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ABSTRACT
Background. The geographic and temporal distributions of bacterial and fungal
populations are poorly understood within the same wine grape cultivar. In this work,
we describe the microbial composition from ‘Pinot noir’ must with respect to vintage,
growing region, climate, andmust chemistry across the states of California andOregon,
USA.
Materials andMethods. We sampled ‘Pinot noir’ clone 667 clusters from 15 vineyards
existing in a latitudinal gradient spanning nearly 1,200 km in California and Oregon
for two vintages (2016 and 2017). Regions included five American Viticultural Areas
(AVA). In order from southern California to Oregon, these AVAs were Santa Barbara,
Monterey, Sonoma, Mendocino, and Willamette Valley. Uninoculated grape musts
were subjected to 16S rRNA gene and ITS-1 amplicon sequencing to assess composition
of microbial communities. We also measured grape maturity metrics. Finally, to
describe regions by precipitation and growing degree days, we queried the Parameter-
elevation Regressions on Independent Slopes Model (PRISM) spatial climate dataset.
Results. Most of the dominant bacterial taxa in must samples were in the family
Enterobacteriaceae, notably the lactic acid bacteria or the acetic acid bacteria groups, but
some, like the betaproteobacterial genus Massilia, belonged to groups not commonly
found in grape musts. Fungal communities were dominated by Hanseniaspora uvarum
(Saccharomycetaceae). We detected relationships between covariates (e.g., vintage,
precipitation during the growing season, pH, titratable acidity, and total soluble solids)
and bacterial genera Gluconobacter and Tatumella in the family Enterobacteraceae,
Sphingomonas (Sphingomonodaceae), Lactobacillus (Lactobacillaceae), andMassilia
(Oxalobacteraceae), as well as fungal genera inHanseniaspora, Kazachstania, Lachancea,
Torulaspora in the family Saccharomycetaceae, as well as Alternaria (Pleosporaceae),
Erysiphe (Erysiphaceae), and Udeniomyces (Cystofilobasidiaceae). Fungal community
distances were significantly correlated with geographic distances, but this was not
observed for bacterial communities. Climate varied across regions and vintages, with
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growing season precipitation ranging from 11mm to 285 mm and growing degree days
ranging from 1,245 to 1,846.
Discussion. We determined that (1) bacterial beta diversity is structured by growing
season precipitation, (2) fungal beta diversity reflects growing season precipitation and
growing degree days, and (3) microbial differential abundances of specific genera vary
with vintage, growing season precipitation, and fruit maturity metrics. Further, the
correlation between fungal community dissimilarities and geographic distance suggests
dispersal limitation and the vineyard as a source for abundant fungal taxa. Contrasting
this observation, the lack of correlation between bacterial community dissimilarity and
geographic distance suggests that environmental filtering is shaping these communities.

Subjects Agricultural Science, Ecology, Microbiology
Keywords Vitis vinifera L., Environmental filtering, Distance-decay relationship, Microbiome,
Wine grape, Enterobacteriaceae, Hanseniaspora uvarum, Grape must, Biogeography, Vintage

INTRODUCTION
Regional and vintage variation in wine characteristics are important considerations in the
production andmarketing of wines. Spatiotemporal climatic variability, soil characteristics,
and vineyardmanagement practices are well understood to directly influence the physiology
of grapevines and impact grape chemistry (Van Leeuwen & Destrac-Irvine, 2017). However,
the effects of these factors on grapevine physiology do not fully explain regional and vintage
variation in wine characteristics, and a growing body of evidence suggests that there may
be a microbial component to this regional variability (Barata, Malfeito-Ferreira & Loureiro,
2012; Belda et al., 2017). Grape berries harbor diverse microbial communities, and some
of these microbes have been detected in grape musts (Barata, Malfeito-Ferreira & Loureiro,
2012). However, the environmental sources and factors influencing grape must microbial
communities are still poorly understood.

Numerous studies have described microbial communities in environments presumed to
be sources of pre-inoculation grape must communities (Belda et al., 2021), but a coherent
framework to describe processes shapingmicrobial diversity in grapemusts remains elusive.
Soil-borne microbial communities in vineyards are sensitive to management and exhibit
spatial variation within the region of Napa Valley, CA, USA (Burns et al., 2015). Soils
serve as a reservoir for microbial diversity and have been hypothesized to be a source of
grape must microbial communities, but their overall similarity to grape must communities
was notably low in ‘Merlot’ (Zarraonaindia et al., 2015). As with soils, ‘Sangiovese’ and
‘Dolcetto’ grapevine barks hosts a great diversity of microbes that vary regionally and
respond to vineyard management; however, the similarity of these communities to grape
must communities is also low (Vitulo et al., 2019). Some studies have observed vintage
and cultivar effects in ‘Cabernet Sauvignon’, ‘Chardonnay’, and ‘Zinfandel’ grape musts,
and ‘Merlot’ grapes (and other parts of the grapevine), suggesting a temporal and cultivar
component to microbial diversity in vineyards (Bokulich et al., 2013; Bokulich et al., 2014;
Zarraonaindia et al., 2015).
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It is challenging to predict the composition of microbial grape must communities
given the complexity of the problem, but some trends are present: the bacterial family
Enterobacteriaceae, acetic acid bacteria (Acetobacteraceae), and lactic acid bacteria are
prevalent and abundant in many studies (Belda et al., 2017). The non-Saccharomyces yeast
H. uvarum is commonly detected in grape musts worldwide (Barata, Malfeito-Ferreira
& Loureiro, 2012). Some additional yeasts found naturally in grape musts including
the genera Metschnikowia, Torulaspora, Hanseniaspora, Pichia, and Lachancea are being
developed to meet increased consumer demand for distinctive wines (Masneuf-Pomarede
et al., 2016). However, these well characterized taxa represent a minor fraction of the
diversity encompassed by grape must microbial communities, and the environmental and
regional factors influencing their abundances in wine grape musts are only beginning to be
revealed.

A substantial effort has begun to describe regional variability of grape must microbial
communities of many cultivars (Albertin et al., 2016; Barata, Malfeito-Ferreira & Loureiro,
2012; Belda et al., 2017; Bokulich et al., 2014). Additional work will contribute to better
understanding of ‘Pinot noir’ must microbiomes across the western United States, a
region where this cultivar has remained economically important. In California and Oregon
combined, recent ‘Pinot noir’ grape production was worth ∼$425 million (California
Department of Agriculture, 2020; OregonWineBoard, 2020). The objectives of this study
were to describe the microbiome of pre-inoculation ‘Pinot noir’ grape must and examine
possible links among region, climate variables, fruit maturity metrics, and microbial taxa.
We aimed to account for these factors that are known to influence grape must microbiota
in order to isolate the effects of climate and vintage. As such, we sampled from vines of
the same scion clone managed by one commercial enterprise, and we standardized the
processing protocol within a single research winery. We hypothesized that grape must
microbial community structure would be linked to vintage and region, and that must
bacterial communities would be dominated by Acetobacteraceae and lactic acid bacteria
such as Lactobacillaceae.

MATERIALS AND METHODS
Grape collection and processing
‘Pinot noir’ wine grapes (Vitis vinifera L.) were harvested in 2016 and 2017 from 15
commercial vineyards in California and Oregon, USA (Fig. 1). Vineyards were situated
along a 10.69 degree (1,187 km) latitudinal gradient, representing five AmericanViticultural
Areas (AVAs). AVAs are legal appellations designated for grape growing regions defined
by the United States Tax and Trade Bureau, and US counties automatically designate legal
appellation boundaries and names. The vineyards we sampled from were managed by a
single commercial grower. We grouped vineyards by AVA (Santa Barbara County, CA,
Monterey County, CA, Sonoma County, CA, Mendocino County, CA and Willamette
Valley, OR) for analysis of regional trends. Samples were collected from one scion (clone
667) to eliminate cultivar effect on grape must microbiota (Bokulich et al., 2014; Zhang et
al., 2019). Three vineyards (AV2, RRV2, and RRV3; see description of vineyard codes that
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Figure 1 Vineyard Locations. ‘Pinot noir’ grapes were harvested from thirteen vineyards representing
four AVAs in California and two vineyards in Oregon representing one AVA (total of 15). These vineyards
were distributed across a 10.69 degree (1,187 km) latitudinal gradient. Grapes were transported to Uni-
versity of California, Davis (Davis, CA, USA) for processing and analysis. Size of vineyard points increases
with mean GDD for 2016–2017, and color scale represents mean growing season precipitation for 2016–
2017, ranging from red for lower values to blue for higher values. (A) displays all vineyard locations, while
(B) provides a zoomed-in view of the northern California AVAs. Vineyard code details are in Table 1. Map
credit: OpenStreetMap, 2019. Licensed under Stamen Design CC BY 3.0.

Full-size DOI: 10.7717/peerj.10836/fig-1

is provided in Table 1) were planted with rootstock 3309C (V. riparia × V. rupestris), and
two vineyards (OR1 and OR2) were planted with Riparia Gloire (V. riparia Michx). The
other ten vineyards (AS1, AS2, AV1, CRN1, RRV1 SMV1, SMV2, SNC1, SNC2, and SRH1)
were planted on rootstock 101-14 MGt (Millardet et de Grasset; V. riparia× V. rupestris).

Vineyard characteristics including AVA, year of planting, growing degree days (GDD),
growing season precipitation, and harvest dates can be found in Table 1. Additional
information about vineyard characteristics including elevation, sub-appellation, soil
taxonomy (order and subgroup), soil texture, and grape must characteristics including
total soluble solids (◦Brix), pH, and titratable acidity (g tartaric acid L−1) can be found in
Table S1. Must samples were not collected from OR2 or AV2 in 2016 due to circumstances
outside the purview of the authors. Grapes were harvested on different dates (Table 1),
with the commercial producer aiming for total soluble solids of∼24 ◦Brix. After arriving at
the research winery (University of California, Davis, CA, USA), grapes in each batch were
destemmed and split into four technical replicates. Equipment was sanitized and rinsed
between batches. Must replicates were placed in sanitized 200 L stainless steel fermenters
andmaintained at 7 ◦C for three days prior to sterile collection ofmust formicrobial analysis
to identify vineyard microbial communities most relevant to fermentation (Bokulich et
al., 2014). Grape must samples were stored in 15 mL conical vials in a −80 ◦C freezer
until DNA extraction and amplicon sequencing. To evaluate fruit maturity, we measured
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Table 1 Vineyard information (year vines were planted, growing degree days, etc.) for the 15 sites and sample collection dates.

Vineyard
codea

AVAb Year
planted

GDDc 2016 GDD
2017

Precip.d (mm)
2016

Precip.
(mm)
2017

Harvest
date
2016

Harvest
date
2017

SMV1 Santa Barbara 2000 1,545 1,705 21 52 9/8/16 9/4/17
SMV2 Santa Barbara 2004 1,646 1,821 18 47 9/8/16 9/4/17
SRH1 Santa Barbara n.d.e 1,437 1,589 19 35 9/8/16 9/8/17
AS1 Monterey 2005 1,454 1,684 12 21 8/25/16 8/30/17
AS2 Monterey 2005 1,680 1,846 12 28 8/25/16 8/30/17
CRN1 Sonoma 2012 1,400 1,472 28 77 9/6/16 8/31/17
RRV1 Sonoma 1998 1,576 1,707 52 165 9/8/16 9/6/17
RRV2 Sonoma 2000 1,556 1,681 63 167 9/8/16 9/5/17
RRV3 Sonoma 2006 1,400 1,497 55 132 9/14/16 9/13/17
SNC1 Sonoma 2000 1,582 1,670 60 157 9/10/16 9/6/17
SNC2 Sonoma n.d. 1,498 1,617 37 81 8/31/16 8/31/17
AV1 Mendocino 2007 1,631 1,711 60 145 9/6/16 9/12/17
AV2 Mendocino 2000 n.c. 1,422 n.c.f 143 n.c. 9/25/17
OR1 Willamette Valley 2005 1,335 1,297 176 285 9/16/16 10/4/17
OR2 Willamette Valley 2004 n.c. 1,245 n.c. 262 n.c. 10/4/17

Notes.
aVineyard code generated by the following abbreviations and followed by a number: SMV (Santa Maria Valley), SRH (Santa Rita Hills), AS (Arroyo Seco), CRN (Carneros), RRV
(Russian River Valley), SNC (Sonoma Coast), AV (Anderson Valley), and OR (Willamette Valley, OR).

bAmerican Viticultural Area (AVA).
cGrowing Degree Days (GDD); calculated from 1 April–31 October in Celsius units with a baseline of 10 ◦C.
dPrecipitation (Precip.); calculated from 1 April–30 September.
en.d.: No data.
fn.c.: Not collected due to corresponding missing grape must samples.

grape must pH using a Thermo Scientific ORION 5 STAR (Waltham, MA, USA), titratable
acidity (TA; g tartaric acid L−1) using a Mettler-Toledo DL50 autotitrator (Columbus, OH,
USA), and total soluble solids (TSS; ◦Brix) using an Anton Paar DMA35 density meter
(Graz, Austria).

Climate data
We queried the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
4 km dataset (Daly et al., 2008) to approximate daily high and low temperatures for
the growing season, defined to be 1 April to 31 October (Winkler et al., 1974). To assess
macroclimatic differences between regions, we estimated the sum of GDD for each vineyard
from April 1st to October 31st, using the average of daily high and low temperatures and
a baseline of 10 ◦C: 6 ((Tmax+Tmin)/2–10 ◦C) (Winkler et al., 1974). We also queried
the PRISM dataset to obtain growing season precipitation estimates from April 1st to
September 30th. We included October in GDD calculations given that this range is used to
calculate GDD in the western US (Jones et al., 2010), but we excluded it in growing season
precipitation measurements because the latest harvest date in our dataset was October 4th
and we aimed to estimate the exposure of fruit to precipitation for this metric (Table 1).
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DNA Isolation and PCR
DNA was isolated from two mL of grape must using a 24:1 chloroform:isoamyl alcohol
extraction protocol modified from Pereira, Guedes-Pinto & Martins-Lopes (2011) and
Savazzini & Martinelli (2006). AQubit dsDNAhigh sensitivity kit (Thermo Fisher Scientific
Inc., Waltham, MA, USA) was used to quantify DNA concentration after extraction. DNA
was amplified using GoTaq polymerase (Promega M300A; Promega Corp., Madison,
WI, USA). For bacterial community composition, we amplified the V4 region of the 16S
rRNA gene using forward-barcoded 515F –806R primers (Caporaso et al., 2011). PCR was
conducted in a thermal cycler for 30 cycles under the following settings: denature at 94 ◦C
for 45 s, anneal at 55 ◦C for 60 s, and extend at 72 ◦C for 90 s. These cycles were preceded
by a 3-minute 94 ◦C denaturing step and followed by a 10-minute final extension step,
then held at 4 ◦C after completion. We also used forward-barcoded BITS-B58S3 primers
that target ITS region 1 for fungal community composition (Bokulich & Mills, 2013). PCR
was performed for 30 cycles under the following settings: denature at 95 ◦C for 30 s, anneal
at 55 ◦C for 30 s, and extend at 72 ◦C for 60 s. These cycles were preceded by a 2-minute
95 ◦C denaturing step and followed by a 5-minute final extension step, then held at 4 ◦C
after completion. PCR products were validated by gel electrophoresis and cleaned using
AMPure XP beads (Beckman Coulter A63880; Beckman Coulter, Brea, CA, USA) before
pooling into libraries at equimolar concentrations.We also conducted PCR and sequencing
on DNA isolation kit blanks to detect potential contaminating microbes.

16S rRNA gene and ITS-1 Amplicon Sequencing and Pre-processing
Amplicons were sequenced on the Illumina MiSeq platform using 2 × 250 bp paired-
end reads (UC Davis DNA Technologies Core, Davis, CA, USA). We demultiplexed
and trimmed barcodes from the raw amplicon sequencing data using Sabre and
cutadapt (Martin, 2011). The scripts ‘‘01_demux_with_sabre.sh’’
and ‘‘02_remove_barcodes_with_cudapt.sh’’ include the exact parameters we used and
are publicly available in our code repository (see Data Availability statement). We used
the R package DADA2 to identify Amplicon Sequencing Variants (ASVs) and remove
chimeric sequences in the 16S rRNA gene and ITS data (Callahan et al., 2016). The script
‘‘03_dada.R’’ includes the parameters we used to resolve ASVs. We used the DADA2
implementation of the Wang naïve Bayesian classifier with a modified SILVA 132 reference
database to classify ASVs to the genus level using an 80% bootstrap value as a cutoff for
assignment (Callahan, 2018; Wang et al., 2007). Finally, we implemented the approach
described by Davis et al. (2018) to identify and remove potentially contaminating ASVs
from our dataset. We used the phyloseq function ‘‘merge_samples’’ to merge technical
replicates; this function sums reads from each sample and averages metadata values.

Core microbiome, diversity, and differential abundance analyses
To gain a high-level overview of the taxonomic composition of the grape musts, we first
identified a core microbiome of ASVs with relative abundances above 0.01% in at least 90%
of the samples. We also conducted core microbiome analyses on each vintage separately.
While useful to describe the general composition of grapemust communities, this approach
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overlooks some abundant but not highly prevalent taxa. To identify these taxa, we filtered
the ASV table to include non-core taxa whose relative abundances were above 1% in at
least 5% of samples. Relative abundance measurements are heavily biased by factors like
DNA extraction and differential amplification efficiency between taxa (McLaren, Willis &
Callahan, 2019). To acknowledge these biases, we report relative abundance estimates as
uncorrected relative abundances (URA).

To assess sequencing efforts, we conducted rarefaction analysis on alpha diversitymetrics
(richness, exponential Shannon, and inverse Simpson), extrapolating these values using
the approach described by Chao et al. (2014) (Figs. S1 and S2). To evaluate alpha diversity,
we first rarefied samples to even depth (16S dataset: 12,563 reads, ITS-1 dataset: 59,863
reads). We then estimated Hill diversities of order 0 (equivalent and hereafter referred to as
‘‘richness’’), order 1 (equivalent and hereafter referred to as ‘‘exponential Shannon index’’)
and order 2 (equivalent to and hereafter referred to as ‘‘inverse Simpson index. We used
both Bray–Curtis and Hellinger distances to quantify beta (between-sample) diversity.
Specifically, we conducted Mantel tests (using Spearman’s rank correlation rho as the test
statistic) to identify correlations between Hellinger distances and geographic distances.
We conducted these analyses separately for each vintage because two vineyards were not
sampled in 2016. We conducted permutational analyses of variance (PERMANOVAs),
which implements a pseudo-F ratio suitable for unbalanced experimental design (McArdle
& Anderson, 2001), to test for nonequivalence of centroids and dispersion of Bray Curtis
dissimilarities grouped by AVA and vintage. We used non-metric multidimensional scaling
(NMDS) to visualize differences between samples, mapping AVA and vintage onto the
plots. Finally, we fitted environmental vectors to the ordination and used a permutation
test (as implemented in the R function vegan::envfit) to assess the associations between beta
diversity coordinates and fruit maturity metrics and climate variables. The relationship
between microbial community structure and growing season precipitation was visualized
by plotting precipitation as a contours over the NMDS ordination using the R function
vegan::ordisurf.

We used the R package ‘‘Count Regression for Correlated Observations with the Beta-
Binomial’’ (corncob) (Martin, Witten & Willis, 2020) to model abundances of microbial
genera and test for statistical associations between microbial genera and variables of
interest. Unlike other popular packages used to test for differential abundances, such as
DESeq2 and edgeR, corncob was specifically designed to model microbial abundances and
test hypotheses about the effects of covariates on relative abundances (Love et al., 2014;
Robinson et al., 2010). This approach is especially tolerant to high variability in relative
abundances, variability in sample depth, and the absence of taxa in samples—all common
features of amplicon sequencing datasets. We modeled the abundances of bacterial and
fungal genera with mean uncorrected relative abundances over 0.1%. We first tested for
the effect of vintage, comparing a reduced model including AVA to a full model adding
vintage using a likelihood ratio test. Other tests included AVA and vintage in the reduced
model, which we compared to full models adding a fruit maturity metric or growing season
precipitation. The beta-binomial regression coefficients (BBCE) that we report estimate
the increase or decrease in logit-transformed relative abundance of a genus between two
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samples with one unit change in the covariate (Hailpern & Visintainer, 2003). Therefore,
these coefficients cannot easily be compared across covariates given that some covariates
spanned different ranges. For example, pH values only ranged from 3.4 and 3.8, while
growing season precipitation ranged from 11 mm to 285 mm; it follows that if both
covariates affected the abundance of a genus to the same extent over their respective
ranges, we would expect greater values for beta-binomial regression coefficients for each
unit change of pH compared to precipitation.We confirmed the better fit of significant beta
binomial abundance full models by running simulations of reduced and full abundance
models of individual genera 1,000 times. We then plotted 95% prediction intervals of the
model outputs and visually confirmed that the full models were better fit to the data as
indicated by narrower prediction intervals while still being consistent with the observed
abundances. The code we used to visualize and assess models can be found in project
repository listed in the Data Availability section. We controlled for Type I errors using the
Benjamini–Hochberg procedure with a significant cutoff of 0.05 (Benjamini & Hochberg,
1995). However, due to our low sample size and slightly unbalanced design, these tests may
have higher Type I error rates than FDR corrected for, so we acknowledge caution in the
interpretation of q-values generated by this analysis. We plotted URAs of taxa associated
with vintage, growing season precipitation, and fruit maturity metrics.

Identifying differences between vintages and among AVAs
Effect of vintage and AVA within vintage was examined for climate variables, fruit maturity
metrics, and alpha diversity. We implemented a linear mixed model (lme4; degrees
of freedom method by Kenward-Roger) with main effects of ‘AVA’ and ‘vintage’, an
interaction of ‘AVA × vintage’, and ‘vineyard’ as a random effect (α = 0.05) (Bates et
al., 2015). Models were compared using chi-squared (χ2) statistics to portray differences
in deviance between models and determine p- values (α = 0.05) based on likelihood
ratio test comparisons (Bates et al., 2015). Multiple comparisons were determined using
contrasts and Tukey’s test for mean separation (Table S2 for complete analyses), and
significant differences are presented in the results. All variables were tested for normality
(Shapiro–Wilk test) and homogeneity of variances (Levene’s test). Bacterial diversity
measures (exponential Shannon values; inverse Simpson values) and fungal richness values
were log-transformed tomeet the normality criterion. Figures and text showuntransformed
values.

RESULTS
Trends in climate and fruit maturity metrics
We detected trends among AVAs within vintage in both GDDs (AVA × vintage; χ2

=

31.32, p < 0.001) (Fig. 2, Table S2) (Fig. 2). In 2016, GDD exhibited a trend with respect to
AVA: Santa Barbara (1,437–1,646), Monterey (1,454–1,680), Sonoma (1,400–1,582), and
Mendocino (1,631) tended to have greater GDD than the northernmost Willamette Valley
vineyard (1,335) (not significant, ‘NS’). Similarly, GDD in 2017 differed significantly by
AVA (p < 0.05) and decreased from the southernmost AVA to the northernmost AVA:
Santa Barbara (1,589–1,821), Monterey (1,684–1,846), Sonoma (1,472–1,707), and had
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Figure 2 Growing degree days and precipitation grouped by AVA and vintage.Growing degree days
grouped by AVA for the 2016 vintage (A) and 2017 vintage (B); growing season precipitation, grouped by
AVA, for the 2016 vintage (C) and 2017 vintage (D). Dotted horizontal lines represent the corresponding
vintage mean. Boxes followed by a different lowercase letter indicate significant differences (p< 0.05).

Full-size DOI: 10.7717/peerj.10836/fig-2

greater GDD than the Willamette Valley (1,245–1,297), but Mendocino (1,422–1,711) was
not significantly different from any AVA. Mean comparisons between vintages within AVA
were significant for all comparisons (p < 0.01) except Willamette Valley, revealing the
increase in GDD by AVA from 2016 to 2017.

Growing season precipitation also differed between by AVA within vintage (AVA ×
vintage: χ2

= 11.89, p < 0.05) (Fig. 2, Table S2). Precipitation in 2016 increased from
the southernmost AVA to the northernmost AVA. Mean separation tests revealed that
vineyards in Santa Barbara (18–21 mm) and Monterey (12 mm) received less precipitation
than those in Sonoma (28–63 mm), Mendocino (60 mm), and the Willamette Valley
(176 mm) (p < 0.01). Precipitation also differed among AVAs in 2017, and the same
trend was identified (p < 0.01), except that mean growing precipitation in Mendocino
and Willamette Valley did not differ. Mean comparisons between vintages within AVA
were significant for all comparisons (p < 0.01), revealing the increase in growing season
precipitation from 2016 to 2017 for all AVAs.
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The grape must pH differed with respect to AVAs (AVA: χ2
= 9.98, p < 0.05) but not

vintage. However, mean separation tests revealed only marginal insignificance between
Mendocino and Sonoma (p= 0.08) (Fig. 3, Table S2). Sonoma,Mendocino, andWillamette
Valley tended to have lower pHs than SantaBarbara andMonterey in both years. Grapemust
titratable acidity (TA) concentrations differed by AVA (AVA: χ2

= 11.83, p < 0.05) but not
vintage. Primarily, Monterey had greater TA values than Sonoma (p <0.05), but no other
differences among AVAs were detected. Total soluble solids (TSS) only differed by AVA (χ2

= 9.75, p < 0.05) but mean separation tests revealed only marginal insignificance between
Monterey and Sonoma (p = 0.09). In 2016, Monterey (22.5–22.7◦Brix) and Mendocino
(22.9◦Brix) tended to have lower TSS values than Santa Barbara (23.6–25.3◦Brix), Sonoma
(23.5–25.5◦ Brix), and Willamette Valley (25.0◦Brix). In 2017, no trend in TSS was
observed, though Sonoma (22.3–26.8◦Brix) displayed a wider range in TSS than Santa
Barbara (22.6–23.8◦Brix), Monterey (23.0–23.2◦Brix), Mendocino (23.4–23.6◦Brix), and
Willamette Valley (23.3–24.2◦Brix). No significant effect of AVA × vintage was detected
for any basic maturity metric.

The core must microbiome is made up of Proteobacteria and H. uvarum,
while the variable microbiome is more taxonomically diverse
Eighteen core bacterial ASVs were present in both vintages and all AVAs, as defined by
an uncorrected relative abundance (URA) above 0.01% in at least 90% of samples (Table
S2A). Of these ASVs, all but one (in familyMicrobacteriaceae) were classified in the phylum
Proteobacteria. The most abundant of these taxa were Tatumella (Enterobacteracieae),
with an average URA of 37% (highly abundant in the 2016 vintage), and Massilia
(Oxalobacteraceae), with an average URA of 9% (highly abundant the 2017 vintage).
By vintage, we identified 40 core bacterial ASVs in 2016 and 19 ASVs in 2017 (Table S2B
and S2C). We also identified 25 variable ASVs (Table S2D) among all samples from both
vintages, which we defined as having at least 1% URA in between 5% and 90% of samples.
Like the core microbiome, the variable microbiome was dominated by Proteobacteria, but
ASVs from Actinobacteria (genus Janibacter, family Intrasporangiaceae), and Firmicutes
(genus Lactobacillus, family Lactobacillaceae) were also present.

All four core fungal ASVs (Table S3A)were classified asH. uvarum (Saccharomycetaceae).
This single genus made up over 87% of fungal URAs. An unassigned ASV in genus
Alternaria (Pleosporaceae) was also detected in over 90% of 2016 samples, with an average
URA of 0.04% (Table S3B). In 2017, core ASVs were all classified as H. uvarum. The three
fungal ASVs in the variable microbiome were assigned to H. uvarum, Erysiphe necator
(Erysiphaceae), and Lachancea quebecensis (Saccharomycetaceae) (Table S3D). E. necator
was particularly abundant in samples from the 2017 vintage from CRN1 in Sonoma, with
URAs from 90–95% in those samples. The median URA of L. quebecensis was 0.05%, and
it reached up to 4.7% in the 2017 vintage from vineyard AV2 in Mendocino.

Microbial diversity of grape must with respect to vintage and AVA
To assess alpha diversity, we calculated richness, exponential Shannon, and Inverse Simpson
indices (Figs. 4 and 5, Table S2). Exponential Shannon and Inverse Simpson indices were
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Figure 3 Grape maturity metrics grouped by AVA and vintage.Grape must pH (A–B), titratable acidity
(g tartaric acid L−1) (C–D), and total soluble solids (◦Brix) (E–F) of grape musts for the 2016 vintage (A,
C, E) and the 2017 vintage (B, D, F). Dotted horizontal lines represent the corresponding vintage mean.

Full-size DOI: 10.7717/peerj.10836/fig-3

accurately estimated from our sequencing effort based on saturation of rarefaction curves
for these estimates (Fig. S1A) however, curves for bacterial richness did not plateau,
suggesting an underestimate in community richness. Bacterial richness differed by AVA
within vintage (AVA × vintage, χ2

= 16.47, p < 0.01) (Fig. 4). This was also true for
bacterial exponential Shannon values (AVA × vintage, χ2

= 16.04, p < 0.01) and inverse
Simpson values (AVA × vintage, χ2

= 25.17, p < 0.0001). In 2016, only Monterey had
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Figure 4 Bacterial alpha diversity. Bacterial community richness (A–B), exponential Shannon index (C–
D), and inverse Simpson (E–F) index of grape musts for the 2016 vintage (A, C, E) and the 2017 vintage
(B, D, F). Dotted horizontal lines represent the corresponding vintage mean. Boxes followed by a different
lowercase letter indicate significant differences (p< 0.05).

Full-size DOI: 10.7717/peerj.10836/fig-4

greater bacterial richness than Sonoma (p < 0.01) and Mendocino (p < 0.01). In 2017,
bacterial richness was lower in Santa Barbara than Monterey (p < 0.01) and Sonoma (p
< 0.01). For the bacterial exponential Shannon index in 2016, Monterey had greater values
than Santa Barbara (p < 0.05), Sonoma (p < 0.001), and Mendocino (p < 0.001). In 2017,
exponential Shannon index was lower in Santa Barbara than in Monterey (p < 0.05) and
Sonoma (p < 0.05). For the bacterial inverse Simpson values in 2016, Monterey had greater
values than all other AVAs (p < 0.01). In 2017, bacterial inverse Simpson values did not
differ among AVAs. When examining changes in diversity metric by vintage within AVA
from 2016 to 2017, Santa Barbara decreased in richness and the exponential Shannon index
(p < 0.05), Sonoma increased in the exponential Shannon index (p < 0.05). Monterey
decreased in the exponential Shannon index while Sonoma increased for inverse Simpson
(p < 0.01).

Fungal alpha diversity was consistently lower than bacterial alpha diversity, was similar
between vintages, and exhibited regional trends (Figs. 4 and 5, Table S2). Rarefaction
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Figure 5 Fungal alpha diversity. Fungal community richness (A–B), exponential Shannon index (C–D),
and inverse Simpson (E–F) index of grape musts for the 2016 vintage (A, C, E) and the 2017 vintage (B, D,
F). Dotted horizontal lines represent the corresponding vintage mean. Boxes followed by a different lower-
case letter indicate significant differences (p< 0.05).

Full-size DOI: 10.7717/peerj.10836/fig-5

analyses of fungal alpha diversity metrics yielded results similar to bacteria (Fig. S2).
Fungal richness, exponential Shannon and inverse Simpson all differed by AVA within
vintage (AVA× vintage: richness, χ 2

= 14.76, p < 0.01; exponential Shannon, χ2
= 31.20,

p < 0.0001; inverse Simpson, χ2
= 26.52, p < 0.0001). Fungal richness in 2016 was

greatest in Willamette Valley, followed by Sonoma, and then Santa Barbara and Monterey
(p < 0.001). Fungal richness in Mendocino only differed from Willamette Valley (p
< 0.001). In 2017, fungal richness also differed among AVAs. Willamette Valley once
again had higher richness than Mendocino and Santa Barbara (p < 0.01), but differences
among other AVAs was not detected. Fungal exponential Shannon values in Sonoma were
higher than Monterey (p < 0.001) and Mendocino (p <0.05) in 2016, while Monterey had
greater values than all other AVAs in 2017 (p < 0.05) (except Willamette Valley). Fungal
inverse Simpson values were greater in Sonoma than Monterey in 2016 (p < 0.05), but in
2017, Monterey had greater values than Sonoma (p < 0.05) and Mendocino (p < 0.01).
Willamette Valley had the highest richness in both vintages, and fungal alpha diversity
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among AVAs was characterized by relative consistency between the vintages except for
Monterey (p < 0.05, richness and exponential Shannon), which tended to have an increase
in richness and diversity between 2016 and 2017, and Sonoma, which decreased between
vintages (p < 0.05, richness and inverse Simpson).

To visualize beta diversity, we conducted nonmetric multidimensional scaling (NMDS)
on bacterial (k = 3, stress=0.10) and fungal (k = 3, stress=0.12) Bray-Curtis dissimilarity
matrices (Figs. 6A, 7A). Fungal and bacterial communities tended to cluster by AVA and,
in some cases, by vintage. For example, bacterial communities from Santa Barbara tended
to cluster to the right of the origin along axis NMDS1, especially in 2017 (Fig. 6A), whereas
samples from AVAs with greater precipitation and fewer GDD ordinated to the left of the
origin along axis NMDS1. Fungal communities fromWillamette Valley and Sonoma AVAs
clustered on the right of the origin along axis NMDS1 while the other AVAs clustered in
the opposite direction along axis NMDS1.

We also fitted continuous metadata variables (total soluble solids, pH, titratable acidity,
elevation, GDD, and growing season precipitation) onto these ordinations and used a
permutation test to assess significance of the correlations between these variables and
community structure (Table S4). Growing season precipitation significantly correlated
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with ordination coordinates of bacterial communities [R2
= 0.48; Envfit permutation

test (EPT), p = 0.0009)] and fungal communities (R2
= 0.51; EPT, p = 0.0007). GDD

was significantly correlated with fungal communities (R2
= 0.34, p = 0.005). Bacterial

community structure correlated with pH (R2
= 0.37; EPT, p= 0.003), TA (R2

= 0.31; EPT,
p= 0.009), and TSS (R2

= 0.23; EPT, p= 0.04) (Table S4A); however, fungal communities
had no significant associations with grape must characteristics (Table S4A). Elevation did
not correlate with either bacterial or fungal communities (Table S4A and Table S4B). We
plotted a contour of the growing season precipitation gradient onto the NMDS plots to
visualize how precipitation related to microbial bacterial and fungal beta diversity (Figs. 6B
and 7B).

We conducted PERMANOVA using Bray–Curtis distance matrices to test for equality
of centroids and dispersion when grouping samples by vintage or AVA. We detected
significant differences in bacterial Bray–Curtis dissimilarities between vintages (R2

= 0.11;
p = 0.004) and AVA (R2

= 0.31; p = 0.003). Fungal Bray-Curtis distances also differed
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between vintage (R2
= 0.12, p = 0.005) and AVA (R2

= 0.22, p = 0.045). We conducted a
Mantel test to examine whether geographic distances correlated withHellinger distances for
each vintage. Bacterial Hellinger distances were not significantly correlated with geographic
distances for either the 2016 (Spearman’s rho: 0.13, p = 0.25) or 2017 (Spearman’s rho:
-0.15, p = 0.74) vintage. Fungal Hellinger distances, however, had significant correlations
for both the 2016 (marginally) (Spearman’s rho: 0.39, p = 0.058) and 2017 (Spearman’s
rho: 0.59, p = 0.004) vintages. In summary, grape must fungal communities were more
similar if the vineyards were geographically close. While bacterial communities did exhibit
regional patterns as revealed by a PERMANOVA, they did not exhibit this distance-decay
relationship.

Microbial taxa are associated with vintage, precipitation, and fruit
maturity metrics
We plotted the uncorrected relative abundances (URA) of bacterial genera whose beta
binomial abundance models were significantly improved (R-package corncob, likelihood
ratio test, FDR q-value< 0.05) by the addition of vintage, precipitation and fruit maturity
metrics as parameters (Fig. 8). Beta binomial coefficient estimates (BBCE), standard errors,
t-values, and p-values can be found in Table S6. These coefficients estimate the increase
or decrease in logit-transformed relative abundance of a genus between two samples with
one unit change in the covariate. Median URAs of Acinetobacter (2016: 0.4%, 2017: 0.6%),
Massilia (2016: 0.2%, 2017: 13%), and Paracoccus (2016: 0.01%, 2017: 1.5%) increased
from 2016 to 2017, while median abundances of Komagataeibacter (2016: 0.7%, 2017:
0.3%), Pseudomonas (2016: 5.6%, 2017: 3.7%), and Tatumella (2016: 53%, 2017: 6.8%)
decreased (Fig. 8A). URAs of Gluconobacter (BBCE = 0.03, q = 0.01) and Sphingomonas
(beta-binomial regression coefficient = 0.01, q = 0.0003) were positively associated with
growing season precipitation, while abundances of Tatumella (BBCE = −0.03, q = 0.003)
had a slightly negative association with precipitation (Fig. 8B). Coefficient estimates suggest
that Tatumella URAs decreased with increasing TA (BBCE = −1.4, q = 0.03) (Fig. 8C).
Massilia (BBCE = −6.5, q = 0.0002) and Lactobacillus (BBCE = −2.9, q = 0.01) URAs
exhibited negative associations with pH while Sphingomonas (BBCE= 1.6, q= 0.01) URAs
exhibited a positive association with pH (Fig. 8D). Lactobacillus (BBCE = −0.07, q =
0.0004) and Sphingomonas (BBCE = −0.28, q = 0.0004) were negatively associated with
TSS (Fig. 8E).

We plotted the uncorrected relative abundances (URA) of fungal genera whose beta
binomial abundance models were significantly improved (R-package corncob, likelihood
ratio test, FDR q-value< 0.05) by the addition of vintage, precipitation, and pH and TSS
as parameters (Fig. 9). TA was not plotted as it did not improve the model fit. Results
of the beta-binomial regressions can be found in Table S5B. Kazachstania median URAs
increased slightly from 2016 to 2017 (2016: 0.2%, 2017: 0.3%) (Fig. 9A). Abundances of
Hanseniaspora (BBCE = 0.02, q = 0.004) exhibited a slightly positive association with
precipitation, while Erysiphe (BBCE = −0.07, q = 1. 2×10−8), and Alternaria (BBCE =
−0.02, q = 0.008) exhibited slightly negative associations (Fig. 9B). Coefficient estimates
indicate that Lachancea (BBCE = 6.1, q = 0.003) abundances increased with pH, while
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Figure 8 Bacterial differential abundance with respect to vintage, growing season precipitation, and
fruit maturity metrics.Uncorrected relative abundances (percent URAs) of bacterial genera whose beta-
binomial abundance models were significantly improved (as determined by a likelihood ratio test) by in-
cluding (A–F) vintage as a covariate; (G–I) precipitation as a covariate; (J) titratable acidity (g tartaric acid
L−1) as a covariate; (K–M) pH as a covariate; (N–O) total soluble solids (TSS; ◦ Brix) as a covariate. Note
the breaks in the y-axis (A, B, K and N) to facilitate ease of viewing. Figure S3 shows this figure without
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orange, Sonoma= yellow, Mendocino= green, Willamette Valley= blue. Symbols of vintage, as follows:
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Hanseniaspora (BBCE = −5.2, q = 0.002), Udeniomyces (BBCE = −5.0, q = 0.015),
and Torulaspora (BBCE = −2.5, q = 0.015) abundances decreased with increasing pH
(Fig. 9C). Finally, Hanseniaspora abundances exhibited a slightly negative association with
TSS (BBCE = −0.53, q = 0.008) (Fig. 9D).

DISCUSSION
The ‘Pinot noir’ must microbiome is dominated by Enterobacteriaceae
and H. uvarum
As studies specifically examining geographic distribution of ‘Pinot noir’ bacterial and fungal
communities in grape must are limited, we include findings from other grape cultivars
to provide context for our work. Grape must bacterial communities were dominated by
Enterobacteriaceae, a large bacterial family partly defined by its capacity to ferment glucose,
in both the 2016 and 2017 vintages. This family has previously been found in grape musts
of ‘Grenache’ and ‘Carignan’ in Spain (Portillo et al., 2016) and in ‘Chardonnay’ from
California, where its abundance altered with vintage (Bokulich et al., 2014). The 16S rRNA
gene is a poor marker for genus-level classification of bacteria in this family, and the
taxonomy of this family is still revised frequently (Alnajar & Gupta, 2017; Naum, Brown &
Mason-Gamer, 2009). The most abundant and prevalent ASV in our dataset was assigned to
the genus Tatumella and had an average URA of 37%. Tatumella bacteria have been found
on both Botrytis free and infected ‘Mavroliatis’ and ‘Sefka’ grapes (Nisiotou et al., 2011).
Botrytis infection was also linked to a higher population of Tatumella when compared to
Botrytis free grapes in both cultivars (Nisiotou et al., 2011), but our samples do not contain
Botrytis cinerea at abundances above 0.1%. Tatumella has not been previously described as
an abundantmember of the grapemust microbiome, possibly due to the fact it is difficult to
culture (Farmer, 2015) or the recent transfer of some Pantoea (Enterobacteriaceae) species
to this genus (Brady et al., 2010). A non-Enterobacteriaceae bacterium of note was classified
as the betaproteobacteria Massilia (Oxalobacteraceae), which had a striking abundance
pattern with respect to vintage and pH. It was the most abundant bacterium in the 2017
vintage with a URA of 12%, but had a mean URA of only 0.1% in the 2016 vintage. In
previous studies, Massilia has been detected on ‘Chardonnay’ and ‘Merlot’ grape berries
(Leveau & Tech, 2011; Martins et al., 2013).

Hanseniaspora uvarum (Saccharomycetaceae) dominated the fungal communities that
varied with region, vintage, and grape must characteristics. Here, H. uvarum showed a
regional correspondence with precipitation, and TSS and pH in ‘Pinot noir’ grape must
(Fig. 9). Intraspecific geographic structure of H. uvarum diversity (111 strains studied)
has previously been observed (Albertin et al., 2016). Given the consistent regional trends
in our single-winery study, our data suggest that the geographic diversity of this species
extends beyond the winery back to the vineyard. Further, like Albertin et al. (2016), we
detected a vintage effect; this suggests a notable and variable population ecology for this
species. The genus Hanseniospora found in grape must has also been shown to directly
vary with precipitation and humidity across a variety of grape cultivars (Jara et al., 2016).
Interest in H. uvarum exists as some strains of H. uvarum (co-fermented with S. cerevisiae)

Steenwerth et al. (2021), PeerJ, DOI 10.7717/peerj.10836 18/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.10836


●●
●

●

●

●

●●
●●●●●0.00

1.00

2.00

3.00

4.00

5.00

2016 2017
U

R
A 

(%
)

Vintage
● 2016

2017

AVA
●

●

●

●

●

Santa Barbara

Monterey

Sonoma

Mendocino

Willamette Valley

KazachstaniaA

●

●

●

● ●

● ●

●
●●●

●●

0.00

0.10

0.20

0.30

0.40

0 100 200
Precipitation (mm)

U
R

A 
(%

)

Alternaria

92.00

94.00
Erysiphe

●

●

●

●●●
● ●●●●●●0.00

2.00

4.00

6.00

8.00

10.00

0 100 200
Precipitation (mm)

//

●
●● ●●
● ●

●
●

●●

●

●

90.00

92.00

94.00

96.00

98.00

100.00
Hanseniaspora

4.00

6.00

0 100 200
Precipitation (mm)

//

B

●
● ●●●

● ●

●
●

● ●

●

●

90.00

92.00

94.00

96.00

98.00

100.00
Hanseniaspora

4.00

6.00

3.5 3.6 3.7 3.8
pH

U
R

A 
(%

)

//
●

●

●

●

●
● ● ●● ●●●●0.00

1.00

2.00

3.00

4.00

3.5 3.6 3.7 3.8
pH

Lachancea
●

●

●
●

●

●●
●

● ● ● ●●0.00

0.20

0.40

0.60

3.5 3.6 3.7 3.8
pH

Torulaspora
●

●

●

●

●●
● ● ●●● ● ●0.00

0.50

1.00

1.50

2.00

3.5 3.6 3.7 3.8
pH

UdeniomycesC

●
● ●●●

●●

●
●

●●

●

●

90.00

92.00

94.00

96.00

98.00

100.00
Hanseniaspora

4.00

6.00

23 24 25 26 27
TSS (°Brix)

U
R

A 
(%

)

//

D

A

B C D

E F G H

I
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increased positive attributes in wine (Tristezza et al., 2016). We also acknowledge that
the temperature of the cold soak (ca. 4 ◦C) may have influenced the composition of the
fungal community. For instance, Liu et al. (2020) recently reviewed work that revealed
that a pre-fermentation cold-soak of red grape cultivars (‘Malbec’, ‘Cabernet Sauvignon’)
at cooler temperatures (8 ± 1 ◦C) led to higher populations of S. cerevisiae whereas
a warmer cold soak (14 ± 1 ◦C) encouraged growth of populations of H. uvarum and
Candida zemplinina on the fifth day (Maturano et al., 2015). In our study,H. uvarum was a
dominant member of the ‘Pinot noir’ fungal community after three days at a comparatively
cooler pre-fermentation cold soak (ca. 4 ◦C).

Associations between microbial genera and vintage, climate, and fruit
maturity metrics
We detected a number of statistical associations between microbial genera and vintage,
growing season precipitation, and fruit maturitymetrics. Bacterial generaKomagataeibacter
(Acetobacteraceae), Pseudomonas (Pseudomonadaceae), and Tatumellawere associated with
the 2016 vintage (Fig. 8, Table S6A). Genera Acinetobacter (Moraxellaceae), Massilia,
and Paracoccus (Rhodobacteraceae) were associated with the 2017 vintage. Bacterial
genera Gluconobacter and Sphingomonas were positively associated with growing season
precipitation, while Tatumella had a negative association. These vintage differences may
correspond to a higher environmental moisture content and/or temperature given that the
vineyards in this study had higher growing season precipitation and GDD in 2017 than in
2016. Revealing a likely sensitivity to environmental gradients,Acinetobacter has been noted
for its strong contribution to dissimilarity of microbiome samples from ‘Grenache’ and
‘Carignan’ grape must in Spain from vineyards with different aspects (i.e., flat, east-facing,
west-facing), which can reflect variation in temperature and precipitation within a growing
region (Portillo et al., 2016). Paracoccus has been isolated from winery surfaces (Bokulich
et al., 2013), but our work suggests that the vineyard is another source. Recently, it was
found on grape leaf surfaces (e.g., ‘Cabernet Sauvignon’, subgenus Muscadinia) grown in
the same location in France (Montpellier) (Singh et al., 2019). It is difficult to disentangle
the influence of the grape must on microbial communities from that of the vineyard
environment, given that microbial communities in vineyards have been shown to exhibit
annual variation, and vineyard soil and other vegetative parts of grapevines serve as
sources of the must microbiome (Belda et al., 2017; Bokulich et al., 2014; Bokulich et al.,
2016; Zarraonaindia et al., 2015).

We found no association between must pH and TSS with Gluconobacter
(Acetobacteraceae) and Tatumella, as reported in ‘Cabernet Sauvignon’ must for these
two organisms (Bokulich et al., 2016) (Fig. 8, Table S6A). Gluconobacter is an acetic acid
bacterium commonly isolated from grapes and can be found in high abundance (Bokulich
et al., 2014), and Gluconobacter was negatively associated with ‘Chardonnay’ must pH and
TSS in California (Bokulich et al., 2016). Tatumella was the only bacterial genus with a
significant relationship with titratable acidity (TA). Recently, in another study examining
grape musts from red (‘Regent’ and ‘Schwarzriesling’) and white (‘Merzling’, ‘Seyval’,
‘Helios’, and ‘Bacchus’) wine grape cultivars in Germany, Tatumella was not a dominant
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member of the grape musts but it had higher abundances after fermentation (Bubeck et al.,
2020). Lactobacillus (Lactobacillaceae) and Sphingomonas (Sphingomonodaceae) exhibited
slightly negative relationships with total soluble solids (TSS). Sphingomonas is a diverse
genus, and has been found in high abundances on grape leaves and musts (Bokulich et al.,
2014; Leveau & Tech, 2011; Martins et al., 2013).

In our work, the fungal genus Kazachstania (Saccharomycetaceae) exhibited a slight
increase in abundance from 2016 to 2017 (Table S5B), corresponding to annual distinctions
in growing season precipitation and GDD. We observed a positive association between
Alternaria (Pleosporaceae), a ubiquitous and diverse fungal genus that contains both plant
pathogens and potential post-harvest pathogen, and growing season precipitation, and a
negative association for Hanseniaspora and Erysiphe (Erysiphaceae), the causative agent of
powdery mildew (Calonnec et al., 2004; Woudenberg, Groenewald & Crous, 2013) (Table
S5B). Similarly, Hanseniaspora loads (as quantified by qPCR) in grape must from a broad
range of cultivars correspondeddirectlywith greater relative humidity or precipitation along
a comparable latitudinal gradient (30◦S−36◦S) in Chile (Jara et al., 2016). The dominant
fungal genera (Alternaria and Hanseniaspora) in the microbial community in our study
also overlapped slightly with dominant genera of fungal communities in a recent study of
‘Pinot noir’ must from six wine growing regions in Australia, which included Alternaria
(Pleosporaceae), Aureobasidium (Dothioraceae), Botrytis (Sclerotinaceae), Cladosporium
(Cladosporiaceae), Epicoccum (Pleosporaceae), Mycosphaerella (Mycosphaerellaeae),
and Penicillium (Trichocomaceae), and the yeasts Meyerozyma (Debaryomycetaceae),
Hanseniaspora and Saccharomyces (Liu et al., 2020). With respect to metrics of grape
maturity, Lachancea (Saccharomycetaceae) was positively associated with pH, while
Hanseniaspora, Udeniomyces (Cystofilobasidiaceae), and Torulaspora (Saccharomycetaceae)
associations with pH were negative (Table S5B). Bokulich et al. (2016) reported no
association between ‘Cabernet Sauvignon’ and ‘Chardonnay’ must pHs andHanseniaspora
in California. Understandably, correlations among variables and the observational nature of
this study limit causal links between the variables wemeasured and abundances ofmicrobial
taxa. Finally, metabolic differences betweenmicrobial taxa and, likely, differential responses
to climate, often occur at the strain level (Albertin et al., 2016; Capece et al., 2005), which
we could not resolve using our amplicon sequencing approach.

Fungal and bacterial communities exhibit distinct geographical
patterns
Microbiomes from grape berries, leaves and must can be influenced by many factors,
including cultivar, region, vintage and other factors like latitude, longitude, and elevation
that can serve as proxies for climate (Belda et al., 2017; Bokulich et al., 2014; Jara et al., 2016;
Liu et al., 2020; Portillo et al., 2016; Vitulo et al., 2019). In our study of ‘Pinot noir’ grape
must, fungal beta-diversity is correlated with GDD and precipitation (Fig. 7, Table S5).
Further, Mantel test results reveal a distance-decay relationship between fungal community
structure and geographic distance, or that their dissimilarity increases with increasing
distance between vineyards. Such a strong distance-decay relationship suggests either
dispersal limitation for fungi or a high degree of adaptation to conditions that correlate
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with the gradient we observed (Legendre, Borcard & Peres-Neto, 2005). Our vector-fitting
analysis (Fig. 7, Table S5) suggests that climate played a role in shaping grape must fungal
communities. Similarly, in ‘Pinot noir’ must samples collected from six wine growing
regions across Australia, fungal communities varied by region and vintage over two years,
as based on their Bray–Curtis dissimilarity of OTUs (operational taxonomic units) (Liu
et al., 2020). However, given that GDD and growing season precipitation correlate with
the latitudinal gradient in our study, we suggest that dispersal limitation is an important
factor shaping these communities, especially as fungal species can have limited dispersal
distances often influenced by spore size (Peay & Bruns , 2014). Recent work byMiura et al.
(2017) also has displayed the importance of dispersal limitations for microbiome structure
on grape leaves and berries. Miura et al. (2017) demonstrated that fungal dissimilarity of
communities found on ‘Carmenere’ grape leaves and berries collected from six vineyards in
Chile increased with increasing spatial distances (ca. 1–35 km); and that fungal community
composition differed among vineyards.

While we detected an association between bacterial community structure and AVA
using a PERMANOVA test, our Mantel test results were not significant, indicating the
lack of a distance-decay relationship. These results suggest that the bacterial taxa we
observed underwent environmental filtering (i.e., the abiotic environment had a role in
structuring communities) that may correspond with region, but do not correlate with the
geographic distance gradient we observed. Vitulo et al. (2019) also observed that bacterial
communities on grape trunk bark were reflective of wine growing region. Similarly,Miura
et al. (2017) did not observe a relationship between bacterial dissimilarity (by Bray-Curtis)
and geographic distance (ca. 1–35 km) in ‘Carmenere’ grape leaves or berries (six vineyards,
Chile); bacterial community composition tended to be similar among vineyards. Miura
et al. (2017) suggest that bacteria are not as dispersal limited as fungi as they can remain
suspended in the air for longer periods (and thus potentially greater distances) than fungal
spores. The correlation between bacterial community structure and fruit maturity metrics
that we observed also provides evidence that bacterial communities may be influenced by
the maturity of the berry (Table S5).

Our vector-fitting analysis and analysis of beta-diversity using Bray–Curtis distance
matrices found that growing season precipitation correlated with bacterial community
structure, suggesting that they are sensitive to precipitation (Fig. 6, Table S5). Although
bacterial communities did not exhibit a distance-decay relationship, in some cases like
in Sonoma, vineyards that were geographically adjacent received different amounts of
precipitation. Precipitation also varied considerably between vintages. Together, this
variation may have aided in the identification of this correlation in bacterial communities
despite the lack of a distance-decay relationship.

Notably, ‘Pinot noir’ grape musts from Monterey exhibited high bacterial diversity and
low fungal diversity compared to other AVAs in the 2016 vintage and high fungal diversity
compared to other AVAs in the 2017 vintage (Figs. 4 and 5). These high diversity valuesmay
correspond to climate, but also with distinctions in grape must characteristics, as suggested
by observed values of TA and TSS for the 2016 vintage from Monterey (Fig. 3). Site likely
served as a source of the must microbiome and influenced the role of environmental
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filtering in structuring bacterial communities. The likely role of site as contributor to the
must microbiome was revealed in a study on ‘Pinot noir’ must microbial communities
from 15 vineyards separated from each other by 5 to 400 km in Australia. Here, Liu et al.
(2020) found that both soil properties and soil bacteria had a greater effect than climate
on bacterial diversity, even though climate variation by region corresponded to regional
distinctions in fungal community diversity.

CONCLUSION
Contributing to the growing number of studies appreciating the complexity and
diversity grape must microbiomes, our report supports the notion that a predictable,
reproducible, high-resolution core microbiome of grape must may not exist. Our findings
supported our hypothesis that grape must microbial community structure would be
linked to vintage and region, and that must bacterial communities would have dominant
members from Acetobacteraceae and lactic acid bacteria (in this case, Lactobacillaceae).
We observed a diverse, variable ‘Pinot noir’ grape must microbiome and variation
in taxon distributions across vintages and regions, despite accounting for cultivar,
winemaking practices, and winery location. While there are certain patterns that are
common; for example, the dominance of Hanseniaspora (Saccharomycetaceae), Tatumella
(Enterobacteriaceae), Gluconobacter, and Komagataeibacter (both Acetobacteraceae) and
Lactobacillus (Lactobacillaceae); at finer taxonomic scales, substantial differences arise. To
better understand regional- and vintage-dependent differences in grape must, we propose
two avenues for future research: (1) continue to investigate the ecology of microbes
in the vineyard and winery to understand the processes that influence the microbial
composition of grape must (cf. Liu et al., 2020), and (2) further elucidate the link between
early fermentation microbiota and grape must chemistry.
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