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Abstract 
 

The Influence of Development on Habitat Fragmentation, Animal Behavior and Movement 
 

by 
 

Amy Van Scoyoc 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Justin Brashares, Chair 
 
Protecting ecosystems, corridors, and working landscapes is critical to addressing rapid global 
change. Given the pervasiveness of the human footprint, managers and policy-makers often seek 
a clearer picture of how development affects habitat conservation and species persistence. This 
dissertation used a combination of remote sensing, data synthesis, and empirical data collection to 
examine how protected areas have been impacted by development within and beyond their borders, 
as well as how terrestrial species have behaviorally responded to anthropogenic features in altered 
landscapes. This work measured ecosystem change spanning three scales, from global protected 
areas, to community-level ecological interactions, to individual-level change in animal behavior. 
 
Habitat connectivity between protected areas and surrounding land influences protected area 
effectiveness. More isolated protected areas often exhibit reduced species movement, dispersal, 
and genetic diversity, resulting in wildlife decline. To quantify protected area isolation globally, 
in Chapter 2, I developed a habitat-edge detection approach to measure change between protected 
areas and surrounding land over time. I found a significant 20-year loss in habitat continuity along 
the borders of the world’s largest protected areas — the strongest evidence to date that protected 
areas have begun to resemble habitat islands in a human-dominated world. While habitat 
discontinuity may have negatively affected wild animals by disrupting patterns of movement or 
behavior, others may have used human-altered environments to gain resources or safety, with each 
type of response resulting in distinct outcomes for species interactions and wildlife persistence. In 
Chapter 3, I delved into this topic with a framework I used to examine the behavioral effects of 
human activity on 178 predator-prey pairs from published camera trap studies. I found four 
primary patterns of predator-prey response to people, highlighting the context-dependency of 
development on species interactions. While some wildlife species likely displayed a consistent 
behavioral response to disturbance, many species may have adjusted their behavior based on the 
level, frequency, or length of exposure to disturbance. To measure how behaviorally flexible 
species navigate landscapes with both development and natural features, in Chapter 4, I evaluated 
coyote (Canis latrans) habitat selection in a mixed-use agricultural landscape. I found that coyotes 
avoided development, but selected for roads and agricultural areas despite possible persecution 
and conflict. This study revealed a few of the risks, rewards, and tradeoffs that behaviorally plastic 
carnivores face in developed landscapes. To conclude, I summarize the conservation implications 
of this research, and call for incorporating the social, economic, and political drivers of land-use 
into wildlife ecology to promote effective and socially-conscious conservation into the future.
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Chapter 1. 
 
Introduction 
 
Human activities have reduced landscape connectivity for wildlife, resulting in population 
declines and biodiversity loss worldwide (Powers & Jetz, 2019). To date, human pressure on the 
environment has accelerated vertebrate extinctions to nearly one-hundred times the background 
extinction rate (Barnosky et al., 2011; Ceballos et al., 2015). Such drastic restructuring of 
ecological communities over the past century has had devastating consequences for ecosystem 
dynamics (Estes et al., 2011), and in turn, for human livelihoods, food systems, and health 
(Brashares et al., 2014; Dirzo et al., 2014; Ollerton et al., 2011). International conservation 
efforts have responded to the mounting biodiversity crisis by protecting ecosystems, corridors, 
and working landscapes for wildlife (Kremen & Merenlender, 2018). While these conservation 
actions have been critical to protecting species and habitat, protecting ecosystem processes 
requires a mechanistic understanding of how humans alter the environment. In this dissertation, I 
examine the influence of human activity and development on ecosystem change spanning three 
scales: from global-level change across protected landscapes, to community-level change in 
ecological interactions, to individual-level change in animal movement and behavior.  
  
Protected areas are expected to preserve nature and maintain ecosystem function by serving as 
reservoirs of genetic diversity and providing landscape linkages that allow plants and animals to 
move (Butchart et al., 2015; Margules & Pressey, 2000). However, protected areas were not 
designed in a systematic approach (Venter et al., 2018; Visconti et al., 2019; Watson et al., 
2014), and as a result reserves are often insufficient for safeguarding the ecosystem processes 
(Maxwell et al., 2020), riverine habitats (Moravek et al., 2023), species ranges (Butchart et al., 
2015), dispersal corridors (Brennan et al., 2022), breeding grounds, or migratory paths (Runge et 
al., 2015) that extend beyond their borders. Extensive research has shown that as protected area 
habitats become isolated by development and land-use change, species and populations can 
become vulnerable to extinction, especially by humans (Hilborn & Sinclair, 2021; Woodroffe & 
Ginsberg, 1998) or climatic events (Anderson et al., 2023; Elsen et al., 2020), despite protection. 
If modern protected area networks are to serve as ‘biodiversity banks’ or nature-based climate 
solutions, then the fate of reserves and their surrounding land cannot be considered separately.  
 
Conservation science has long recognized the importance of identifying and restoring habitat 
mosaics, corridors, and working lands (Kremen & Merenlender, 2018; Soulé, 1985) to fill 
ecological gaps in protected area networks (Davis et al., 1990) and buffer ecosystem processes 
(Franklin, 1993). In fact, global initiatives, such as the Convention on Biological Diversity Aichi 
Target 11 and the more recent Kunming-Montreal Global Biodiversity Framework have 
committed to integrating protected areas into the wider landscape and seascape (CBD, 2010; 
CBD, 2022). However, much of the research on protected area gaps has focused on forests 
(Bowker et al., 2017; Curtis et al., 2018; DeFries et al., 2005; Haddad et al., 2015; Leberger et 
al., 2020; Wolf et al., 2021) leaving out a vast diversity of terrestrial systems on the planet. 
Furthermore, there are no proposed indicators to assess the continuity of protected areas within 
the broader landscape (Bacon et al., 2019; CBD, 2022; Gannon et al., 2019).  
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In Chapter 2, I aim to fill this gap by measuring habitat change between protected areas and 
surrounding land in biomes across the globe. I ask, have protected areas begun to resemble 
habitat islands in human-dominated landscapes? To quantify a loss in habitat continuity, I 
designed an edge-detection approach and used satellite imagery to exhaustively sample for 
habitat edges (e.g., the abrupt margin between two types of habitat, such as forest and farmland) 
in 10-km transects across protected area boundaries. I evaluate changes in habitat continuity 
along the boundaries of 4,471 protected areas over 20 years (2001-2020), and discuss how the 
broader management, socioeconomic, and political context of a protected area can impact its 
conservation. 
 
While habitat loss is a major threat to biodiversity, human activity and development have also 
caused marked shifts in animal behavior, with equally severe consequences for the long-term 
conservation of wildlife (Ciuti et al., 2012; Sih et al., 2011). In 2020, the onset of the global 
COVID-19 pandemic and corresponding lock-down restrictions highlighted how a reduction of 
human activity resulted in an increase in wildlife activity in urban centers, as well as protected 
areas (Anderson et al., 2023; Gordo et al., 2021; Schofield et al., 2021). This global event 
confirmed extensive findings that many wild animals have been avoiding humans by changing 
patterns of movement (Tucker et al., 2018), activity (Gaynor et al., 2018), or consumption (Smith 
et al., 2015). Nonetheless, some animals preferentially use areas with human activity to gain 
resources (Newsome & Van Eeden, 2017) or safety (Berger, 2007; Geffroy et al., 2015). The 
various behavioral responses of wildlife to human activities can have distinct downstream effects 
on predators, competitors, or prey species (Estes et al., 2011), ultimately restructuring ecological 
dynamics (Gaynor et al., 2019). The field of wildlife ecology has begun to integrate humans into 
ecological theory to more accurately predict the growth or collapse of wildlife populations 
(Miller & Schmitz, 2019). However, understanding how people influence species interactions 
may be key to discerning the mechanisms that regulate wildlife populations in an increasingly 
human-dominated world.  
 
In Chapter 3, I explore the influence of humans on animal behavior and species interactions. In 
this chapter, entitled “The influence of human activity on predator-prey spatiotemporal overlap”, 
I ask, how might human activity influence the encounters between a predator and its prey in 
space and time? I draw on ecological theory to create a framework with four primary pathways 
for how humans alter the behavior of wildlife, and ultimately, predator-prey interactions. I assess 
the validity of this framework with hypothesis-testing, using data from 19 published camera trap 
studies to compare predator and prey activity in settings of high and low human use. I discuss 
how changes in predator-prey overlap may influence predation rates to grow or shrink wildlife 
populations.  
 
Measuring human impacts on animal behavior remains challenging because humans can play 
multiple roles in ecosystems, acting as neutral interactors, facilitators, competitors, and 
predators. Similarly, human activities can produce multiple sensory stimuli (e.g., smell, sound, 
light, movement, and physical infrastructure) that can reshape animal perceptions of risk (Ditmer 
et al., 2021; Francis & Barber, 2013; Nickel et al., 2020). While some wildlife species display a 
consistent behavioral reaction to human disturbance, many animals exhibit the flexibility to vary 
their behavior in response to the type, level, or frequency of a disturbance. Thus, a single species 
might avoid humans (Sih et al., 2011), coexist with humans (Bateman & Fleming, 2012), or 
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incite conflict with humans (i.e., crop damage, property damage, loss of livestock, and injury; 
(Richardson et al., 2020; Treves et al., 2006) depending on the context. Studies that identify how 
wildlife balance the use of anthropogenic and natural features at different thresholds of 
disturbance remain critical to wildlife management.  
 
In Chapter 4, I ask how does a behaviorally-flexible species balance the risks and rewards of 
living in a moderately developed landscape? I use GPS collars over a 3-year period to examine 
the winter habitat selection of coyotes (Canis latrans) in a mixed-use agricultural landscape in 
Mendocino County, CA, USA. To infer whether coyotes tolerate or avoid diurnal human use of 
anthropogenic features, I test whether coyotes partition their selection for development, roads, 
and agricultural land by time of day or by behavioral state (resting, foraging, and traveling). 
Finally, I discuss how studies of animal risk tolerance are critical to predicting and managing 
areas of conflict and coexistence between wildlife and people.  
 
Taken together, I hope this dissertation contributes to our understanding of how human activity 
and development influence landscape change, ecological interactions, and animal behavior. This 
work outlines several practical approaches for measuring human influence on wildlife and the 
environment, as well as highlighting several new avenues of future research. By improving our 
understanding of the interactions among humans, wildlife, and land, I hope we can endeavor to 
conserve biodiversity alongside the needs of people.  
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Chapter 2. 
 
The islandization of terrestrial protected areas 
 
This chapter has been prepared for publication and is reproduced here with kind permission of 
the contributing authors Wenjing Xu and Justin S. Brashares.  
 
ABSTRACT 
 
Recent global commitments to biodiversity conservation focus on expanding the protected area 
(PA) network to improve connectivity and safeguard landscape-scale ecological processes. Yet, 
habitat changes within and beyond PA boundaries threaten to isolate PAs from surrounding 
landscapes, reducing PA effectiveness and the capacity for adaptation to rapid global change. Our 
ability to recognize and mitigate the isolation of PAs is limited by a weak understanding of where 
and at what rate this process occurs. Here, I empirically measured the ‘islandization’ of PAs, that 
is, the loss of habitat continuity at PA boundaries, across all the world’s biomes. I used MODIS 
satellite imagery and a spectral angle mapper to calculate the difference and change in the spectral 
gradient of PA boundaries relative to interior and exterior land. Nearly half of the world’s PAs 
(43.14%) showed a significant loss in habitat continuity across their boundaries over a 20-year 
period (2001-2020) (n = 4,471; p < 0.05). The global pattern of PA islandization was the result of 
multiple processes, including habitat modification, management, degradation, and ecosystem 
recovery. PAs in grassland and shrubland biomes showed the greatest increase in islandization 
over time (β = 0.00034, R2 = 0.76, F(1, 18) =55.3, p < 0.001, n = 1,353). The pervasive loss of 
habitat continuity at PA boundaries suggests PAs are losing connectivity with surrounding 
landscapes relative to their baseline. These findings highlight the challenges and opportunities of 
using PAs as the backbone of post-2020 initiatives for large-landscape conservation. 
 
INTRODUCTION 
 
For more than half a century conservation science has cautioned that the continued expansion of 
human activities will ultimately reduce our terrestrial protected areas (PAs) to habitat islands in a 
sea of development (Gilpin & Diamond, 1980; Wilson & MacArthur, 1967). Human settlement, 
land conversion, and resource extraction outside of PA boundaries (Hilborn & Sinclair, 2021; 
Jones et al., 2018; Ward et al., 2020; Wittemyer et al., 2008), as well as habitat preservation, 
ecosystem recovery, and management practices within PAs (Aslan et al., 2021; Cadenasso et al., 
2003) may all serve to disrupt habitat continuity between PAs and their surrounding landscapes. 
This process of PA ‘islandization’ (Gilpin & Diamond, 1980; Myers, 1987) has been observed to 
reduce habitat connectivity, affecting the demography, genetics, and survival of isolated 
populations, rendering species, and large-landscape processes such as migrations, vulnerable to 
extinction (Anderson et al., 2023; Margules & Pressey, 2000; Runge et al., 2015; Woodroffe & 
Ginsberg, 1998).  
 
Though well-trod in conservation science and planning, the concerns surrounding PA 
islandization have received new life in recent conservation initiatives such as the CBD Aichi 
Target 11 which prioritized the integration of PAs into larger land and seascapes (CBD, 2010). 
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More recently, the Kunming-Montreal Global Biodiversity Framework committed to restoring 
and supporting sustainable use of land surrounding PAs to retain wider ecosystem function and 
improve the adaptive potential of species facing rapid climate change (CBD, 2022). Yet, while 
several landmark studies have quantified changes in forest cover to highlight the gaps in habitat 
connectivity and potential isolation of PAs (Bowker et al., 2017; Curtis et al., 2018; DeFries et 
al., 2005; Leberger et al., 2020; Wolf et al., 2021), there remain no general assessments of PA 
islandization across biomes nor indicators for measuring progress toward the integration of 
protected areas into larger landscapes (Bacon et al., 2019; CBD, 2022; Gannon et al., 2019). 
 
Here, I devised and applied a metric to quantify the global rate and extent of islandization for 
4,471 terrestrial PAs over a 20-year period, across the world’s biomes. To achieve this, I 
characterized the habitat continuity along PA frontiers, defined as where PAs boundaries met 
unprotected land. To characterize habitat continuity, I used the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Terra MOD09A1 product to compare the spectral differences 
between each PA interior and its surroundings. Specifically, the method measured the habitat 
continuity by using the integrated spectral signature from all seven MODIS land surface 
reflectance bands to examine whether landcover transitions coincided with PA boundaries 
(Figure 1). My analysis included protected areas of all designations (e.g., wilderness, active 
management) in order to test whether biome, size, or type of protection influenced the habitat 
continuity across PA boundaries.  
 

 
Figure 1. Demonstration of habitat discontinuity detection using spectral gradient differencing across 
protected area boundaries. (A-B) Original Google Earth satellite image of a protected area. (C) Spectral 
gradient image using 7-band Terra MODIS surface spectral reflectance imagery (MOD09A1) and a spectral 
angle mapper. 
 
METHODS 
 
Protected Area Data 
 
First, I obtained data for protected area geometries using the June 2021 World Database on 
Protected Areas (UNEP-WCMC, 2020). Following other global protected area studies (Butchart 
et al., 2015; Jones et al., 2018), I removed PAs that were marine, lacked a reported area, did not 
include detailed geographic information (i.e. those represented as a single point), or with a 
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“UNESCO-MAB Biosphere Reserve” designation. Following the WDPA best practice 
guidelines, I eliminated overlap in protected area geometries using the ‘wdpar’ package in R 
(Hanson, 2022) and only included PAs with status of “designated”, “established”, or “inscribed”.  
 
From this terrestrial protected area geometry dataset, I selected PAs with an area larger than 200 
km2. This enabled me to match the resolution of the satellite imagery to the PA size, and to 
include PAs that were wide enough to sample with transects. I assigned biomes to each PA using 
the global ecoregion layer (Dinerstein et al., 2017). When multiple biomes were present I 
retained the biome label with the largest area. 
 
Transect Sampling 
 
For each terrestrial protected area, I created sampling transects perpendicular to the PA boundary 
to compare change in the spectral differences between the PA’s interior, exterior, and boundary. 
Transects extended 10km across the PA boundary to represent the central value of the log-
transformed reference range of bird and terrestrial mammal dispersal distances (1–100 km) 
(Saura et al., 2017), and were spaced 500m apart to allow for exhaustive sampling of the 
boundary, given that I used satellite imagery with a 500m pixel size (Figure S1). Each transect 
contained five sample points spaced 2.5-km apart: two interior points, two exterior points, and 
one boundary point. I removed transects that intersected water bodies, that bisected other parts of 
the PA boundary in curved or narrow sections, and that fell within neighboring protected areas. 
When multiple PAs directly neighbored each other, I only evaluated the outer footprint of the 
entire protected region, defined here as the ‘PA frontier’ (Figure S1). I excluded PAs with 
frontiers that were less than 30% of the total boundary, to ensure that each PA frontier was 
representative of the larger PA.  
 
Satellite Imagery 
 
To characterize the habitat continuity along the transects bisecting PA frontiers, I created global 
annual median composites from MODIS/Terra Surface Reflectance 8-Day L3 Global 500-m SIN 
Grid (MOD09A1) imagery for each year, from 2001 to 2020. The 500-m MODIS imagery had 
the most consistent data quality and coverage for this 20-year analysis and was more adept than 
30-m Landsat imagery at capturing the broad landcover patterns while reducing noise from fine-
scale spectral heterogeneity (Figure S2). From each seven-band global MODIS annual 
composite, I derived a single-band spectral gradient image by computing the per pixel difference 
between spectral erosion and dilation using the Image.spectralGradient function (Plaza et al., 
2002) with a 3x3 square kernel in Google Earth Engine (Gorelick et al., 2017). Because this 
technique combined spectral information from all seven bands it allowed me to detect habitat 
characteristics important to forest and non-forest biomes including vegetation cover, soil cover, 
moisture, and vegetation water content (e.g. certain types of woody plant encroachment in 
grasslands; (Soubry & Guo, 2022). Larger spectral gradient values represented a greater spectral 
difference among pixels in the 3x3 kernel (i.e., greater spectral heterogeneity), indicating higher 
landcover heterogeneity. I extracted the spectral gradient value of every transect point for each of 
the 20 MODIS composite images.  
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Quantifying Habitat Discontinuity  
 
Ecological boundaries are created when habitat patches are distinguished by distinct habitat 
characteristics, thus “the gradient [of] that characteristic is steeper in the boundary than in 
either of the neighboring patches” (Cadenasso et al., 2003). Following this logic, if a PA 
boundary coincided with habitat discontinuity, we would expect higher spectral gradient values 
at the PA boundary than on either side of the PA boundary (Figure S3). Thus, I compared the 
spectral gradient of each boundary point to the interior and exterior points in the same transect. 
When a boundary point had a larger gradient value than any combination of its interior-exterior 
pairs, I classified the transect as exhibiting habitat discontinuity (Figure S3).  
 
I measured protected area islandization as an increase in the number of transects showing habitat 
discontinuity overtime. I summarized the percent of all transects showing habitat discontinuity 
for each of 20 years and estimated global-level and biome-level trends in using linear regression. 
I also used linear regression to estimate the trend in each PA’s boundary gradient values over 20-
years. I determined significant PA trend estimates using a p-value < 0.05 and summarized 
significant PA-level trends by biome. Last, I summarized the percent of transects showing 
habitat discontinuity in each protected area in 2020. All statistical analyses were conducted using 
R (R Core Team, 2022).  
 
Validation 
 
To test whether the pattern of habitat discontinuity at the protected area boundaries was different 
from random, I compared the measured distribution to a null model. Given the first law of 
geography that nearer objects are more similar (Tobler, 1970), support for the null model would 
find the mean number of transects showing habitat discontinuity to be higher when calculated 
with randomly paired points than with points along the same transect. Thus, I used a paired t-test 
to compare the measured distribution of habitat discontinuity to a null distribution of habitat 
discontinuity created with randomly paired points (Figure S4). I found that the measured 
distribution had significantly higher percent of transects showing habitat discontinuity than the 
null model, in support of our hypothesis that the distribution of habitat discontinuity along PA 
boundaries was non-random (Figure S4).  
 
RESULTS 
 
The final dataset included 4,471 protected areas, ranging from 200.4 km2 to 961,673.2 km2 in size 
(median = 862.2 km2). The analysis included all terrestrial PAs larger than 200 km2 and with at 
least 30% of their boundary bordering unprotected land. Restricting PA size to greater than 200-
km2 excluded 225,353 PAs, most of which were in Europe, but only reduced the total area 
analyzed by 7.66%. In total, there were 1,516,412 transects (7,582,060 points) bisecting the 
protected area frontiers, with a median of 224 transects and a range of 7 to 7,628 transects 
evaluated per protected area.   
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Figure 2. Global islandization of protected areas. Twenty-year trends in islandization were estimated for 
each of 4,471 protected areas, as measured by the change in the spectral gradient values of boundary points 
over a 20-year period. The map illustrates significant estimates using a p-value < 0.05. From 2001-2020, 
nearly half of protected areas (43.14%) exhibited a significant increase in habitat discontinuity with 
surrounding land, that is, islandization coinciding with PA boundaries. A quarter of protected areas 
(26.65%) exhibited a significant decrease in islandization, while the remainder showed no change.  
 
Nearly half of the world’s largest terrestrial PAs exhibited a significant increase in islandization 
over a 20-year period from 2001-2020 (Figure 2). Specifically, 43.14% of PAs showed a 
significant increase in the percent of sampled transects in which the gradient value of the PA 
boundary was greater than its neighboring internal and external habitats (Figure S3). The 
analysis detected widely-documented cases of increasing PA isolation in Amazonia’s 
deforestation frontier (Curtis et al., 2018; Figure 2A), increasing habitat continuity in eastern 
Europe’s agricultural abandonment frontier (Levers et al., 2018; Figure 2B) and boreal tree 
encroachment in northeastern North America (Langdon et al., 2020; Figure 2C). Moreover, PA 
islandization trends were found to be consistent at a global level when pooling samples from all 
PAs (n = 1,516,412 total transects sampled), with 51.4% of cumulative PA boundaries identified 
as habitat edges in 2020, representing a slight but significant increase over the last 20-years (β = 
0.00019, R2 = 0.75, F(1, 18) = 55.38, p < 0.001; Figure 3A, Table S1). 
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Figure 3. Protected area islandization across the world’s biomes. From 2001 to 2020, the percent of 
transects exhibiting habitat discontinuity at protected area boundaries increased across major terrestrial 
biomes when pooled (A) globally (β = 0.00019, R2 = 0.75, F(1, 18) = 55.38, p = 0.026, n = 1,516,412 
transects), and by (B) protected area (n = 4,471). Grassland-shrubland biomes and protected areas showed 
the highest levels of habitat discontinuity and the greatest increase of islandization over time (rock-ice and 
mangrove biomes are not shown due to low sample sizes, see Table S1). Shown percentages are rounded 
to the nearest tenth and significant estimates were determined using a p-value < 0.05.  

 
While research on deforestation (DeFries et al., 2005; Wolf et al., 2021) might suggest forest 
habitats would show the most striking change at PA boundaries, in fact, PAs showed 
islandization in nearly all biomes (Figure 3A). In particular, grassland-shrubland biomes, 
typically omitted from global habitat analyses, demonstrated the greatest rate of islandization 
over time, followed by tropical forest and desert (Figure 3A; Table S1). These trends were 
consistent when habitat discontinuity was calculated for individual PAs (Figure 3B), and 
matched the published rates of 0.5% habitat loss over the past 20-years in tropical forests 
(Hansen et al., 2020; Wade et al., 2020). Islandization trends also varied by IUCN protection 
category (ANOVA; F(6, 3056) = 3.89, p < 0.001). PAs that prioritized sustainable use (Category 
VI) had a significantly higher percentage of transects showing habitat discontinuity at the 
boundary than for PAs that prioritized active management (Category IV; post-hoc Tukey test; p 
= 0.01). Finally, PA size significantly, though weakly, influenced islandization trends from 
2001-2020, such that larger PAs had higher percentages of habitat discontinuity at the boundary 
(β = 0.003, R2 = 0.001, F(1,4469) = 5.10, p < 0.05, n = 4,471). 
 
This approach allowed inference on the spatial and temporal dynamics of islandization at the 
scale of individual PAs, and even within a given PA. Such high resolution may tempt site-by-site 
analysis of the drivers of islandization for each PA, region or country. However, such analyses 
could easily confuse correlation for causation and ultimately be harmful to landowners, residents, 
or park personnel if interpreted without local or regional context. Instead, I provide a global 
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snapshot of PA islandization, by measuring habitat discontinuity across all PAs in 2020. These 
results showed that in 2020, more than half of all PAs (54.84%) exhibited habitat discontinuity 
along a majority of their boundary (Figure 4).  
 

 
Figure 4. The extent of protected area habitat discontinuity in 2020. Characterizing each terrestrial 
protected area based on the percentage of boundary transects that showed habitat discontinuity in 2020 
reveals great variation in islandization, even among neighboring parks (n = 4,471). 
 
In 2020, there was substantial spatial variation in habitat continuity among PAs. For instance, 
biome strongly influenced the percent of habitat discontinuity along PA boundaries (ANOVA; 
F(7, 4463) = 18.69, p < 0.001). Grassland-shrubland biomes showed a significantly greater 
extent of habitat discontinuity than desert (post-hoc Tukey test; p < 0.001), all forests (p < 0.01), 
and tundra (p < 0.05;  Figure S5). As in the 2001-2020 change analysis, geographic patterns of 
PA isolation varied by IUCN protection category in 2020 (ANOVA; F(6, 3056) = 2.4, p < 0.05), 
but with the percent of habitat discontinuity along actively managed PAs (Category IV) 
significantly higher than PAs designated as wilderness (Category Ib; post-hoc Tukey test; p < 
0.05). The size of the PA did not significantly influence the percent of habitat discontinuity along 
its boundary (β = 0.00025, R2 = 0.000, F(1,4469) = 0.039, p = 0.84, n = 4471). However, there 
was a weak but significant effect such that the earlier the PA was established the higher the 
percent of habitat discontinuity in 2020 (β = -0.0003, R2 = 0.003, F(1,4048) = 12.83, p < 0.001, n 
= 4050). 
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DISCUSSION 
 
The global pattern of PA islandization that I observed can be explained as the result of habitat 
modification, as well as management differences and ecological recovery. In the land 
surrounding PAs, there was evidence of agriculture, resource extraction, grazing pressure, 
industrial logging, and urbanization (Figure 5). This was not unexpected, given that human 
impacts have altered 77% of Earth’s terrestrial land with more than half under moderate or 
intense human pressure (Allan et al., 2017; Jones et al., 2018; Williams et al., 2020). 
Additionally, land management approaches, such as fire, invasive species, or water use, may 
drive habitat discontinuity from within PAs (Aslan et al., 2021). For instance, long-held policies 
of fire suppression have aided forest succession within many PAs, altering habitat continuity 
outside boundaries where fire may be less managed (Kelly et al., 2020). Finally, islandization 
can indicate ecological recovery within PAs, such as the regrowth of riparian vegetation (Beschta 
& Ripple, 2016). Nonetheless, while habitat discontinuity at PA boundaries may signal overall 
ecological recovery or management effectiveness of PAs in preventing deforestation, agriculture, 
and other forms of development within their boundaries (Bowker et al., 2017), it also signals 
isolation and a growing vulnerability of PAs to edge effects and environmental shocks, such as 
floods, frost, or fire (Haddad et al., 2015; Kremen & Merenlender, 2018).  
 
Grassland-shrubland ecosystems exhibited the highest percentage and most rapid rate of 
islandization between 2001-2020, followed by tropical forests and deserts. Grasslands are 
considered one of the most imperiled ecosystems on Earth (Cowie, 2021). Today, 60% of the 
world's grasslands are less than 20% intact (Scholtz & Twidwell, 2022), in part, because 
grasslands often coincide with human activities (Newbold et al., 2016) on easy to develop, flat 
land. Additionally, biophysical changes, such as desertification and shrub encroachment (de 
Souza et al., 2022; Li et al., 2006), fire (Schmidt & Eloy, 2020), or grazing (Veldhuis et al., 
2019) may have led to islandization of grassland-shrubland PAs over the past 20-years. Previous 
research supports our finding that grassland habitat change outpaces that of forests (Boakes et al., 
2010), yet, international grassland conservation lags behind that of forests (Carbutt et al., 2017). 
Preserving grasslands remains critical for protecting endemic species, the world’s many 
herbivore migrations which track greening vegetation over expanses of savannahs, steppes, and 
grasslands (Abraham et al., 2022; Harris et al., 2009), and for absorbing atmospheric carbon in 
response to global emissions (Chang et al., 2021).  
 
Overall, trends in PA islandization likely represent several global and divergent land-use 
processes, such as afforestation and agricultural abandonment in the global North, as well as 
grazing and agricultural expansion in the global South (Winkler et al., 2021). In some cases, 
habitat discontinuity could represent positive outcomes for PAs (e.g., prescribed fire) and habitat 
continuity could represent negative outcomes for PAs (e.g., shrub encroachment in grasslands or 
spread of invasive species across boundaries). Thus, the percent habitat discontinuity should not 
be interpreted as an index of PA effectiveness. To avoid oversimplifying and misrepresenting 
local context, this analysis does not include global-scale correlations between percent habitat 
discontinuity, and landcover type, economic indices such as Gross Domestic Product (GDP), 
human population density, or livestock density. However, future conservation efforts would 
benefit from further research on the individual causes and consequences of islandization for each 
desert, grassland, tundra, and forested ecosystems. 
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Figure 5. Examples of protected area islandization created by land-use practices at protected area 
boundaries. (A) Agricultural irrigation in the desert along Harrat al Harrah Conservation Area, Saudi 
Arabia. (B) Farmland densification and a natural boundary (mountain range) in tropical forest near the Phu 
Khiew Wildlife Sanctuary, Thailand. (C) Livestock grazing in tropical savannah outside of Serengeti 
National Park, Tanzania. (D) Copper mining in boreal forest outside of Naryskiy protected area, Russia. 
(E) Urbanization in coastal scrub along the Alto Iguaçu protected area near Rio de Janiero, Brazil. (F) 
Industrial logging in temperate forest outside of Lake Magenta protected area, Australia. 
 
A number of broader economic, social, and political factors are known to drive land-use change 
within and beyond PA boundaries. Economically, PAs can retained rich and biodiverse resources 
to promote sustainable livelihoods and grow nearby communities, but can result in a loss of 
habitat continuity (Corson et al., 2014; Wittemyer et al., 2008). The social exclusion and removal 
of people from PAs has been found to concentrate human settlement and resource-use at PA 
boundaries, accelerating the loss of habitat continuity (Brandt & Spierenburg, 2014; Spierenburg 
& Wels, 2006; Veldhuis et al., 2019). Politically, conservation offsets in one landscape have 
justified the over-extraction of resources in nearby landscapes (Feeney, 2023). It is well 
understood that the concept of a boundary and land-ownership can create visible differences in 
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management, human behavior, and land-use (Aslan et al. 2021; Schonewald-Cox & Bayless 
1986). But how or whether these sociopolitical land-use drivers should be addressed, requires 
decision-making by local communities with support from ecologists, social scientists, and state 
actors.   
 
Limitations  
 
This analysis provides a global assessment of the presence and rate of PA islandization over the 
past two decades, but has a few limitations. By combining all seven MODIS bands to detect the 
spectral gradient of PA boundaries, this approach detected changes in habitat continuity across 
landcover types and biomes. However, the approach is limited in that it cannot distinguish which 
spectral bands, and corresponding landscape features, contributed the most to trends in 
islandization. To understand which landcover features underlie a given habitat discontinuity, 
such as a forest-urban or forest-grassland transition, future research could target islandized PAs 
for detailed analysis, and use specific sets of spectral bands to quantify the landcover of interest. 
 
Similarly, this study provided a simple but effective measurement of the global PA islandization 
trend by using linear regression. However, landcover change is not always linear. For example, 
large-scale fire may lead to abrupt islandizing effects, and be followed by rapid recovery due to 
post-fire succession. Future studies that aim to capture landcover dynamics across a single PA 
boundary can adopt detailed landcover change analysis approaches such as LandTrendr 
(Kennedy et al., 2010) or Continuous Change Detection and Classification (Zhu & Woodcock, 
2014).  
 
Finally, habitat continuity is highly scale-dependent (Cadenasso et al., 2003). MODIS satellite 
imagery was appropriate for quantifying coarse-scale islandization processes along the 
boundaries of the world’s largest PAs, as it could detect the presence of ecological boundaries 
with a width of 500m or greater. Smaller PAs, associated with fine-scale habitat heterogeneity 
might be better suited to using remote sensing imagery with finer resolution, such as Landsat (30 
m), Sentinel (10 – 60 m), or Planet (0.5 m). 
 
CONCLUSION 
 
The pervasive islandization of PAs—spanning forests, deserts, and grasslands—challenges our 
hopes and assumptions about the capacity of protected areas to serve as biodiversity banks and 
climate refugia within large, mixed-use landscapes. Yet, as we enter an era of unprecedented 
commitments and investment in land protection, we are presented with a rare opportunity to take 
targeted action against the effects of islandization. To sustainably protect our investment in PAs, 
we must understand their historical complexity and use equitable, inclusive, and morally-just 
forms of land protection inside and outside of their borders. First, shifting investment targets 
from solely PA expansion toward ecological enhancement of buffer areas and working 
landscapes will improve connection among PAs and surrounding habitat. Second, investment in 
PA management through local staffing and capacity building are linked to greater community 
benefits and conservation outcomes (Oldekop et al., 2016). Third, targeting investment toward 
connecting ecosystem flows (e.g., water quality, migration corridors, pollinator host plants, 
climate migration and adaptation) will enhance ecosystem features that integrate PAs into wider 
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landscapes and, in doing so, advance goals for biodiversity conservation and climate change 
mitigation. If PAs are to help alleviate biodiversity loss, it is essential we act quickly and 
pragmatically to restore the ecological integrity of landscapes beyond their borders. 
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Figure S1. Illustration of exhaustive exterior-to-interior transect sampling, with 10-km transects 
separated by 500-meter spacing to accommodate MODIS 500-meter pixel size. Transects were 
sampled perpendicular to the PA frontier, defined as the outermost footprint of the protected 
region.  
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Figure S2. Example of (a) an original protected area satellite image, alongside a 3x3 kernel image 
gradient of (b) MODIS 500-meter pixel size, and (c) Landsat 30-meter pixel size. A MODIS 500-
meter pixel size was most sufficient to reduce fine-scale heterogeneity while retaining broad-scale 
patterns.  
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Figure S3. Conceptual illustration of detecting habitat discontinuity along protected area 
boundaries for areas with (A, C) continuous habitat, and (B, D) discontinuous habitat. Satellite 
image pixel gradient values were sampled using a 3x3 kernel at five points along transects (dotted 
line), perpendicular to protected area boundaries (solid line). If the boundary point had a larger 
gradient value than any combination of its interior-exterior pairs, the transect was classified as 
showing habitat discontinuity.   
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Figure S4. Comparison of measured protected area habitat discontinuity with a null model (paired 
t-test, p < 0.001). Percent habitat discontinuity is summarized per protected area as the percent of 
transects classified as having boundary point spectral gradient values greater than those of any 
interior-exterior point pair on the same transect. The null model was constructed by comparing 
boundary point spectral gradient values to those of interior-exterior point pairs from random 
transects within the same protected area. 
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Table S1. Estimates of global protected area (PA) islandization by biome from 2001-2020 using 
annual percent of habitat discontinuity for all transects perpendicular to protected area boundaries 
(n = 1,516,412).  
 
Biome β 

(*10,000) 
R2 SE 

(*10,000) 
F (1,18) p n  

(transects)  
n  

(PAs) 

Desert 1.054 0.153 0.585 3.246 0.088 188,581 406 

Grassland & 
shrubland 

3.414 0.755 0.459 55.320 < 0.001*** 425,980 1,353 

Tropical 
forest 

2.403 0.519 0.545 19.430 < 0.001*** 410,630 1,224 

Temperate 
forest 

0.933 0.158 0.508 3.376 0.083 256,004 987 

Boreal 
forest 

-0.065 < 0.001  1.097 0.003 0.954 171,101 403 

Tundra 0.167 < 0.001 1.978 0.007 0.934 57,357 82 

Mangrove -1.003 < 0.001 8.770 0.013 0.910 885 7 

Rock & Ice 6.719 0.155 3.692 3.313 0.085  5,874 9 

Global 1.923 0.7547    0.258 55.380      < 0.001*** 1,516,412 4,471 

Abbreviations: SE, standard error; ***p < 0.001, **p < 0.01, *p < 0.05  
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Chapter 3. 
 
The influence of human activity on predator-prey spatiotemporal overlap 
 
This paper has been previously published and is reproduced here with the permission of co-
authors and Wiley. 
 
Van Scoyoc, A., Smith, J. A., Gaynor, K. M., Barker, K., & Brashares, J. S. (2023). The 
influence of human activity on predator–prey spatiotemporal overlap. Journal of Animal 
Ecology, 00, 1– 11. https://doi.org/10.1111/1365-2656.13892.  
 
ABSTRACT 
 
Despite growing evidence of widespread impacts of humans on animal behavior, our 
understanding of how humans reshape species interactions remains limited. Here, we present a 
framework that draws on key concepts from behavioral and community ecology to outline four 
primary pathways by which humans can alter predator-prey spatiotemporal overlap. We suggest 
that predator-prey dyads can exhibit similar or opposite responses to human activity with distinct 
outcomes for predator diet, predation rates, population demography, and trophic cascades. We 
demonstrate how to assess these behavioral response pathways with hypothesis testing, using 
temporal activity data for 178 predator-prey dyads from published camera trap studies on terrestrial 
mammals. We found evidence for each of the proposed pathways, revealing multiple patterns of 
human influence on predator-prey activity and overlap. Our framework and case study highlight 
current challenges, gaps, and advances in linking human activity to animal behavior change and 
predator-prey dynamics. By using a hypothesis-driven approach to estimate the potential for 
altered species interactions, researchers can anticipate the ecological consequences of human 
activities on whole communities. 
 
INTRODUCTION 
 
Human activity can alter the behavior of animals by amplifying or dampening perceptions of 
risk, food availability, or safety (Gaynor et al., 2019; Geffroy et al., 2020; Hammond et al., 2020; 
Sih et al., 2011). Yet, complex behavioral feedbacks among multiple ecological players (i.e., 
predators, prey, competitors) have limited our ability to establish links between human-altered 
animal behavior and broader ecological change, such as altered predator diet, predation rate, 
population demography, competitive exclusion, or trophic cascades. Although human activity—
defined broadly here as human presence and infrastructure—is known to affect animal 
populations by changing species interactions, including predation (Gaynor et al., 2021), 
knowledge of these dynamics is largely anecdotal or context-specific (Wilson et al., 2020). 
Formally recognizing the effect of humans on predator-prey interactions is necessary to align 
hypothesis testing with the range of potential effects of increasing human activity on the 
persistence and coexistence of wild animals (Mumma et al., 2018; Sinclair et al., 2003).  
 
The field of behavioral ecology has long demonstrated that predators and prey influence each 
other’s spatial distributions (Brown et al., 1999; MacArthur & Pianka, 1966) in a behavioral 
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response race, whereby predators seek to encounter prey while prey seek to avoid predators 
(Lima & Dill, 1990; Sih, 1984). Considerable research has established that contextual factors 
(e.g., patch size, habitat complexity, resources, and species functional traits) can give an 
advantage to either player in the predator-prey response race (Fretwell, 1972; Laundré, 2010; 
Luttbeg et al., 2020; Schmidt & Kuijper, 2015; Sih et al., 1998; Smith, Donadio, et al., 2019). 
These conceptual models have allowed ecologists to predict changes to the consumptive (e.g., 
predation) and non-consumptive (e.g., risk effects) dynamics of ecological communities. 
However, although classic behavioral response models have been extended to communities with 
multiple predators (Sih et al., 1998) surprisingly few models have been broadened to describe 
how human activity influences the contest between predator and prey (but see Miller & Schmitz, 
2019 and Muhly et al., 2011).   
 
Understanding how human activity affects animal behavior and species interactions is complex 
because animal responses to humans are rarely uniform. Many wild animals avoid humans by 
changing patterns of movement, activity, or consumption (Gaynor et al., 2018; Smith et al., 
2015; Tucker et al., 2018), whereas others preferentially use settings of human activity to gain 
resources or safety (Berger, 2007; Geffroy et al., 2015; Newsome & Van Eeden, 2017). 
Accounting for this variation in animal responses could be key to anticipating shifts in predation 
and potential cascading trophic effects (Kuijper et al., 2016; Yovovich et al., 2021). Each 
player’s (i.e., predator or prey) response to humans can vastly influence the ecological outcome. 
For example, if a predator avoids human activity but its prey does not, predator and prey may 
encounter each other less often (Berger, 2007; Rogala et al., 2011) possibly reducing predation 
and/or non-consumptive effects. Alternatively, if both predator and prey perceive human activity 
as a threat, mutual avoidance of humans may force prey and predator to share space and time. 
The loss of spatiotemporal refuges that previously stabilized predator-prey coexistence 
(Schoener, 1974; Shamoon et al., 2018) may lead to the increase of predation and its non-
consumptive effects.    
 
Here, we present a framework that draws on theory and empirical literature to conceptualize the 
behavioral pathways by which human activity can reshape the overlap between predators and 
prey. As a proof of concept, we review the literature to evaluate evidence for each pathway in 
terrestrial mammal predator-prey dyads, and conduct an analysis to test how human activity 
influenced predator-prey temporal overlap. Further, we highlight current challenges, gaps, and 
advances in linking animal behavior change to predator-prey interactions and ecological 
dynamics in settings with human activity. Our goal is to provide a testable framework that allows 
researchers to evaluate hypotheses and assess the potential for human-altered species 
interactions. 

 
HUMAN-ALTERED PREDATOR-PREY OVERLAP 
 
Humans are dominant actors in ecological communities around the world. Human presence and 
infrastructure, which we collectively refer to as human activity, alter sensory stimuli that animals 
may perceive as associated with risk or reward (e.g., smell, sound, light, movement; (Ditmer et 
al., 2021; Francis & Barber, 2013). Varied stimuli can differentially reshape animals’ perceptions 
of risk-reward trade-offs. For instance, different types of human activity can influence species 
differently, as when large mammal predators spatially avoided building density and temporally 
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avoided human presence, whereas smaller mammal predators temporally avoided human 
presence but did not spatially avoid building density (Nickel et al., 2020). Animals may also only 
perceive altered risk-reward cues at a certain threshold of human activity. For instance, mule 
deer (Odocoileus hemionus) rarely used areas with greater than 3% surface disturbance from 
energy development during migration (Sawyer et al., 2020). An animal’s experience with human 
activity (e.g., prior events, duration of exposure) and its functional traits (e.g., body size, 
propensity for learning, memory, boldness) may also influence perception of risk-reward cues 
and its corresponding behavioral response (Moiron et al., 2020; Ross et al., 2019). For instance, 
many species have learned to associate human activity with increased foraging opportunities 
(e.g., garbage, agriculture; Newsome et al., 2015).   
 
In response to risk-reward cues, animals can adjust their spatial distribution or temporal activity 
to avoid or seek out human activity. If individuals in a given animal population consistently alter 
their spatiotemporal distribution, we might expect reverberating impacts on closely interacting 
species, such as predators and their prey (Muhly et al., 2011; Wilson et al., 2020). Because 
predators and their prey can each respond to human activity along a continuum of attraction to 
avoidance, there are four behavioral pathways by which humans can increase or decrease 
predator-prey spatiotemporal overlap (hereafter, ‘overlap’) (Figure 1).  
 

 
Figure 1. Humans can alter predator and prey behavior, spatiotemporal overlap, and encounter probability 
via four major pathways: mutual attraction, mutual avoidance, prey refuge, and predator attraction. Predator 
(y-axis) and prey (x-axis) respond to human activity along a continuum of attraction to avoidance. Similar 
responses of predator and prey to human activity are predicted to result in increased predator-prey overlap 
and possible encounters, whereas opposite responses are predicted to reduce overlap and possible 
encounters. 
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Changing the degree of overlap between predator and prey may tip the behavioral response race 
in favor of one player to affect consumptive or non-consumptive dynamics. Although linking 
predator-prey overlap to predation requires evaluating the full predation sequence (i.e., the 
encounter, pursuit, and successful capture of prey; Guiden et al., 2019; Lima & Dill, 1990; 
Suraci et al., 2022; Wootton et al., 2023), a predator and prey first must occupy the same space at 
the same time for an encounter to occur. We reduce this complexity to consider overlap a 
necessary precursor to any predator-prey encounter (Prugh et al., 2019). While human activity 
can also change the densities of both predator and prey species through non-behavioral pathways 
(e.g., direct mortality, habitat degradation), here we focus on behaviorally-mediated effects of 
humans on predators and prey. 
 
Human activity increases predator-prey overlap 
 
There are two behavioral pathways through which human activity can increase the overlap 
between a predator and its prey, potentially tipping the behavioral response race in favor of the 
predator. First, mutual attraction to human activity (i.e., synanthropy) may increase predator-prey 
encounter rates (Figure 1, quadrant I). For example, the attraction of black bears (Ursus 
americanus) to human-associated food led to increased predation of mutually attracted red-
backed voles (Clethrionomys gapperi) feeding nearby (Morris, 2005). Second, mutual avoidance 
of human activity may cause a predator and prey to increase overlap to avoid a shared perceived 
risk (Figure 1, quadrant III). For instance, in Manas National Park, India, tigers (Panthera 
tigris) and ungulate prey constrained their spatiotemporal activity to avoid humans in the park, 
thus increasing overlap with one another (Lahkar et al., 2020). If mutual attraction or mutual 
avoidance transpire in both space and time, the realized niche (Hutchinson, 1957) between 
predator and prey will be compressed and encounter rates may be amplified. This change may 
lead to increased predation rates or phenomena such as ecological traps (Gates & Gysel, 1978).   
 
Human activity decreases predator-prey overlap  
 
There are two behavioral pathways by which human activity can decrease the overlap between a 
predator and its prey, potentially tipping the behavioral response race in favor of prey. First, 
predators may avoid human activity while prey do not, creating a spatial or temporal prey refuge 
(Figure 1, quadrant IV; Berger, 2007; Muhly et al., 2011). Prey refuges (also called ‘human 
shields’) occur in environments where the absence of large predators for fear of people allows 
prey species to reduce their anti-predator behavior (Shannon et al., 2014) or selectively use 
human-occupied habitats that predators avoid (Gaynor et al., 2022). Second, prey may avoid 
human activity while predators do not (Fleming & Bateman, 2018). This case may entail 
predator attraction (Figure 1, quadrant II), whereby predators select settings of high human 
activity, affording human-avoidant prey a refuge. Predator use of human settings may be driven 
by prey switching and the selection for synanthropic or domestic prey, or other human food 
subsidies, such as garbage or agriculture (Murdoch & Oaten, 1975; Murdoch, 1969; Newsome et 
al., 2015). For instance, in Maharashtra, India, 87% of leopard (Panthera pardus) diet in human-
dominated areas consisted of domestic animals, reducing consumption of wild species (Athreya 
et al., 2016). If prey refuge or predator attraction transpire in both space and time, the realized 
niche (Hutchinson, 1957) between predator and prey will be relaxed, and predation encounter 
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rates may be reduced. This can lead to decreased predation rates, altered population dynamics, or 
phenomena such as mesopredator release (Crooks & Soulé, 1999). 
 
Human activity does not alter predator-prey overlap 
 
Human activity may have no clear effect on the overlap among predators and prey, obscuring 
“winners” or “losers” in the predator-prey behavioral response race. This condition is likely to 
emerge when neither ecological player responds to human activity. Such lack of response could 
indicate at least four underlying mechanisms (Smith et al., 2021) including, but not limited to, 
high tolerance thresholds for human activity, perception of humans as non-threatening, intrinsic 
or extrinsic constraints on behavioral adjustments, and temporary transitions between avoidance 
and attraction. A true lack of response can only be measured when an animal does not alter its 
behavior despite consistency in the density of competitors, predators, and resources across a 
human-use gradient. Because community composition also generally varies with anthropogenic 
disturbances (Ordeñana et al., 2010), fully characterizing the conditions underlying non-response 
to humans may require additional non-observational approaches, such as experiments (e.g., 
(Suraci, Clinchy, et al., 2019) or simulations (e.g.,(Thompson et al., 2018). Comparative studies 
of predator and prey spatiotemporal overlap in settings with and without human activity, or along 
gradients of human activity, may help to shed light on which behavioral pathways are most 
common. Such studies may also reveal whether functional traits, such as body size, influence an 
animal’s behavioral response. 
 
CASE STUDY: MEASURING HUMAN INFLUENCE ON PREDATOR-PREY TEMPORAL OVERLAP 
 
Our framework formalizes four behavioral pathways for how human activity may alter predator-
prey overlap; yet, it remains important to test support for related hypotheses. To demonstrate 
how researchers can apply empirical data to our framework, we evaluated these four hypotheses 
in a literature review and analysis, and tested whether the behavioral response patterns were 
generalizable based on functional traits of each predator and its prey. We selected studies that 
measured temporal activity and overlap of predators and prey at paired settings of high and low 
human activity (for full Methods see Supplementary Information). Briefly, we limited our 
analysis to terrestrial mammals with a body mass >1kg in line with recent research suggesting 
that medium and large-bodied terrestrial mammals exhibit varied responses to human activity 
(Frey et al., 2020; Suraci et al., 2021). We focused our review on published camera trap studies 
that reported predator-prey temporal overlap, given that the temporal dimension is often 
overlooked, more easily standardized than the spatial dimension, and is potentially more critical 
to predicting a predation event (Moll et al., 2017). In total, we reviewed 6,646 abstracts and 405 
papers to identify available data for 178 predator-prey dyads from 19 camera trap studies. These 
19 studies spanned five continents and included forest, savanna, shrubland, and desert 
ecosystems (see Supplementary Information).  
 
For each species in each study, we calculated the relative difference in the diurnal activity ratio 
(i.e., the proportion of daytime activity) at paired settings of high and low human activity. This 
calculation allowed us to visualize the difference between the temporal niche of each predator 
and its prey, relative to the diurnal human niche. Next, given that functional traits can influence 
an animal’s perception of risk-reward cues, we tested whether functional traits (including prey 
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order, body size, predator hunting mode, trophic level, predator guild, and circadian rhythm) 
influenced the difference in diurnal activity of predator-prey dyads between paired settings of 
low and high human activity. Finally, to estimate how human activity altered the overlap 
between predator and prey, we calculated the difference in temporal overlap coefficients of 
predator-prey dyads between paired settings of low and high human activity (see Supplementary 
Information).  

 
Figure 2. Human influence on predator-prey dyad (A) temporal activity and (B) temporal overlap based on 
review of camera trap studies between paired settings of low and high human use. (A) Lines reflect the 
relative magnitude and direction of the diel activity ratio toward nocturnality (-1) or diurnality (1) for each 
predator-prey dyad in paired settings of low to high human use (n = 178 predator-prey dyads, 19 studies) 
to indicate the behavioral response pathway (e.g., mutual attraction, mutual avoidance, prey refuge, predator 
attraction). (B) Black dots represent the change in predator-prey dyad temporal overlap (∆) between paired 
settings of low and high human use, as grouped by corresponding behavioral response pathway (n = 167 
predator-prey dyads, 16 studies). Red error bars represent estimated marginal means and  ± 95% confidence 
interval. 
 
We found evidence to suggest that mammalian predator-prey dyads respond to human activity in 
each of our proposed behavioral response pathways (Figure 2A). In settings of high human 
activity, 70 predator-prey dyads showed temporal patterns of mutual avoidance, while 60 
exhibited prey refuge, 23 predator attraction, and 19 mutual attraction to human activity. Six 
predator-prey dyads showed no change. Only half of the predator-prey dyads that exhibited 
mutual attraction (44%) and mutual avoidance (51%) increased temporal overlap with each 
other. Similarly only 49% of dyads exhibiting prey refuge and 27% exhibiting predator attraction 
decreased temporal overlap with each other in settings of high human use. Thus, temporal 
overlap did not consistently increase among predator-prey dyads exhibiting congruent activity 
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shifts (i.e., mutual attraction to or avoidance of human activity), and likewise, temporal overlap 
did not consistently decrease among predator-prey dyads exhibiting divergent activity shifts 
(Figure 2B), as per our framework’s expectations. 
 
One explanation for why many predator-prey dyads had higher overlap with one another despite 
opposite responses to humans (i.e., prey refugia or prey switching; one ecological player 
becomes more nocturnal while the other becomes more diurnal) may be that human-avoidant 
prey can tolerate high overlap with a predator rather than tolerate high human activity (see 
(Zbyryt et al., 2017). For instance, although black-tailed jackrabbits (Lepus californicus) had 
lower diurnal activity and bobcats (Lynx rufus) had higher diurnal activity in settings of high 
human activity, these species exhibited higher overlap with each other (see Supplementary 
Information; (Baker & Leberg, 2018). More than 70% of the predator-prey dyads that exhibited 
predator attraction reflected this phenomenon. Thus, hypothesis testing within our framework 
can highlight differences in risk tradeoffs for predators and their prey in settings of high human 
activity.  
 
Our analyses also revealed that some predator-prey dyads exhibited similar diel responses to 
human activity (i.e., mutual avoidance or mutual attraction; both predator and prey become more 
diurnal or nocturnal) yet decreased overlap with one another (Figure 2B). This finding may 
show maintenance of temporal partitioning between predators and prey at a fine scale, despite 
human-induced activity shifts (Ferreiro-Arias et al., 2021). For instance, while leopards 
(Panthera pardus) and spotted deer (Axis axis) exhibited decreased diurnal activity to mutually 
avoid high human activity, spotted deer avoided human activity to a lesser degree, ultimately 
reducing overlap between spotted deer and leopards (see Supplementary Information; Carter et 
al., 2015). For prey, maintaining fine-scale spatiotemporal partitioning with both natural and 
human predators could come at the cost of altered stress and fecundity (Tuomainen & Candolin, 
2011) or increased overlap among competitors (Manlick & Pauli, 2020; Sévêque et al., 2020; 
Smith et al., 2018). Ecological outcomes for these scenarios might include increased intraspecific 
competition (Carter et al., 2015; Wang et al., 2015) and resource limitation (Muhly et al., 2011) 
rather than increased predation encounter risk, as key drivers of population dynamics. 
 
We found no effect of functional traits on the change in diurnal activity ratios for terrestrial 
mammal predators and prey between paired settings of high and low human activity (Figure 3;  
n = 49 predators, n = 76 prey, 19 studies). It is possible that the variability of human activity 
across the studies obscured underlying behavioral response patterns, especially given the 
relatively small number of studies (n = 19). It is also possible that in mammals, behavioral 
responses to humans are more strongly driven by in-situ learning and experience than by the 
functional traits we tested. To examine these possibilities, researchers could use this framework 
to test how different types, magnitudes, and frequencies of human activity influence the 
behavioral response of the same predator-prey dyads. Similarly, researchers might consider 
whether morphology or past experience with humans drives the behavior of the focal animals. 
 
Future applications of this framework should ensure that change in animal activity and predator-
prey overlap is measured relative to peak human activity. The published studies in our analysis 
exhibited diurnal human activity, but the peak impacts of human presence and infrastructure can 
also be crepuscular or nocturnal. For instance, lights or generators may turn on at night, or 
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humans may tend agriculture at dawn and dusk, leaving fields unattended during the heat of the 
day. If the onset of peak human activity coincides with either a predator or prey’s peak in 
activity, human impacts on predator-prey overlap may be greater.  
 
 

Figure 3. The influence of functional traits on the change in diurnal activity of terrestrial mammals, based 
on a review of paired camera trap studies. The change in diurnal activity ratio was calculated between paired 
settings of low and high human activity for each species in each study (n = 49 predators, n = 76 prey, 19 
studies). 
 
While our analysis revealed that, in paired settings of high human activity, predator-prey activity 
resembled all four predicted behavioral pathways, such an analysis is incomplete without 
concurrent measures of animal responses in space and time. In our review, we found that studies 
seldom reported both temporal and spatial impacts of human activity on animal behavior. Paired 
research designs that measured human impacts on both predators and their prey were similarly 
rare. Out of the 405 abstracts that warranted a full review, we excluded 155 studies that did not 
use camera trap array study designs, 75 studies for lacking concurrent data on mammal predators 
and prey, 80 studies that did not adequately distinguish between high and low human use, 28 
studies that had fewer than 10 camera sites or did not include temporal data, and 48 studies with 
temporal data in the wrong format for our analysis. We suggest researchers apply this framework 
to local empirical data to test for site-specific or species-specific patterns in both space and time.  
 
LINKING PREDATOR-PREY OVERLAP TO ECOLOGICAL OUTCOMES 
 
Our framework (Figure 1) provides testable hypotheses regarding the influence of humans on 
predator-prey behavior and overlap. However, the measurement of human impacts on predator-
prey overlap is only a first step to identifying whether species interactions may change. Taken 
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together, these concepts, as well as a few key considerations and additional empirical methods, 
can help researchers link human-altered predator-prey overlap to broader ecological outcomes 
including predator diet, predation rates, competitive exclusion, trophic interactions.  
 
Most importantly, it is difficult to infer how altered behavior and spatiotemporal overlap 
influence predation encounter rate without accounting for differences in predator and prey 
population density. Predator consumption relies heavily on prey density (Holling, 1959; 
Solomon, 1949). Recent extensions of density estimation methods, such as the Random 
Encounter Staying Time model, can allow for robust estimation of animal density without 
individual recognition (Nakashima et al., 2018). However, such methods rely on accounting for 
variation in detection by study, site, survey design, or species, which can vary widely (Moll et 
al., 2020). To be considered robust, human-impact studies that link animal behavior to predation 
would ideally collect data on a wide array of metrics, beginning with behavioral response as a 
first step but also including demography, density, and abundance.  
 
Another key consideration in linking predator-prey overlap to ecological outcomes is that altered 
overlap of dyads may not predict where or when predation events occur (Suraci et al., 2022). 
Prey might continue to avoid predators at fine scales, maintaining spatiotemporal partitioning 
despite high overlap. In such cases, non-consumptive effects (i.e., stress that leads to lower 
fecundity) may emerge if prey employ energetically costly anti-predator behaviors to avoid both 
humans and predators (Frid & Dill, 2002; Soudijn et al., 2020). Pairing multi-species behavioral 
studies with demographic or physiological studies will be needed to determine whether 
consumptive or non-consumptive effects of predation change as a result of human-altered 
predator-prey overlap (e.g., Zbyryt et al., 2017).  
 
Measuring human impacts on animal responses at the appropriate scale can also be key to 
accurately identifying ecological outcomes of behavioral shifts. Conceivably, predators and prey 
may respond to different human stimuli (including various auditory, olfactory, and visual cues), 
and at different scales. This can lead to situations where one species may be attracted to human 
activity at a broad spatial scale (for example, to forage on anthropogenic food sources), but both 
predator and prey avoid humans at fine spatial scales (e.g., Rogala et al., 2011). When possible, 
studies that measure animal behavior across spatiotemporal scales will be most informative. 
When this is not feasible, researchers might consider how the goal of the study and the ecology 
of the system correspond to tradeoffs associated with choosing various sampling designs (e.g., 
see Steidl & Powell, 2006). 
 
Comprehensive assessments of human influence on predator-prey interactions consider both 
spatial and temporal dimensions of predator-prey overlap, because prey may avoid predators in 
one dimension (i.e., space or time) despite high overlap in another dimension. If human activity 
increases predator-prey overlap in space, prey may still safely exploit risky places by foraging 
during predator downtimes (Beauchamp, 2007), though non-optimal foraging times may be 
energetically costly to prey (Kronfeld-Schor & Dayan, 2003). Methods like GPS telemetry and 
camera trapping facilitate inference on both spatial and temporal distribution simultaneously. 
Furthermore, using indices that simultaneously estimate predator-prey overlap in space and time, 
such as occupancy models with a continuous-time detection process (Kellner et al., 2022) or 
Bayesian time-dependent observation models (Ait Kaci Azzou et al., 2021) can avoid these 
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issues and provide more accurate estimates of human impact on encounter probabilities. 
Applying our proposed framework to such inferences would provide a rigorous test of how 
humans influence predator-prey outcomes across dimensions. 
 
As humans modify the contest between predators and prey, complex feedbacks among multiple 
players can obscure the true mechanisms driving an observed pattern. Human activity can 
influence each ecological player, while predator and prey simultaneously influence each other. 
As a result, it is often difficult to disentangle, for instance, whether a prey refuge pattern is the 
consequence of (a) prey attraction to human activity, or (b) prey exploitation of a predator-free 
zone. To resolve these types of uncertainty, researchers may consider using additional controlled 
experiments to further isolate and test the hypothesized drivers of an observed response to human 
activity (e.g., Sarmento & Berger, 2017).  
 
While our framework explicitly considers predator-prey relationships as dyads, rarely are 
predators and prey in obligate pairings. Human activity may influence prey choice, for example 
when predators have multiple prey, or reshape multi-predator effects on prey with more than one 
predator (Sih et al., 1998). To advance predictions of how human activity will affect species 
interactions, it will be beneficial to apply this framework to combinations of predators, prey, and 
competitors (Mills & Harris, 2020). One promising avenue of research lies in comparing how 
species richness, composition, and food web structure influence predator-prey responses to 
human activity (e.g., see Sévêque et al., 2020). Researchers can deploy these research designs to 
identify whether predators, prey, competitors, or human disturbance are driving the predominant 
patterns of dietary preference and predation rate. 
 
Future research might consider further investigation into how human influence on predator-prey 
overlap, encounter, or predation, is linked to the functional traits (e.g., body size, hunting mode, 
circadian rhythm) of each interactor. For instance, nocturnal prey may outperform diurnal 
human-avoidant predators forced to hunt at night, limiting encounter risk despite high overlap 
between predator and prey (Beauchamp, 2007). One successful approach to clarifying whether 
altered overlap results in altered predation is using multispecies camera trap studies in tandem 
with diet composition studies (e.g., Smith et al., 2018). Pairing camera and diet data can allow 
researchers to connect overlap to predation non-invasively, avoiding the more costly and effort-
intensive research designs that use GPS telemetry clusters and animal necropsy data to estimate 
predation.  
 
In certain cases, human influence on predator-prey overlap may be temporary and without lasting 
consequences for ecological communities. For instance, if predators and prey habituate to human 
activity over time (Blumstein, 2016) encounter rates may be maintained, and the predator-prey 
response race may continue unaltered by humans. Yet in this case, the rise of human-wildlife 
conflict and use of lethal or non-lethal deterrents may in turn affect animal behavior and 
predator-prey overlap (Manlick & Pauli, 2020). Researchers can use iterative experiments that 
measure how multiple ecological players habituate or sensitize to human disturbance (e.g., 
(Uchida & Blumstein, 2021) to better capture which of the four possible human-induced 
response pathways predict shifts in encounter risk over time.  
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Identifying thresholds of human activity that alter animal behavior will be key to drawing useful 
inference from human impact studies and improving our understanding of when altered 
interactions may have reverberating impacts across ecosystems. Examples of such studies 
include comparison of animal response to motorized versus non-motorized recreation (Larson et 
al., 2016), leashed versus unleashed domestic dogs (Reed & Merenlender, 2011), exurban versus 
suburban development (Merenlender et al., 2009; Smith, Duane, et al., 2019), dense versus 
dispersed oil development (Sawyer et al. 2020), and the influence of human presence versus the 
human footprint (Nickel et al., 2020; Suraci et al., 2021). Such measurements can aid in creating 
specific guidelines for human activity near wildlife. Ultimately, these research designs will help 
anticipate how predators and prey respond to human activity in rapidly changing landscapes.  
 
CONCLUSION 
 
Behavioral ecology is increasingly recognized as a valuable aspect of population and ecosystem 
management (Gaynor et al., 2021) yet complex behavioral interactions among predators, prey, 
and humans (Kuijper et al., 2016) challenge the application of theory to practical solutions. 
Nonetheless, understanding species interactions remains key to the coexistence and persistence 
of wildlife, and ecosystem function, in settings with high human activity. For example, 
anthropogenic effects on prey may sometimes need to be minimized before predator recovery 
and predator-prey interactions can be restored (Lahkar et al., 2020). Unfortunately, the daunting 
task of studying or modeling complex behavioral feedbacks among players in this ecological 
game has deterred progress in understanding the ecology of landscapes characterized by high 
human activity. Investment in models that explain how humans modify species interactions, 
rather than solely species richness or abundance, is critical to fundamental ecology and the 
implementation of science-based management and conservation practice. Adopting our 
framework can help researchers test for patterns of human influence on strongly interacting 
species and identify possible mechanisms driving broader ecological outcomes. 
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Supplementary Methods 
 
We conducted systematic and snowball literature reviews to gather empirical data and examine 
how human activity affected the activity and overlap of predator-prey dyads. For the systematic 
review, we used Web of Science to search the published literature from 2000 – 2020, using the 
query “TS = (“activity pattern*” OR “temporal*” OR “diel” OR “nocturnal*” OR “diurnal*” OR 
“time of day” OR “camera trap*” OR “overlap*” OR “co-occurrence” OR “cooccurrence”  OR 
“occupancy”) AND (“human*” OR “people” OR “anthropogenic” OR “touris*” OR “recreat*” 
OR “disturb*”) AND (“wildlife” OR “mammal*” OR “animal*” OR “*carnivor*” OR 
“herbivor*” OR “ungulate*” OR “predator*” OR “prey” OR “commun*”) NOT (“marine*” OR 
“*fish*”)” to match titles, abstracts, and keywords within the topics of Environmental Sciences 
& Ecology, Zoology, or Biodiversity & Conservation. We read the resulting paper titles and 
abstracts (n = 6,646) and read the full study if it showed potential to meet our criteria (n = 405).  
 
We retained studies that (1) measured the diel activity of at least one terrestrial mammal predator 
and terrestrial mammal prey dyad <1 kg in body mass, and (2) used camera traps to compare 
animal activity at paired sites or treatments of high and low human use. We limited our review to 
camera trap studies given that the temporal dimension is often overlooked, easily standardized, 
and eliminates confounding lethal or density effects of spatial indices. For our analysis, we 
defined “human activity” as sustained, non-lethal presence of humans. Targeting studies that 
measured non-lethal human activity allowed us to examine behavioral effects rather than the 
numerical effects of humans on wildlife. Our definition of human activity was intentionally 
broad (e.g., people on foot, motorized and non-motorized recreation, pastoralism, energy 
infrastructure, housing, roads, urban areas) as our aim was to capture and compare the multiple 
pathways of animal response to disturbance. We distinguished high and low human use 
according to author descriptions in each peer-reviewed paper (Table S1). We designated 
predator-prey dyads based on predator diet as listed in the paper, expert advice, or the 
Encyclopedia of Life (Parr et al., 2014; see Table S2 and Table S3 for the list of included 
predator-prey dyads). 
 
To examine predator-prey temporal activity, we extracted day and night image counts of each 
species at each high and low human use to calculate the ratio of diurnal activity. When these 
metrics were not available, we used the raw data with author permission, filtered for image 
independence as greater than 30-minutes apart (Sollmann, 2018) and classified images based on 
sun-time (Nouvellet et al., 2012); see Table S1 for detailed methods on each study). We 
discarded any dyads for which there were fewer than 10 total images of a species. We centered 
the diurnal activity ratio on zero and standardized it so that -1 represented complete nocturnality 
and 1 complete diurnality. Then, we set the rescaled diurnal activity ratios at low human use to 
zero and calculated the relative difference for diurnal activity ratios at high human use across 
predator-prey dyads. This allowed us to simultaneously compare the relative magnitude of 
diurnal activity changes across all predator-prey dyads (Figure 2A). We made the assumption 
that the majority of human activity was diurnal across studies, thus, we considered any difference 
in activity between low and high human use to be in response to diurnal human activity.  
 
To examine predator-prey temporal overlap, we compared temporal overlap coefficients of each 
species pair at low and high human use. Overlap coefficients (∆) are widely used metrics to 
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report temporal partitioning of animals from camera trap surveys and are calculated using kernel 
density estimation that range from 0 (no overlap) to 1 (complete overlap) (Ridout & Linkie, 
2009). When these metrics were not available, we used published datasets or the raw data with 
author permission to estimate ∆ using the ‘overlap’ R package. We calculated ∆ using Dhat4, 
according to the protocol of Ridout & Linkie (2009). We were able to include or calculate 
overlap coefficients for 17 of the studies and 172 dyads. We calculated the change in overlap as 
the difference between predator-prey overlap at high and low human use (Figure 2B). 
 
Out of the 405 abstracts that warranted a full review, we excluded 155 studies that did not use 
camera trap array study designs, 75 studies for lacking concurrent data on mammal predators and 
prey, 80 studies that did not adequately distinguish between high and low human use, 28 studies 
that had fewer than 10 camera sites or did not include temporal data, and 48 studies with 
temporal data in the wrong format for our analysis. Ultimately, there were 19 studies that had 
data that fit our criteria for inclusion, with 178 predator-prey dyads included in the temporal 
activity analysis (Figure 2A). Of these, we included 167 predator-prey dyads from 17 studies in 
the temporal overlap analysis (Figure 2B). We eliminated 11 dyads for the overlap analysis, 
given that 5 dyads did not include data to calculate overlap coefficients, and 6 dyads exhibited a 
neutral activity response and thus did not warrant further testing via our framework’s approach.  
 
We examined how functional traits (prey order, body size, predator hunting mode, trophic level, 
predator guild, and circadian rhythm) influenced temporal activity of predator and prey species 
(unique to each study) between settings of high and low human activity (Figure 3). 
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Table S2. Predator-prey activity ratios at high and low human use for 19 studies and 178 predator-prey dyads.

Reference Predator Prey
Predator diurnal activity Prey diurnal activity

(low) (high) (low) (high)

Baker & Leburg 2018

Bobcat
Black-Tailed Jackrabbit

0.316 0.241
0.044 0.304

Desert Cottontail 0.165 0.429

Coyote

Black-Tailed Jackrabbit

0.1 0.216

0.044 0.304
Desert Cottontail 0.165 0.429
Deer spp. 0.578 0.463
Javelina 0.538 0.25

Gray Fox
Black-Tailed Jackrabbit

0.035 0.04
0.044 0.304

Desert Cottontail 0.165 0.429

Barrueto et al. 2014

Black Bear Mule Deer 0.744 0.646 0.631 0.599

Brown Bear
Elk

0.748 0.679
0.378 0.253

Mule Deer 0.631 0.599
Moose 0.474 0.498

Coyote Mule Deer 0.563 0.481 0.631 0.599
Puma Mule Deer 0.411 0.262 0.631 0.599

Wolf
Elk

0.463 0.44
0.378 0.253

Mule Deer 0.631 0.599
Moose 0.474 0.498

Caldwell & Klip 2020
Bobcat Lagomorph spp. 0 0.337 0.762 0.631

Coyote
Lagomorph spp.

0.5 0.534
0.762 0.631

Mule Deer 0.35 0.318

Carter et al. 2015

Leopard

Chital

0.535 0.157

0.743 0.527
Muntjac 0.648 0.527
Wild Boar 0.624 0.254
Sambar 0.074 0.115

Tiger

Chital

0.19 0.073

0.743 0.527
Muntjac 0.648 0.527
Wild Boar 0.624 0.254
Sambar 0.074 0.115

Dawson et al. 2018
Dingo

Agile Wallaby
0.7 0.336

0.267 0.285
Greater Bilby 0 0.022

Domestic Cat
Agile Wallaby

0.302 0.142
0.267 0.285

Greater Bilby 0 0.022
Díaz-Ruíz et al. 2016 Red Fox European Rabbit 0.26 0.181 0.889 0.937

Gallo et al. 2019 Coyote
Eastern Cottontail

0.209 0.152
0.247 0.23

White-Tailed Deer 0.54 0.722

Gray et al. 2011 Leopard
Muntjac

0.613 0.55
0.713 0.612

Wild Boar 0.838 0.432

Black Bear

Eastern Fox Squirrel

0.781 0.663

0.986 0.971
Virginia Opossum 0.013 0
White-Tailed Deer 0.577 0.502
Wild Boar 0.444 0.333
Eastern Cottontail 0.03 0.088
Eastern Gray Squirrel 0.962 0.982
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Kays et al. 2017

Raccoon 0.054 0.06

Bobcat
Eastern Fox Squirrel

0.53 0.423
0.986 0.971

Eastern Cottontail 0.03 0.088
Eastern Gray Squirrel 0.962 0.982

Coyote

Eastern Fox Squirrel

0.284 0.156

0.986 0.971
Virginia Opossum 0.013 0
White-Tailed Deer 0.577 0.502
Wild Boar 0.444 0.333
Eastern Cottontail 0.03 0.088
Eastern Gray Squirrel 0.962 0.982
Raccoon 0.054 0.06

Gray Fox
Eastern Fox Squirrel

0.107 0.086
0.986 0.971

Eastern Cottontail 0.03 0.088
Eastern Gray Squirrel 0.962 0.982

Red Fox
Eastern Fox Squirrel

0.27 0.133
0.986 0.971

Eastern Cottontail 0.03 0.088
Eastern Gray Squirrel 0.962 0.982

Lendrum et al. 2017
Bobcat Lagomorph spp. 0.346 0.232 0.25 0.163

Coyote
Lagomorph spp.

0.588 0.382
0.25 0.163

Mule Deer 0.686 0.509

Mills & Harris 2020

Leopard

Aardvark

0.366 0.412

0.165 0.314
Hartebeest 0.726 0.78
Kob 0.826 0.878
Oribi 0.861 0.885
Waterbuck 0.819 0.834
Bushbuck 0.599 0.528
Duiker spp. 0.625 0.551
Reedbuck 0.592 0.468
Roan Antelope 0.787 0.742
Warthog 0.987 0.941

Lion

Bushbuck

0.561 0.44

0.599 0.528
Cape Buffalo 0.578 0.534
Duiker spp. 0.625 0.551
Reedbuck 0.592 0.468
Roan Antelope 0.787 0.742
Warthog 0.987 0.941
Aardvark 0.165 0.314
Hartebeest 0.726 0.78
Kob 0.826 0.878
Oribi 0.861 0.885
Waterbuck 0.819 0.834

Spotted

Bushbuck 0.599 0.528
Cape Buffalo 0.578 0.534
Duiker spp. 0.625 0.551
Reedbuck 0.592 0.468
Roan Antelope 0.787 0.742
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Spotted
Hyena Warthog 0.453 0.413 0.987 0.941

Aardvark 0.165 0.314
Hartebeest 0.726 0.78
Kob 0.826 0.878
Oribi 0.861 0.885
Waterbuck 0.819 0.834

Nix et al. 2018 Puma
Beaver

0 0
0.047 0.061

Raccoon 0.018 0.08
Mule Deer 0.578 0.561

Oberosler et al. 2017 Red Fox Brown Hare 0.239 0.248 0.6 0.239

Reilly et al. 2017

Bobcat Brush Rabbit 0.38 0.314 0.494 0.729

Coyote
Mule Deer

0.459 0.364
0.615 0.585

Raccoon 0.097 0.078
Brush Rabbit 0.494 0.729

Gray Fox Brush Rabbit 0.049 0.059 0.494 0.729

Rich et al. 2016

Black-backed
Jackal

Springhare
0.162 0.372

0.097 0.118
Cape Hare 0.213 0.177

Caracal
Cape Hare

0.14 0.136
0.213 0.177

Springhare 0.097 0.118

Leopard

Duiker

0.333 0.254

0.554 0.432
Warthog 0.887 0.819
Greater Kudu 0.584 0.6
Impala 0.735 0.746

Lion

Buffalo

0.417 0.322

0.313 0.275
Duiker 0.554 0.432
Warthog 0.887 0.819
Greater Kudu 0.584 0.6
Impala 0.735 0.746
Zebra 0.511 0.526

Spotted
Hyena

Buffalo

0.239 0.179

0.313 0.275
Duiker 0.554 0.432
Warthog 0.887 0.819
Greater Kudu 0.584 0.6
Impala 0.735 0.746
Zebra 0.511 0.526

Wild Dog

Greater Kudu

0.443 0.748

0.584 0.6
Impala 0.735 0.746
Springhare 0.097 0.118
Zebra 0.511 0.526
Cape Hare 0.213 0.177
Duiker 0.554 0.432
Warthog 0.887 0.819

Smith et al. 2019

Black-backed
Jackal

Blue Duiker
0.52 0.49

0.665 0.65
Duiker 0.71 0.735

Caracal
Blue Duiker

0.6 0.475
0.665 0.65

Bushbuck 0.625 0.655
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Duiker 0.71 0.735

Wang et al. 2015

Coyote
Mule Deer

0.503 0.305
0.525 0.551

Raccoon 0.067 0.17
Virginia Opossum 0.028 0.043

Puma
Mule Deer

0.263 0.136
0.525 0.551

Raccoon 0.067 0.17
Virginia Opossum 0.028 0.043

Wilkinson et al. 2021

Black-backed
Jackal

Kirk's Dikdik
0.382 0.063

0.789 0.359
Thomsons Gazelle 1 0.712
African Hare 0 0.014

Leopard

Common Zebra

0.164 0.08

0.254 0.195
Impala 0.927 0.568
Kirk's Dikdik 0.789 0.359
Olive Baboon 1 0.999
Vervet 1 0.999
Aardvark 0 0
Warthog 0.953 0.983
Waterbuck 0.167 0.605

Lion

Warthog

0 0.075

0.953 0.983
Waterbuck 0.167 0.605
Aardvark 0 0
Buffalo 0.058 0.03
Common Zebra 0.254 0.195
Eland 0.651 0.477
Impala 0.927 0.568
Kirk's Dikdik 0.789 0.359
Olive Baboon 1 0.999
Thomsons Gazelle 1 0.712

Serval African Hare 0.093 0.053 0 0.014

Spotted
Hyena

Buffalo

0.152 0.019

0.058 0.03
Common Zebra 0.254 0.195
Eland 0.651 0.477
Impala 0.927 0.568
Kirk's Dikdik 0.789 0.359
Olive Baboon 1 0.999
Thomsons Gazelle 1 0.712
Aardvark 0 0
Warthog 0.953 0.983
Waterbuck 0.167 0.605

Striped Hyena Olive Baboon 0.13 0.021 1 0.999

Xiao et al. 2018 Tiger
Roe Deer

0.295 0.392
0.577 0.665

Sika Deer 0.635 0.655
Wild Boar 0.633 0.584
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Table S3. Summary of predator and prey overlap coefficients at high and low human use for 17 studies and 172 predator-

Reference Predator Prey Overlap
(low) CI Overlap

(high) CI Change in
overlap

Baker & Leburg 2018

Bobcat ( )
Black-Tailed Jackrabbit 0.641 0.464-0.851 0.806 0.718-0.981 0.165
Desert Cottontail 0.758 0.652-0.97 0.814 0.728-0.982 0.056

Coyote ( )

Black-Tailed Jackrabbit 0.664 0.486-0.933 0.879 0.827-0.993 0.215
Deer spp. 0.517 0.312-0.752 0.757 0.624-0.86 0.24
Desert Cottontail 0.815 0.714-1.137 0.767 0.67-0.841 -0.048
Javelina 0.451 0.217-0.761 0.82 0.736-0.949 0.369

Gray Fox (
)

Black-Tailed Jackrabbit 0.768 0.669-0.911 0.772 0.692-0.85 0.004
Desert Cottontail 0.857 0.79-0.963 0.655 0.557-0.703 -0.202

Barrueto et al. 2014

Black Bear (
) Mule Deer 0.742 0.66-0.793 0.821 0.778-0.857 0.079

Brown Bear (
)

Elk 0.647 0.592-0.679 0.58 0.54-0.605 -0.067
Moose 0.724 0.656-0.771 0.797 0.737-0.85 0.073
Mule Deer 0.834 0.792-0.866 0.852 0.817-0.886 0.018

Puma ( ) Mule Deer 0.672 0.579-0.738 0.668 0.601-0.7 -0.004
Coyote ( ) Mule Deer 0.871 0.836-0.917 0.84 0.806-0.861 -0.031

Wolf ( )
Elk 0.865 0.824-0.904 0.804 0.771-0.823 -0.061
Moose 0.884 0.835-0.949 0.888 0.839-0.939 0.004
Mule Deer 0.821 0.776-0.857 0.852 0.823-0.876 0.031

Caldwell & Klip 2020
Bobcat ( ) Lagomorph spp. 0.276 0.104-0.429 0.641 0.544-0.713 0.365

Coyote ( )
Lagomorph spp. 0.75 0.645-1.018 0.741 0.679-0.819 -0.009
Mule Deer 0.742 0.607-0.962 0.807 0.728-0.872 0.065

Carter et al. 2015

Leopard (
)

Wild Boar 0.767 0.687-0.909 0.808 0.712-0.924 0.041
Chital 0.656 0.533-0.742 0.557 0.402-0.612 -0.099
Muntjac 0.597 0.443-0.69 0.571 0.415-0.645 -0.026
Sambar 0.492 0.351-0.604 0.841 0.774-0.964 0.349

Tiger ( )

Wild Boar 0.481 0.387-0.52 0.71 0.6-0.807 0.229
Chital 0.453 0.379-0.479 0.495 0.369-0.553 0.042
Muntjac 0.545 0.447-0.59 0.511 0.375-0.593 -0.034
Sambar 0.735 0.625-0.781 0.756 0.652-0.856 0.021

Dawson et al. 2018

Dingo (
)

Agile Wallaby 0.62 0.42-0.83 0.86 0.79-0.93 0.24
Greater Bilby 0.3 0.08-0.46 0.66 0.57-0.75 0.36

Domestic Cat (
)

Agile Wallaby 0.75 0.64-0.85 0.81 0.74-0.85 0.06
Greater Bilby 0.55 0.42-0.68 0.68 0.58-0.78 0.13

Díaz-Ruíz et al. 2016 Red Fox ( ) European Rabbit 0.425 - 0.3975 - -0.0275

Gallo et al. 2019 Coyote ( )
Eastern Cottontail 0.828 0.771-0.857 0.853 0.814-0.858 0.025

White-Tailed Deer 0.726 0.693-0.734 0.48 0.427-0.488 -0.246

Gray et al. 2011 Leopard (
)

Red Muntjac - - - - -
Wild Boar - - - - -

Black Bear (
)

Eastern Cottontail 0.405 0.325-0.433 0.581 0.483-0.648 0.176
Eastern Fox Squirrel 0.63 0.57-0.669 0.548 0.448-0.588 -0.082
Eastern Gray Squirrel 0.697 0.664-0.729 0.549 0.489-0.582 -0.148
Raccoon 0.33 0.273-0.333 0.419 0.343-0.433 0.089
Virginia Opossum 0.29 0.212-0.288 0.339 0.225-0.345 0.049
White-Tailed Deer 0.801 0.767-0.825 0.825 0.781-0.859 0.024
Wild Boar 0.634 0.495-0.746 0.743 0.632-0.832 0.109

Bobcat ( )
Eastern Cottontail 0.627 0.539-0.709 0.728 0.634-0.804 0.101
Eastern Fox Squirrel 0.486 0.387-0.554 0.438 0.335-0.473 -0.048

Lynx rufus

Canis latrans

Urocyon
cinereoargenteus

Ursus
americanus

Ursus
arctos

Puma concolor
Canis latrans

Canis lupus

Lynx rufus

Canis latrans

Panthera
pardus

Panthera tigris

Canis lupus
dingo

Felis
catus

Vulpes vulpes

Canis latrans

Panthera
pardus

Ursus
americanus

Lynx rufus
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Kays et al. 2017

Eastern Gray Squirrel 0.529 0.445-0.612 0.417 0.354-0.445 -0.112

Coyote ( )

Eastern Cottontail 0.757 0.677-0.803 0.856 0.774-0.923 0.099
Eastern Fox Squirrel 0.309 0.225-0.32 0.241 0.144-0.249 -0.068
Eastern Gray Squirrel 0.348 0.292-0.375 0.216 0.175-0.219 -0.132
Raccoon 0.748 0.702-0.789 0.854 0.82-0.882 0.106
Virginia Opossum 0.697 0.633-0.733 0.763 0.682-0.797 0.066
White-Tailed Deer 0.748 0.699-0.779 0.705 0.66-0.713 -0.043
Wild Boar 0.723 0.585-0.817 0.71 0.609-0.784 -0.013

Gray Fox (
)

Eastern Cottontail 0.863 0.806-0.974 0.824 0.727-0.914 -0.039
Eastern Fox Squirrel 0.151 0.02-0.173 0.173 0.041-0.176 0.022
Eastern Gray Squirrel 0.18 0.069-0.22 0.148 0.054-0.159 -0.032

Red Fox ( )
Eastern Cottontail 0.757 0.7-0.851 0.835 0.765-0.918 0.078
Eastern Fox Squirrel 0.302 0.199-0.328 0.232 0.131-0.244 -0.07
Eastern Gray Squirrel 0.345 0.268-0.387 0.209 0.16-0.219 -0.136

Lendrum et al. 2017
Bobcat ( ) Lagomorph spp. 0.55 - 0.794 - 0.244

Coyote ( )
Lagomorph spp. 0.748 - 0.915 - 0.167
Mule Deer 0.838 - 0.84 - 0.002

Mills & Harris 2020

Spotted Hyena (
)

Aardvark 0.656 - 0.796 - 0.14
Buffalo 0.763 - 0.777 - 0.014
Bushbuck 0.726 - 0.779 - 0.053
Duiker 0.776 - 0.778 - 0.002
Hartebeest 0.584 - 0.466 - -0.118
Kob 0.428 - 0.312 - -0.116
Oribi 0.386 - 0.333 - -0.053
Reedbuck 0.78 - 0.813 - 0.033
Roan Antelope 0.541 - 0.509 - -0.032
Warthog 0.289 - 0.291 - 0.002
Waterbuck 0.523 - 0.394 - -0.129

Leopard (
)

Aardvark 0.776 - 0.74 - -0.036
Bushbuck 0.613 - 0.839 - 0.226
Duiker spp. 0.661 - 0.795 - 0.134
Hartebeest 0.524 - 0.538 - 0.014
Kob 0.385 - 0.385 - 0
Oribi 0.349 - 0.402 - 0.053
Reedbuck 0.69 - 0.812 - 0.122
Roan Antelope 0.467 - 0.581 - 0.114
Warthog 0.234 - 0.363 - 0.129
Waterbuck 0.414 - 0.466 - 0.052

Lion ( )

Aardvark 0.547 - 0.78 - 0.233
Buffalo 0.906 - 0.862 - -0.044
Bushbuck 0.897 - 0.858 - -0.039
Duiker spp. 0.831 - 0.849 - 0.018
Hartebeest 0.769 - 0.549 - -0.22
Kob 0.608 - 0.391 - -0.217
Oribi 0.562 - 0.41 - -0.152
Reedbuck 0.899 - 0.874 - -0.025
Roan Antelope 0.715 - 0.592 - -0.123
Warthog 0.462 - 0.375 - -0.087
Waterbuck 0.682 - 0.478 - -0.204

Beaver 0.843 0.72-0.973 0.758 0.62-0.886 -0.085

Canis latrans

Urocyon
cinereoargenteus

Vulpes vulpes

Lynx rufus

Canis latrans

Crocuta
crocuta

Panthera
pardus

Panthera leo
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Nix et al. 2018 Puma ( ) Mule Deer 0.361 0.194-0.423 0.291 0.143-0.33 -0.07

Raccoon 0.825 0.697-0.943 0.731 0.617-0.859 -0.094

Oberosler et al. 2017 Red Fox ( ) Brown Hare - - - - -

Reilly et al. 2017

Bobcat ( ) Brush Rabbit 0.632 0.496-0.707 0.576 0.434-0.623 -0.056

Coyote ( )
Brush Rabbit 0.764 0.654-0.87 0.619 0.496-0.691 -0.145
Mule Deer 0.841 0.773-0.909 0.784 0.728-0.829 -0.057
Raccoon 0.638 0.511-0.725 0.724 0.653-0.767 0.086

Gray Fox (
) Brush Rabbit 0.44 0.293-0.485 0.373 0.237-0.405 -0.067

Rich et al. 2016

Black-backed Jackal
( )

Cape Hare 0.849 0.753-0.932 0.793 0.737-0.846 -0.056
Springhare 0.9 0.839-1.085 0.685 0.598-0.738 -0.215

Caracal (
)

Cape Hare 0.868 0.788-0.967 0.851 0.774-0.944 -0.017
Springhare 0.826 0.719-0.997 0.767 0.648-0.855 -0.059

Leopard (
)

Common Duiker 0.724 0.612-0.843 0.744 0.65-0.82 0.02
Greater Kudu 0.665 0.552-0.748 0.584 0.46-0.647 -0.081
Impala 0.533 0.45-0.59 0.388 0.298-0.407 -0.145
Warthog 0.292 0.158-0.316 0.259 0.146-0.272 -0.033

Lion ( )

Buffalo 0.556 0.412-0.665 0.742 0.636-0.833 0.186
Common Duiker 0.536 0.37-0.623 0.754 0.638-0.819 0.218
Greater Kudu 0.487 0.367-0.573 0.608 0.485-0.682 0.121
Impala 0.357 0.246-0.408 0.401 0.309-0.438 0.044
Warthog 0.186 0.075-0.236 0.255 0.13-0.274 0.069
Zebra 0.489 0.364-0.568 0.619 0.492-0.677 0.13

Spotted Hyena (
)

Buffalo 0.735 0.642-0.828 0.581 0.465-0.65 -0.154
Common Duiker 0.531 0.393-0.603 0.564 0.44-0.597 0.033
Greater Kudu 0.479 0.361-0.534 0.425 0.301-0.467 -0.054
Impala 0.324 0.245-0.333 0.225 0.159-0.224 -0.099
Warthog 0.135 0.035-0.14 0.108 0.024-0.103 -0.027
Zebra 0.517 0.419-0.567 0.476 0.371-0.528 -0.041

Wild Dog (
)

Cape Hare 0.433 0.29-0.461 0.4 0.301-0.446 -0.033
Common Duiker 0.662 0.498-0.682 0.617 0.538-0.721 -0.045
Greater Kudu 0.57 0.408-0.58 0.486 0.39-0.568 -0.084
Impala 0.553 0.418-0.53 0.419 0.339-0.455 -0.134
Springhare 0.336 0.148-0.37 0.307 0.192-0.345 -0.029
Warthog 0.318 0.146-0.308 0.23 0.118-0.252 -0.088
Zebra 0.628 0.489-0.645 0.426 0.33-0.501 -0.202

Smith et al. 2019

Black-backed Jackal
( )

Blue Duiker 0.74 0.59-0.86 0.72 0.62-0.81 -0.02
Gray Duiker 0.66 0.48-0.83 0.66 0.55-0.76 0

Caracal (
)

Blue Duiker 0.82 0.75-0.87 0.69 0.54-0.80 -0.13
Bushbuck 0.86 0.64-0.89 0.72 0.64-0.89 -0.14
Gray Duiker 0.76 0.61-0.89 0.67 0.50-0.83 -0.09

Wang et al. 2015

Puma ( )
Mule Deer - - - - -
Virginia Opossum 0.659 0.554-0.730 0.771 0.680-0.850 0.112
Raccoon 0.793 0.774-0.937 0.844 0.725-0.866 0.051

Coyote ( )
Mule Deer - - - - -
Virginia Opossum 0.454 0.389-0.464 0.653 0.594-0.672 0.199
Raccoon 0.545 0.485-0.557 0.739 0.681-0.781 0.194

Black-backed Jackal
( )

Kirk's Dikdik 0.523 0.407-0.561 0.65 0.55-0.69 0.127
African Hare 0.606 0.483-0.669 0.836 0.771-0.86 0.23
Thomsons Gazelle 0.152-0.366 0.125
Aardvark 0.78 0.683-0.914 0.601 0.388-0.719 -0.179

Puma concolor

Vulpes vulpes
Lynx rufus

Canis latrans

Urocyon
cinereoargenteus

Canis mesomelas

Caracal
caracal

Panthera
pardus

Panthera leo

Crocuta
crocuta

Lycaon
pictus

Canis mesomelas

Caracal
caracal

Puma concolor

Canis latrans

Canis mesomelas
0.213 0.031-0.258 0.338
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Wilkinson et al. 2021

Leopard (
)

Kirk's Dikdik 0.332 0.158-0.347 0.511 0.298-0.603 0.179
Impala 0.333-0.582 0.252
Olive Baboon 0.151 0.051-0.206 0.085 -0.219 -0.066
Vervet 0.137 0.026-0.184 0.108 -0.233 -0.029
Warthog 0.202 0.066-0.241 0.103 -0.222 -0.099
Waterbuck 0.36 0.134-0.471 0.439 0.26-0.551 0.079
Common Zebra 0.794-1.024 0.192

Lion ( )

Aardvark 0.617 0.362-0.795 0.742 0.622-0.826 0.125
Buffalo 0.308-0.635 0.579 0.517-0.632 0.004
Kirk's Dikdik 0.12 -0.175 0.611 0.475-0.648 0.491
Eland 0.256 0.112-0.307 0.381 0.22-0.365 0.125
Impala 0.293-0.39 0.378
Olive Baboon 0.001 -0.06 0.069 0.022-0.089 0.068
Thomsons Gazelle 0.097-0.305 0.285
Warthog 0.015 -0.1 0.09 0.029-0.103 0.075
Waterbuck 0.27 0.052-0.445 0.464 0.327-0.546 0.194
Common Zebra 0.608-0.728 0.225

Serval (
) African Hare 0.736 0.622-0.793 0.756 0.614-0.881 0.02

Spotted Hyena (
)

Aardvark 0.674 0.526-0.73 0.664 0.529-0.731 -0.01
Buffalo 0.649-0.675 -0.128
Kirk's Dikdik 0.432 0.363-0.459 0.631 0.549-0.689 0.199
Eland 0.481 0.403-0.516 0.304 0.203-0.307 -0.177
Impala 0.325-0.351 0.127
Olive Baboon 0.129 0.076-0.109 0.018 0.004-0.011 -0.111
Thomsons Gazelle 0.176-0.407 0.172
Warthog 0.247 0.19-0.243 0.045 0.019-0.036 -0.202
Waterbuck 0.38 0.199-0.478 0.41 0.279-0.504 0.03
Common Zebra 0.776-0.809 -0.011

Striped Hyena (
) Olive Baboon 0.117 0.048-0.101 0.02 -0.019 -0.097

Xiao et al. 2018 Tiger ( )
Roe Deer 0.84 0.76-0.92 0.75 0.68-0.82 -0.09
Sika Deer 0.69 0.61-0.76 0.71 0.63-0.78 0.02
Wild Boar 0.78 0.70-0.86 0.75 0.68-0.83 -0.03

Panthera
pardus

Panthera leo

Leptailurus
serval

Crocuta
crocuta

Hyaena
hyaena

Panthera tigris

0.221 0.093-0.265 0.473

0.675 0.519-0.69 0.867

0.575

0.028 -0.101 0.406

0.01 -0.151 0.295

0.508 0.272-0.6 0.733

0.799 0.757-0.799 0.671

0.254 0.205-0.246 0.381

0.158 0.036-0.198 0.33

0.821 0.77-0.829 0.81

Amy Van Scoyoc
44



 

45 
 

Chapter 4. 
 
Coyote movement patterns reveal a tolerance of humans in a mixed-use 
agricultural landscape 
 
This chapter has been prepared for publication and is reproduced here with kind permission of 
the contributing authors Kendall L. Calhoun and Justin S. Brashares.  
 
ABSTRACT 
 
Identifying which landscape features wildlife species select or avoid remains critical to 
understanding animal risk tolerance, habitat preferences, and the potential for human-wildlife 
conflict in altered environments. Here, I examined how anthropogenic and natural features 
influenced coyote (Canis latrans; n = 13) habitat selection in a mixed-use, agricultural landscape 
in Mendocino County, California, USA. I used resource selection functions and hidden Markov 
models to test whether coyote selection for anthropogenic and natural features differed by time of 
day or by behavioral state (resting, foraging, and traveling). I found that coyotes avoided 
development, but, contrary to my expectations, that coyotes selected for roads, agriculture, and 
areas used by rifle hunters regardless of diel period or behavioral state. While traveling, coyotes 
increased selection for roads and avoided ruggedness, indicating that unpaved roads may enhance 
connectivity for coyotes in mixed-use landscapes. Finally, I found that coyotes selected for 
mountain lion habitat when resting and at night, signifying that risk from natural predators was not 
a factor in habitat selection at coarse scales. Evidence that coyotes selected for most anthropogenic 
features at times when humans were also active suggests that the region may have high conflict 
potential given many people perceive coyotes as a nuisance.   
 
INTRODUCTION 
 
Human activity has modified landscapes worldwide, contributing to wildlife range contractions 
and decline (Ceballos et al., 2017). Yet, some species successfully navigate human-modified 
environments, either by exploiting anthropogenic resources or by making behavioral adjustments 
that outpace novel threats (Geffroy et al., 2020; Newsome et al., 2015; Sih et al., 2011). 
Behaviorally flexible species can even achieve robust populations in human-modified landscapes 
(Bateman & Fleming, 2012), inciting conflict with humans (i.e., crop damage, property damage, 
loss of livestock, and injury; Richardson et al., 2020; Treves et al., 2006) or causing outsized 
change to community structure via predation (Geffroy et al., 2015) or interference competition 
(Shochat et al., 2010). Efforts to understand how wildlife balance the use of anthropogenic and 
natural features remain critical to wildlife management and coexistence, especially as humans 
continue to alter landscapes around the world.  
 
Animal survival depends on the ability to maximize reward, while reducing risk (Charnov, 1976; 
Lima & Bednekoff, 1999). Rewards are resources that increase animal fitness (e.g., forage, 
mates), while risk represents the challenges an animal faces (e.g., energy expenditure, predation; 
Sih, 1980). In human-modified landscapes, wildlife often encounter a novel portfolio of risks and 
rewards such as food subsidies (Oro et al., 2013), infrastructure, and intensification of human 
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activities such as hunting and recreation (Schell et al., 2021), alongside the risks and rewards 
with which they evolved. This is especially true in mixed-use landscapes, characterized by 
mosaics of low-density development, agriculture, and wildlands. Because mixed-use landscapes 
experience a low to moderate level of disturbance, these areas can retain natural predators, 
competitors, and prey, alongside a variety of anthropogenic risks and foods (Ferreira et al., 2018; 
Gascon et al., 1999; Kremen & Merenlender, 2018). In mixed-used landscapes, the choice 
between anthropogenic and natural landscape features can reveal an animal’s risk tolerance, 
habitat preferences, and potential constraints on an animal’s behavior.  
 
Animals that successfully navigate human-modified landscapes are known to alter diel activity, 
space use, behavior, or diet in response to cues, to take advantage of rewards and avoid spatial or 
temporal risks (Gaynor et al., 2018; Geffroy et al., 2020; Smith et al., 2015; Tucker et al., 2018). 
For example, lions (Panthera leo) avoided areas near livestock pens during the day, but selected 
for livestock areas at night to exploit prey when the risk of encountering humans was lower 
(Suraci, Frank, et al., 2019). Animals can also modify their behavior to navigate human-modified 
landscapes. For instance, African wild dogs (Lycaon pictus) selected for roads while running to 
maximize ease of travel, but avoided roads when walking, resting, and denning to minimize time 
spent in locations with vehicles (Abrahms et al., 2016). With the onset of the global COVID-19 
pandemic in 2020, a decrease in diurnal human activity resulted in increased diurnal wildlife 
activity in both highly-developed and undeveloped landscapes (Anderson et al., 2023; Gordo et 
al., 2021; Schofield et al., 2021). Thus, factors regulating fitness, like the risk of encountering 
humans, non-human predators, or food resources, should be important factors in shaping animal 
risk perception and habitat selection (Rettie & Messier, 2000).  
 
Coyotes are widely regarded as a behaviorally flexible species and can take advantage of various 
seasonal resources, including fruits, berries, insects, young animals or anthropogenic food, while 
avoiding predation themselves (Fedriani et al., 2001; Sacks, 1996). Although coyotes are known 
to successfully navigate a variety of landscapes (Atwood et al., 2004), including dense urban 
areas (Breck et al., 2019), coyote habitat selection in mixed-use landscapes is less understood 
(but see Atwood et al., 2004). In some cases, food availability is the primary factor driving 
coyote habitat selection (Mills & Knowlton, 1991) and density (Fedriani et al., 2001). 
Alternatively, human-related risk factors, including vehicles, domestic dogs, and human presence 
(Breck et al., 2019), can drive coyote habitat selection, as some evidence suggests coyotes use 
dense vegetation to avoid development and agricultural fields (Atwood et al., 2004).  
 
Here, I examined how anthropogenic and natural features influenced coyote (Canis latrans) 
habitat selection in a mixed-use, agricultural landscape in Mendocino County, California, USA. I 
hypothesize that coyotes partition their use of anthropogenic features to maximize rewards while 
minimizing risk. I expect that coyotes avoid anthropogenic features during the day, (including 
roads, development, agriculture, grasslands with livestock, and areas with risk of lethal removal) 
but select for these features at night to exploit food rewards and minimize human encounters. If 
coyote selection for anthropogenic features changes by diel period, it would indicate a 
behaviorally flexible response to a perceived risk of diurnal human activity.  
 
Additionally, coyotes may avoid roads, development, agriculture, grasslands with livestock, and 
lethal removal risk while foraging and resting, but select for these features while traveling to 
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minimize human encounters. If selection for anthropogenic features changes by behavioral state, 
it may reveal constraints on when and how coyotes can use anthropogenic features.  
 
Finally, in addition to human-related risks, natural risks and rewards may drive aspects of coyote 
habitat selection. I anticipate that coyotes avoid habitats with mountain lion (Puma concolor) 
encounter risk (hereafter ‘mountain lion encounter risk’) because coyotes comprise 30% of 
mountain lion diet in this area (Sacks, 1996). Specifically, I expect coyotes will avoid mountain 
lion encounter risk while resting, and at night when mountain lions in the area are most active 
(Gaynor et al., 2022). Vegetation and terrain may also influence coyote habitat selection. I expect 
coyotes select woodlands for cover, and grasslands at night to avoid humans. I also expect 
coyotes will avoid rugged terrain for ease of travel, but not while resting or foraging.  
 
METHODS 
 
Study Area 
 
I conducted this study in the Sanel Valley of Mendocino County, California (39°0' 1.14N, - 
123°4'45.86W; Figure 1). The region is situated at the southern end of the Mayacamas 
mountains in the California Coast Range and is composed of a mosaic of rural agriculture, 
livestock pasture, residential areas, and wildlands dominated by oak savanna and chaparral 
habitat. The primary agricultural products in the valley are wine grapes and pears, while 
livestock operations for cattle and sheep are situated in grasslands in the surrounding hillsides. 
The valley is bisected by a major road corridor (US 101) on the banks of the Russian river and 
flanked by 25000 ha of Bureau of Land Management land with Mendocino National Forest to 
the north. The landscape has a moderate level of human pressure with motorized and non-
motorized recreation. Coyote diet in the area consists of native prey species, including 
lagomorphs, rodents, birds, insects, reptiles, manzanita berries, as well as livestock and domestic 
fruit (Benjamin Nicholas Sacks, 1996). The region is also home to a host of potential coyote 
predators and competitors, including mountain lion (Puma concolor), black bear (Ursus 
americanus), bobcat (Lynx rufus), and gray fox (Urocyon cinereoargenteus) (Gaynor et al., 
2022). The climate is typically Mediterranean, with mild rainy winters and hot dry summers.  
 
In this study area, humans often hunt and trap coyotes or use guardian dogs to prevent crop 
raiding and livestock depredation. While cattle are too large to be prey species to coyotes, 
coyotes pose the greatest threat to sheep and lambs (McInturff et al., 2021). In 2013, Mendocino 
County had over 10,000 sheep and lambs, although some ranchers have since switched to cattle 
as a result of conflicts with coyotes (Blackwell, 2021; R. Sagehorn, pers. comm., June 2022). 
One study on a Mendocino County sheep ranch estimated that up to 5% of lambs were killed 
annually by coyotes (Conner et al., 1998). Through Mendocino County’s contract with the 
United States Department of Agriculture’s (USDA) Wildlife Services, the county was called 
upon to conduct 4,119 coyote removals between 1997 – 2017, using poison, leg hold traps, and 
snares (Blackwell, 2021). The County voted to end the Wildlife Services contract with the 
USDA in 2021 (Blackwell, 2021), however, ranchers and landowners continue to protect 
livestock by trapping and shooting coyotes on site. While these individual statistics are not 
available, it is estimated that sheep ranches may kill up to 20-30 coyotes annually (T. 
McWilliams, pers. comm., November 2020; Anderson, 2015). Nonetheless, growing popularity 
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of non-lethal deterrents among ranchers (Rifkin, 2020) and research spurring a transition to 
targeted coyote removal (Sacks et al., 1999) has likely reduced the overall mortality of coyotes in 
the county.   
 

 
Figure 1. Study area in Sanel Valley, Mendocino County, California, USA. Maps depict 95% kernel 
utilization home range for male (M) and female (F) coyotes (Canis latrans; n = 13) derived from hourly 
GPS locations for a total of 265 unique days (mean 60 days per individual) between late November and 
early March of 2020-2021, 2021-2022, and 2022-2023.  
 
Data Collection 
 
All coyotes were live-captured at the University of California's 5,358 acre Hopland Research and 
Extension Center (HREC), fitted with GPS collars (Vertex Lite 1C, Vectronic Aerospace, Iowa, 
USA), and released at the point of capture. All captures were conducted using cable snares and 
processed within a 30-minute period in accordance with the protocol approved by the 
Institutional Animal Care and Use Committee at the University of California Berkeley (protocol 
# AUP-2016-04-8723-2). No complications were observed for any of the collared individuals.  
 
The GPS collars recorded spatial locations hourly. Movement data were obtained for fourteen 
coyotes (six females and eight males) across three field seasons from late November to early 
March of 2020-2021, 2021-2022, and 2022-2023. I excluded one adult male from the analysis 
due to death five days after capture, likely due to a vehicle collision. To reduce possible post-
capture behavioral bias, I excluded the first three days of GPS data for all individuals. 
Ultimately, thirteen coyotes were tracked for a total of 265 unique days (mean 60 days per 
individual).  
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Environmental Data 
 
I examined coyote habitat selection for anthropogenic and natural features, including 
development, roads, agriculture, lethal removal risk, mountain lion encounter risk, terrain, and 
vegetation type (Table 1). 
 
Table 1. Predicted relationship of coyote (Canis latrans) habitat selection with anthropogenic and natural 
features in the Sanel Valley, Mendocino County, California, USA.  
 

Covariate Description Predicted Relationship 

Development  distance to low, medium, high development; highway avoid 

Road  distance to secondary and tertiary roads select (night, travel) 

Agriculture distance to agriculture select (night, forage) 

Lethal removal risk open viewshed, proximity to roads, ruggedness 
(from Gaynor et al. 2022) 

select (night, forage) 

Mountain lion 
encounter risk 

shrubland, far from agriculture 
(from Gaynor et al. 2022) 

avoid (night) 

Ruggedness terrain ruggedness index avoid (travel) 

Vegetation type  grassland 
woodland 
shrubland 

select (night) 
select 
avoid 

 
To obtain data on covariates, I used the 2016 National Land Cover Dataset (NLCD) to reclassify 
development, roads, and agriculture into distance rasters, and to obtain vegetation type at 30-
meter resolution (Dewitz, 2016). I chose the 2016 NLCD because it more closely resembled the 
vegetation cover of the study area in the 2020-2023 seasons. The 2019 NLCD (Dewitz, 2019) 
was not used because the 2018 River Fire burned a large section of chaparral to grassland, and 
the 2016 NLCD was more representative of the chaparral density in 3-4 years of post-fire 
vegetation growth. To measure terrain ruggedness, I used the NASA SRTM Digital Elevation 
30m (Farr et al., 2007) and calculated the topographic ruggedness index, which reflects the 
elevational difference between eight adjacent cells of a digital elevation model (Riley et al., 
1999). To characterize lethal removal risk for coyotes, I modeled the results of a recent study on 
deer hunters in the region (Gaynor et al., 2022). While coyote removal is often opportunistic, 
uses various tactics (i.e., trapping, shooting, poisoning), and is likely less common than deer 
hunting, I adopted the top model coefficients for deer hunting (proximity to roads, clear 
viewshed, and high ruggedness) as sufficient to create a predictive raster of gun use in the study 
area. I excluded areas within 150-yards of buildings to reflect local gun laws (Mendocino County 
Code of Ordinances, 1974). Last, I modeled the spatial distribution of mountain lions in the study 
area with the results of a nearby camera trap study (Gaynor et al., 2022), using the top model 
coefficients (distance to agriculture and high elevation) as spatial predictors for mountain lions at 
the study site. 
 



 

50 
 

I ensured that there was no collinearity (|r| ≤ 0.7; Dormann et al., 2013) among environmental 
covariates using Pearson correlation coefficients (Table S1). The shrubland vegetation type was 
highly correlated with mountain lion encounter risk. As a result, I measured coyote habitat 
selection for vegetation type in a separate model (Table S5). All environmental covariates were 
centered and scaled (Figure S1). I extracted covariates to coyote spatial locations using the 
“raster” package in R (Hijmans et al., 2013). 
 
Behavioral Segmentation 
 
To determine if coyote habitat selection varied by behavioral state, I used hidden Markov models 
(HMMs) to label GPS data with three ecologically relevant behavioral states: resting, foraging, 
and traveling (e.g. Abrahms et al., 2016)). HMMs are a class of sequence-dependent models that 
use an observed process to infer an unobserved, underlying state process (Langrock et al., 2012). 
I developed HMMs using turning angle (the angle between locations) and step length (the 
distance between locations) of GPS fixes within the ‘moveHMM’ package in R (Michelot & 
Langrock, 2016). To maximize the likelihood of the data fit, I iterated 25 models from a 
randomized set of plausible parameters for each behavioral state (Table S2). I chose the model 
with the smallest negative log-likelihood and assigned the most likely sequence of states to each 
individual track using the Viterbi algorithm (Zucchini, MacDonald, & Langrock, 2017). GPS 
points were then segmented into resting, foraging, and traveling datasets to examine differences 
in habitat selection by behavior. 
 
Habitat Selection Modeling 
 
To estimate the influence of environmental variables on coyote habitat selection, I fit single-
season resource selection functions (RSFs) to each individual’s home range (i.e., third order 
selection; Johnson, 1980). I fit three types of RSFs for each coyote home range to directly 
compare habitat selection using 1) the full dataset, 2) behavioral state datasets, and 3) diel period 
datasets. Behavioral state (i.e. resting, foraging, and traveling datasets) was derived from 
aforementioned HMMs, while day-night datasets were segmented using the local, daily sunset 
and sunrise times with the ‘lubridate’ package in R (Grolemund & Wickham, 2013). To generate 
the RSFs, I obtained used points and available points from within 95% kernel home range 
polygon of each individual, using the ‘kernelUD’ function in the ‘adehabitatHR’ package in R 
(Calenge, 2006; R Core Team, 2022). For each RSF I randomly generated five times as many 
available points as used points to reduce bias (Table S3; Northrup et al., 2013; Stears et al., 
2019).  
 
I used generalized linear mixed effects models with a binomial error distribution and log-link 
function to model coyote habitat selection for development, roads, terrain, agriculture, lethal 
removal risk, and mountain lion encounter risk. I fit a separate generalized linear mixed effects 
model (logistic) to model coyote habitat selection for vegetation type. I included random 
intercepts in the models to account for individual differences in sample size (Hebblewhite & 
Merrill, 2007). This allowed us to compare how selection for covariates differed between resting, 
foraging, and traveling datasets and the full model, as well as how selection differed between day 
and night datasets and the full model. I tested the influence of year on the covariates in the full 
model, by using year as a nested random effect. I estimated beta coefficients and calculated odds 
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ratios for each model and estimated 95% confidence intervals. I identified differences in habitat 
selection between models as being estimates with non-overlapping 95% confidence intervals. 
 
RESULTS 
 
Behavioral State Allocation  
 
I found that the top hidden Markov model adequately estimated three state-distributions for 
coyote foraging, resting, and traveling, using the step length and turning angle distributions of 
GPS points (Figure S2). The traveling state was associated with longer step lengths and turning 
angles centered on 0 (i.e., directed movement), whereas resting was associated with shorter step 
lengths and wide turning angles (i.e., undirected movement). All iterated models converged with 
little variation between models (Maximum Log Likelihood = 152963.6,  mean = 149767.4, SD = 
2259.1, n = 25). I found that on average, coyotes spent 41% of time resting, 33% foraging, and 
26% traveling each day (Figure 2). There was little variation in activity budget between years, 
except that in 2022-2023 coyotes exhibited significantly more resting than foraging or traveling 
(ANOVA; F(2, 10) = 19.04, p < 0.001; post-hoc Tukey test; p < 0.01). The variation in resting 
was likely due to likely individual differences between coyotes. There was a tendency to increase 
resting behavior at night (18:00 - 0:00), and foraging and traveling behavior at pre-dawn (01:00 - 
07:00) and pre-dusk (14:00 - 16:00), which was consistent among years. 
 

 
Figure 2. Diel state-activity budget for resting, foraging, traveling behaviors of coyotes (Canis latrans; n 
= 13) from the Sanel Valley, Mendocino County, California, USA, from November - March between 2020-
2023 seasons. The diel state-activity budget was estimated by the top hidden Markov model (Maximum Log 
Likelihood = 152963.6,  mean = 149767.4, SD = 2259.1, n = 25). Frequency indicates number of GPS 
relocations over a period of total of 265 unique days (mean 60 days per individual).  
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Coyote habitat selection  
 
Using resource selection functions, I found that coyotes have a complex response to natural and 
anthropogenic features in mixed-use landscapes. Overall, the full dataset showed that coyotes 
avoided development, but selected for roads, agriculture, lethal removal risk, mountain lion 
encounter risk, and ruggedness (Figure 3; Table S4). Coyotes also avoided shrubland and 
woodland relative to grassland (Figure S3). I found no difference in the full model across years, 
when using year as a nested random effect.  
 
Behavioral partitioning of habitat selection 
 
I found that models partitioned by behavioral state differed from the full model and each other in 
several key ways (Figure 3; Table S4). Consistent with my hypotheses, coyotes avoided 
ruggedness while traveling (ORfull = 1.02, 95% CI [1.00, 1.04]; ORtravel = 0.84, 95% CI [0.81, 
0.87]). In support of my expectations, coyotes also had significantly stronger selection for roads 
while traveling and foraging than resting (ORtravel = 0.82, 95% CI [0.78, 0.85], ORforage= 0.82, 
95% CI [0.79, 0.85], ORrest = 0.92, 95% CI [0.89, 0.95]). I found that coyotes avoided 
development consistently, but significantly more while foraging than resting or traveling 
(ORforage = 1.17, 95% CI [1.12, 1.21], ORrest = 1.06, 95% CI [1.02, 1.09], ORtravel = 1.06, 95% CI 
[1.02, 1.11]). Coyote selection for agriculture was stronger while resting and foraging than 
traveling (ORrest = 0.73, 95% CI [0.69, 0.77], ORforage = 0.83, 95% CI [0.80, 0.87], ORtravel = 
0.94, 95% CI [0.89, 0.98]). Coyotes selection for lethal removal risk was weaker while traveling 
(ORfull = 1.11, 95% CI [1.09, 1.13; ORtravel = 1.05, 95% CI [1.02, 1.08]. Contrary to my 
hypothesis, selection for mountain lion encounter risk was strongest while resting (ORfull = 1.20, 
95% CI [1.18, 1.22]; ORrest = 1.38, 95% CI [1.34, 1.43]). Finally, coyotes avoided shrublands 
overall, but interestingly selected for shrublands while resting (ORfull = 0.93, 95% CI [0.90, 
0.97]; ORrest = 1.25, 95% CI [1.17, 1.33]; Figure S3; Table S5). 
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Figure 3. Estimates of coyote (Canis latrans; n = 13) habitat selection in the Sanel Valley, Mendocino 
County, California, USA, using a full model with all GPS locations, and three models partitioned by resting, 
foraging, and traveling behavior estimated by the top hidden Markov model. All covariates were 
standardized prior to modelling. For covariates corresponding to the distance to a feature (Dist.), a negative 
estimate means that selection was higher closer to that feature. 
 
Diel partitioning of habitat selection 
 
I expected that coyotes would more often select for roads, agriculture, and grasslands with lethal 
removal risk at night to exploit rewards, while minimizing human encounters. However, for 
roads, development, lethal removal risk, and mountain lion encounter risk, there was no 
significant difference between coyote selection for features at day or night (Figure 4; Table S4). 
Opposite of my expectations, coyotes selected for agriculture slightly more during the day than 
at night (ORday = 0.80, 95% CI [0.77, 0.84], ORnight = 0.87, 95% CI [0.84, 0.90]). Coyote use of 
vegetation also did not match my hypotheses, as coyotes avoided shrublands during the day, with 
no effect at night, when mountain lions are most active in shrublands (ORday = 0.86, 95% CI 
[0.80, 0.90], ORnight = 1.00, 95% CI [0.95, 1.05]; Figure S4; Table S5). I found that coyotes 
avoided woodlands significantly more during the day (ORday = 0.45, 95% CI [0.41, 0.50], ORfull 
= 0.56, 95% CI [0.52, 0.59]; Figure S4; Table S5). Finally, I expected coyotes would select for 
ruggedness during the day, to avoid places and times humans are active in the area, but instead, 
coyotes selected for ruggedness at night, with no effect during the day (ORnight = 1.05, 95% CI 
[1.03, 1.08]; ORday = 0.98, 95% CI [0.95, 1.00]).   
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Figure 4. Estimates of coyote (Canis latrans; n = 13) habitat selection in the Sanel Valley, Mendocino 
County, California, USA, using a full model with all GPS locations, and two models partitioned by day and 
night. All covariates were standardized prior to modelling. For covariates corresponding to the distance to 
a feature (Dist.), a negative estimate means that selection was higher closer to that feature. 
 
DISCUSSION 
 
As humans modify landscapes worldwide, assessing how wildlife use altered environments is 
critical to wildlife management and to enhancing coexistence. Although some carnivores are 
known to exhibit increased behavioral flexibility (Gaynor et al., 2018; Šálek et al., 2015) and 
take advantage of anthropogenic resources (Gámez et al., 2022) in rural and urban environments, 
the drivers and thresholds of behavior change may be most representative at intermediate 
gradients of development (McDonnell & Pickett, 1990). The results show that coyotes exhibited 
behavioral and diel partitioning in a mixed-use landscape, but not to the degree of altering 
selection in places or times associated with human persecution (i.e., agriculture, development, 
roads, grasslands, and areas with lethal removal risk) as expected.  
 
It might appear that coyotes perceive anthropogenic features a low risk, given that coyotes 
selected for areas with  roads, crops, livestock, and open viewsheds. However, the pull of 
associated food rewards may have been sufficient to attract coyotes despite perceived risk — 
especially given that the data were collected in early winter, following the wine grape harvest 
and as young livestock went out to pasture. As a result, it is difficult to disentangle whether 
habitat selection was in response to low risk, high reward, or both. Previous work found that 
coyote foraging was opportunistic and used anthropogenic features to minimize time spent on 
food acquisition (Sacks & Neale, 2002). Additional research on fine-scale responses to known 
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risk factors, including livestock guardian dogs or hunters, may help to better identify coyote risk 
perception driving habitat selection. For instance, using a spatiotemporal point process or 
continuous-time Markov chain (CTMC) modelling framework (Buderman et al., 2018) paired 
with telemetry data for both coyotes and their predators (i.e., humans, livestock guardian dogs, or 
mountain lions) would allow a more detailed exploration of how coyotes use landscapes with and 
without potential risks. Similarly, diet studies and research on coyote-livestock interactions also 
shed light on whether coyote used anthropogenic features for food. Ultimately, coyote use of 
less-developed anthropogenic areas, without diurnal avoidance, may underscore the potential for 
human-coyote coexistence — that is if livestock and crops are adequately protected and 
minimize conflict using non-lethal tools (Scasta et al., 2018; Young et al., 2019).  
 
The results showed that coyotes avoided the development covariate (composed of low, medium 
and high-intensity development and highways), in support of my hypothesis. Coyote avoidance 
of development was significant across all diel periods and behavioral states. This may indicate 
that development is largely impermeable to coyotes, consistent with previous work that coyotes 
avoid developed areas where possible (Gehrt et al., 2009; Riley et al., 2003). Coyotes may have 
avoided development because of associated risks, such as humans, vehicles, or domestic dogs, or 
because of unfamiliar features such as infrastructure, noise, or lighting. Alternatively, coyotes 
may have avoided development because it had fewer food rewards, preferring to use agriculture 
and grassland habitats for foraging in this region. I found coyotes in this region selected for 
agriculture significantly more while resting, foraging, and during the day. This likely indicates 
that coyotes were, more often than not, moving through agricultural fields slowly to forage and 
had a low perceived risk of diel human activity in these open spaces. In an urban environment in 
Southern California, USA, coyotes had larger home-ranges and moved farther and faster to 
acquire food than in low-development environments (Riley et al., 2003), which is consistent with 
how coyotes used agricultural fields versus development in the region. 
 
While coyote habitat selection for anthropogenic features was largely consistent across models, 
the strength of selection did vary some by diel period and behavioral state. Coyote selection for 
roads (i.e., secondary and tertiary roads) was significantly stronger while traveling and foraging, 
consistent with previous studies indicating that mammalian carnivores use anthropogenic linear 
features to move (Abrahms et al., 2016; Andersen et al., 2017; Latham et al., 2011). However, 
coyote selection for roads did not differ by diel period. It is possible that the vehicle traffic and 
human presence on secondary and tertiary roads was not high enough to cause diel variation in 
coyote use, as previous studies find that wildlife activity on and near roads can vary with human 
activity (Anton et al., 2020; Barrueto et al., 2014; Kautz et al., 2021). Instead, unpaved roads 
appeared to allow coyotes to opportunistically travel quickly to avoid rugged terrain. This 
aligned with the result that coyotes selected for ruggedness while resting, but avoided ruggedness 
while traveling. Rural and unpaved roads are often used in carnivore scent-marking (Barja & 
List, 2014), hunting (Latham et al., 2011), and can improve visibility. Thus, rural or unpaved 
roads may enhance landscape connectivity for coyotes in mixed-use landscapes.  
 
In addition to anthropogenic features, I expected natural features to drive aspects of coyote 
habitat selection. Coyotes selected for mountain lion encounter risk across diel periods, including 
at night when mountain lions at this study site were most active (Gaynor et al., 2022). As a 
result, coarse-scale predator risk did not appear to be a factor in coyote habitat selection. In fact, 
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coyotes had an overall positive association with mountain lion encounter risk, which was 
predicted using distance to agriculture and high elevation as described by Gaynor and colleagues 
(2022). While coyotes have, at times, composed a large fraction of mountain lion diet (Sacks, 
1996), coyotes are not obligate prey of mountain lions, which can exhibit diet flexibility in 
response to prey availability (Karandikar et al., 2022). Similarly, mountain lions may not be a 
major source of mortality to coyotes due to the naturally low densities, sprawling home ranges, 
and infrequent site revisits of mountain lions in this region (see Gaynor et al., 2022). Reduced 
mountain lion detections following the 2018 River fire near the study area, may have allowed 
further coyote expansion into these habitats (Calhoun et al., 2022). However, it is still possible 
that coyotes continue to avoid mountain lions at fine-scales and by using indirect perception 
(Brunet et al., 2022). Ultimately, coyotes may be using mountain lion habitat to hunt for similar 
prey species, scavenge on the kills of larger predators, or to seek dense shrubland cover in areas 
of low human use. Although, mountain lion encounter risk was highly correlated with shrubland, 
mountain lion encounter risk still shows value as an estimate because coyotes avoided shrubland 
overall, but selected for mountain lion encounter risk. Follow up studies on the diet composition 
of coyotes will help to disentangle whether coyotes co-occur in areas with large predators for 
food, vegetation cover, or perceived safety.  
 
Finally, I found that coyotes avoided woodlands and shrublands relative to grassland. Grasslands 
and other open vegetation types are known to be important resources to coyotes for hunting 
(Stevenson et al., 2019), and use of open viewsheds (i.e., grasslands, agriculture) did not appear 
to be impacted by the potential exposure to mortality factors, such as humans and livestock 
guardian dogs. Interestingly, the finding that coyotes select grasslands more than expected (based 
on availability) is in contrast to what Sacks & Neale (2002) found at this study site 28 years 
prior. Renewed coyote use of grasslands may be a response to lower densities of livestock and 
correspondingly reduced human-related risk factors within grasslands at this site (McInturff et 
al., 2021; Sacks, 1996). In support of this explanation, coyotes also consistently selected for 
lethal removal risk areas, which was parameterized using estimates of gun use near grasslands, 
roads and rugged terrain. Besides reduced risk factors, grasslands may be attractive habitats in 
that they that allow for high-visibility, giving coyotes an advantage in detecting risk from afar 
(Aben et al., 2018). This alternative explanation is supported by the finding that coyotes avoided 
low-visibility habitats (i.e., shrublands and woodlands). Reduced ability to detect risk, difficulty 
of travel in dense understory, and lower prey densities may equally explain why coyotes avoided 
dense vegetation cover. Furthermore, coyote avoidance of woodlands was reduced at night and 
while resting, possibly indicating that dense vegetation cover is safest when coyotes are inactive. 
 
I found that coyote habitat selection varied across several anthropogenic and natural features, 
however, the approach had several limitations. First, it is challenging to disentangle whether 
habitat selection was driven by risk or reward, as the factors were often intertwined. To address 
this, future work could conduct experiments to manipulate the relative levels of risk and reward 
associated with different habitats, such as altering food availability or human use along roads or 
hiking trails, and measuring the corresponding changes in coyote behavior. Second, the habitat 
selection models did not measure coyote responses to fine-scale risk, such as presence or absence 
of mountain lions or livestock guardian dogs. To detect subtle coyote responses to fine-scale risk, 
researchers could use higher-resolution data on coyote in tandem with predator movements. 
Similarly, our habitat selection model did not account for heterogeneous patterns of risk, such as 
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distinguishing among livestock pastures using lethal removal versus non-lethal deterrents. Future 
studies might observe how coyotes select habitat differently when lethal and non-lethal 
deterrents occur within their home ranges. Researchers could also measure coyote responses to 
manipulated auditory risk cues (such as recordings of human voices, barking dogs, and gunshots) 
and olfactory risk cues (such as scent lures for humans, dogs, and livestock). Finally, this study 
did not account for coyote mortality or prey availability, which may ultimately drive coyote 
habitat selection. I used deer hunting as a surrogate for gun use, although patterns of mortality 
among deer and coyotes likely differ. Going forward, researchers could track coyote mortality 
rates in different habitats, interview landowners, and conduct surveys of prey abundance, to 
better understand how these factors influence coyote habitat selection.  
 
Overall, additional research is needed to disentangle the complex interplay of risk and reward on 
coyote behavior. My results suggest that human activity and persecution were not proximate 
factors in coyote habitat selection in a mixed-use agricultural landscape. However, research on 
wildlife habitat preferences and thresholds of behavioral flexibility should be incorporated into 
landscape-level monitoring and connectivity planning, especially with any intensification of road 
or residential development. Important questions remain as to whether coyote selection for 
anthropogenic and natural features changes with seasonally available crops, drought, and fire to 
determine whether coyotes are opportunistically maximizing rewards, or risking use of these 
features during seasons of scarcity. Such research would inform future management approaches 
in response to declining wild prey, drought, and extreme climatic events, which are known to 
increase human-wildlife conflict and wildlife use of agricultural areas across the globe 
(Abrahms, 2021). 
 
CONCLUSION 
 
This research supports a growing body of literature indicating that carnivores can navigate 
human-modified landscapes to balance use of anthropogenic and natural features (Geffroy et al., 
2020; Newsome et al., 2015; Sih et al., 2011). My comparison of behavioral and diel aspects of 
coyote habitat selection suggest that coyotes are resilient to low-development anthropogenic 
features in mixed-use landscapes, however, we lack information on how habitat selection 
ultimately influences mortality or conflict. The finding that coyotes appear undeterred by roads, 
agriculture, and open viewsheds underscores the importance of managing livestock and 
agricultural resources and considering the use of non-lethal tools to avoid coyote conflict. Future 
studies on seasonal or disturbance-related shifts in coyote diet and habitat selection may further 
illuminate how coyotes interact with livestock, agriculture, and influence community structure. 
Considering the risk-reward tradeoffs that drive animal habitat selection will ultimately help to 
improve fate of adaptable predators in altered environments.   
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SUPPLEMENT TO CHAPTER 4: 
 
Figures S1 – S4 
Tables S1 – S5  



 

60 
 

 
 
Figure S1. Environmental covariates used in coyote habitat selection models in the Sanel Valley, 
Mendocino County, CA, USA. Covariates include elevation (m), ruggedness, mountain lion 
encounter risk (scaled 0-1), distance to development (m), distance to roads (m), distance to 
agriculture (m), lethal removal risk (scaled 0-1), and vegetation type (woodland, grassland, 
shrubland). All covariates were scaled and centered prior to modelling.  
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Figure S2. Histograms of (A) step lengths and (B) turning angles overlaid with three state-
dependent movement distributions (Resting, Foraging, Traveling) estimated by top hidden Markov 
model for coyotes (n = 13) from the Sanel Valley, Mendocino County, California, USA. 
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Figure S3. Estimates of coyote habitat selection for vegetation type (grassland, woodland, and 
shrubland) in the Sanel Valley, Mendocino County, California, USA, using a full model with all 
GPS locations, and three models partitioned by resting, foraging, and traveling behavior estimated 
by the top hidden Markov model. The reference value for the vegetation layer is grassland (the 
most open habitat with highest visibility), thus, negative estimates indicate that selection was lower 
in woodland (intermediate habitat) and shrubland (most dense habitat) as compared to grassland 
as determined from a generalized linear model (logistic). 
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Figure S4. Estimates of coyote habitat selection for vegetation type (grassland, woodland, and 
shrubland) in the Sanel Valley, Mendocino County, California, USA, using a full model with all 
GPS locations, and two models partitioned by day and night. The reference value for the vegetation 
layer is grassland (the most open habitat with highest visibility), thus, negative estimates indicate 
that selection was lower in woodland (intermediate habitat) and shrubland (most dense habitat) as 
compared to grassland as determined from a generalized linear model (logistic). 
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Table S1. Pearson correlation coefficients for environmental covariates in the Sanel Valley, 
Mendocino County, CA, USA. The shrubland vegetation type was highly correlated with mountain 
lion encounter risk. As a result, vegetation type was modelled separately from the other covariates.  
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Table S2. Starting parameter ranges for iterating 25 three-state hidden Markov models (resting, 
foraging, and traveling) for coyotes in the Sanel Valley, Mendocino County, CA, USA.  
 
Starting parameter  Resting Foraging Traveling 

Step length mean 
min 50m 500m 1000m 

max 100m 1000m 3000m 

Step length standard 
deviation 

min 25m 250m 500m 

max 50m 500m 1500m 

Turning angle mean  !"	 !"/2 0 

Turning angle concentration 
min 0.2 0.5 0.7 

max 0.5 0.7 3 

Zero mass parameter  0.002356343 0.002356343 0.002356343 
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Table S3. Total number of used and available coyote GPS locations in the full, resting, foraging, 
traveling, day, and night datasets. Available points were randomly generated for each coyote home 
range at five times the number of used GPS locations. Resource selection functions were estimated 
for individual coyote home ranges (n = 13).  
 

Model Used Available 

Full 18,673 93,365 

Rest 4,788 23,940 

Forage 3,641 18,205 

Travel 3,164 15,820 

Day 7,656 38,280 

Night 11,017 55,085 
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Chapter 5.  
 
Conclusion 
 
Humans have a vast influence on ecological communities across the globe, by altering the 
structure and composition land cover, as well as the patterns of animal movement and behavior. 
Therefore, research that advances our understanding of human influence on species persistence  
is a critical component of any conservation effort. The work presented in this dissertation offers 
several new approaches for assessing these influences, including methods to identify land cover 
change at the margins of protected areas, to measure human influence on species interactions, 
and to assess behavioral change in wildlife habitat selection within human-modified landscapes.  
 
My results demonstrate several key patterns of ecosystem change, but often exhibit divergent 
trends, yielding new questions and opportunities for research. For instance, in Chapter 2, I find 
that most protected areas have begun to resemble habitat islands, yet a great many exhibited the 
opposite pattern. In Chapter 3, as expected, many animals avoided high human activity, but 
many animals did not, and these differences were responsible for the broad range in temporal 
overlap among predators and their prey. And finally, in Chapter 4, even individual animals 
appeared to vary in their habitat selection for anthropogenic and natural features. These complex 
and often conflicting patterns are undoubtedly driven, in part, by the broad diversity of human-
nature interactions. Humans are ecosystem engineers, competitors, predators, and facilitators, all 
of which may serve to benefit or harm to wildlife species. A great future challenge lies in 
disentangling the relative influence of these co-occurring roles to predict which species will die, 
survive, or thrive, in order to anticipate the consequences of our great ecological reshuffling.    
 
A few compelling directions for future research emerge from the results of this work, with direct 
applications to conservation. First, connectivity research on forests has outpaced research in a 
vast diversity of terrestrial systems on the planet. Chapter 1 extended what we know about 
habitat connectivity and isolation beyond forests, to deserts, grasslands, and other critical 
ecosystems, highlighting, in particular, threats to habitat connectivity in grasslands. Indeed, 
grasslands are considered one of the most imperiled ecosystems on Earth (Cowie, 2021), and 
today 60% of the world's grasslands are less than 20% intact (Scholtz & Twidwell, 2022). While 
my approach revealed and compared biome-wide changes in landcover, the method is limited in 
that it cannot differentiate between the predominant types and causes of land-cover change. To 
effectively guide global conservation investment in diverse ecosystems, critical future work lies 
in comparing land-use changes by biome. Future research might use detailed land-use change 
analyses to more closely examine rates of, for instance, urbanization, shrub encroachment, or 
grazing in grassland and desert protected areas experiencing rapid islandiziation. In addition to 
research on the biophysical correlates of landcover change, research into the socioeconomic 
correlates of local land cover change near protected areas (e.g., land sales and subdivision, 
changes in global trade, political turnover) may help to shift conservation investment from land 
protection toward also identifying and supporting at-risk industries that benefit wildlife in 
working lands or buffer zones. 
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Beyond deciphering the causes of land cover change, additional research is required to uncover 
the consequences of islandization on wildlife. Habitat edges are known to alter abiotic conditions 
(e.g., wind, light, microclimate) and species composition, with both positive and negative 
outcomes on wildlife (Hilty et al., 2019). Future work could compare animal movement and 
behavior across the boundaries of protected areas with different causes and levels of 
islandization to identify whether these habitat edges correspond to shifts in the spatial and 
temporal activity of wildlife, or influences the success of certain species over others. 
Additionally, while protected area designation has often opportunistically set aside land for 
biodiversity, new conservation strategies might quantify and prioritize ecosystem flows (i.e., 
migratory paths, rivers, metapopulations, and animal movements), especially to support the 
adaptive capacity of species to respond to climate change. For instance, tracking source-sink 
dynamics of pollinators or plants across protected area boundaries may help us strategize how to 
safeguard ecosystem processes that extend beyond protected area borders. 
 
Extensive research suggests that global change has led to considerable shifts in the spatial and 
temporal activity of animals, yet we lack an understanding of how these shifts affect species 
interactions. Chapter 2 outlined several possibilities for how human activities may influence 
predator-prey interactions, by affecting overlap and encounter rates. Although I found support 
for at least four patterns, my analysis was based on a limited amount of empirical evidence. In 
2020, only 19 studies measured the temporal responses of terrestrial mammal predators-prey 
pairs to humans, and even fewer studies reported the change in predator and prey overlap across 
both space and time. This dearth of research signals an important opportunity for designing 
studies that measure human impacts on predators, prey, and competitor interactions. Future work 
might measure changes in encounter rate alongside predator diet or prey survival to quantify how 
human-altered overlap affects predation. Controlled experiments could, for instance, compare 
how various types, frequencies, or levels of disturbance affect the overlap, encounter rate, and 
predation in a given predator-prey pair to predict changes in populations. 
 
Ultimately, as we enter an era of human-dominated ecosystems, the question of whether and how 
animals respond to anthropogenic features has become more important than ever before. In 2020, 
while this research was in progress, the global COVID-19 pandemic and ensuing restrictions on 
human activity revealed that a reduction in human activity was tightly linked to an increase in 
wildlife activity in many places across the world (Anderson et al., 2023; Gordo et al., 2021; 
Schofield et al., 2021). Designing ecological models that test whether humans are modifying 
predation or competition, rather than simply species activity, will be critical to accurately 
predicting wildlife population dynamics into the future. 
 
Finally, many species tolerate ecosystem change in developed landscapes, but these landscapes 
can also present hidden tradeoffs for wildlife species. Chapter 4 identified that coyotes (Canis 
latrans) select habitat in working landscapes, such as ranchlands or agriculture, over 
development or woodlands. However, coyotes may also face higher lethal risk in these areas if 
humans perceive these animals as a risk to livestock or crops. My study did not quantify how 
coyote mortality risk is associated with various land cover types, but pairing coyote GPS data 
with high resolution data on landscape risk factors, such as presence of hunters or livestock 
guardian dogs, would allow researchers to quantify how or whether coyotes can avoid fine-scale 
risks in working landscapes. Future research could also conduct experiments to manipulate the 
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relative levels of risk and reward associated with different habitats, such as altering food 
availability or human use along roads or hiking trails, and measuring the corresponding changes 
in coyote behavior.   
 
Ultimately, by studying the movements of behaviorally flexible species, we can predict what 
challenges wildlife may face in their effort to survive in human-altered landscapes. Important 
questions remain as to whether animals modify habitat selection for anthropogenic features with 
seasonally available crops, drought, or fire to maximize rewards and reduce risk during times of 
scarcity. Such research would enable us to predict whether and how species will respond to 
declining wild prey, drought, and climatic events, and can aid in the development of 
conservation strategies that better account for the tradeoffs presented by various land uses. 
 
Overall, this work explores a few intricate connections between human-induced global change, 
protected areas, and wildlife. There is much that is still unknown about how human activities 
influence ecosystem dynamics to affect the individual fitness, populations, and evolution of 
wildlife species. The integration of wildlife research with economic, political, and social sciences 
will be essential for guiding inclusive, ethical, and socially-just conservation actions. 
Considering humans as key players in ecological systems is not only critical to understanding 
biodiversity change, but also to stewarding the relationship between people and nature into the 
future. 
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