure, flow rate, WSS, and CS across all eight 
of the structured tree beds. Both first-order ( Si , light gray) and total-
order ( ST i, dark gray) Sobol’ indices are provided in the a � arteries, 

b � arteries, c � veins, and d � veins. Each bar height represents the 
median Sobol’ index for the distal � and � arteries or veins, while the 
error bars denote the range of Sobol’ indices found in across the dif-
ferent structured tree beds
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showed that changes in the parameter rmin caused changes 
in LIV flow rate magnitude, consistent with our observed 
uncertainty in pulmonary venous flow rates.

4.2  Wave intensity

Pulse-wave propagation seen clinically and in vivo is driv-
ing new research into wave separation and WIA. Only 
recently has WIA been used to understand the progression 
of pulmonary vascular disease. The WIA by Quail et al. 
(2015) showed that time-integrated FCWs, BCWs, and 
BEWs were significantly different between PH and non-
PH groups. The study by Su et al. (2017) used WIA with 
PAH, chronic thromboembolic pulmonary hypertension 
(CTEPH), and no PH patients. Su et al. showed that FCW 
and BCW were elevated in both PH groups and found that 
the ratio of FCWs to RV contractility distinguished PAH 
patients from those with CTEPH.

In the absence of detailed data, simulated pressure-flow 
dynamics can provide WIA results. Mynard and Smolich 
(2015) modeled a portion of the entire adult circulation 
and provided WIA results in the pulmonary circulation 
with similar FCW and FEW magnitudes. In addition, 
Mynard and Smolich showed predominant BEWs and 
BCWs in the LIV, consistent with the results shown in 
Fig. 5. The study by Qureshi and Hill (2015) used a similar 
two-sided 1D model as we used here and showed minimal 
backward wave components under normotensive condi-
tions, consistent with a majority of our simulated results.

Relatively few studies, experimental or computational, 
have considered pulmonary venous WIA. The study by 
Hellevik et al. (1999) combined clinical data with a Wind-
kessel model and concluded that pulmonary venous waves 
are driven by left atrial contraction and reflected waves 
from the pulmonary microcirculation. The preclinical 
study by Hobson et al. (2007) recorded left atrial and pul-
monary venous hemodynamics during acute LV volume 
loading in anesthetized dogs. They found that left atrial 
contraction aligned with a prominent, bimodal pulmonary 
venous BCWs. Our venous WIA results show a similar 
feature, with one BCW occurring at the middle of the car-
diac cycle (during left atrial filling) and one at the end of 
the cardiac cycle (atrial contraction prior to ventricular 
systole). The canine study by Bouwmeester et al. (2014) 
showed similar results, with a spike in wave intensity fol-
lowing mitral valve opening.

Studies by Feng et al. (2021) and Mynard and Smolich 
(2015) provided pulmonary venous WIA results from a com-
putational model. Both computational studies show a BCW 
and BEW wave during the start and end of atrial contraction, 
respectively. Our results in Fig. 5 suggest that BEWs are the 
largest in magnitude, contrasting these other two modeling 
studies but corroborating the findings by Bouwmeester et al. 
(2014). Our individual realizations of WIA in Fig. 5 suggest 
that the present model can provide an array of wave inten-
sity results and could provide data-specific wave intensity 
profiles.

4.3  Proximal vascular sensitivity

We efficiently and robustly compute Sobol’ indices using the 
PCE coefficients (Eck et al. 2016). This study is the first to 
both (a) conduct a formal sensitivity analysis of the struc-
tured tree model, and (b) calculate Sobol’ indices for a 1D 
model of the pulmonary circulation. Previous studies have 
performed global sensitivity analyses and calculated Sobol’ 
indices for models of the systemic circulation. A study by 
Eck et al. (2015) calculated first-order Sobol’ indices for 
both amplitude and timing of backward pressure waves with 
respect to different stiffness parameters along the aortic 
trunk. The authors found that proximal stiffness parameters 
were more influential than distal stiffness, while our find-
ings show that hemodynamics and WIA results are mostly 
affected by the parameters in the structured tree (Figs. 6, 7, 
8, 9). However, the stiffness parameters KA,KST, and KV have 
some effects on both forward and backward waves.

No studies have computed Sobol’ indices for a 1D pul-
monary circulation model, but some have conducted other 
types of sensitivity analysis. The study by Mynard and 
Smolich (2015) looked at the effects of changing cardiac 
elastance parameters on wave propagation. They found that 
RV parameters were most impactful on FCWs and FEWs 

Fig. 12  Realization from the training data that includes the “S1” and 
“S2” components of the pulmonary venous flow rate. a MPA pres-
sure; b LIV flow rate; c LSV flow rate; d RIV flow rate; e RSV flow 
rate
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in the MPA, whereas WIA results in the LIV were more 
sensitive to changes in left atrial elastance and LV end-dias-
tolic elastance. The studies by Qureshi (Qureshi et al. 2014; 
Qureshi and Hill 2015) found that stiffness was influential on 
wave speed and WIA results, but that changes in rmin had the 
largest effect on pressure predictions in a similar 1D model. 
Our results show that rmin is also more important than stiff-
ness in determining forward and backward wave shapes, and 
that the other structured tree parameters are most influential 
on all four wave components. This is consistent with the 
idea that decreased small vessel density due to distal vessel 
‘pruning’ (Rahaghi et al. 2016) is correlated with elevated 
pulmonary pressures and wave reflections in PH. The study 
by Olufsen et al. (2012) concluded that their pulmonary 
arterial circulation model was most sensitive to parameters 
describing the microvasculature. These findings are consist-
ent with our more formal global sensitivity analysis results 
and suggest that model sensitivity varies with which circu-
lation (systemic or pulmonary, e.g.) and which components 
of that circulation are considered. Lastly, our investigation 
of second-order interactions shows that the structured tree 
parameters interact with each other to affect hemodynam-
ics and WIA results. Moving forward, these findings may 
inform future studies that collect data to infer the model 
parameters from hemodynamic data, i.e., performing param-
eter estimation.

4.4  Distal vascular uncertainty

Computational models that account for both the proximal 
and distal hemodynamics are rare but provide more insight 
into potential mechanisms of disease. Several previous stud-
ies have used the structured tree model to predict dynamics 
in the arterial (Olufsen et al. 2012; Chambers et al. 2020; 
Colebank et al. 2021) or arterial and venous (Qureshi et al. 
2014; Feng et al. 2021; Bartolo et al. 2022) distal vascula-
ture, while others, such as Clark and Tawhai (2018), have 
used different wave-propagation models. The interaction 
between the pulmonary microcirculation and the proximal 
arterial and venous trees is significant in disease progres-
sion. Hence, a spatially multiscale model, such as the one 
presented, can test mechanistic hypotheses regarding the role 
of microvascular dysfunction in disease development.

The results in Fig. 10 are from a representative struc-
tured tree; however, all the structured tree predictions (see 
the Supplement) are similar in shape and magnitude, with 
the exception of flow rate. In general, pressure uncertainty 
is largest at the arterial root of the structured tree and stead-
ily decreases toward the microcirculation and venous trees. 
The proximal arterial pressure has a standard deviation of 
20—35 mmHg, consistent with the standard deviation at the 
start of the arterial structured tree, which is 20—25 mmHg. 
These findings suggest a similar uncertainty across these 

two scales. Pressure uncertainty decreases until reaching the 
proximal veins, which, due to the left atrial pressure bound-
ary condition, have minimal uncertainty. This again suggests 
that the uncertainty is communicable across the different 
scales. The flow rate uncertainty is relatively small in mag-
nitude in all the structured trees. However, the time-averaged 
flow rate in the proximal veins has small uncertainty (CoV 
between 2 and 17%), consistent with the smaller standard 
deviation in the mean flow rate in the structured tree in the 
venous tree.

The � pathway of the structured tree contains the largest 
number of branches and the � pathway contains the least. 
Hence, the � pathway will include more generations in the 
structured tree and have a smaller mean flow rate at the capil-
lary beds. The WSS plots of Fig. 10 show larger magnitudes 
in the � pathway relative to the � pathway. The time-aver-
aged WSS, given by Poiseuille (see Eq. (28)), is dependent 
on time-averaged flow rate, time-averaged radius, and the 
radius-dependent viscosity. Since the minimum radii and 
viscosity values will be similar in both the � and � pathways, 
the biggest contributor to WSS differences is the flow rate 
magnitude in the two pathways. Lastly, the average CS and 
its uncertainty decrease from the arterial side to the venous 
side. The average CS decreases more in the � pathway in 
comparison to the � pathway. The small vessels adhere to a 
linear pressure-area relationship; hence, pressure and CS (a 
function of vessel radius) trend in a similar fashion.

Qureshi et al. (2014) used the two-sided 1D model to 
predict the mean pressure across the � and � pathway. The 
authors also found that reducing the vascular density by 
30% elevated mean arterial pressure in the distal vascula-
ture to 50 mmHg, which is within the range of our results 
in Fig. 10. Bartolo et al. (2022) showed that WSS in the � 
pathway is typically larger in magnitude relative to the � 
pathway, and that CS values between 10 and 20% in the arte-
rial beds and 10–5% in the venous beds. Our CS values are 
smaller in magnitude, which can be attributed to the number 
of branches in our proximal vasculature which decreases 
the mean flow rate, and hence the stretch, in the structured 
trees. The results in Fig. 10 provide a starting point for in 
vitro studies investigating the roles of WSS or CS on pul-
monary vascular cells. As noted in the review by Allen et al. 
(2023), these mechanobiological stimuli are hypothesized to 
progress pulmonary vascular diseases and can be studied in 
detail only when appropriate stimuli magnitudes have been 
calculated from in-silico or in vivo studies.

4.5  Distal vascular sensitivity

The structured tree model contains multiple parameters 
describing the geometry and material properties of the 
distal vasculature. Given that the structured tree model is 
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less commonly used than other boundary condition models 
(e.g., the Windkessel), fewer studies have sought to quantify 
the impact of the model’s parameters. The distal vascular 
hemodynamics are on average most sensitive to parameters 
in the structured tree. Both the median and range of first- 
and total-order Sobol’ indices ( Si and ST i , respectively) in 
Fig. 11 show that parameters describing the structured tree 
geometry are most important, except for KV and venous CS.

To date, papers using the structured tree model have 
only performed informal sensitivity analyses. The study by 
Qureshi et al. (2014) illustrated that smaller � and � induced 
substantial changes in the mean pressure along the struc-
tured tree. The results in Fig. 11 provide evidence that the 
parameters � and � , which control the structured tree density, 
are on average the most influential parameters. In contrast 
to the proximal vascular results, the parameter rmin has a 
larger effect on distal vessel predictions. This is most notable 
for flow rate, which is the second most influential param-
eters across � and � pathways in both arterial and venous 
circulations.

Our results support a relationship between microvascu-
lar density and pulmonary hemodynamics, which has been 
documented previously in imaging studies. Gerges et al. 
(2020) conducted a prospective histological analysis of 
CTEPH lung biopsies and found that patients with adverse 
outcomes often had less arterial and venous remodeling than 
patients who responded well to treatment. Another retro-
spective histological study by Fayyaz et al. (2018) found that 
patients diagnosed with PH had more intermediate vessels 
( ≤ 100 � m) with intimal thickening relative to control. The 
authors also showed a strong positive relationship between 
the transpulmonary gradient (the difference between mean 
pulmonary arterial pressure and pulmonary capillary wedge 
pressure) and intermediate vessel intimal thickness, sug-
gesting a significant role of the microvasculature in the pro-
gression of PH after heart failure. This again suggests that 
parameters describing small vessel density and geometry are 
most important to proximal and distal vascular hemodynam-
ics, congruent with our findings here.

4.6  Limitations

Our study conducted a formal sensitivity analysis for a 1D 
model of pulmonary arterial and venous hemodynamics. 
We considered uncertainties in proximal vascular stiffness, 
distal vascular stiffness, and structured tree parameters, 
but assumed that the arterial, venous, and microcircula-
tion material properties ( Eh∕r0 ) were constant. Prior stud-
ies have included radius dependent stiffness (Qureshi et al. 
2014; Bartolo et al. 2022), although it is unclear if this is 
physiological given limited experimental data in the pul-
monary vasculature. Our findings show that, even for large 
stiffness values, the structured tree parameters are still more 

influential and would not change our current findings. We 
also assumed that the branching properties of each arterial 
and venous segment shared common � and � values. Given 
the incredible importance of these parameters, our findings 
support informing these values from data. Future studies 
should also investigate whether differences in branching 
structure give rise to differences in physiological and patho-
logical function.

Our parameter values are reflective of previous studies 
using similar computational models. However, sex, age, and 
body surface area affect patient-specific parameters, and 
these factors also affect the development of PH. For instance, 
female sex is a known risk factor in the development of 
PAH, yet female sex is also correlated with higher survival 
rates and right ventricular resilience than male sex (Ventetu-
olo et al. 2014). Female sex is also associated with reduced 
vascular compliance (DesJardin et al. 2024), and, under nor-
motensive conditions, a smaller pulmonary vascular volume 
than males (John et al. 2023). Age also contributes to pul-
monary vascular stiffness and is thought to affect pulmonary 
endothelial and smooth muscle cell function (Allen et al. 
2023). Though these topics are out of scope for the present 
manuscript, our analysis shows the range of hemodynamic 
values that likely include both sex and age effects, and will 
be leveraged in future, patient-specific studies.

We did not consider any uncertainties in the inflow or 
outlet boundary conditions. Moreover, we assume that the 
blood velocity in the pulmonary circuit has a constant, 
blunt shape. While a previous study in canines showed 
that � = 5 describes pulmonary arterial flow velocity dur-
ing systole (Kachabi et al. 2024), the actual blood velocity 
in the arteries may take on a more Womersley like profile 
(van de Vosse and Stergiopulos 2011). The blood velocity 
profile in the venous circulation has not been documented 
either. Our simulations provide Reynolds numbers support-
ive of inertially driven flow, but venous velocity and area 
data can help inform this decision. We anticipate that con-
sidering inflow and outlet pressure uncertainty, similar to 
Brault et al. (2017), will increase the uncertainty in flow rate 
and pressure predictions at the proximal arteries and veins, 
respectively. Alternatively, coupling this model to a right 
ventricle and left atrium would allow for more flexibility in 
the dynamics of the pulse-wave propagation model; how-
ever, this would increase the parameter dimensionality of 
the problem. Our model terminates at the minimum radius 
rmin , which ignores the possible effects of the pulmonary 
capillaries. Follow-up studies should implement a model of 
the pulmonary capillaries, like Clark and Tawhai (2018), 
to further identify capillary circulation sensitivity and its 
parameters’ effects on proximal arterial predictions.

Lastly, we used variance-based global sensitivity analysis, 
which hinges on several assumptions. One of these assump-
tions is that the variance of the model outputs is a reasonable 
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representation of the actual output distributions. Alternative 
methods, like Borgonovo indices or entropy-based sensitiv-
ity methods, can be used in combination with variance-based 
methods to confirm which parameters are influential (Bor-
gonovo 2007). Another limitation is the assumption that 
parameters are independent in their prior space. A simi-
lar variance-based method, derived by Kucherenko et al. 
(2012), exploits the variance of the output as in Sobol’, but 
is not bound by the assumption of parameter independence. 
These alternative methods should be kept in mind and used 
in future studies.

5  Conclusions

This study provides uncertainty quantification and sensitiv-
ity analysis results for a spatially multiscale hemodynam-
ics model of the proximal and distal pulmonary arterial 
and venous circulation. We use PCEs as an efficient tool 
for uncertainty quantification and analyze the sensitivity 
of multiple quantities of interest using Sobol’ indices. Our 
results show that the model framework is flexible, given 
the large uncertainty bounds in nearly all hemodynamic 
outputs, and that structured tree parameters are in general 
the most influential. We provide output uncertainty for 
standard hemodynamic quantities (pressure and flow rate) 
and quantify uncertainty in WIA and mechanobiological 
stimuli. Our investigation into pulmonary wave travel and 
reflections in the pulmonary circuit suggests a critical role 
for distal vascular density and structure, supporting current 
evidence regarding small vessel disease in PH. Our CS and 
WSS uncertainty bounds are informative for new in vitro 
experimental designs that expose various cell types to stretch 
and flow. We believe that this in-depth model analysis pro-
vides key insight into future studies using the structured tree 
model for patient-specific simulations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10237- 024- 01875-x.
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