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Revision of Eocene warm-water cassid gastropods from coastal southwestern 
North America: implications for 

paleobiogeographic distribution and faunal-turnover

RICHARD L. SQUIRES1,2
1Professor Emeritus, Department of Geological Sciences, California State University, 18111 Nordhoff Street, Northridge, California, 

91330-8266, USA; 2Research Associate, Invertebrate Paleontology Department, Natural History Museum of Los Angeles County, 
900 Exposition Boulevard, Los Angeles, California, 90007; richard.squires@csun.edu

The warm-water (thermophilic) Eocene cassid gastropods reported previously from coastal southwestern 
North America (CSWNA), a region extending from the Olympic Peninsula, Washington to Baja California 
Sur, Mexico, are revised in terms of taxonomy, description, geographic distribution, and biostratigraphy. 
Five species of the cassine Galeodea and a single species of the phaliine Echinophoria are recognized. 
Galeodea meganosensis, G. sutterensis, G. louella, G. californica and G. tuberculiformis are predominantly 
found in California and, collectively, range in age from early to middle Eocene. Echinophoria trituberculata 
of middle Eocene age in southern California and of earliest late Eocene age in southwestern Washington, 
is the earliest known record of this genus. Several poorly known supposed cassids are discussed. The 
pre-Oligocene global record of Galeodea is compiled for the first time. The first arrival of Galeodea in 
the CSWNA region occurred in the early Eocene just after the warmest peak and highest sea level of the 
Cenozoic. Some of the CSWNA Galeodea species are very similar morphologically to some found in the 
Tethys Realm of Western Europe, especially in England and France, and to some found in the Gulf Coast 
and Mexico (Nuevo León and Chiapas). These similar species are indicative that the migratory route of 
Galeodea into the CSWNA region was via a current system that emanated from the Old World, passed 
near southern Western Europe, the Gulf Coast of the United States, northern and southern Mexico, and 
eventually influenced the CSWNA region. Thermophilic CSWNA cassids radiated during the early Eo-
cene but declined by the end of the middle Eocene, and, because of global cooling, disappeared near the 
beginning of the Oligocene.

 Keywords: Cassid gastropods, Galeodea, Eocene, California, Washington, Tethyan Realm

INTRODUCTION
Cassid gastropods are popularly referred to as “helmet 

shells” or “bonnet shells.” They make up a relatively small 
group, in terms of the number of genera and species, but 
these predators of echinoderms have been widespread 
since the early Eocene in shallow, tropical to subtropi-
cal seas of the world. Their pre-Oligocene published 
species record, which is listed here for the first time, 
shows a poorly known Late Cretaceous record, very few 
Paleocene species, and a rich Eocene record. There are 
eight extant genera and about 70 extant species, which 
occur mostly in tropical Indo-West Pacific and Caribbean 
waters, from the low tide to a depth of about 100 m, but 
can be bathyal (Abbott 1968, Kreipl 1997, Verbinnen et 
al. 2016).

Stemming from the work by Conrad (1855) and 
Gabb (1864), cassids have been reported from Eocene 
shallow-marine strata in coastal southwestern North 
America (CSWNA), a region extending from the Olympic 
Peninsula,Washington to Baja California Sur, Mexico (Fig. 
1). Their classification and geologic record have not been 
revised since Durham (1942) although there have been 
changes in their supraspecific categories (Beu 2008, 
2010) and in their biostratigraphy (Squires 1984, 1987). 
There has been also new collecting in southern Califor-
nia (Squires and Advocate 1986) and Baja California, 
Mexico (Squires and Demetrion 1994). The chief goals 
of this present paper are to update the taxonomic and 
biostratigraphic records of the warm-water Eocene cas-
sids in the CSWNA region, as well as to better understand 



2           PALEOBIOS, VOLUME 36, APRIL 2019 

which are found in British Columbia, Washington, and 
Oregon in cool-, deep-water communities, including 
those fueled by chemosynthesis, originating within the 
accretionary wedge depositional setting of the Cascadia 

the paleobiogeographic and paleoclimatic implications 
of their record. With its tropical focus, this present paper 
does not address geologically younger cassid species of 
Echinophoria Sacco, 1890 and Liracassis Moore, 1963, 
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Figure 1. Index map of the coastal southwestern North America (CSWNA) region.
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invertebrate-paleontology
UCMP:  http://ucmp.berkeley.edu. More detailed 

UCMP locality information is available to researchers 
by contacting the museum’s invertebrate collection 
manager.

SYSTEMATIC PALEONTOLOGY

GASTROPODA UNRANKED
CAENOGASTROPODA UNRANKED

TONNOIDEA Suter, 1913
CASSIDAE Latreille, 1825

Strong et al. (2019) recognized two subfamilies of 
cassids. They are cassines and phaliines, and both are 
known in the CSWNA Eocene record. Strong et al. (2019: 
p. 26) reported, furthermore, that based on DNA studies, 
the cassines Galeodea and Cassis Scopoli, 1777, as well 
as the phaliine Echinophoria Sacco, 1890 are supported 
as being monophyletic genera.

CASSINAE Latreille, 1825
GALEODEA Link, 1807

Type species—By monotypy. Buccinum echinophorum 
Linné, 1758 (=Morio echinophora Linné, 1758). Pliocene 
to Recent, southern Europe to Mediterranean.

Geologic range—Late Cretaceous (Santonian to early 
Campanian) to Recent. Galeodea is present in middle 
Miocene to early Pliocene strata, as well as rarely to 
uncommonly in the modern record; namely, in the Do-
minican Republic and elsewhere in the Caribbean Sea 
region (Beu 2010).

Differential diagnosis—Spire moderately low to 
moderately high, partially submerged or not. Radial ribs 
absent on spire. Last-whorl shoulder distinct, tabulate 
(common) or rounded, and bearing nodes strong (com-
mon) or weak. Anterior siphonal canal moderately short 
to long, twisted (leftward), and unnotched (therefore no 
siphonal fasciole). Canal reflected leftward and upward 
(dorsally). Aperture moderately wide; inner lip can have 
lirae or pustules; posterior end of inner canal can have 
parietal node and consequent restriction. Shell can have 
multiple episodic varices, and terminal varix weak to 
prominent; outer lip can be slightly flared and can bear 
denticles on its interior. 

Remarks—Dall (1909: p. 64) gave a very detailed 
synonymy, up to the year 1909, of Galeodea, and Beu 
(2010: p. 231) gave nine genus-group names. Beu (2008) 
demonstrated that Galeodea belongs in the Cassinae. He 
commented that protoconchs of all the Recent Galeodea 
species have almost no specific characters. They are like 

forearc region. These cooler and deeper water cassids 
have been used effectively to refine Eocene-Miocene 
biostratigraphy and correlation in the Pacific Northwest 
(PNW). For modern revisions about the late Eocene to 
early Oligocene cassids in the PNW, see Moore (1963, 
1984), Hickman (1980), and Nesbitt (2003).

MATERIAL AND METHODS

The clade-classification scheme of Bouchet and Rocroi 
(2017) is used for supra-generic categories. Modern 
updates in the taxonomy of cassids follow those of Beu 
(2008, 2010). Representative specimens of extant cas-
sid shells, housed in the Deparment of Malacology col-
lection at the Natural History Museum of Los Angeles 
County, were studied in order to better understand the 
morphologic distinctions among genera. The subheading 
“Primary Type Material” pertains to holotype, paratype, 
and lectotype specimens. Meanings of the terminology 
associated with the two kinds of shell varices (episodic 
and terminal) are taken from Webster and Vermeij 
(2017) and Hickman (2018). The boundaries of the in-
formal provincial molluscan “stages” (“Martinez” through 
“Tejon”) are from Squires (2003), who discussed the 
history of their derivation, and Figure 2 shows their cor-
relation to the European stages. The boundaries of the 
informal-molluscan biozones Echinophoria dalli through 
Liracassis rex are from Nesbitt (2003). Magnetic stratig-
raphy studies by Prothero (2001, 2003) and Prothero et 
al. (2001) were used to augment the molluscan geologic 
age data for the cassid-bearing formations in the CSWNA 
region. Table 1, which lists published species of Late Cre-
taceous, Paleocene, and Eocene Galeodea Link, 1807 from 
throughout the world, is based on a comprehensive but 
not an exhaustive literature search. The data are subject 
to imprecisely known geologic ages, poor preservation, 
inadequate illustrations of the species, and the possibil-
ity of synonyms.

Institutional Abbreviations—ANSP, Academy of 
Natural Sciences at Drexel University, Philadelphia, 
Pennsylvania; CASG, California Academy of Sciences, 
San Francisco; IGM, Instituto de Geologîa, Universidad 
Nacional Autónoma de México, México City. LACMIP, Los 
Angeles County Museum of Natural History, Invertebrate 
Paleontology Department, Los Angeles, California; UCMP, 
University of California, Berkeley; UWBM, University of 
Washington Burke Museum, Seattle.

Cited Localities—Information about the localities 
referred to in this paper can be accessed through the 
following website links: 

LACMIP:  https://nhm.org/site/research-collections/
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the protoconch of G. echinophora, the type species of 
Galeodea, in that they are all very small, blunt, and pau-
cispiral (Beu 2008: figs. 11A, C, E). Some Eocene species 
of Galeodea have a long anterior canal (Gardner 1939), 
but other species do not.

Galeodea meganosensis Vokes, 1939
Fig. 3A–D

Galeodea sutterensis “Dickerson.” Clark and Woodford, 
1927. p. 113; pl. 19, fig. 21 [misidentification]. 

Galeodea sutterensis meganosensis Vokes, 1939. p. 151; 
pl. 19, fig. 18.

Galeodea (Gomphopages) meganosensis Vokes. 

Durham, 1942. p. 184. Squires, 1987. p. 39; fig. 49. 
Squires, 1988a. pl. 1, fig. 11. 

Galeodea aff. nodosa carinata (Deshayes, 1835). 
Squires, 1988b. p. 13, figs. 30, 31.

Primary Type Material—Of G. meganosensis Vokes, 
1939, holotype UCMP 31244, Locality UCMP 3152, 
Meganos Formation, Deer Valley, Mount Diablo area, 
Contra Costa County, northern California. Holotype = 
the specimen misidentified as G. sutterensis “Dickerson” 
Clark and Woodward.

Material examined—The ten specimens include: 
Plaster replica of holotype, hypotypes LACMIP 7474, 

Figure 2. Chronostratigraphic diagram showing CSWNA Eocene cassid species and their geologic ranges. Geologic time scale, stage 
ages, chrons/polarity, nannofossil zones, and timing of global climate events from Gradstein et al. (2012: fig. 28.11). Provincial 
molluscan stages from Squires, (2003: fig. 2.1).
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Table 1. Age and location of published species of Galeodea found in pre-Oligocene strata in the world. 

Species/Author(s) Age Location

aegyptiaca Oppenheim, 1906 Lutetian Pakistan
allani Finlay and Marwick, 1937 Danian to Selandian New Zealand
ambigua Solander, 1766 early Bartonian to early Priabonian England
anderseni Schnetler and Heilman, 2011 latest Ypresian to early Lutetian Denmark
angustana Wrigley, 1934 Ypresian England
anteniana Martin, 1931 Bartonian or Priabonian Java
archiaci Cossmann and Pissarro, 1909 earliest Ypresian Pakistan
boehmi Martin, 1931 Bartonian or Priabonian Java
brevicostatum Conrad, 1834 Lutetian Alab., Miss., Tex., Florida
bullata Brown, 1839 Ypresian England, Denmark
californica Clark, 1942 late Ypresian to Lutetian CSWNA
cingulae Garvie, 2013 middle Ypresian Texas
coronata Deshayes, 1830 Bartonian England, France
diadema Deshayes, 1835 Ypresian England, France
douvillei O'Gorman, 1923 Ypresian France
dubia Aldrich, 1885 early Ypresian Alabama, Texas
elongata Koenen, 1885 latest Ypresian to early Lutetian Denmark
aff. elongata Koenen, 1885 Danian to early Selandian West Greenland; Denmark
enodis Deshayes, 1835 Lutetian to early Bartonian England, France
eurychilus Cossmann, 1889 Bartonian France
gallica Wrigley, 1934 Ypresian England, France, Denmark
geminata Wrigley, 1934 Lutetian England
khaledi Abbass, 1967 late Lutetian to Bartonian Egypt
klingeri Kiel and Bandel, 2004 Santonian to early Campanian South Africa
koureos Gardner, 1939 late Paleocene to Ypresian Alab., Tex., no and so. Mex.
louella Squires and Advocate, 1986 middle Ypresian CSWNA
marcusi Garvie, 2013 middle Lutetian Texas
meganosensis Vokes, 1939 middle Ypresian CSWNA
millsapsi Sullivan and Gardner, 1939 early Priabonian Mississippi, no. Mexico
modesta Suter, 1917 late Lutetian New Zealand
nodosa Solander, 1766 Lutetian to Bartonian England, France
petersoni Conrad, 1854 early Priabonian Mississippi, Texas
planotecta Meyer and Aldrich, 1886 early Priabonian Alab., Miss., no. Mexico
planotecta jacksoni Palmer, 1937 early Priabonian Mississippi
pretiosa Deshayes, 1865 Lutetian France
reklawensis Garvie, 1996 middle Ypresian Texas
singularis Deshayes, 1865 Bartonian France, Belgium
striata J. Sowerby, 1812 Ypresian England
sutterensis Dickerson, 1916 Ypresian to middle Lutetian CSWNA
umbgrovei Martin, 1931 Bartonian or Priabonian Java
taitii Conrad, 1834 late Bartonian Alabama
taitii johnsoni Palmer, 1947 early Priabonian Mississippi, Lousiana
textiliosa Deshayes, 1835 Lutetian France
tuberculiformis Hanna, 1924 early Ypresian to middle Lutetian CSWNA
turneri Gardner, 1939 middle Ypresian to Lutetian Texas
unicoronata raricrenata O'Gorman, 1923 late Ypresian France
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Figure 3. See caption on the bottom of page 7.
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7711, 14829, 14830, and five unfigured specimens from 
LACMIP Locality 40827.

Emended description—Shell small to medium size 
(up to 33 mm height, incomplete). Shape globose with 
small spire and large subquadrate last whorl. Spire rela-
tively high, last whorl with two carinae; carina on shoul-
der strongest with approximately 11 spinose tubercles; 
second carina noticeably weaker also with approximately 
11 tubercles (rounded, not spinose) becoming weaker 
toward outer lip and unaligned relative to nodes on 
shoulder. Spiral thread with minute nodes can be pres-
ent medially in interspace between carinae, and another 
spiral thread with minute nodes can be present anterior 
to second carina. Shell surface otherwise covered with 
very fine spiral threads, with cancellate patches. Anterior 
siphonal canal broken but shows twisting. Episodic varix 
uncommon but thick. Terminal varix narrowly thickened. 

Stratigraphic occurrence—Lower Eocene, northern 
to southern California. “Meganos  Stage”: Meganos For-
mation, Deer Valley, north side of Mount Diablo, Contra 
Costa County, northern California (Vokes 1939, Clark 
and Woodward 1927). “Capay Stage ”: Lodo Formation, 
Cerros Shale Member [=new information: UCMP locality 
1817; for locality details, see Squires (1988c)], Urrut-
tia Canyon, north of Coalinga, Fresno County, northern 
California. Lower Juncal Formation, Whitaker Peak, Los 
Angeles County, southern California (Squires 1987). 
“Domengine Stage”: Juncal Formation?, northern Lock-
wood Valley, Ventura County, southern California (Squires 
1988b) [for age update, see Squires (2000)].

Remarks—Vokes (1939) recognized that Clark and 
Woodford (1927) misidentified a new gastropod as Ga-
leodea sutterensis Dickerson,1916. Vokes (1939) named 
this new gastropod G. meganosensis and regarded it to be 
a subspecies of G. sutterensis. Based on its less submerged 
spire, only two carinae (never three), more nodes, and 
shell covered otherwise with fine spiral threads, G. me-
ganosensis is regarded herein a distinct species.

Galeodea sutterensis Dickerson, 1916
Fig. 3E–M

Galeodea sutterensis Dickerson, 1916. p. 492; pl. 40, 
figs. 1a, 1b. Schenck, 1926. p. 84, figs. 1, 2 (both refig-
ured from Dickerson 1916). Vokes, 1939. p. 150; pl. 19, 
fig. 15. Turner, 1938. p. 92; pl. 18, fig. 19. Schenck and 
Keen, 1940. pl. 12, figs. 3, 4. Weaver, 1942. p. 402; pl. 78, 
figs. 6, 7.

Galeodea susanae Schenck, 1926. p. 85; pl. 15, figs. 
3–7. Turner, 1938. p. 92; pl. 18, fig. 18. Schenck and 
Keen, 1940. pl. 12, figs. 5, 6. Weaver, 1942. p. 402; pl. 78, 
figs. 2, 3. 

Galeodea (Gomphopages) susanae Schenck. Durham, 
1942. p. 184. Givens, 1974. p. 78; pl. 8, fig. 4. Squires, 
1984. p. 27; fig. 7k.

Galeodea (Gomphopages) sutterensis Dickerson. Dur-
ham, 1942. p. 184; pl. 29, fig. 2. Givens, 1974. p. 78; pl. 
8, fig. 4. 

Galeodea cf. G. susanae Schenck. Givens and Kennedy, 
1979. p. 86. 

Galeodea sp. Squires and Demetrion, 1992. p. 32; fig. 
85. 

Galeodea (Mamabrina) [sic] susanae Dickerson. 
Squires, 2008. fig. 24. 

[non] Galeodea sutterensis Dickerson. Clark and Wood-
ford, 1927. pl. 19, fig. 21 [=Galeodea meganosensis].

Primary Type Material—Of G. sutterensis, holotype 
UCMP 11782, Locality UCMP 1853, Capay Shale, Sutter 
Buttes (=Marysville Buttes), Sutter County, northern Cali-
fornia. Of G. susanae, holotype CASG 1753, Locality CASG 
372, Llajas Formation, north side Simi Valley, southern 
California; paratypes CASG 1754, 1755, Llajas Formation; 
paratype CASG 1756, Lookingglass Formation, Glide, 
Douglas County, southwestern Oregon.  

Material examined—The forty-two specimens in-
clude: Hypotypes LACMIP 13425, 14831-14833, and 
the following unfigured specimens: one from LACMIP 
Locality L1165, two from LACMIP Locality 2777, three 
from LACMIP Locality 7206, four from LACMIP Locality 

Figure 3A–D. Galeodea meganosensis Vokes, 1939 , LACMIP Locality 40827, lower Juncal Formation (Eocene, “Capay Stage”), 
Whitaker Peak area, Los Angeles County, southern California). Apertural (A), abapertural (B), and left-lateral (C) views of hy-
potype, LACMIP 14829, Whitaker Peak area, Los Angeles County, southern California. D. Left-lateral view of hypotype, LACMIP 
14830. E–M. Galeodea sutterensis Dickerson, 1916. Apertural (E), abapertural (F), and left-lateral (G) views of hypotype, LAC-
MIP 14831, LACMIP Locality 40371, Llajas Formation (Eocene, “Domengine Stage”), Devil Canyon, northern Simi Valley, Los 
Angeles County, southern California. Apertural (H), abapertural (I), and left-lateral (J) views of hypotype, 14832, LACMIP Lo-
cality 40371, Llajas Formation (Eocene, “Domengine Stage”), Devil Canyon, northern Simi Valley, Los Angeles County, southern 
California. Apertural (K), abapertural (L), and left-lateral (M) views of hypotype, LACMIP 14833, LACMIP Locality 7162, Tejon 
Formation, (Eocene, “Tejon Stage”), Grapevine Canyon, Tehachapi Mountains, Kern County, southern California. N–P. Galeodea 
louella (Squires and Advocate, 1986), Maniobra Formation (Eocene, “Capay Stage”), Orocopia Mountains, Riverside County, 
southern California. Apertural (N) view of paratype LACMIP 7167. Locality 16335. Apertural (O) and abapertural (P) views of 
hypotype LACMIP 8836. LACMIP Locality 23799. Scale bars=10 mm.
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7207, ten from LACMIP Locality 7210, three from LACMIP 
Locality 22362, and fifteen from LACMIP Locality 40371. 

Emended description—Shell small to medium size 
(up to 55 mm high, complete). Shape globose with small 
spire and large subquadrate last whorl. Protoconch small 
and smooth, naticoid, about three whorls. Teleoconch 
about 3.5 large whorls. Spire partly submerged. No 
sutural cord. Penultimate whorl commonly unevenly 
submerged. Last whorl subquadrate, spiral sculpture 
much stronger than axial sculpture, with posterior two-
thirds of whorl having widely spaced two or, less com-
monly, three carinae (anteriormost carina can become 
obsolete toward the outer lip). Carinae  bear tubercles, 
either spinose and long or, less commonly, narrow; tu-
bercules unaligned between rows; carina on shoulder 
with 7 to 12 nodes. Teleoconch covered by numerous, 
closely spaced fine spirals, not necessarily minutely 
cancellate; fine spirals can alternate in strength and can 
be strongest on last whorl neck. Inner lip and columellar 
lip callus merge, with resultant callus extensive, project-
ing laterally short distance, creating two false umbilici 
(one adjacent to neck and one adjacent to anterior end 
of canal). Neck constricted. Anterior canal long, slender, 
reflected sideways (laterally to the left) approximately 
42°, and unnotched. Aperture moderately wide but 
constricted (grooved) at posterior end. Episodic varices 
normally lacking. Terminal varix narrow or phlange-like 
refection with exterior and interior smooth.

Stratigraphic occurrence—Lower to middle Eocene, 
southwestern Oregon to Baja California Sur, Mexico. “Ca-
pay  Stage”: Lookingglass Formation, Douglas County, 
southwestern Oregon (Turner 1938; Weaver 1942); 
Capay Shale, Sutter Buttes, Sutter County, northern 
California (Dickerson 1916); Lodo Formation, Cerros 
Shale Member, Urruttia Canyon, north of Coalinga, Fresno 
County, northern California (Vokes 1939) [UCMP Locality 
1817, for updated locality details, see Squires (1988c)]; 
Juncal Formation, Pine Mountain area, Ventura County, 
southern California (Givens 1974); Juncal Formation, 
Whitaker Peak (near basement contact), Los Angeles 
County, southern California (Squires 1987); Juncal For-
mation, Elsmere Canyon, Los Angeles County, southern 
California (Squires 2008). Maniobra Formation (near 
basement contact), Orocopia Mountains, Riverside 
County, southern California (Squires and Advocate 1986; 
Squires 1991); Bateque Formation, Baja California Sur, 
Mexico (Squires and Demetrion 1992). “Domengine  
Stage”: Domengine Formation, Coalinga area, San Benito 
County, northern California (Vokes, 1939). Llajas For-
mation (shallow-marine [transgressive] facies), Devil 

Canyon, Santa Susana Mountains, just east of northern 
side of Simi Valley, Los Angeles County, southern Cali-
fornia (Schenck 1926; Squires 1984). Ardath Shale, San 
Diego, San Diego County, southern California (Givens and 
Kennedy 1979). Juncal Formation?, northern Lockwood 
Valley, Ventura County, southern California (Squires 
1988b) [for age update, see (Squires 2000)]. “Tejon  
Stage”: Tejon Fm, probably Liveoak Member [=including 
new information: LACMIP Locality 22340; for locality 
details, see Squires (1989: appendix)], Tehachapi Moun-
tains, Kern County, southern California.

Remarks—Galeodea sutterensis and G. susanae are 
considered to be synonyms because of their closely simi-
lar morphology, which is not unique to either one. Galeo-
dea sutterensis, which has been reported previously from 
lower Eocene (“Capay Stage”) strata, commonly has three 
rows of spiral nodes on the last whorl. Galeodea susanae, 
which has been reported previously from middle Eocene 
(“Capay/Domengine” boundary strata and “Domengine 
Stage”) strata, commonly has two rows of spiral nodes 
on the last whorl. Galeodea susanae, however, can have 
three spiral rows (Fig. 3K-M). 

The anterior canal is broken on all known specimens 
of G. sutterensis, except for a single specimen from the 
middle Eocene Llajas Formation in northern Simi Valley, 
southern California. This specimen, which has retained 
its long anterior canal (Fig. 3H–J), is remarkably similar 
to Galeodea turneri Gardner (1939: p. 25, pl. 8, figs. 1, 
4) from lower Eocene strata in Bastrop County, Texas. 
Galeodea sutterensis differs by having a less submerged 
spire and a ramp without weak to moderately weak 
axial ridges extending to each node on the shoulder of 
the last whorl.

Galeodea sutterensis is recognized herein for the first 
time in the Tejon Formation. It co-occurs there with 
the cassid Echinophoria trituberculta (Weaver, 1912) 
at LACMIP Locality 22340. The Tejon Formation G. sut-
terensis specimens are small-medium in size (up to 38 
mm height) and can have good preservation, except they 
are incomplete and most consist of large fragments of the 
last whorl with widely spaced spines.

Galeodea louella (Squires and Advocate, 1986)
Fig. 3N–P

Galeodea sp. cf. G. sutterensis Dickerson, Crowell and 
Susuki, 1959. p. 588; pl. 2, figs. 1, 4. 

Phalium (Semicassis) louella Squires and Advocate, 
1986. p. 858; fig. 2.11, 2.12. Squires, 1991. pl. 2, fig. 2.

Galeodea cf. G. gallica Wrigley, 1934. Squires and Advo-
cate, 1986. p. 857; figs. 2.7, 2.8; Squires, 1991. pl. 2, fig. 1.
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[non] Phalium (Semicassis) louella Squires and Advo-
cate. Squires and Demetrion, 1994. p. 130; figs. 10–11 
[=Galeodea tuberculiformis Hanna, 1924].

Primary Type Material—Holotype LACMIP 7166 
and paratype LACMIP 7167; both from Locality LACMIP 
40665, Maniobra Formation, Orocopia Mountains, Riv-
erside County, southern California.

Material examined—The four specimens include: 
Holotype, paratype, hypotype LACMIP 8836, and one 
unfigured specimen from LACMIP Locality 40662.

Emended description—Shell small to medium size 
(up to 25 mm height, incomplete). Shape ovate to sub-
globose. Protoconch conial, paucispiral. Uppermost spire 
whorls rounded. Penultimate whorl partially submerged 
with carina bearing small, thin and narrow spinose 
nodes. Last whorl with three carinae; carinae evenly 
spaced, or second and third carinae can be closer spaced 
to each other. Carina on shoulder shoulder bearing 12 
to 16 small, thin and narrow spinose nodes; second 
carina with much finer nodes; third carinae smooth. 
Shell covered otherwise by minute, non-cancellate spiral 
threads. Aperture narrrow to moderately wide. Several 
spiral lirae on columella at the anterior end of aperture. 
Anterior canal region nearly entirely missing, except for 
short remnant of canal showing evidence of twisting. No 
varices observed.    

Stratigraphic occurrence—Lower Eocene. Southern 
California to Baja California Sur, Mexico. “Capay Stage”: 
Maniobra Formation, Orocopia Mountains, Riverside 
County, southern California (Squires and Advocate 1986; 
Squires 1991). Bateque Formation, eastern San Ignacio 
area, Baja California Sur, Mexico (Squires and Demetrion 
1994). 

Remarks—Preservation is moderately poor. Speci-
mens are weathered, and the outer lip morphology can-
not be determined. Galeodea louella is removed herein 
from Phalium (Semicassis) Mörch, 1852 and placed in 
Galeodea because of the overall Galeodea shape of the 
last whorl, several carinae with nodes, and absence of 
parietal columellar shield. The paratype (Fig. 3N) of G. 
louella, which is figured for the first time, shows better 
than its holotype how remarkably similar this species is 
to Galeodea gallica Wrigley, 1934 from England, France, 
and Denmark. Galeodea louella differs from it by having 
fewer small nodes on the shoulder of the last whorl.

Galeodea californica Clark, 1942
Fig. 4A–C

Galeodea (Caliagaleodea) californica Clark, 1942. p. 
118; pl. 19, figs. 15–19.

Galeodea californica Clark. Givens and Kennedy, 1979. 
p. 86.

Galeodea (Caliagaleodea) californica Clark. Squires, 
1984. p. 26; fig. 7j. Squires. 1988a. pl. 1, fig. 12; Squires. 
1988b. p. 13, fig. 29. Squires and Demetrion, 1994. p. 
130; fig. 9.

Primary Type Material—Holotype UCMP 34376 and 
paratype UCMP 34377, both from UCMP Locality UCMP 
7004, Llajas Formation, north side Simi Valley, Ventura 
County, southern California.

Material examined—The thirty-one specimens in-
clude: Hypotypes LACMIP 6530, 14834, and 28 unfigured 
topotype specimens. 

Emended description—Shell small to medium size 
(up to 33 mm height, incomplete), globose with thin shell. 
Spire very small, low, mostly submerged. Sutural “ramp” 
flat, between spire and last whorl. Callus thin to absent 
on parietal region of inner lip. Spiral ribs prominent, 
numerous, and smooth with wide interspaces, especially 
on most of last whorl. Spiral ribs on neck much thinner, 
very weak, and bearing closely spaced minute weak 
nodes. Interspaces on shell neck narrower and bearing 
three or four spiral threads. Anterior canal moderately 
long, twisted leftward (broken on nearly all specimens), 
and umbilicate. Episodic varices lacking. Terminal varix 
wide, flange-like, and reflected. 

Stratigraphic occurrence—Lower Eocene to lower 
middle Eocene, southern California to Baja California 
Sur, Mexico. “Capay Stage”: Bateque Formation, Baja 
California Sur, Mexico (Squires and Demetrion 1994); “ 
Domengine Stage”: Juncal Formation?, northern Lock-
wood Valley, Ventura County, southern California (Squires 
1988c; [for age update, see Squires (2000)]. Llajas For-
mation, Simi Valley, Ventura County, southern California 
(Clark 1942; Squires 1984); lower Scripps Formation, 
San Diego, San Diego County, southern California (Givens 
and Kennedy 1979).

Remarks—Most of the specimens are internal molds 
or nearly so. The anterior canal is broken off on nearly all 
of them. Clark (1942) named Caliagaleodea as a subgenus 
of Galeodea. Beu (2008: p. 288) regarded Caliagaleodea 
as a synonym.

Galeodea tuberculiformis Hanna, 1924
Figs. 4D–H

Morio (Sconsia) tuberculatus Gabb, 1864. p. 104, pl. 
19, fig. 57. Arnold, 1907. pl. 39, fig. 9.

[non] Cassidaria tuberculata Risso, 1826. p. 186 (see 
Dall, 1909. p. 64).

Cassadaria [sic] (Phalium) turberculata [sic] Dall, in 
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Figure 4. See caption on the bottom of page 11.
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Diller (1896. p. 458).
Galeodea tuberculata (Gabb). Dickerson, 1916. pl. 42, 

fig. 2.
Galeodea (Morio) tuberculata (Gabb). Waring, 1917. 

pl. 15, fig. 17.
Galeodea tuberculiformis Hanna, 1924. p. 167. Ander-

son and Hanna, 1925. p 110. Schenck, 1926. p. 83; pl. 14, 
figs. 12–16. Stewart, 1927. p. 380; pl. 28, figs. 11. Vokes, 
1939. p. 149; pl. 19, figs. 19, 21, 23–27. 

Coalingodea tuberculiformis (Hanna). Durham, 1942. 
p. 186; pl. 29, figs. 5, 9. Givens, 1974. p. 78; pl. 8, fig. 7. 
Squires, 1977. table 1.

Cassis (Coalingodea) tuberculata (Gabb). Abbott, 1968. 
p. 59; pl. 34 (three views).

Phalium tuberculiformis (Hanna). Givens and Kennedy, 
1979. pp. 86, 88.

Phalium (Semicassis) tuberculiformis (Hanna). Squires, 
1984. p. 27; figs. 7l. Squires, 1987, p. 40; fig. 50. Kappeler 
et al., 1984. table 2 on p. 17.

Phalium (Semicassis) louella Squires and Advocate. 
Squires and Demetrion, 1994. p. 130; figs. 10–11.

Phalium (Semicassis) tuberculiformis (Hanna). Squires, 
1999. p. 19; fig. 37.

Primary Type Material—Lectotype ANSP 4343, 
designated by Stewart (1927: p. 380), Muir Sandstone, 
Bull’s Head Point, Martinez, north of Mount Diablo, Con-
tra Costa County, northern California (Weaver 1953).

Material examined—The thirty-six specimens in-
clude: Hypotypes LACMIP 6532 and 14835, plaster rep-
lica of lectotype ANSP 4343, and the following unfigured 
specimens: eleven from LACMIP Locality 7180, two from 
LACMIP Locality 40371, nineteen from LACMIP Locality 
40374, and one from LACMIP loc. 40764. 

Emended description—Size moderately small, height 
up to 34.2 mm height. Immature shell fusiform, early 
adults can have moderately high spire and tabulate last 
whorl, whereas late adults can have lower spire and 
somewhat “rounded-look” on periphery of last whorl or 
less, commonly, tabulate shoulder. Protoconch low (nati-
coid) or moderately high, 2.5 smooth whorls, with abrupt 

contact with earliest sculptured whorl. Teleoconch up to 
3.5 whorls. Spire overall low, 0.23 to 0.24 of shell height, 
partially submerged. Radial ribs present on spire whorls. 
Suture impressed and somewhat wavy; bordered by 
sutural cord only on some upper spire whorls. Sutural 
ramp moderately inclined. Last whorl enlarged, posterior 
two-thirds of last whorl with widely spaced three (rarely 
four) carinae bearing spinose nodes (unaligned between 
carinae); anteriormost carina much weaker and with 
weaker nodes; carina on shoulder with 10 nodes. Sculp-
ture on rest of shell (including short neck) consisting of 
many, closely spaced, spiral threads (visible to naked 
eye) crossed by growth lines and minutely cancellate, 
commonly producing “beaded” look on well preserved 
individuals. Parietal/columellar lip callus wide and well 
developed; separated from shell and forming umbilicus 
anteriorly. Siphonal canal moderately short, twisted, and 
unnotched; 7 to 8 transverse lirae on callused columel-
lar lip with lirae becoming more closely spaced toward 
anterior end of aperture. Siphonal canal dorsally directed, 
with false umbilicus at posterior end. Episodic varix (or 
two varices) can be present (rarely none) but only on 
last whorl; location of varices variable. Terminal varix 
thick and with well developed denticles on inner edge of 
varix; posteriormost denticle can be prominent, thereby 
creating constriction in this region. 

Stratigraphic occurrence—Lower to middle Eocene, 
southwestern Washington to San Diego, California. “Me-
ganos Stage”: Upper Santa Susana Formation, south side 
Simi Valley, Ventura County, southern California (Squires 
1999). “Capay Stage”: Bateque Formation, San Ignacio 
area, Baja California Sur, Mexico (Squires and Demetrion 
1994). “Domengine Stage”: Domengine Formation, Coal-
inga area, San Benito County, central California (Vokes 
1939); Avenal Sandstone, Reef Ridge area, Kings County, 
central California (Kappeler et al. 1984). Muir Sandstone, 
Contra Costa County, northern California (Weaver 1953). 
Upper Juncal Formation, Pine Mountain area, Ventura 
County, southern California (Givens 1974). Upper Juncal 
Formation and Matilija Sandstone?, Whitaker Peak area, 

Figure 4A–C. Galeodea californica Clark, 1942, Llajas Formation, (Eocene, “Domengine Stage”), Las Llajas Canyon, north side Simi 
Valley, Ventura County, southern California. Apertural (A) and abapertural (B) views of hypotype LACMIP 6530, LACMIP Locality 
7242. C. Abapertural (C) view of hypotype LACMIP 14834, LACMIP Locality 22312. D–H. Galeodea tuberculiformis Hanna, 1924, 
Llajas Formation , (Eocene, “Domengine Stage”), Devil Canyon, northern Simi Valley, Los Angeles County, southern California. 
Apertural (D), abapertural (E), left-lateral (F), and right-lateral (G) views of hypotype LACMIP 6532, LACMIP Locality 16115. H. 
Apertural view of hypotype LACMIP 14835, LACMIP Locality 40371. I–P. Echinophoria trituberculata (Weaver, 1912). Apertural (I) 
and abapertural (J) views of hypotype LACMIP 14836, LACMIP Locality 22340, Tejon Formation, (Eocene, “Tejon Stage”), Grape-
vine Canyon, Tehachapi Mountains, Kern County, southern California. Apertural (K), abapertural (L), and right-lateral (M) views 
of hypotype LACMIP 14837, LACMIP Locality 5654. Apertural (N), abapertural (O), and left-lateral (P) views of hypotype LACMIP 
14838, LACMIP Locality 3125. K–P=Cowlitz Formation, (Eocene, “Tejon Stage”), Cowlitz River near Vader, Lewis County, south-
western Washington. Scale bars=10 mm.
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Ventura County, southern California (Squires 1987). 
Llajas Formation, Ventura County, southern California 
(Squires 1984). Ardath Shale, San Diego County (Givens 
and Kennedy 1979).

Remarks—Figure 4D shows the prominent posterior-
most denticle on the interior of the outer lip. Although 
the anterior siphonal canal is damaged or broken on 
most specimens, a few specimens from the Llajas Forma-
tion show that this canal is short, twisted, not notched 
(Fig. 4H), and with an angular left-lateral edge. At one 
locality in the Llajas Formation of Simi Valley, southern 
California, four out of 16 specimens of this species have 
an episodic varix, and one of these specimens has two 
episodic varices. 

The strength of the fine-beaded spiral sculpture on 
G. tuberculiformis is largely a function of how much a 
specimen is weathered. Beu (2008: p. 289) reported 
that G. tuberculiformis is more like a species of Cassis, 
but Cassis has a well developed siphonal notch, whereas 
tuberculiformis is unnotched.  

Galeodea tuberculiformis has the most widespread 
latitudinal distribution of any of the cassids found in the 
CSWNA region (Fig. 1). It is found, therefore, in numer-
ous formations, and it is likely the earliest cassid found 
in this region (Fig. 2). As noted by Durham (1942), it is 
very similar to Galeodea coronota (Deshayes, 1830) of 
middle Eocene (Lutetian) age in England and France (see 
Wrigley 1934: pl. 17, figs. 36–38). 

For discussions regarding whether or not Hanna 
(1924) was justified in renaming Gabb’s (1864) tuber-
culatus, see Schenck (1926), Stewart (1927), and Abbott 
(1968: p. 60). The renaming was necessary, however, 
because Dall (in Diller 1896: p. 458) used the name 
Cassadaria (Phalium) turberculata [sic] (Gabb), which 
created a secondary homonym of Cassidaria tuberculata 
Risso, 1826.

PHALIINAE Beu, 1981
ECHINOPHORIA Sacco, 1890

Type species—By subsequent designation (Dall, 
1909), Buccinum intermedium Brocchi, 1814. Oligocene 
and Miocene of Italy (Abbott 1968: p. 96).

Geologic range—Middle Eocene to Recent. Echino-
phoria is present in middle Miocene to early Pliocene 
strata, as well as uncommonly in the modern record, in 
the Dominican Republic and elsewhere in the Caribbean 
Sea region (Beu 2010).

Differential diagnosis—Spire height moderately low. 
Inner lip callus thin or absent and columellar callus ab-
sent; no false umbilici created by calluses. Aperture wide. 

Columella long, anterior siphonal canal strongly twisted, 
slightly to moderately notched, and fasciolate. Siphonal 
fasciole very distinct, with posterior edge of anterior 
canal noticeably producing two long “plica-like” spiral 
structures extending across ventral surface of siphonal 
canal and reaching notch area; siphonal fasciole sepa-
rated from base of last whorl by distinct groove. Previous 
varices rare (on fossils), absent (on modern specimens). 
Episodic varices rare on fossils and very rare to absent 
on modern specimens. Terminal varix on outer lip thin 
to thickened and reflected (Beu 2010: p. 231).

Remarks—Beu (2010: p. 242) gave six genus-groups 
names of Echinophoria. The protoconch of Echinophoria 
is low-turbiniform, with a well-impressed suture and 
about three strongly inflated, smooth whorls. Beu (2008, 
2010) opined that Echinophoria, with its prominent 
sculpture resembling that of Galeodea, is likely to have 
been the stem group of the Phaliinae, evolving from Ga-
leodea late in Cretaceous time. 

Durham (1942) was the first to recognize the presence 
of Echinophoria in the CSWNA region, and he used Echino-
phoria species to help establish a cassid-biostratigraphic 
zonation scheme for the Pacific Northwest (PNW). 
This zonation was developed further and expanded 
by Armentrout (1975: pp. 18–25). Moore (1984) used 
the phylogeny of the phaliine genera Echinophoria and 
especially Liracassis for the purpose of also furthering 
the PNW cassid-biostratigraphic zones. Prothero and 
Armentrout (1985) used high-resolution, magneto-
stratigraphy for refining these zones, and this technique 
was utilized further by Prothero (2001: fig. 2), Prothero 
(2003: fig. 1.3), Nesbitt (2003: fig. 4.1), and Nesbitt et 
al. (2010) to update the cassid zonation. The Galeodea 
trituberculata zone, which includes the Cowlitz Forma-
tion and the tropical-Eocene fauna, is followed, in vertical 
stratigraphic succession, by the cooler water Echinopho-
ria dalli, E. fax, and Liracassis zones (Fig. 2). Liracassis is 
one of several genera that diverged from Echinophoria 
during the Cenozoic but is now extinct (Beu 2008: p. 
362). Echinophoria differs from Liracassis by having a 
smaller shell size, absence of strap-like spiral ribs, spiral 
ribbing never as dominant, nodes never as weak, longer 
and straighter anterior canal, and weaker development 
of longitudinal spiral cords on the anterior canal.

Echinophoria trituberculata (Weaver, 1912)
Fig. 4I–P

Morio tuberculatus var. trituberculatus Weaver, 1912. 
p. 39; pl. 3, fig. 35.

Galeodea tuberculata (Gabb). Dickerson, 1915. pl. 6, 
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figs. 3a, 3b. 
Galeodea trituberculata (Weaver). Weaver and Palmer, 

1922. p. 37; pl. 11, figs. 23, 27. Tegland, 1931; p. 408; pl. 
59, fig. 1; pl. 60, figs. 1–4. Weaver, 1942. p. 404; pl. 78, figs. 
10–15; pl. 79, figs. 1–4, 8. McWilliams, 1971. pl. 2, fig. 8. 
Moore, 1984. figs. A, D, E, G, H. Nesbitt, 1998. pl. 1, fig. 5.

Galeodea petrosa (Conrad, 1855). Schenck, 1926. p. 
82; pl. 14, figs. 5–11.

Galeodea pretrosa [sic] (Conrad). Clark, 1929. pl. 14, 
figs. 1, 6.

Echinophoria trituberculata (Weaver). Durham, 1942. 
p. 184; pl. 29, fig. 10. Moore, 1984. figs. 4-A, D, E, G. H. 
Nesbitt, 1995. table 1.

 “Galeodea” tritubreculata [sic] (Weaver). Durham, 
1944. p. 166.

Phalium (Echinophoria) trituberculatum (Weaver). 
Abbott, 1968. p. 109; pl. 93 (three views).

Echinophoria cf. E. trituberculata (Weaver). Givens, 
1974. p. 79.

Primary Type Material—Holotype CASG 7612, 
UWBM Locality 232, north bank of Cowlitz River 2.4 km 
east of Vader, Cowlitz Formation, Lewis County, south-
western Washington.

Material examined—The twenty-eight specimens 
include: Hypotypes (LACMIP 14836–14838) and 25 
unfigured specimens: 15 from LACMIP Locality 22430 
(Tejon Formation, Grapevine Canyon, Kern County, 
southern California, nine from LACMIP Locality 5654 
(Cowlitz Formation, near Vader, Lewis County, south-
western Washington), one from LACMIP Locality 2777 
(Llajas Formation, north side Simi Valley, Ventura County, 
southern California).

Emended description—Shell small to medium size 
(up to 60 mm height); transition at approximately 22 mm 
height from immature specimens (fusiform with aper-
tural sculpture abundant) to mature specimens (globose 
quadrate shape with apertural sculpture absent). Spire 
medium high. Sutural cord can be present. Sutural ramp 
low. Last whorl with three carinae (anteriormost carina 
slightly weaker), all with nodes, which become progres-
sively stronger toward outer lip. Carina on shoulder with 
11 widely spaced spinose tubercles; second carina with 
11 nodes; third carina with nine nodes, but nodes can 
be essentially obsolete toward aperture. Shell surface 
mostly covered with minute spiral threads generally 
all same size, but finer threads can be irregularly and 
randomly present (i.e., not in a repeating pattern); base 
of last whorl with spiral ribs, becoming stronger ante-
riorly. Columellar callus moderately thick on immature 

specimens and bearing lirae in parietal area and bearing 
granules on posterior part of columella; columellar callus 
without sculpture and thin on mature specimens, with 
nodes showing through. Columella on mature specimens 
bearing faint spiral lines beneath callus. Columella long 
and overall straight, except at twisted anterior end. 
Peristome with moderate notch. Anterior siphonal ca-
nal with deep groove adajacent to twisted columellar 
end; fasciole well developed, especially over angulate 
adaxial side of canal. False umbilicus present. Outer lip 
on immature specimens thickened, with interior bearing 
numerous elongate denticles separated by deep grooves 
on immature specimens. Outer lip on mature specimens 
narrow, reflected, and with interior denticles or grooves 
becoming much less apparent with growth. Episodic 
varices rare. Terminal varix present. 

Stratigraphic occurrence—Middle Eocene to low-
ermost upper Eocene, southwestern Washington to 
southern California. Lower part of “Tejon Stage”: Matilija 
Sandstone, Pine Mountain area, Ventura County (Givens 
1974). Tejon Formation (Anderson and Hanna 1925), 
probably Liveoak Member, Kern County, southern Cali-
fornia. Uppermost part of “Tejon Stage,” Cowlitz Forma-
tion, Lewis County, southwestern Washington; Tukwila 
Formation, King County, southwestern Washington (Mc-
Williams 1971, Nesbitt 1998). 

Remarks—Specimens from the Cowlitz Formation 
show the best preservation. Specimens from the Tejon 
Formation are commonly well preserved fragments, 
which are missing the anterior canal because of improper 
removal of the well-indurated rock matrix. Early work-
ers assigned this species to genus Galeodea, and start-
ing with Durham (1942), workers assigned it to genus 
Echinophoria. Well preserved specimens of Echinopho-
ria are characterized by the presence of a longitudinal 
spiral cord on the anterior canal (Beu 2008: p. 287), as 
well as the development of a sutural cord. Development 
of both of these features on the CSWNA specimens of 
E. trituberculata can be absent, extremely faint (Tejon 
Formation specimens), or prominent (Cowlitz Formation 
specimens). These differences are probably the function 
of preservation. 

Some specimens of Echinophoria trituberculata can 
resemble Galeodea tuberculiformis, but E. trituberculata 
differs by having a shell with a larger maximum size (up 
to 60 mm vs. 34 mm), its spire can be less submerged, 
ramp flatter, sutural cord present on all whorls, spi-
rals stronger on the last whorl and with more spinose 
tubercles, spirals coarser on neck, fine sculpture not 
beaded and rarely cancellate or not at all, parietal shield 
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commonly not present or weaker. In addition, E. trituber-
culata has its anterior siphon more twisted, left side of 
fasciole angulate (keeled) rather than rounded and with 
deeper channel, anterior canal notched, longer and also 
wider with a slight longitudinal indentation, and episodic 
varices not as common.

Echinophoria tritubercula differs from the late Eocene 
to early Oligocene E. dalli (Dickerson, 1917), found pre-
dominantly in the Keasey Formation in the Veronia area 
of northwest Oregon (Hickman 1980), in having weaker 
spiral sculpture between carinae, thicker parietal callus, 
and a thicker outer lip.  

 Echinophoria trituberculata differs from the latest Eo-
cene to early Oligocene Echinophoria fax (Tegland, 1931), 
found predominantly in the Lincoln Creek Formation in 
western Washington, by having no fourth carina, fewer 
(10 versus 14) nodes on shoulder of last whorl, notice-
ably finer less spiral sculpture between the carinae on the 
last whorl, and weaker spiral ribs on base of last whorl. 

Weaver and Kleinpell (1963: p. 190, pl. 25, fig. 11) 
reported Echinophoria trituberculata (Weaver) from the 
Matilija Sandstone [“Tejon Stage”] in the Pine Mountain 
area, Santa Barbara County, southern California. Their 
report is based on a poorly preserved single specimen 
whose anterior canal is missing, thus identification as to 
genus and/or species is not possible.

FAMILY AND GENUS INDETERMINATE

Galeodea? crescentensis Weaver and Palmer, 1922 
nomen inquirendum

Galeodea tuberculata (Gabb) var. crescentensis Weaver 
and Palmer, 1922. p. 37; pl. 11, figs. 18, 20.

Galeodea crescentensis (Weaver and Palmer, 1922). 
Tegland, 1931. p. 409, pl. 59, figs. 2, 3.  Weaver, 1942. p. 
403, pl. 78, figs. 4, 5. Durham, 1942. p. 186. 

Cassis (Coalingodea) crescentensis (Weaver and Palm-
er). Abbott, 1968. p. 60.

? Galeodea crescentensis (Weaver and Palmer, 1922). 
Schenck, 1926. p. 85, pl. 15, fig. 8.

Primary Type Material—Holotype CASG 7612-A, 
Crescent Formation, in sea cliff on west shore of Crescent 
Bay, Clallam County, Olympic Peninsula, Washington.  

Remarks—This species is based on only its holotype, 
a specimen whose height is 16 mm. Tegland (1931) 
mentioned that the holotype has a close resemblance 
to a cassid from lower Oligocene deposits in Townsend 
Bay, Washington. Durham (1942: p. 186) commented 
that the holotype resembles G. tuberculiformis, but the 
meager material available for crescentensis prevents 

accurate taxonomic assignment of Weaver and Palmer’s 
gastropod. A partially crushed questionable specimen 
of G. crescentensis (hypotype UCMP 31310), which was 
illustrated by Schenck (1926: p. 85, pl. 15, fig. 8) from the 
Crescent Formation in Washington, is morphologically 
very different in shape and sculpture from any other Eo-
cene CSWNA cassid and also different from the holotype 
of G. crescentensis illustrated by Weaver and Palmer, 1922 
from the same formation. This questionable specimen, 
which is missing some of its shell, might not even be a 
cassid.

“Stramonita” petrosa Conrad, 1855, nomen dubium
Stramonita petrosa Conrad, 1855. p. 17; 1857. p. 327; 

pl. 6, figs. 47, 47a.

Remarks—This species has been the source of con-
siderable taxonomic confusion. Its two known speci-
mens were found in a float boulder several kilometers 
from its supposed source, which was assumed to the 
Tejon Formation in the Grapevine Canyon area, Kern 
County, southern California. The specimens are very 
poorly preserved, and their smudged sketches are very 
inadequate. The curatorial details and whereabouts of 
these specimens are unknown. The anterior canal of this 
gastropod is not twisted, therefore it is not a cassid. It is 
also not the muricid Stramonita Schumacher, 1817, but 
it might be a ficid. Based on the insufficient knowledge 
about Stramonita petrosa, Conrad’s (1855) gastropod is 
regarded herein as a nomen dubium. 

On the basis of the above-mentioned two incomplete 
shells, Anderson and Hanna (1924: p. 108, pl. 10, figs. 
2, 3 = hypotypes CASG 823 and 824) reported Galeodea 
petrosa (Conrad, 1855) from Locality CASG 245 in the 
Tejon Formation, Grapevine Canyon, Kern County, south-
ern California. These two specimens show no diagnostic 
morphologic characters, which would allow identifica-
tion as to family, genus, or species.

Conrad’s use of the name “petrosa” has been confused 
with Dolium petrosum Conrad (1849), a Miocene cassid 
species from the Astoria Formation in Oregon. See Moore 
(1963) for illustrations and synonymy of this Miocene spe-
cies, now referred to as Liracassis petrosa (Conrad, 1849).

“Galeodea” schencki Weaver and Kleinpell, 1963 nomen 
dubium

Galeodea schencki Weaver and Kleinpell, 1963. p. 189; 
pl. 25, figs. 15, 16.

Primary Type Material—Holotype CASG 70173 and 
paratype CASG 70174 are both from undifferentiated 
Sacate-Gaviota strata, Santa Barbara County, southern 
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California.
Remarks—The holotype is essentially an internal 

cast. The paratype does not look like a cassid and might 
be a cymatiid, based on the shell’s high spire, numerous 
spiral ribs, and narrow and sculptured terminal varix. 
The paratype is missing also its anterior end, and its 
aperture is not known. Both parts are needed for proper 
identification. This gastropod is regarded herein as a 
nomen dubium. 

Weaver and Kleinpell (1963: p. 190, pl. 25, fig. 10) re-
ported also a questionable Echinophoria dalli (Dickerson, 
1917) from the undifferentiated Gaviota Formation [“Te-
jon Stage”] in Santa Barbara County, southern California. 
Their report is based, however, on a poorly preserved 
single specimen whose anterior canal is missing, thus 
detailed identification is not possible.

“Galeodea” sp. Bremner, 1932
Galeodea sp. Bremner, 1932. p. 17; pl. 2, fig. 9.
Remarks—Bremner (1932) reported this gastropod 

(hypotype CASG 5527) from upper Paleocene (Thane-
tian) beds in Pozo Canyon, Santa Cruz Island, Santa 
Barbara County, southern California. This specimen is 
poorly preserved, and its anterior end is missing. This 
specimen might be a ficid gastropod.

DISCUSSION

Paleobiogeographic Implications
The earliest known cassid occurrence consists of three 

specimens of Galeodea klingeri Kiel and Bandel, 2003 of 
Late Cretaceous (mid-Santonian to lower Campanian) 
age from the Umzamba Formation in South Africa. This 
species was identified originally as Galeodea (Taieria) 
klingeri, but Beu (2008: p. 288) reported Taieria Finlay 
and Marwick, 1937 to be a junior synonym of Galeodea. 
Other Late Cretaceous occurrences of cassids, which are 
only possible occurrences, have been mentioned by Dall 
(1909), Finlay and Marwick (1937), Riedel (1995), Kiel 
and Bandel (2004), and Strong et al. (2019). Haydenia 
impressa Gabb, 1864, of early Campanian age in northern 
California, is one of these “possible” occurrences, but 
well preserved specimens of it can have a plait, half-way 
up the columella. This is not, however, a characteristic 
of cassids. 

The earliest reported Paleogene cassid is “Galeodea” 
aff. elongata Koenen (1885: p. 22, pl. 1, figs. 21a–c) 
of early through late Danian age in west Greenland 
(Rosenkrantz 1970: p. 427). Koenen (1885) originally 
referred to his species as Cassidaria? [now Galeodea?], 

but Schnetler (2001: table 4) removed the question 
mark and reported this cassid from middle Paleocene 
(Selandian) rocks in Denmark. 

Galeodea allani (Finlay and Marwick, 1937: p. 68, pl. 9, 
figs. 17, 19, 20) [formerly Taieria allani] from southern 
New Zealand is another Danian cassid. The amphitropic 
distribution of Paleocene cassids in west Greenland/
Denmark and New Zealand might be the result of them 
evolving from different lineages, which existed in these 
two disjunct areas during the Late Cretaceous. More re-
search is needed to verify this assertion. These Paleocene 
Galeodea are not morphologically similar to the earliest 
known cassids in the CSWNA region.

By the early Eocene, Galeodea appeared, for the first 
time, in the CSWNA region (Fig. 5). Some Galeodea 
species found in the CSWNA region differ only slightly 
in morphology from certain species found in Western 
Europe and/or the Gulf Coast-Mexico region. Hickman 
(2003: p. 79) used the apt phrase “species pairs,” to refer 
to these congenera so similar in their morphology as to 
indicate close phylogenetic relationship. Five examples of 
cassid “species pairs” are the following: (1) Galeodea me-
ganosensis and a form of G. nodosa Solander, 1766 from; 
(2) G. louella and G. gallica Wrigley, 1934 from France, 
England, and Denmark (Table 1); (3) G. louella and G. 
koureos Gardner, 1939 from the Gulf Coast, northern 
Mexico (Nuevo León) (Gardner 1939), and the Isthmus of 
Tehuatepec area (Chiapas) in southern Mexico (Perrilliat 
et al. 2006); (4) G. sutterensis and G.turneri Gardner, 1939 
from Texas; and (5) as mentioned by Durham (1942), G. 
tuberculiformis and G. coronata (Deshayes, 1830) from 
England and France. All of these similar “species pairs” 
are indicative of a westward-directed amphiatlantic fau-
nistic influx between Western Europe and North America 
(Fig. 5). As reviewed and discussed by Harzhauser et al. 
(2002), this influx has been recognized, on the basis of 
various gastropod and bivalve species, since the 1920’s 
(Cooke 1924, Gardner and Bowles 1934, Clark and Vokes 
1936, Palmer 1967, and Squires 1987, 2003, 2013, 2014).

The long distance involved and the relatively short 
duration for the influx of Galeodea from the Old World 
into the CSWNA region would seem to dictate a plank-
totrophic larval stage, which is the norm for many living 
tonnoideans (Bandel et al. 1994). All Galeodea species, 
however, have a small, one-whorl, cap-shaped proto-
conch, which is not indicative of planktotrophy (Beu 
2008). Hughes (1968a, 1968b) described, however, 
intracapsular development and secreted mucus-string 
“drogues” that enable Galeodea species to have wide dis-
tribution despite their lack of planktotrophy. Persistence 
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Figure 5. Eocene global paleogeographic distribution and temporal occurrences of Galeodea (plotted in order of first-appear-
ance datum). Ages of climatic events from Gradstein et al. (2012: fig. 28.11). Maps modified from Smith et al. (1994) show land 
masses. Solid circles=Galeodea occurrences; thick vertical lines indicate Galeodea temporal ranges. Numbers at top of columns 
refer to geographic regions and primary sources of data derived from Table 1. PETM=Paleocene-Eocene Thermal Maximum.
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of greenhouse conditions during the middle Eocene 
would have facilitated the northward expansion of warm-
water cassids along the west coast of North America. 

Echinophoria trituberculata is the earliest known 
Echinophoria. Kanno (1973: p. 225) reported the earliest 
Echinophoria to be from the warm-water, lower upper 
Eocene Cowlitz Formation in southwestern Washington. 
He did not give the species name, but E. tritubercula is 
the Echinophoria found in this formation. It is found also 
in strata as old as middle Eocene in the lower part of the 
Tejon Formation in southern California (Fig. 2).

Faunal-turnover Implications
During Paleocene through early late Eocene time, glob-

al-warming (“greenhouse”) conditions existed (Gradstein 
et al. 2012). The Paleocene-Eocene Thermal Maximum 
(PETM) (Figs. 2, 5) occurred at the Paleocene-Eocene 
boundary, and there was 5 to 8°C of warming (Sluijs et al. 
2007). In addition, sea level was at least 70 to 80 m higher 
during the PETM than at present (Sluijs et al. 2008). As a 
result, thermophilic faunas were more widespread than 
at present day and extended to higher latitudes (Adams 
et al. 1990). The PETM coincided with the radiation of 
thermophilic Galeodea in Western Europe, the Gulf Coast, 
and Mexico. As mentioned above, thermophilic cassids 
arrived in the CSWNA region, for the first time, during 
the early Eocene, not long after the PETM.

Starting in the late Eocene-early Oligocene, there was 
globally a transition from the warm “greenhouse” state 
to a colder “icehouse” climate mode. The transition was 
linked to complex plate tectonic processes and complex 
paleo-oceanographic changes, including newly cre-
ated pathways for oceanic circulation in the Southern 
Hemisphere and the accompanying onset of thermal 
stratification (Berggren 1982). The rapidly deteriorat-
ing climatic conditions associated with this transition 
caused the demise of the thermophilic Eocene fauna in 
the CSWNA region. From the end of the “Tejon Stage” 
and beginning of the Galvinian Stage (Fig. 2), there was 
a corresponding change in the taxonomic composition 
of marine gastropods, including cassids.

Smith (1910) was the first to mention the disappear-
ance of tropical molluscan taxa at the end of the Eocene 
in the CSWNA region. Keen and Bentson (1944: p. 9) and 
Durham (1950) provided additional comments. Addicott 
(1970: p. 7) recognized that this demise, now referred to 
as a “faunal turnover,” (i.e., a change in the composition of 
a biota), coincided with a distinct decline in biodiversity. 
Addicott’s conclusions were based, in large part, on the 
lower biodiversity of gastropods in the Galvinian Stage 

upper Eocene San Emigdio Formation in the southern San 
Joaquin Valley of California (Wagner and Schilling 1923) 
in comparison to the higher biodiversity of gastropods 
in the underlying Tejon Formation, in the same area (An-
derson and Hanna 1925). More recently, other workers 
(Nesbitt 2003, Hickman 2003, Oleinik and Marincovich 
2003, Squires 2003, and Retallack et al. 2004) have fur-
ther substantiated the faunal turnover at the beginning 
of the Galvianian Stage. 

Most of the thermophilic CSWNA cassids had already 
disappeared before the turnover, except for Echinophoria 
trituberculata, which went extinct just before the turn-
over (Fig. 2). Afterward, CSWNA cassids were comprised 
of only Echinophoria and Lircassis and restricted to Or-
egon, Washington, and British Columbia, of the Pacific 
Northwest (PNW) area of the CSWNA region, and, in 
contrast to the thermophilic cassids, they lived in cooler 
and deeper water settings (Hickman 2003). The turnover 
coincided with the intensification of the latitudinal-
thermal gradient, origination of regional endemic taxa, a 
shift from species-rich assemblages to species-dominant 
assemblages, abrupt decline in Turritella-dominated 
assemblages, appearance of the modern temperate-
bathyal fauna, the beginning of a strong faunal connec-
tion between the PNW and Asia, and significant presence 
of chemosymbiotic mollusk communities (Hickman 
2003), including Liracassis associated with Oligocene 
whale skeletons (Nesbitt 2005). This faunal turnover 
also affected some other shallow-marine gastropods of 
the CSWNA region; namely, certain stromboids (Squires 
2013) and certain ficids (Squires 2014).
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