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Skeletal muscle hypertrophy in response to isometric, lengthening,
and shortening training bouts of equivalent duration
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Adams, Gregory R., Daniel C. Cheng, Fadia Haddad, and
Kenneth M. Baldwin. Skeletal muscle hypertrophy in response to
isometric, lengthening, and shortening training bouts of equivalent
duration. J Appl Physiol 96: 1613–1618, 2004; 10.1152/jappl-
physiol.01162.2003.—Movements generated by muscle contraction
generally include periods of muscle shortening and lengthening as
well as force development in the absence of external length changes
(isometric). However, in the specific case of resistance exercise
training, exercises are often intentionally designed to emphasize one
of these modes. The purpose of the present study was to objectively
evaluate the relative effectiveness of each training mode for inducing
compensatory hypertrophy. With the use of a rat model with electri-
cally stimulated (sciatic nerve) contractions, groups of rats completed
10 training sessions in 20 days. Within each training session, the
duration of the stimulation was equal across the three modes. Al-
though this protocol provided equivalent durations of duty cycle, the
torque integral for the individual contractions varied markedly with
training mode such that lengthening � isometric � shortening. The
results indicate that the hypertrophy response did not track the torque
integral with mass increases of isometric by 14%, shortening by 12%,
and lengthening by 11%. All three modes of training resulted in
similar increases in total muscle DNA and RNA. Isometric and
shortening but not lengthening mode training resulted in increased
muscle insulin-like growth factor I mRNA levels. These results
indicate that relatively pure movement mode exercises result in
similar levels of compensatory hypertrophy that do not necessarily
track with the total amount of force generated during each contraction.

resistance exercise; isovelocity actions; insulin-like growth factor I;
mechano-growth factor

IN THE ABSENCE OF PATHOLOGICAL conditions, the structural and
functional properties of skeletal muscle are generally matched
to the current level of demand placed on individual muscles. In
response to increased demand, such as might be encountered
with changes in occupational or leisure activities, skeletal
muscle can adapt via an increase in myofiber size and an
alteration in the composition of the metabolic and contractile
proteins expressed. Antipodal changes can also occur with
significant decreases in loading (26).

The mechanisms that mediate the functional adaptation of
skeletal muscle appear to reside, primarily, within the impacted
muscle. This circumstance accounts for the specific adaptation
of effected muscles.

The skeletal muscle loading experienced as part of occupa-
tional and athletic activities often includes periods of loaded
muscle shortening and lengthening as well as periods during
which muscles are activated but no external length changes
occur (isometric loading). The relative contribution of these

three modes of loading to the processes that stimulate muscle
adaptation is of great interest in the area of programmed
resistance training. It is well known that resistance training
paradigms that include sufficient intensity, frequency, and
duration can induce skeletal muscle adaptations that include
compensatory hypertrophy (22). It has also become common
for such programs to emphasize one particular training mode
(e.g., lengthening, shortening, or isometric). Training programs
that have employed relatively pure shortening, lengthening, or
isometric loading have demonstrated that each of these three
modes of loading can stimulate muscle adaptations, including
hypertrophy and strength gains (11, 13, 15, 18–21, 23, 24, 30,
33). Various studies that have compared modes have reported
that one mode appears to be more effective than another in
stimulating various measures of adaptation (11, 15–17, 19, 21,
23, 24, 28). For example, Komi and Buskirk (21) reported that
training in the lengthening mode resulted in greater increases in
strength (testing all 3 modes) than shortening mode exercise. In
contrast, Rutherford’s group reported that lengthening-mode
training (LMT) generally resulted in lesser gains in strength
and muscle size than either isometric-mode (IMT) (19, 27, 28)
or shortening-mode training (SMT) (19, 27, 28). In addition,
studies have shown that combined shortening � lengthening
training is superior to training using only the SMT with regard
to increases in strength (e.g., Ref. 9). When attempting to
understand the various training studies, it is important to note
that, depending on the study design, the absolute loading
imposed during LMT is often substantially greater than that
imposed in SMT or IMT (16, 17, 19, 21). For example, in two
such studies, where the lengthening loads could be discerned
from the methods, the lengthening exercises involved forces
that were 145–166% of that imposed during shortening mode
training (19, 21). In a contrasting experimental design, May-
hew et al. (23) compared SMT and LMT at the same relative
power and found that SMT resulted in greater hypertrophy
(type II fibers) and a greater isometric strength increase.

Direct comparisons of the impact of training mode on
muscle adaptation have been conducted almost exclusively in
humans, most often using voluntary muscle activation. Volun-
tary resistance training in humans is complicated by factors
such as the potential for motor learning and therefore neural
adaptation. The purpose of the present study was to compare
training paradigms involving muscle shortening, lengthening,
or isometric loading in a rat model by using electrical stimu-
lation of the nerve to induce muscle activation. Our working
hypothesis was that training modes that produced relatively
greater levels of force would result in significantly greater
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hypertrophy. Contrary to this hypothesis, our results indicate
that, for a equal period of maximal activation with equivalent
stimulation parameters, the hypertrophy response was similar
with each of these exercise modes.

METHODS

Animals. This study was conducted in conformity with APS’s
Guiding Principles in the Care and USE of Animals, and the protocol
was approved by the University of California IACUC. Young adult
female Sprague-Dawley rats weighing 252 � 4 g were randomly
assigned to three groups (minimum 6 per group): IMT, SMT, or LMT.
Rats were group housed in standard vivarium cages on a 12:12-h
light-dark cycle and were allowed access to food and water ad libitum.

Muscle activation. For each training bout, the rats were lightly
anesthetized with ketamine (30 mg/kg), xylazine (4 mg/kg), and
acepromazine (1 mg/kg). Stimulation electrodes consisting of Teflon-
coated stainless steel wire were introduced into the subcutaneous
region adjacent to the poplateal fossa via 22-gauge hypodermic
needles. The needles were then withdrawn, leaving the wire in place.
Before electrode insertion, a small section of Teflon coating was
removed to expose the wire. Wire placement was lateral and medial of
the location of the sciatic nerve, allowing for field stimulation of the
nerve. The stimulation wires were then attached to the output poles of
a Grass stimulus isolation unit interfaced with a Grass S8 stimulator.
This allowed for the delivery of current to the sciatic nerve, resulting
in muscle contraction. The rats were then positioned in a specially
built training platform described previously (6). The right leg was
positioned in a footplate attached to the shaft of a Cambridge model
H ergometer. The voltage and stimulation frequency (52 � 0.8 Hz)
were adjusted to produce maximal isometric tension. Pilot studies
indicated that this approach resulted in reproducible torque production
within and between rats over multiple training sessions.

Training protocols. For all exercise bouts, the stimulation param-
eters were 1 s of stimulation with 20 s between stimulations, 5
stimulations per set. Four sets of stimulation were applied with 5 min
of recovery between sets. In each case, this protocol resulted in �20%
fatigue (first set vs. last set). After each training session, the electrodes
were withdrawn.

The training protocols were controlled by computer via a digital-
to-analog board (model DDA-06, Keithley Instruments) used to con-
trol footplate excursion and to trigger the stimulus. A separate analog-
to-digital board (DAS-16) was used to acquire force measurements
(100-Hz acquisition). Data acquisition, control of stimulus triggering,
and footplate excursion were programmed by using LabTech Note-
book (Laboratory Technologies). Data analysis was conducted by
using AcqKnowledge software (Biopac Systems). Force output was
monitored in real time on the computer screen during each contrac-
tion.

Rats were trained at the beginning of their standard light cycle,
every other day for 20 days (e.g., 10 training sessions). For the IMT
group, rats were positioned with the right foot on the footplate with an
angle of �44° relative to the tibia. During muscle stimulation, there
was no change in footplate angle. For the SMT group, the ergometer
allowed the footplate to move from 44 to 64° after the initial
development of maximal isometric tension. For the LMT group, the
ergometer allowed the footplate to move from 44° to 24° after the

development of maximal isometric tension. For the SMT and LMT
treatments, the 1-s stimulation included 0.3 s of isometric force
development and 0.7 s for the movement. The rate of movement in the
SMT and LMT treatments was limited to 29°/s to maintain force
development.

Force and torque measurement. The ergometer system used in
these studies allows for rotation of a central shaft that is also
instrumented for the detection of torque. The degrees of movement are
known for the lengthening and shortening modes of exercise, and thus
work can be calculated. However, isometric exercise does not include
external work (i.e., length change), and therefore work cannot be
calculated. Because the moment arm was essentially the same for each
animal, the data for each exercise mode represent a measure of force
generation. To allow direct comparisons between modes, the data are
reported as a torque-time integral.

Tissue collection. Twenty-four hours after the last training bout
(day 20), the rats were killed via an injection of Pentosol euthanasia
solution (Med-Pharmex) at a dose of 0.4 ml/kg (�160 mg/kg pento-
barbitol sodium ip) (14). At the cessation of heart beat, a skin incision
was made, and the leg muscles of interest (tibalis anterior, plantaris,
soleus, and medial gastrocnemius) were dissected free, weighed, and
snap-frozen for later analysis.

Biochemical and molecular analyses. Tissue samples were ana-
lyzed for total protein content as described previously (1). Myofibril-
lar protein content was determined via a modification of the method
described previously (29).

Total RNA isolation. Total RNA was extracted from preweighed
frozen muscle samples using the TRI Reagent (Molecular Research
Center, Cincinnati, OH) according to the company’s protocol, which
is based on the method described by Chomczynski and Sacchi (7).
Extracted RNA was precipitated from the aqueous phase with isopro-
panol and after, being washed with ethanol, was dried and suspended
in a known volume of nuclease-free water. The RNA concentration
was determined by optical density at 260 nm (using an optical density
260-nm unit equivalent to 40 �g/ml). The muscle total RNA concen-
tration is calculated on the basis of total RNA yield and the weight of
the analyzed sample. The RNA samples were stored frozen at �80°C
to be used subsequently in relative RT-PCR procedures.

RT. One microgram of total RNA was reverse transcribed for each
muscle sample by using the SuperScript II RT from GIBCO BRL and
a mix of oligo(dT) (100 ng/reaction) and random primers (200
ng/reaction) in a 20 �l total reaction volume at 45°C for 50 min,
according to the provided protocol. At the end of the RT reaction, the
tubes were heated at 90°C for 5 min to stop the reaction and then were
stored at �80°C until used in the PCR reactions for specific mRNA
analyses (see below).

PCR. A relative RT-PCR method using 18S as an internal standard
(Ambion, Austin, TX) was applied to study the expression of specific
mRNAs for insulin-like growth factor I (IGF-I) and mechano-growth
factor (MGF). The sequence for the primers used for the specific
target mRNAs is shown in Table 1. These primers were purchased
from Life Technology, GIBCO. In each PCR reaction, 18S ribosomal
RNA was coamplified with the target cDNA (mRNA) to serve as an
internal standard and to allow correction for any differences in starting
amounts of total RNA.

Table 1. Sequence of the specific sets of primers that were used in RT-PCR mRNA analyses

Target mRNA PCR Primer Sequence 5� 3 3� Product Size, bp GenBank Accession No.

IGF-I (all) 5� sense: GCATTGTGGATGAGTGTTGC 202 all X06043
3� antisense: GGCTCCTCCTACATTCTGTA 254 MGF

MGF 5� sense: GCATTGTGGATGAGTGTTGC 163 X06108
Load-sensitive IGF-I 3� antisense: CTTTTCTTGTGTGTCGATAGG

IGF-I, insulin-like growth factor I; MGF, mechano-growth factor.
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There was no correlation between training-induced changes
in muscle mass (e.g., trained minus contralateral mass) and the
mean torque integral value for all treatment muscles (Fig. 5).

DISCUSSION

The relative effectiveness of LMT, SMT, or IMT has been a
matter of interest for quite some time (e.g., Ref. 8). Clearly,

each training mode can contribute to muscle adaptation. How-
ever, the results from numerous studies conducted in humans
have often led to some confusion as to the relative effective-
ness of IST, SMT, or LMT. This is particularly true with regard
to changes in strength. In this context, some of this confusion
is related to the types of testing involved, in that the impact of
the individual training mode appears to have some specificity
for testing in the same mode.

Muscle mass is arguably the most important determinant of
functional capabilities and as such is an important consider-
ation in a number of occupational and clinical settings. Load-
bearing or resistance-type exercise is the primary method for
the maintenance, increase, or recovery of muscle mass. This
can be particularly important in settings where muscle atrophy
is a risk such as bed rest or spaceflight. The focus of the present
study was the relative effectiveness IMT, SMT, and LMT in
stimulating a hypertrophy response. Although there have been
a number of human resistance training studies that included
reliable measurements of changes in muscle- or muscle fiber-
size, few of these studies have also included systematic com-
parisons of the relative impacts of training mode on the
compensatory hypertrophy response. As a result, we know that
IST, SMT, or LMT can stimulate muscle hypertrophy but little
is known about the relative effectiveness of each mode in
stimulating this response.

With regard to animal studies and resistance exercise, the
results found in the literature generally involve models in
which the loading and/or contraction mode of muscles or
muscle groups cannot be quantified (e.g., Refs. 2, 3, 10). The
methods used in the present study represent an attempt to
overcome this shortcoming. One shortcoming of the present
study is that the force output recorded was the net result of
activation of all the muscles downstream from the point of
stimulation on the nerve. For each training mode, the 10
training sessions imposed in this study had no measurable
effect on the mass of the soleus and tibialis anterior muscles
and minimal impacts on the plantaris (data not shown). There-
fore, we have assumed that the majority of the force measured
during stimulation is being generated by the gastrocnemius
muscle. In the rat, the gastrocnemius muscle makes up 75–80%
of the mass in the posterior leg muscles (e.g., triceps surae plus
the plantaris), whereas the medial head of the gastrocnemius
accounts for �40% of that total muscle mass. Thus we believe
that the changes seen in the medial gastrocnemius muscles are
reflective of the impact of this resistance training protocol.

Fig. 3. Changes in the expression and/or accumulation of mRNA for
mechano-growth factor (MGF; A) or insulin-like growth factor I (IGF-I; B).
*P � 0.05 vs. Contra.

Fig. 4. Torque production during functional electrical stimulation-induced
resistance exercise training. Top: typical 1-s torque tracings from data sets
collected during resistance exercise training. For SMT, foot position moved
from 44 to 64° and from 44° to 24° for LMT. Bottom: mean torque integral
calculated from all of the training sessions for all rats presented by training
mode. Values are means � SE. *Each mean torque integral value is signifi-
cantly different from the other, P � 0.05.

Fig. 5. Across modes, there was no apparent relationship between the change
in muscle mass and the mean torque integral after resistance exercise training.
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In light of the significant differential in torque integrals for
the three training modes (Fig. 4), it may seem somewhat
surprising that the majority of the anabolic impacts were
remarkably similar. For example, the relative changes seen in
DNA and RNA were not different for the three modes (Fig. 2
and data not shown). However, at the molecular level, there
was some divergence in the responses measured in the medial
gastrocnemius muscle. For example, the mRNA for the two
IGF-I isoforms was significantly increased after IMT and
SMT, but these changes did not reach significance in the LMT
muscles (Fig. 3). In an acute study (e.g., single bout), Bamman
et al. (4) found that lengthening but not shortening exercise
resulted in a significant increase in IGF-I mRNA in muscle (4).
However, it is not clear whether there is a conflict between the
findings of Bammen et al. and the present study because our
data were collected after 10 training sessions. Our present
findings indicate that the stimuli driving adaptation in skeletal
muscles using this model are probably not stoichiometrically
related to the accumulated work or the integrated force gener-
ated in the course of the training. This conclusion can also be
drawn from the data presented by a number of investigators,
including Smith and Rutherford, who reported that the amount
of muscle force generated during training was not quantita-
tively linked to the magnitude of the adaptations hypertrophy
in humans (16, 23, 28). In a set of companion papers, Ruther-
ford and colleagues (27, 28) speculated that adaptation may be
a function of the metabolic load imposed by the training
activities. The results of the present study do not adhere to the
tenants of this metabolic hypothesis (greater metabolic load
with SMT vs. LMT) in that the LMT and SMT resulted in
equivalent changes in measures of muscle hypertrophy in rats.
A number of additional studies with human subjects have also
indicated that the relationship between metabolic load and
muscle adaptation does not appear to be a primary determinant
of adaptation (e.g., Refs. 12, 30).

One notable aspect of the design of our rat training protocol
was that we allowed a period of isometric force development
before movement in both the SMT and LMT modes (see
METHODS and Fig. 4, top). It is possible that there was a
significant contribution of this isometric force development to
the adaptation process in these otherwise dynamic treatments.
It is difficult to discern whether a similar isometric component
was present in the majority of the published studies comparing
training modes in human subjects. However, although it is not
explicitly stated, it is reasonable to speculate that, depending
on the training modality (e.g., isokinetic vs. constant external
resistance), isometric components exist in some protocols de-
signed to test dynamic movements. For example, in an eccen-
tric training study by Housh et al. (18), the authors mention that
subjects indicated that they had “control of the load” before full
release and movement. This suggests that subjects were hold-
ing some portion of the load isometrically before the initiation
of the eccentric action. It seems quite likely that mechanical
constraints (e.g., the inability to instantaneously begin move-
ment when muscles are activated and/or the requirement to
overcome inertia) of most systems would require subjects to
develop significant, if transient, levels of isometric force in
most training situations.

In summary, using a model that should not include any
motor learning, we found that resistance training with the same
activation parameters in isometric, shortening, or lengthening

modes led to essentially equivalent levels of muscle hypertro-
phy. Within these training bouts, the integrated torque varied
significantly such that LMT � IMT � SMT. These findings
support previous studies that have reported that measures of
work production during resistance training do not directly scale
with the adaptation responses seen in skeletal muscle.
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