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a b s t r a c t

Atomoxetine is a non-stimulant medication with sustained benefit throughout the day, and is a useful
pharmacologic treatment option for young adults with Attention-Deficit/Hyperactivity Disorder (ADHD).
It is difficult to determine, however, those patients for whom atomoxetine will be both effective and
advantageous. Patients may need to take the medication for several weeks before therapeutic benefit is
apparent, so a biomarker that could predict atomoxetine effectiveness early in the course of treatment
could be clinically useful. There has been increased interest in the study of thalamocortical oscillatory
activity using quantitative electroencephalography (qEEG) as a biomarker in ADHD. In this study, we
investigated qEEG absolute power, relative power, and cordance, which have been shown to predict
response to reuptake inhibitor antidepressants in Major Depressive Disorder (MDD), as potential pre-
dictors of response to atomoxetine. Forty-four young adults with ADHD (ages 18e30) enrolled in a multi-
site, double-blind placebo-controlled study of the effectiveness of atomoxetine and underwent serial
qEEG recordings at pretreatment baseline and one week after the start of medication. qEEG measures
were calculated from a subset of the sample (N ¼ 29) that provided useable qEEG recordings. Left
temporoparietal cordance in the theta frequency band after one week of treatment was associated with
ADHD symptom improvement and quality of life measured at 12 weeks in atomoxetine-treated subjects,
but not in those treated with placebo. Neither absolute nor relative power measures selectively predicted
improvement in medication-treated subjects. Measuring theta cordance after one week of treatment
could be useful in predicting atomoxetine treatment response in adult ADHD.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Atomoxetine is a selective noradrenergic reuptake inhibitor
with demonstrated efficacy in the treatment of Attention-Deficit/
Hyperactivity Disorder (ADHD) (Prince, 2006). Although its pre-
cise therapeutic mechanism of action is unknown, atomoxetine is a
selective inhibitor of the pre-synaptic norepinephrine transporter,
and may therefore reduce ADHD symptoms primarily as an indirect
agonist of catecholamine signaling in the prefrontal cortex,
ience and Human Behavior at
el.: þ1 310 825 0207; fax: þ1
modifying the signal-to-noise ratios thought to influence diffi-
culties in attention and impulse control that are central to the
disorder (Arnsten, 2009). While benefits from atomoxetine have
been observed as early as one week after reaching an optimal
therapeutic dose, most research suggests that full effects are not
evident for up to six weeks after the start of treatment (Michelson
et al., 2002). This response delay, in contrast to the immediate ef-
fects seen with stimulants, has proven vexing to clinicians and
costly to patients who must take the drug for several weeks before
its therapeutic effect becomes evident.

Studies have suggested that atomoxetine may be a preferred
treatment in selected patients. Atomoxetine may be considered a
first-line treatment for patients with comorbid anxiety or active
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substance abuse disorders and is preferred in individuals who
suffer from stimulant related side effects such as increased mood
lability or tics (Pliszka et al., 2006). One study demonstrated
enhanced response in patients identified as cytochrome P450 2D6
slowmetabolizers, presumably due to increased drug plasma levels
on standard doses (Michelson et al., 2007). Beyond these narrow
instances, clear guidelines for when atomoxetine should be
selected for particular patients have remained elusive.

Several preliminary lines of investigation have explored poten-
tial predictors of ADHD treatment response, particularly with
methylphenidate. Over 50 small studies of the moderating effects
of various candidate genes on methylphenidate response currently
appear in the literature, with the majority of these showing con-
flicting outcomes, or at best numerous small genetic effects (Kieling
et al., 2010; McGough et al., 2009). There has been growing interest
in recent years in the use of quantitative electroencephalography
(qEEG) both for assessment and prediction of response to treatment
of individuals with ADHD (Rothenberger, 2009). A number of qEEG
studies have shown abnormal patterns of both low and high fre-
quency neuronal oscillatory activity in ADHD (cf. Sukhodolsky et al.,
2007). The abnormal oscillatory activity in ADHD may reflect a
deficit in integrative or inhibitory processing (Başar and Güntekin,
2008) and may be related to defects in default mode network
regulation by subcortical structures in these patients, including the
thalamus and striatum (Başar and Güntekin, 2008; Broyd et al.,
2009). This disturbed oscillatory activity is suggestive of thalamo-
cortical dysrhythmia (Sukhodolsky et al., 2007).

Previous studies on the relationship between treatment
response and oscillatory activity are inconclusive. qEEG analyses of
the effects of ADHD medications, particularly the stimulants and
atomoxetine, have demonstrated normalization of beta and theta
activity in ADHD patients (Barry et al., 2009; Leiser et al., 2011). One
review concluded, however, that clinical qEEG testing provided no
additional information on individual drug response beyond what
could be surmised from clinical data (Loo and Barkley, 2005). qEEG
cordance is a measure of regional brain activity that is sensitive to
the effects of reuptake inhibitor antidepressant medications
(Leuchter et al., 2008; Cook et al., 2002), and has not been studied
previously in ADHD. Cordance is complementary to measures of
qEEG absolute and relative power (Leuchter et al., 1999), and
thereforemay reflect aspects of brain function that are not captured
by conventional power measures. As an indicator of the activity of
monoamine reuptake inhibitor medications, cordance detects the
effects of the mixed reuptake inhibitor venlafaxine in normal con-
trols (Leuchter et al., 2008), can predict the clinical effectiveness of
reuptake inhibitor antidepressant medications in MDD (Cook et al.,
2002, 2009; Bares et al., 2007, 2008, 2010), and can differentiate
medication and placebo response in MDD (Leuchter et al., 2002).
We therefore explored the usefulness of cordance for detecting the
effects of the reuptake inhibitor atomoxetine. This preliminary
investigation explored the potential utility of qEEG cordance,
as well as absolute and relative power, as possible predictors of
clinical response to atomoxetine in young adults with ADHD.

2. Methods and materials

2.1. Study overview

This study was conducted as an addendum at three of 32 inves-
tigative sites participating in a study of the effectiveness of atom-
oxetine in reducing symptoms and improving quality of life in young
adults with ADHD (ClinicalTrials.gov identifier NCT00510276). The
three investigative sites were selected based upon their capability to
perform qEEG recordings in the clinical trial setting, and all subjects
enrolled in the effectiveness study at these sites were offered the
opportunity to participate in the qEEG study. Complete design and
methods for the effectiveness study are reported separately (Durell
et al., 2013) and are described only briefly below.

2.2. Inclusion criteria

Adults ages 18e30 years meeting DSM-IV (DSM-IV-TR)
(American Psychiatric Association, 2004) criteria for ADHD as
determined by the Adult ADHD Clinician Diagnostic Scale (version
1.2) and who had a Clinical Global Impressions-ADHD Severity
(CGI-S) score of 4 (moderate symptoms) or greater were eligible for
the study. Subjects with ADHD were excluded if they also met
diagnostic criteria for other Axis I disorders including major
depression, panic disorder, post-traumatic stress disorder, eating
disorder, or substance abuse or dependence, as well as current or
lifetime diagnosis of Obsessive-Compulsive Disorder, Bipolar Dis-
order, or psychosis. Excluded medications were those known to
significantly affect brain function and the EEG, including antide-
pressants, antipsychotics, benzodiazepines, sedative-hypnotics,
anticholinergics, stimulants, and narcotic analgesics, but could be
tapered off excluded medications by their primary physician if
clinically appropriate prior to entry to the study. Subjects who
required one or more of these medications and could not be
tapered off them by their primary physician were excluded from
the study. All subjects received no excluded medications for at least
10 days prior to the first qEEG recording, so that thewashout period
was sufficient to ensure that there would be no significant residual
effect of an excluded medication on brain function. No subjects
were tapered from antidepressant or antipsychotic medications
exclusively in order to participate in the qEEG study.

The study was conducted in accordance with the Declaration of
Helsinki. Prior to the study, subjects were provided with verbal and
written descriptions of protocol requirements, and gave written
consent under procedures approved by each participating site’s
Institutional Review Board.

2.3. Treatment protocol

The study began with a screening period (5e28 days) during
which subjects (N ¼ 54) could be tapered from medications
excluded by the study protocol. Subjects showing a 25% or more
reduction in their ADHD symptoms during the screening period, as
measured by the Conner’s Adult ADHD Rating Scale, Screening
Version (CAARS) (Conners et al., 1999) total ADHD symptom score,
were excluded from the study. After the screening period, subjects
were randomized in a double-blinded manner at the site level to
receive 12 weeks of treatment with atomoxetine or placebo. The
study employed a double-blind, placebo lead-in period with both
investigators and subjects blinded as to the actual duration of the
lead-in period (seven days) as well as treatment assignment
throughout the clinical trial. For this report, data were analyzed for
all subjects (n¼ 44) who completed 12 weeks of treatment and had
useable qEEG data (14 receiving atomoxetine,15 receiving placebo).

2.4. Dosing

Atomoxetine treatment was initiated at 40 mg/day (dosed
20 mg bid) for a minimum of 7 days, after which the dose was
increased to 80 mg/day (dosed 40 mg bid). After 8 weeks, the dose
could be increased to the maximum of 100 mg/day (dosed 50 mg
bid) for the treatment of residual symptoms (Adler et al., 2008,
2009a, 2009b). Subjects unable to tolerate 40 mg/day were dis-
continued from the study (only one subject was unable to tolerate
this dose). Placebo capsules were packaged and administered using
the same dosage schedule in order to maintain blinding.

http://ClinicalTrials.gov
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2.5. Efficacy measures

The primary clinical variable of interest was improvement in
ADHD symptoms as rated by the investigator using the CAARS
(Conners et al., 1999), with standardized interrater training (Adler
et al., 2005). CAARS was assessed at baseline, randomization, af-
ter twoweeks of double-blinded treatment, and again at the end of
treatment. Patients with �25% decrease in CAARS total ADHD
symptom score at the end of treatment were classified as re-
sponders, and those with <25% decrease were classified as non-
responders. We also analyzed health-related quality of life at the
end of treatment, as measured by the Adult ADHDQuality of Life-29
scale (AAQOL-29) (Brod et al., 2005).

2.6. EEG recordings

EEGs were recorded immediately prior to randomization, and
again after one week of treatment. EEGs were recorded using
methods that have been described previously (Cook et al., 2002;
Hunter et al., 2009). Recordings were performed while subjects
lay quietly with eyes closed in a sound attenuated room. Subjects
were alerted frequently to avoid drowsiness, andwere instructed to
remain still and inhibit blinks or eye movements during each
recording period. EEG was recorded using a 36-channel enhanced
version of the International 10e20 System of Electrode Placement
with additional electrodes located over prefrontal and parie-
tooccipital regions (Fig. 1). Ag/AgCl electrodes were placed using an
electrode cap (ElectroCap, Inc.; Eaton, OH) referenced to Pz. Elec-
trode impedances were balanced and under 5 kU for all channels.
Vertical and horizontal electrooculograms (EOG) were recorded for
identification of eye movement artifact using bipolar electrodes
placed at the supraorbital and infraorbital ridge of the right eye and
the outer canthi of the left and right eye, respectively. Impedance
was maintained below 5 KU in all electrodes.

A minimum of 10 min of EEG data were recorded using a 16-bit
resolution Neuroscan system (Compumedics, Inc.; El Paso, TX) at a
Fig. 1. Electrode montage for qEEG recordings. The montage is based upon an exten-
sion of the International 10e20 system. “Nearest neighbor” bipolar pairs for calculation
of cordance values are indicated by line segments between electrodes.
sampling rate of 500 Hz, a high-frequency filter of 70 Hz, and a low-
frequency filter of 0.3 Hz, as well as a notch filter at 60 Hz. Data
were stored in digital format and imported into Brain Vision
Analyzer (BVA) software (Brain Products GmbH; Gilching, Ger-
many) in order to remove offsets, optimize scaling, re-reference the
data, adjust the sampling rate, and segment the data into 2-s non-
overlapping epochs. Epochs containing eye movement, muscle, or
movement-related artifacts, or amplifier drift were removed using
a semiautomated interactive process. Two technologists inspected
the data independently using multiple bipolar and referential
montages, and isolated and removed data segments containing
artifacts. In addition, data were processed using the BVA artifact
rejection module that removed data according to standard
thresholds likely to represent artifact based upon voltage step
gradient, absolute values of difference within the epoch, or
persistent low activity.

The power spectral frequency of the artifact-free EEG data was
calculated using the BVA fast Fourier transform (FFT) function. The
512-point FFT was calculated for artifact-free 2-s epochs with
rectangular windowing, 0.5 Hz overlap at the limits of the band,
and yielding a frequency resolution of 0.5 Hz. Absolute and relative
power were calculated in four frequency bands, corresponding to
delta (0.5e4 Hz), theta (4e8 Hz), alpha (8e13 Hz), and beta (13e
20 Hz), for all nearest neighbor bipolar pairs of electrodes (Cook
et al., 1998, 2002, 2009; Hunter et al., 2009; Leuchter et al., 1994,
1999).

2.7. Cordance calculation

Calculation of cordance has been described previously (Cook
et al., 2002, 1998; Leuchter et al., 1994, 1999, 2002). Cordance is
based upon power spectra calculated using a fast Fourier transform,
with power normalized across frequency bands and electrode sites
in a three-step algorithm. First, power is reattributed from a series
of bipolar pairs to individual electrodes by averaging (Cook et al.,
1998), with the electrode pairs used in the cordance calculation
illustrated in Fig. 1. Second, power is normalized across electrode
sites using a Z-score transformation for both absolute power (in-
tensity of energy in each frequency band measured in microvolts
squared) and relative power (percentage of total power in each
frequency band). Third, normalized absolute and relative power are
summed to yield a cordance value (Leuchter et al., 1999). Cordance
was calculated for qEEG data both at baseline and one week after
the start of study compound; the change in cordance from baseline
to week 1 was also calculated.

2.8. Data analysis

Absolute power, relative power, and cordance values for base-
line, week one, and change from baseline to week 1 were assessed
independently for association with outcome. Regression analyses
on each clinical variable of interest were run using each electrode,
for each power and cordance measure (baseline, week 1, and
change), and in each of four frequency bands (delta, theta, alpha,
beta). Because of the large number of statistical comparisons when
analyzing data from individual electrodes, we combined electrodes
to form regions of interest (ROIs). In the medication group, we
searched for clusters of 3 or more contiguous electrodes in the
same band that each showed the same direction of effect with at
least a trend level of significance (p < 0.1) of association with
clinical outcome (e.g., changes in CAARS total ADHD symptom score
or AAQOL-29 total score). Once a potential cluster was identified,
we calculated the average power or cordance value for the elec-
trodes in the cluster on the given measure (i.e., the specific band
and power or cordance measure). If the cluster as a whole was



Fig. 2. Electrode map showing Region of Interest. Electrodes highlighted in red indi-
cate the Region of Interest that showed a difference after one week of treatment be-
tween 12-week responders and non-responders to atomoxetine. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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significantly associated (p < 0.05) with clinical outcome, it was
retained for further analyses; otherwise, it was dropped.

Data from the candidate ROIs were analyzed in an ANCOVA that
included both atomoxetine- and placebo-treated subjects. The
ANCOVA included the ROI as a covariate of interest, the factor of
Treatment (medication or placebo), and their interaction. ROIs for
which the interaction term was not significant (p < 0.05) were
dropped from further analyses. This ensured that the cluster was
associated with medication-specific effects on the clinical outcome
variables.

For model validation, and to eliminate ROIs where the signifi-
cance was unduly influenced by outliers, we implemented a jack-
knife procedure (Stata 11). The jackknife procedure was first run on
each ROI in a simple regression with only the medication subjects
and then repeated in an ANCOVA including both medication and
placebo subjects. ROIs with significant effects in the simple linear
regression, and significant interaction effects in the ANCOVA, were
retained in the data analysis.

3. Results

3.1. Clinical outcome

Fifty-four subjects consented to participate in the qEEG study
and entered the washout period, and forty-four completed twelve
weeks of treatment (atomoxetine, n ¼ 20; placebo, n ¼ 24). All
participants met the criteria for combined or inattentive ADHD
subtypes. At least 80% of the eligible subjects at each site consented
to participate in the qEEG study. Student’s t-tests showed that there
were no significant differences in age or baseline CAARS scores, and
a Chi-square analysis showed that there was no significant differ-
ence in gender ratios, between those who participated and those
who declined (data not presented). The most common reason that
subjects declined to participate was the additional time required
for qEEG recordings. Response rates were 55% in the atomoxetine
group and 33% in the placebo group, with no significant differences
across study sites (data not presented). Atomoxetine-treated sub-
jects showed a mean change in CAARS total ADHD symptom score
of�12.80 � 9.45, versus�7.33 � 10.02 for placebo-treated subjects
(t42 ¼ �1.85, p ¼ 0.07). On the AAQOL-29, the mean final score for
atomoxetine-treated subjects was 55.68 � 17.94, versus
55.73 � 17.81 for placebo-treated subjects (n.s.). Several subjects
were excluded from some further analyses because of missing data:
12 subjects from all EEG analyses because of inadequate recordings
at both baseline and week 1; and, 3 subjects from week 1 EEG
analyses because of inadequate recordings at this time point only.
This resulted in final group sizes of 14 subjects receiving atom-
oxetine and 15 receiving placebo. Seven of the atomoxetine-treated
subjects versus six placebo-treated subjects fulfilled response
criteria (n.s.). The groups did not differ in the proportion of subjects
with inattentive (atomoxetine N ¼ 9, placebo N ¼ 6) or combined
subtypes (atomoxetine N¼ 5, placeboN¼ 9) (Chi-square (1)¼ 1.48,
p ¼ 0.22).

3.2. Relationship between absolute power, relative power, or
cordance and clinical outcomes

There were no ROIs for absolute or relative power or cordance
measures that were significantly different prior to treatment be-
tween subjects randomized to placebo and atomoxetine, or be-
tween responders and non-responders to placebo or atomoxetine.
There also were no ROIs for absolute or relative power or cordance
measures that were significantly different between responder and
non-responders for the baseline to week 1 change measure. We
identified one ROI for cordance at week 1 in the theta band,
comprised of four left temporoparietal electrodes (Cp3, Tp7, P3 and
T5) (Fig. 2), which was associated with change in the CAARS.
ANCOVA revealed that theta cordance in this ROI had a significant
relationship with outcome that was different between
atomoxetine-treated and placebo-treated subjects (f(1,27) p ¼ 0.01)
(Table 1), and this association remained significant after jackknife
validation.

Examination of cordance difference maps showed that atom-
oxetine responders had significantly lower theta cordance values
than non-responders at week 1 in the left temporoparietal ROI,
while there was no difference in this region between placebo re-
sponders and non-responders (Fig. 3). Two-way ANOVA revealed
that responders and non-responders differed significantly in week
1 theta band cordance in the ROI, with atomoxetine responders
showing the lowest and non-responders the highest values
(Table 2). There was no significant difference in mean cordance
between treatment groups (F1,27 ¼ 0.00, p ¼ 0.96). The main effect
of Response showed a trend (F1,27 ¼ 3.87, p ¼ 0.06). The interaction
of Treatment x Response was significant (F1,27 ¼ 6.78, p ¼ 0.02).

Linear regression was performed to examine the relationship
between theta cordance values at week 1 and clinical outcome.
Cordance values from the ROI were significantly correlated with
change in CAARS score in atomoxetine-treated subjects (R2 ¼ 0.61,
b ¼ 2.61, t12 ¼ 4.35, p ¼ 0.001) but not in placebo-treated subjects
(Fig. 4). Cordance values also were associated with changes in
hyperactivity-impulsivity as well as inattention symptom scores in
medication-treated subjects (r ¼ 0.74, p ¼ 0.004, and r ¼ 0.79,
p ¼ 0.001, respectively), but not those treated with placebo
(r ¼ �0.18, p ¼ 0.56, and r ¼ 0.06, p ¼ 0.85, respectively). In a
combined model, the change in inattention symptom scores at the
endpoint was significantly associated with theta cordance values at
week 1 (b ¼ 0.54, SE ¼ 1.944, p ¼ 0.03) with a trend toward an
association with change in hyperactivity-impulsivity scores
(b ¼ 0.41, SE ¼ 2.52, p ¼ 0.07) for atomoxetine-treated subjects.



Table 1
ANCOVA results. ANCOVA for left temporoparietal theta cordance at week 1 and
treatment outcome. R2 ¼ 0.320, N ¼ 29.

df F p value

Model 3 4.23 0.01
ROI 1 4.44 0.05
Treatment 1 7.58 0.01
ROI � treatment 1 7.02 0.01
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Cordance values also were significantly correlated with improve-
ment in functional outcome as measured by final AAQOL-29 total
score in atomoxetine-treated subjects (R2 ¼ 0.32, b ¼ �3.40,
t12 ¼ �2.39, p ¼ 0.03). CAARS change and final AAQOL were
significantly and inversely correlated (r ¼ �0.3947, p ¼ 0.009),
indicating that decreases in ADHD symptoms were associated with
improved quality of life.

A centro-parietal ROI (electrodes P3, Cpz, Cp3) was identified
based upon its association with final AAQOL score. ANCOVA
revealed that week one theta cordance in this ROI had a significant
relationship with outcome that was different between
atomoxetine-treated and placebo-treated subjects (f(1,26) p ¼ 0.02).
However, these results were no longer significant after the jack-
knife procedure was applied and this ROI was dropped from further
analysis.

3.3. Early changes in ADHD symptoms

An ANCOVA on final change in CAARS score was run with the
factor of treatment, a continuous variable for early change in the
CAARS score, and their interaction. The ANCOVA showed that early
change in the CAARS (at week 2) was associated with clinical
outcome (f1,40 ¼ 15.62, p< 0.001). The main effect of treatment also
was significant (f1,40¼ 4.75, p¼ 0.04), while the interaction showed
a trend (f1,40 ¼ 3.33, p ¼ 0.08). In a post-hoc analysis by treatment
group, early change in CAARS significantly predicted final CAARS
change in the placebo-treated subjects (b ¼ 1.06, t22 ¼ 4.13,
p < 0.001), and showed a strong trend in atomoxetine-treated
subjects (b ¼ 0.62, t18 ¼ 2.03, p ¼ 0.06).
Fig. 3. Map of differences in theta-band cordance between responders and non-responder
groups after one week of treatment with: A) medication, or B) placebo. Blue colors indica
that responders had higher values. Medication-responders showed statistically significantly l
subjects showed no significant difference in this area between responders and non-respon
referred to the web version of this article.)
3.4. Relative predictive accuracy of early symptom change and
cordance

We examined the relative predictive accuracy of cordance (at
one week) and early change in CAARS score (at two weeks) for 12-
week clinical outcome. Multiple linear regression was performed
using the atomoxetine treated subjects only, with one week cord-
ance and twoweek changes in CAARS as the independent variables,
and final CAARS change as the dependent variable. In the combined
regression, early change in CAARS was not significantly related to
outcome (b ¼ 0.34, t11 ¼ 0.96, p ¼ 0.36). However, the ROI still was
highly significantly correlated with change in CAARS, even when
controlling for early CAARS change (b ¼ 2.47, t11 ¼ 3.90, p ¼ 0.002).
4. Discussion

We found that in adults with ADHD treated with atomoxetine in
a double-blind placebo-controlled clinical trial, theta cordance
from the left temporoparietal region after one week of treatment
was significantly associated with 12-week change in ADHD symp-
toms. Subjects treated with atomoxetine who had lower theta
cordance values at week 1 showed significantly greater improve-
ments in ADHD symptoms overall, as well as hyperactivity-
impulsivity and inattention symptoms scores, than those with
higher theta cordance. There was no relationship between cord-
ance values and improvement in subjects treated with placebo.
Atomoxetine responders showed significantly lower levels of
temporoparietal theta cordance at week 1 than atomoxetine non-
responders. In contrast, responders and non-responders treated
with placebo showed no significant difference between groups.
Additionally, cordance in this same region was associated with
improvement in patient quality of life at the end of medication
treatment. We also found that early changes in ADHD symptoms
were correlated with final outcome, although the association of
early symptom change was no longer significant after including
temporoparietal theta cordance at week 1. Absolute power, relative
power, and cordance values at baseline, and change from baseline
to week 1, were not associated with 12-week outcome.
s to treatment. Differences in theta cordance between responder and non-responder
te that responders had lower values than non-responders, while red colors indicate
ower left temporoparietal cordance values than non-responders, while placebo-treated
ders. (For interpretation of the references to color in this figure legend, the reader is



Table 2
Mean week 1 cordance values by treatment and response groups. There were no
significant main effects, but the group interaction was significant (F1,27 ¼ 6.78,
p ¼ 0.015).

Group Mean cordance values by
treatment mean (S.D.)

Total

Medication Placebo

Responders �0.02 (0.41) 0.60 (0.83) 0.29 (0.70)
Non-responders 1.05 (0.58) 0.46 (0.64) 0.71 (0.67)
All subjects 0.60 (0.74) 0.51 (0.69) 0.55 (0.70)
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These results are in part consistent with recent literature indi-
cating that abnormalities in temporoparietal electrical activity are
common in adults with ADHD. Hale et al. (2010) reported that a
rightward asymmetry in alpha activity was associated with a
greater number of ADHD symptoms and a possible parietal asso-
ciation with inattentive symptoms in particular. This same group
(2009) also reported a rightward beta asymmetry in the parietal
regions, indicative of abnormal recruitment of left hemispheric
language processing. The prominent alpha differences seen in these
adult subjects with inattention could represent a defect in normal
topedown inhibitory mechanisms that are under alpha oscillatory
control (Klimesch et al., 2003).

Several previous studies have examined the relationship be-
tween pretreatment brain electrical activity and stimulant treat-
ment outcome in ADHD, and these have yielded inconsistent
results. Chabot and colleagues (Chabot et al., 1999) were among the
first to report that pretreatment qEEG differences were a reliable
predictor of response to stimulants. This group reported that
greater beta activity and lesser theta activity were associated with
response to stimulants. These findings were similar to those of Loo
et al. (1999) who noted increased beta and decreased theta and
alpha activity in the frontal regions inmethylphenidate responders.
In contrast, Clarke et al. (2002) reported that those subjects with
good response to methylphenidate showed increased relative delta
and theta power and decreased alpha and beta power in compar-
ison to poor responders. Arns et al. (2008) reported that subjects
with excessive frontal slow wave activity were more likely to
respond to stimulant medication than other subjects. Overall,
Fig. 4. Association between ROI cordance and changes in CAARS scores. Linear asso-
ciation between changes in CAARS total ADHD symptom score at eight weeks and left
temporoparietal cordance values at one week in subjects treated with atomoxetine
(left) and placebo (right). Each subject is represented by a single dot in the graphic.
Medication treated subjects showed a significant positive association between cord-
ance in this ROI and change in CAARS score at the primary endpoint, whereas placebo
treated subjects showed no significant association.
studies have reported 70e80% accuracy in identifying responders
to stimulants using a variety of pretreatment qEEG measures, but it
is important to note that because more than 70% of children tend to
respond to stimulants, the predictive accuracy of these measures is
not significantly better than expected (Loo and Barkley, 2005).

The response rate to atomoxetine in this study was 55%, similar
to the response rate of approximately 60% seen in the parent study
(Durell et al., 2013). Because of the limited number of subjects
receiving drug in this pilot study, it is not possible to estimate
accurately the impact of routine qEEG cordance testing on pre-
dicting response in clinical practice. Nevertheless, these results
demonstrate that cordance measures at one week after the start of
treatment indicate which patients are likely to respond atom-
oxetine at 12 weeks. This early prediction of response could be
valuable to both physicians and patients who are making decisions
regarding how long to continue an atomoxetine trial. These results
indicate that further clinical study of the cordance biomarker in
patients undergoing atomoxetine treatment is warranted.

The left temporoparietal region identified in the present study is
interesting in that it is similar to a region that has been shown to be
involved in attentional processing related to motor control in
healthy control subjects (Rushworth et al., 1997). In addition, using
an event-related functional magnetic resonance imaging (fMRI)
oddball paradigm in male adolescents with ADHD, Tamm et al.
(2006) showed that ADHD subjects had significantly less bilateral
parietal activation compared to healthy control subjects. In
contrast, Dillo et al. (2010) examined inhibitory control deficits
using fMRI in adult ADHD performing a Go/No-Go task. They found
significantly enhanced activity in ADHD subjects compared to
healthy controls in parietal cortex. Finally, in an fMRI study of
subjects with adult ADHD, Hale et al. (2007) found no significant
activation of the parietal regions bilaterally for more demanding
cognitive tasks. Differences among these studies in patterns of
parietal activation may depend upon the population being studied
(adolescents versus adults), and the nature of the task (motor
versus cognitive) as well as its complexity.

One previous study has examined the acute effects of atom-
oxetine on qEEG in childrenwith ADHD. Barry et al. (2009) reported
that a single dose of the medication resulted primarily in global
increases in absolute and relative beta power, although changes
were seen in most frequency bands. Of particular note with refer-
ence to the current study is that left sided posterior increases in
theta power were detected. These results are difficult to compare
with the current study, however, because of the fact that only a
single dose of medication was used, only qEEG power measures
were reported, and the subjects were much younger than those
examined here. Leiser et al. (2011) reported a variety of qEEG
findings, both in human studies and animal models, focusing pri-
marily on the neurophysiologic effects of methylphenidate, which
may differ significantly from those of atomoxetine.

The cordance measure reported on here has most commonly
been interpreted in the context of the association between qEEG
and perfusion (Leuchter et al., 1994, 1999). Rhythmic oscillations in
the EEG in theta and alpha bands, however, are generated under the
strong influence of thalamocortical pacemaker cells (Hughes and
Crunelli, 2005). Findings involving qEEG power and cordance in
the theta frequency band in ADHD therefore may best be inter-
preted in the context of thalamic dysfunction, as recent reports
have implicated the thalamus in the pathophysiology of the illness.
Xia et al. (2012) reported significantly reduced thalamic volumes,
and disturbances in the connectivity bundles between the thal-
amus and the striatum, using structural MRI in childrenwith ADHD.
Using fMRI in adults with ADHD, Clerkin et al. (2013) found
decreased thalamocortical activation during response preparation
in a cued reaction time task. These findings are consistent with the
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suggestion that ADHD may represent a syndrome of thalamocort-
ical dysrhythmia (Sukhodolsky et al., 2007). The thalamus also has
shown promise as a brain region that reflects the differential
pharmacologic effects of atomoxetine: in healthy control subjects
who received atomoxetine or methylphenidate, arterial spin
labeled MRI showed that methylphenidate increased, while atom-
oxetine decreased, regional cerebral blood flow in the thalamus
(Marquand et al., 2012). We do not, however, have any direct
measures of thalamic structure or function in the subjects in this
study. Future research into cerebral oscillatory activity in ADHD
should more directly examine the relationship between cerebral
oscillatory activity and the thalamus.

The results of the present study should be interpreted within
the context of several limitations. First, this is a pilot exploratory
investigation in a limited number of subjects. Our data-reduction
approach and jackknife validation reduced but did not eliminate
the possibility of Type I error because of the number of potential
variables and the limited number of subjects. While we did employ
a jackknife validation procedure, we did not undertake rigorous
correction for multiple comparisons because of the exploratory
nature of this study. These findings therefore should be replicated
in a larger sample of subjects prior to their application in clinical
practice. Second, we did not record qEEG data after a single dose of
medication, as has been reported in some previous studies.
Therefore, it is difficult to compare our results to those of previous
studies. Third, we adopted a regional approach to analysis of the
qEEG data in which we required clusters of contiguous electrodes
were significantly different between groups before further analysis
was performed. This approach has the advantage of minimizing
false-positive associations that might exist for individual elec-
trodes. This approach, however, has the disadvantage of potentially
overlooking associations that might exist for larger numbers of
electrodes that are not contiguous, or for a more global measure.
Fourth, because participation was restricted to a rigorously defined
subset of young adults with ADHD and without significant co-
morbidity, it remains unclear if the same findings would hold in
subjects at other stages of development (i.e., children, adolescents,
and older adults), or in subject groups meeting less stringent in-
clusion/exclusion criteria. Fifth, these results with qEEG cordance
pertain to the prediction of treatment outcome during treatment
with one specific medication for ADHD. It is unknown whether
similar predictive ability would be attainedwith other medications.

Measuring theta cordance after one week of atomoxetine
treatment may prove to be useful in predicting treatment outcome.
Currently there is no reliable physiologic measure of treatment
response in ADHD. Although early symptom change may be a
useful predictor of eventual treatment outcome, adults with ADHD
may be unreliable in reporting changes in their symptoms (Adler
et al., 2008; Kooij et al., 2008). Development of a physiologic pre-
dictor therefore may complement careful symptom monitoring in
the course of treatment. These present findings are consistent with
an emerging body of work suggesting that monitoring of neuronal
oscillatory activity may be informative about the pathophysiology
and treatment outcome of ADHD. Future research should examine
whether cordance measurements may be useful for differentiating
between subjects who will and will not have a satisfactory clinical
response to atomoxetine. The fact that these neurophysiologic
measures can be detected early in treatment, and may be more
predictive than early symptom change, suggests that theymay have
eventual clinical usefulness.
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