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ABSTRACT

Government, medical, financial, and web-based services in-
creasingly depend on the ability to rapidly sift through huge,
evolving data sets. These data-intensive applications per-
form complex multi-step computations over successive gen-
erations of data inflows (e.g., weekly web crawls, nightly
telescope dumps, or hourly surveillance videos). Because of
the data volumes involved, applications must avoid repro-
cessing old data when new data arrives and instead process
incrementally. Unlike in stream-based systems, incoming
data does not have to be processed immediately, permit-
ting work to be amortized via bulk processing. Such bulk-
incremental processing represents an emerging class of ap-
plications whose needs are not fully met by current systems.

This paper presents a generalized architecture for bulk-
incremental processing systems (BIPS), simplifying the cre-
ation of such programs. In contrast with incremental view
maintenance in data warehousing, BIPS provides flexible
low-level primitives for managing incremental data and pro-
cessing, upon which both relational and non-relational oper-
ations can be implemented. The paper describes the BIPS
programming model along with several example applica-
tions and examines some key implementation choices. These
choices are shown to play a major role in overall system per-
formance, via experiments on a large testbed cluster.

1. INTRODUCTION
There is growing demand for large-scale processing of loo-

sely structured data, such as text, audio and image files.
For example, Internet companies routinely process many
terabytes of web documents, user search queries, and other
textual data sets. In the image domain, networked surveil-
lance cameras, seismic imaging surveys for oil and gas ex-
ploration, and digital medical records (e.g., MRI or X-ray
images) can individually account for multiple terabytes of
information a day [13]. Other examples include Landsat
satellites recording reflected radiation from earth [2], digi-
tal sky survey projects [11, 32], and nation-wide mesoscale
weather monitoring [9].

The data often has a temporal dimension, with new data
arriving periodically in large batches (e.g., weekly web crawls,
nightly telescope dumps, hourly satellite passes). Some pro-
cessing steps operate over data in the current batch only
(e.g., correcting for atmospheric distortion; extracting hy-
pertext links), while other steps combine new data with
data derived from previous batches (e.g., tracking moving
sky objects; maintaining inlink counts). Efficiency dictates
that the processing be carried out in an incremental fashion.

Figure 1: A dataflow for incrementally computing

a web crawl queue. Edges represent flows of data,

and stages marked with an S are stateful.

Furthermore, many applications favor high throughput over
ultra-low latency, so unlike in near-real-time data stream
applications, it makes sense to perform bulk processing of
large data batches. Lastly, these applications involve a sig-
nificant amount of specialized and non-relational∗processing,
in addition to relational operations.

This paper describes a prototype bulk-incremental pro-
cessing system (BIPS), which offers a simple, scalable and
fault-tolerant platform upon which such applications can
be deployed. Our work is inspired by non-relational bulk
dataflow systems like MapReduce [7] and Dryad [18]. Where-
as conventional database systems offer structured relational
primitives that can be extended with user-defined data types
and operations, Map-Reduce and Dryad aim to impose a
minimal amount of structure on data and processing needed
to achieve large-scale parallelism and fault-tolerance. BIPS
applies the same minimality principle to the incremental
domain, by adding simple and general support for keeping
track of evolving data and processing it in an incremental
fashion.

1.1 Example

∗Standard non-relational algorithms that have incremental
variants include spatio-temporal queries [20], page rank [8],
and data clustering [10, 12, 21], to name a few.



As an illustrative example, we describe a bulk-incremental
workflow that computes the crawl queue for a web indexing
engine. The algorithm that builds the crawl queue deter-
mines the ability of a web index to reflect updates to con-
tent within the web. Though crawling is a complex issue [6],
Figure 1 gives a high-level overview of a partial, simplified
workflow for this process. After bootstrapping with an ini-
tial set of pages, the workflow computes a score per URL
that is a function of indegree (the number of other pages
pointing to this page). Sites that score above some thresh-
old are placed in the crawl queue.

The first processing step or stage, extract links, extracts
the in-links from the raw web page text. Next, the count
in-links stage counts the number of times particular URLs
and web sites appear within the newly crawled pages. This
stage has two outputs, one for each count. The merge stage
combines those counts with the current known set of crawled
pages. This stage sends new and updated URLs from the
last crawl to the next two stages that score and threshold
the updates. Those URLs whose scores pass the threshold
are the next crawl queue.

As in a data stream management environment, each edge
transmits new or updated data items, and each stage pro-
cesses incoming data incrementally. (Stages marked with S

maintain some state to assist with incremental processing
of the inputs.) The count in-links stage is an example of a
strictly relational processing step, and extract links can be
thought of as a set-valued UDF. The merge stage resem-
bles a relational join, but it is subtly different: it deals with
data at two granularities (URLs and sites) simultaneously
by grouping by site and performing within-group sorting by
URL and outputs tuples that contain both URL-level and
site-level data.

1.2 Related Work

1.2.1 NonRelational Bulk Processing

As mentioned above, our work is inspired by the recent
non-relational bulk processing systems Map-Reduce [7] and
Dryad [18]. Our contributions beyond those systems are
two-fold: (1) a programming abstraction that makes it easy
to express incremental computations over incrementally ar-
riving data; (2) efficient underlying mechanisms geared specif-
ically toward incremental workloads.

1.2.2 Data Stream Management

Data stream management systems [3] focus on near-real-
time processing of continuously-arriving temporal data sets.
This focus leads to an in-memory, record-at-a-time process-
ing paradigm, whereas BIPS deals with disk-resident data
and set-oriented bulk operations. Also, the elastic paral-
lelism underlying BIPS combined with relaxed latency re-
quirements means there is no need for drastic load shedding
to cope with data spikes. Lastly, BIPS permits cyclic data
flows, which are useful in iterative computations and other
scenarios described below.

1.2.3 Incremental View Maintenance

BIPS can be thought of as generalized view-maintenance [4,
24, 25] platforms. Indeed, one can imagine supporting rela-
tional view maintenance on top of our framework, much like
relational query languages have been layered on top of Map-
Reduce and Dryad (e.g., DryadLINQ [31], Hive [1], Pig [22]).

Unlike traditional view-maintenance environments like data
warehousing which use declarative views that are maintained
implicitly by the system, BIPS exposes an explicit workflow
of data transformation steps. Workflow is a widely-adopted
paradigm in many business and scientific domains as a way
to manage complex networks of custom data manipulations.

1.2.4 Scientific Workflow

Like BIPS, scientific workflow systems deal with multi-
stage data processing flows, and some workflow systems sup-
port explicit parallelism. Some scientific workflow systems
operate in a grid environment, with the workflow controller
orchestrating the movement of data within and between grid
sites. BIPS is designed for a single, highly-parallel environ-
ment and focuses primarily on support for incremental data
and processing.

The only scientific workflow system we are aware of that
offers explicit support for incrementality (beyond trivial state-
less processing) is [28]. In this system stateful computation
is modeled explicitly in the workflow. To facilitate consis-
tent recovery from failures, it restricts state to a particular
form: a module’s state must consist of a set of unprocessed
input tuples and in particular the n most recent ones. In
contrast, in our approach state is arbitrary and is controlled
by the application. Hence, state can contain processed data
(e.g., a running total, or a statistical synopsis of the data
seen so far), and is not limited to recent data (e.g., a land-
mark window).

1.3 Contributions
This paper makes the following contributions:

• Bulk-incremental data processing model: BIPS pro-
vides a low-level dataflow model for programming bulk-incremental
programs. The model supports incremental processing steps,
including data-parallel primitives, access to persistent state,
and basic synchronization primitives for scheduling process-
ing steps.

• Efficient implementation: Existing bulk-processing sys-
tems were not developed for incremental processing and
leave large opportunities for increment re-use on the ta-
ble. While simple compile-time optimizations can reduce
the impedance mismatch between model and backend exe-
cution system, we also identify important modifications that
reduce processing overhead. In particular an incremental
shuffle mechanism reduces unnecessary data movement in
the backend system for a wide variety of processing steps.

• Evaluation: Experiments with our prototype explore the
impact of this paradigm on real-world data and process-
ing tasks. In particular we implement an incremental crawl
queue and deploy the prototype across an 88-node cluster
on production data. Our main findings are two-fold: (1)
A baseline implementation on top of an unmodified Map-
Reduce system exhibits unacceptable performance (running
time superlinear in input size), whereas our optimized imple-
mentation achieves linear running time; (2) Our algorithm
for scheduling processing steps responds to back-pressure in
one part of a dataflow by avoiding useless work in other
parts, thereby streamlining the entire execution.

2. BULKINCREMENTAL MODEL
This section presents the logical dataflow model of a bulk-

incremental processing system. A dataflow program P is



Figure 2: A single logical stage of a BIPS dataflow.

a directed graph, possibly containing cycles, that consists
of a set of computation vertices, stages, that may be con-
nected with multiple directed edges, flows. Each stage may
be stateful, supporting incremental processing steps that are
distributive, algebraic, or holistic, as defined in [16]. We be-
gin by specifying the structure of data as it flows through
the graph, and then describe the processing within a single
stage.

2.1 Data model
The core of our data model consists of application data

units (ADUs) and flows. Processing stages read and write
ADUs; the smallest unit of data in a BIPS. An ADU is
a set of bytes with application-defined boundaries; it may
be a relational tuple, or any other application-specific data
format. A flow F is a sequence of ADUs passed between
two processing stages over time.

To support a range of application-level semantics, in BIPS,
application data is opaque to the processing system. This
allows applications to define ADU formats to support their
particular brand of incremental computation. For example,
each ADU can carry meta data that determines if it is an
update, delete, or insert into the stage’s state. In BIPS only
application-defined functions access the data and instruct
the underlying model how to organize and route it.

2.2 Logical stage processing model
A processing stage in a BIPS dataflow has n input flows

{F in

1 , F in

2 , . . . , F in

n }, and m output flows {F out

1 , F out

2 , . . . , F out

m }.
The stage is invoked repeatedly, in a series of processing
epochs (epochs, for short). Epochs are local to a stage; there
is no notion of global system epochs. In fact, stages may ex-
ecute concurrently with one another, within the constraints
of their eligibility for execution (execution eligibility is dis-
cussed in Section 2.6, and scheduling is discussed in Sec-
tion 4.2).

During one epoch, a stage reads zero or more ADUs from
each input flow, and processes those ADUs,and writes zero
or more ADUs to output flow. The sequence of ADUs read
from a given input flow are called an input increment, and
the sizes of the input increments are determined via a special
input framing procedure described below in Section 2.6. The
sequence of ADUs output to a given flow during one epoch
form an output increment. The processing performed by
the stage is governed by a translation function (translator,
for short), T (·), which produces the output increments by
applying some (relational or non-relational) transformation
over the input increments.

The BIPS model provides three logical facilities upon which
the author of a translator may build: state, grouping, and

sorting. First, the function T (·) has access to persistent state
to support incremental functions. A stage that accesses this
state is called stateful. We model this state as an implicit,
loopback flow, adding an input/output flow pair, F in

S and
F out

S , to each stateful stage. Figure 2 illustrates these con-
cepts; it shows a single logical BIPS processing stage with
n = m = 2 and a loopback flow to support state. Each
input increment contains three ADUs.

Translation also supports grouping ADUs by application-
defined keys. This groupwise processing makes data paral-
lelism a core model feature, allowing bulk data to be pro-
cessed in parallel for each separate group. Grouping is a fun-
damental operation underlying many common operations.
For example, consider the equi-join operation. If the system
groups input data by the predicate’s column, a simple trans-
lator that iterates over groups can produce the join result.

The model supports grouping via a function RouteBy〈ADU〉,
which extracts a set of grouping keys from each ADU. There
is no restriction on the cardinality of the grouping key set re-
turned for a given ADU. Hence a single ADU may be routed
to multiple groups, or to no groups at all, making route-by
more general than the standard group-by construct. (We
give an example of how this generality can be exploited in
Section 2.4.) That said, the most common case is where
each ADU resolves to a single group.

In BIPS, groupwise processing subsumes per-ADU pro-
cessing; stage authors may specify a built-in RouteByADU

function to give each ADU its own group. ADU-wise stages
allow the BIPS compiler (Section 4.4.1) to make a number
of important optimizations. For example, ADU-wise trans-
lators can avoid expensive grouping operations, be pipelined
together for one-pass execution over the data, and avoid the
expense of maintaining state.

It is worth noting that in BIPS grouping is a first-class
citizen, decoupled from other data processing logic. By con-
trast, the Map-Reduce model couples grouping with ADU-
wise processing in the “map” function. Map-Reduce pro-
grammers routinely use the “map” function to perform gen-
eral stateless processing (e.g., parsing web pages) in addition
to grouping (e.g., grouping web pages by a signature). Such
practices harm modularity and often come back to bite. For
example, if one wishes to use a different “reduce” function
that performs per-website processing, one must modify the
web page parsing code to induce grouping by website. In
BIPS one simply adds a new RouteBy function, and uses
the web-page parsing translator as is.

As Figure 2 shows, the system upcalls the translation
function once for each set of ADUs sharing a given grouping
key. (Following standard data-parallelism practice, different
keys may be handled on different processing nodes.) Note
that T (·) also separates the ADUs by flow. Additionally, the
BIPS model orders the ADUs in each input flow through an-
other key-extraction function: OrderBy〈ADU〉. Such input
flow sorting is useful, for example, to write translators for
computing order statistics. It is also useful for join-like op-
erations over hierarchical data, as in the merge stage of our
crawl dataflow example (Section 1.1).

Each input flow to a stage has an associated RouteBy and
OrderBy function. The application may choose these func-
tions, or accept the system-provided defaults. The default
RouteBy function is RouteByADU. The default OrderBy

function is a special OrderByAny function that lets the sys-
tem select any order (for efficiency reasons the system may



use the order in which the data arrives, but no specific guar-
antee is made).

2.3 State semantics
Applications “access” state through groupwise translators

that present state ADUs that share a given RouteBy key.
A stage must explicitly write each state ADU present in
F in

S to F out

S to retain them for the next processing epoch.
Thus a translator may retain, update, insert or discard, by
not writing it to the state output flow, state ADUs dur-
ing an epoch. In this way, processing epochs are roughly
analogous to read/write transactions. Updated and inserted
state ADUs do not appear in their groups until the following
epoch.

The BIPS model allows translator authors to specify how
to group state (on the “left”) with respect to the other input
flows (on the “right”). By default, the model provides a “full
outer” grouping, calling translate for each key present on the
state flow, even if no other input flows share that key. While
useful for some applications, BIPS allows a stage to specify
a “right outer” grouping between state and other inputs,
calling translate with only the state ADUs which share keys
with ADUs in other input flows. In this case, the model
propagates all unseen state tuples automatically.

Our decision to model state as just another input and
output flow permits a range of applications. Though it is a
single flat list, it accommodates simple coarse-grained state
(i.e., state as a black-box entity stored under a single key), or
fine-grained hierarchical state (by writing additional ADUs
into the state for a particular grouping key, e.g., web sites in
our crawler example from Section 1.1). While we considered
permitting random access to the state module, we have not
found any compelling use cases for it.

2.4 Parameter flows
Typically, stages treat ADUs arriving on input flows as

data to be transformed or processed. However, some stages
may wish to change their behavior across different process-
ing epochs. BIPS supports this by allowing some input flows
to carry stage parameters. For example, a TopK filtering
stage specify an input flow holding new data and another
input flow holding ADUs that specify k. We call flows used
in this manner parameter flows, and they differ from data
flows in that all ADUs on such a flow must be routed to all
groups. Thus k is present when the system invokes the TopK
translation function for each group.

The BIPS model allows applications to specify such be-
havior by using the expressive power of the RouteBy func-
tion. The function supports two special symbols: ∅ and ALL.
The ∅ group indicates that this particular ADU may be dis-
carded. The ALL symbol indicates that this particular ADU
should appear on its flow for all found groups.

2.5 Cyclic dataflows
Cycles are a feature that sets the BIPS model apart from

many current systems, and they serve a number of impor-
tant functions. First, they allow a succession of stages to
continually refine a data product (iterative computation),
integrating program flow control into the dataflow process-
ing system. Second, they allow downstream stages to affect
upstream processing through the use of parameter flows. We
say that these two kinds of cycles are “real” in the sense that
they capture a repeating set of stages within the dataflow.

It is not possible to write a DAG version of the dataflow
because the number of iterations is input-dependent.

Cycles can also be used to reduce the state storage over-
head within a dataflow. Some dataflows, such as the incre-
mental median application in Section 3, can be written us-
ing a single stateful stage. However, that stage both applies
state updates (such as entering new numbers) and combines
the state with existing downstream output (the median lo-
cation) to produce some result (the median). These are
“faux” cycles in the sense that the dataflow could always be
unfolded into a DAG that replicates the stateful stage. We
discuss this strategy in more detail in Section 3.

2.6 Input Framing and Flow Control
We now turn to the issue of how many ADUs a stage

consumes from each input flow in a given epoch, i.e., deter-
mination of input increments. By default, a stage’s input
increments are simply the output increments generated by
upstream stages. However, finer-grained control is some-
times needed, e.g., for temporal windowing. It may even be
necessary to synchronize consumption of data across multi-
ple input flows, e.g., a temporal join.

To achieve these behaviors, a stage may specify a fram-
ing function, which assigns a framing key to each ADU on
each input flow. The framing keys determine the input in-
crements: consecutive ADUs with identical framing keys are
placed into the same increment. An increment is not eligible
to be read until an ADU with a different key is encountered
(the use of punctuations [29] can avoid having to wait for a
new key, although we have not implemented this feature).

For example, a daily hopping window can be achieved
by assigning the framing key to the date associated with a
timestamp field inside the ADU. A sliding window of d days
would use the same framing function, and have the trans-
lator buffer the last d increments in its state. A landmark
window would be implemented similarly.

For generality, the framing function has access to some
custom state, which is typically small and permits behav-
iors like windows that are not aligned on pre-determined
boundaries like midnight (in that case the state would track
the previous window boundary). The default framing func-
tion DefaultFraming simply returns the sequence number
of the output increment, causing input increments to match
output increments as discussed above.

The framing function is coupled with a second function,
runnability, which governs the eligibility of a stage to run
(the issue of scheduling runnable stages is discussed in Sec-
tion 4.2) and also controls consumption of input increments.
The input to the runnability function consists of the framing
key of each input flow for which there is a waiting increment.
(In some implementations the runnability function may also
have access to other meta data, such as the number of incre-
ments enqueued on a given input flow.) The function returns
a Boolean value to indicate whether the stage is eligible to
run, as well as the set of flows from which an increment is to
be consumed and the set from which an increment is to be
removed. (The decoupling of reading and removal of incre-
ments permits behaviors such as static lookup tables.) As
with framing functions, runnability functions may maintain
a small amount of state.

For example, a stage that performs a temporal join of
two input flows by day would use a runnability function
that only returns true iff both input flows contain eligible



increments. If both input flow increments have the same
framing key, the runnability function would indicate that
both should be read. On the other hand, if the framing
keys differ the runnability function would select only the
one with the smaller key to be read. This logic prevents a
loss of synchronization in the case that one flow contains no
data for a particular day.

The runnability function can be used for other purposes
as well, such as preferentially consuming data from one in-
put over another. This functionality is useful if some data
paths are more latency-sensitive than others. We will see a
concrete example of this scenario in the next section.

The default runnability function, RunnableAll, implements
the same semantics that Dryad uses to determine stage runnabil-
ity: the stage is only runnable if all inputs have increments,
in which case each increment is both read and removed.

In the case of multiple stages consuming the same flow,
framing and runnability are managed separately for each
consumer stage. Flow data is only stored once, and each
consumer stage maintains its own cursors into the shared
flow. Data can be deleted once all consuming flows have
performed removal.

3. EXAMPLE APPLICATIONS
We have already described one application of the BIPS

model at a high level (the crawl example from Section 1.1).
This section presents three other applications that illustrate
subtle properties of the model and showcase its flexibility.
Keep in mind that, as stated in Section 1, the BIPS model
is a low-level dataflow programming paradigm that favors
flexibility over high-level constructs. Higher-level abstrac-
tions (e.g., windowing) and optimization techniques (e.g.,
state minimization) can be layered on top of BIPS, to make
applications more convenient to write and offload the op-
timization burden from application writers. We leave the
design of such layers as future work.

Per-Stage API

translate(Key, ∆F in

0
, . . . , ∆F in

n )→ (∆F out

0
, . . . , ∆F out

n )
runnable(inputFramingKeys, state)→ (reads, removes, state)

Per-Flow API

framing(ADU, state) → (Key, state)
routeBy(ADU) → Key
orderBy(ADU) → Key

Table 1: Users define two functions for each trans-

lation stage, and two functions for each input flow.

Default functions exist for each except for transla-

tion.

To summarize the model presented in Section 2, Table 1
lists the five functions that each BIPS dataflow stage imple-
ments. The only mandatory one is translate; the remaining
ones have defaults. For example, the crawl dataflow (Sec-
tion 1.1) uses the default runnability function, which waits
for all inputs to have available increments, for each stage.
When not explicitly mentioned in the following examples, in-
put flows use the default RouteBy (RouteByADU), OrderBy

(OrderByAny), and f raming (DefaultFraming) functions, as
defined in Section 2.2.

3.1 Incremental median
Computing medians is a holistic operation, requiring state

in proportion to the input set of integers. We implemented

Figure 3: An incremental median BIPS dataflow.

Figure 4: Incremental median with one state copy.

an incremental median in our prototype (Section 4) using
the BIPS dataflow shown in Figure 3. The input data, from
a finite domain such as X ∈ {0, 1, 2, . . . , m}, first passes
through a RouteBy function that segments the domain into
n buckets. Each parallel instance of the first stage, his-
togram, handles one bucket, maintaining in its state the data
and a count of the number of items for that bucket i.†Collec-
tively, the counts stored in the state represent a histogram
of the input data.

The histogram stage passes bucket counts to a second,
non-parallel stage (median) that determines the bucket and
offset of the current median. A final stage (return median)
uses the median location to query the histogram and locate
the value of the median item, which becomes the output of
the program. The return median stage uses a runnability
function that only permits the stage to run when an in-
crement is available on both input flows. This constraint
ensures that the stage uses the same version of state that
was used to compute the median location.

This simple dataflow constitutes a naive implementation
of median, because it maintains two copies of the same state
(one in histogram and one in return median). Moreover,
state updates in transit between those two stages represent
computational as well as storage overhead. However, cycles
in a BIPS dataflow allow us to optimize the median com-
putation by connecting the output of the median stage to
the histogram stage. Figure 4 shows how this cycle elimi-
nates the second state copy. The translate function for the
histogram/median stage now calculates the last median and
updates the state.

In the optimized dataflow, synchronization becomes more
subtle. The histogram/median stage must wait until the
previous histogram’s median location arrives, before apply-
ing the next increment of state changes. More precisely, it
cannot process increment index i on the top input unless in-
crement index i− 1 is available on the right input, or i = 0.

†Moderate skew can be handled in the usual fashion by run-
ning a several independent logical parallel instances on each
physical processing node.



Figure 5: Incrementally maintaining and querying a

data cube as a BIPS dataflow.

This logic resides in the stage’s runnability function.

3.2 Incremental data cubing
Here we show how a simple BIPS dataflow can maintain

and query a data cube [17]. This example illustrates a case
with two external inputs (data to be cubed, and queries
to the cube). Our implementation is not meant to com-
pete with existing techniques that change the underlying
data representation of the cube to minimize update, stor-
age, and query cost [30, 27, 19]. Rather, it is to show the
ease with which we can maintain the raw data cube incre-
mentally leveraging the data-parallelism in the BIPS model.

The dataflow, shown in Figure 5, consists of five stages.
The first ADU-wise stage computes updates to the cube.
The application interprets input ADUs as 4-tuples; each tu-
ple is an insert into the original table (implementing deletes
or updates would require tagging input tuples with the re-
spective operation). An example update tuple would be:
(mon, 10am, 122, 68). The input split stage makes 2n ver-
sions of each input tuple, assigning each an extra field indi-
cating the cuboid that it will update. For instance, the tu-
ple ((day, time), mon, 10am, 122, 68) will update the day, time

cuboid.
The cube update stage defines a RouteBy function for this

input flow that returns (cuboid, group) as the routing key.
Using our example tuple, RouteBy returns ((day, time), (mon, 10am)).
The stage calculates the aggregate functions for all tuples
in each group, with each aggregation function maintaining
the necessary state (constant-sized for distributive/algebraic
functions, and linear-sized for holistic functions). The state-
ful groupwise data cube stage integrates these updates into
each cuboid, allowing updates to proceed in parallel across
each cuboid.

Finally, the query preprocessor converts range queries into
sets of point queries, i.e., queries that return a single row on
a particular cuboid. The result stage aggregates the answers
to the set of point queries representing each range query.

The presence of two external input flows raises a schedul-
ing question. The data cube stage may run when an incre-
ment is available on either input flow. However, to ensure
fast response times for queries to the cube, it may be de-

sirable to configure that stage to process inputs from the
query processor preferentially to data updates (with provi-
sions to avoid starving data updates and limit the number of
unapplied updates to the data cube). The data cube stage’s
runnability function governs this scheduling decision. Our
evaluation (Section 5) uses this dataflow to explore the in-
teraction of runnability and the physical scheduling of stage
execution.

3.3 Incremental view maintenance
As alluded to above, general relational view-maintenance [4]

techniques can be implemented on top of BIPS. The details
are beyond the scope of this paper, but we give a brief sketch
here.

In the simplest scenario, we have a relation R and a stream
of incoming updates to R. The update stream can be repre-
sented in one of two ways. One option is to use two distinct
flows: an insertion flow and a separate deletion flow. Alter-
natively, one could use a single flow in which the ADUs act as
wrappers around the raw tuples and include special markers
to indicate whether a given tuple represents insertion, dele-
tion (or perhaps modification, using a key reference). Since
BIPS does not impose any particular structure on the ADUs
or their interpretation, either approach can be taken.

In either case, a BIPS stage can maintain the base rela-
tion R by consuming the update flow(s) along with R, and
emitting an updated version of R, such that the flow carry-
ing R forms a self-loop on the stage (obviously the self-loop
is not needed in the special case of insert-only with bag se-
mantics). Other stages that want to maintain views over R

(including views over R combined with other static or evolv-
ing relations, e.g., join views) can subscribe to the output
flows that carry R and its updates.

Incremental view maintenance techniques typically ap-
ply relational-algebra-like expressions over a combination of
base relations, delta relations, and other materialized views
(e.g., auxiliary views [26]). With these data elements ex-
posed as flows in a BIPS dataflow, one can implement a view
maintenance operation as one or more stages over these flows
(e.g., one stage might join R’s update flow with the base
data flow of another relation S, as part of maintaining the
view R ⊲⊳ S). Join, set-difference, and other relational-style
operations used in view maintenance have efficient out-of-
core and parallel implementations based on grouping and
sorting [15], which are BIPS primitives.

4. IMPLEMENTATION
Having presented the logical BIPS programming model

and examples of its use in Sections 2 and 3, we now turn
to implementation. We envision a four-layer “implementa-
tion stack” for BIPS systems, shown in Table 2. Each layer
groups similar functions together, provides services to the
layer above, and receives services from the layer below.

This paper focuses on the design and implementation of
the physical and dataflow layers. The physical layer reli-
ably executes and stores the results of a single stage of the
dataflow. Above it, the dataflow layer provides reliable exe-
cution of an entire BIPS dataflow, orchestrating the execu-
tion of multiple stages. It ensures reliable, ordered transport
of increments between stages, and determines which stages
are ready for execution. The dataflow layer may also compile
the logical dataflow into a more efficient physical representa-
tion, depending on the execution capabilities of the physical



Layer Responsibilities

Application High-level dataflow specification.
Presentation Libraries and languages.
Dataflow Optimizes and reliably runs logical

dataflow.
Physical Reliably processes individual stages and

stores increments.

Table 2: Bulk-incremental processing designs may

be described using four layers.

BIPS-scheduler(P, runset)

1 While ! runset.empty()

2 epoch++

3 RunStage(stage ← runset.rmHead() )

4 stage.runCnt++

5 connectors ← GetNonEmptyFCs()

6 ForAll fc in connectors

7 if isRunnable(fc.destStage)

8 fc.destStage.epochCnt ← epoch

9 runset.add(fc.destStage)

10 SortByRunByEpoch(runset)

Figure 6: Pseudocode for stage scheduling.

layer. However, the automated analysis and optimization of
a BIPS dataflow into physical jobs is outside the scope of
this work.

4.1 Controlling stage inputs and execution
The dataflow layer accepts a BIPS dataflow from the pre-

sentation layer and orchestrates the execution of its multi-
ple stages. The incremental dataflow controller (IDC) de-
termines the set of runnable stages and issues calls to the
physical layer to run them.

The IDC maintains a flow connector, a piece of run-time
state, for each stage’s input flow. Each flow connector logi-
cally connects an output flow to its destination input flow.
It maintains a logical, ordered queue of identifiers that rep-
resent the increments available on the associated input flow.
Each output flow may have multiple flow connectors, one
for each input flow that uses it as a source. After a stage
executes, the IDC updates the flow connectors for each out-
put flow by enqueueing the location and framing key of each
new output increment. The default, with a DefaultFraming

framing function, is for the stage to produce one output in-
crement per flow per epoch.

The IDC uses a stage’s runnable function to determine
whether a stage can be run. The system passes the function
the set of flow connectors with un-read increments and the
associated framing keys, and an application-defined piece of
state. The runnable function has access to each flow connec-
tor’s meta data (e.g., number of enqueued increments) and
determines the set of flow connectors from which to read,
readSet, and remove, removeSet, increments for the next
epoch. If the readSet is empty, the stage is not runnable.
After each epoch, the IDC updates each flow connector,
marking increments as read or removing increment refer-
ences. Increments may be garbage collected when no flow
connector references them.

4.2 Scheduling with bottleneck detection
The IDC must determine the set of runnable stages and

the order in which to run them. We do not address the chal-

lenges of scheduling multiple dataflows, or selecting partic-
ular resources for each stage (we leave this to the physical
layer). The scheduling decisions made by prior bulk process-
ing systems, such as Dryad, are relatively simple. They take
as input a DAG, and use a simple on-line topological sort
to determine a vertex (stage) execution order that respects
data dependencies.

However, BIPS presents two additional criteria. First, P
may contain cycles, and the scheduler must choose a total or-
der of stages to avoid starvation or high makespans (time to
push a single increment through all stages). Second, using
the runnability function, stages can prefer or synchronize
processing particular inputs. This means that increments
can “back up” on input flows, and that the stage creating
data for that input no longer needs to run. We develop
a simple scheduler algorithm that avoids stage starvation
and that responds to downstream backpressure (a bottle-
neck stage).

We first describe a scheduler that does not respond to
backpressure. It avoids starvation by running every stage
at least once before running any stage again. The sched-
uler has access to all flow connectors and may run each
stage’s runnable function. Scheduling occurs in epochs and
determines dependencies dynamically. Each scheduler epoch
starts with an ordered set of runnable stages (the runset),
executes the first, and then determines the new set of runnable
stages. We order the stages in the runset by runCnt, the
number of times the stage has executed, breaking ties by
epochCnt, the scheduler epoch during which this stage be-
came runnable.

Figure 6 lists pseudocode for our BIPS scheduler. The
runset is initially populated with stages that source existing
input. The head of the runset represents the stage that has
run the fewest times, breaking ties by which has been in the
runset the longest (smallest epochCnt). RunStage asks the
physical layer to execute the stage, places produced incre-
ments on the flow connectors, and calls the associated fram-
ing functions. Next, for each flow connector with input in-
crements we check whether the associated stage is runnable,
and, if so, add it to runset. Finally, the scheduler re-sorts
the runset.

Implementing bottleneck detection requires a small change
to prune stages that have unread increments on all output
flows. Running such stages will not make any downstream
stage runnable. This changes line 3 in Figure 6 to find the
first stage in the runset that has at least one empty output
flow.

4.3 Failure recovery
The dataflow layer assumes that the physical layer pro-

vides atomic execution of individual stages and reliable stor-
age of immutable increments. With such semantics, a single
stage may be restarted if the physical layer fails to run a
stage. The executed stage specifies a naming convention
for each produced increment, requiring it to be tagged by
its source stage, flow id, and increment index. These may
be encoded in the on-disk path and increment name. Once
the physical layer informs the IDC of success, it guarantees
that result increments are on disk. Dryad used similar tech-
niques to ensure dataflow correctness under individual job
failures [18].

Next, the IDC updates the run-time state of the dataflow.
This consists of adding new and deleting old increment ref-



erences on to existing flow connectors. The controller uses
write-ahead logging to record its intended actions; these in-
tentions contain snapshots of the state of the flow connector
queue. The log only needs to retain the last intention for
each stage. If the IDC fails, it rebuilds state from the XML
dataflow description and rebuilds the flow connectors and
scheduler state by scanning the intentions.

4.4 BIPS with Blackbox MapReduce
We now turn to implementation options for the BIPS

physical layer, which executes runnable stages. In this sec-
tion we describe a simple implementation strategy on top
of an unmodified MapReduce system, which is a reason-
able match for BIPS due to its data-parallelism and fault-
tolerance features. In Section 4.5 we discuss ways to improve
efficiency if one is not limited to MapReduce as an underly-
ing “black-box” system.

Our bulk-incremental dataflow engine leverages the scal-
ability and robustness properties of the GFS/MapReduce
architecture [14, 7], and in particular the open-source im-
plementation called Hadoop. MapReduce allows program-
mers to specify data processing in two phases: map and
reduce. The map function operates on individual key-value
pairs, {k1, v1}, and outputs a new pair, {k2, v2}. The sys-
tem creates a list of values, [v]2, for each key k2. The reduce
function then creates a final value v3 from each key-value list
pair. The MapReduce architecture transparently manages
the parallel execution of the map phase, the grouping of all
values with a given key (the sort), and the parallel execution
of the reduce phase.

We now describe how to emulate a single BIPS stage us-
ing a single MapReduce job.‡ Here we describe the Map
and Reduce “wrapper” functions that export both ADU-
wise and groupwise translation functions. These wrapper
functions encapsulate BIPS application data inside an ADU
object. That object also contains the flowID, RouteByKey,
and OrderByKey.

While the MapReduce model has one logical input and
output, implementations, GMR or Hadoop, allow a MapRe-
duce job to process multiple input and write multiple out-
put files. In BIPS, the flowIDs within each ADU logically
separate flows, and the wrapper code uses the flowID to
invoke per-flow functions, such as RouteBy and OrderBy

that create the routing and ordering keys. This “black-box”
approach emulates state as just another input (and output)
file of the map-reduce job.

• Map: The map function wrapper implements routing,
and assigns routing keys based on the RouteBy func-
tion associated with each input flow. It wraps each
input record into an ADU and sets the flowID, so the
reduce function can separate data originating from the
different flows. Map functions may also run one or
more preprocessors; these preprocessors implement the
ADU-wise translation interface. The optional MapRe-
duce combiner has also been wrapped to support ap-
plications that provide distributive or algebraic trans-
lators.

• Reduce: The Hadoop reducer facility sorts records
by the RouteByKey embedded in the ADU. The BIPS

‡To enable an efficient implementation of BIPS on top of
a MapReduce environment, we require transformation func-
tions to be deterministic and side-effect-free.

Figure 7: The MapReduce jobs that emulate the

BIPS incremental crawl queue dataflow.

reduce wrapper function multiplexes the sorted records
into n streams, upcalling the user-supplied translator
function T (·) with an iterator for each input flow. Per-
flow emitter functions route output from T (·) to HDFS
file locations specified in the job description. Like the
map, emitter functions may also run one or more per-
ADU postprocessing steps before writing to HDFS.

Thus a single groupwise translator becomes a job with a
map/reduce pair, while an ADU-wise translator can be a
map-only job (allowed by Hadoop) or a reduce postproces-
sor. Note that this presents the dataflow layer with a choice
when ADU-wise translators occur sandwiched between two
groupwise operations. They may either be postprocessing
steps of the first or preprocessing steps of the second. Such
choices have also been observed in the Pig Latin compiler,
an upper-layer language that also compiles into multiple
MapReduce jobs [23].

4.4.1 Incremental crawl queue example

We illustrate the compilation of a BIPS dataflow into
MapReduce jobs using our incremental crawl queue exam-
ples from Figure 1. This dataflow is compiled into two
MapReduce jobs: CountLinks and DecideCrawl. Figure 7
shows the two jobs and which stages each wrapper func-
tion implements. In both jobs all input flows RouteBy the
site, and order input by the URL. Otherwise all input flows
use the default framing and runnability functions. The first
MapReduce job implements both extract links and count in-
links. It writes state ADUs with both site and URL routing
keys to maintain counts for each. The second job places both
score and threshold as postprocessing steps on the group-
wise merge translator. This state flow records all visited src
URLs.

4.4.2 Increment management

MapReduce implementations use shared file systems as a
reliable mechanism for distributing data across large clus-
ters. All flow data resides in the Hadoop distributed file
system (HDFS). The controller creates a directory for each
flow F , called F ’s flow directory, and, underneath that, a
directory for each increment. This directory contains one or
more files containing the ADUs. As discussed in Section 4.2,
when Hadoop signals the successful completion of a stage,
the controller updates all affected flow connectors.

We emulate custom (non-default) framing functions as
post-processing steps in the upstream stage whose output
flow the downstream stage sources. The reduce wrapper



calls the framing function for each ADU written to that
output flow. By default, the increment directory name is
the stage’s processing epoch that generated these ADUs.
The wrapper appends the resulting FramingKey to the in-
crement directory name, and writes ADUs with that key to
that directory. The wrapper also adds the FramingKey to
the meta data associated with this increment in the input
flow’s flow connector. This allows a stage’s runnable func-
tion to compare those keys to synchronize input increments,
as described in Section 2.6.

4.5 Direct BIPS
While MapReduce architectures support bulk processing

and grouping, the emulation of other key BIPS features,
such as state flows, remains expensive. This section explores
how several aspects of the BIPS model may be directly im-
plemented by the physical processing layer to efficiently exe-
cute bulk-incremental dataflows. Doing so affords a number
of important optimizations to the underlying Hadoop in-
frastructure for incremental processing: incremental state
maintenance and flow separation.

4.5.1 Incremental shuffling for loopback flows

The state flow, and any loopback flow in general, presents
special opportunities for optimizing data movement. MapRe-
duce architectures, like Hadoop, transfer output from each
map instance or task to the reduce tasks in the shuffle phase.
Each map task partitions its output into R sets, each con-
taining a subset of the input’s grouping keys. The architec-
ture assigns a reduce task to each partition, whose first job
is to collect its partition from each mapper.

Hadoop, though, treats state like any other flow, re-mapping
and re-shuffling it on each epoch for every groupwise transla-
tor. Shuffling is expensive, requiring each reducer to source
output from each mapper instance, and state can become
large relative to input increments. This represents a large
fraction of the processing required to emulate a BIPS stage.

However, state is local to a particular translate instance,
and only contains ADUs assigned to this translate partition.
When translators update or propagate existing state ADUs
in one epoch, those ADUs are already in the correct partition
for the next epoch. Thus we can avoid re-mapping and re-
shuffling these state ADUs. Instead, the reduce task can
write and read state from/to an HDFS partition file. When
a reducer starts, it references the file by partition, and merge
sorts it with data from the map tasks in the normal fashion.

Note that a translator instance may add state ADUs whose
RouteBy key belongs to a remote partition during an epoch.
These remote writes must be shuffled to the correct par-
tition (translation instance) before the next epoch. We ac-
complish this by simply testing ADUs in the loopback flow’s
emitter, splitting ADUs into two groups: local and remote.
The system shuffles remote ADUs as before, but writes lo-
cal ADUs to the partition file. We further optimize this
process by “pinning” reduce tasks to a physical node that
holds a replica of the first HDFS block of the partition file.
This avoids reading data from across the network by reading
HDFS data stored on the local disk.

In some cases, it is useful to periodically re-shuffle the par-
tition files of a particular loopback flow. For instance, indi-
vidual partitions may become skewed, allowing some parti-
tions to be much bigger than others. Or a stage may wish to
increase or decrease the number of translate instances (re-

duce tasks). We are currently investigating policies for auto-
matically determining when re-shuffling is needed, balancing
the one-time cost against future gains in stage throughput.

4.5.2 Flow separation in MapReduce

While the FlowID maintains the logical separation of data
in the black-box implementation, the MapReduce model and
Hadoop implementation treat data from all flows as a single
input. Thus the system sorts all input data but must then
re-separate it based on flowID. It must also order the ADUs
on each flow by that flow’s OrderBy keys. This emulation
causes unnecessary comparisons and buffering for groupwise
translation.

Consider emulating a groupwise translator with n input
flows using a reduce function with a single input. A Hadoop
reduce tasks calls the reduce function with a single iterator
that contains all records (ADUs) sharing a particular key.
The reduce function can take advantage of Hadoop’s “sec-
ondary sort” to sort this set of ADUs using the OrderByKey,
with ties broken by flowID.§The secondary sort presents
ADUs with this total ordering using a single iterator, forc-
ing BIPS to emulate the individual flow iterators required
by the translator API.

Unfortunately, the black-box emulation requires the pro-
grammer to be cognizant of the underlying implementation
to avoid significant buffering due to reading flows “out of
order.” Since this emulation feeds multiple flow iterators
from a single reduce iterator, reading the flow iterators out
of flowID order forces BIPS to buffer any tuples it needs to
skip over so that they can be read later. For example, con-
sider the case when ADUs on the last flow have the highest
ranking OrderBy keys. A read to that last flow will cause
the system to buffer the majority of the data, potentially
causing OutOfMemoryErrors and aborted processing. This
occurs in practice; many of our examples apply updates to
stateful stages by first reading all ADUs from a particular
flow.

We resolve this issue by pushing the concept of a flow
into MapReduce. Reduce tasks maintain flow separation by
associating each mapper with its source input flow. While
the number of transfers from the mappers to reducers is
unchanged, this reduces the number of primary (and sec-
ondary) grouping comparisons on the RouteBy (and Or-
derBy) keys. This is a small change to the asymptotic anal-
ysis of the merge sort of r records from m mappers from
O(rlogm) to O(rlog m

n
). This speeds up the secondary sort

of ADUs sharing a RouteByKey in a similar fashion; the re-
duce task now employs n secondary sorts based only on the
OrderByKey. This allows each flow to define its own key
space for sorting, and permits reading flows in an arbitrary
order that avoids unnecessary ADU buffering.

5. EVALUATION
Our evaluation uses a variety of dataflows to establish

the benefits of programming incremental dataflows using
the BIPS model. It illustrates the benefits of incremen-
tal processing by comparing to a non-incremental version of
our crawl queue dataflow, and then establishes the impor-
tance of directly implementing aspects of the BIPS model in
Hadoop. Finally, we show how one can efficiently prioritize
bulk processing using the BIPS model for the data cube ap-

§The original MapReduce work only sorted primary keys.
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(a) Landmark dataflow.
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(b) Incremental dataflow: black-box.
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(c) Incremental dataflow: direct.

Figure 8: The performance of the incremental versus landmark crawl queue.

plication. We built BIPS using Hadoop version 0.17.1, and
the implementation consists of 6400 lines of code.

5.1 Incremental crawl queue
This part of the evaluation illustrates the benefits of in-

cremental evaluation on a non-trivial cluster and input data
set. These experiments use the physical realization of the
incremental crawl queue shown in Figure 7. Our input data
consists of 27 million web pages that we divide into ten input
increments (each appr. 30GB) for the dataflow. We ran our
experiments on a cluster of 90 commodity dual core 2.13GHz
Xeons with two SATA harddrives and 4GB of memory. The
machines have a one gigabit per second Ethernet connection
to a shared switch fabric.

To illustrate the benefits of incremental dataflows, we
compare the incremental crawl queue to a version that emu-
lates a landmark window, where each successive input incre-
ment consists of all increments seen so far. This forces the
dataflow to re-process all the old data whenever new data
arrives.¶For the incremental version the system feeds only
the new increment to the dataflow. Note that these tests
do not “close the loop”; the output crawl queue does not
determine the next input increment.

Figure 8 shows the total run times for both landmark and
incremental executions of this dataflow, as well as the run
times for the individual CountLinks and DecideCrawl jobs.
As expected, the running time of the landmark dataflow in-
creases linearly, with the majority of the time spent counting
in-links. While the incremental dataflow offers a large per-
formance improvement (seen in Figure 8(b)), the runtime
still increases with increment count. This is because the
black-box emulation pays a large cost to managing the state
flow, which continues to grow during the execution of the
dataflow. Eventually this reaches 63GB for the countlinks
stage at the 7th increment.

Figure 8(c) shows run times for the direct BIPS implemen-
tation that uses incremental shuffling (with reducer pinning)
and flow separation. In particular, incremental shuffling
allows each stage to avoid mapping and shuffling state on
each new increment, resulting in a nearly constant runtime.
Moreover, HDFS does a good job of keeping the partition file
blocks at the prior reducer. At the 7th increment, pinning
in direct BIPS allows reducers to read 88% of the HDFS
state blocks from the local disk.

¶We modify the landmark dataflow so that runs do not read
or write state flows.
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Figure 9: Comparing execution cumulative time with

30GB and 7.5GB increments.

For some dataflows, including the incremental crawl queue,
the benefits of direct BIPS increase as increment size de-
creases. This is because processing in smaller increments
forces state flows to be re-shuffled more frequently. Figure 9
shows the cumulative processing time for the black-box and
direct systems with two different increment sizes: 30GB (the
default) and 7.5GB (dividing the original increment by 4).
Though the per-stage running time of direct BIPS rises, it
still remains roughly linear in the input size (i.e., constant
processing time per increment). However, running time us-
ing black-box emulation grows super linearly, because the
cumulative movement of the state flow slows down process-
ing.

5.2 Bottleneck detection with the data cube
This section explores prioritized flow processing in the

data cube dataflow. A data cube may wish to avoid up-
dating the cube under high query workload or wish to pro-
vide a lower bound on query throughput. Here our point
is to show how one may use BIPS’s runnability functions
to express prioritized processing. Moreover, such prioritized
processing means that certain stages of the dataflow, such as
those that create the data updates (input splitter and cube
update), do not have to run as often.

Here each cube update increment contains 5k ADUs, where
each ADU is an insert to the cube’s base table. Increments
to the query preprocessor stage consist of 1k ADUs, each
representing a different range query and uniformly spread
across the cuboids. The runnability function of the data
cube stage favors query increments over data updates in a
4:1 ratio. For these experiments there are an unbounded
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(a) Aggregate update throughput.
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(b) Cube write throughput.
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(c) Point query throughput.

Figure 10: Throughput of various stages of the incremental data cube while prioritizing query processing.

number of data update and query increments to process,
the data cube runs over a 10 machine cluster connected via
gigabit Ethernet, and all results use direct BIPS.

Our experiments investigate the rate at which the dataflow
can compute the cube’s aggregates (output of cube update),
write those updates to the cube, and read the cube (output
of result aggregate). Figure 10 shows a graph for each rate
and compares three scenarios. The first, priority+bneck,
uses the priority runnability function and the bottleneck-
aware scheduler. The second, priority, uses the default sched-
uler, and the third, no priority, uses the default scheduler
and a runnability function that processes any available in-
puts.

Figure 10(a) shows that the default scheduler runs the
cube update stage, even if the data cube stage no longer needs
those inputs (the priority line being much higher than prior-
ity+bneck). We can see that the bottleneck-aware scheduler
adjusts to the backpressure, and only runs that stage when
needed.

Critically, bottleneck-awareness allows the priority runnabil-
ity function to increase the rate of query processing. With-
out it, query throughput (Figure 10(c)) is virtually unaf-
fected; the priority and no priority lines lie on top of each
other. This is because the default scheduler always runs the
cube update stage before data cube. Having the data cube
stage process both data updates and queries simultaneously
in the no priority experiment does not measurably decrease
query throughput, as they can both be done in a single data
scan. Using backpressure thus avoids inserting unnecessary
delay between query processing steps.

6. CONCLUSION
BIPS provides a flexible computational model that can

express a range of continuous, incremental operations, sup-
porting applications from web search, to data mining, to var-
ious e-Science data pipelines. While the BIPS model has rel-
atively few constructs, we recognize that building dataflows
by hand is tedious. Thus future work includes providing
a compiler to translate an upper-layer language into BIPS
dataflows.

We have shown that the system model affords an elegant
reduction to an existing unstructured processing system,
MapReduce. However, experience with this black-box emu-
lation of BIPS revealed impedance mismatches between the
model and underlying execution system. A direct implemen-
tation of the state flow abstraction, incremental shuffling, al-
lows our BIPS implementation to achieve performance that
is nearly proportional to input increment size, not state size.
Finally, the BIPS model opens up other promising system

and dataflow-level optimizations, including optimizing right
outer groupings by replacing HDFS with a distributed table
store (BigTable [5]) and transforming dataflows to automat-
ically reduce the amount of stored state.
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